xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision dccf7369652f3934456345aab6a92fa905177886)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
33 
34 #include "spi-pxa2xx.h"
35 
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
40 
41 #define TIMOUT_DFLT		1000
42 
43 /*
44  * for testing SSCR1 changes that require SSP restart, basically
45  * everything except the service and interrupt enables, the pxa270 developer
46  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47  * list, but the PXA255 dev man says all bits without really meaning the
48  * service and interrupt enables
49  */
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
56 
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
58 				| QUARK_X1000_SSCR1_EFWR	\
59 				| QUARK_X1000_SSCR1_RFT		\
60 				| QUARK_X1000_SSCR1_TFT		\
61 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
62 
63 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
64 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
65 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
66 
67 struct lpss_config {
68 	/* LPSS offset from drv_data->ioaddr */
69 	unsigned offset;
70 	/* Register offsets from drv_data->lpss_base or -1 */
71 	int reg_general;
72 	int reg_ssp;
73 	int reg_cs_ctrl;
74 	/* FIFO thresholds */
75 	u32 rx_threshold;
76 	u32 tx_threshold_lo;
77 	u32 tx_threshold_hi;
78 };
79 
80 /* Keep these sorted with enum pxa_ssp_type */
81 static const struct lpss_config lpss_platforms[] = {
82 	{	/* LPSS_LPT_SSP */
83 		.offset = 0x800,
84 		.reg_general = 0x08,
85 		.reg_ssp = 0x0c,
86 		.reg_cs_ctrl = 0x18,
87 		.rx_threshold = 64,
88 		.tx_threshold_lo = 160,
89 		.tx_threshold_hi = 224,
90 	},
91 	{	/* LPSS_BYT_SSP */
92 		.offset = 0x400,
93 		.reg_general = 0x08,
94 		.reg_ssp = 0x0c,
95 		.reg_cs_ctrl = 0x18,
96 		.rx_threshold = 64,
97 		.tx_threshold_lo = 160,
98 		.tx_threshold_hi = 224,
99 	},
100 };
101 
102 static inline const struct lpss_config
103 *lpss_get_config(const struct driver_data *drv_data)
104 {
105 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
106 }
107 
108 static bool is_lpss_ssp(const struct driver_data *drv_data)
109 {
110 	switch (drv_data->ssp_type) {
111 	case LPSS_LPT_SSP:
112 	case LPSS_BYT_SSP:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
120 {
121 	return drv_data->ssp_type == QUARK_X1000_SSP;
122 }
123 
124 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
125 {
126 	switch (drv_data->ssp_type) {
127 	case QUARK_X1000_SSP:
128 		return QUARK_X1000_SSCR1_CHANGE_MASK;
129 	default:
130 		return SSCR1_CHANGE_MASK;
131 	}
132 }
133 
134 static u32
135 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
136 {
137 	switch (drv_data->ssp_type) {
138 	case QUARK_X1000_SSP:
139 		return RX_THRESH_QUARK_X1000_DFLT;
140 	default:
141 		return RX_THRESH_DFLT;
142 	}
143 }
144 
145 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
146 {
147 	u32 mask;
148 
149 	switch (drv_data->ssp_type) {
150 	case QUARK_X1000_SSP:
151 		mask = QUARK_X1000_SSSR_TFL_MASK;
152 		break;
153 	default:
154 		mask = SSSR_TFL_MASK;
155 		break;
156 	}
157 
158 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
159 }
160 
161 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
162 				     u32 *sccr1_reg)
163 {
164 	u32 mask;
165 
166 	switch (drv_data->ssp_type) {
167 	case QUARK_X1000_SSP:
168 		mask = QUARK_X1000_SSCR1_RFT;
169 		break;
170 	default:
171 		mask = SSCR1_RFT;
172 		break;
173 	}
174 	*sccr1_reg &= ~mask;
175 }
176 
177 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
178 				   u32 *sccr1_reg, u32 threshold)
179 {
180 	switch (drv_data->ssp_type) {
181 	case QUARK_X1000_SSP:
182 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
183 		break;
184 	default:
185 		*sccr1_reg |= SSCR1_RxTresh(threshold);
186 		break;
187 	}
188 }
189 
190 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
191 				  u32 clk_div, u8 bits)
192 {
193 	switch (drv_data->ssp_type) {
194 	case QUARK_X1000_SSP:
195 		return clk_div
196 			| QUARK_X1000_SSCR0_Motorola
197 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
198 			| SSCR0_SSE;
199 	default:
200 		return clk_div
201 			| SSCR0_Motorola
202 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
203 			| SSCR0_SSE
204 			| (bits > 16 ? SSCR0_EDSS : 0);
205 	}
206 }
207 
208 /*
209  * Read and write LPSS SSP private registers. Caller must first check that
210  * is_lpss_ssp() returns true before these can be called.
211  */
212 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
213 {
214 	WARN_ON(!drv_data->lpss_base);
215 	return readl(drv_data->lpss_base + offset);
216 }
217 
218 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
219 				  unsigned offset, u32 value)
220 {
221 	WARN_ON(!drv_data->lpss_base);
222 	writel(value, drv_data->lpss_base + offset);
223 }
224 
225 /*
226  * lpss_ssp_setup - perform LPSS SSP specific setup
227  * @drv_data: pointer to the driver private data
228  *
229  * Perform LPSS SSP specific setup. This function must be called first if
230  * one is going to use LPSS SSP private registers.
231  */
232 static void lpss_ssp_setup(struct driver_data *drv_data)
233 {
234 	const struct lpss_config *config;
235 	u32 value;
236 
237 	config = lpss_get_config(drv_data);
238 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
239 
240 	/* Enable software chip select control */
241 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
242 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
243 
244 	/* Enable multiblock DMA transfers */
245 	if (drv_data->master_info->enable_dma) {
246 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
247 
248 		value = __lpss_ssp_read_priv(drv_data, config->reg_general);
249 		value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
250 		__lpss_ssp_write_priv(drv_data, config->reg_general, value);
251 	}
252 }
253 
254 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
255 {
256 	const struct lpss_config *config;
257 	u32 value;
258 
259 	config = lpss_get_config(drv_data);
260 
261 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
262 	if (enable)
263 		value &= ~SPI_CS_CONTROL_CS_HIGH;
264 	else
265 		value |= SPI_CS_CONTROL_CS_HIGH;
266 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
267 }
268 
269 static void cs_assert(struct driver_data *drv_data)
270 {
271 	struct chip_data *chip = drv_data->cur_chip;
272 
273 	if (drv_data->ssp_type == CE4100_SSP) {
274 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
275 		return;
276 	}
277 
278 	if (chip->cs_control) {
279 		chip->cs_control(PXA2XX_CS_ASSERT);
280 		return;
281 	}
282 
283 	if (gpio_is_valid(chip->gpio_cs)) {
284 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
285 		return;
286 	}
287 
288 	if (is_lpss_ssp(drv_data))
289 		lpss_ssp_cs_control(drv_data, true);
290 }
291 
292 static void cs_deassert(struct driver_data *drv_data)
293 {
294 	struct chip_data *chip = drv_data->cur_chip;
295 
296 	if (drv_data->ssp_type == CE4100_SSP)
297 		return;
298 
299 	if (chip->cs_control) {
300 		chip->cs_control(PXA2XX_CS_DEASSERT);
301 		return;
302 	}
303 
304 	if (gpio_is_valid(chip->gpio_cs)) {
305 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
306 		return;
307 	}
308 
309 	if (is_lpss_ssp(drv_data))
310 		lpss_ssp_cs_control(drv_data, false);
311 }
312 
313 int pxa2xx_spi_flush(struct driver_data *drv_data)
314 {
315 	unsigned long limit = loops_per_jiffy << 1;
316 
317 	do {
318 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
319 			pxa2xx_spi_read(drv_data, SSDR);
320 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
321 	write_SSSR_CS(drv_data, SSSR_ROR);
322 
323 	return limit;
324 }
325 
326 static int null_writer(struct driver_data *drv_data)
327 {
328 	u8 n_bytes = drv_data->n_bytes;
329 
330 	if (pxa2xx_spi_txfifo_full(drv_data)
331 		|| (drv_data->tx == drv_data->tx_end))
332 		return 0;
333 
334 	pxa2xx_spi_write(drv_data, SSDR, 0);
335 	drv_data->tx += n_bytes;
336 
337 	return 1;
338 }
339 
340 static int null_reader(struct driver_data *drv_data)
341 {
342 	u8 n_bytes = drv_data->n_bytes;
343 
344 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
345 	       && (drv_data->rx < drv_data->rx_end)) {
346 		pxa2xx_spi_read(drv_data, SSDR);
347 		drv_data->rx += n_bytes;
348 	}
349 
350 	return drv_data->rx == drv_data->rx_end;
351 }
352 
353 static int u8_writer(struct driver_data *drv_data)
354 {
355 	if (pxa2xx_spi_txfifo_full(drv_data)
356 		|| (drv_data->tx == drv_data->tx_end))
357 		return 0;
358 
359 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
360 	++drv_data->tx;
361 
362 	return 1;
363 }
364 
365 static int u8_reader(struct driver_data *drv_data)
366 {
367 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
368 	       && (drv_data->rx < drv_data->rx_end)) {
369 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
370 		++drv_data->rx;
371 	}
372 
373 	return drv_data->rx == drv_data->rx_end;
374 }
375 
376 static int u16_writer(struct driver_data *drv_data)
377 {
378 	if (pxa2xx_spi_txfifo_full(drv_data)
379 		|| (drv_data->tx == drv_data->tx_end))
380 		return 0;
381 
382 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
383 	drv_data->tx += 2;
384 
385 	return 1;
386 }
387 
388 static int u16_reader(struct driver_data *drv_data)
389 {
390 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
391 	       && (drv_data->rx < drv_data->rx_end)) {
392 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
393 		drv_data->rx += 2;
394 	}
395 
396 	return drv_data->rx == drv_data->rx_end;
397 }
398 
399 static int u32_writer(struct driver_data *drv_data)
400 {
401 	if (pxa2xx_spi_txfifo_full(drv_data)
402 		|| (drv_data->tx == drv_data->tx_end))
403 		return 0;
404 
405 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
406 	drv_data->tx += 4;
407 
408 	return 1;
409 }
410 
411 static int u32_reader(struct driver_data *drv_data)
412 {
413 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
414 	       && (drv_data->rx < drv_data->rx_end)) {
415 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
416 		drv_data->rx += 4;
417 	}
418 
419 	return drv_data->rx == drv_data->rx_end;
420 }
421 
422 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
423 {
424 	struct spi_message *msg = drv_data->cur_msg;
425 	struct spi_transfer *trans = drv_data->cur_transfer;
426 
427 	/* Move to next transfer */
428 	if (trans->transfer_list.next != &msg->transfers) {
429 		drv_data->cur_transfer =
430 			list_entry(trans->transfer_list.next,
431 					struct spi_transfer,
432 					transfer_list);
433 		return RUNNING_STATE;
434 	} else
435 		return DONE_STATE;
436 }
437 
438 /* caller already set message->status; dma and pio irqs are blocked */
439 static void giveback(struct driver_data *drv_data)
440 {
441 	struct spi_transfer* last_transfer;
442 	struct spi_message *msg;
443 
444 	msg = drv_data->cur_msg;
445 	drv_data->cur_msg = NULL;
446 	drv_data->cur_transfer = NULL;
447 
448 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
449 					transfer_list);
450 
451 	/* Delay if requested before any change in chip select */
452 	if (last_transfer->delay_usecs)
453 		udelay(last_transfer->delay_usecs);
454 
455 	/* Drop chip select UNLESS cs_change is true or we are returning
456 	 * a message with an error, or next message is for another chip
457 	 */
458 	if (!last_transfer->cs_change)
459 		cs_deassert(drv_data);
460 	else {
461 		struct spi_message *next_msg;
462 
463 		/* Holding of cs was hinted, but we need to make sure
464 		 * the next message is for the same chip.  Don't waste
465 		 * time with the following tests unless this was hinted.
466 		 *
467 		 * We cannot postpone this until pump_messages, because
468 		 * after calling msg->complete (below) the driver that
469 		 * sent the current message could be unloaded, which
470 		 * could invalidate the cs_control() callback...
471 		 */
472 
473 		/* get a pointer to the next message, if any */
474 		next_msg = spi_get_next_queued_message(drv_data->master);
475 
476 		/* see if the next and current messages point
477 		 * to the same chip
478 		 */
479 		if (next_msg && next_msg->spi != msg->spi)
480 			next_msg = NULL;
481 		if (!next_msg || msg->state == ERROR_STATE)
482 			cs_deassert(drv_data);
483 	}
484 
485 	drv_data->cur_chip = NULL;
486 	spi_finalize_current_message(drv_data->master);
487 }
488 
489 static void reset_sccr1(struct driver_data *drv_data)
490 {
491 	struct chip_data *chip = drv_data->cur_chip;
492 	u32 sccr1_reg;
493 
494 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
495 	sccr1_reg &= ~SSCR1_RFT;
496 	sccr1_reg |= chip->threshold;
497 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
498 }
499 
500 static void int_error_stop(struct driver_data *drv_data, const char* msg)
501 {
502 	/* Stop and reset SSP */
503 	write_SSSR_CS(drv_data, drv_data->clear_sr);
504 	reset_sccr1(drv_data);
505 	if (!pxa25x_ssp_comp(drv_data))
506 		pxa2xx_spi_write(drv_data, SSTO, 0);
507 	pxa2xx_spi_flush(drv_data);
508 	pxa2xx_spi_write(drv_data, SSCR0,
509 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
510 
511 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
512 
513 	drv_data->cur_msg->state = ERROR_STATE;
514 	tasklet_schedule(&drv_data->pump_transfers);
515 }
516 
517 static void int_transfer_complete(struct driver_data *drv_data)
518 {
519 	/* Stop SSP */
520 	write_SSSR_CS(drv_data, drv_data->clear_sr);
521 	reset_sccr1(drv_data);
522 	if (!pxa25x_ssp_comp(drv_data))
523 		pxa2xx_spi_write(drv_data, SSTO, 0);
524 
525 	/* Update total byte transferred return count actual bytes read */
526 	drv_data->cur_msg->actual_length += drv_data->len -
527 				(drv_data->rx_end - drv_data->rx);
528 
529 	/* Transfer delays and chip select release are
530 	 * handled in pump_transfers or giveback
531 	 */
532 
533 	/* Move to next transfer */
534 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
535 
536 	/* Schedule transfer tasklet */
537 	tasklet_schedule(&drv_data->pump_transfers);
538 }
539 
540 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
541 {
542 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
543 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
544 
545 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
546 
547 	if (irq_status & SSSR_ROR) {
548 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
549 		return IRQ_HANDLED;
550 	}
551 
552 	if (irq_status & SSSR_TINT) {
553 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
554 		if (drv_data->read(drv_data)) {
555 			int_transfer_complete(drv_data);
556 			return IRQ_HANDLED;
557 		}
558 	}
559 
560 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
561 	do {
562 		if (drv_data->read(drv_data)) {
563 			int_transfer_complete(drv_data);
564 			return IRQ_HANDLED;
565 		}
566 	} while (drv_data->write(drv_data));
567 
568 	if (drv_data->read(drv_data)) {
569 		int_transfer_complete(drv_data);
570 		return IRQ_HANDLED;
571 	}
572 
573 	if (drv_data->tx == drv_data->tx_end) {
574 		u32 bytes_left;
575 		u32 sccr1_reg;
576 
577 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
578 		sccr1_reg &= ~SSCR1_TIE;
579 
580 		/*
581 		 * PXA25x_SSP has no timeout, set up rx threshould for the
582 		 * remaining RX bytes.
583 		 */
584 		if (pxa25x_ssp_comp(drv_data)) {
585 			u32 rx_thre;
586 
587 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
588 
589 			bytes_left = drv_data->rx_end - drv_data->rx;
590 			switch (drv_data->n_bytes) {
591 			case 4:
592 				bytes_left >>= 1;
593 			case 2:
594 				bytes_left >>= 1;
595 			}
596 
597 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
598 			if (rx_thre > bytes_left)
599 				rx_thre = bytes_left;
600 
601 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
602 		}
603 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
604 	}
605 
606 	/* We did something */
607 	return IRQ_HANDLED;
608 }
609 
610 static irqreturn_t ssp_int(int irq, void *dev_id)
611 {
612 	struct driver_data *drv_data = dev_id;
613 	u32 sccr1_reg;
614 	u32 mask = drv_data->mask_sr;
615 	u32 status;
616 
617 	/*
618 	 * The IRQ might be shared with other peripherals so we must first
619 	 * check that are we RPM suspended or not. If we are we assume that
620 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
621 	 * interrupt is enabled).
622 	 */
623 	if (pm_runtime_suspended(&drv_data->pdev->dev))
624 		return IRQ_NONE;
625 
626 	/*
627 	 * If the device is not yet in RPM suspended state and we get an
628 	 * interrupt that is meant for another device, check if status bits
629 	 * are all set to one. That means that the device is already
630 	 * powered off.
631 	 */
632 	status = pxa2xx_spi_read(drv_data, SSSR);
633 	if (status == ~0)
634 		return IRQ_NONE;
635 
636 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
637 
638 	/* Ignore possible writes if we don't need to write */
639 	if (!(sccr1_reg & SSCR1_TIE))
640 		mask &= ~SSSR_TFS;
641 
642 	if (!(status & mask))
643 		return IRQ_NONE;
644 
645 	if (!drv_data->cur_msg) {
646 
647 		pxa2xx_spi_write(drv_data, SSCR0,
648 				 pxa2xx_spi_read(drv_data, SSCR0)
649 				 & ~SSCR0_SSE);
650 		pxa2xx_spi_write(drv_data, SSCR1,
651 				 pxa2xx_spi_read(drv_data, SSCR1)
652 				 & ~drv_data->int_cr1);
653 		if (!pxa25x_ssp_comp(drv_data))
654 			pxa2xx_spi_write(drv_data, SSTO, 0);
655 		write_SSSR_CS(drv_data, drv_data->clear_sr);
656 
657 		dev_err(&drv_data->pdev->dev,
658 			"bad message state in interrupt handler\n");
659 
660 		/* Never fail */
661 		return IRQ_HANDLED;
662 	}
663 
664 	return drv_data->transfer_handler(drv_data);
665 }
666 
667 /*
668  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
669  * input frequency by fractions of 2^24. It also has a divider by 5.
670  *
671  * There are formulas to get baud rate value for given input frequency and
672  * divider parameters, such as DDS_CLK_RATE and SCR:
673  *
674  * Fsys = 200MHz
675  *
676  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
677  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
678  *
679  * DDS_CLK_RATE either 2^n or 2^n / 5.
680  * SCR is in range 0 .. 255
681  *
682  * Divisor = 5^i * 2^j * 2 * k
683  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
684  *       j = [0, 23]     j = 0 iff i = 1
685  *       k = [1, 256]
686  * Special case: j = 0, i = 1: Divisor = 2 / 5
687  *
688  * Accordingly to the specification the recommended values for DDS_CLK_RATE
689  * are:
690  *	Case 1:		2^n, n = [0, 23]
691  *	Case 2:		2^24 * 2 / 5 (0x666666)
692  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
693  *
694  * In all cases the lowest possible value is better.
695  *
696  * The function calculates parameters for all cases and chooses the one closest
697  * to the asked baud rate.
698  */
699 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
700 {
701 	unsigned long xtal = 200000000;
702 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
703 						   see (2) */
704 						/* case 3 */
705 	unsigned long fref1 = fref / 2;		/* case 1 */
706 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
707 	unsigned long scale;
708 	unsigned long q, q1, q2;
709 	long r, r1, r2;
710 	u32 mul;
711 
712 	/* Case 1 */
713 
714 	/* Set initial value for DDS_CLK_RATE */
715 	mul = (1 << 24) >> 1;
716 
717 	/* Calculate initial quot */
718 	q1 = DIV_ROUND_CLOSEST(fref1, rate);
719 
720 	/* Scale q1 if it's too big */
721 	if (q1 > 256) {
722 		/* Scale q1 to range [1, 512] */
723 		scale = fls_long(q1 - 1);
724 		if (scale > 9) {
725 			q1 >>= scale - 9;
726 			mul >>= scale - 9;
727 		}
728 
729 		/* Round the result if we have a remainder */
730 		q1 += q1 & 1;
731 	}
732 
733 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
734 	scale = __ffs(q1);
735 	q1 >>= scale;
736 	mul >>= scale;
737 
738 	/* Get the remainder */
739 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
740 
741 	/* Case 2 */
742 
743 	q2 = DIV_ROUND_CLOSEST(fref2, rate);
744 	r2 = abs(fref2 / q2 - rate);
745 
746 	/*
747 	 * Choose the best between two: less remainder we have the better. We
748 	 * can't go case 2 if q2 is greater than 256 since SCR register can
749 	 * hold only values 0 .. 255.
750 	 */
751 	if (r2 >= r1 || q2 > 256) {
752 		/* case 1 is better */
753 		r = r1;
754 		q = q1;
755 	} else {
756 		/* case 2 is better */
757 		r = r2;
758 		q = q2;
759 		mul = (1 << 24) * 2 / 5;
760 	}
761 
762 	/* Check case 3 only If the divisor is big enough */
763 	if (fref / rate >= 80) {
764 		u64 fssp;
765 		u32 m;
766 
767 		/* Calculate initial quot */
768 		q1 = DIV_ROUND_CLOSEST(fref, rate);
769 		m = (1 << 24) / q1;
770 
771 		/* Get the remainder */
772 		fssp = (u64)fref * m;
773 		do_div(fssp, 1 << 24);
774 		r1 = abs(fssp - rate);
775 
776 		/* Choose this one if it suits better */
777 		if (r1 < r) {
778 			/* case 3 is better */
779 			q = 1;
780 			mul = m;
781 		}
782 	}
783 
784 	*dds = mul;
785 	return q - 1;
786 }
787 
788 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
789 {
790 	unsigned long ssp_clk = drv_data->max_clk_rate;
791 	const struct ssp_device *ssp = drv_data->ssp;
792 
793 	rate = min_t(int, ssp_clk, rate);
794 
795 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
796 		return (ssp_clk / (2 * rate) - 1) & 0xff;
797 	else
798 		return (ssp_clk / rate - 1) & 0xfff;
799 }
800 
801 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
802 					   struct chip_data *chip, int rate)
803 {
804 	unsigned int clk_div;
805 
806 	switch (drv_data->ssp_type) {
807 	case QUARK_X1000_SSP:
808 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
809 		break;
810 	default:
811 		clk_div = ssp_get_clk_div(drv_data, rate);
812 		break;
813 	}
814 	return clk_div << 8;
815 }
816 
817 static void pump_transfers(unsigned long data)
818 {
819 	struct driver_data *drv_data = (struct driver_data *)data;
820 	struct spi_message *message = NULL;
821 	struct spi_transfer *transfer = NULL;
822 	struct spi_transfer *previous = NULL;
823 	struct chip_data *chip = NULL;
824 	u32 clk_div = 0;
825 	u8 bits = 0;
826 	u32 speed = 0;
827 	u32 cr0;
828 	u32 cr1;
829 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
830 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
831 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
832 
833 	/* Get current state information */
834 	message = drv_data->cur_msg;
835 	transfer = drv_data->cur_transfer;
836 	chip = drv_data->cur_chip;
837 
838 	/* Handle for abort */
839 	if (message->state == ERROR_STATE) {
840 		message->status = -EIO;
841 		giveback(drv_data);
842 		return;
843 	}
844 
845 	/* Handle end of message */
846 	if (message->state == DONE_STATE) {
847 		message->status = 0;
848 		giveback(drv_data);
849 		return;
850 	}
851 
852 	/* Delay if requested at end of transfer before CS change */
853 	if (message->state == RUNNING_STATE) {
854 		previous = list_entry(transfer->transfer_list.prev,
855 					struct spi_transfer,
856 					transfer_list);
857 		if (previous->delay_usecs)
858 			udelay(previous->delay_usecs);
859 
860 		/* Drop chip select only if cs_change is requested */
861 		if (previous->cs_change)
862 			cs_deassert(drv_data);
863 	}
864 
865 	/* Check if we can DMA this transfer */
866 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
867 
868 		/* reject already-mapped transfers; PIO won't always work */
869 		if (message->is_dma_mapped
870 				|| transfer->rx_dma || transfer->tx_dma) {
871 			dev_err(&drv_data->pdev->dev,
872 				"pump_transfers: mapped transfer length of "
873 				"%u is greater than %d\n",
874 				transfer->len, MAX_DMA_LEN);
875 			message->status = -EINVAL;
876 			giveback(drv_data);
877 			return;
878 		}
879 
880 		/* warn ... we force this to PIO mode */
881 		dev_warn_ratelimited(&message->spi->dev,
882 				     "pump_transfers: DMA disabled for transfer length %ld "
883 				     "greater than %d\n",
884 				     (long)drv_data->len, MAX_DMA_LEN);
885 	}
886 
887 	/* Setup the transfer state based on the type of transfer */
888 	if (pxa2xx_spi_flush(drv_data) == 0) {
889 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
890 		message->status = -EIO;
891 		giveback(drv_data);
892 		return;
893 	}
894 	drv_data->n_bytes = chip->n_bytes;
895 	drv_data->tx = (void *)transfer->tx_buf;
896 	drv_data->tx_end = drv_data->tx + transfer->len;
897 	drv_data->rx = transfer->rx_buf;
898 	drv_data->rx_end = drv_data->rx + transfer->len;
899 	drv_data->rx_dma = transfer->rx_dma;
900 	drv_data->tx_dma = transfer->tx_dma;
901 	drv_data->len = transfer->len;
902 	drv_data->write = drv_data->tx ? chip->write : null_writer;
903 	drv_data->read = drv_data->rx ? chip->read : null_reader;
904 
905 	/* Change speed and bit per word on a per transfer */
906 	cr0 = chip->cr0;
907 	if (transfer->speed_hz || transfer->bits_per_word) {
908 
909 		bits = chip->bits_per_word;
910 		speed = chip->speed_hz;
911 
912 		if (transfer->speed_hz)
913 			speed = transfer->speed_hz;
914 
915 		if (transfer->bits_per_word)
916 			bits = transfer->bits_per_word;
917 
918 		clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
919 
920 		if (bits <= 8) {
921 			drv_data->n_bytes = 1;
922 			drv_data->read = drv_data->read != null_reader ?
923 						u8_reader : null_reader;
924 			drv_data->write = drv_data->write != null_writer ?
925 						u8_writer : null_writer;
926 		} else if (bits <= 16) {
927 			drv_data->n_bytes = 2;
928 			drv_data->read = drv_data->read != null_reader ?
929 						u16_reader : null_reader;
930 			drv_data->write = drv_data->write != null_writer ?
931 						u16_writer : null_writer;
932 		} else if (bits <= 32) {
933 			drv_data->n_bytes = 4;
934 			drv_data->read = drv_data->read != null_reader ?
935 						u32_reader : null_reader;
936 			drv_data->write = drv_data->write != null_writer ?
937 						u32_writer : null_writer;
938 		}
939 		/* if bits/word is changed in dma mode, then must check the
940 		 * thresholds and burst also */
941 		if (chip->enable_dma) {
942 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
943 							message->spi,
944 							bits, &dma_burst,
945 							&dma_thresh))
946 				dev_warn_ratelimited(&message->spi->dev,
947 						     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
948 		}
949 
950 		cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
951 	}
952 
953 	message->state = RUNNING_STATE;
954 
955 	drv_data->dma_mapped = 0;
956 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
957 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
958 	if (drv_data->dma_mapped) {
959 
960 		/* Ensure we have the correct interrupt handler */
961 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
962 
963 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
964 
965 		/* Clear status and start DMA engine */
966 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
967 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
968 
969 		pxa2xx_spi_dma_start(drv_data);
970 	} else {
971 		/* Ensure we have the correct interrupt handler	*/
972 		drv_data->transfer_handler = interrupt_transfer;
973 
974 		/* Clear status  */
975 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
976 		write_SSSR_CS(drv_data, drv_data->clear_sr);
977 	}
978 
979 	if (is_lpss_ssp(drv_data)) {
980 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
981 		    != chip->lpss_rx_threshold)
982 			pxa2xx_spi_write(drv_data, SSIRF,
983 					 chip->lpss_rx_threshold);
984 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
985 		    != chip->lpss_tx_threshold)
986 			pxa2xx_spi_write(drv_data, SSITF,
987 					 chip->lpss_tx_threshold);
988 	}
989 
990 	if (is_quark_x1000_ssp(drv_data) &&
991 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
992 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
993 
994 	/* see if we need to reload the config registers */
995 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
996 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
997 	    != (cr1 & change_mask)) {
998 		/* stop the SSP, and update the other bits */
999 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1000 		if (!pxa25x_ssp_comp(drv_data))
1001 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1002 		/* first set CR1 without interrupt and service enables */
1003 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1004 		/* restart the SSP */
1005 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1006 
1007 	} else {
1008 		if (!pxa25x_ssp_comp(drv_data))
1009 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1010 	}
1011 
1012 	cs_assert(drv_data);
1013 
1014 	/* after chip select, release the data by enabling service
1015 	 * requests and interrupts, without changing any mode bits */
1016 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1017 }
1018 
1019 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1020 					   struct spi_message *msg)
1021 {
1022 	struct driver_data *drv_data = spi_master_get_devdata(master);
1023 
1024 	drv_data->cur_msg = msg;
1025 	/* Initial message state*/
1026 	drv_data->cur_msg->state = START_STATE;
1027 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1028 						struct spi_transfer,
1029 						transfer_list);
1030 
1031 	/* prepare to setup the SSP, in pump_transfers, using the per
1032 	 * chip configuration */
1033 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1034 
1035 	/* Mark as busy and launch transfers */
1036 	tasklet_schedule(&drv_data->pump_transfers);
1037 	return 0;
1038 }
1039 
1040 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1041 {
1042 	struct driver_data *drv_data = spi_master_get_devdata(master);
1043 
1044 	/* Disable the SSP now */
1045 	pxa2xx_spi_write(drv_data, SSCR0,
1046 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1047 
1048 	return 0;
1049 }
1050 
1051 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1052 		    struct pxa2xx_spi_chip *chip_info)
1053 {
1054 	int err = 0;
1055 
1056 	if (chip == NULL || chip_info == NULL)
1057 		return 0;
1058 
1059 	/* NOTE: setup() can be called multiple times, possibly with
1060 	 * different chip_info, release previously requested GPIO
1061 	 */
1062 	if (gpio_is_valid(chip->gpio_cs))
1063 		gpio_free(chip->gpio_cs);
1064 
1065 	/* If (*cs_control) is provided, ignore GPIO chip select */
1066 	if (chip_info->cs_control) {
1067 		chip->cs_control = chip_info->cs_control;
1068 		return 0;
1069 	}
1070 
1071 	if (gpio_is_valid(chip_info->gpio_cs)) {
1072 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1073 		if (err) {
1074 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1075 				chip_info->gpio_cs);
1076 			return err;
1077 		}
1078 
1079 		chip->gpio_cs = chip_info->gpio_cs;
1080 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1081 
1082 		err = gpio_direction_output(chip->gpio_cs,
1083 					!chip->gpio_cs_inverted);
1084 	}
1085 
1086 	return err;
1087 }
1088 
1089 static int setup(struct spi_device *spi)
1090 {
1091 	struct pxa2xx_spi_chip *chip_info = NULL;
1092 	struct chip_data *chip;
1093 	const struct lpss_config *config;
1094 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1095 	unsigned int clk_div;
1096 	uint tx_thres, tx_hi_thres, rx_thres;
1097 
1098 	switch (drv_data->ssp_type) {
1099 	case QUARK_X1000_SSP:
1100 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1101 		tx_hi_thres = 0;
1102 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1103 		break;
1104 	case LPSS_LPT_SSP:
1105 	case LPSS_BYT_SSP:
1106 		config = lpss_get_config(drv_data);
1107 		tx_thres = config->tx_threshold_lo;
1108 		tx_hi_thres = config->tx_threshold_hi;
1109 		rx_thres = config->rx_threshold;
1110 		break;
1111 	default:
1112 		tx_thres = TX_THRESH_DFLT;
1113 		tx_hi_thres = 0;
1114 		rx_thres = RX_THRESH_DFLT;
1115 		break;
1116 	}
1117 
1118 	/* Only alloc on first setup */
1119 	chip = spi_get_ctldata(spi);
1120 	if (!chip) {
1121 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1122 		if (!chip)
1123 			return -ENOMEM;
1124 
1125 		if (drv_data->ssp_type == CE4100_SSP) {
1126 			if (spi->chip_select > 4) {
1127 				dev_err(&spi->dev,
1128 					"failed setup: cs number must not be > 4.\n");
1129 				kfree(chip);
1130 				return -EINVAL;
1131 			}
1132 
1133 			chip->frm = spi->chip_select;
1134 		} else
1135 			chip->gpio_cs = -1;
1136 		chip->enable_dma = 0;
1137 		chip->timeout = TIMOUT_DFLT;
1138 	}
1139 
1140 	/* protocol drivers may change the chip settings, so...
1141 	 * if chip_info exists, use it */
1142 	chip_info = spi->controller_data;
1143 
1144 	/* chip_info isn't always needed */
1145 	chip->cr1 = 0;
1146 	if (chip_info) {
1147 		if (chip_info->timeout)
1148 			chip->timeout = chip_info->timeout;
1149 		if (chip_info->tx_threshold)
1150 			tx_thres = chip_info->tx_threshold;
1151 		if (chip_info->tx_hi_threshold)
1152 			tx_hi_thres = chip_info->tx_hi_threshold;
1153 		if (chip_info->rx_threshold)
1154 			rx_thres = chip_info->rx_threshold;
1155 		chip->enable_dma = drv_data->master_info->enable_dma;
1156 		chip->dma_threshold = 0;
1157 		if (chip_info->enable_loopback)
1158 			chip->cr1 = SSCR1_LBM;
1159 	} else if (ACPI_HANDLE(&spi->dev)) {
1160 		/*
1161 		 * Slave devices enumerated from ACPI namespace don't
1162 		 * usually have chip_info but we still might want to use
1163 		 * DMA with them.
1164 		 */
1165 		chip->enable_dma = drv_data->master_info->enable_dma;
1166 	}
1167 
1168 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1169 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1170 				| SSITF_TxHiThresh(tx_hi_thres);
1171 
1172 	/* set dma burst and threshold outside of chip_info path so that if
1173 	 * chip_info goes away after setting chip->enable_dma, the
1174 	 * burst and threshold can still respond to changes in bits_per_word */
1175 	if (chip->enable_dma) {
1176 		/* set up legal burst and threshold for dma */
1177 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1178 						spi->bits_per_word,
1179 						&chip->dma_burst_size,
1180 						&chip->dma_threshold)) {
1181 			dev_warn(&spi->dev,
1182 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1183 		}
1184 	}
1185 
1186 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1187 	chip->speed_hz = spi->max_speed_hz;
1188 
1189 	chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1190 					   spi->bits_per_word);
1191 	switch (drv_data->ssp_type) {
1192 	case QUARK_X1000_SSP:
1193 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1194 				   & QUARK_X1000_SSCR1_RFT)
1195 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1196 				   & QUARK_X1000_SSCR1_TFT);
1197 		break;
1198 	default:
1199 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1200 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1201 		break;
1202 	}
1203 
1204 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1205 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1206 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1207 
1208 	if (spi->mode & SPI_LOOP)
1209 		chip->cr1 |= SSCR1_LBM;
1210 
1211 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1212 	if (!pxa25x_ssp_comp(drv_data))
1213 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1214 			drv_data->max_clk_rate
1215 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1216 			chip->enable_dma ? "DMA" : "PIO");
1217 	else
1218 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1219 			drv_data->max_clk_rate / 2
1220 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1221 			chip->enable_dma ? "DMA" : "PIO");
1222 
1223 	if (spi->bits_per_word <= 8) {
1224 		chip->n_bytes = 1;
1225 		chip->read = u8_reader;
1226 		chip->write = u8_writer;
1227 	} else if (spi->bits_per_word <= 16) {
1228 		chip->n_bytes = 2;
1229 		chip->read = u16_reader;
1230 		chip->write = u16_writer;
1231 	} else if (spi->bits_per_word <= 32) {
1232 		if (!is_quark_x1000_ssp(drv_data))
1233 			chip->cr0 |= SSCR0_EDSS;
1234 		chip->n_bytes = 4;
1235 		chip->read = u32_reader;
1236 		chip->write = u32_writer;
1237 	}
1238 	chip->bits_per_word = spi->bits_per_word;
1239 
1240 	spi_set_ctldata(spi, chip);
1241 
1242 	if (drv_data->ssp_type == CE4100_SSP)
1243 		return 0;
1244 
1245 	return setup_cs(spi, chip, chip_info);
1246 }
1247 
1248 static void cleanup(struct spi_device *spi)
1249 {
1250 	struct chip_data *chip = spi_get_ctldata(spi);
1251 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1252 
1253 	if (!chip)
1254 		return;
1255 
1256 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1257 		gpio_free(chip->gpio_cs);
1258 
1259 	kfree(chip);
1260 }
1261 
1262 #ifdef CONFIG_ACPI
1263 
1264 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1265 	{ "INT33C0", LPSS_LPT_SSP },
1266 	{ "INT33C1", LPSS_LPT_SSP },
1267 	{ "INT3430", LPSS_LPT_SSP },
1268 	{ "INT3431", LPSS_LPT_SSP },
1269 	{ "80860F0E", LPSS_BYT_SSP },
1270 	{ "8086228E", LPSS_BYT_SSP },
1271 	{ },
1272 };
1273 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1274 
1275 static struct pxa2xx_spi_master *
1276 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1277 {
1278 	struct pxa2xx_spi_master *pdata;
1279 	struct acpi_device *adev;
1280 	struct ssp_device *ssp;
1281 	struct resource *res;
1282 	const struct acpi_device_id *id;
1283 	int devid, type;
1284 
1285 	if (!ACPI_HANDLE(&pdev->dev) ||
1286 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1287 		return NULL;
1288 
1289 	id = acpi_match_device(pdev->dev.driver->acpi_match_table, &pdev->dev);
1290 	if (id)
1291 		type = (int)id->driver_data;
1292 	else
1293 		return NULL;
1294 
1295 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1296 	if (!pdata)
1297 		return NULL;
1298 
1299 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1300 	if (!res)
1301 		return NULL;
1302 
1303 	ssp = &pdata->ssp;
1304 
1305 	ssp->phys_base = res->start;
1306 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1307 	if (IS_ERR(ssp->mmio_base))
1308 		return NULL;
1309 
1310 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1311 	ssp->irq = platform_get_irq(pdev, 0);
1312 	ssp->type = type;
1313 	ssp->pdev = pdev;
1314 
1315 	ssp->port_id = -1;
1316 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1317 		ssp->port_id = devid;
1318 
1319 	pdata->num_chipselect = 1;
1320 	pdata->enable_dma = true;
1321 
1322 	return pdata;
1323 }
1324 
1325 #else
1326 static inline struct pxa2xx_spi_master *
1327 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1328 {
1329 	return NULL;
1330 }
1331 #endif
1332 
1333 static int pxa2xx_spi_probe(struct platform_device *pdev)
1334 {
1335 	struct device *dev = &pdev->dev;
1336 	struct pxa2xx_spi_master *platform_info;
1337 	struct spi_master *master;
1338 	struct driver_data *drv_data;
1339 	struct ssp_device *ssp;
1340 	int status;
1341 	u32 tmp;
1342 
1343 	platform_info = dev_get_platdata(dev);
1344 	if (!platform_info) {
1345 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1346 		if (!platform_info) {
1347 			dev_err(&pdev->dev, "missing platform data\n");
1348 			return -ENODEV;
1349 		}
1350 	}
1351 
1352 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1353 	if (!ssp)
1354 		ssp = &platform_info->ssp;
1355 
1356 	if (!ssp->mmio_base) {
1357 		dev_err(&pdev->dev, "failed to get ssp\n");
1358 		return -ENODEV;
1359 	}
1360 
1361 	/* Allocate master with space for drv_data and null dma buffer */
1362 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1363 	if (!master) {
1364 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1365 		pxa_ssp_free(ssp);
1366 		return -ENOMEM;
1367 	}
1368 	drv_data = spi_master_get_devdata(master);
1369 	drv_data->master = master;
1370 	drv_data->master_info = platform_info;
1371 	drv_data->pdev = pdev;
1372 	drv_data->ssp = ssp;
1373 
1374 	master->dev.parent = &pdev->dev;
1375 	master->dev.of_node = pdev->dev.of_node;
1376 	/* the spi->mode bits understood by this driver: */
1377 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1378 
1379 	master->bus_num = ssp->port_id;
1380 	master->num_chipselect = platform_info->num_chipselect;
1381 	master->dma_alignment = DMA_ALIGNMENT;
1382 	master->cleanup = cleanup;
1383 	master->setup = setup;
1384 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1385 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1386 	master->auto_runtime_pm = true;
1387 
1388 	drv_data->ssp_type = ssp->type;
1389 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1390 
1391 	drv_data->ioaddr = ssp->mmio_base;
1392 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1393 	if (pxa25x_ssp_comp(drv_data)) {
1394 		switch (drv_data->ssp_type) {
1395 		case QUARK_X1000_SSP:
1396 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1397 			break;
1398 		default:
1399 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1400 			break;
1401 		}
1402 
1403 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1404 		drv_data->dma_cr1 = 0;
1405 		drv_data->clear_sr = SSSR_ROR;
1406 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1407 	} else {
1408 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1409 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1410 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1411 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1412 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1413 	}
1414 
1415 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1416 			drv_data);
1417 	if (status < 0) {
1418 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1419 		goto out_error_master_alloc;
1420 	}
1421 
1422 	/* Setup DMA if requested */
1423 	drv_data->tx_channel = -1;
1424 	drv_data->rx_channel = -1;
1425 	if (platform_info->enable_dma) {
1426 		status = pxa2xx_spi_dma_setup(drv_data);
1427 		if (status) {
1428 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1429 			platform_info->enable_dma = false;
1430 		}
1431 	}
1432 
1433 	/* Enable SOC clock */
1434 	clk_prepare_enable(ssp->clk);
1435 
1436 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1437 
1438 	/* Load default SSP configuration */
1439 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1440 	switch (drv_data->ssp_type) {
1441 	case QUARK_X1000_SSP:
1442 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1443 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1444 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1445 
1446 		/* using the Motorola SPI protocol and use 8 bit frame */
1447 		pxa2xx_spi_write(drv_data, SSCR0,
1448 				 QUARK_X1000_SSCR0_Motorola
1449 				 | QUARK_X1000_SSCR0_DataSize(8));
1450 		break;
1451 	default:
1452 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1453 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1454 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1455 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1456 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1457 		break;
1458 	}
1459 
1460 	if (!pxa25x_ssp_comp(drv_data))
1461 		pxa2xx_spi_write(drv_data, SSTO, 0);
1462 
1463 	if (!is_quark_x1000_ssp(drv_data))
1464 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1465 
1466 	if (is_lpss_ssp(drv_data))
1467 		lpss_ssp_setup(drv_data);
1468 
1469 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1470 		     (unsigned long)drv_data);
1471 
1472 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1473 	pm_runtime_use_autosuspend(&pdev->dev);
1474 	pm_runtime_set_active(&pdev->dev);
1475 	pm_runtime_enable(&pdev->dev);
1476 
1477 	/* Register with the SPI framework */
1478 	platform_set_drvdata(pdev, drv_data);
1479 	status = devm_spi_register_master(&pdev->dev, master);
1480 	if (status != 0) {
1481 		dev_err(&pdev->dev, "problem registering spi master\n");
1482 		goto out_error_clock_enabled;
1483 	}
1484 
1485 	return status;
1486 
1487 out_error_clock_enabled:
1488 	clk_disable_unprepare(ssp->clk);
1489 	pxa2xx_spi_dma_release(drv_data);
1490 	free_irq(ssp->irq, drv_data);
1491 
1492 out_error_master_alloc:
1493 	spi_master_put(master);
1494 	pxa_ssp_free(ssp);
1495 	return status;
1496 }
1497 
1498 static int pxa2xx_spi_remove(struct platform_device *pdev)
1499 {
1500 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1501 	struct ssp_device *ssp;
1502 
1503 	if (!drv_data)
1504 		return 0;
1505 	ssp = drv_data->ssp;
1506 
1507 	pm_runtime_get_sync(&pdev->dev);
1508 
1509 	/* Disable the SSP at the peripheral and SOC level */
1510 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1511 	clk_disable_unprepare(ssp->clk);
1512 
1513 	/* Release DMA */
1514 	if (drv_data->master_info->enable_dma)
1515 		pxa2xx_spi_dma_release(drv_data);
1516 
1517 	pm_runtime_put_noidle(&pdev->dev);
1518 	pm_runtime_disable(&pdev->dev);
1519 
1520 	/* Release IRQ */
1521 	free_irq(ssp->irq, drv_data);
1522 
1523 	/* Release SSP */
1524 	pxa_ssp_free(ssp);
1525 
1526 	return 0;
1527 }
1528 
1529 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1530 {
1531 	int status = 0;
1532 
1533 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1534 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1535 }
1536 
1537 #ifdef CONFIG_PM_SLEEP
1538 static int pxa2xx_spi_suspend(struct device *dev)
1539 {
1540 	struct driver_data *drv_data = dev_get_drvdata(dev);
1541 	struct ssp_device *ssp = drv_data->ssp;
1542 	int status = 0;
1543 
1544 	status = spi_master_suspend(drv_data->master);
1545 	if (status != 0)
1546 		return status;
1547 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1548 
1549 	if (!pm_runtime_suspended(dev))
1550 		clk_disable_unprepare(ssp->clk);
1551 
1552 	return 0;
1553 }
1554 
1555 static int pxa2xx_spi_resume(struct device *dev)
1556 {
1557 	struct driver_data *drv_data = dev_get_drvdata(dev);
1558 	struct ssp_device *ssp = drv_data->ssp;
1559 	int status = 0;
1560 
1561 	pxa2xx_spi_dma_resume(drv_data);
1562 
1563 	/* Enable the SSP clock */
1564 	if (!pm_runtime_suspended(dev))
1565 		clk_prepare_enable(ssp->clk);
1566 
1567 	/* Restore LPSS private register bits */
1568 	if (is_lpss_ssp(drv_data))
1569 		lpss_ssp_setup(drv_data);
1570 
1571 	/* Start the queue running */
1572 	status = spi_master_resume(drv_data->master);
1573 	if (status != 0) {
1574 		dev_err(dev, "problem starting queue (%d)\n", status);
1575 		return status;
1576 	}
1577 
1578 	return 0;
1579 }
1580 #endif
1581 
1582 #ifdef CONFIG_PM
1583 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1584 {
1585 	struct driver_data *drv_data = dev_get_drvdata(dev);
1586 
1587 	clk_disable_unprepare(drv_data->ssp->clk);
1588 	return 0;
1589 }
1590 
1591 static int pxa2xx_spi_runtime_resume(struct device *dev)
1592 {
1593 	struct driver_data *drv_data = dev_get_drvdata(dev);
1594 
1595 	clk_prepare_enable(drv_data->ssp->clk);
1596 	return 0;
1597 }
1598 #endif
1599 
1600 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1601 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1602 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1603 			   pxa2xx_spi_runtime_resume, NULL)
1604 };
1605 
1606 static struct platform_driver driver = {
1607 	.driver = {
1608 		.name	= "pxa2xx-spi",
1609 		.pm	= &pxa2xx_spi_pm_ops,
1610 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1611 	},
1612 	.probe = pxa2xx_spi_probe,
1613 	.remove = pxa2xx_spi_remove,
1614 	.shutdown = pxa2xx_spi_shutdown,
1615 };
1616 
1617 static int __init pxa2xx_spi_init(void)
1618 {
1619 	return platform_driver_register(&driver);
1620 }
1621 subsys_initcall(pxa2xx_spi_init);
1622 
1623 static void __exit pxa2xx_spi_exit(void)
1624 {
1625 	platform_driver_unregister(&driver);
1626 }
1627 module_exit(pxa2xx_spi_exit);
1628