xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 683f65ded66a9a7ff01ed7280804d2132ebfdf7e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76 
77 struct lpss_config {
78 	/* LPSS offset from drv_data->ioaddr */
79 	unsigned offset;
80 	/* Register offsets from drv_data->lpss_base or -1 */
81 	int reg_general;
82 	int reg_ssp;
83 	int reg_cs_ctrl;
84 	int reg_capabilities;
85 	/* FIFO thresholds */
86 	u32 rx_threshold;
87 	u32 tx_threshold_lo;
88 	u32 tx_threshold_hi;
89 	/* Chip select control */
90 	unsigned cs_sel_shift;
91 	unsigned cs_sel_mask;
92 	unsigned cs_num;
93 	/* Quirks */
94 	unsigned cs_clk_stays_gated : 1;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 	{	/* LPSS_CNL_SSP */
155 		.offset = 0x200,
156 		.reg_general = -1,
157 		.reg_ssp = 0x20,
158 		.reg_cs_ctrl = 0x24,
159 		.reg_capabilities = 0xfc,
160 		.rx_threshold = 1,
161 		.tx_threshold_lo = 32,
162 		.tx_threshold_hi = 56,
163 		.cs_sel_shift = 8,
164 		.cs_sel_mask = 3 << 8,
165 		.cs_clk_stays_gated = true,
166 	},
167 };
168 
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174 
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177 	switch (drv_data->ssp_type) {
178 	case LPSS_LPT_SSP:
179 	case LPSS_BYT_SSP:
180 	case LPSS_BSW_SSP:
181 	case LPSS_SPT_SSP:
182 	case LPSS_BXT_SSP:
183 	case LPSS_CNL_SSP:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192 	return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194 
195 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
196 {
197 	switch (drv_data->ssp_type) {
198 	case QUARK_X1000_SSP:
199 		return QUARK_X1000_SSCR1_CHANGE_MASK;
200 	case CE4100_SSP:
201 		return CE4100_SSCR1_CHANGE_MASK;
202 	default:
203 		return SSCR1_CHANGE_MASK;
204 	}
205 }
206 
207 static u32
208 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
209 {
210 	switch (drv_data->ssp_type) {
211 	case QUARK_X1000_SSP:
212 		return RX_THRESH_QUARK_X1000_DFLT;
213 	case CE4100_SSP:
214 		return RX_THRESH_CE4100_DFLT;
215 	default:
216 		return RX_THRESH_DFLT;
217 	}
218 }
219 
220 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
221 {
222 	u32 mask;
223 
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		mask = QUARK_X1000_SSSR_TFL_MASK;
227 		break;
228 	case CE4100_SSP:
229 		mask = CE4100_SSSR_TFL_MASK;
230 		break;
231 	default:
232 		mask = SSSR_TFL_MASK;
233 		break;
234 	}
235 
236 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
237 }
238 
239 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
240 				     u32 *sccr1_reg)
241 {
242 	u32 mask;
243 
244 	switch (drv_data->ssp_type) {
245 	case QUARK_X1000_SSP:
246 		mask = QUARK_X1000_SSCR1_RFT;
247 		break;
248 	case CE4100_SSP:
249 		mask = CE4100_SSCR1_RFT;
250 		break;
251 	default:
252 		mask = SSCR1_RFT;
253 		break;
254 	}
255 	*sccr1_reg &= ~mask;
256 }
257 
258 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
259 				   u32 *sccr1_reg, u32 threshold)
260 {
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
264 		break;
265 	case CE4100_SSP:
266 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
267 		break;
268 	default:
269 		*sccr1_reg |= SSCR1_RxTresh(threshold);
270 		break;
271 	}
272 }
273 
274 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
275 				  u32 clk_div, u8 bits)
276 {
277 	switch (drv_data->ssp_type) {
278 	case QUARK_X1000_SSP:
279 		return clk_div
280 			| QUARK_X1000_SSCR0_Motorola
281 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
282 			| SSCR0_SSE;
283 	default:
284 		return clk_div
285 			| SSCR0_Motorola
286 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
287 			| SSCR0_SSE
288 			| (bits > 16 ? SSCR0_EDSS : 0);
289 	}
290 }
291 
292 /*
293  * Read and write LPSS SSP private registers. Caller must first check that
294  * is_lpss_ssp() returns true before these can be called.
295  */
296 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
297 {
298 	WARN_ON(!drv_data->lpss_base);
299 	return readl(drv_data->lpss_base + offset);
300 }
301 
302 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
303 				  unsigned offset, u32 value)
304 {
305 	WARN_ON(!drv_data->lpss_base);
306 	writel(value, drv_data->lpss_base + offset);
307 }
308 
309 /*
310  * lpss_ssp_setup - perform LPSS SSP specific setup
311  * @drv_data: pointer to the driver private data
312  *
313  * Perform LPSS SSP specific setup. This function must be called first if
314  * one is going to use LPSS SSP private registers.
315  */
316 static void lpss_ssp_setup(struct driver_data *drv_data)
317 {
318 	const struct lpss_config *config;
319 	u32 value;
320 
321 	config = lpss_get_config(drv_data);
322 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
323 
324 	/* Enable software chip select control */
325 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
326 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
327 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
328 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
329 
330 	/* Enable multiblock DMA transfers */
331 	if (drv_data->controller_info->enable_dma) {
332 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
333 
334 		if (config->reg_general >= 0) {
335 			value = __lpss_ssp_read_priv(drv_data,
336 						     config->reg_general);
337 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
338 			__lpss_ssp_write_priv(drv_data,
339 					      config->reg_general, value);
340 		}
341 	}
342 }
343 
344 static void lpss_ssp_select_cs(struct spi_device *spi,
345 			       const struct lpss_config *config)
346 {
347 	struct driver_data *drv_data =
348 		spi_controller_get_devdata(spi->controller);
349 	u32 value, cs;
350 
351 	if (!config->cs_sel_mask)
352 		return;
353 
354 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
355 
356 	cs = spi->chip_select;
357 	cs <<= config->cs_sel_shift;
358 	if (cs != (value & config->cs_sel_mask)) {
359 		/*
360 		 * When switching another chip select output active the
361 		 * output must be selected first and wait 2 ssp_clk cycles
362 		 * before changing state to active. Otherwise a short
363 		 * glitch will occur on the previous chip select since
364 		 * output select is latched but state control is not.
365 		 */
366 		value &= ~config->cs_sel_mask;
367 		value |= cs;
368 		__lpss_ssp_write_priv(drv_data,
369 				      config->reg_cs_ctrl, value);
370 		ndelay(1000000000 /
371 		       (drv_data->controller->max_speed_hz / 2));
372 	}
373 }
374 
375 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
376 {
377 	struct driver_data *drv_data =
378 		spi_controller_get_devdata(spi->controller);
379 	const struct lpss_config *config;
380 	u32 value;
381 
382 	config = lpss_get_config(drv_data);
383 
384 	if (enable)
385 		lpss_ssp_select_cs(spi, config);
386 
387 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
388 	if (enable)
389 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
390 	else
391 		value |= LPSS_CS_CONTROL_CS_HIGH;
392 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
393 	if (config->cs_clk_stays_gated) {
394 		u32 clkgate;
395 
396 		/*
397 		 * Changing CS alone when dynamic clock gating is on won't
398 		 * actually flip CS at that time. This ruins SPI transfers
399 		 * that specify delays, or have no data. Toggle the clock mode
400 		 * to force on briefly to poke the CS pin to move.
401 		 */
402 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
403 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
404 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
405 
406 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
407 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
408 	}
409 }
410 
411 static void cs_assert(struct spi_device *spi)
412 {
413 	struct chip_data *chip = spi_get_ctldata(spi);
414 	struct driver_data *drv_data =
415 		spi_controller_get_devdata(spi->controller);
416 
417 	if (drv_data->ssp_type == CE4100_SSP) {
418 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
419 		return;
420 	}
421 
422 	if (chip->cs_control) {
423 		chip->cs_control(PXA2XX_CS_ASSERT);
424 		return;
425 	}
426 
427 	if (chip->gpiod_cs) {
428 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
429 		return;
430 	}
431 
432 	if (is_lpss_ssp(drv_data))
433 		lpss_ssp_cs_control(spi, true);
434 }
435 
436 static void cs_deassert(struct spi_device *spi)
437 {
438 	struct chip_data *chip = spi_get_ctldata(spi);
439 	struct driver_data *drv_data =
440 		spi_controller_get_devdata(spi->controller);
441 	unsigned long timeout;
442 
443 	if (drv_data->ssp_type == CE4100_SSP)
444 		return;
445 
446 	/* Wait until SSP becomes idle before deasserting the CS */
447 	timeout = jiffies + msecs_to_jiffies(10);
448 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
449 	       !time_after(jiffies, timeout))
450 		cpu_relax();
451 
452 	if (chip->cs_control) {
453 		chip->cs_control(PXA2XX_CS_DEASSERT);
454 		return;
455 	}
456 
457 	if (chip->gpiod_cs) {
458 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
459 		return;
460 	}
461 
462 	if (is_lpss_ssp(drv_data))
463 		lpss_ssp_cs_control(spi, false);
464 }
465 
466 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
467 {
468 	if (level)
469 		cs_deassert(spi);
470 	else
471 		cs_assert(spi);
472 }
473 
474 int pxa2xx_spi_flush(struct driver_data *drv_data)
475 {
476 	unsigned long limit = loops_per_jiffy << 1;
477 
478 	do {
479 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
480 			pxa2xx_spi_read(drv_data, SSDR);
481 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
482 	write_SSSR_CS(drv_data, SSSR_ROR);
483 
484 	return limit;
485 }
486 
487 static int null_writer(struct driver_data *drv_data)
488 {
489 	u8 n_bytes = drv_data->n_bytes;
490 
491 	if (pxa2xx_spi_txfifo_full(drv_data)
492 		|| (drv_data->tx == drv_data->tx_end))
493 		return 0;
494 
495 	pxa2xx_spi_write(drv_data, SSDR, 0);
496 	drv_data->tx += n_bytes;
497 
498 	return 1;
499 }
500 
501 static int null_reader(struct driver_data *drv_data)
502 {
503 	u8 n_bytes = drv_data->n_bytes;
504 
505 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
506 	       && (drv_data->rx < drv_data->rx_end)) {
507 		pxa2xx_spi_read(drv_data, SSDR);
508 		drv_data->rx += n_bytes;
509 	}
510 
511 	return drv_data->rx == drv_data->rx_end;
512 }
513 
514 static int u8_writer(struct driver_data *drv_data)
515 {
516 	if (pxa2xx_spi_txfifo_full(drv_data)
517 		|| (drv_data->tx == drv_data->tx_end))
518 		return 0;
519 
520 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
521 	++drv_data->tx;
522 
523 	return 1;
524 }
525 
526 static int u8_reader(struct driver_data *drv_data)
527 {
528 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
529 	       && (drv_data->rx < drv_data->rx_end)) {
530 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 		++drv_data->rx;
532 	}
533 
534 	return drv_data->rx == drv_data->rx_end;
535 }
536 
537 static int u16_writer(struct driver_data *drv_data)
538 {
539 	if (pxa2xx_spi_txfifo_full(drv_data)
540 		|| (drv_data->tx == drv_data->tx_end))
541 		return 0;
542 
543 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544 	drv_data->tx += 2;
545 
546 	return 1;
547 }
548 
549 static int u16_reader(struct driver_data *drv_data)
550 {
551 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
552 	       && (drv_data->rx < drv_data->rx_end)) {
553 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
554 		drv_data->rx += 2;
555 	}
556 
557 	return drv_data->rx == drv_data->rx_end;
558 }
559 
560 static int u32_writer(struct driver_data *drv_data)
561 {
562 	if (pxa2xx_spi_txfifo_full(drv_data)
563 		|| (drv_data->tx == drv_data->tx_end))
564 		return 0;
565 
566 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
567 	drv_data->tx += 4;
568 
569 	return 1;
570 }
571 
572 static int u32_reader(struct driver_data *drv_data)
573 {
574 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
575 	       && (drv_data->rx < drv_data->rx_end)) {
576 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
577 		drv_data->rx += 4;
578 	}
579 
580 	return drv_data->rx == drv_data->rx_end;
581 }
582 
583 static void reset_sccr1(struct driver_data *drv_data)
584 {
585 	struct chip_data *chip =
586 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
587 	u32 sccr1_reg;
588 
589 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
590 	switch (drv_data->ssp_type) {
591 	case QUARK_X1000_SSP:
592 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
593 		break;
594 	case CE4100_SSP:
595 		sccr1_reg &= ~CE4100_SSCR1_RFT;
596 		break;
597 	default:
598 		sccr1_reg &= ~SSCR1_RFT;
599 		break;
600 	}
601 	sccr1_reg |= chip->threshold;
602 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
603 }
604 
605 static void int_error_stop(struct driver_data *drv_data, const char* msg)
606 {
607 	/* Stop and reset SSP */
608 	write_SSSR_CS(drv_data, drv_data->clear_sr);
609 	reset_sccr1(drv_data);
610 	if (!pxa25x_ssp_comp(drv_data))
611 		pxa2xx_spi_write(drv_data, SSTO, 0);
612 	pxa2xx_spi_flush(drv_data);
613 	pxa2xx_spi_write(drv_data, SSCR0,
614 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
615 
616 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
617 
618 	drv_data->controller->cur_msg->status = -EIO;
619 	spi_finalize_current_transfer(drv_data->controller);
620 }
621 
622 static void int_transfer_complete(struct driver_data *drv_data)
623 {
624 	/* Clear and disable interrupts */
625 	write_SSSR_CS(drv_data, drv_data->clear_sr);
626 	reset_sccr1(drv_data);
627 	if (!pxa25x_ssp_comp(drv_data))
628 		pxa2xx_spi_write(drv_data, SSTO, 0);
629 
630 	spi_finalize_current_transfer(drv_data->controller);
631 }
632 
633 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
634 {
635 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
636 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
637 
638 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
639 
640 	if (irq_status & SSSR_ROR) {
641 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
642 		return IRQ_HANDLED;
643 	}
644 
645 	if (irq_status & SSSR_TUR) {
646 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
647 		return IRQ_HANDLED;
648 	}
649 
650 	if (irq_status & SSSR_TINT) {
651 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
652 		if (drv_data->read(drv_data)) {
653 			int_transfer_complete(drv_data);
654 			return IRQ_HANDLED;
655 		}
656 	}
657 
658 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
659 	do {
660 		if (drv_data->read(drv_data)) {
661 			int_transfer_complete(drv_data);
662 			return IRQ_HANDLED;
663 		}
664 	} while (drv_data->write(drv_data));
665 
666 	if (drv_data->read(drv_data)) {
667 		int_transfer_complete(drv_data);
668 		return IRQ_HANDLED;
669 	}
670 
671 	if (drv_data->tx == drv_data->tx_end) {
672 		u32 bytes_left;
673 		u32 sccr1_reg;
674 
675 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
676 		sccr1_reg &= ~SSCR1_TIE;
677 
678 		/*
679 		 * PXA25x_SSP has no timeout, set up rx threshould for the
680 		 * remaining RX bytes.
681 		 */
682 		if (pxa25x_ssp_comp(drv_data)) {
683 			u32 rx_thre;
684 
685 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
686 
687 			bytes_left = drv_data->rx_end - drv_data->rx;
688 			switch (drv_data->n_bytes) {
689 			case 4:
690 				bytes_left >>= 2;
691 				break;
692 			case 2:
693 				bytes_left >>= 1;
694 				break;
695 			}
696 
697 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
698 			if (rx_thre > bytes_left)
699 				rx_thre = bytes_left;
700 
701 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
702 		}
703 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
704 	}
705 
706 	/* We did something */
707 	return IRQ_HANDLED;
708 }
709 
710 static void handle_bad_msg(struct driver_data *drv_data)
711 {
712 	pxa2xx_spi_write(drv_data, SSCR0,
713 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
714 	pxa2xx_spi_write(drv_data, SSCR1,
715 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
716 	if (!pxa25x_ssp_comp(drv_data))
717 		pxa2xx_spi_write(drv_data, SSTO, 0);
718 	write_SSSR_CS(drv_data, drv_data->clear_sr);
719 
720 	dev_err(&drv_data->pdev->dev,
721 		"bad message state in interrupt handler\n");
722 }
723 
724 static irqreturn_t ssp_int(int irq, void *dev_id)
725 {
726 	struct driver_data *drv_data = dev_id;
727 	u32 sccr1_reg;
728 	u32 mask = drv_data->mask_sr;
729 	u32 status;
730 
731 	/*
732 	 * The IRQ might be shared with other peripherals so we must first
733 	 * check that are we RPM suspended or not. If we are we assume that
734 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735 	 * interrupt is enabled).
736 	 */
737 	if (pm_runtime_suspended(&drv_data->pdev->dev))
738 		return IRQ_NONE;
739 
740 	/*
741 	 * If the device is not yet in RPM suspended state and we get an
742 	 * interrupt that is meant for another device, check if status bits
743 	 * are all set to one. That means that the device is already
744 	 * powered off.
745 	 */
746 	status = pxa2xx_spi_read(drv_data, SSSR);
747 	if (status == ~0)
748 		return IRQ_NONE;
749 
750 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751 
752 	/* Ignore possible writes if we don't need to write */
753 	if (!(sccr1_reg & SSCR1_TIE))
754 		mask &= ~SSSR_TFS;
755 
756 	/* Ignore RX timeout interrupt if it is disabled */
757 	if (!(sccr1_reg & SSCR1_TINTE))
758 		mask &= ~SSSR_TINT;
759 
760 	if (!(status & mask))
761 		return IRQ_NONE;
762 
763 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765 
766 	if (!drv_data->controller->cur_msg) {
767 		handle_bad_msg(drv_data);
768 		/* Never fail */
769 		return IRQ_HANDLED;
770 	}
771 
772 	return drv_data->transfer_handler(drv_data);
773 }
774 
775 /*
776  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777  * input frequency by fractions of 2^24. It also has a divider by 5.
778  *
779  * There are formulas to get baud rate value for given input frequency and
780  * divider parameters, such as DDS_CLK_RATE and SCR:
781  *
782  * Fsys = 200MHz
783  *
784  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786  *
787  * DDS_CLK_RATE either 2^n or 2^n / 5.
788  * SCR is in range 0 .. 255
789  *
790  * Divisor = 5^i * 2^j * 2 * k
791  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792  *       j = [0, 23]     j = 0 iff i = 1
793  *       k = [1, 256]
794  * Special case: j = 0, i = 1: Divisor = 2 / 5
795  *
796  * Accordingly to the specification the recommended values for DDS_CLK_RATE
797  * are:
798  *	Case 1:		2^n, n = [0, 23]
799  *	Case 2:		2^24 * 2 / 5 (0x666666)
800  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801  *
802  * In all cases the lowest possible value is better.
803  *
804  * The function calculates parameters for all cases and chooses the one closest
805  * to the asked baud rate.
806  */
807 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808 {
809 	unsigned long xtal = 200000000;
810 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811 						   see (2) */
812 						/* case 3 */
813 	unsigned long fref1 = fref / 2;		/* case 1 */
814 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815 	unsigned long scale;
816 	unsigned long q, q1, q2;
817 	long r, r1, r2;
818 	u32 mul;
819 
820 	/* Case 1 */
821 
822 	/* Set initial value for DDS_CLK_RATE */
823 	mul = (1 << 24) >> 1;
824 
825 	/* Calculate initial quot */
826 	q1 = DIV_ROUND_UP(fref1, rate);
827 
828 	/* Scale q1 if it's too big */
829 	if (q1 > 256) {
830 		/* Scale q1 to range [1, 512] */
831 		scale = fls_long(q1 - 1);
832 		if (scale > 9) {
833 			q1 >>= scale - 9;
834 			mul >>= scale - 9;
835 		}
836 
837 		/* Round the result if we have a remainder */
838 		q1 += q1 & 1;
839 	}
840 
841 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842 	scale = __ffs(q1);
843 	q1 >>= scale;
844 	mul >>= scale;
845 
846 	/* Get the remainder */
847 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848 
849 	/* Case 2 */
850 
851 	q2 = DIV_ROUND_UP(fref2, rate);
852 	r2 = abs(fref2 / q2 - rate);
853 
854 	/*
855 	 * Choose the best between two: less remainder we have the better. We
856 	 * can't go case 2 if q2 is greater than 256 since SCR register can
857 	 * hold only values 0 .. 255.
858 	 */
859 	if (r2 >= r1 || q2 > 256) {
860 		/* case 1 is better */
861 		r = r1;
862 		q = q1;
863 	} else {
864 		/* case 2 is better */
865 		r = r2;
866 		q = q2;
867 		mul = (1 << 24) * 2 / 5;
868 	}
869 
870 	/* Check case 3 only if the divisor is big enough */
871 	if (fref / rate >= 80) {
872 		u64 fssp;
873 		u32 m;
874 
875 		/* Calculate initial quot */
876 		q1 = DIV_ROUND_UP(fref, rate);
877 		m = (1 << 24) / q1;
878 
879 		/* Get the remainder */
880 		fssp = (u64)fref * m;
881 		do_div(fssp, 1 << 24);
882 		r1 = abs(fssp - rate);
883 
884 		/* Choose this one if it suits better */
885 		if (r1 < r) {
886 			/* case 3 is better */
887 			q = 1;
888 			mul = m;
889 		}
890 	}
891 
892 	*dds = mul;
893 	return q - 1;
894 }
895 
896 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897 {
898 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899 	const struct ssp_device *ssp = drv_data->ssp;
900 
901 	rate = min_t(int, ssp_clk, rate);
902 
903 	/*
904 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905 	 * that the SSP transmission rate can be greater than the device rate
906 	 */
907 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909 	else
910 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911 }
912 
913 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914 					   int rate)
915 {
916 	struct chip_data *chip =
917 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
918 	unsigned int clk_div;
919 
920 	switch (drv_data->ssp_type) {
921 	case QUARK_X1000_SSP:
922 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923 		break;
924 	default:
925 		clk_div = ssp_get_clk_div(drv_data, rate);
926 		break;
927 	}
928 	return clk_div << 8;
929 }
930 
931 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932 			       struct spi_device *spi,
933 			       struct spi_transfer *xfer)
934 {
935 	struct chip_data *chip = spi_get_ctldata(spi);
936 
937 	return chip->enable_dma &&
938 	       xfer->len <= MAX_DMA_LEN &&
939 	       xfer->len >= chip->dma_burst_size;
940 }
941 
942 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943 				   struct spi_device *spi,
944 				   struct spi_transfer *transfer)
945 {
946 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
947 	struct spi_message *message = controller->cur_msg;
948 	struct chip_data *chip = spi_get_ctldata(spi);
949 	u32 dma_thresh = chip->dma_threshold;
950 	u32 dma_burst = chip->dma_burst_size;
951 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
952 	u32 clk_div;
953 	u8 bits;
954 	u32 speed;
955 	u32 cr0;
956 	u32 cr1;
957 	int err;
958 	int dma_mapped;
959 
960 	/* Check if we can DMA this transfer */
961 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
962 
963 		/* reject already-mapped transfers; PIO won't always work */
964 		if (message->is_dma_mapped
965 				|| transfer->rx_dma || transfer->tx_dma) {
966 			dev_err(&spi->dev,
967 				"Mapped transfer length of %u is greater than %d\n",
968 				transfer->len, MAX_DMA_LEN);
969 			return -EINVAL;
970 		}
971 
972 		/* warn ... we force this to PIO mode */
973 		dev_warn_ratelimited(&spi->dev,
974 				     "DMA disabled for transfer length %ld greater than %d\n",
975 				     (long)transfer->len, MAX_DMA_LEN);
976 	}
977 
978 	/* Setup the transfer state based on the type of transfer */
979 	if (pxa2xx_spi_flush(drv_data) == 0) {
980 		dev_err(&spi->dev, "Flush failed\n");
981 		return -EIO;
982 	}
983 	drv_data->n_bytes = chip->n_bytes;
984 	drv_data->tx = (void *)transfer->tx_buf;
985 	drv_data->tx_end = drv_data->tx + transfer->len;
986 	drv_data->rx = transfer->rx_buf;
987 	drv_data->rx_end = drv_data->rx + transfer->len;
988 	drv_data->write = drv_data->tx ? chip->write : null_writer;
989 	drv_data->read = drv_data->rx ? chip->read : null_reader;
990 
991 	/* Change speed and bit per word on a per transfer */
992 	bits = transfer->bits_per_word;
993 	speed = transfer->speed_hz;
994 
995 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
996 
997 	if (bits <= 8) {
998 		drv_data->n_bytes = 1;
999 		drv_data->read = drv_data->read != null_reader ?
1000 					u8_reader : null_reader;
1001 		drv_data->write = drv_data->write != null_writer ?
1002 					u8_writer : null_writer;
1003 	} else if (bits <= 16) {
1004 		drv_data->n_bytes = 2;
1005 		drv_data->read = drv_data->read != null_reader ?
1006 					u16_reader : null_reader;
1007 		drv_data->write = drv_data->write != null_writer ?
1008 					u16_writer : null_writer;
1009 	} else if (bits <= 32) {
1010 		drv_data->n_bytes = 4;
1011 		drv_data->read = drv_data->read != null_reader ?
1012 					u32_reader : null_reader;
1013 		drv_data->write = drv_data->write != null_writer ?
1014 					u32_writer : null_writer;
1015 	}
1016 	/*
1017 	 * if bits/word is changed in dma mode, then must check the
1018 	 * thresholds and burst also
1019 	 */
1020 	if (chip->enable_dma) {
1021 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1022 						spi,
1023 						bits, &dma_burst,
1024 						&dma_thresh))
1025 			dev_warn_ratelimited(&spi->dev,
1026 					     "DMA burst size reduced to match bits_per_word\n");
1027 	}
1028 
1029 	dma_mapped = controller->can_dma &&
1030 		     controller->can_dma(controller, spi, transfer) &&
1031 		     controller->cur_msg_mapped;
1032 	if (dma_mapped) {
1033 
1034 		/* Ensure we have the correct interrupt handler */
1035 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1036 
1037 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1038 		if (err)
1039 			return err;
1040 
1041 		/* Clear status and start DMA engine */
1042 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1043 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1044 
1045 		pxa2xx_spi_dma_start(drv_data);
1046 	} else {
1047 		/* Ensure we have the correct interrupt handler	*/
1048 		drv_data->transfer_handler = interrupt_transfer;
1049 
1050 		/* Clear status  */
1051 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1052 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1053 	}
1054 
1055 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1056 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1057 	if (!pxa25x_ssp_comp(drv_data))
1058 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1059 			controller->max_speed_hz
1060 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1061 			dma_mapped ? "DMA" : "PIO");
1062 	else
1063 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1064 			controller->max_speed_hz / 2
1065 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1066 			dma_mapped ? "DMA" : "PIO");
1067 
1068 	if (is_lpss_ssp(drv_data)) {
1069 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1070 		    != chip->lpss_rx_threshold)
1071 			pxa2xx_spi_write(drv_data, SSIRF,
1072 					 chip->lpss_rx_threshold);
1073 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1074 		    != chip->lpss_tx_threshold)
1075 			pxa2xx_spi_write(drv_data, SSITF,
1076 					 chip->lpss_tx_threshold);
1077 	}
1078 
1079 	if (is_quark_x1000_ssp(drv_data) &&
1080 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1081 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1082 
1083 	/* see if we need to reload the config registers */
1084 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1085 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1086 	    != (cr1 & change_mask)) {
1087 		/* stop the SSP, and update the other bits */
1088 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1089 		if (!pxa25x_ssp_comp(drv_data))
1090 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1091 		/* first set CR1 without interrupt and service enables */
1092 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1093 		/* restart the SSP */
1094 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1095 
1096 	} else {
1097 		if (!pxa25x_ssp_comp(drv_data))
1098 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1099 	}
1100 
1101 	if (drv_data->ssp_type == MMP2_SSP) {
1102 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1103 					& SSSR_TFL_MASK) >> 8;
1104 
1105 		if (tx_level) {
1106 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1107 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1108 								tx_level);
1109 			if (tx_level > transfer->len)
1110 				tx_level = transfer->len;
1111 			drv_data->tx += tx_level;
1112 		}
1113 	}
1114 
1115 	if (spi_controller_is_slave(controller)) {
1116 		while (drv_data->write(drv_data))
1117 			;
1118 		if (drv_data->gpiod_ready) {
1119 			gpiod_set_value(drv_data->gpiod_ready, 1);
1120 			udelay(1);
1121 			gpiod_set_value(drv_data->gpiod_ready, 0);
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * Release the data by enabling service requests and interrupts,
1127 	 * without changing any mode bits
1128 	 */
1129 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1130 
1131 	return 1;
1132 }
1133 
1134 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1135 {
1136 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137 
1138 	/* Stop and reset SSP */
1139 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1140 	reset_sccr1(drv_data);
1141 	if (!pxa25x_ssp_comp(drv_data))
1142 		pxa2xx_spi_write(drv_data, SSTO, 0);
1143 	pxa2xx_spi_flush(drv_data);
1144 	pxa2xx_spi_write(drv_data, SSCR0,
1145 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1146 
1147 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1148 
1149 	drv_data->controller->cur_msg->status = -EINTR;
1150 	spi_finalize_current_transfer(drv_data->controller);
1151 
1152 	return 0;
1153 }
1154 
1155 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1156 				 struct spi_message *msg)
1157 {
1158 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1159 
1160 	/* Disable the SSP */
1161 	pxa2xx_spi_write(drv_data, SSCR0,
1162 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1163 	/* Clear and disable interrupts and service requests */
1164 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1165 	pxa2xx_spi_write(drv_data, SSCR1,
1166 			 pxa2xx_spi_read(drv_data, SSCR1)
1167 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1168 	if (!pxa25x_ssp_comp(drv_data))
1169 		pxa2xx_spi_write(drv_data, SSTO, 0);
1170 
1171 	/*
1172 	 * Stop the DMA if running. Note DMA callback handler may have unset
1173 	 * the dma_running already, which is fine as stopping is not needed
1174 	 * then but we shouldn't rely this flag for anything else than
1175 	 * stopping. For instance to differentiate between PIO and DMA
1176 	 * transfers.
1177 	 */
1178 	if (atomic_read(&drv_data->dma_running))
1179 		pxa2xx_spi_dma_stop(drv_data);
1180 }
1181 
1182 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1183 {
1184 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1185 
1186 	/* Disable the SSP now */
1187 	pxa2xx_spi_write(drv_data, SSCR0,
1188 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1189 
1190 	return 0;
1191 }
1192 
1193 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1194 		    struct pxa2xx_spi_chip *chip_info)
1195 {
1196 	struct driver_data *drv_data =
1197 		spi_controller_get_devdata(spi->controller);
1198 	struct gpio_desc *gpiod;
1199 	int err = 0;
1200 
1201 	if (chip == NULL)
1202 		return 0;
1203 
1204 	if (drv_data->cs_gpiods) {
1205 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1206 		if (gpiod) {
1207 			chip->gpiod_cs = gpiod;
1208 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1209 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1210 		}
1211 
1212 		return 0;
1213 	}
1214 
1215 	if (chip_info == NULL)
1216 		return 0;
1217 
1218 	/* NOTE: setup() can be called multiple times, possibly with
1219 	 * different chip_info, release previously requested GPIO
1220 	 */
1221 	if (chip->gpiod_cs) {
1222 		gpiod_put(chip->gpiod_cs);
1223 		chip->gpiod_cs = NULL;
1224 	}
1225 
1226 	/* If (*cs_control) is provided, ignore GPIO chip select */
1227 	if (chip_info->cs_control) {
1228 		chip->cs_control = chip_info->cs_control;
1229 		return 0;
1230 	}
1231 
1232 	if (gpio_is_valid(chip_info->gpio_cs)) {
1233 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1234 		if (err) {
1235 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1236 				chip_info->gpio_cs);
1237 			return err;
1238 		}
1239 
1240 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1241 		chip->gpiod_cs = gpiod;
1242 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1243 
1244 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1245 	}
1246 
1247 	return err;
1248 }
1249 
1250 static int setup(struct spi_device *spi)
1251 {
1252 	struct pxa2xx_spi_chip *chip_info;
1253 	struct chip_data *chip;
1254 	const struct lpss_config *config;
1255 	struct driver_data *drv_data =
1256 		spi_controller_get_devdata(spi->controller);
1257 	uint tx_thres, tx_hi_thres, rx_thres;
1258 
1259 	switch (drv_data->ssp_type) {
1260 	case QUARK_X1000_SSP:
1261 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1262 		tx_hi_thres = 0;
1263 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1264 		break;
1265 	case CE4100_SSP:
1266 		tx_thres = TX_THRESH_CE4100_DFLT;
1267 		tx_hi_thres = 0;
1268 		rx_thres = RX_THRESH_CE4100_DFLT;
1269 		break;
1270 	case LPSS_LPT_SSP:
1271 	case LPSS_BYT_SSP:
1272 	case LPSS_BSW_SSP:
1273 	case LPSS_SPT_SSP:
1274 	case LPSS_BXT_SSP:
1275 	case LPSS_CNL_SSP:
1276 		config = lpss_get_config(drv_data);
1277 		tx_thres = config->tx_threshold_lo;
1278 		tx_hi_thres = config->tx_threshold_hi;
1279 		rx_thres = config->rx_threshold;
1280 		break;
1281 	default:
1282 		tx_hi_thres = 0;
1283 		if (spi_controller_is_slave(drv_data->controller)) {
1284 			tx_thres = 1;
1285 			rx_thres = 2;
1286 		} else {
1287 			tx_thres = TX_THRESH_DFLT;
1288 			rx_thres = RX_THRESH_DFLT;
1289 		}
1290 		break;
1291 	}
1292 
1293 	/* Only alloc on first setup */
1294 	chip = spi_get_ctldata(spi);
1295 	if (!chip) {
1296 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1297 		if (!chip)
1298 			return -ENOMEM;
1299 
1300 		if (drv_data->ssp_type == CE4100_SSP) {
1301 			if (spi->chip_select > 4) {
1302 				dev_err(&spi->dev,
1303 					"failed setup: cs number must not be > 4.\n");
1304 				kfree(chip);
1305 				return -EINVAL;
1306 			}
1307 
1308 			chip->frm = spi->chip_select;
1309 		}
1310 		chip->enable_dma = drv_data->controller_info->enable_dma;
1311 		chip->timeout = TIMOUT_DFLT;
1312 	}
1313 
1314 	/* protocol drivers may change the chip settings, so...
1315 	 * if chip_info exists, use it */
1316 	chip_info = spi->controller_data;
1317 
1318 	/* chip_info isn't always needed */
1319 	chip->cr1 = 0;
1320 	if (chip_info) {
1321 		if (chip_info->timeout)
1322 			chip->timeout = chip_info->timeout;
1323 		if (chip_info->tx_threshold)
1324 			tx_thres = chip_info->tx_threshold;
1325 		if (chip_info->tx_hi_threshold)
1326 			tx_hi_thres = chip_info->tx_hi_threshold;
1327 		if (chip_info->rx_threshold)
1328 			rx_thres = chip_info->rx_threshold;
1329 		chip->dma_threshold = 0;
1330 		if (chip_info->enable_loopback)
1331 			chip->cr1 = SSCR1_LBM;
1332 	}
1333 	if (spi_controller_is_slave(drv_data->controller)) {
1334 		chip->cr1 |= SSCR1_SCFR;
1335 		chip->cr1 |= SSCR1_SCLKDIR;
1336 		chip->cr1 |= SSCR1_SFRMDIR;
1337 		chip->cr1 |= SSCR1_SPH;
1338 	}
1339 
1340 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1341 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1342 				| SSITF_TxHiThresh(tx_hi_thres);
1343 
1344 	/* set dma burst and threshold outside of chip_info path so that if
1345 	 * chip_info goes away after setting chip->enable_dma, the
1346 	 * burst and threshold can still respond to changes in bits_per_word */
1347 	if (chip->enable_dma) {
1348 		/* set up legal burst and threshold for dma */
1349 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1350 						spi->bits_per_word,
1351 						&chip->dma_burst_size,
1352 						&chip->dma_threshold)) {
1353 			dev_warn(&spi->dev,
1354 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1355 		}
1356 		dev_dbg(&spi->dev,
1357 			"in setup: DMA burst size set to %u\n",
1358 			chip->dma_burst_size);
1359 	}
1360 
1361 	switch (drv_data->ssp_type) {
1362 	case QUARK_X1000_SSP:
1363 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1364 				   & QUARK_X1000_SSCR1_RFT)
1365 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1366 				   & QUARK_X1000_SSCR1_TFT);
1367 		break;
1368 	case CE4100_SSP:
1369 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1370 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1371 		break;
1372 	default:
1373 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1374 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1375 		break;
1376 	}
1377 
1378 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1379 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1380 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1381 
1382 	if (spi->mode & SPI_LOOP)
1383 		chip->cr1 |= SSCR1_LBM;
1384 
1385 	if (spi->bits_per_word <= 8) {
1386 		chip->n_bytes = 1;
1387 		chip->read = u8_reader;
1388 		chip->write = u8_writer;
1389 	} else if (spi->bits_per_word <= 16) {
1390 		chip->n_bytes = 2;
1391 		chip->read = u16_reader;
1392 		chip->write = u16_writer;
1393 	} else if (spi->bits_per_word <= 32) {
1394 		chip->n_bytes = 4;
1395 		chip->read = u32_reader;
1396 		chip->write = u32_writer;
1397 	}
1398 
1399 	spi_set_ctldata(spi, chip);
1400 
1401 	if (drv_data->ssp_type == CE4100_SSP)
1402 		return 0;
1403 
1404 	return setup_cs(spi, chip, chip_info);
1405 }
1406 
1407 static void cleanup(struct spi_device *spi)
1408 {
1409 	struct chip_data *chip = spi_get_ctldata(spi);
1410 	struct driver_data *drv_data =
1411 		spi_controller_get_devdata(spi->controller);
1412 
1413 	if (!chip)
1414 		return;
1415 
1416 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1417 	    chip->gpiod_cs)
1418 		gpiod_put(chip->gpiod_cs);
1419 
1420 	kfree(chip);
1421 }
1422 
1423 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1424 	{ "INT33C0", LPSS_LPT_SSP },
1425 	{ "INT33C1", LPSS_LPT_SSP },
1426 	{ "INT3430", LPSS_LPT_SSP },
1427 	{ "INT3431", LPSS_LPT_SSP },
1428 	{ "80860F0E", LPSS_BYT_SSP },
1429 	{ "8086228E", LPSS_BSW_SSP },
1430 	{ },
1431 };
1432 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1433 
1434 /*
1435  * PCI IDs of compound devices that integrate both host controller and private
1436  * integrated DMA engine. Please note these are not used in module
1437  * autoloading and probing in this module but matching the LPSS SSP type.
1438  */
1439 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1440 	/* SPT-LP */
1441 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1442 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1443 	/* SPT-H */
1444 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1445 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1446 	/* KBL-H */
1447 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1449 	/* BXT A-Step */
1450 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1451 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1453 	/* BXT B-Step */
1454 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1455 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1457 	/* GLK */
1458 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1461 	/* ICL-LP */
1462 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1465 	/* EHL */
1466 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1468 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1469 	/* JSL */
1470 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1471 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1472 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1473 	/* APL */
1474 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1475 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1476 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1477 	/* CNL-LP */
1478 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1479 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1480 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1481 	/* CNL-H */
1482 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1483 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1485 	/* CML-LP */
1486 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1487 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1488 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1489 	/* CML-H */
1490 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1491 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1492 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1493 	/* TGL-LP */
1494 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1495 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1496 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1497 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1498 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1499 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1500 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1501 	{ },
1502 };
1503 
1504 static const struct of_device_id pxa2xx_spi_of_match[] = {
1505 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1506 	{},
1507 };
1508 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1509 
1510 #ifdef CONFIG_ACPI
1511 
1512 static int pxa2xx_spi_get_port_id(struct device *dev)
1513 {
1514 	struct acpi_device *adev;
1515 	unsigned int devid;
1516 	int port_id = -1;
1517 
1518 	adev = ACPI_COMPANION(dev);
1519 	if (adev && adev->pnp.unique_id &&
1520 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1521 		port_id = devid;
1522 	return port_id;
1523 }
1524 
1525 #else /* !CONFIG_ACPI */
1526 
1527 static int pxa2xx_spi_get_port_id(struct device *dev)
1528 {
1529 	return -1;
1530 }
1531 
1532 #endif /* CONFIG_ACPI */
1533 
1534 
1535 #ifdef CONFIG_PCI
1536 
1537 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1538 {
1539 	return param == chan->device->dev;
1540 }
1541 
1542 #endif /* CONFIG_PCI */
1543 
1544 static struct pxa2xx_spi_controller *
1545 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1546 {
1547 	struct pxa2xx_spi_controller *pdata;
1548 	struct ssp_device *ssp;
1549 	struct resource *res;
1550 	struct device *parent = pdev->dev.parent;
1551 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1552 	const struct pci_device_id *pcidev_id = NULL;
1553 	enum pxa_ssp_type type;
1554 	const void *match;
1555 
1556 	if (pcidev)
1557 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1558 
1559 	match = device_get_match_data(&pdev->dev);
1560 	if (match)
1561 		type = (enum pxa_ssp_type)match;
1562 	else if (pcidev_id)
1563 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1564 	else
1565 		return NULL;
1566 
1567 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1568 	if (!pdata)
1569 		return NULL;
1570 
1571 	ssp = &pdata->ssp;
1572 
1573 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1574 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1575 	if (IS_ERR(ssp->mmio_base))
1576 		return NULL;
1577 
1578 	ssp->phys_base = res->start;
1579 
1580 #ifdef CONFIG_PCI
1581 	if (pcidev_id) {
1582 		pdata->tx_param = parent;
1583 		pdata->rx_param = parent;
1584 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1585 	}
1586 #endif
1587 
1588 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1589 	if (IS_ERR(ssp->clk))
1590 		return NULL;
1591 
1592 	ssp->irq = platform_get_irq(pdev, 0);
1593 	if (ssp->irq < 0)
1594 		return NULL;
1595 
1596 	ssp->type = type;
1597 	ssp->dev = &pdev->dev;
1598 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1599 
1600 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1601 	pdata->num_chipselect = 1;
1602 	pdata->enable_dma = true;
1603 	pdata->dma_burst_size = 1;
1604 
1605 	return pdata;
1606 }
1607 
1608 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1609 				      unsigned int cs)
1610 {
1611 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1612 
1613 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1614 		switch (drv_data->ssp_type) {
1615 		/*
1616 		 * For Atoms the ACPI DeviceSelection used by the Windows
1617 		 * driver starts from 1 instead of 0 so translate it here
1618 		 * to match what Linux expects.
1619 		 */
1620 		case LPSS_BYT_SSP:
1621 		case LPSS_BSW_SSP:
1622 			return cs - 1;
1623 
1624 		default:
1625 			break;
1626 		}
1627 	}
1628 
1629 	return cs;
1630 }
1631 
1632 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1633 {
1634 	return MAX_DMA_LEN;
1635 }
1636 
1637 static int pxa2xx_spi_probe(struct platform_device *pdev)
1638 {
1639 	struct device *dev = &pdev->dev;
1640 	struct pxa2xx_spi_controller *platform_info;
1641 	struct spi_controller *controller;
1642 	struct driver_data *drv_data;
1643 	struct ssp_device *ssp;
1644 	const struct lpss_config *config;
1645 	int status, count;
1646 	u32 tmp;
1647 
1648 	platform_info = dev_get_platdata(dev);
1649 	if (!platform_info) {
1650 		platform_info = pxa2xx_spi_init_pdata(pdev);
1651 		if (!platform_info) {
1652 			dev_err(&pdev->dev, "missing platform data\n");
1653 			return -ENODEV;
1654 		}
1655 	}
1656 
1657 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1658 	if (!ssp)
1659 		ssp = &platform_info->ssp;
1660 
1661 	if (!ssp->mmio_base) {
1662 		dev_err(&pdev->dev, "failed to get ssp\n");
1663 		return -ENODEV;
1664 	}
1665 
1666 	if (platform_info->is_slave)
1667 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1668 	else
1669 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1670 
1671 	if (!controller) {
1672 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1673 		pxa_ssp_free(ssp);
1674 		return -ENOMEM;
1675 	}
1676 	drv_data = spi_controller_get_devdata(controller);
1677 	drv_data->controller = controller;
1678 	drv_data->controller_info = platform_info;
1679 	drv_data->pdev = pdev;
1680 	drv_data->ssp = ssp;
1681 
1682 	controller->dev.of_node = pdev->dev.of_node;
1683 	/* the spi->mode bits understood by this driver: */
1684 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1685 
1686 	controller->bus_num = ssp->port_id;
1687 	controller->dma_alignment = DMA_ALIGNMENT;
1688 	controller->cleanup = cleanup;
1689 	controller->setup = setup;
1690 	controller->set_cs = pxa2xx_spi_set_cs;
1691 	controller->transfer_one = pxa2xx_spi_transfer_one;
1692 	controller->slave_abort = pxa2xx_spi_slave_abort;
1693 	controller->handle_err = pxa2xx_spi_handle_err;
1694 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1695 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1696 	controller->auto_runtime_pm = true;
1697 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1698 
1699 	drv_data->ssp_type = ssp->type;
1700 
1701 	drv_data->ioaddr = ssp->mmio_base;
1702 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1703 	if (pxa25x_ssp_comp(drv_data)) {
1704 		switch (drv_data->ssp_type) {
1705 		case QUARK_X1000_SSP:
1706 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1707 			break;
1708 		default:
1709 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1710 			break;
1711 		}
1712 
1713 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1714 		drv_data->dma_cr1 = 0;
1715 		drv_data->clear_sr = SSSR_ROR;
1716 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1717 	} else {
1718 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1719 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1720 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1721 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1722 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1723 						| SSSR_ROR | SSSR_TUR;
1724 	}
1725 
1726 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1727 			drv_data);
1728 	if (status < 0) {
1729 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1730 		goto out_error_controller_alloc;
1731 	}
1732 
1733 	/* Setup DMA if requested */
1734 	if (platform_info->enable_dma) {
1735 		status = pxa2xx_spi_dma_setup(drv_data);
1736 		if (status) {
1737 			dev_warn(dev, "no DMA channels available, using PIO\n");
1738 			platform_info->enable_dma = false;
1739 		} else {
1740 			controller->can_dma = pxa2xx_spi_can_dma;
1741 			controller->max_dma_len = MAX_DMA_LEN;
1742 			controller->max_transfer_size =
1743 				pxa2xx_spi_max_dma_transfer_size;
1744 		}
1745 	}
1746 
1747 	/* Enable SOC clock */
1748 	status = clk_prepare_enable(ssp->clk);
1749 	if (status)
1750 		goto out_error_dma_irq_alloc;
1751 
1752 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1753 	/*
1754 	 * Set minimum speed for all other platforms than Intel Quark which is
1755 	 * able do under 1 Hz transfers.
1756 	 */
1757 	if (!pxa25x_ssp_comp(drv_data))
1758 		controller->min_speed_hz =
1759 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1760 	else if (!is_quark_x1000_ssp(drv_data))
1761 		controller->min_speed_hz =
1762 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1763 
1764 	/* Load default SSP configuration */
1765 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1766 	switch (drv_data->ssp_type) {
1767 	case QUARK_X1000_SSP:
1768 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1769 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1770 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1771 
1772 		/* using the Motorola SPI protocol and use 8 bit frame */
1773 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1774 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1775 		break;
1776 	case CE4100_SSP:
1777 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1778 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1779 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1780 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1781 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1782 		break;
1783 	default:
1784 
1785 		if (spi_controller_is_slave(controller)) {
1786 			tmp = SSCR1_SCFR |
1787 			      SSCR1_SCLKDIR |
1788 			      SSCR1_SFRMDIR |
1789 			      SSCR1_RxTresh(2) |
1790 			      SSCR1_TxTresh(1) |
1791 			      SSCR1_SPH;
1792 		} else {
1793 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1794 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1795 		}
1796 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1797 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1798 		if (!spi_controller_is_slave(controller))
1799 			tmp |= SSCR0_SCR(2);
1800 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1801 		break;
1802 	}
1803 
1804 	if (!pxa25x_ssp_comp(drv_data))
1805 		pxa2xx_spi_write(drv_data, SSTO, 0);
1806 
1807 	if (!is_quark_x1000_ssp(drv_data))
1808 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1809 
1810 	if (is_lpss_ssp(drv_data)) {
1811 		lpss_ssp_setup(drv_data);
1812 		config = lpss_get_config(drv_data);
1813 		if (config->reg_capabilities >= 0) {
1814 			tmp = __lpss_ssp_read_priv(drv_data,
1815 						   config->reg_capabilities);
1816 			tmp &= LPSS_CAPS_CS_EN_MASK;
1817 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1818 			platform_info->num_chipselect = ffz(tmp);
1819 		} else if (config->cs_num) {
1820 			platform_info->num_chipselect = config->cs_num;
1821 		}
1822 	}
1823 	controller->num_chipselect = platform_info->num_chipselect;
1824 
1825 	count = gpiod_count(&pdev->dev, "cs");
1826 	if (count > 0) {
1827 		int i;
1828 
1829 		controller->num_chipselect = max_t(int, count,
1830 			controller->num_chipselect);
1831 
1832 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1833 			controller->num_chipselect, sizeof(struct gpio_desc *),
1834 			GFP_KERNEL);
1835 		if (!drv_data->cs_gpiods) {
1836 			status = -ENOMEM;
1837 			goto out_error_clock_enabled;
1838 		}
1839 
1840 		for (i = 0; i < controller->num_chipselect; i++) {
1841 			struct gpio_desc *gpiod;
1842 
1843 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1844 			if (IS_ERR(gpiod)) {
1845 				/* Means use native chip select */
1846 				if (PTR_ERR(gpiod) == -ENOENT)
1847 					continue;
1848 
1849 				status = PTR_ERR(gpiod);
1850 				goto out_error_clock_enabled;
1851 			} else {
1852 				drv_data->cs_gpiods[i] = gpiod;
1853 			}
1854 		}
1855 	}
1856 
1857 	if (platform_info->is_slave) {
1858 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1859 						"ready", GPIOD_OUT_LOW);
1860 		if (IS_ERR(drv_data->gpiod_ready)) {
1861 			status = PTR_ERR(drv_data->gpiod_ready);
1862 			goto out_error_clock_enabled;
1863 		}
1864 	}
1865 
1866 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1867 	pm_runtime_use_autosuspend(&pdev->dev);
1868 	pm_runtime_set_active(&pdev->dev);
1869 	pm_runtime_enable(&pdev->dev);
1870 
1871 	/* Register with the SPI framework */
1872 	platform_set_drvdata(pdev, drv_data);
1873 	status = devm_spi_register_controller(&pdev->dev, controller);
1874 	if (status != 0) {
1875 		dev_err(&pdev->dev, "problem registering spi controller\n");
1876 		goto out_error_pm_runtime_enabled;
1877 	}
1878 
1879 	return status;
1880 
1881 out_error_pm_runtime_enabled:
1882 	pm_runtime_put_noidle(&pdev->dev);
1883 	pm_runtime_disable(&pdev->dev);
1884 
1885 out_error_clock_enabled:
1886 	clk_disable_unprepare(ssp->clk);
1887 
1888 out_error_dma_irq_alloc:
1889 	pxa2xx_spi_dma_release(drv_data);
1890 	free_irq(ssp->irq, drv_data);
1891 
1892 out_error_controller_alloc:
1893 	spi_controller_put(controller);
1894 	pxa_ssp_free(ssp);
1895 	return status;
1896 }
1897 
1898 static int pxa2xx_spi_remove(struct platform_device *pdev)
1899 {
1900 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1901 	struct ssp_device *ssp;
1902 
1903 	if (!drv_data)
1904 		return 0;
1905 	ssp = drv_data->ssp;
1906 
1907 	pm_runtime_get_sync(&pdev->dev);
1908 
1909 	/* Disable the SSP at the peripheral and SOC level */
1910 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1911 	clk_disable_unprepare(ssp->clk);
1912 
1913 	/* Release DMA */
1914 	if (drv_data->controller_info->enable_dma)
1915 		pxa2xx_spi_dma_release(drv_data);
1916 
1917 	pm_runtime_put_noidle(&pdev->dev);
1918 	pm_runtime_disable(&pdev->dev);
1919 
1920 	/* Release IRQ */
1921 	free_irq(ssp->irq, drv_data);
1922 
1923 	/* Release SSP */
1924 	pxa_ssp_free(ssp);
1925 
1926 	return 0;
1927 }
1928 
1929 #ifdef CONFIG_PM_SLEEP
1930 static int pxa2xx_spi_suspend(struct device *dev)
1931 {
1932 	struct driver_data *drv_data = dev_get_drvdata(dev);
1933 	struct ssp_device *ssp = drv_data->ssp;
1934 	int status;
1935 
1936 	status = spi_controller_suspend(drv_data->controller);
1937 	if (status != 0)
1938 		return status;
1939 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1940 
1941 	if (!pm_runtime_suspended(dev))
1942 		clk_disable_unprepare(ssp->clk);
1943 
1944 	return 0;
1945 }
1946 
1947 static int pxa2xx_spi_resume(struct device *dev)
1948 {
1949 	struct driver_data *drv_data = dev_get_drvdata(dev);
1950 	struct ssp_device *ssp = drv_data->ssp;
1951 	int status;
1952 
1953 	/* Enable the SSP clock */
1954 	if (!pm_runtime_suspended(dev)) {
1955 		status = clk_prepare_enable(ssp->clk);
1956 		if (status)
1957 			return status;
1958 	}
1959 
1960 	/* Start the queue running */
1961 	return spi_controller_resume(drv_data->controller);
1962 }
1963 #endif
1964 
1965 #ifdef CONFIG_PM
1966 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1967 {
1968 	struct driver_data *drv_data = dev_get_drvdata(dev);
1969 
1970 	clk_disable_unprepare(drv_data->ssp->clk);
1971 	return 0;
1972 }
1973 
1974 static int pxa2xx_spi_runtime_resume(struct device *dev)
1975 {
1976 	struct driver_data *drv_data = dev_get_drvdata(dev);
1977 	int status;
1978 
1979 	status = clk_prepare_enable(drv_data->ssp->clk);
1980 	return status;
1981 }
1982 #endif
1983 
1984 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1985 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1986 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1987 			   pxa2xx_spi_runtime_resume, NULL)
1988 };
1989 
1990 static struct platform_driver driver = {
1991 	.driver = {
1992 		.name	= "pxa2xx-spi",
1993 		.pm	= &pxa2xx_spi_pm_ops,
1994 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1995 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1996 	},
1997 	.probe = pxa2xx_spi_probe,
1998 	.remove = pxa2xx_spi_remove,
1999 };
2000 
2001 static int __init pxa2xx_spi_init(void)
2002 {
2003 	return platform_driver_register(&driver);
2004 }
2005 subsys_initcall(pxa2xx_spi_init);
2006 
2007 static void __exit pxa2xx_spi_exit(void)
2008 {
2009 	platform_driver_unregister(&driver);
2010 }
2011 module_exit(pxa2xx_spi_exit);
2012 
2013 MODULE_SOFTDEP("pre: dw_dmac");
2014