xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 7d1f1bf699efc9b0f0e92c910dc667a4511943f5)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/slab.h>
32 #include <linux/clk.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/acpi.h>
35 
36 #include "spi-pxa2xx.h"
37 
38 MODULE_AUTHOR("Stephen Street");
39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
40 MODULE_LICENSE("GPL");
41 MODULE_ALIAS("platform:pxa2xx-spi");
42 
43 #define TIMOUT_DFLT		1000
44 
45 /*
46  * for testing SSCR1 changes that require SSP restart, basically
47  * everything except the service and interrupt enables, the pxa270 developer
48  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
49  * list, but the PXA255 dev man says all bits without really meaning the
50  * service and interrupt enables
51  */
52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
53 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
54 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
55 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
56 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
57 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
58 
59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
60 				| QUARK_X1000_SSCR1_EFWR	\
61 				| QUARK_X1000_SSCR1_RFT		\
62 				| QUARK_X1000_SSCR1_TFT		\
63 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
64 
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
68 #define LPSS_CAPS_CS_EN_SHIFT			9
69 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
70 
71 struct lpss_config {
72 	/* LPSS offset from drv_data->ioaddr */
73 	unsigned offset;
74 	/* Register offsets from drv_data->lpss_base or -1 */
75 	int reg_general;
76 	int reg_ssp;
77 	int reg_cs_ctrl;
78 	int reg_capabilities;
79 	/* FIFO thresholds */
80 	u32 rx_threshold;
81 	u32 tx_threshold_lo;
82 	u32 tx_threshold_hi;
83 	/* Chip select control */
84 	unsigned cs_sel_shift;
85 	unsigned cs_sel_mask;
86 	unsigned cs_num;
87 };
88 
89 /* Keep these sorted with enum pxa_ssp_type */
90 static const struct lpss_config lpss_platforms[] = {
91 	{	/* LPSS_LPT_SSP */
92 		.offset = 0x800,
93 		.reg_general = 0x08,
94 		.reg_ssp = 0x0c,
95 		.reg_cs_ctrl = 0x18,
96 		.reg_capabilities = -1,
97 		.rx_threshold = 64,
98 		.tx_threshold_lo = 160,
99 		.tx_threshold_hi = 224,
100 	},
101 	{	/* LPSS_BYT_SSP */
102 		.offset = 0x400,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BSW_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 		.cs_sel_shift = 2,
121 		.cs_sel_mask = 1 << 2,
122 		.cs_num = 2,
123 	},
124 	{	/* LPSS_SPT_SSP */
125 		.offset = 0x200,
126 		.reg_general = -1,
127 		.reg_ssp = 0x20,
128 		.reg_cs_ctrl = 0x24,
129 		.reg_capabilities = 0xfc,
130 		.rx_threshold = 1,
131 		.tx_threshold_lo = 32,
132 		.tx_threshold_hi = 56,
133 	},
134 	{	/* LPSS_BXT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = 0xfc,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 16,
142 		.tx_threshold_hi = 48,
143 		.cs_sel_shift = 8,
144 		.cs_sel_mask = 3 << 8,
145 	},
146 };
147 
148 static inline const struct lpss_config
149 *lpss_get_config(const struct driver_data *drv_data)
150 {
151 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
152 }
153 
154 static bool is_lpss_ssp(const struct driver_data *drv_data)
155 {
156 	switch (drv_data->ssp_type) {
157 	case LPSS_LPT_SSP:
158 	case LPSS_BYT_SSP:
159 	case LPSS_BSW_SSP:
160 	case LPSS_SPT_SSP:
161 	case LPSS_BXT_SSP:
162 		return true;
163 	default:
164 		return false;
165 	}
166 }
167 
168 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
169 {
170 	return drv_data->ssp_type == QUARK_X1000_SSP;
171 }
172 
173 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
174 {
175 	switch (drv_data->ssp_type) {
176 	case QUARK_X1000_SSP:
177 		return QUARK_X1000_SSCR1_CHANGE_MASK;
178 	default:
179 		return SSCR1_CHANGE_MASK;
180 	}
181 }
182 
183 static u32
184 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
185 {
186 	switch (drv_data->ssp_type) {
187 	case QUARK_X1000_SSP:
188 		return RX_THRESH_QUARK_X1000_DFLT;
189 	default:
190 		return RX_THRESH_DFLT;
191 	}
192 }
193 
194 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
195 {
196 	u32 mask;
197 
198 	switch (drv_data->ssp_type) {
199 	case QUARK_X1000_SSP:
200 		mask = QUARK_X1000_SSSR_TFL_MASK;
201 		break;
202 	default:
203 		mask = SSSR_TFL_MASK;
204 		break;
205 	}
206 
207 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
208 }
209 
210 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
211 				     u32 *sccr1_reg)
212 {
213 	u32 mask;
214 
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		mask = QUARK_X1000_SSCR1_RFT;
218 		break;
219 	default:
220 		mask = SSCR1_RFT;
221 		break;
222 	}
223 	*sccr1_reg &= ~mask;
224 }
225 
226 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
227 				   u32 *sccr1_reg, u32 threshold)
228 {
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
232 		break;
233 	default:
234 		*sccr1_reg |= SSCR1_RxTresh(threshold);
235 		break;
236 	}
237 }
238 
239 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
240 				  u32 clk_div, u8 bits)
241 {
242 	switch (drv_data->ssp_type) {
243 	case QUARK_X1000_SSP:
244 		return clk_div
245 			| QUARK_X1000_SSCR0_Motorola
246 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
247 			| SSCR0_SSE;
248 	default:
249 		return clk_div
250 			| SSCR0_Motorola
251 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
252 			| SSCR0_SSE
253 			| (bits > 16 ? SSCR0_EDSS : 0);
254 	}
255 }
256 
257 /*
258  * Read and write LPSS SSP private registers. Caller must first check that
259  * is_lpss_ssp() returns true before these can be called.
260  */
261 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
262 {
263 	WARN_ON(!drv_data->lpss_base);
264 	return readl(drv_data->lpss_base + offset);
265 }
266 
267 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
268 				  unsigned offset, u32 value)
269 {
270 	WARN_ON(!drv_data->lpss_base);
271 	writel(value, drv_data->lpss_base + offset);
272 }
273 
274 /*
275  * lpss_ssp_setup - perform LPSS SSP specific setup
276  * @drv_data: pointer to the driver private data
277  *
278  * Perform LPSS SSP specific setup. This function must be called first if
279  * one is going to use LPSS SSP private registers.
280  */
281 static void lpss_ssp_setup(struct driver_data *drv_data)
282 {
283 	const struct lpss_config *config;
284 	u32 value;
285 
286 	config = lpss_get_config(drv_data);
287 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
288 
289 	/* Enable software chip select control */
290 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
291 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
292 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
293 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
294 
295 	/* Enable multiblock DMA transfers */
296 	if (drv_data->master_info->enable_dma) {
297 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
298 
299 		if (config->reg_general >= 0) {
300 			value = __lpss_ssp_read_priv(drv_data,
301 						     config->reg_general);
302 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
303 			__lpss_ssp_write_priv(drv_data,
304 					      config->reg_general, value);
305 		}
306 	}
307 }
308 
309 static void lpss_ssp_select_cs(struct driver_data *drv_data,
310 			       const struct lpss_config *config)
311 {
312 	u32 value, cs;
313 
314 	if (!config->cs_sel_mask)
315 		return;
316 
317 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
318 
319 	cs = drv_data->cur_msg->spi->chip_select;
320 	cs <<= config->cs_sel_shift;
321 	if (cs != (value & config->cs_sel_mask)) {
322 		/*
323 		 * When switching another chip select output active the
324 		 * output must be selected first and wait 2 ssp_clk cycles
325 		 * before changing state to active. Otherwise a short
326 		 * glitch will occur on the previous chip select since
327 		 * output select is latched but state control is not.
328 		 */
329 		value &= ~config->cs_sel_mask;
330 		value |= cs;
331 		__lpss_ssp_write_priv(drv_data,
332 				      config->reg_cs_ctrl, value);
333 		ndelay(1000000000 /
334 		       (drv_data->master->max_speed_hz / 2));
335 	}
336 }
337 
338 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
339 {
340 	const struct lpss_config *config;
341 	u32 value;
342 
343 	config = lpss_get_config(drv_data);
344 
345 	if (enable)
346 		lpss_ssp_select_cs(drv_data, config);
347 
348 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
349 	if (enable)
350 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
351 	else
352 		value |= LPSS_CS_CONTROL_CS_HIGH;
353 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
354 }
355 
356 static void cs_assert(struct driver_data *drv_data)
357 {
358 	struct chip_data *chip = drv_data->cur_chip;
359 
360 	if (drv_data->ssp_type == CE4100_SSP) {
361 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
362 		return;
363 	}
364 
365 	if (chip->cs_control) {
366 		chip->cs_control(PXA2XX_CS_ASSERT);
367 		return;
368 	}
369 
370 	if (gpio_is_valid(chip->gpio_cs)) {
371 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
372 		return;
373 	}
374 
375 	if (is_lpss_ssp(drv_data))
376 		lpss_ssp_cs_control(drv_data, true);
377 }
378 
379 static void cs_deassert(struct driver_data *drv_data)
380 {
381 	struct chip_data *chip = drv_data->cur_chip;
382 
383 	if (drv_data->ssp_type == CE4100_SSP)
384 		return;
385 
386 	if (chip->cs_control) {
387 		chip->cs_control(PXA2XX_CS_DEASSERT);
388 		return;
389 	}
390 
391 	if (gpio_is_valid(chip->gpio_cs)) {
392 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
393 		return;
394 	}
395 
396 	if (is_lpss_ssp(drv_data))
397 		lpss_ssp_cs_control(drv_data, false);
398 }
399 
400 int pxa2xx_spi_flush(struct driver_data *drv_data)
401 {
402 	unsigned long limit = loops_per_jiffy << 1;
403 
404 	do {
405 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
406 			pxa2xx_spi_read(drv_data, SSDR);
407 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
408 	write_SSSR_CS(drv_data, SSSR_ROR);
409 
410 	return limit;
411 }
412 
413 static int null_writer(struct driver_data *drv_data)
414 {
415 	u8 n_bytes = drv_data->n_bytes;
416 
417 	if (pxa2xx_spi_txfifo_full(drv_data)
418 		|| (drv_data->tx == drv_data->tx_end))
419 		return 0;
420 
421 	pxa2xx_spi_write(drv_data, SSDR, 0);
422 	drv_data->tx += n_bytes;
423 
424 	return 1;
425 }
426 
427 static int null_reader(struct driver_data *drv_data)
428 {
429 	u8 n_bytes = drv_data->n_bytes;
430 
431 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
432 	       && (drv_data->rx < drv_data->rx_end)) {
433 		pxa2xx_spi_read(drv_data, SSDR);
434 		drv_data->rx += n_bytes;
435 	}
436 
437 	return drv_data->rx == drv_data->rx_end;
438 }
439 
440 static int u8_writer(struct driver_data *drv_data)
441 {
442 	if (pxa2xx_spi_txfifo_full(drv_data)
443 		|| (drv_data->tx == drv_data->tx_end))
444 		return 0;
445 
446 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
447 	++drv_data->tx;
448 
449 	return 1;
450 }
451 
452 static int u8_reader(struct driver_data *drv_data)
453 {
454 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 	       && (drv_data->rx < drv_data->rx_end)) {
456 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
457 		++drv_data->rx;
458 	}
459 
460 	return drv_data->rx == drv_data->rx_end;
461 }
462 
463 static int u16_writer(struct driver_data *drv_data)
464 {
465 	if (pxa2xx_spi_txfifo_full(drv_data)
466 		|| (drv_data->tx == drv_data->tx_end))
467 		return 0;
468 
469 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
470 	drv_data->tx += 2;
471 
472 	return 1;
473 }
474 
475 static int u16_reader(struct driver_data *drv_data)
476 {
477 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
478 	       && (drv_data->rx < drv_data->rx_end)) {
479 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
480 		drv_data->rx += 2;
481 	}
482 
483 	return drv_data->rx == drv_data->rx_end;
484 }
485 
486 static int u32_writer(struct driver_data *drv_data)
487 {
488 	if (pxa2xx_spi_txfifo_full(drv_data)
489 		|| (drv_data->tx == drv_data->tx_end))
490 		return 0;
491 
492 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
493 	drv_data->tx += 4;
494 
495 	return 1;
496 }
497 
498 static int u32_reader(struct driver_data *drv_data)
499 {
500 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
501 	       && (drv_data->rx < drv_data->rx_end)) {
502 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
503 		drv_data->rx += 4;
504 	}
505 
506 	return drv_data->rx == drv_data->rx_end;
507 }
508 
509 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
510 {
511 	struct spi_message *msg = drv_data->cur_msg;
512 	struct spi_transfer *trans = drv_data->cur_transfer;
513 
514 	/* Move to next transfer */
515 	if (trans->transfer_list.next != &msg->transfers) {
516 		drv_data->cur_transfer =
517 			list_entry(trans->transfer_list.next,
518 					struct spi_transfer,
519 					transfer_list);
520 		return RUNNING_STATE;
521 	} else
522 		return DONE_STATE;
523 }
524 
525 /* caller already set message->status; dma and pio irqs are blocked */
526 static void giveback(struct driver_data *drv_data)
527 {
528 	struct spi_transfer* last_transfer;
529 	struct spi_message *msg;
530 	unsigned long timeout;
531 
532 	msg = drv_data->cur_msg;
533 	drv_data->cur_msg = NULL;
534 	drv_data->cur_transfer = NULL;
535 
536 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
537 					transfer_list);
538 
539 	/* Delay if requested before any change in chip select */
540 	if (last_transfer->delay_usecs)
541 		udelay(last_transfer->delay_usecs);
542 
543 	/* Wait until SSP becomes idle before deasserting the CS */
544 	timeout = jiffies + msecs_to_jiffies(10);
545 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
546 	       !time_after(jiffies, timeout))
547 		cpu_relax();
548 
549 	/* Drop chip select UNLESS cs_change is true or we are returning
550 	 * a message with an error, or next message is for another chip
551 	 */
552 	if (!last_transfer->cs_change)
553 		cs_deassert(drv_data);
554 	else {
555 		struct spi_message *next_msg;
556 
557 		/* Holding of cs was hinted, but we need to make sure
558 		 * the next message is for the same chip.  Don't waste
559 		 * time with the following tests unless this was hinted.
560 		 *
561 		 * We cannot postpone this until pump_messages, because
562 		 * after calling msg->complete (below) the driver that
563 		 * sent the current message could be unloaded, which
564 		 * could invalidate the cs_control() callback...
565 		 */
566 
567 		/* get a pointer to the next message, if any */
568 		next_msg = spi_get_next_queued_message(drv_data->master);
569 
570 		/* see if the next and current messages point
571 		 * to the same chip
572 		 */
573 		if (next_msg && next_msg->spi != msg->spi)
574 			next_msg = NULL;
575 		if (!next_msg || msg->state == ERROR_STATE)
576 			cs_deassert(drv_data);
577 	}
578 
579 	drv_data->cur_chip = NULL;
580 	spi_finalize_current_message(drv_data->master);
581 }
582 
583 static void reset_sccr1(struct driver_data *drv_data)
584 {
585 	struct chip_data *chip = drv_data->cur_chip;
586 	u32 sccr1_reg;
587 
588 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
589 	sccr1_reg &= ~SSCR1_RFT;
590 	sccr1_reg |= chip->threshold;
591 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
592 }
593 
594 static void int_error_stop(struct driver_data *drv_data, const char* msg)
595 {
596 	/* Stop and reset SSP */
597 	write_SSSR_CS(drv_data, drv_data->clear_sr);
598 	reset_sccr1(drv_data);
599 	if (!pxa25x_ssp_comp(drv_data))
600 		pxa2xx_spi_write(drv_data, SSTO, 0);
601 	pxa2xx_spi_flush(drv_data);
602 	pxa2xx_spi_write(drv_data, SSCR0,
603 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
604 
605 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
606 
607 	drv_data->cur_msg->state = ERROR_STATE;
608 	tasklet_schedule(&drv_data->pump_transfers);
609 }
610 
611 static void int_transfer_complete(struct driver_data *drv_data)
612 {
613 	/* Clear and disable interrupts */
614 	write_SSSR_CS(drv_data, drv_data->clear_sr);
615 	reset_sccr1(drv_data);
616 	if (!pxa25x_ssp_comp(drv_data))
617 		pxa2xx_spi_write(drv_data, SSTO, 0);
618 
619 	/* Update total byte transferred return count actual bytes read */
620 	drv_data->cur_msg->actual_length += drv_data->len -
621 				(drv_data->rx_end - drv_data->rx);
622 
623 	/* Transfer delays and chip select release are
624 	 * handled in pump_transfers or giveback
625 	 */
626 
627 	/* Move to next transfer */
628 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
629 
630 	/* Schedule transfer tasklet */
631 	tasklet_schedule(&drv_data->pump_transfers);
632 }
633 
634 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
635 {
636 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
637 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
638 
639 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
640 
641 	if (irq_status & SSSR_ROR) {
642 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
643 		return IRQ_HANDLED;
644 	}
645 
646 	if (irq_status & SSSR_TINT) {
647 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
648 		if (drv_data->read(drv_data)) {
649 			int_transfer_complete(drv_data);
650 			return IRQ_HANDLED;
651 		}
652 	}
653 
654 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
655 	do {
656 		if (drv_data->read(drv_data)) {
657 			int_transfer_complete(drv_data);
658 			return IRQ_HANDLED;
659 		}
660 	} while (drv_data->write(drv_data));
661 
662 	if (drv_data->read(drv_data)) {
663 		int_transfer_complete(drv_data);
664 		return IRQ_HANDLED;
665 	}
666 
667 	if (drv_data->tx == drv_data->tx_end) {
668 		u32 bytes_left;
669 		u32 sccr1_reg;
670 
671 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
672 		sccr1_reg &= ~SSCR1_TIE;
673 
674 		/*
675 		 * PXA25x_SSP has no timeout, set up rx threshould for the
676 		 * remaining RX bytes.
677 		 */
678 		if (pxa25x_ssp_comp(drv_data)) {
679 			u32 rx_thre;
680 
681 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
682 
683 			bytes_left = drv_data->rx_end - drv_data->rx;
684 			switch (drv_data->n_bytes) {
685 			case 4:
686 				bytes_left >>= 1;
687 			case 2:
688 				bytes_left >>= 1;
689 			}
690 
691 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
692 			if (rx_thre > bytes_left)
693 				rx_thre = bytes_left;
694 
695 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
696 		}
697 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
698 	}
699 
700 	/* We did something */
701 	return IRQ_HANDLED;
702 }
703 
704 static irqreturn_t ssp_int(int irq, void *dev_id)
705 {
706 	struct driver_data *drv_data = dev_id;
707 	u32 sccr1_reg;
708 	u32 mask = drv_data->mask_sr;
709 	u32 status;
710 
711 	/*
712 	 * The IRQ might be shared with other peripherals so we must first
713 	 * check that are we RPM suspended or not. If we are we assume that
714 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
715 	 * interrupt is enabled).
716 	 */
717 	if (pm_runtime_suspended(&drv_data->pdev->dev))
718 		return IRQ_NONE;
719 
720 	/*
721 	 * If the device is not yet in RPM suspended state and we get an
722 	 * interrupt that is meant for another device, check if status bits
723 	 * are all set to one. That means that the device is already
724 	 * powered off.
725 	 */
726 	status = pxa2xx_spi_read(drv_data, SSSR);
727 	if (status == ~0)
728 		return IRQ_NONE;
729 
730 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
731 
732 	/* Ignore possible writes if we don't need to write */
733 	if (!(sccr1_reg & SSCR1_TIE))
734 		mask &= ~SSSR_TFS;
735 
736 	/* Ignore RX timeout interrupt if it is disabled */
737 	if (!(sccr1_reg & SSCR1_TINTE))
738 		mask &= ~SSSR_TINT;
739 
740 	if (!(status & mask))
741 		return IRQ_NONE;
742 
743 	if (!drv_data->cur_msg) {
744 
745 		pxa2xx_spi_write(drv_data, SSCR0,
746 				 pxa2xx_spi_read(drv_data, SSCR0)
747 				 & ~SSCR0_SSE);
748 		pxa2xx_spi_write(drv_data, SSCR1,
749 				 pxa2xx_spi_read(drv_data, SSCR1)
750 				 & ~drv_data->int_cr1);
751 		if (!pxa25x_ssp_comp(drv_data))
752 			pxa2xx_spi_write(drv_data, SSTO, 0);
753 		write_SSSR_CS(drv_data, drv_data->clear_sr);
754 
755 		dev_err(&drv_data->pdev->dev,
756 			"bad message state in interrupt handler\n");
757 
758 		/* Never fail */
759 		return IRQ_HANDLED;
760 	}
761 
762 	return drv_data->transfer_handler(drv_data);
763 }
764 
765 /*
766  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
767  * input frequency by fractions of 2^24. It also has a divider by 5.
768  *
769  * There are formulas to get baud rate value for given input frequency and
770  * divider parameters, such as DDS_CLK_RATE and SCR:
771  *
772  * Fsys = 200MHz
773  *
774  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
775  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
776  *
777  * DDS_CLK_RATE either 2^n or 2^n / 5.
778  * SCR is in range 0 .. 255
779  *
780  * Divisor = 5^i * 2^j * 2 * k
781  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
782  *       j = [0, 23]     j = 0 iff i = 1
783  *       k = [1, 256]
784  * Special case: j = 0, i = 1: Divisor = 2 / 5
785  *
786  * Accordingly to the specification the recommended values for DDS_CLK_RATE
787  * are:
788  *	Case 1:		2^n, n = [0, 23]
789  *	Case 2:		2^24 * 2 / 5 (0x666666)
790  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
791  *
792  * In all cases the lowest possible value is better.
793  *
794  * The function calculates parameters for all cases and chooses the one closest
795  * to the asked baud rate.
796  */
797 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
798 {
799 	unsigned long xtal = 200000000;
800 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
801 						   see (2) */
802 						/* case 3 */
803 	unsigned long fref1 = fref / 2;		/* case 1 */
804 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
805 	unsigned long scale;
806 	unsigned long q, q1, q2;
807 	long r, r1, r2;
808 	u32 mul;
809 
810 	/* Case 1 */
811 
812 	/* Set initial value for DDS_CLK_RATE */
813 	mul = (1 << 24) >> 1;
814 
815 	/* Calculate initial quot */
816 	q1 = DIV_ROUND_UP(fref1, rate);
817 
818 	/* Scale q1 if it's too big */
819 	if (q1 > 256) {
820 		/* Scale q1 to range [1, 512] */
821 		scale = fls_long(q1 - 1);
822 		if (scale > 9) {
823 			q1 >>= scale - 9;
824 			mul >>= scale - 9;
825 		}
826 
827 		/* Round the result if we have a remainder */
828 		q1 += q1 & 1;
829 	}
830 
831 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
832 	scale = __ffs(q1);
833 	q1 >>= scale;
834 	mul >>= scale;
835 
836 	/* Get the remainder */
837 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
838 
839 	/* Case 2 */
840 
841 	q2 = DIV_ROUND_UP(fref2, rate);
842 	r2 = abs(fref2 / q2 - rate);
843 
844 	/*
845 	 * Choose the best between two: less remainder we have the better. We
846 	 * can't go case 2 if q2 is greater than 256 since SCR register can
847 	 * hold only values 0 .. 255.
848 	 */
849 	if (r2 >= r1 || q2 > 256) {
850 		/* case 1 is better */
851 		r = r1;
852 		q = q1;
853 	} else {
854 		/* case 2 is better */
855 		r = r2;
856 		q = q2;
857 		mul = (1 << 24) * 2 / 5;
858 	}
859 
860 	/* Check case 3 only if the divisor is big enough */
861 	if (fref / rate >= 80) {
862 		u64 fssp;
863 		u32 m;
864 
865 		/* Calculate initial quot */
866 		q1 = DIV_ROUND_UP(fref, rate);
867 		m = (1 << 24) / q1;
868 
869 		/* Get the remainder */
870 		fssp = (u64)fref * m;
871 		do_div(fssp, 1 << 24);
872 		r1 = abs(fssp - rate);
873 
874 		/* Choose this one if it suits better */
875 		if (r1 < r) {
876 			/* case 3 is better */
877 			q = 1;
878 			mul = m;
879 		}
880 	}
881 
882 	*dds = mul;
883 	return q - 1;
884 }
885 
886 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
887 {
888 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
889 	const struct ssp_device *ssp = drv_data->ssp;
890 
891 	rate = min_t(int, ssp_clk, rate);
892 
893 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
894 		return (ssp_clk / (2 * rate) - 1) & 0xff;
895 	else
896 		return (ssp_clk / rate - 1) & 0xfff;
897 }
898 
899 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
900 					   int rate)
901 {
902 	struct chip_data *chip = drv_data->cur_chip;
903 	unsigned int clk_div;
904 
905 	switch (drv_data->ssp_type) {
906 	case QUARK_X1000_SSP:
907 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
908 		break;
909 	default:
910 		clk_div = ssp_get_clk_div(drv_data, rate);
911 		break;
912 	}
913 	return clk_div << 8;
914 }
915 
916 static void pump_transfers(unsigned long data)
917 {
918 	struct driver_data *drv_data = (struct driver_data *)data;
919 	struct spi_message *message = NULL;
920 	struct spi_transfer *transfer = NULL;
921 	struct spi_transfer *previous = NULL;
922 	struct chip_data *chip = NULL;
923 	u32 clk_div = 0;
924 	u8 bits = 0;
925 	u32 speed = 0;
926 	u32 cr0;
927 	u32 cr1;
928 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
929 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
930 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
931 	int err;
932 
933 	/* Get current state information */
934 	message = drv_data->cur_msg;
935 	transfer = drv_data->cur_transfer;
936 	chip = drv_data->cur_chip;
937 
938 	/* Handle for abort */
939 	if (message->state == ERROR_STATE) {
940 		message->status = -EIO;
941 		giveback(drv_data);
942 		return;
943 	}
944 
945 	/* Handle end of message */
946 	if (message->state == DONE_STATE) {
947 		message->status = 0;
948 		giveback(drv_data);
949 		return;
950 	}
951 
952 	/* Delay if requested at end of transfer before CS change */
953 	if (message->state == RUNNING_STATE) {
954 		previous = list_entry(transfer->transfer_list.prev,
955 					struct spi_transfer,
956 					transfer_list);
957 		if (previous->delay_usecs)
958 			udelay(previous->delay_usecs);
959 
960 		/* Drop chip select only if cs_change is requested */
961 		if (previous->cs_change)
962 			cs_deassert(drv_data);
963 	}
964 
965 	/* Check if we can DMA this transfer */
966 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
967 
968 		/* reject already-mapped transfers; PIO won't always work */
969 		if (message->is_dma_mapped
970 				|| transfer->rx_dma || transfer->tx_dma) {
971 			dev_err(&drv_data->pdev->dev,
972 				"pump_transfers: mapped transfer length of "
973 				"%u is greater than %d\n",
974 				transfer->len, MAX_DMA_LEN);
975 			message->status = -EINVAL;
976 			giveback(drv_data);
977 			return;
978 		}
979 
980 		/* warn ... we force this to PIO mode */
981 		dev_warn_ratelimited(&message->spi->dev,
982 				     "pump_transfers: DMA disabled for transfer length %ld "
983 				     "greater than %d\n",
984 				     (long)drv_data->len, MAX_DMA_LEN);
985 	}
986 
987 	/* Setup the transfer state based on the type of transfer */
988 	if (pxa2xx_spi_flush(drv_data) == 0) {
989 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
990 		message->status = -EIO;
991 		giveback(drv_data);
992 		return;
993 	}
994 	drv_data->n_bytes = chip->n_bytes;
995 	drv_data->tx = (void *)transfer->tx_buf;
996 	drv_data->tx_end = drv_data->tx + transfer->len;
997 	drv_data->rx = transfer->rx_buf;
998 	drv_data->rx_end = drv_data->rx + transfer->len;
999 	drv_data->len = transfer->len;
1000 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1001 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1002 
1003 	/* Change speed and bit per word on a per transfer */
1004 	bits = transfer->bits_per_word;
1005 	speed = transfer->speed_hz;
1006 
1007 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1008 
1009 	if (bits <= 8) {
1010 		drv_data->n_bytes = 1;
1011 		drv_data->read = drv_data->read != null_reader ?
1012 					u8_reader : null_reader;
1013 		drv_data->write = drv_data->write != null_writer ?
1014 					u8_writer : null_writer;
1015 	} else if (bits <= 16) {
1016 		drv_data->n_bytes = 2;
1017 		drv_data->read = drv_data->read != null_reader ?
1018 					u16_reader : null_reader;
1019 		drv_data->write = drv_data->write != null_writer ?
1020 					u16_writer : null_writer;
1021 	} else if (bits <= 32) {
1022 		drv_data->n_bytes = 4;
1023 		drv_data->read = drv_data->read != null_reader ?
1024 					u32_reader : null_reader;
1025 		drv_data->write = drv_data->write != null_writer ?
1026 					u32_writer : null_writer;
1027 	}
1028 	/*
1029 	 * if bits/word is changed in dma mode, then must check the
1030 	 * thresholds and burst also
1031 	 */
1032 	if (chip->enable_dma) {
1033 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1034 						message->spi,
1035 						bits, &dma_burst,
1036 						&dma_thresh))
1037 			dev_warn_ratelimited(&message->spi->dev,
1038 					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1039 	}
1040 
1041 	message->state = RUNNING_STATE;
1042 
1043 	drv_data->dma_mapped = 0;
1044 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
1045 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
1046 	if (drv_data->dma_mapped) {
1047 
1048 		/* Ensure we have the correct interrupt handler */
1049 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050 
1051 		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1052 		if (err) {
1053 			message->status = err;
1054 			giveback(drv_data);
1055 			return;
1056 		}
1057 
1058 		/* Clear status and start DMA engine */
1059 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1060 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1061 
1062 		pxa2xx_spi_dma_start(drv_data);
1063 	} else {
1064 		/* Ensure we have the correct interrupt handler	*/
1065 		drv_data->transfer_handler = interrupt_transfer;
1066 
1067 		/* Clear status  */
1068 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1069 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1070 	}
1071 
1072 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1073 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1074 	if (!pxa25x_ssp_comp(drv_data))
1075 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1076 			drv_data->master->max_speed_hz
1077 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1078 			drv_data->dma_mapped ? "DMA" : "PIO");
1079 	else
1080 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1081 			drv_data->master->max_speed_hz / 2
1082 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1083 			drv_data->dma_mapped ? "DMA" : "PIO");
1084 
1085 	if (is_lpss_ssp(drv_data)) {
1086 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1087 		    != chip->lpss_rx_threshold)
1088 			pxa2xx_spi_write(drv_data, SSIRF,
1089 					 chip->lpss_rx_threshold);
1090 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1091 		    != chip->lpss_tx_threshold)
1092 			pxa2xx_spi_write(drv_data, SSITF,
1093 					 chip->lpss_tx_threshold);
1094 	}
1095 
1096 	if (is_quark_x1000_ssp(drv_data) &&
1097 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1098 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1099 
1100 	/* see if we need to reload the config registers */
1101 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1102 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1103 	    != (cr1 & change_mask)) {
1104 		/* stop the SSP, and update the other bits */
1105 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1106 		if (!pxa25x_ssp_comp(drv_data))
1107 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1108 		/* first set CR1 without interrupt and service enables */
1109 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1110 		/* restart the SSP */
1111 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1112 
1113 	} else {
1114 		if (!pxa25x_ssp_comp(drv_data))
1115 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1116 	}
1117 
1118 	cs_assert(drv_data);
1119 
1120 	/* after chip select, release the data by enabling service
1121 	 * requests and interrupts, without changing any mode bits */
1122 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1123 }
1124 
1125 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1126 					   struct spi_message *msg)
1127 {
1128 	struct driver_data *drv_data = spi_master_get_devdata(master);
1129 
1130 	drv_data->cur_msg = msg;
1131 	/* Initial message state*/
1132 	drv_data->cur_msg->state = START_STATE;
1133 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1134 						struct spi_transfer,
1135 						transfer_list);
1136 
1137 	/* prepare to setup the SSP, in pump_transfers, using the per
1138 	 * chip configuration */
1139 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1140 
1141 	/* Mark as busy and launch transfers */
1142 	tasklet_schedule(&drv_data->pump_transfers);
1143 	return 0;
1144 }
1145 
1146 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1147 {
1148 	struct driver_data *drv_data = spi_master_get_devdata(master);
1149 
1150 	/* Disable the SSP now */
1151 	pxa2xx_spi_write(drv_data, SSCR0,
1152 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1153 
1154 	return 0;
1155 }
1156 
1157 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1158 		    struct pxa2xx_spi_chip *chip_info)
1159 {
1160 	int err = 0;
1161 
1162 	if (chip == NULL || chip_info == NULL)
1163 		return 0;
1164 
1165 	/* NOTE: setup() can be called multiple times, possibly with
1166 	 * different chip_info, release previously requested GPIO
1167 	 */
1168 	if (gpio_is_valid(chip->gpio_cs))
1169 		gpio_free(chip->gpio_cs);
1170 
1171 	/* If (*cs_control) is provided, ignore GPIO chip select */
1172 	if (chip_info->cs_control) {
1173 		chip->cs_control = chip_info->cs_control;
1174 		return 0;
1175 	}
1176 
1177 	if (gpio_is_valid(chip_info->gpio_cs)) {
1178 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1179 		if (err) {
1180 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1181 				chip_info->gpio_cs);
1182 			return err;
1183 		}
1184 
1185 		chip->gpio_cs = chip_info->gpio_cs;
1186 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1187 
1188 		err = gpio_direction_output(chip->gpio_cs,
1189 					!chip->gpio_cs_inverted);
1190 	}
1191 
1192 	return err;
1193 }
1194 
1195 static int setup(struct spi_device *spi)
1196 {
1197 	struct pxa2xx_spi_chip *chip_info = NULL;
1198 	struct chip_data *chip;
1199 	const struct lpss_config *config;
1200 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1201 	uint tx_thres, tx_hi_thres, rx_thres;
1202 
1203 	switch (drv_data->ssp_type) {
1204 	case QUARK_X1000_SSP:
1205 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1206 		tx_hi_thres = 0;
1207 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1208 		break;
1209 	case LPSS_LPT_SSP:
1210 	case LPSS_BYT_SSP:
1211 	case LPSS_BSW_SSP:
1212 	case LPSS_SPT_SSP:
1213 	case LPSS_BXT_SSP:
1214 		config = lpss_get_config(drv_data);
1215 		tx_thres = config->tx_threshold_lo;
1216 		tx_hi_thres = config->tx_threshold_hi;
1217 		rx_thres = config->rx_threshold;
1218 		break;
1219 	default:
1220 		tx_thres = TX_THRESH_DFLT;
1221 		tx_hi_thres = 0;
1222 		rx_thres = RX_THRESH_DFLT;
1223 		break;
1224 	}
1225 
1226 	/* Only alloc on first setup */
1227 	chip = spi_get_ctldata(spi);
1228 	if (!chip) {
1229 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1230 		if (!chip)
1231 			return -ENOMEM;
1232 
1233 		if (drv_data->ssp_type == CE4100_SSP) {
1234 			if (spi->chip_select > 4) {
1235 				dev_err(&spi->dev,
1236 					"failed setup: cs number must not be > 4.\n");
1237 				kfree(chip);
1238 				return -EINVAL;
1239 			}
1240 
1241 			chip->frm = spi->chip_select;
1242 		} else
1243 			chip->gpio_cs = -1;
1244 		chip->enable_dma = 0;
1245 		chip->timeout = TIMOUT_DFLT;
1246 	}
1247 
1248 	/* protocol drivers may change the chip settings, so...
1249 	 * if chip_info exists, use it */
1250 	chip_info = spi->controller_data;
1251 
1252 	/* chip_info isn't always needed */
1253 	chip->cr1 = 0;
1254 	if (chip_info) {
1255 		if (chip_info->timeout)
1256 			chip->timeout = chip_info->timeout;
1257 		if (chip_info->tx_threshold)
1258 			tx_thres = chip_info->tx_threshold;
1259 		if (chip_info->tx_hi_threshold)
1260 			tx_hi_thres = chip_info->tx_hi_threshold;
1261 		if (chip_info->rx_threshold)
1262 			rx_thres = chip_info->rx_threshold;
1263 		chip->enable_dma = drv_data->master_info->enable_dma;
1264 		chip->dma_threshold = 0;
1265 		if (chip_info->enable_loopback)
1266 			chip->cr1 = SSCR1_LBM;
1267 	} else if (ACPI_HANDLE(&spi->dev)) {
1268 		/*
1269 		 * Slave devices enumerated from ACPI namespace don't
1270 		 * usually have chip_info but we still might want to use
1271 		 * DMA with them.
1272 		 */
1273 		chip->enable_dma = drv_data->master_info->enable_dma;
1274 	}
1275 
1276 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1277 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1278 				| SSITF_TxHiThresh(tx_hi_thres);
1279 
1280 	/* set dma burst and threshold outside of chip_info path so that if
1281 	 * chip_info goes away after setting chip->enable_dma, the
1282 	 * burst and threshold can still respond to changes in bits_per_word */
1283 	if (chip->enable_dma) {
1284 		/* set up legal burst and threshold for dma */
1285 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1286 						spi->bits_per_word,
1287 						&chip->dma_burst_size,
1288 						&chip->dma_threshold)) {
1289 			dev_warn(&spi->dev,
1290 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1291 		}
1292 	}
1293 
1294 	switch (drv_data->ssp_type) {
1295 	case QUARK_X1000_SSP:
1296 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1297 				   & QUARK_X1000_SSCR1_RFT)
1298 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1299 				   & QUARK_X1000_SSCR1_TFT);
1300 		break;
1301 	default:
1302 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1303 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1304 		break;
1305 	}
1306 
1307 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1308 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1309 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1310 
1311 	if (spi->mode & SPI_LOOP)
1312 		chip->cr1 |= SSCR1_LBM;
1313 
1314 	if (spi->bits_per_word <= 8) {
1315 		chip->n_bytes = 1;
1316 		chip->read = u8_reader;
1317 		chip->write = u8_writer;
1318 	} else if (spi->bits_per_word <= 16) {
1319 		chip->n_bytes = 2;
1320 		chip->read = u16_reader;
1321 		chip->write = u16_writer;
1322 	} else if (spi->bits_per_word <= 32) {
1323 		chip->n_bytes = 4;
1324 		chip->read = u32_reader;
1325 		chip->write = u32_writer;
1326 	}
1327 
1328 	spi_set_ctldata(spi, chip);
1329 
1330 	if (drv_data->ssp_type == CE4100_SSP)
1331 		return 0;
1332 
1333 	return setup_cs(spi, chip, chip_info);
1334 }
1335 
1336 static void cleanup(struct spi_device *spi)
1337 {
1338 	struct chip_data *chip = spi_get_ctldata(spi);
1339 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1340 
1341 	if (!chip)
1342 		return;
1343 
1344 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1345 		gpio_free(chip->gpio_cs);
1346 
1347 	kfree(chip);
1348 }
1349 
1350 #ifdef CONFIG_PCI
1351 #ifdef CONFIG_ACPI
1352 
1353 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1354 	{ "INT33C0", LPSS_LPT_SSP },
1355 	{ "INT33C1", LPSS_LPT_SSP },
1356 	{ "INT3430", LPSS_LPT_SSP },
1357 	{ "INT3431", LPSS_LPT_SSP },
1358 	{ "80860F0E", LPSS_BYT_SSP },
1359 	{ "8086228E", LPSS_BSW_SSP },
1360 	{ },
1361 };
1362 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1363 
1364 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1365 {
1366 	unsigned int devid;
1367 	int port_id = -1;
1368 
1369 	if (adev && adev->pnp.unique_id &&
1370 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1371 		port_id = devid;
1372 	return port_id;
1373 }
1374 #else /* !CONFIG_ACPI */
1375 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1376 {
1377 	return -1;
1378 }
1379 #endif
1380 
1381 /*
1382  * PCI IDs of compound devices that integrate both host controller and private
1383  * integrated DMA engine. Please note these are not used in module
1384  * autoloading and probing in this module but matching the LPSS SSP type.
1385  */
1386 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1387 	/* SPT-LP */
1388 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1389 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1390 	/* SPT-H */
1391 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1392 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1393 	/* BXT A-Step */
1394 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1395 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1396 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1397 	/* BXT B-Step */
1398 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1399 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1400 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1401 	/* APL */
1402 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1403 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1404 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1405 	{ },
1406 };
1407 
1408 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1409 {
1410 	struct device *dev = param;
1411 
1412 	if (dev != chan->device->dev->parent)
1413 		return false;
1414 
1415 	return true;
1416 }
1417 
1418 static struct pxa2xx_spi_master *
1419 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1420 {
1421 	struct pxa2xx_spi_master *pdata;
1422 	struct acpi_device *adev;
1423 	struct ssp_device *ssp;
1424 	struct resource *res;
1425 	const struct acpi_device_id *adev_id = NULL;
1426 	const struct pci_device_id *pcidev_id = NULL;
1427 	int type;
1428 
1429 	adev = ACPI_COMPANION(&pdev->dev);
1430 
1431 	if (dev_is_pci(pdev->dev.parent))
1432 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1433 					 to_pci_dev(pdev->dev.parent));
1434 	else if (adev)
1435 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1436 					    &pdev->dev);
1437 	else
1438 		return NULL;
1439 
1440 	if (adev_id)
1441 		type = (int)adev_id->driver_data;
1442 	else if (pcidev_id)
1443 		type = (int)pcidev_id->driver_data;
1444 	else
1445 		return NULL;
1446 
1447 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1448 	if (!pdata)
1449 		return NULL;
1450 
1451 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1452 	if (!res)
1453 		return NULL;
1454 
1455 	ssp = &pdata->ssp;
1456 
1457 	ssp->phys_base = res->start;
1458 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1459 	if (IS_ERR(ssp->mmio_base))
1460 		return NULL;
1461 
1462 	if (pcidev_id) {
1463 		pdata->tx_param = pdev->dev.parent;
1464 		pdata->rx_param = pdev->dev.parent;
1465 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1466 	}
1467 
1468 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1469 	ssp->irq = platform_get_irq(pdev, 0);
1470 	ssp->type = type;
1471 	ssp->pdev = pdev;
1472 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1473 
1474 	pdata->num_chipselect = 1;
1475 	pdata->enable_dma = true;
1476 
1477 	return pdata;
1478 }
1479 
1480 #else /* !CONFIG_PCI */
1481 static inline struct pxa2xx_spi_master *
1482 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1483 {
1484 	return NULL;
1485 }
1486 #endif
1487 
1488 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1489 {
1490 	struct driver_data *drv_data = spi_master_get_devdata(master);
1491 
1492 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1493 		switch (drv_data->ssp_type) {
1494 		/*
1495 		 * For Atoms the ACPI DeviceSelection used by the Windows
1496 		 * driver starts from 1 instead of 0 so translate it here
1497 		 * to match what Linux expects.
1498 		 */
1499 		case LPSS_BYT_SSP:
1500 		case LPSS_BSW_SSP:
1501 			return cs - 1;
1502 
1503 		default:
1504 			break;
1505 		}
1506 	}
1507 
1508 	return cs;
1509 }
1510 
1511 static int pxa2xx_spi_probe(struct platform_device *pdev)
1512 {
1513 	struct device *dev = &pdev->dev;
1514 	struct pxa2xx_spi_master *platform_info;
1515 	struct spi_master *master;
1516 	struct driver_data *drv_data;
1517 	struct ssp_device *ssp;
1518 	const struct lpss_config *config;
1519 	int status;
1520 	u32 tmp;
1521 
1522 	platform_info = dev_get_platdata(dev);
1523 	if (!platform_info) {
1524 		platform_info = pxa2xx_spi_init_pdata(pdev);
1525 		if (!platform_info) {
1526 			dev_err(&pdev->dev, "missing platform data\n");
1527 			return -ENODEV;
1528 		}
1529 	}
1530 
1531 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1532 	if (!ssp)
1533 		ssp = &platform_info->ssp;
1534 
1535 	if (!ssp->mmio_base) {
1536 		dev_err(&pdev->dev, "failed to get ssp\n");
1537 		return -ENODEV;
1538 	}
1539 
1540 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1541 	if (!master) {
1542 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1543 		pxa_ssp_free(ssp);
1544 		return -ENOMEM;
1545 	}
1546 	drv_data = spi_master_get_devdata(master);
1547 	drv_data->master = master;
1548 	drv_data->master_info = platform_info;
1549 	drv_data->pdev = pdev;
1550 	drv_data->ssp = ssp;
1551 
1552 	master->dev.parent = &pdev->dev;
1553 	master->dev.of_node = pdev->dev.of_node;
1554 	/* the spi->mode bits understood by this driver: */
1555 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1556 
1557 	master->bus_num = ssp->port_id;
1558 	master->dma_alignment = DMA_ALIGNMENT;
1559 	master->cleanup = cleanup;
1560 	master->setup = setup;
1561 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1562 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1563 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1564 	master->auto_runtime_pm = true;
1565 
1566 	drv_data->ssp_type = ssp->type;
1567 
1568 	drv_data->ioaddr = ssp->mmio_base;
1569 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1570 	if (pxa25x_ssp_comp(drv_data)) {
1571 		switch (drv_data->ssp_type) {
1572 		case QUARK_X1000_SSP:
1573 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1574 			break;
1575 		default:
1576 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1577 			break;
1578 		}
1579 
1580 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1581 		drv_data->dma_cr1 = 0;
1582 		drv_data->clear_sr = SSSR_ROR;
1583 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1584 	} else {
1585 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1586 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1587 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1588 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1589 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1590 	}
1591 
1592 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1593 			drv_data);
1594 	if (status < 0) {
1595 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1596 		goto out_error_master_alloc;
1597 	}
1598 
1599 	/* Setup DMA if requested */
1600 	if (platform_info->enable_dma) {
1601 		status = pxa2xx_spi_dma_setup(drv_data);
1602 		if (status) {
1603 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1604 			platform_info->enable_dma = false;
1605 		}
1606 	}
1607 
1608 	/* Enable SOC clock */
1609 	clk_prepare_enable(ssp->clk);
1610 
1611 	master->max_speed_hz = clk_get_rate(ssp->clk);
1612 
1613 	/* Load default SSP configuration */
1614 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1615 	switch (drv_data->ssp_type) {
1616 	case QUARK_X1000_SSP:
1617 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1618 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1619 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1620 
1621 		/* using the Motorola SPI protocol and use 8 bit frame */
1622 		pxa2xx_spi_write(drv_data, SSCR0,
1623 				 QUARK_X1000_SSCR0_Motorola
1624 				 | QUARK_X1000_SSCR0_DataSize(8));
1625 		break;
1626 	default:
1627 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1628 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1629 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1630 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1631 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1632 		break;
1633 	}
1634 
1635 	if (!pxa25x_ssp_comp(drv_data))
1636 		pxa2xx_spi_write(drv_data, SSTO, 0);
1637 
1638 	if (!is_quark_x1000_ssp(drv_data))
1639 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1640 
1641 	if (is_lpss_ssp(drv_data)) {
1642 		lpss_ssp_setup(drv_data);
1643 		config = lpss_get_config(drv_data);
1644 		if (config->reg_capabilities >= 0) {
1645 			tmp = __lpss_ssp_read_priv(drv_data,
1646 						   config->reg_capabilities);
1647 			tmp &= LPSS_CAPS_CS_EN_MASK;
1648 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1649 			platform_info->num_chipselect = ffz(tmp);
1650 		} else if (config->cs_num) {
1651 			platform_info->num_chipselect = config->cs_num;
1652 		}
1653 	}
1654 	master->num_chipselect = platform_info->num_chipselect;
1655 
1656 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1657 		     (unsigned long)drv_data);
1658 
1659 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1660 	pm_runtime_use_autosuspend(&pdev->dev);
1661 	pm_runtime_set_active(&pdev->dev);
1662 	pm_runtime_enable(&pdev->dev);
1663 
1664 	/* Register with the SPI framework */
1665 	platform_set_drvdata(pdev, drv_data);
1666 	status = devm_spi_register_master(&pdev->dev, master);
1667 	if (status != 0) {
1668 		dev_err(&pdev->dev, "problem registering spi master\n");
1669 		goto out_error_clock_enabled;
1670 	}
1671 
1672 	return status;
1673 
1674 out_error_clock_enabled:
1675 	clk_disable_unprepare(ssp->clk);
1676 	pxa2xx_spi_dma_release(drv_data);
1677 	free_irq(ssp->irq, drv_data);
1678 
1679 out_error_master_alloc:
1680 	spi_master_put(master);
1681 	pxa_ssp_free(ssp);
1682 	return status;
1683 }
1684 
1685 static int pxa2xx_spi_remove(struct platform_device *pdev)
1686 {
1687 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1688 	struct ssp_device *ssp;
1689 
1690 	if (!drv_data)
1691 		return 0;
1692 	ssp = drv_data->ssp;
1693 
1694 	pm_runtime_get_sync(&pdev->dev);
1695 
1696 	/* Disable the SSP at the peripheral and SOC level */
1697 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1698 	clk_disable_unprepare(ssp->clk);
1699 
1700 	/* Release DMA */
1701 	if (drv_data->master_info->enable_dma)
1702 		pxa2xx_spi_dma_release(drv_data);
1703 
1704 	pm_runtime_put_noidle(&pdev->dev);
1705 	pm_runtime_disable(&pdev->dev);
1706 
1707 	/* Release IRQ */
1708 	free_irq(ssp->irq, drv_data);
1709 
1710 	/* Release SSP */
1711 	pxa_ssp_free(ssp);
1712 
1713 	return 0;
1714 }
1715 
1716 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1717 {
1718 	int status = 0;
1719 
1720 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1721 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1722 }
1723 
1724 #ifdef CONFIG_PM_SLEEP
1725 static int pxa2xx_spi_suspend(struct device *dev)
1726 {
1727 	struct driver_data *drv_data = dev_get_drvdata(dev);
1728 	struct ssp_device *ssp = drv_data->ssp;
1729 	int status = 0;
1730 
1731 	status = spi_master_suspend(drv_data->master);
1732 	if (status != 0)
1733 		return status;
1734 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1735 
1736 	if (!pm_runtime_suspended(dev))
1737 		clk_disable_unprepare(ssp->clk);
1738 
1739 	return 0;
1740 }
1741 
1742 static int pxa2xx_spi_resume(struct device *dev)
1743 {
1744 	struct driver_data *drv_data = dev_get_drvdata(dev);
1745 	struct ssp_device *ssp = drv_data->ssp;
1746 	int status = 0;
1747 
1748 	/* Enable the SSP clock */
1749 	if (!pm_runtime_suspended(dev))
1750 		clk_prepare_enable(ssp->clk);
1751 
1752 	/* Restore LPSS private register bits */
1753 	if (is_lpss_ssp(drv_data))
1754 		lpss_ssp_setup(drv_data);
1755 
1756 	/* Start the queue running */
1757 	status = spi_master_resume(drv_data->master);
1758 	if (status != 0) {
1759 		dev_err(dev, "problem starting queue (%d)\n", status);
1760 		return status;
1761 	}
1762 
1763 	return 0;
1764 }
1765 #endif
1766 
1767 #ifdef CONFIG_PM
1768 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1769 {
1770 	struct driver_data *drv_data = dev_get_drvdata(dev);
1771 
1772 	clk_disable_unprepare(drv_data->ssp->clk);
1773 	return 0;
1774 }
1775 
1776 static int pxa2xx_spi_runtime_resume(struct device *dev)
1777 {
1778 	struct driver_data *drv_data = dev_get_drvdata(dev);
1779 
1780 	clk_prepare_enable(drv_data->ssp->clk);
1781 	return 0;
1782 }
1783 #endif
1784 
1785 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1786 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1787 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1788 			   pxa2xx_spi_runtime_resume, NULL)
1789 };
1790 
1791 static struct platform_driver driver = {
1792 	.driver = {
1793 		.name	= "pxa2xx-spi",
1794 		.pm	= &pxa2xx_spi_pm_ops,
1795 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1796 	},
1797 	.probe = pxa2xx_spi_probe,
1798 	.remove = pxa2xx_spi_remove,
1799 	.shutdown = pxa2xx_spi_shutdown,
1800 };
1801 
1802 static int __init pxa2xx_spi_init(void)
1803 {
1804 	return platform_driver_register(&driver);
1805 }
1806 subsys_initcall(pxa2xx_spi_init);
1807 
1808 static void __exit pxa2xx_spi_exit(void)
1809 {
1810 	platform_driver_unregister(&driver);
1811 }
1812 module_exit(pxa2xx_spi_exit);
1813