xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 9a3ef9df22ec1fe8d49b219c181c039f25c3296d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 
22 #include <linux/spi/spi.h>
23 
24 #define SUN6I_FIFO_DEPTH		128
25 #define SUN8I_FIFO_DEPTH		64
26 
27 #define SUN6I_GBL_CTL_REG		0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
29 #define SUN6I_GBL_CTL_MASTER			BIT(1)
30 #define SUN6I_GBL_CTL_TP			BIT(7)
31 #define SUN6I_GBL_CTL_RST			BIT(31)
32 
33 #define SUN6I_TFR_CTL_REG		0x08
34 #define SUN6I_TFR_CTL_CPHA			BIT(0)
35 #define SUN6I_TFR_CTL_CPOL			BIT(1)
36 #define SUN6I_TFR_CTL_SPOL			BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK			0x30
38 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
41 #define SUN6I_TFR_CTL_DHB			BIT(8)
42 #define SUN6I_TFR_CTL_FBS			BIT(12)
43 #define SUN6I_TFR_CTL_XCH			BIT(31)
44 
45 #define SUN6I_INT_CTL_REG		0x10
46 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
49 #define SUN6I_INT_CTL_TC			BIT(12)
50 
51 #define SUN6I_INT_STA_REG		0x14
52 
53 #define SUN6I_FIFO_CTL_REG		0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
56 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
59 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
60 
61 #define SUN6I_FIFO_STA_REG		0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
63 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
64 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
65 
66 #define SUN6I_CLK_CTL_REG		0x24
67 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
68 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
69 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
70 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
71 #define SUN6I_CLK_CTL_DRS			BIT(12)
72 
73 #define SUN6I_MAX_XFER_SIZE		0xffffff
74 
75 #define SUN6I_BURST_CNT_REG		0x30
76 
77 #define SUN6I_XMIT_CNT_REG		0x34
78 
79 #define SUN6I_BURST_CTL_CNT_REG		0x38
80 
81 #define SUN6I_TXDATA_REG		0x200
82 #define SUN6I_RXDATA_REG		0x300
83 
84 struct sun6i_spi {
85 	struct spi_master	*master;
86 	void __iomem		*base_addr;
87 	struct clk		*hclk;
88 	struct clk		*mclk;
89 	struct reset_control	*rstc;
90 
91 	struct completion	done;
92 
93 	const u8		*tx_buf;
94 	u8			*rx_buf;
95 	int			len;
96 	unsigned long		fifo_depth;
97 };
98 
99 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
100 {
101 	return readl(sspi->base_addr + reg);
102 }
103 
104 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
105 {
106 	writel(value, sspi->base_addr + reg);
107 }
108 
109 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
110 {
111 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 
113 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
114 }
115 
116 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
117 {
118 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
119 
120 	reg |= mask;
121 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
122 }
123 
124 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
125 {
126 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
127 
128 	reg &= ~mask;
129 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
130 }
131 
132 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
133 {
134 	u32 reg, cnt;
135 	u8 byte;
136 
137 	/* See how much data is available */
138 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
139 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
140 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
141 
142 	if (len > cnt)
143 		len = cnt;
144 
145 	while (len--) {
146 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
147 		if (sspi->rx_buf)
148 			*sspi->rx_buf++ = byte;
149 	}
150 }
151 
152 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
153 {
154 	u32 cnt;
155 	u8 byte;
156 
157 	/* See how much data we can fit */
158 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
159 
160 	len = min3(len, (int)cnt, sspi->len);
161 
162 	while (len--) {
163 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
164 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
165 		sspi->len--;
166 	}
167 }
168 
169 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
170 {
171 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
172 	u32 reg;
173 
174 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
175 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
176 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
177 
178 	if (enable)
179 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
180 	else
181 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
182 
183 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
184 }
185 
186 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
187 {
188 	return SUN6I_MAX_XFER_SIZE - 1;
189 }
190 
191 static int sun6i_spi_transfer_one(struct spi_master *master,
192 				  struct spi_device *spi,
193 				  struct spi_transfer *tfr)
194 {
195 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
196 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
197 	unsigned int start, end, tx_time;
198 	unsigned int trig_level;
199 	unsigned int tx_len = 0;
200 	int ret = 0;
201 	u32 reg;
202 
203 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
204 		return -EINVAL;
205 
206 	reinit_completion(&sspi->done);
207 	sspi->tx_buf = tfr->tx_buf;
208 	sspi->rx_buf = tfr->rx_buf;
209 	sspi->len = tfr->len;
210 
211 	/* Clear pending interrupts */
212 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
213 
214 	/* Reset FIFO */
215 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
216 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
217 
218 	/*
219 	 * Setup FIFO interrupt trigger level
220 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
221 	 * value used in old generation of Allwinner SPI controller.
222 	 * (See spi-sun4i.c)
223 	 */
224 	trig_level = sspi->fifo_depth / 4 * 3;
225 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
226 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
227 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
228 
229 	/*
230 	 * Setup the transfer control register: Chip Select,
231 	 * polarities, etc.
232 	 */
233 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
234 
235 	if (spi->mode & SPI_CPOL)
236 		reg |= SUN6I_TFR_CTL_CPOL;
237 	else
238 		reg &= ~SUN6I_TFR_CTL_CPOL;
239 
240 	if (spi->mode & SPI_CPHA)
241 		reg |= SUN6I_TFR_CTL_CPHA;
242 	else
243 		reg &= ~SUN6I_TFR_CTL_CPHA;
244 
245 	if (spi->mode & SPI_LSB_FIRST)
246 		reg |= SUN6I_TFR_CTL_FBS;
247 	else
248 		reg &= ~SUN6I_TFR_CTL_FBS;
249 
250 	/*
251 	 * If it's a TX only transfer, we don't want to fill the RX
252 	 * FIFO with bogus data
253 	 */
254 	if (sspi->rx_buf)
255 		reg &= ~SUN6I_TFR_CTL_DHB;
256 	else
257 		reg |= SUN6I_TFR_CTL_DHB;
258 
259 	/* We want to control the chip select manually */
260 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
261 
262 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
263 
264 	/* Ensure that we have a parent clock fast enough */
265 	mclk_rate = clk_get_rate(sspi->mclk);
266 	if (mclk_rate < (2 * tfr->speed_hz)) {
267 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
268 		mclk_rate = clk_get_rate(sspi->mclk);
269 	}
270 
271 	/*
272 	 * Setup clock divider.
273 	 *
274 	 * We have two choices there. Either we can use the clock
275 	 * divide rate 1, which is calculated thanks to this formula:
276 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
277 	 * Or we can use CDR2, which is calculated with the formula:
278 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
279 	 * Wether we use the former or the latter is set through the
280 	 * DRS bit.
281 	 *
282 	 * First try CDR2, and if we can't reach the expected
283 	 * frequency, fall back to CDR1.
284 	 */
285 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
286 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
287 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
288 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
289 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
290 	} else {
291 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
292 		reg = SUN6I_CLK_CTL_CDR1(div);
293 		tfr->effective_speed_hz = mclk_rate / (1 << div);
294 	}
295 
296 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
297 
298 	/* Setup the transfer now... */
299 	if (sspi->tx_buf)
300 		tx_len = tfr->len;
301 
302 	/* Setup the counters */
303 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
304 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
305 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
306 
307 	/* Fill the TX FIFO */
308 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
309 
310 	/* Enable the interrupts */
311 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
312 	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
313 					 SUN6I_INT_CTL_RF_RDY);
314 	if (tx_len > sspi->fifo_depth)
315 		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
316 
317 	/* Start the transfer */
318 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
319 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
320 
321 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
322 	start = jiffies;
323 	timeout = wait_for_completion_timeout(&sspi->done,
324 					      msecs_to_jiffies(tx_time));
325 	end = jiffies;
326 	if (!timeout) {
327 		dev_warn(&master->dev,
328 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
329 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
330 			 jiffies_to_msecs(end - start), tx_time);
331 		ret = -ETIMEDOUT;
332 	}
333 
334 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
335 
336 	return ret;
337 }
338 
339 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
340 {
341 	struct sun6i_spi *sspi = dev_id;
342 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
343 
344 	/* Transfer complete */
345 	if (status & SUN6I_INT_CTL_TC) {
346 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
347 		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
348 		complete(&sspi->done);
349 		return IRQ_HANDLED;
350 	}
351 
352 	/* Receive FIFO 3/4 full */
353 	if (status & SUN6I_INT_CTL_RF_RDY) {
354 		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
355 		/* Only clear the interrupt _after_ draining the FIFO */
356 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
357 		return IRQ_HANDLED;
358 	}
359 
360 	/* Transmit FIFO 3/4 empty */
361 	if (status & SUN6I_INT_CTL_TF_ERQ) {
362 		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
363 
364 		if (!sspi->len)
365 			/* nothing left to transmit */
366 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
367 
368 		/* Only clear the interrupt _after_ re-seeding the FIFO */
369 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
370 
371 		return IRQ_HANDLED;
372 	}
373 
374 	return IRQ_NONE;
375 }
376 
377 static int sun6i_spi_runtime_resume(struct device *dev)
378 {
379 	struct spi_master *master = dev_get_drvdata(dev);
380 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
381 	int ret;
382 
383 	ret = clk_prepare_enable(sspi->hclk);
384 	if (ret) {
385 		dev_err(dev, "Couldn't enable AHB clock\n");
386 		goto out;
387 	}
388 
389 	ret = clk_prepare_enable(sspi->mclk);
390 	if (ret) {
391 		dev_err(dev, "Couldn't enable module clock\n");
392 		goto err;
393 	}
394 
395 	ret = reset_control_deassert(sspi->rstc);
396 	if (ret) {
397 		dev_err(dev, "Couldn't deassert the device from reset\n");
398 		goto err2;
399 	}
400 
401 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
402 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
403 
404 	return 0;
405 
406 err2:
407 	clk_disable_unprepare(sspi->mclk);
408 err:
409 	clk_disable_unprepare(sspi->hclk);
410 out:
411 	return ret;
412 }
413 
414 static int sun6i_spi_runtime_suspend(struct device *dev)
415 {
416 	struct spi_master *master = dev_get_drvdata(dev);
417 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
418 
419 	reset_control_assert(sspi->rstc);
420 	clk_disable_unprepare(sspi->mclk);
421 	clk_disable_unprepare(sspi->hclk);
422 
423 	return 0;
424 }
425 
426 static int sun6i_spi_probe(struct platform_device *pdev)
427 {
428 	struct spi_master *master;
429 	struct sun6i_spi *sspi;
430 	int ret = 0, irq;
431 
432 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
433 	if (!master) {
434 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
435 		return -ENOMEM;
436 	}
437 
438 	platform_set_drvdata(pdev, master);
439 	sspi = spi_master_get_devdata(master);
440 
441 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
442 	if (IS_ERR(sspi->base_addr)) {
443 		ret = PTR_ERR(sspi->base_addr);
444 		goto err_free_master;
445 	}
446 
447 	irq = platform_get_irq(pdev, 0);
448 	if (irq < 0) {
449 		ret = -ENXIO;
450 		goto err_free_master;
451 	}
452 
453 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
454 			       0, "sun6i-spi", sspi);
455 	if (ret) {
456 		dev_err(&pdev->dev, "Cannot request IRQ\n");
457 		goto err_free_master;
458 	}
459 
460 	sspi->master = master;
461 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
462 
463 	master->max_speed_hz = 100 * 1000 * 1000;
464 	master->min_speed_hz = 3 * 1000;
465 	master->use_gpio_descriptors = true;
466 	master->set_cs = sun6i_spi_set_cs;
467 	master->transfer_one = sun6i_spi_transfer_one;
468 	master->num_chipselect = 4;
469 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
470 	master->bits_per_word_mask = SPI_BPW_MASK(8);
471 	master->dev.of_node = pdev->dev.of_node;
472 	master->auto_runtime_pm = true;
473 	master->max_transfer_size = sun6i_spi_max_transfer_size;
474 
475 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
476 	if (IS_ERR(sspi->hclk)) {
477 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
478 		ret = PTR_ERR(sspi->hclk);
479 		goto err_free_master;
480 	}
481 
482 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
483 	if (IS_ERR(sspi->mclk)) {
484 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
485 		ret = PTR_ERR(sspi->mclk);
486 		goto err_free_master;
487 	}
488 
489 	init_completion(&sspi->done);
490 
491 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
492 	if (IS_ERR(sspi->rstc)) {
493 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
494 		ret = PTR_ERR(sspi->rstc);
495 		goto err_free_master;
496 	}
497 
498 	/*
499 	 * This wake-up/shutdown pattern is to be able to have the
500 	 * device woken up, even if runtime_pm is disabled
501 	 */
502 	ret = sun6i_spi_runtime_resume(&pdev->dev);
503 	if (ret) {
504 		dev_err(&pdev->dev, "Couldn't resume the device\n");
505 		goto err_free_master;
506 	}
507 
508 	pm_runtime_set_active(&pdev->dev);
509 	pm_runtime_enable(&pdev->dev);
510 	pm_runtime_idle(&pdev->dev);
511 
512 	ret = devm_spi_register_master(&pdev->dev, master);
513 	if (ret) {
514 		dev_err(&pdev->dev, "cannot register SPI master\n");
515 		goto err_pm_disable;
516 	}
517 
518 	return 0;
519 
520 err_pm_disable:
521 	pm_runtime_disable(&pdev->dev);
522 	sun6i_spi_runtime_suspend(&pdev->dev);
523 err_free_master:
524 	spi_master_put(master);
525 	return ret;
526 }
527 
528 static int sun6i_spi_remove(struct platform_device *pdev)
529 {
530 	pm_runtime_force_suspend(&pdev->dev);
531 
532 	return 0;
533 }
534 
535 static const struct of_device_id sun6i_spi_match[] = {
536 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
537 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
538 	{}
539 };
540 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
541 
542 static const struct dev_pm_ops sun6i_spi_pm_ops = {
543 	.runtime_resume		= sun6i_spi_runtime_resume,
544 	.runtime_suspend	= sun6i_spi_runtime_suspend,
545 };
546 
547 static struct platform_driver sun6i_spi_driver = {
548 	.probe	= sun6i_spi_probe,
549 	.remove	= sun6i_spi_remove,
550 	.driver	= {
551 		.name		= "sun6i-spi",
552 		.of_match_table	= sun6i_spi_match,
553 		.pm		= &sun6i_spi_pm_ops,
554 	},
555 };
556 module_platform_driver(sun6i_spi_driver);
557 
558 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
559 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
560 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
561 MODULE_LICENSE("GPL");
562