xref: /openbmc/linux/drivers/spi/spi-sun6i.c (revision 5197da036398863c90db90b2ea53760fdaec5d86)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 
22 #include <linux/spi/spi.h>
23 
24 #define SUN6I_FIFO_DEPTH		128
25 #define SUN8I_FIFO_DEPTH		64
26 
27 #define SUN6I_GBL_CTL_REG		0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
29 #define SUN6I_GBL_CTL_MASTER			BIT(1)
30 #define SUN6I_GBL_CTL_TP			BIT(7)
31 #define SUN6I_GBL_CTL_RST			BIT(31)
32 
33 #define SUN6I_TFR_CTL_REG		0x08
34 #define SUN6I_TFR_CTL_CPHA			BIT(0)
35 #define SUN6I_TFR_CTL_CPOL			BIT(1)
36 #define SUN6I_TFR_CTL_SPOL			BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK			0x30
38 #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
41 #define SUN6I_TFR_CTL_DHB			BIT(8)
42 #define SUN6I_TFR_CTL_FBS			BIT(12)
43 #define SUN6I_TFR_CTL_XCH			BIT(31)
44 
45 #define SUN6I_INT_CTL_REG		0x10
46 #define SUN6I_INT_CTL_RF_RDY			BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF			BIT(8)
49 #define SUN6I_INT_CTL_TC			BIT(12)
50 
51 #define SUN6I_INT_STA_REG		0x14
52 
53 #define SUN6I_FIFO_CTL_REG		0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
56 #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
59 #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
60 
61 #define SUN6I_FIFO_STA_REG		0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
63 #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
64 
65 #define SUN6I_CLK_CTL_REG		0x24
66 #define SUN6I_CLK_CTL_CDR2_MASK			0xff
67 #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
68 #define SUN6I_CLK_CTL_CDR1_MASK			0xf
69 #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
70 #define SUN6I_CLK_CTL_DRS			BIT(12)
71 
72 #define SUN6I_MAX_XFER_SIZE		0xffffff
73 
74 #define SUN6I_BURST_CNT_REG		0x30
75 
76 #define SUN6I_XMIT_CNT_REG		0x34
77 
78 #define SUN6I_BURST_CTL_CNT_REG		0x38
79 
80 #define SUN6I_TXDATA_REG		0x200
81 #define SUN6I_RXDATA_REG		0x300
82 
83 struct sun6i_spi {
84 	struct spi_master	*master;
85 	void __iomem		*base_addr;
86 	struct clk		*hclk;
87 	struct clk		*mclk;
88 	struct reset_control	*rstc;
89 
90 	struct completion	done;
91 
92 	const u8		*tx_buf;
93 	u8			*rx_buf;
94 	int			len;
95 	unsigned long		fifo_depth;
96 };
97 
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100 	return readl(sspi->base_addr + reg);
101 }
102 
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105 	writel(value, sspi->base_addr + reg);
106 }
107 
108 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109 {
110 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111 
112 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113 }
114 
115 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116 {
117 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118 
119 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120 }
121 
122 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
123 {
124 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125 
126 	reg |= mask;
127 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128 }
129 
130 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
131 {
132 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
133 
134 	reg &= ~mask;
135 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
136 }
137 
138 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
139 {
140 	u32 cnt;
141 	u8 byte;
142 
143 	/* See how much data is available */
144 	cnt = sun6i_spi_get_rx_fifo_count(sspi);
145 
146 	if (len > cnt)
147 		len = cnt;
148 
149 	while (len--) {
150 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
151 		if (sspi->rx_buf)
152 			*sspi->rx_buf++ = byte;
153 	}
154 }
155 
156 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
157 {
158 	u32 cnt;
159 	u8 byte;
160 
161 	/* See how much data we can fit */
162 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
163 
164 	len = min3(len, (int)cnt, sspi->len);
165 
166 	while (len--) {
167 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
168 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
169 		sspi->len--;
170 	}
171 }
172 
173 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
174 {
175 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
176 	u32 reg;
177 
178 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
179 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
180 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
181 
182 	if (enable)
183 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
184 	else
185 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
186 
187 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
188 }
189 
190 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
191 {
192 	return SUN6I_MAX_XFER_SIZE - 1;
193 }
194 
195 static int sun6i_spi_transfer_one(struct spi_master *master,
196 				  struct spi_device *spi,
197 				  struct spi_transfer *tfr)
198 {
199 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
200 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
201 	unsigned int start, end, tx_time;
202 	unsigned int trig_level;
203 	unsigned int tx_len = 0;
204 	int ret = 0;
205 	u32 reg;
206 
207 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
208 		return -EINVAL;
209 
210 	reinit_completion(&sspi->done);
211 	sspi->tx_buf = tfr->tx_buf;
212 	sspi->rx_buf = tfr->rx_buf;
213 	sspi->len = tfr->len;
214 
215 	/* Clear pending interrupts */
216 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
217 
218 	/* Reset FIFO */
219 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
221 
222 	/*
223 	 * Setup FIFO interrupt trigger level
224 	 * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
225 	 * value used in old generation of Allwinner SPI controller.
226 	 * (See spi-sun4i.c)
227 	 */
228 	trig_level = sspi->fifo_depth / 4 * 3;
229 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
230 			(trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
231 			(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
232 
233 	/*
234 	 * Setup the transfer control register: Chip Select,
235 	 * polarities, etc.
236 	 */
237 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
238 
239 	if (spi->mode & SPI_CPOL)
240 		reg |= SUN6I_TFR_CTL_CPOL;
241 	else
242 		reg &= ~SUN6I_TFR_CTL_CPOL;
243 
244 	if (spi->mode & SPI_CPHA)
245 		reg |= SUN6I_TFR_CTL_CPHA;
246 	else
247 		reg &= ~SUN6I_TFR_CTL_CPHA;
248 
249 	if (spi->mode & SPI_LSB_FIRST)
250 		reg |= SUN6I_TFR_CTL_FBS;
251 	else
252 		reg &= ~SUN6I_TFR_CTL_FBS;
253 
254 	/*
255 	 * If it's a TX only transfer, we don't want to fill the RX
256 	 * FIFO with bogus data
257 	 */
258 	if (sspi->rx_buf)
259 		reg &= ~SUN6I_TFR_CTL_DHB;
260 	else
261 		reg |= SUN6I_TFR_CTL_DHB;
262 
263 	/* We want to control the chip select manually */
264 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
265 
266 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
267 
268 	/* Ensure that we have a parent clock fast enough */
269 	mclk_rate = clk_get_rate(sspi->mclk);
270 	if (mclk_rate < (2 * tfr->speed_hz)) {
271 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
272 		mclk_rate = clk_get_rate(sspi->mclk);
273 	}
274 
275 	/*
276 	 * Setup clock divider.
277 	 *
278 	 * We have two choices there. Either we can use the clock
279 	 * divide rate 1, which is calculated thanks to this formula:
280 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
281 	 * Or we can use CDR2, which is calculated with the formula:
282 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283 	 * Wether we use the former or the latter is set through the
284 	 * DRS bit.
285 	 *
286 	 * First try CDR2, and if we can't reach the expected
287 	 * frequency, fall back to CDR1.
288 	 */
289 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
290 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
291 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
293 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
294 	} else {
295 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
296 		reg = SUN6I_CLK_CTL_CDR1(div);
297 		tfr->effective_speed_hz = mclk_rate / (1 << div);
298 	}
299 
300 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
301 
302 	/* Setup the transfer now... */
303 	if (sspi->tx_buf)
304 		tx_len = tfr->len;
305 
306 	/* Setup the counters */
307 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
308 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
309 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
310 
311 	/* Fill the TX FIFO */
312 	sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
313 
314 	/* Enable the interrupts */
315 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
316 	sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
317 					 SUN6I_INT_CTL_RF_RDY);
318 	if (tx_len > sspi->fifo_depth)
319 		sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
320 
321 	/* Start the transfer */
322 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
323 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
324 
325 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
326 	start = jiffies;
327 	timeout = wait_for_completion_timeout(&sspi->done,
328 					      msecs_to_jiffies(tx_time));
329 	end = jiffies;
330 	if (!timeout) {
331 		dev_warn(&master->dev,
332 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
333 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
334 			 jiffies_to_msecs(end - start), tx_time);
335 		ret = -ETIMEDOUT;
336 	}
337 
338 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
339 
340 	return ret;
341 }
342 
343 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
344 {
345 	struct sun6i_spi *sspi = dev_id;
346 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
347 
348 	/* Transfer complete */
349 	if (status & SUN6I_INT_CTL_TC) {
350 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
351 		sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
352 		complete(&sspi->done);
353 		return IRQ_HANDLED;
354 	}
355 
356 	/* Receive FIFO 3/4 full */
357 	if (status & SUN6I_INT_CTL_RF_RDY) {
358 		sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
359 		/* Only clear the interrupt _after_ draining the FIFO */
360 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
361 		return IRQ_HANDLED;
362 	}
363 
364 	/* Transmit FIFO 3/4 empty */
365 	if (status & SUN6I_INT_CTL_TF_ERQ) {
366 		sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
367 
368 		if (!sspi->len)
369 			/* nothing left to transmit */
370 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
371 
372 		/* Only clear the interrupt _after_ re-seeding the FIFO */
373 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
374 
375 		return IRQ_HANDLED;
376 	}
377 
378 	return IRQ_NONE;
379 }
380 
381 static int sun6i_spi_runtime_resume(struct device *dev)
382 {
383 	struct spi_master *master = dev_get_drvdata(dev);
384 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
385 	int ret;
386 
387 	ret = clk_prepare_enable(sspi->hclk);
388 	if (ret) {
389 		dev_err(dev, "Couldn't enable AHB clock\n");
390 		goto out;
391 	}
392 
393 	ret = clk_prepare_enable(sspi->mclk);
394 	if (ret) {
395 		dev_err(dev, "Couldn't enable module clock\n");
396 		goto err;
397 	}
398 
399 	ret = reset_control_deassert(sspi->rstc);
400 	if (ret) {
401 		dev_err(dev, "Couldn't deassert the device from reset\n");
402 		goto err2;
403 	}
404 
405 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
406 			SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
407 
408 	return 0;
409 
410 err2:
411 	clk_disable_unprepare(sspi->mclk);
412 err:
413 	clk_disable_unprepare(sspi->hclk);
414 out:
415 	return ret;
416 }
417 
418 static int sun6i_spi_runtime_suspend(struct device *dev)
419 {
420 	struct spi_master *master = dev_get_drvdata(dev);
421 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
422 
423 	reset_control_assert(sspi->rstc);
424 	clk_disable_unprepare(sspi->mclk);
425 	clk_disable_unprepare(sspi->hclk);
426 
427 	return 0;
428 }
429 
430 static int sun6i_spi_probe(struct platform_device *pdev)
431 {
432 	struct spi_master *master;
433 	struct sun6i_spi *sspi;
434 	int ret = 0, irq;
435 
436 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
437 	if (!master) {
438 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
439 		return -ENOMEM;
440 	}
441 
442 	platform_set_drvdata(pdev, master);
443 	sspi = spi_master_get_devdata(master);
444 
445 	sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
446 	if (IS_ERR(sspi->base_addr)) {
447 		ret = PTR_ERR(sspi->base_addr);
448 		goto err_free_master;
449 	}
450 
451 	irq = platform_get_irq(pdev, 0);
452 	if (irq < 0) {
453 		ret = -ENXIO;
454 		goto err_free_master;
455 	}
456 
457 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
458 			       0, "sun6i-spi", sspi);
459 	if (ret) {
460 		dev_err(&pdev->dev, "Cannot request IRQ\n");
461 		goto err_free_master;
462 	}
463 
464 	sspi->master = master;
465 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
466 
467 	master->max_speed_hz = 100 * 1000 * 1000;
468 	master->min_speed_hz = 3 * 1000;
469 	master->use_gpio_descriptors = true;
470 	master->set_cs = sun6i_spi_set_cs;
471 	master->transfer_one = sun6i_spi_transfer_one;
472 	master->num_chipselect = 4;
473 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
474 	master->bits_per_word_mask = SPI_BPW_MASK(8);
475 	master->dev.of_node = pdev->dev.of_node;
476 	master->auto_runtime_pm = true;
477 	master->max_transfer_size = sun6i_spi_max_transfer_size;
478 
479 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
480 	if (IS_ERR(sspi->hclk)) {
481 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
482 		ret = PTR_ERR(sspi->hclk);
483 		goto err_free_master;
484 	}
485 
486 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
487 	if (IS_ERR(sspi->mclk)) {
488 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
489 		ret = PTR_ERR(sspi->mclk);
490 		goto err_free_master;
491 	}
492 
493 	init_completion(&sspi->done);
494 
495 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
496 	if (IS_ERR(sspi->rstc)) {
497 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
498 		ret = PTR_ERR(sspi->rstc);
499 		goto err_free_master;
500 	}
501 
502 	/*
503 	 * This wake-up/shutdown pattern is to be able to have the
504 	 * device woken up, even if runtime_pm is disabled
505 	 */
506 	ret = sun6i_spi_runtime_resume(&pdev->dev);
507 	if (ret) {
508 		dev_err(&pdev->dev, "Couldn't resume the device\n");
509 		goto err_free_master;
510 	}
511 
512 	pm_runtime_set_active(&pdev->dev);
513 	pm_runtime_enable(&pdev->dev);
514 	pm_runtime_idle(&pdev->dev);
515 
516 	ret = devm_spi_register_master(&pdev->dev, master);
517 	if (ret) {
518 		dev_err(&pdev->dev, "cannot register SPI master\n");
519 		goto err_pm_disable;
520 	}
521 
522 	return 0;
523 
524 err_pm_disable:
525 	pm_runtime_disable(&pdev->dev);
526 	sun6i_spi_runtime_suspend(&pdev->dev);
527 err_free_master:
528 	spi_master_put(master);
529 	return ret;
530 }
531 
532 static int sun6i_spi_remove(struct platform_device *pdev)
533 {
534 	pm_runtime_force_suspend(&pdev->dev);
535 
536 	return 0;
537 }
538 
539 static const struct of_device_id sun6i_spi_match[] = {
540 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
541 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
542 	{}
543 };
544 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
545 
546 static const struct dev_pm_ops sun6i_spi_pm_ops = {
547 	.runtime_resume		= sun6i_spi_runtime_resume,
548 	.runtime_suspend	= sun6i_spi_runtime_suspend,
549 };
550 
551 static struct platform_driver sun6i_spi_driver = {
552 	.probe	= sun6i_spi_probe,
553 	.remove	= sun6i_spi_remove,
554 	.driver	= {
555 		.name		= "sun6i-spi",
556 		.of_match_table	= sun6i_spi_match,
557 		.pm		= &sun6i_spi_pm_ops,
558 	},
559 };
560 module_platform_driver(sun6i_spi_driver);
561 
562 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
563 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
564 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
565 MODULE_LICENSE("GPL");
566