xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 794912cff6dba8b5e93948243299bb0b2cb11277)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/reset.h>
23 
24 #include <linux/spi/spi.h>
25 
26 #define SUN6I_FIFO_DEPTH		128
27 
28 #define SUN6I_GBL_CTL_REG		0x04
29 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
30 #define SUN6I_GBL_CTL_MASTER			BIT(1)
31 #define SUN6I_GBL_CTL_TP			BIT(7)
32 #define SUN6I_GBL_CTL_RST			BIT(31)
33 
34 #define SUN6I_TFR_CTL_REG		0x08
35 #define SUN6I_TFR_CTL_CPHA			BIT(0)
36 #define SUN6I_TFR_CTL_CPOL			BIT(1)
37 #define SUN6I_TFR_CTL_SPOL			BIT(2)
38 #define SUN6I_TFR_CTL_CS_MASK			0x30
39 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
40 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
41 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
42 #define SUN6I_TFR_CTL_DHB			BIT(8)
43 #define SUN6I_TFR_CTL_FBS			BIT(12)
44 #define SUN6I_TFR_CTL_XCH			BIT(31)
45 
46 #define SUN6I_INT_CTL_REG		0x10
47 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
48 #define SUN6I_INT_CTL_TC			BIT(12)
49 
50 #define SUN6I_INT_STA_REG		0x14
51 
52 #define SUN6I_FIFO_CTL_REG		0x18
53 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
54 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
55 
56 #define SUN6I_FIFO_STA_REG		0x1c
57 #define SUN6I_FIFO_STA_RF_CNT_MASK		0x7f
58 #define SUN6I_FIFO_STA_RF_CNT_BITS		0
59 #define SUN6I_FIFO_STA_TF_CNT_MASK		0x7f
60 #define SUN6I_FIFO_STA_TF_CNT_BITS		16
61 
62 #define SUN6I_CLK_CTL_REG		0x24
63 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
64 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
65 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
66 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
67 #define SUN6I_CLK_CTL_DRS			BIT(12)
68 
69 #define SUN6I_BURST_CNT_REG		0x30
70 #define SUN6I_BURST_CNT(cnt)			((cnt) & 0xffffff)
71 
72 #define SUN6I_XMIT_CNT_REG		0x34
73 #define SUN6I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
74 
75 #define SUN6I_BURST_CTL_CNT_REG		0x38
76 #define SUN6I_BURST_CTL_CNT_STC(cnt)		((cnt) & 0xffffff)
77 
78 #define SUN6I_TXDATA_REG		0x200
79 #define SUN6I_RXDATA_REG		0x300
80 
81 struct sun6i_spi {
82 	struct spi_master	*master;
83 	void __iomem		*base_addr;
84 	struct clk		*hclk;
85 	struct clk		*mclk;
86 	struct reset_control	*rstc;
87 
88 	struct completion	done;
89 
90 	const u8		*tx_buf;
91 	u8			*rx_buf;
92 	int			len;
93 };
94 
95 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
96 {
97 	return readl(sspi->base_addr + reg);
98 }
99 
100 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
101 {
102 	writel(value, sspi->base_addr + reg);
103 }
104 
105 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
106 {
107 	u32 reg, cnt;
108 	u8 byte;
109 
110 	/* See how much data is available */
111 	reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
112 	reg &= SUN6I_FIFO_STA_RF_CNT_MASK;
113 	cnt = reg >> SUN6I_FIFO_STA_RF_CNT_BITS;
114 
115 	if (len > cnt)
116 		len = cnt;
117 
118 	while (len--) {
119 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
120 		if (sspi->rx_buf)
121 			*sspi->rx_buf++ = byte;
122 	}
123 }
124 
125 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
126 {
127 	u8 byte;
128 
129 	if (len > sspi->len)
130 		len = sspi->len;
131 
132 	while (len--) {
133 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
134 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
135 		sspi->len--;
136 	}
137 }
138 
139 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
140 {
141 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
142 	u32 reg;
143 
144 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
145 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
146 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
147 
148 	if (enable)
149 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
150 	else
151 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
152 
153 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
154 }
155 
156 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
157 {
158 	return SUN6I_FIFO_DEPTH - 1;
159 }
160 
161 static int sun6i_spi_transfer_one(struct spi_master *master,
162 				  struct spi_device *spi,
163 				  struct spi_transfer *tfr)
164 {
165 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
166 	unsigned int mclk_rate, div, timeout;
167 	unsigned int tx_len = 0;
168 	int ret = 0;
169 	u32 reg;
170 
171 	/* We don't support transfer larger than the FIFO */
172 	if (tfr->len > SUN6I_FIFO_DEPTH)
173 		return -EINVAL;
174 
175 	reinit_completion(&sspi->done);
176 	sspi->tx_buf = tfr->tx_buf;
177 	sspi->rx_buf = tfr->rx_buf;
178 	sspi->len = tfr->len;
179 
180 	/* Clear pending interrupts */
181 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
182 
183 	/* Reset FIFO */
184 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
185 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
186 
187 	/*
188 	 * Setup the transfer control register: Chip Select,
189 	 * polarities, etc.
190 	 */
191 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
192 
193 	if (spi->mode & SPI_CPOL)
194 		reg |= SUN6I_TFR_CTL_CPOL;
195 	else
196 		reg &= ~SUN6I_TFR_CTL_CPOL;
197 
198 	if (spi->mode & SPI_CPHA)
199 		reg |= SUN6I_TFR_CTL_CPHA;
200 	else
201 		reg &= ~SUN6I_TFR_CTL_CPHA;
202 
203 	if (spi->mode & SPI_LSB_FIRST)
204 		reg |= SUN6I_TFR_CTL_FBS;
205 	else
206 		reg &= ~SUN6I_TFR_CTL_FBS;
207 
208 	/*
209 	 * If it's a TX only transfer, we don't want to fill the RX
210 	 * FIFO with bogus data
211 	 */
212 	if (sspi->rx_buf)
213 		reg &= ~SUN6I_TFR_CTL_DHB;
214 	else
215 		reg |= SUN6I_TFR_CTL_DHB;
216 
217 	/* We want to control the chip select manually */
218 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
219 
220 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
221 
222 	/* Ensure that we have a parent clock fast enough */
223 	mclk_rate = clk_get_rate(sspi->mclk);
224 	if (mclk_rate < (2 * tfr->speed_hz)) {
225 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
226 		mclk_rate = clk_get_rate(sspi->mclk);
227 	}
228 
229 	/*
230 	 * Setup clock divider.
231 	 *
232 	 * We have two choices there. Either we can use the clock
233 	 * divide rate 1, which is calculated thanks to this formula:
234 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
235 	 * Or we can use CDR2, which is calculated with the formula:
236 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
237 	 * Wether we use the former or the latter is set through the
238 	 * DRS bit.
239 	 *
240 	 * First try CDR2, and if we can't reach the expected
241 	 * frequency, fall back to CDR1.
242 	 */
243 	div = mclk_rate / (2 * tfr->speed_hz);
244 	if (div <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
245 		if (div > 0)
246 			div--;
247 
248 		reg = SUN6I_CLK_CTL_CDR2(div) | SUN6I_CLK_CTL_DRS;
249 	} else {
250 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
251 		reg = SUN6I_CLK_CTL_CDR1(div);
252 	}
253 
254 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
255 
256 	/* Setup the transfer now... */
257 	if (sspi->tx_buf)
258 		tx_len = tfr->len;
259 
260 	/* Setup the counters */
261 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, SUN6I_BURST_CNT(tfr->len));
262 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, SUN6I_XMIT_CNT(tx_len));
263 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG,
264 			SUN6I_BURST_CTL_CNT_STC(tx_len));
265 
266 	/* Fill the TX FIFO */
267 	sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
268 
269 	/* Enable the interrupts */
270 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
271 
272 	/* Start the transfer */
273 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
274 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
275 
276 	timeout = wait_for_completion_timeout(&sspi->done,
277 					      msecs_to_jiffies(1000));
278 	if (!timeout) {
279 		ret = -ETIMEDOUT;
280 		goto out;
281 	}
282 
283 	sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
284 
285 out:
286 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
287 
288 	return ret;
289 }
290 
291 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
292 {
293 	struct sun6i_spi *sspi = dev_id;
294 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
295 
296 	/* Transfer complete */
297 	if (status & SUN6I_INT_CTL_TC) {
298 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
299 		complete(&sspi->done);
300 		return IRQ_HANDLED;
301 	}
302 
303 	return IRQ_NONE;
304 }
305 
306 static int sun6i_spi_runtime_resume(struct device *dev)
307 {
308 	struct spi_master *master = dev_get_drvdata(dev);
309 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
310 	int ret;
311 
312 	ret = clk_prepare_enable(sspi->hclk);
313 	if (ret) {
314 		dev_err(dev, "Couldn't enable AHB clock\n");
315 		goto out;
316 	}
317 
318 	ret = clk_prepare_enable(sspi->mclk);
319 	if (ret) {
320 		dev_err(dev, "Couldn't enable module clock\n");
321 		goto err;
322 	}
323 
324 	ret = reset_control_deassert(sspi->rstc);
325 	if (ret) {
326 		dev_err(dev, "Couldn't deassert the device from reset\n");
327 		goto err2;
328 	}
329 
330 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
331 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
332 
333 	return 0;
334 
335 err2:
336 	clk_disable_unprepare(sspi->mclk);
337 err:
338 	clk_disable_unprepare(sspi->hclk);
339 out:
340 	return ret;
341 }
342 
343 static int sun6i_spi_runtime_suspend(struct device *dev)
344 {
345 	struct spi_master *master = dev_get_drvdata(dev);
346 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
347 
348 	reset_control_assert(sspi->rstc);
349 	clk_disable_unprepare(sspi->mclk);
350 	clk_disable_unprepare(sspi->hclk);
351 
352 	return 0;
353 }
354 
355 static int sun6i_spi_probe(struct platform_device *pdev)
356 {
357 	struct spi_master *master;
358 	struct sun6i_spi *sspi;
359 	struct resource	*res;
360 	int ret = 0, irq;
361 
362 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
363 	if (!master) {
364 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
365 		return -ENOMEM;
366 	}
367 
368 	platform_set_drvdata(pdev, master);
369 	sspi = spi_master_get_devdata(master);
370 
371 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
372 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
373 	if (IS_ERR(sspi->base_addr)) {
374 		ret = PTR_ERR(sspi->base_addr);
375 		goto err_free_master;
376 	}
377 
378 	irq = platform_get_irq(pdev, 0);
379 	if (irq < 0) {
380 		dev_err(&pdev->dev, "No spi IRQ specified\n");
381 		ret = -ENXIO;
382 		goto err_free_master;
383 	}
384 
385 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
386 			       0, "sun6i-spi", sspi);
387 	if (ret) {
388 		dev_err(&pdev->dev, "Cannot request IRQ\n");
389 		goto err_free_master;
390 	}
391 
392 	sspi->master = master;
393 	master->set_cs = sun6i_spi_set_cs;
394 	master->transfer_one = sun6i_spi_transfer_one;
395 	master->num_chipselect = 4;
396 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
397 	master->bits_per_word_mask = SPI_BPW_MASK(8);
398 	master->dev.of_node = pdev->dev.of_node;
399 	master->auto_runtime_pm = true;
400 	master->max_transfer_size = sun6i_spi_max_transfer_size;
401 
402 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
403 	if (IS_ERR(sspi->hclk)) {
404 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
405 		ret = PTR_ERR(sspi->hclk);
406 		goto err_free_master;
407 	}
408 
409 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
410 	if (IS_ERR(sspi->mclk)) {
411 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
412 		ret = PTR_ERR(sspi->mclk);
413 		goto err_free_master;
414 	}
415 
416 	init_completion(&sspi->done);
417 
418 	sspi->rstc = devm_reset_control_get(&pdev->dev, NULL);
419 	if (IS_ERR(sspi->rstc)) {
420 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
421 		ret = PTR_ERR(sspi->rstc);
422 		goto err_free_master;
423 	}
424 
425 	/*
426 	 * This wake-up/shutdown pattern is to be able to have the
427 	 * device woken up, even if runtime_pm is disabled
428 	 */
429 	ret = sun6i_spi_runtime_resume(&pdev->dev);
430 	if (ret) {
431 		dev_err(&pdev->dev, "Couldn't resume the device\n");
432 		goto err_free_master;
433 	}
434 
435 	pm_runtime_set_active(&pdev->dev);
436 	pm_runtime_enable(&pdev->dev);
437 	pm_runtime_idle(&pdev->dev);
438 
439 	ret = devm_spi_register_master(&pdev->dev, master);
440 	if (ret) {
441 		dev_err(&pdev->dev, "cannot register SPI master\n");
442 		goto err_pm_disable;
443 	}
444 
445 	return 0;
446 
447 err_pm_disable:
448 	pm_runtime_disable(&pdev->dev);
449 	sun6i_spi_runtime_suspend(&pdev->dev);
450 err_free_master:
451 	spi_master_put(master);
452 	return ret;
453 }
454 
455 static int sun6i_spi_remove(struct platform_device *pdev)
456 {
457 	pm_runtime_disable(&pdev->dev);
458 
459 	return 0;
460 }
461 
462 static const struct of_device_id sun6i_spi_match[] = {
463 	{ .compatible = "allwinner,sun6i-a31-spi", },
464 	{}
465 };
466 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
467 
468 static const struct dev_pm_ops sun6i_spi_pm_ops = {
469 	.runtime_resume		= sun6i_spi_runtime_resume,
470 	.runtime_suspend	= sun6i_spi_runtime_suspend,
471 };
472 
473 static struct platform_driver sun6i_spi_driver = {
474 	.probe	= sun6i_spi_probe,
475 	.remove	= sun6i_spi_remove,
476 	.driver	= {
477 		.name		= "sun6i-spi",
478 		.of_match_table	= sun6i_spi_match,
479 		.pm		= &sun6i_spi_pm_ops,
480 	},
481 };
482 module_platform_driver(sun6i_spi_driver);
483 
484 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
485 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
486 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
487 MODULE_LICENSE("GPL");
488