xref: /openbmc/linux/drivers/spi/spi-sun4i.c (revision 6d9fe44bd73d567d04d3a68a2d2fa521ab9532f2)
1 /*
2  * Copyright (C) 2012 - 2014 Allwinner Tech
3  * Pan Nan <pannan@allwinnertech.com>
4  *
5  * Copyright (C) 2014 Maxime Ripard
6  * Maxime Ripard <maxime.ripard@free-electrons.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 
23 #include <linux/spi/spi.h>
24 
25 #define SUN4I_FIFO_DEPTH		64
26 
27 #define SUN4I_RXDATA_REG		0x00
28 
29 #define SUN4I_TXDATA_REG		0x04
30 
31 #define SUN4I_CTL_REG			0x08
32 #define SUN4I_CTL_ENABLE			BIT(0)
33 #define SUN4I_CTL_MASTER			BIT(1)
34 #define SUN4I_CTL_CPHA				BIT(2)
35 #define SUN4I_CTL_CPOL				BIT(3)
36 #define SUN4I_CTL_CS_ACTIVE_LOW			BIT(4)
37 #define SUN4I_CTL_LMTF				BIT(6)
38 #define SUN4I_CTL_TF_RST			BIT(8)
39 #define SUN4I_CTL_RF_RST			BIT(9)
40 #define SUN4I_CTL_XCH				BIT(10)
41 #define SUN4I_CTL_CS_MASK			0x3000
42 #define SUN4I_CTL_CS(cs)			(((cs) << 12) & SUN4I_CTL_CS_MASK)
43 #define SUN4I_CTL_DHB				BIT(15)
44 #define SUN4I_CTL_CS_MANUAL			BIT(16)
45 #define SUN4I_CTL_CS_LEVEL			BIT(17)
46 #define SUN4I_CTL_TP				BIT(18)
47 
48 #define SUN4I_INT_CTL_REG		0x0c
49 #define SUN4I_INT_CTL_TC			BIT(16)
50 
51 #define SUN4I_INT_STA_REG		0x10
52 
53 #define SUN4I_DMA_CTL_REG		0x14
54 
55 #define SUN4I_WAIT_REG			0x18
56 
57 #define SUN4I_CLK_CTL_REG		0x1c
58 #define SUN4I_CLK_CTL_CDR2_MASK			0xff
59 #define SUN4I_CLK_CTL_CDR2(div)			((div) & SUN4I_CLK_CTL_CDR2_MASK)
60 #define SUN4I_CLK_CTL_CDR1_MASK			0xf
61 #define SUN4I_CLK_CTL_CDR1(div)			(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62 #define SUN4I_CLK_CTL_DRS			BIT(12)
63 
64 #define SUN4I_BURST_CNT_REG		0x20
65 #define SUN4I_BURST_CNT(cnt)			((cnt) & 0xffffff)
66 
67 #define SUN4I_XMIT_CNT_REG		0x24
68 #define SUN4I_XMIT_CNT(cnt)			((cnt) & 0xffffff)
69 
70 #define SUN4I_FIFO_STA_REG		0x28
71 #define SUN4I_FIFO_STA_RF_CNT_MASK		0x7f
72 #define SUN4I_FIFO_STA_RF_CNT_BITS		0
73 #define SUN4I_FIFO_STA_TF_CNT_MASK		0x7f
74 #define SUN4I_FIFO_STA_TF_CNT_BITS		16
75 
76 struct sun4i_spi {
77 	struct spi_master	*master;
78 	void __iomem		*base_addr;
79 	struct clk		*hclk;
80 	struct clk		*mclk;
81 
82 	struct completion	done;
83 
84 	const u8		*tx_buf;
85 	u8			*rx_buf;
86 	int			len;
87 };
88 
89 static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90 {
91 	return readl(sspi->base_addr + reg);
92 }
93 
94 static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95 {
96 	writel(value, sspi->base_addr + reg);
97 }
98 
99 static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100 {
101 	u32 reg, cnt;
102 	u8 byte;
103 
104 	/* See how much data is available */
105 	reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106 	reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107 	cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108 
109 	if (len > cnt)
110 		len = cnt;
111 
112 	while (len--) {
113 		byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114 		if (sspi->rx_buf)
115 			*sspi->rx_buf++ = byte;
116 	}
117 }
118 
119 static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120 {
121 	u8 byte;
122 
123 	if (len > sspi->len)
124 		len = sspi->len;
125 
126 	while (len--) {
127 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128 		writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129 		sspi->len--;
130 	}
131 }
132 
133 static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134 {
135 	struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136 	u32 reg;
137 
138 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139 
140 	reg &= ~SUN4I_CTL_CS_MASK;
141 	reg |= SUN4I_CTL_CS(spi->chip_select);
142 
143 	/* We want to control the chip select manually */
144 	reg |= SUN4I_CTL_CS_MANUAL;
145 
146 	if (enable)
147 		reg |= SUN4I_CTL_CS_LEVEL;
148 	else
149 		reg &= ~SUN4I_CTL_CS_LEVEL;
150 
151 	/*
152 	 * Even though this looks irrelevant since we are supposed to
153 	 * be controlling the chip select manually, this bit also
154 	 * controls the levels of the chip select for inactive
155 	 * devices.
156 	 *
157 	 * If we don't set it, the chip select level will go low by
158 	 * default when the device is idle, which is not really
159 	 * expected in the common case where the chip select is active
160 	 * low.
161 	 */
162 	if (spi->mode & SPI_CS_HIGH)
163 		reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164 	else
165 		reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166 
167 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168 }
169 
170 static int sun4i_spi_transfer_one(struct spi_master *master,
171 				  struct spi_device *spi,
172 				  struct spi_transfer *tfr)
173 {
174 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
175 	unsigned int mclk_rate, div, timeout;
176 	unsigned int tx_len = 0;
177 	int ret = 0;
178 	u32 reg;
179 
180 	/* We don't support transfer larger than the FIFO */
181 	if (tfr->len > SUN4I_FIFO_DEPTH)
182 		return -EMSGSIZE;
183 
184 	if (tfr->tx_buf && tfr->len >= SUN4I_FIFO_DEPTH)
185 		return -EMSGSIZE;
186 
187 	reinit_completion(&sspi->done);
188 	sspi->tx_buf = tfr->tx_buf;
189 	sspi->rx_buf = tfr->rx_buf;
190 	sspi->len = tfr->len;
191 
192 	/* Clear pending interrupts */
193 	sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
194 
195 
196 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
197 
198 	/* Reset FIFOs */
199 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
200 			reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
201 
202 	/*
203 	 * Setup the transfer control register: Chip Select,
204 	 * polarities, etc.
205 	 */
206 	if (spi->mode & SPI_CPOL)
207 		reg |= SUN4I_CTL_CPOL;
208 	else
209 		reg &= ~SUN4I_CTL_CPOL;
210 
211 	if (spi->mode & SPI_CPHA)
212 		reg |= SUN4I_CTL_CPHA;
213 	else
214 		reg &= ~SUN4I_CTL_CPHA;
215 
216 	if (spi->mode & SPI_LSB_FIRST)
217 		reg |= SUN4I_CTL_LMTF;
218 	else
219 		reg &= ~SUN4I_CTL_LMTF;
220 
221 
222 	/*
223 	 * If it's a TX only transfer, we don't want to fill the RX
224 	 * FIFO with bogus data
225 	 */
226 	if (sspi->rx_buf)
227 		reg &= ~SUN4I_CTL_DHB;
228 	else
229 		reg |= SUN4I_CTL_DHB;
230 
231 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
232 
233 	/* Ensure that we have a parent clock fast enough */
234 	mclk_rate = clk_get_rate(sspi->mclk);
235 	if (mclk_rate < (2 * tfr->speed_hz)) {
236 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
237 		mclk_rate = clk_get_rate(sspi->mclk);
238 	}
239 
240 	/*
241 	 * Setup clock divider.
242 	 *
243 	 * We have two choices there. Either we can use the clock
244 	 * divide rate 1, which is calculated thanks to this formula:
245 	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
246 	 * Or we can use CDR2, which is calculated with the formula:
247 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
248 	 * Wether we use the former or the latter is set through the
249 	 * DRS bit.
250 	 *
251 	 * First try CDR2, and if we can't reach the expected
252 	 * frequency, fall back to CDR1.
253 	 */
254 	div = mclk_rate / (2 * tfr->speed_hz);
255 	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
256 		if (div > 0)
257 			div--;
258 
259 		reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
260 	} else {
261 		div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
262 		reg = SUN4I_CLK_CTL_CDR1(div);
263 	}
264 
265 	sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
266 
267 	/* Setup the transfer now... */
268 	if (sspi->tx_buf)
269 		tx_len = tfr->len;
270 
271 	/* Setup the counters */
272 	sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
273 	sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
274 
275 	/*
276 	 * Fill the TX FIFO
277 	 * Filling the FIFO fully causes timeout for some reason
278 	 * at least on spi2 on A10s
279 	 */
280 	sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
281 
282 	/* Enable the interrupts */
283 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
284 
285 	/* Start the transfer */
286 	reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
287 	sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
288 
289 	timeout = wait_for_completion_timeout(&sspi->done,
290 					      msecs_to_jiffies(1000));
291 	if (!timeout) {
292 		ret = -ETIMEDOUT;
293 		goto out;
294 	}
295 
296 	sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
297 
298 out:
299 	sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
300 
301 	return ret;
302 }
303 
304 static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
305 {
306 	struct sun4i_spi *sspi = dev_id;
307 	u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
308 
309 	/* Transfer complete */
310 	if (status & SUN4I_INT_CTL_TC) {
311 		sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
312 		complete(&sspi->done);
313 		return IRQ_HANDLED;
314 	}
315 
316 	return IRQ_NONE;
317 }
318 
319 static int sun4i_spi_runtime_resume(struct device *dev)
320 {
321 	struct spi_master *master = dev_get_drvdata(dev);
322 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
323 	int ret;
324 
325 	ret = clk_prepare_enable(sspi->hclk);
326 	if (ret) {
327 		dev_err(dev, "Couldn't enable AHB clock\n");
328 		goto out;
329 	}
330 
331 	ret = clk_prepare_enable(sspi->mclk);
332 	if (ret) {
333 		dev_err(dev, "Couldn't enable module clock\n");
334 		goto err;
335 	}
336 
337 	sun4i_spi_write(sspi, SUN4I_CTL_REG,
338 			SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
339 
340 	return 0;
341 
342 err:
343 	clk_disable_unprepare(sspi->hclk);
344 out:
345 	return ret;
346 }
347 
348 static int sun4i_spi_runtime_suspend(struct device *dev)
349 {
350 	struct spi_master *master = dev_get_drvdata(dev);
351 	struct sun4i_spi *sspi = spi_master_get_devdata(master);
352 
353 	clk_disable_unprepare(sspi->mclk);
354 	clk_disable_unprepare(sspi->hclk);
355 
356 	return 0;
357 }
358 
359 static int sun4i_spi_probe(struct platform_device *pdev)
360 {
361 	struct spi_master *master;
362 	struct sun4i_spi *sspi;
363 	struct resource	*res;
364 	int ret = 0, irq;
365 
366 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
367 	if (!master) {
368 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
369 		return -ENOMEM;
370 	}
371 
372 	platform_set_drvdata(pdev, master);
373 	sspi = spi_master_get_devdata(master);
374 
375 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
376 	sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
377 	if (IS_ERR(sspi->base_addr)) {
378 		ret = PTR_ERR(sspi->base_addr);
379 		goto err_free_master;
380 	}
381 
382 	irq = platform_get_irq(pdev, 0);
383 	if (irq < 0) {
384 		dev_err(&pdev->dev, "No spi IRQ specified\n");
385 		ret = -ENXIO;
386 		goto err_free_master;
387 	}
388 
389 	ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
390 			       0, "sun4i-spi", sspi);
391 	if (ret) {
392 		dev_err(&pdev->dev, "Cannot request IRQ\n");
393 		goto err_free_master;
394 	}
395 
396 	sspi->master = master;
397 	master->set_cs = sun4i_spi_set_cs;
398 	master->transfer_one = sun4i_spi_transfer_one;
399 	master->num_chipselect = 4;
400 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
401 	master->bits_per_word_mask = SPI_BPW_MASK(8);
402 	master->dev.of_node = pdev->dev.of_node;
403 	master->auto_runtime_pm = true;
404 
405 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
406 	if (IS_ERR(sspi->hclk)) {
407 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
408 		ret = PTR_ERR(sspi->hclk);
409 		goto err_free_master;
410 	}
411 
412 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
413 	if (IS_ERR(sspi->mclk)) {
414 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
415 		ret = PTR_ERR(sspi->mclk);
416 		goto err_free_master;
417 	}
418 
419 	init_completion(&sspi->done);
420 
421 	/*
422 	 * This wake-up/shutdown pattern is to be able to have the
423 	 * device woken up, even if runtime_pm is disabled
424 	 */
425 	ret = sun4i_spi_runtime_resume(&pdev->dev);
426 	if (ret) {
427 		dev_err(&pdev->dev, "Couldn't resume the device\n");
428 		goto err_free_master;
429 	}
430 
431 	pm_runtime_set_active(&pdev->dev);
432 	pm_runtime_enable(&pdev->dev);
433 	pm_runtime_idle(&pdev->dev);
434 
435 	ret = devm_spi_register_master(&pdev->dev, master);
436 	if (ret) {
437 		dev_err(&pdev->dev, "cannot register SPI master\n");
438 		goto err_pm_disable;
439 	}
440 
441 	return 0;
442 
443 err_pm_disable:
444 	pm_runtime_disable(&pdev->dev);
445 	sun4i_spi_runtime_suspend(&pdev->dev);
446 err_free_master:
447 	spi_master_put(master);
448 	return ret;
449 }
450 
451 static int sun4i_spi_remove(struct platform_device *pdev)
452 {
453 	pm_runtime_disable(&pdev->dev);
454 
455 	return 0;
456 }
457 
458 static const struct of_device_id sun4i_spi_match[] = {
459 	{ .compatible = "allwinner,sun4i-a10-spi", },
460 	{}
461 };
462 MODULE_DEVICE_TABLE(of, sun4i_spi_match);
463 
464 static const struct dev_pm_ops sun4i_spi_pm_ops = {
465 	.runtime_resume		= sun4i_spi_runtime_resume,
466 	.runtime_suspend	= sun4i_spi_runtime_suspend,
467 };
468 
469 static struct platform_driver sun4i_spi_driver = {
470 	.probe	= sun4i_spi_probe,
471 	.remove	= sun4i_spi_remove,
472 	.driver	= {
473 		.name		= "sun4i-spi",
474 		.of_match_table	= sun4i_spi_match,
475 		.pm		= &sun4i_spi_pm_ops,
476 	},
477 };
478 module_platform_driver(sun4i_spi_driver);
479 
480 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
481 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
482 MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
483 MODULE_LICENSE("GPL");
484