1 /* 2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 3 * Copyright (C) 2013, Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/bitops.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/ioport.h> 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/interrupt.h> 24 #include <linux/kernel.h> 25 #include <linux/pci.h> 26 #include <linux/platform_device.h> 27 #include <linux/spi/pxa2xx_spi.h> 28 #include <linux/spi/spi.h> 29 #include <linux/delay.h> 30 #include <linux/gpio.h> 31 #include <linux/slab.h> 32 #include <linux/clk.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/acpi.h> 35 36 #include "spi-pxa2xx.h" 37 38 MODULE_AUTHOR("Stephen Street"); 39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 40 MODULE_LICENSE("GPL"); 41 MODULE_ALIAS("platform:pxa2xx-spi"); 42 43 #define TIMOUT_DFLT 1000 44 45 /* 46 * for testing SSCR1 changes that require SSP restart, basically 47 * everything except the service and interrupt enables, the pxa270 developer 48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 49 * list, but the PXA255 dev man says all bits without really meaning the 50 * service and interrupt enables 51 */ 52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 53 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 54 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 55 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 56 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 57 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 58 59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 60 | QUARK_X1000_SSCR1_EFWR \ 61 | QUARK_X1000_SSCR1_RFT \ 62 | QUARK_X1000_SSCR1_TFT \ 63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 64 65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 66 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 68 #define LPSS_CAPS_CS_EN_SHIFT 9 69 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 70 71 struct lpss_config { 72 /* LPSS offset from drv_data->ioaddr */ 73 unsigned offset; 74 /* Register offsets from drv_data->lpss_base or -1 */ 75 int reg_general; 76 int reg_ssp; 77 int reg_cs_ctrl; 78 int reg_capabilities; 79 /* FIFO thresholds */ 80 u32 rx_threshold; 81 u32 tx_threshold_lo; 82 u32 tx_threshold_hi; 83 /* Chip select control */ 84 unsigned cs_sel_shift; 85 unsigned cs_sel_mask; 86 unsigned cs_num; 87 }; 88 89 /* Keep these sorted with enum pxa_ssp_type */ 90 static const struct lpss_config lpss_platforms[] = { 91 { /* LPSS_LPT_SSP */ 92 .offset = 0x800, 93 .reg_general = 0x08, 94 .reg_ssp = 0x0c, 95 .reg_cs_ctrl = 0x18, 96 .reg_capabilities = -1, 97 .rx_threshold = 64, 98 .tx_threshold_lo = 160, 99 .tx_threshold_hi = 224, 100 }, 101 { /* LPSS_BYT_SSP */ 102 .offset = 0x400, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BSW_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 .cs_sel_shift = 2, 121 .cs_sel_mask = 1 << 2, 122 .cs_num = 2, 123 }, 124 { /* LPSS_SPT_SSP */ 125 .offset = 0x200, 126 .reg_general = -1, 127 .reg_ssp = 0x20, 128 .reg_cs_ctrl = 0x24, 129 .reg_capabilities = 0xfc, 130 .rx_threshold = 1, 131 .tx_threshold_lo = 32, 132 .tx_threshold_hi = 56, 133 }, 134 { /* LPSS_BXT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = 0xfc, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 16, 142 .tx_threshold_hi = 48, 143 .cs_sel_shift = 8, 144 .cs_sel_mask = 3 << 8, 145 }, 146 }; 147 148 static inline const struct lpss_config 149 *lpss_get_config(const struct driver_data *drv_data) 150 { 151 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 152 } 153 154 static bool is_lpss_ssp(const struct driver_data *drv_data) 155 { 156 switch (drv_data->ssp_type) { 157 case LPSS_LPT_SSP: 158 case LPSS_BYT_SSP: 159 case LPSS_BSW_SSP: 160 case LPSS_SPT_SSP: 161 case LPSS_BXT_SSP: 162 return true; 163 default: 164 return false; 165 } 166 } 167 168 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 169 { 170 return drv_data->ssp_type == QUARK_X1000_SSP; 171 } 172 173 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 174 { 175 switch (drv_data->ssp_type) { 176 case QUARK_X1000_SSP: 177 return QUARK_X1000_SSCR1_CHANGE_MASK; 178 default: 179 return SSCR1_CHANGE_MASK; 180 } 181 } 182 183 static u32 184 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 185 { 186 switch (drv_data->ssp_type) { 187 case QUARK_X1000_SSP: 188 return RX_THRESH_QUARK_X1000_DFLT; 189 default: 190 return RX_THRESH_DFLT; 191 } 192 } 193 194 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 195 { 196 u32 mask; 197 198 switch (drv_data->ssp_type) { 199 case QUARK_X1000_SSP: 200 mask = QUARK_X1000_SSSR_TFL_MASK; 201 break; 202 default: 203 mask = SSSR_TFL_MASK; 204 break; 205 } 206 207 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 208 } 209 210 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 211 u32 *sccr1_reg) 212 { 213 u32 mask; 214 215 switch (drv_data->ssp_type) { 216 case QUARK_X1000_SSP: 217 mask = QUARK_X1000_SSCR1_RFT; 218 break; 219 default: 220 mask = SSCR1_RFT; 221 break; 222 } 223 *sccr1_reg &= ~mask; 224 } 225 226 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 227 u32 *sccr1_reg, u32 threshold) 228 { 229 switch (drv_data->ssp_type) { 230 case QUARK_X1000_SSP: 231 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 232 break; 233 default: 234 *sccr1_reg |= SSCR1_RxTresh(threshold); 235 break; 236 } 237 } 238 239 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 240 u32 clk_div, u8 bits) 241 { 242 switch (drv_data->ssp_type) { 243 case QUARK_X1000_SSP: 244 return clk_div 245 | QUARK_X1000_SSCR0_Motorola 246 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 247 | SSCR0_SSE; 248 default: 249 return clk_div 250 | SSCR0_Motorola 251 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 252 | SSCR0_SSE 253 | (bits > 16 ? SSCR0_EDSS : 0); 254 } 255 } 256 257 /* 258 * Read and write LPSS SSP private registers. Caller must first check that 259 * is_lpss_ssp() returns true before these can be called. 260 */ 261 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 262 { 263 WARN_ON(!drv_data->lpss_base); 264 return readl(drv_data->lpss_base + offset); 265 } 266 267 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 268 unsigned offset, u32 value) 269 { 270 WARN_ON(!drv_data->lpss_base); 271 writel(value, drv_data->lpss_base + offset); 272 } 273 274 /* 275 * lpss_ssp_setup - perform LPSS SSP specific setup 276 * @drv_data: pointer to the driver private data 277 * 278 * Perform LPSS SSP specific setup. This function must be called first if 279 * one is going to use LPSS SSP private registers. 280 */ 281 static void lpss_ssp_setup(struct driver_data *drv_data) 282 { 283 const struct lpss_config *config; 284 u32 value; 285 286 config = lpss_get_config(drv_data); 287 drv_data->lpss_base = drv_data->ioaddr + config->offset; 288 289 /* Enable software chip select control */ 290 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 291 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 292 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 293 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 294 295 /* Enable multiblock DMA transfers */ 296 if (drv_data->master_info->enable_dma) { 297 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 298 299 if (config->reg_general >= 0) { 300 value = __lpss_ssp_read_priv(drv_data, 301 config->reg_general); 302 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 303 __lpss_ssp_write_priv(drv_data, 304 config->reg_general, value); 305 } 306 } 307 } 308 309 static void lpss_ssp_select_cs(struct driver_data *drv_data, 310 const struct lpss_config *config) 311 { 312 u32 value, cs; 313 314 if (!config->cs_sel_mask) 315 return; 316 317 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 318 319 cs = drv_data->cur_msg->spi->chip_select; 320 cs <<= config->cs_sel_shift; 321 if (cs != (value & config->cs_sel_mask)) { 322 /* 323 * When switching another chip select output active the 324 * output must be selected first and wait 2 ssp_clk cycles 325 * before changing state to active. Otherwise a short 326 * glitch will occur on the previous chip select since 327 * output select is latched but state control is not. 328 */ 329 value &= ~config->cs_sel_mask; 330 value |= cs; 331 __lpss_ssp_write_priv(drv_data, 332 config->reg_cs_ctrl, value); 333 ndelay(1000000000 / 334 (drv_data->master->max_speed_hz / 2)); 335 } 336 } 337 338 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable) 339 { 340 const struct lpss_config *config; 341 u32 value; 342 343 config = lpss_get_config(drv_data); 344 345 if (enable) 346 lpss_ssp_select_cs(drv_data, config); 347 348 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 349 if (enable) 350 value &= ~LPSS_CS_CONTROL_CS_HIGH; 351 else 352 value |= LPSS_CS_CONTROL_CS_HIGH; 353 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 354 } 355 356 static void cs_assert(struct driver_data *drv_data) 357 { 358 struct chip_data *chip = drv_data->cur_chip; 359 360 if (drv_data->ssp_type == CE4100_SSP) { 361 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm); 362 return; 363 } 364 365 if (chip->cs_control) { 366 chip->cs_control(PXA2XX_CS_ASSERT); 367 return; 368 } 369 370 if (gpio_is_valid(chip->gpio_cs)) { 371 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); 372 return; 373 } 374 375 if (is_lpss_ssp(drv_data)) 376 lpss_ssp_cs_control(drv_data, true); 377 } 378 379 static void cs_deassert(struct driver_data *drv_data) 380 { 381 struct chip_data *chip = drv_data->cur_chip; 382 383 if (drv_data->ssp_type == CE4100_SSP) 384 return; 385 386 if (chip->cs_control) { 387 chip->cs_control(PXA2XX_CS_DEASSERT); 388 return; 389 } 390 391 if (gpio_is_valid(chip->gpio_cs)) { 392 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); 393 return; 394 } 395 396 if (is_lpss_ssp(drv_data)) 397 lpss_ssp_cs_control(drv_data, false); 398 } 399 400 int pxa2xx_spi_flush(struct driver_data *drv_data) 401 { 402 unsigned long limit = loops_per_jiffy << 1; 403 404 do { 405 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 406 pxa2xx_spi_read(drv_data, SSDR); 407 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 408 write_SSSR_CS(drv_data, SSSR_ROR); 409 410 return limit; 411 } 412 413 static int null_writer(struct driver_data *drv_data) 414 { 415 u8 n_bytes = drv_data->n_bytes; 416 417 if (pxa2xx_spi_txfifo_full(drv_data) 418 || (drv_data->tx == drv_data->tx_end)) 419 return 0; 420 421 pxa2xx_spi_write(drv_data, SSDR, 0); 422 drv_data->tx += n_bytes; 423 424 return 1; 425 } 426 427 static int null_reader(struct driver_data *drv_data) 428 { 429 u8 n_bytes = drv_data->n_bytes; 430 431 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 432 && (drv_data->rx < drv_data->rx_end)) { 433 pxa2xx_spi_read(drv_data, SSDR); 434 drv_data->rx += n_bytes; 435 } 436 437 return drv_data->rx == drv_data->rx_end; 438 } 439 440 static int u8_writer(struct driver_data *drv_data) 441 { 442 if (pxa2xx_spi_txfifo_full(drv_data) 443 || (drv_data->tx == drv_data->tx_end)) 444 return 0; 445 446 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 447 ++drv_data->tx; 448 449 return 1; 450 } 451 452 static int u8_reader(struct driver_data *drv_data) 453 { 454 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 455 && (drv_data->rx < drv_data->rx_end)) { 456 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 457 ++drv_data->rx; 458 } 459 460 return drv_data->rx == drv_data->rx_end; 461 } 462 463 static int u16_writer(struct driver_data *drv_data) 464 { 465 if (pxa2xx_spi_txfifo_full(drv_data) 466 || (drv_data->tx == drv_data->tx_end)) 467 return 0; 468 469 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 470 drv_data->tx += 2; 471 472 return 1; 473 } 474 475 static int u16_reader(struct driver_data *drv_data) 476 { 477 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 478 && (drv_data->rx < drv_data->rx_end)) { 479 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 480 drv_data->rx += 2; 481 } 482 483 return drv_data->rx == drv_data->rx_end; 484 } 485 486 static int u32_writer(struct driver_data *drv_data) 487 { 488 if (pxa2xx_spi_txfifo_full(drv_data) 489 || (drv_data->tx == drv_data->tx_end)) 490 return 0; 491 492 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 493 drv_data->tx += 4; 494 495 return 1; 496 } 497 498 static int u32_reader(struct driver_data *drv_data) 499 { 500 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 501 && (drv_data->rx < drv_data->rx_end)) { 502 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 503 drv_data->rx += 4; 504 } 505 506 return drv_data->rx == drv_data->rx_end; 507 } 508 509 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data) 510 { 511 struct spi_message *msg = drv_data->cur_msg; 512 struct spi_transfer *trans = drv_data->cur_transfer; 513 514 /* Move to next transfer */ 515 if (trans->transfer_list.next != &msg->transfers) { 516 drv_data->cur_transfer = 517 list_entry(trans->transfer_list.next, 518 struct spi_transfer, 519 transfer_list); 520 return RUNNING_STATE; 521 } else 522 return DONE_STATE; 523 } 524 525 /* caller already set message->status; dma and pio irqs are blocked */ 526 static void giveback(struct driver_data *drv_data) 527 { 528 struct spi_transfer* last_transfer; 529 struct spi_message *msg; 530 unsigned long timeout; 531 532 msg = drv_data->cur_msg; 533 drv_data->cur_msg = NULL; 534 drv_data->cur_transfer = NULL; 535 536 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer, 537 transfer_list); 538 539 /* Delay if requested before any change in chip select */ 540 if (last_transfer->delay_usecs) 541 udelay(last_transfer->delay_usecs); 542 543 /* Wait until SSP becomes idle before deasserting the CS */ 544 timeout = jiffies + msecs_to_jiffies(10); 545 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 546 !time_after(jiffies, timeout)) 547 cpu_relax(); 548 549 /* Drop chip select UNLESS cs_change is true or we are returning 550 * a message with an error, or next message is for another chip 551 */ 552 if (!last_transfer->cs_change) 553 cs_deassert(drv_data); 554 else { 555 struct spi_message *next_msg; 556 557 /* Holding of cs was hinted, but we need to make sure 558 * the next message is for the same chip. Don't waste 559 * time with the following tests unless this was hinted. 560 * 561 * We cannot postpone this until pump_messages, because 562 * after calling msg->complete (below) the driver that 563 * sent the current message could be unloaded, which 564 * could invalidate the cs_control() callback... 565 */ 566 567 /* get a pointer to the next message, if any */ 568 next_msg = spi_get_next_queued_message(drv_data->master); 569 570 /* see if the next and current messages point 571 * to the same chip 572 */ 573 if (next_msg && next_msg->spi != msg->spi) 574 next_msg = NULL; 575 if (!next_msg || msg->state == ERROR_STATE) 576 cs_deassert(drv_data); 577 } 578 579 drv_data->cur_chip = NULL; 580 spi_finalize_current_message(drv_data->master); 581 } 582 583 static void reset_sccr1(struct driver_data *drv_data) 584 { 585 struct chip_data *chip = drv_data->cur_chip; 586 u32 sccr1_reg; 587 588 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 589 sccr1_reg &= ~SSCR1_RFT; 590 sccr1_reg |= chip->threshold; 591 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 592 } 593 594 static void int_error_stop(struct driver_data *drv_data, const char* msg) 595 { 596 /* Stop and reset SSP */ 597 write_SSSR_CS(drv_data, drv_data->clear_sr); 598 reset_sccr1(drv_data); 599 if (!pxa25x_ssp_comp(drv_data)) 600 pxa2xx_spi_write(drv_data, SSTO, 0); 601 pxa2xx_spi_flush(drv_data); 602 pxa2xx_spi_write(drv_data, SSCR0, 603 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 604 605 dev_err(&drv_data->pdev->dev, "%s\n", msg); 606 607 drv_data->cur_msg->state = ERROR_STATE; 608 tasklet_schedule(&drv_data->pump_transfers); 609 } 610 611 static void int_transfer_complete(struct driver_data *drv_data) 612 { 613 /* Clear and disable interrupts */ 614 write_SSSR_CS(drv_data, drv_data->clear_sr); 615 reset_sccr1(drv_data); 616 if (!pxa25x_ssp_comp(drv_data)) 617 pxa2xx_spi_write(drv_data, SSTO, 0); 618 619 /* Update total byte transferred return count actual bytes read */ 620 drv_data->cur_msg->actual_length += drv_data->len - 621 (drv_data->rx_end - drv_data->rx); 622 623 /* Transfer delays and chip select release are 624 * handled in pump_transfers or giveback 625 */ 626 627 /* Move to next transfer */ 628 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data); 629 630 /* Schedule transfer tasklet */ 631 tasklet_schedule(&drv_data->pump_transfers); 632 } 633 634 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 635 { 636 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 637 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 638 639 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 640 641 if (irq_status & SSSR_ROR) { 642 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 643 return IRQ_HANDLED; 644 } 645 646 if (irq_status & SSSR_TINT) { 647 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 648 if (drv_data->read(drv_data)) { 649 int_transfer_complete(drv_data); 650 return IRQ_HANDLED; 651 } 652 } 653 654 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 655 do { 656 if (drv_data->read(drv_data)) { 657 int_transfer_complete(drv_data); 658 return IRQ_HANDLED; 659 } 660 } while (drv_data->write(drv_data)); 661 662 if (drv_data->read(drv_data)) { 663 int_transfer_complete(drv_data); 664 return IRQ_HANDLED; 665 } 666 667 if (drv_data->tx == drv_data->tx_end) { 668 u32 bytes_left; 669 u32 sccr1_reg; 670 671 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 672 sccr1_reg &= ~SSCR1_TIE; 673 674 /* 675 * PXA25x_SSP has no timeout, set up rx threshould for the 676 * remaining RX bytes. 677 */ 678 if (pxa25x_ssp_comp(drv_data)) { 679 u32 rx_thre; 680 681 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 682 683 bytes_left = drv_data->rx_end - drv_data->rx; 684 switch (drv_data->n_bytes) { 685 case 4: 686 bytes_left >>= 1; 687 case 2: 688 bytes_left >>= 1; 689 } 690 691 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 692 if (rx_thre > bytes_left) 693 rx_thre = bytes_left; 694 695 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 696 } 697 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 698 } 699 700 /* We did something */ 701 return IRQ_HANDLED; 702 } 703 704 static irqreturn_t ssp_int(int irq, void *dev_id) 705 { 706 struct driver_data *drv_data = dev_id; 707 u32 sccr1_reg; 708 u32 mask = drv_data->mask_sr; 709 u32 status; 710 711 /* 712 * The IRQ might be shared with other peripherals so we must first 713 * check that are we RPM suspended or not. If we are we assume that 714 * the IRQ was not for us (we shouldn't be RPM suspended when the 715 * interrupt is enabled). 716 */ 717 if (pm_runtime_suspended(&drv_data->pdev->dev)) 718 return IRQ_NONE; 719 720 /* 721 * If the device is not yet in RPM suspended state and we get an 722 * interrupt that is meant for another device, check if status bits 723 * are all set to one. That means that the device is already 724 * powered off. 725 */ 726 status = pxa2xx_spi_read(drv_data, SSSR); 727 if (status == ~0) 728 return IRQ_NONE; 729 730 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 731 732 /* Ignore possible writes if we don't need to write */ 733 if (!(sccr1_reg & SSCR1_TIE)) 734 mask &= ~SSSR_TFS; 735 736 /* Ignore RX timeout interrupt if it is disabled */ 737 if (!(sccr1_reg & SSCR1_TINTE)) 738 mask &= ~SSSR_TINT; 739 740 if (!(status & mask)) 741 return IRQ_NONE; 742 743 if (!drv_data->cur_msg) { 744 745 pxa2xx_spi_write(drv_data, SSCR0, 746 pxa2xx_spi_read(drv_data, SSCR0) 747 & ~SSCR0_SSE); 748 pxa2xx_spi_write(drv_data, SSCR1, 749 pxa2xx_spi_read(drv_data, SSCR1) 750 & ~drv_data->int_cr1); 751 if (!pxa25x_ssp_comp(drv_data)) 752 pxa2xx_spi_write(drv_data, SSTO, 0); 753 write_SSSR_CS(drv_data, drv_data->clear_sr); 754 755 dev_err(&drv_data->pdev->dev, 756 "bad message state in interrupt handler\n"); 757 758 /* Never fail */ 759 return IRQ_HANDLED; 760 } 761 762 return drv_data->transfer_handler(drv_data); 763 } 764 765 /* 766 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 767 * input frequency by fractions of 2^24. It also has a divider by 5. 768 * 769 * There are formulas to get baud rate value for given input frequency and 770 * divider parameters, such as DDS_CLK_RATE and SCR: 771 * 772 * Fsys = 200MHz 773 * 774 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 775 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 776 * 777 * DDS_CLK_RATE either 2^n or 2^n / 5. 778 * SCR is in range 0 .. 255 779 * 780 * Divisor = 5^i * 2^j * 2 * k 781 * i = [0, 1] i = 1 iff j = 0 or j > 3 782 * j = [0, 23] j = 0 iff i = 1 783 * k = [1, 256] 784 * Special case: j = 0, i = 1: Divisor = 2 / 5 785 * 786 * Accordingly to the specification the recommended values for DDS_CLK_RATE 787 * are: 788 * Case 1: 2^n, n = [0, 23] 789 * Case 2: 2^24 * 2 / 5 (0x666666) 790 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 791 * 792 * In all cases the lowest possible value is better. 793 * 794 * The function calculates parameters for all cases and chooses the one closest 795 * to the asked baud rate. 796 */ 797 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 798 { 799 unsigned long xtal = 200000000; 800 unsigned long fref = xtal / 2; /* mandatory division by 2, 801 see (2) */ 802 /* case 3 */ 803 unsigned long fref1 = fref / 2; /* case 1 */ 804 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 805 unsigned long scale; 806 unsigned long q, q1, q2; 807 long r, r1, r2; 808 u32 mul; 809 810 /* Case 1 */ 811 812 /* Set initial value for DDS_CLK_RATE */ 813 mul = (1 << 24) >> 1; 814 815 /* Calculate initial quot */ 816 q1 = DIV_ROUND_UP(fref1, rate); 817 818 /* Scale q1 if it's too big */ 819 if (q1 > 256) { 820 /* Scale q1 to range [1, 512] */ 821 scale = fls_long(q1 - 1); 822 if (scale > 9) { 823 q1 >>= scale - 9; 824 mul >>= scale - 9; 825 } 826 827 /* Round the result if we have a remainder */ 828 q1 += q1 & 1; 829 } 830 831 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 832 scale = __ffs(q1); 833 q1 >>= scale; 834 mul >>= scale; 835 836 /* Get the remainder */ 837 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 838 839 /* Case 2 */ 840 841 q2 = DIV_ROUND_UP(fref2, rate); 842 r2 = abs(fref2 / q2 - rate); 843 844 /* 845 * Choose the best between two: less remainder we have the better. We 846 * can't go case 2 if q2 is greater than 256 since SCR register can 847 * hold only values 0 .. 255. 848 */ 849 if (r2 >= r1 || q2 > 256) { 850 /* case 1 is better */ 851 r = r1; 852 q = q1; 853 } else { 854 /* case 2 is better */ 855 r = r2; 856 q = q2; 857 mul = (1 << 24) * 2 / 5; 858 } 859 860 /* Check case 3 only if the divisor is big enough */ 861 if (fref / rate >= 80) { 862 u64 fssp; 863 u32 m; 864 865 /* Calculate initial quot */ 866 q1 = DIV_ROUND_UP(fref, rate); 867 m = (1 << 24) / q1; 868 869 /* Get the remainder */ 870 fssp = (u64)fref * m; 871 do_div(fssp, 1 << 24); 872 r1 = abs(fssp - rate); 873 874 /* Choose this one if it suits better */ 875 if (r1 < r) { 876 /* case 3 is better */ 877 q = 1; 878 mul = m; 879 } 880 } 881 882 *dds = mul; 883 return q - 1; 884 } 885 886 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 887 { 888 unsigned long ssp_clk = drv_data->master->max_speed_hz; 889 const struct ssp_device *ssp = drv_data->ssp; 890 891 rate = min_t(int, ssp_clk, rate); 892 893 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 894 return (ssp_clk / (2 * rate) - 1) & 0xff; 895 else 896 return (ssp_clk / rate - 1) & 0xfff; 897 } 898 899 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 900 int rate) 901 { 902 struct chip_data *chip = drv_data->cur_chip; 903 unsigned int clk_div; 904 905 switch (drv_data->ssp_type) { 906 case QUARK_X1000_SSP: 907 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 908 break; 909 default: 910 clk_div = ssp_get_clk_div(drv_data, rate); 911 break; 912 } 913 return clk_div << 8; 914 } 915 916 static void pump_transfers(unsigned long data) 917 { 918 struct driver_data *drv_data = (struct driver_data *)data; 919 struct spi_message *message = NULL; 920 struct spi_transfer *transfer = NULL; 921 struct spi_transfer *previous = NULL; 922 struct chip_data *chip = NULL; 923 u32 clk_div = 0; 924 u8 bits = 0; 925 u32 speed = 0; 926 u32 cr0; 927 u32 cr1; 928 u32 dma_thresh = drv_data->cur_chip->dma_threshold; 929 u32 dma_burst = drv_data->cur_chip->dma_burst_size; 930 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 931 int err; 932 933 /* Get current state information */ 934 message = drv_data->cur_msg; 935 transfer = drv_data->cur_transfer; 936 chip = drv_data->cur_chip; 937 938 /* Handle for abort */ 939 if (message->state == ERROR_STATE) { 940 message->status = -EIO; 941 giveback(drv_data); 942 return; 943 } 944 945 /* Handle end of message */ 946 if (message->state == DONE_STATE) { 947 message->status = 0; 948 giveback(drv_data); 949 return; 950 } 951 952 /* Delay if requested at end of transfer before CS change */ 953 if (message->state == RUNNING_STATE) { 954 previous = list_entry(transfer->transfer_list.prev, 955 struct spi_transfer, 956 transfer_list); 957 if (previous->delay_usecs) 958 udelay(previous->delay_usecs); 959 960 /* Drop chip select only if cs_change is requested */ 961 if (previous->cs_change) 962 cs_deassert(drv_data); 963 } 964 965 /* Check if we can DMA this transfer */ 966 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) { 967 968 /* reject already-mapped transfers; PIO won't always work */ 969 if (message->is_dma_mapped 970 || transfer->rx_dma || transfer->tx_dma) { 971 dev_err(&drv_data->pdev->dev, 972 "pump_transfers: mapped transfer length of " 973 "%u is greater than %d\n", 974 transfer->len, MAX_DMA_LEN); 975 message->status = -EINVAL; 976 giveback(drv_data); 977 return; 978 } 979 980 /* warn ... we force this to PIO mode */ 981 dev_warn_ratelimited(&message->spi->dev, 982 "pump_transfers: DMA disabled for transfer length %ld " 983 "greater than %d\n", 984 (long)drv_data->len, MAX_DMA_LEN); 985 } 986 987 /* Setup the transfer state based on the type of transfer */ 988 if (pxa2xx_spi_flush(drv_data) == 0) { 989 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); 990 message->status = -EIO; 991 giveback(drv_data); 992 return; 993 } 994 drv_data->n_bytes = chip->n_bytes; 995 drv_data->tx = (void *)transfer->tx_buf; 996 drv_data->tx_end = drv_data->tx + transfer->len; 997 drv_data->rx = transfer->rx_buf; 998 drv_data->rx_end = drv_data->rx + transfer->len; 999 drv_data->len = transfer->len; 1000 drv_data->write = drv_data->tx ? chip->write : null_writer; 1001 drv_data->read = drv_data->rx ? chip->read : null_reader; 1002 1003 /* Change speed and bit per word on a per transfer */ 1004 bits = transfer->bits_per_word; 1005 speed = transfer->speed_hz; 1006 1007 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1008 1009 if (bits <= 8) { 1010 drv_data->n_bytes = 1; 1011 drv_data->read = drv_data->read != null_reader ? 1012 u8_reader : null_reader; 1013 drv_data->write = drv_data->write != null_writer ? 1014 u8_writer : null_writer; 1015 } else if (bits <= 16) { 1016 drv_data->n_bytes = 2; 1017 drv_data->read = drv_data->read != null_reader ? 1018 u16_reader : null_reader; 1019 drv_data->write = drv_data->write != null_writer ? 1020 u16_writer : null_writer; 1021 } else if (bits <= 32) { 1022 drv_data->n_bytes = 4; 1023 drv_data->read = drv_data->read != null_reader ? 1024 u32_reader : null_reader; 1025 drv_data->write = drv_data->write != null_writer ? 1026 u32_writer : null_writer; 1027 } 1028 /* 1029 * if bits/word is changed in dma mode, then must check the 1030 * thresholds and burst also 1031 */ 1032 if (chip->enable_dma) { 1033 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1034 message->spi, 1035 bits, &dma_burst, 1036 &dma_thresh)) 1037 dev_warn_ratelimited(&message->spi->dev, 1038 "pump_transfers: DMA burst size reduced to match bits_per_word\n"); 1039 } 1040 1041 message->state = RUNNING_STATE; 1042 1043 drv_data->dma_mapped = 0; 1044 if (pxa2xx_spi_dma_is_possible(drv_data->len)) 1045 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data); 1046 if (drv_data->dma_mapped) { 1047 1048 /* Ensure we have the correct interrupt handler */ 1049 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1050 1051 err = pxa2xx_spi_dma_prepare(drv_data, dma_burst); 1052 if (err) { 1053 message->status = err; 1054 giveback(drv_data); 1055 return; 1056 } 1057 1058 /* Clear status and start DMA engine */ 1059 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1060 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1061 1062 pxa2xx_spi_dma_start(drv_data); 1063 } else { 1064 /* Ensure we have the correct interrupt handler */ 1065 drv_data->transfer_handler = interrupt_transfer; 1066 1067 /* Clear status */ 1068 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1069 write_SSSR_CS(drv_data, drv_data->clear_sr); 1070 } 1071 1072 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1073 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1074 if (!pxa25x_ssp_comp(drv_data)) 1075 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1076 drv_data->master->max_speed_hz 1077 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1078 drv_data->dma_mapped ? "DMA" : "PIO"); 1079 else 1080 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1081 drv_data->master->max_speed_hz / 2 1082 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1083 drv_data->dma_mapped ? "DMA" : "PIO"); 1084 1085 if (is_lpss_ssp(drv_data)) { 1086 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1087 != chip->lpss_rx_threshold) 1088 pxa2xx_spi_write(drv_data, SSIRF, 1089 chip->lpss_rx_threshold); 1090 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1091 != chip->lpss_tx_threshold) 1092 pxa2xx_spi_write(drv_data, SSITF, 1093 chip->lpss_tx_threshold); 1094 } 1095 1096 if (is_quark_x1000_ssp(drv_data) && 1097 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1098 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1099 1100 /* see if we need to reload the config registers */ 1101 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1102 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1103 != (cr1 & change_mask)) { 1104 /* stop the SSP, and update the other bits */ 1105 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1106 if (!pxa25x_ssp_comp(drv_data)) 1107 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1108 /* first set CR1 without interrupt and service enables */ 1109 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1110 /* restart the SSP */ 1111 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1112 1113 } else { 1114 if (!pxa25x_ssp_comp(drv_data)) 1115 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1116 } 1117 1118 cs_assert(drv_data); 1119 1120 /* after chip select, release the data by enabling service 1121 * requests and interrupts, without changing any mode bits */ 1122 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1123 } 1124 1125 static int pxa2xx_spi_transfer_one_message(struct spi_master *master, 1126 struct spi_message *msg) 1127 { 1128 struct driver_data *drv_data = spi_master_get_devdata(master); 1129 1130 drv_data->cur_msg = msg; 1131 /* Initial message state*/ 1132 drv_data->cur_msg->state = START_STATE; 1133 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, 1134 struct spi_transfer, 1135 transfer_list); 1136 1137 /* prepare to setup the SSP, in pump_transfers, using the per 1138 * chip configuration */ 1139 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); 1140 1141 /* Mark as busy and launch transfers */ 1142 tasklet_schedule(&drv_data->pump_transfers); 1143 return 0; 1144 } 1145 1146 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master) 1147 { 1148 struct driver_data *drv_data = spi_master_get_devdata(master); 1149 1150 /* Disable the SSP now */ 1151 pxa2xx_spi_write(drv_data, SSCR0, 1152 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1153 1154 return 0; 1155 } 1156 1157 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1158 struct pxa2xx_spi_chip *chip_info) 1159 { 1160 int err = 0; 1161 1162 if (chip == NULL || chip_info == NULL) 1163 return 0; 1164 1165 /* NOTE: setup() can be called multiple times, possibly with 1166 * different chip_info, release previously requested GPIO 1167 */ 1168 if (gpio_is_valid(chip->gpio_cs)) 1169 gpio_free(chip->gpio_cs); 1170 1171 /* If (*cs_control) is provided, ignore GPIO chip select */ 1172 if (chip_info->cs_control) { 1173 chip->cs_control = chip_info->cs_control; 1174 return 0; 1175 } 1176 1177 if (gpio_is_valid(chip_info->gpio_cs)) { 1178 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1179 if (err) { 1180 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1181 chip_info->gpio_cs); 1182 return err; 1183 } 1184 1185 chip->gpio_cs = chip_info->gpio_cs; 1186 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1187 1188 err = gpio_direction_output(chip->gpio_cs, 1189 !chip->gpio_cs_inverted); 1190 } 1191 1192 return err; 1193 } 1194 1195 static int setup(struct spi_device *spi) 1196 { 1197 struct pxa2xx_spi_chip *chip_info = NULL; 1198 struct chip_data *chip; 1199 const struct lpss_config *config; 1200 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1201 uint tx_thres, tx_hi_thres, rx_thres; 1202 1203 switch (drv_data->ssp_type) { 1204 case QUARK_X1000_SSP: 1205 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1206 tx_hi_thres = 0; 1207 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1208 break; 1209 case LPSS_LPT_SSP: 1210 case LPSS_BYT_SSP: 1211 case LPSS_BSW_SSP: 1212 case LPSS_SPT_SSP: 1213 case LPSS_BXT_SSP: 1214 config = lpss_get_config(drv_data); 1215 tx_thres = config->tx_threshold_lo; 1216 tx_hi_thres = config->tx_threshold_hi; 1217 rx_thres = config->rx_threshold; 1218 break; 1219 default: 1220 tx_thres = TX_THRESH_DFLT; 1221 tx_hi_thres = 0; 1222 rx_thres = RX_THRESH_DFLT; 1223 break; 1224 } 1225 1226 /* Only alloc on first setup */ 1227 chip = spi_get_ctldata(spi); 1228 if (!chip) { 1229 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1230 if (!chip) 1231 return -ENOMEM; 1232 1233 if (drv_data->ssp_type == CE4100_SSP) { 1234 if (spi->chip_select > 4) { 1235 dev_err(&spi->dev, 1236 "failed setup: cs number must not be > 4.\n"); 1237 kfree(chip); 1238 return -EINVAL; 1239 } 1240 1241 chip->frm = spi->chip_select; 1242 } else 1243 chip->gpio_cs = -1; 1244 chip->enable_dma = 0; 1245 chip->timeout = TIMOUT_DFLT; 1246 } 1247 1248 /* protocol drivers may change the chip settings, so... 1249 * if chip_info exists, use it */ 1250 chip_info = spi->controller_data; 1251 1252 /* chip_info isn't always needed */ 1253 chip->cr1 = 0; 1254 if (chip_info) { 1255 if (chip_info->timeout) 1256 chip->timeout = chip_info->timeout; 1257 if (chip_info->tx_threshold) 1258 tx_thres = chip_info->tx_threshold; 1259 if (chip_info->tx_hi_threshold) 1260 tx_hi_thres = chip_info->tx_hi_threshold; 1261 if (chip_info->rx_threshold) 1262 rx_thres = chip_info->rx_threshold; 1263 chip->enable_dma = drv_data->master_info->enable_dma; 1264 chip->dma_threshold = 0; 1265 if (chip_info->enable_loopback) 1266 chip->cr1 = SSCR1_LBM; 1267 } else if (ACPI_HANDLE(&spi->dev)) { 1268 /* 1269 * Slave devices enumerated from ACPI namespace don't 1270 * usually have chip_info but we still might want to use 1271 * DMA with them. 1272 */ 1273 chip->enable_dma = drv_data->master_info->enable_dma; 1274 } 1275 1276 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1277 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1278 | SSITF_TxHiThresh(tx_hi_thres); 1279 1280 /* set dma burst and threshold outside of chip_info path so that if 1281 * chip_info goes away after setting chip->enable_dma, the 1282 * burst and threshold can still respond to changes in bits_per_word */ 1283 if (chip->enable_dma) { 1284 /* set up legal burst and threshold for dma */ 1285 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1286 spi->bits_per_word, 1287 &chip->dma_burst_size, 1288 &chip->dma_threshold)) { 1289 dev_warn(&spi->dev, 1290 "in setup: DMA burst size reduced to match bits_per_word\n"); 1291 } 1292 } 1293 1294 switch (drv_data->ssp_type) { 1295 case QUARK_X1000_SSP: 1296 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1297 & QUARK_X1000_SSCR1_RFT) 1298 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1299 & QUARK_X1000_SSCR1_TFT); 1300 break; 1301 default: 1302 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1303 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1304 break; 1305 } 1306 1307 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1308 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1309 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1310 1311 if (spi->mode & SPI_LOOP) 1312 chip->cr1 |= SSCR1_LBM; 1313 1314 if (spi->bits_per_word <= 8) { 1315 chip->n_bytes = 1; 1316 chip->read = u8_reader; 1317 chip->write = u8_writer; 1318 } else if (spi->bits_per_word <= 16) { 1319 chip->n_bytes = 2; 1320 chip->read = u16_reader; 1321 chip->write = u16_writer; 1322 } else if (spi->bits_per_word <= 32) { 1323 chip->n_bytes = 4; 1324 chip->read = u32_reader; 1325 chip->write = u32_writer; 1326 } 1327 1328 spi_set_ctldata(spi, chip); 1329 1330 if (drv_data->ssp_type == CE4100_SSP) 1331 return 0; 1332 1333 return setup_cs(spi, chip, chip_info); 1334 } 1335 1336 static void cleanup(struct spi_device *spi) 1337 { 1338 struct chip_data *chip = spi_get_ctldata(spi); 1339 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1340 1341 if (!chip) 1342 return; 1343 1344 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) 1345 gpio_free(chip->gpio_cs); 1346 1347 kfree(chip); 1348 } 1349 1350 #ifdef CONFIG_PCI 1351 #ifdef CONFIG_ACPI 1352 1353 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1354 { "INT33C0", LPSS_LPT_SSP }, 1355 { "INT33C1", LPSS_LPT_SSP }, 1356 { "INT3430", LPSS_LPT_SSP }, 1357 { "INT3431", LPSS_LPT_SSP }, 1358 { "80860F0E", LPSS_BYT_SSP }, 1359 { "8086228E", LPSS_BSW_SSP }, 1360 { }, 1361 }; 1362 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1363 1364 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1365 { 1366 unsigned int devid; 1367 int port_id = -1; 1368 1369 if (adev && adev->pnp.unique_id && 1370 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1371 port_id = devid; 1372 return port_id; 1373 } 1374 #else /* !CONFIG_ACPI */ 1375 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1376 { 1377 return -1; 1378 } 1379 #endif 1380 1381 /* 1382 * PCI IDs of compound devices that integrate both host controller and private 1383 * integrated DMA engine. Please note these are not used in module 1384 * autoloading and probing in this module but matching the LPSS SSP type. 1385 */ 1386 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1387 /* SPT-LP */ 1388 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1389 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1390 /* SPT-H */ 1391 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1392 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1393 /* BXT A-Step */ 1394 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1395 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1396 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1397 /* BXT B-Step */ 1398 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1399 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1400 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1401 /* APL */ 1402 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1403 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1404 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1405 { }, 1406 }; 1407 1408 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1409 { 1410 struct device *dev = param; 1411 1412 if (dev != chan->device->dev->parent) 1413 return false; 1414 1415 return true; 1416 } 1417 1418 static struct pxa2xx_spi_master * 1419 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1420 { 1421 struct pxa2xx_spi_master *pdata; 1422 struct acpi_device *adev; 1423 struct ssp_device *ssp; 1424 struct resource *res; 1425 const struct acpi_device_id *adev_id = NULL; 1426 const struct pci_device_id *pcidev_id = NULL; 1427 int type; 1428 1429 adev = ACPI_COMPANION(&pdev->dev); 1430 1431 if (dev_is_pci(pdev->dev.parent)) 1432 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, 1433 to_pci_dev(pdev->dev.parent)); 1434 else if (adev) 1435 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table, 1436 &pdev->dev); 1437 else 1438 return NULL; 1439 1440 if (adev_id) 1441 type = (int)adev_id->driver_data; 1442 else if (pcidev_id) 1443 type = (int)pcidev_id->driver_data; 1444 else 1445 return NULL; 1446 1447 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1448 if (!pdata) 1449 return NULL; 1450 1451 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1452 if (!res) 1453 return NULL; 1454 1455 ssp = &pdata->ssp; 1456 1457 ssp->phys_base = res->start; 1458 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1459 if (IS_ERR(ssp->mmio_base)) 1460 return NULL; 1461 1462 if (pcidev_id) { 1463 pdata->tx_param = pdev->dev.parent; 1464 pdata->rx_param = pdev->dev.parent; 1465 pdata->dma_filter = pxa2xx_spi_idma_filter; 1466 } 1467 1468 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1469 ssp->irq = platform_get_irq(pdev, 0); 1470 ssp->type = type; 1471 ssp->pdev = pdev; 1472 ssp->port_id = pxa2xx_spi_get_port_id(adev); 1473 1474 pdata->num_chipselect = 1; 1475 pdata->enable_dma = true; 1476 1477 return pdata; 1478 } 1479 1480 #else /* !CONFIG_PCI */ 1481 static inline struct pxa2xx_spi_master * 1482 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1483 { 1484 return NULL; 1485 } 1486 #endif 1487 1488 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs) 1489 { 1490 struct driver_data *drv_data = spi_master_get_devdata(master); 1491 1492 if (has_acpi_companion(&drv_data->pdev->dev)) { 1493 switch (drv_data->ssp_type) { 1494 /* 1495 * For Atoms the ACPI DeviceSelection used by the Windows 1496 * driver starts from 1 instead of 0 so translate it here 1497 * to match what Linux expects. 1498 */ 1499 case LPSS_BYT_SSP: 1500 case LPSS_BSW_SSP: 1501 return cs - 1; 1502 1503 default: 1504 break; 1505 } 1506 } 1507 1508 return cs; 1509 } 1510 1511 static int pxa2xx_spi_probe(struct platform_device *pdev) 1512 { 1513 struct device *dev = &pdev->dev; 1514 struct pxa2xx_spi_master *platform_info; 1515 struct spi_master *master; 1516 struct driver_data *drv_data; 1517 struct ssp_device *ssp; 1518 const struct lpss_config *config; 1519 int status; 1520 u32 tmp; 1521 1522 platform_info = dev_get_platdata(dev); 1523 if (!platform_info) { 1524 platform_info = pxa2xx_spi_init_pdata(pdev); 1525 if (!platform_info) { 1526 dev_err(&pdev->dev, "missing platform data\n"); 1527 return -ENODEV; 1528 } 1529 } 1530 1531 ssp = pxa_ssp_request(pdev->id, pdev->name); 1532 if (!ssp) 1533 ssp = &platform_info->ssp; 1534 1535 if (!ssp->mmio_base) { 1536 dev_err(&pdev->dev, "failed to get ssp\n"); 1537 return -ENODEV; 1538 } 1539 1540 master = spi_alloc_master(dev, sizeof(struct driver_data)); 1541 if (!master) { 1542 dev_err(&pdev->dev, "cannot alloc spi_master\n"); 1543 pxa_ssp_free(ssp); 1544 return -ENOMEM; 1545 } 1546 drv_data = spi_master_get_devdata(master); 1547 drv_data->master = master; 1548 drv_data->master_info = platform_info; 1549 drv_data->pdev = pdev; 1550 drv_data->ssp = ssp; 1551 1552 master->dev.parent = &pdev->dev; 1553 master->dev.of_node = pdev->dev.of_node; 1554 /* the spi->mode bits understood by this driver: */ 1555 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1556 1557 master->bus_num = ssp->port_id; 1558 master->dma_alignment = DMA_ALIGNMENT; 1559 master->cleanup = cleanup; 1560 master->setup = setup; 1561 master->transfer_one_message = pxa2xx_spi_transfer_one_message; 1562 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1563 master->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1564 master->auto_runtime_pm = true; 1565 1566 drv_data->ssp_type = ssp->type; 1567 1568 drv_data->ioaddr = ssp->mmio_base; 1569 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1570 if (pxa25x_ssp_comp(drv_data)) { 1571 switch (drv_data->ssp_type) { 1572 case QUARK_X1000_SSP: 1573 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1574 break; 1575 default: 1576 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1577 break; 1578 } 1579 1580 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1581 drv_data->dma_cr1 = 0; 1582 drv_data->clear_sr = SSSR_ROR; 1583 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1584 } else { 1585 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1586 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1587 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1588 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1589 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; 1590 } 1591 1592 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1593 drv_data); 1594 if (status < 0) { 1595 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1596 goto out_error_master_alloc; 1597 } 1598 1599 /* Setup DMA if requested */ 1600 if (platform_info->enable_dma) { 1601 status = pxa2xx_spi_dma_setup(drv_data); 1602 if (status) { 1603 dev_dbg(dev, "no DMA channels available, using PIO\n"); 1604 platform_info->enable_dma = false; 1605 } 1606 } 1607 1608 /* Enable SOC clock */ 1609 clk_prepare_enable(ssp->clk); 1610 1611 master->max_speed_hz = clk_get_rate(ssp->clk); 1612 1613 /* Load default SSP configuration */ 1614 pxa2xx_spi_write(drv_data, SSCR0, 0); 1615 switch (drv_data->ssp_type) { 1616 case QUARK_X1000_SSP: 1617 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) 1618 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1619 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1620 1621 /* using the Motorola SPI protocol and use 8 bit frame */ 1622 pxa2xx_spi_write(drv_data, SSCR0, 1623 QUARK_X1000_SSCR0_Motorola 1624 | QUARK_X1000_SSCR0_DataSize(8)); 1625 break; 1626 default: 1627 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1628 SSCR1_TxTresh(TX_THRESH_DFLT); 1629 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1630 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1631 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1632 break; 1633 } 1634 1635 if (!pxa25x_ssp_comp(drv_data)) 1636 pxa2xx_spi_write(drv_data, SSTO, 0); 1637 1638 if (!is_quark_x1000_ssp(drv_data)) 1639 pxa2xx_spi_write(drv_data, SSPSP, 0); 1640 1641 if (is_lpss_ssp(drv_data)) { 1642 lpss_ssp_setup(drv_data); 1643 config = lpss_get_config(drv_data); 1644 if (config->reg_capabilities >= 0) { 1645 tmp = __lpss_ssp_read_priv(drv_data, 1646 config->reg_capabilities); 1647 tmp &= LPSS_CAPS_CS_EN_MASK; 1648 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1649 platform_info->num_chipselect = ffz(tmp); 1650 } else if (config->cs_num) { 1651 platform_info->num_chipselect = config->cs_num; 1652 } 1653 } 1654 master->num_chipselect = platform_info->num_chipselect; 1655 1656 tasklet_init(&drv_data->pump_transfers, pump_transfers, 1657 (unsigned long)drv_data); 1658 1659 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1660 pm_runtime_use_autosuspend(&pdev->dev); 1661 pm_runtime_set_active(&pdev->dev); 1662 pm_runtime_enable(&pdev->dev); 1663 1664 /* Register with the SPI framework */ 1665 platform_set_drvdata(pdev, drv_data); 1666 status = devm_spi_register_master(&pdev->dev, master); 1667 if (status != 0) { 1668 dev_err(&pdev->dev, "problem registering spi master\n"); 1669 goto out_error_clock_enabled; 1670 } 1671 1672 return status; 1673 1674 out_error_clock_enabled: 1675 clk_disable_unprepare(ssp->clk); 1676 pxa2xx_spi_dma_release(drv_data); 1677 free_irq(ssp->irq, drv_data); 1678 1679 out_error_master_alloc: 1680 spi_master_put(master); 1681 pxa_ssp_free(ssp); 1682 return status; 1683 } 1684 1685 static int pxa2xx_spi_remove(struct platform_device *pdev) 1686 { 1687 struct driver_data *drv_data = platform_get_drvdata(pdev); 1688 struct ssp_device *ssp; 1689 1690 if (!drv_data) 1691 return 0; 1692 ssp = drv_data->ssp; 1693 1694 pm_runtime_get_sync(&pdev->dev); 1695 1696 /* Disable the SSP at the peripheral and SOC level */ 1697 pxa2xx_spi_write(drv_data, SSCR0, 0); 1698 clk_disable_unprepare(ssp->clk); 1699 1700 /* Release DMA */ 1701 if (drv_data->master_info->enable_dma) 1702 pxa2xx_spi_dma_release(drv_data); 1703 1704 pm_runtime_put_noidle(&pdev->dev); 1705 pm_runtime_disable(&pdev->dev); 1706 1707 /* Release IRQ */ 1708 free_irq(ssp->irq, drv_data); 1709 1710 /* Release SSP */ 1711 pxa_ssp_free(ssp); 1712 1713 return 0; 1714 } 1715 1716 static void pxa2xx_spi_shutdown(struct platform_device *pdev) 1717 { 1718 int status = 0; 1719 1720 if ((status = pxa2xx_spi_remove(pdev)) != 0) 1721 dev_err(&pdev->dev, "shutdown failed with %d\n", status); 1722 } 1723 1724 #ifdef CONFIG_PM_SLEEP 1725 static int pxa2xx_spi_suspend(struct device *dev) 1726 { 1727 struct driver_data *drv_data = dev_get_drvdata(dev); 1728 struct ssp_device *ssp = drv_data->ssp; 1729 int status = 0; 1730 1731 status = spi_master_suspend(drv_data->master); 1732 if (status != 0) 1733 return status; 1734 pxa2xx_spi_write(drv_data, SSCR0, 0); 1735 1736 if (!pm_runtime_suspended(dev)) 1737 clk_disable_unprepare(ssp->clk); 1738 1739 return 0; 1740 } 1741 1742 static int pxa2xx_spi_resume(struct device *dev) 1743 { 1744 struct driver_data *drv_data = dev_get_drvdata(dev); 1745 struct ssp_device *ssp = drv_data->ssp; 1746 int status = 0; 1747 1748 /* Enable the SSP clock */ 1749 if (!pm_runtime_suspended(dev)) 1750 clk_prepare_enable(ssp->clk); 1751 1752 /* Restore LPSS private register bits */ 1753 if (is_lpss_ssp(drv_data)) 1754 lpss_ssp_setup(drv_data); 1755 1756 /* Start the queue running */ 1757 status = spi_master_resume(drv_data->master); 1758 if (status != 0) { 1759 dev_err(dev, "problem starting queue (%d)\n", status); 1760 return status; 1761 } 1762 1763 return 0; 1764 } 1765 #endif 1766 1767 #ifdef CONFIG_PM 1768 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1769 { 1770 struct driver_data *drv_data = dev_get_drvdata(dev); 1771 1772 clk_disable_unprepare(drv_data->ssp->clk); 1773 return 0; 1774 } 1775 1776 static int pxa2xx_spi_runtime_resume(struct device *dev) 1777 { 1778 struct driver_data *drv_data = dev_get_drvdata(dev); 1779 1780 clk_prepare_enable(drv_data->ssp->clk); 1781 return 0; 1782 } 1783 #endif 1784 1785 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1786 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1787 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1788 pxa2xx_spi_runtime_resume, NULL) 1789 }; 1790 1791 static struct platform_driver driver = { 1792 .driver = { 1793 .name = "pxa2xx-spi", 1794 .pm = &pxa2xx_spi_pm_ops, 1795 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1796 }, 1797 .probe = pxa2xx_spi_probe, 1798 .remove = pxa2xx_spi_remove, 1799 .shutdown = pxa2xx_spi_shutdown, 1800 }; 1801 1802 static int __init pxa2xx_spi_init(void) 1803 { 1804 return platform_driver_register(&driver); 1805 } 1806 subsys_initcall(pxa2xx_spi_init); 1807 1808 static void __exit pxa2xx_spi_exit(void) 1809 { 1810 platform_driver_unregister(&driver); 1811 } 1812 module_exit(pxa2xx_spi_exit); 1813