xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 42c80cd439a938569a86f6ae135d38c1cda5569b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/gpio.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/of.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 
30 #include <linux/spi/pxa2xx_spi.h>
31 #include <linux/spi/spi.h>
32 
33 #include "spi-pxa2xx.h"
34 
35 MODULE_AUTHOR("Stephen Street");
36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37 MODULE_LICENSE("GPL");
38 MODULE_ALIAS("platform:pxa2xx-spi");
39 
40 #define TIMOUT_DFLT		1000
41 
42 /*
43  * for testing SSCR1 changes that require SSP restart, basically
44  * everything except the service and interrupt enables, the pxa270 developer
45  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46  * list, but the PXA255 dev man says all bits without really meaning the
47  * service and interrupt enables
48  */
49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55 
56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57 				| QUARK_X1000_SSCR1_EFWR	\
58 				| QUARK_X1000_SSCR1_RFT		\
59 				| QUARK_X1000_SSCR1_TFT		\
60 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 
62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 	/* Quirks */
96 	unsigned cs_clk_stays_gated : 1;
97 };
98 
99 /* Keep these sorted with enum pxa_ssp_type */
100 static const struct lpss_config lpss_platforms[] = {
101 	{	/* LPSS_LPT_SSP */
102 		.offset = 0x800,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BYT_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 	},
121 	{	/* LPSS_BSW_SSP */
122 		.offset = 0x400,
123 		.reg_general = 0x08,
124 		.reg_ssp = 0x0c,
125 		.reg_cs_ctrl = 0x18,
126 		.reg_capabilities = -1,
127 		.rx_threshold = 64,
128 		.tx_threshold_lo = 160,
129 		.tx_threshold_hi = 224,
130 		.cs_sel_shift = 2,
131 		.cs_sel_mask = 1 << 2,
132 		.cs_num = 2,
133 	},
134 	{	/* LPSS_SPT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = -1,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 32,
142 		.tx_threshold_hi = 56,
143 	},
144 	{	/* LPSS_BXT_SSP */
145 		.offset = 0x200,
146 		.reg_general = -1,
147 		.reg_ssp = 0x20,
148 		.reg_cs_ctrl = 0x24,
149 		.reg_capabilities = 0xfc,
150 		.rx_threshold = 1,
151 		.tx_threshold_lo = 16,
152 		.tx_threshold_hi = 48,
153 		.cs_sel_shift = 8,
154 		.cs_sel_mask = 3 << 8,
155 		.cs_clk_stays_gated = true,
156 	},
157 	{	/* LPSS_CNL_SSP */
158 		.offset = 0x200,
159 		.reg_general = -1,
160 		.reg_ssp = 0x20,
161 		.reg_cs_ctrl = 0x24,
162 		.reg_capabilities = 0xfc,
163 		.rx_threshold = 1,
164 		.tx_threshold_lo = 32,
165 		.tx_threshold_hi = 56,
166 		.cs_sel_shift = 8,
167 		.cs_sel_mask = 3 << 8,
168 		.cs_clk_stays_gated = true,
169 	},
170 };
171 
172 static inline const struct lpss_config
173 *lpss_get_config(const struct driver_data *drv_data)
174 {
175 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176 }
177 
178 static bool is_lpss_ssp(const struct driver_data *drv_data)
179 {
180 	switch (drv_data->ssp_type) {
181 	case LPSS_LPT_SSP:
182 	case LPSS_BYT_SSP:
183 	case LPSS_BSW_SSP:
184 	case LPSS_SPT_SSP:
185 	case LPSS_BXT_SSP:
186 	case LPSS_CNL_SSP:
187 		return true;
188 	default:
189 		return false;
190 	}
191 }
192 
193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194 {
195 	return drv_data->ssp_type == QUARK_X1000_SSP;
196 }
197 
198 static bool is_mmp2_ssp(const struct driver_data *drv_data)
199 {
200 	return drv_data->ssp_type == MMP2_SSP;
201 }
202 
203 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
204 {
205 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
206 		pxa2xx_spi_write(drv_data, reg, value & mask);
207 }
208 
209 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
210 {
211 	switch (drv_data->ssp_type) {
212 	case QUARK_X1000_SSP:
213 		return QUARK_X1000_SSCR1_CHANGE_MASK;
214 	case CE4100_SSP:
215 		return CE4100_SSCR1_CHANGE_MASK;
216 	default:
217 		return SSCR1_CHANGE_MASK;
218 	}
219 }
220 
221 static u32
222 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
223 {
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		return RX_THRESH_QUARK_X1000_DFLT;
227 	case CE4100_SSP:
228 		return RX_THRESH_CE4100_DFLT;
229 	default:
230 		return RX_THRESH_DFLT;
231 	}
232 }
233 
234 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
235 {
236 	u32 mask;
237 
238 	switch (drv_data->ssp_type) {
239 	case QUARK_X1000_SSP:
240 		mask = QUARK_X1000_SSSR_TFL_MASK;
241 		break;
242 	case CE4100_SSP:
243 		mask = CE4100_SSSR_TFL_MASK;
244 		break;
245 	default:
246 		mask = SSSR_TFL_MASK;
247 		break;
248 	}
249 
250 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
251 }
252 
253 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
254 				     u32 *sccr1_reg)
255 {
256 	u32 mask;
257 
258 	switch (drv_data->ssp_type) {
259 	case QUARK_X1000_SSP:
260 		mask = QUARK_X1000_SSCR1_RFT;
261 		break;
262 	case CE4100_SSP:
263 		mask = CE4100_SSCR1_RFT;
264 		break;
265 	default:
266 		mask = SSCR1_RFT;
267 		break;
268 	}
269 	*sccr1_reg &= ~mask;
270 }
271 
272 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
273 				   u32 *sccr1_reg, u32 threshold)
274 {
275 	switch (drv_data->ssp_type) {
276 	case QUARK_X1000_SSP:
277 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
278 		break;
279 	case CE4100_SSP:
280 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
281 		break;
282 	default:
283 		*sccr1_reg |= SSCR1_RxTresh(threshold);
284 		break;
285 	}
286 }
287 
288 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
289 				  u32 clk_div, u8 bits)
290 {
291 	switch (drv_data->ssp_type) {
292 	case QUARK_X1000_SSP:
293 		return clk_div
294 			| QUARK_X1000_SSCR0_Motorola
295 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
296 	default:
297 		return clk_div
298 			| SSCR0_Motorola
299 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
300 			| (bits > 16 ? SSCR0_EDSS : 0);
301 	}
302 }
303 
304 /*
305  * Read and write LPSS SSP private registers. Caller must first check that
306  * is_lpss_ssp() returns true before these can be called.
307  */
308 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
309 {
310 	WARN_ON(!drv_data->lpss_base);
311 	return readl(drv_data->lpss_base + offset);
312 }
313 
314 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
315 				  unsigned offset, u32 value)
316 {
317 	WARN_ON(!drv_data->lpss_base);
318 	writel(value, drv_data->lpss_base + offset);
319 }
320 
321 /*
322  * lpss_ssp_setup - perform LPSS SSP specific setup
323  * @drv_data: pointer to the driver private data
324  *
325  * Perform LPSS SSP specific setup. This function must be called first if
326  * one is going to use LPSS SSP private registers.
327  */
328 static void lpss_ssp_setup(struct driver_data *drv_data)
329 {
330 	const struct lpss_config *config;
331 	u32 value;
332 
333 	config = lpss_get_config(drv_data);
334 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
335 
336 	/* Enable software chip select control */
337 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
338 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
339 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
340 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
341 
342 	/* Enable multiblock DMA transfers */
343 	if (drv_data->controller_info->enable_dma) {
344 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
345 
346 		if (config->reg_general >= 0) {
347 			value = __lpss_ssp_read_priv(drv_data,
348 						     config->reg_general);
349 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
350 			__lpss_ssp_write_priv(drv_data,
351 					      config->reg_general, value);
352 		}
353 	}
354 }
355 
356 static void lpss_ssp_select_cs(struct spi_device *spi,
357 			       const struct lpss_config *config)
358 {
359 	struct driver_data *drv_data =
360 		spi_controller_get_devdata(spi->controller);
361 	u32 value, cs;
362 
363 	if (!config->cs_sel_mask)
364 		return;
365 
366 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
367 
368 	cs = spi->chip_select;
369 	cs <<= config->cs_sel_shift;
370 	if (cs != (value & config->cs_sel_mask)) {
371 		/*
372 		 * When switching another chip select output active the
373 		 * output must be selected first and wait 2 ssp_clk cycles
374 		 * before changing state to active. Otherwise a short
375 		 * glitch will occur on the previous chip select since
376 		 * output select is latched but state control is not.
377 		 */
378 		value &= ~config->cs_sel_mask;
379 		value |= cs;
380 		__lpss_ssp_write_priv(drv_data,
381 				      config->reg_cs_ctrl, value);
382 		ndelay(1000000000 /
383 		       (drv_data->controller->max_speed_hz / 2));
384 	}
385 }
386 
387 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
388 {
389 	struct driver_data *drv_data =
390 		spi_controller_get_devdata(spi->controller);
391 	const struct lpss_config *config;
392 	u32 value;
393 
394 	config = lpss_get_config(drv_data);
395 
396 	if (enable)
397 		lpss_ssp_select_cs(spi, config);
398 
399 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
400 	if (enable)
401 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
402 	else
403 		value |= LPSS_CS_CONTROL_CS_HIGH;
404 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
405 	if (config->cs_clk_stays_gated) {
406 		u32 clkgate;
407 
408 		/*
409 		 * Changing CS alone when dynamic clock gating is on won't
410 		 * actually flip CS at that time. This ruins SPI transfers
411 		 * that specify delays, or have no data. Toggle the clock mode
412 		 * to force on briefly to poke the CS pin to move.
413 		 */
414 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
415 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
416 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
417 
418 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
419 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
420 	}
421 }
422 
423 static void cs_assert(struct spi_device *spi)
424 {
425 	struct chip_data *chip = spi_get_ctldata(spi);
426 	struct driver_data *drv_data =
427 		spi_controller_get_devdata(spi->controller);
428 
429 	if (drv_data->ssp_type == CE4100_SSP) {
430 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
431 		return;
432 	}
433 
434 	if (chip->cs_control) {
435 		chip->cs_control(PXA2XX_CS_ASSERT);
436 		return;
437 	}
438 
439 	if (chip->gpiod_cs) {
440 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
441 		return;
442 	}
443 
444 	if (is_lpss_ssp(drv_data))
445 		lpss_ssp_cs_control(spi, true);
446 }
447 
448 static void cs_deassert(struct spi_device *spi)
449 {
450 	struct chip_data *chip = spi_get_ctldata(spi);
451 	struct driver_data *drv_data =
452 		spi_controller_get_devdata(spi->controller);
453 	unsigned long timeout;
454 
455 	if (drv_data->ssp_type == CE4100_SSP)
456 		return;
457 
458 	/* Wait until SSP becomes idle before deasserting the CS */
459 	timeout = jiffies + msecs_to_jiffies(10);
460 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
461 	       !time_after(jiffies, timeout))
462 		cpu_relax();
463 
464 	if (chip->cs_control) {
465 		chip->cs_control(PXA2XX_CS_DEASSERT);
466 		return;
467 	}
468 
469 	if (chip->gpiod_cs) {
470 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
471 		return;
472 	}
473 
474 	if (is_lpss_ssp(drv_data))
475 		lpss_ssp_cs_control(spi, false);
476 }
477 
478 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
479 {
480 	if (level)
481 		cs_deassert(spi);
482 	else
483 		cs_assert(spi);
484 }
485 
486 int pxa2xx_spi_flush(struct driver_data *drv_data)
487 {
488 	unsigned long limit = loops_per_jiffy << 1;
489 
490 	do {
491 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
492 			pxa2xx_spi_read(drv_data, SSDR);
493 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
494 	write_SSSR_CS(drv_data, SSSR_ROR);
495 
496 	return limit;
497 }
498 
499 static void pxa2xx_spi_off(struct driver_data *drv_data)
500 {
501 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
502 	if (is_mmp2_ssp(drv_data))
503 		return;
504 
505 	pxa_ssp_disable(drv_data->ssp);
506 }
507 
508 static int null_writer(struct driver_data *drv_data)
509 {
510 	u8 n_bytes = drv_data->n_bytes;
511 
512 	if (pxa2xx_spi_txfifo_full(drv_data)
513 		|| (drv_data->tx == drv_data->tx_end))
514 		return 0;
515 
516 	pxa2xx_spi_write(drv_data, SSDR, 0);
517 	drv_data->tx += n_bytes;
518 
519 	return 1;
520 }
521 
522 static int null_reader(struct driver_data *drv_data)
523 {
524 	u8 n_bytes = drv_data->n_bytes;
525 
526 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
527 	       && (drv_data->rx < drv_data->rx_end)) {
528 		pxa2xx_spi_read(drv_data, SSDR);
529 		drv_data->rx += n_bytes;
530 	}
531 
532 	return drv_data->rx == drv_data->rx_end;
533 }
534 
535 static int u8_writer(struct driver_data *drv_data)
536 {
537 	if (pxa2xx_spi_txfifo_full(drv_data)
538 		|| (drv_data->tx == drv_data->tx_end))
539 		return 0;
540 
541 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
542 	++drv_data->tx;
543 
544 	return 1;
545 }
546 
547 static int u8_reader(struct driver_data *drv_data)
548 {
549 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
550 	       && (drv_data->rx < drv_data->rx_end)) {
551 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
552 		++drv_data->rx;
553 	}
554 
555 	return drv_data->rx == drv_data->rx_end;
556 }
557 
558 static int u16_writer(struct driver_data *drv_data)
559 {
560 	if (pxa2xx_spi_txfifo_full(drv_data)
561 		|| (drv_data->tx == drv_data->tx_end))
562 		return 0;
563 
564 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
565 	drv_data->tx += 2;
566 
567 	return 1;
568 }
569 
570 static int u16_reader(struct driver_data *drv_data)
571 {
572 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
573 	       && (drv_data->rx < drv_data->rx_end)) {
574 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575 		drv_data->rx += 2;
576 	}
577 
578 	return drv_data->rx == drv_data->rx_end;
579 }
580 
581 static int u32_writer(struct driver_data *drv_data)
582 {
583 	if (pxa2xx_spi_txfifo_full(drv_data)
584 		|| (drv_data->tx == drv_data->tx_end))
585 		return 0;
586 
587 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
588 	drv_data->tx += 4;
589 
590 	return 1;
591 }
592 
593 static int u32_reader(struct driver_data *drv_data)
594 {
595 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
596 	       && (drv_data->rx < drv_data->rx_end)) {
597 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
598 		drv_data->rx += 4;
599 	}
600 
601 	return drv_data->rx == drv_data->rx_end;
602 }
603 
604 static void reset_sccr1(struct driver_data *drv_data)
605 {
606 	struct chip_data *chip =
607 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
608 	u32 sccr1_reg;
609 
610 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
611 	switch (drv_data->ssp_type) {
612 	case QUARK_X1000_SSP:
613 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
614 		break;
615 	case CE4100_SSP:
616 		sccr1_reg &= ~CE4100_SSCR1_RFT;
617 		break;
618 	default:
619 		sccr1_reg &= ~SSCR1_RFT;
620 		break;
621 	}
622 	sccr1_reg |= chip->threshold;
623 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
624 }
625 
626 static void int_stop_and_reset(struct driver_data *drv_data)
627 {
628 	/* Clear and disable interrupts */
629 	write_SSSR_CS(drv_data, drv_data->clear_sr);
630 	reset_sccr1(drv_data);
631 	if (pxa25x_ssp_comp(drv_data))
632 		return;
633 
634 	pxa2xx_spi_write(drv_data, SSTO, 0);
635 }
636 
637 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
638 {
639 	int_stop_and_reset(drv_data);
640 	pxa2xx_spi_flush(drv_data);
641 	pxa2xx_spi_off(drv_data);
642 
643 	dev_err(drv_data->ssp->dev, "%s\n", msg);
644 
645 	drv_data->controller->cur_msg->status = err;
646 	spi_finalize_current_transfer(drv_data->controller);
647 }
648 
649 static void int_transfer_complete(struct driver_data *drv_data)
650 {
651 	int_stop_and_reset(drv_data);
652 
653 	spi_finalize_current_transfer(drv_data->controller);
654 }
655 
656 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
657 {
658 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
659 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
660 
661 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
662 
663 	if (irq_status & SSSR_ROR) {
664 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun", -EIO);
665 		return IRQ_HANDLED;
666 	}
667 
668 	if (irq_status & SSSR_TUR) {
669 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun", -EIO);
670 		return IRQ_HANDLED;
671 	}
672 
673 	if (irq_status & SSSR_TINT) {
674 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
675 		if (drv_data->read(drv_data)) {
676 			int_transfer_complete(drv_data);
677 			return IRQ_HANDLED;
678 		}
679 	}
680 
681 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
682 	do {
683 		if (drv_data->read(drv_data)) {
684 			int_transfer_complete(drv_data);
685 			return IRQ_HANDLED;
686 		}
687 	} while (drv_data->write(drv_data));
688 
689 	if (drv_data->read(drv_data)) {
690 		int_transfer_complete(drv_data);
691 		return IRQ_HANDLED;
692 	}
693 
694 	if (drv_data->tx == drv_data->tx_end) {
695 		u32 bytes_left;
696 		u32 sccr1_reg;
697 
698 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
699 		sccr1_reg &= ~SSCR1_TIE;
700 
701 		/*
702 		 * PXA25x_SSP has no timeout, set up rx threshould for the
703 		 * remaining RX bytes.
704 		 */
705 		if (pxa25x_ssp_comp(drv_data)) {
706 			u32 rx_thre;
707 
708 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
709 
710 			bytes_left = drv_data->rx_end - drv_data->rx;
711 			switch (drv_data->n_bytes) {
712 			case 4:
713 				bytes_left >>= 2;
714 				break;
715 			case 2:
716 				bytes_left >>= 1;
717 				break;
718 			}
719 
720 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
721 			if (rx_thre > bytes_left)
722 				rx_thre = bytes_left;
723 
724 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
725 		}
726 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
727 	}
728 
729 	/* We did something */
730 	return IRQ_HANDLED;
731 }
732 
733 static void handle_bad_msg(struct driver_data *drv_data)
734 {
735 	pxa2xx_spi_off(drv_data);
736 	clear_SSCR1_bits(drv_data, drv_data->int_cr1);
737 	if (!pxa25x_ssp_comp(drv_data))
738 		pxa2xx_spi_write(drv_data, SSTO, 0);
739 	write_SSSR_CS(drv_data, drv_data->clear_sr);
740 
741 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
742 }
743 
744 static irqreturn_t ssp_int(int irq, void *dev_id)
745 {
746 	struct driver_data *drv_data = dev_id;
747 	u32 sccr1_reg;
748 	u32 mask = drv_data->mask_sr;
749 	u32 status;
750 
751 	/*
752 	 * The IRQ might be shared with other peripherals so we must first
753 	 * check that are we RPM suspended or not. If we are we assume that
754 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
755 	 * interrupt is enabled).
756 	 */
757 	if (pm_runtime_suspended(drv_data->ssp->dev))
758 		return IRQ_NONE;
759 
760 	/*
761 	 * If the device is not yet in RPM suspended state and we get an
762 	 * interrupt that is meant for another device, check if status bits
763 	 * are all set to one. That means that the device is already
764 	 * powered off.
765 	 */
766 	status = pxa2xx_spi_read(drv_data, SSSR);
767 	if (status == ~0)
768 		return IRQ_NONE;
769 
770 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
771 
772 	/* Ignore possible writes if we don't need to write */
773 	if (!(sccr1_reg & SSCR1_TIE))
774 		mask &= ~SSSR_TFS;
775 
776 	/* Ignore RX timeout interrupt if it is disabled */
777 	if (!(sccr1_reg & SSCR1_TINTE))
778 		mask &= ~SSSR_TINT;
779 
780 	if (!(status & mask))
781 		return IRQ_NONE;
782 
783 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
784 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
785 
786 	if (!drv_data->controller->cur_msg) {
787 		handle_bad_msg(drv_data);
788 		/* Never fail */
789 		return IRQ_HANDLED;
790 	}
791 
792 	return drv_data->transfer_handler(drv_data);
793 }
794 
795 /*
796  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
797  * input frequency by fractions of 2^24. It also has a divider by 5.
798  *
799  * There are formulas to get baud rate value for given input frequency and
800  * divider parameters, such as DDS_CLK_RATE and SCR:
801  *
802  * Fsys = 200MHz
803  *
804  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
805  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
806  *
807  * DDS_CLK_RATE either 2^n or 2^n / 5.
808  * SCR is in range 0 .. 255
809  *
810  * Divisor = 5^i * 2^j * 2 * k
811  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
812  *       j = [0, 23]     j = 0 iff i = 1
813  *       k = [1, 256]
814  * Special case: j = 0, i = 1: Divisor = 2 / 5
815  *
816  * Accordingly to the specification the recommended values for DDS_CLK_RATE
817  * are:
818  *	Case 1:		2^n, n = [0, 23]
819  *	Case 2:		2^24 * 2 / 5 (0x666666)
820  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
821  *
822  * In all cases the lowest possible value is better.
823  *
824  * The function calculates parameters for all cases and chooses the one closest
825  * to the asked baud rate.
826  */
827 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
828 {
829 	unsigned long xtal = 200000000;
830 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
831 						   see (2) */
832 						/* case 3 */
833 	unsigned long fref1 = fref / 2;		/* case 1 */
834 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
835 	unsigned long scale;
836 	unsigned long q, q1, q2;
837 	long r, r1, r2;
838 	u32 mul;
839 
840 	/* Case 1 */
841 
842 	/* Set initial value for DDS_CLK_RATE */
843 	mul = (1 << 24) >> 1;
844 
845 	/* Calculate initial quot */
846 	q1 = DIV_ROUND_UP(fref1, rate);
847 
848 	/* Scale q1 if it's too big */
849 	if (q1 > 256) {
850 		/* Scale q1 to range [1, 512] */
851 		scale = fls_long(q1 - 1);
852 		if (scale > 9) {
853 			q1 >>= scale - 9;
854 			mul >>= scale - 9;
855 		}
856 
857 		/* Round the result if we have a remainder */
858 		q1 += q1 & 1;
859 	}
860 
861 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
862 	scale = __ffs(q1);
863 	q1 >>= scale;
864 	mul >>= scale;
865 
866 	/* Get the remainder */
867 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
868 
869 	/* Case 2 */
870 
871 	q2 = DIV_ROUND_UP(fref2, rate);
872 	r2 = abs(fref2 / q2 - rate);
873 
874 	/*
875 	 * Choose the best between two: less remainder we have the better. We
876 	 * can't go case 2 if q2 is greater than 256 since SCR register can
877 	 * hold only values 0 .. 255.
878 	 */
879 	if (r2 >= r1 || q2 > 256) {
880 		/* case 1 is better */
881 		r = r1;
882 		q = q1;
883 	} else {
884 		/* case 2 is better */
885 		r = r2;
886 		q = q2;
887 		mul = (1 << 24) * 2 / 5;
888 	}
889 
890 	/* Check case 3 only if the divisor is big enough */
891 	if (fref / rate >= 80) {
892 		u64 fssp;
893 		u32 m;
894 
895 		/* Calculate initial quot */
896 		q1 = DIV_ROUND_UP(fref, rate);
897 		m = (1 << 24) / q1;
898 
899 		/* Get the remainder */
900 		fssp = (u64)fref * m;
901 		do_div(fssp, 1 << 24);
902 		r1 = abs(fssp - rate);
903 
904 		/* Choose this one if it suits better */
905 		if (r1 < r) {
906 			/* case 3 is better */
907 			q = 1;
908 			mul = m;
909 		}
910 	}
911 
912 	*dds = mul;
913 	return q - 1;
914 }
915 
916 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
917 {
918 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
919 	const struct ssp_device *ssp = drv_data->ssp;
920 
921 	rate = min_t(int, ssp_clk, rate);
922 
923 	/*
924 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
925 	 * that the SSP transmission rate can be greater than the device rate
926 	 */
927 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
928 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
929 	else
930 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
931 }
932 
933 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
934 					   int rate)
935 {
936 	struct chip_data *chip =
937 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
938 	unsigned int clk_div;
939 
940 	switch (drv_data->ssp_type) {
941 	case QUARK_X1000_SSP:
942 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
943 		break;
944 	default:
945 		clk_div = ssp_get_clk_div(drv_data, rate);
946 		break;
947 	}
948 	return clk_div << 8;
949 }
950 
951 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
952 			       struct spi_device *spi,
953 			       struct spi_transfer *xfer)
954 {
955 	struct chip_data *chip = spi_get_ctldata(spi);
956 
957 	return chip->enable_dma &&
958 	       xfer->len <= MAX_DMA_LEN &&
959 	       xfer->len >= chip->dma_burst_size;
960 }
961 
962 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
963 				   struct spi_device *spi,
964 				   struct spi_transfer *transfer)
965 {
966 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
967 	struct spi_message *message = controller->cur_msg;
968 	struct chip_data *chip = spi_get_ctldata(spi);
969 	u32 dma_thresh = chip->dma_threshold;
970 	u32 dma_burst = chip->dma_burst_size;
971 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
972 	u32 clk_div;
973 	u8 bits;
974 	u32 speed;
975 	u32 cr0;
976 	u32 cr1;
977 	int err;
978 	int dma_mapped;
979 
980 	/* Check if we can DMA this transfer */
981 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
982 
983 		/* reject already-mapped transfers; PIO won't always work */
984 		if (message->is_dma_mapped
985 				|| transfer->rx_dma || transfer->tx_dma) {
986 			dev_err(&spi->dev,
987 				"Mapped transfer length of %u is greater than %d\n",
988 				transfer->len, MAX_DMA_LEN);
989 			return -EINVAL;
990 		}
991 
992 		/* warn ... we force this to PIO mode */
993 		dev_warn_ratelimited(&spi->dev,
994 				     "DMA disabled for transfer length %ld greater than %d\n",
995 				     (long)transfer->len, MAX_DMA_LEN);
996 	}
997 
998 	/* Setup the transfer state based on the type of transfer */
999 	if (pxa2xx_spi_flush(drv_data) == 0) {
1000 		dev_err(&spi->dev, "Flush failed\n");
1001 		return -EIO;
1002 	}
1003 	drv_data->n_bytes = chip->n_bytes;
1004 	drv_data->tx = (void *)transfer->tx_buf;
1005 	drv_data->tx_end = drv_data->tx + transfer->len;
1006 	drv_data->rx = transfer->rx_buf;
1007 	drv_data->rx_end = drv_data->rx + transfer->len;
1008 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1009 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1010 
1011 	/* Change speed and bit per word on a per transfer */
1012 	bits = transfer->bits_per_word;
1013 	speed = transfer->speed_hz;
1014 
1015 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1016 
1017 	if (bits <= 8) {
1018 		drv_data->n_bytes = 1;
1019 		drv_data->read = drv_data->read != null_reader ?
1020 					u8_reader : null_reader;
1021 		drv_data->write = drv_data->write != null_writer ?
1022 					u8_writer : null_writer;
1023 	} else if (bits <= 16) {
1024 		drv_data->n_bytes = 2;
1025 		drv_data->read = drv_data->read != null_reader ?
1026 					u16_reader : null_reader;
1027 		drv_data->write = drv_data->write != null_writer ?
1028 					u16_writer : null_writer;
1029 	} else if (bits <= 32) {
1030 		drv_data->n_bytes = 4;
1031 		drv_data->read = drv_data->read != null_reader ?
1032 					u32_reader : null_reader;
1033 		drv_data->write = drv_data->write != null_writer ?
1034 					u32_writer : null_writer;
1035 	}
1036 	/*
1037 	 * if bits/word is changed in dma mode, then must check the
1038 	 * thresholds and burst also
1039 	 */
1040 	if (chip->enable_dma) {
1041 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1042 						spi,
1043 						bits, &dma_burst,
1044 						&dma_thresh))
1045 			dev_warn_ratelimited(&spi->dev,
1046 					     "DMA burst size reduced to match bits_per_word\n");
1047 	}
1048 
1049 	dma_mapped = controller->can_dma &&
1050 		     controller->can_dma(controller, spi, transfer) &&
1051 		     controller->cur_msg_mapped;
1052 	if (dma_mapped) {
1053 
1054 		/* Ensure we have the correct interrupt handler */
1055 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1056 
1057 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1058 		if (err)
1059 			return err;
1060 
1061 		/* Clear status and start DMA engine */
1062 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1063 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1064 
1065 		pxa2xx_spi_dma_start(drv_data);
1066 	} else {
1067 		/* Ensure we have the correct interrupt handler	*/
1068 		drv_data->transfer_handler = interrupt_transfer;
1069 
1070 		/* Clear status  */
1071 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1072 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1073 	}
1074 
1075 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1076 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1077 	if (!pxa25x_ssp_comp(drv_data))
1078 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1079 			controller->max_speed_hz
1080 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1081 			dma_mapped ? "DMA" : "PIO");
1082 	else
1083 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1084 			controller->max_speed_hz / 2
1085 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1086 			dma_mapped ? "DMA" : "PIO");
1087 
1088 	if (is_lpss_ssp(drv_data)) {
1089 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1090 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1091 	}
1092 
1093 	if (is_quark_x1000_ssp(drv_data))
1094 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1095 
1096 	/* Stop the SSP */
1097 	if (!is_mmp2_ssp(drv_data))
1098 		pxa_ssp_disable(drv_data->ssp);
1099 
1100 	if (!pxa25x_ssp_comp(drv_data))
1101 		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1102 
1103 	/* first set CR1 without interrupt and service enables */
1104 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1105 
1106 	/* see if we need to reload the config registers */
1107 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1108 
1109 	/* Restart the SSP */
1110 	pxa_ssp_enable(drv_data->ssp);
1111 
1112 	if (is_mmp2_ssp(drv_data)) {
1113 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1114 					& SSSR_TFL_MASK) >> 8;
1115 
1116 		if (tx_level) {
1117 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1118 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1119 								tx_level);
1120 			if (tx_level > transfer->len)
1121 				tx_level = transfer->len;
1122 			drv_data->tx += tx_level;
1123 		}
1124 	}
1125 
1126 	if (spi_controller_is_slave(controller)) {
1127 		while (drv_data->write(drv_data))
1128 			;
1129 		if (drv_data->gpiod_ready) {
1130 			gpiod_set_value(drv_data->gpiod_ready, 1);
1131 			udelay(1);
1132 			gpiod_set_value(drv_data->gpiod_ready, 0);
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Release the data by enabling service requests and interrupts,
1138 	 * without changing any mode bits
1139 	 */
1140 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1141 
1142 	return 1;
1143 }
1144 
1145 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1146 {
1147 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1148 
1149 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1150 
1151 	return 0;
1152 }
1153 
1154 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1155 				 struct spi_message *msg)
1156 {
1157 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1158 
1159 	/* Disable the SSP */
1160 	pxa2xx_spi_off(drv_data);
1161 	/* Clear and disable interrupts and service requests */
1162 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1163 	clear_SSCR1_bits(drv_data, drv_data->int_cr1 | drv_data->dma_cr1);
1164 	if (!pxa25x_ssp_comp(drv_data))
1165 		pxa2xx_spi_write(drv_data, SSTO, 0);
1166 
1167 	/*
1168 	 * Stop the DMA if running. Note DMA callback handler may have unset
1169 	 * the dma_running already, which is fine as stopping is not needed
1170 	 * then but we shouldn't rely this flag for anything else than
1171 	 * stopping. For instance to differentiate between PIO and DMA
1172 	 * transfers.
1173 	 */
1174 	if (atomic_read(&drv_data->dma_running))
1175 		pxa2xx_spi_dma_stop(drv_data);
1176 }
1177 
1178 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1179 {
1180 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1181 
1182 	/* Disable the SSP now */
1183 	pxa2xx_spi_off(drv_data);
1184 
1185 	return 0;
1186 }
1187 
1188 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1189 		    struct pxa2xx_spi_chip *chip_info)
1190 {
1191 	struct driver_data *drv_data =
1192 		spi_controller_get_devdata(spi->controller);
1193 	struct gpio_desc *gpiod;
1194 	int err = 0;
1195 
1196 	if (chip == NULL)
1197 		return 0;
1198 
1199 	if (drv_data->cs_gpiods) {
1200 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1201 		if (gpiod) {
1202 			chip->gpiod_cs = gpiod;
1203 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1204 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1205 		}
1206 
1207 		return 0;
1208 	}
1209 
1210 	if (chip_info == NULL)
1211 		return 0;
1212 
1213 	/* NOTE: setup() can be called multiple times, possibly with
1214 	 * different chip_info, release previously requested GPIO
1215 	 */
1216 	if (chip->gpiod_cs) {
1217 		gpiod_put(chip->gpiod_cs);
1218 		chip->gpiod_cs = NULL;
1219 	}
1220 
1221 	/* If (*cs_control) is provided, ignore GPIO chip select */
1222 	if (chip_info->cs_control) {
1223 		chip->cs_control = chip_info->cs_control;
1224 		return 0;
1225 	}
1226 
1227 	if (gpio_is_valid(chip_info->gpio_cs)) {
1228 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1229 		if (err) {
1230 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1231 				chip_info->gpio_cs);
1232 			return err;
1233 		}
1234 
1235 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1236 		chip->gpiod_cs = gpiod;
1237 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1238 
1239 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1240 	}
1241 
1242 	return err;
1243 }
1244 
1245 static int setup(struct spi_device *spi)
1246 {
1247 	struct pxa2xx_spi_chip *chip_info;
1248 	struct chip_data *chip;
1249 	const struct lpss_config *config;
1250 	struct driver_data *drv_data =
1251 		spi_controller_get_devdata(spi->controller);
1252 	uint tx_thres, tx_hi_thres, rx_thres;
1253 
1254 	switch (drv_data->ssp_type) {
1255 	case QUARK_X1000_SSP:
1256 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1257 		tx_hi_thres = 0;
1258 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1259 		break;
1260 	case CE4100_SSP:
1261 		tx_thres = TX_THRESH_CE4100_DFLT;
1262 		tx_hi_thres = 0;
1263 		rx_thres = RX_THRESH_CE4100_DFLT;
1264 		break;
1265 	case LPSS_LPT_SSP:
1266 	case LPSS_BYT_SSP:
1267 	case LPSS_BSW_SSP:
1268 	case LPSS_SPT_SSP:
1269 	case LPSS_BXT_SSP:
1270 	case LPSS_CNL_SSP:
1271 		config = lpss_get_config(drv_data);
1272 		tx_thres = config->tx_threshold_lo;
1273 		tx_hi_thres = config->tx_threshold_hi;
1274 		rx_thres = config->rx_threshold;
1275 		break;
1276 	default:
1277 		tx_hi_thres = 0;
1278 		if (spi_controller_is_slave(drv_data->controller)) {
1279 			tx_thres = 1;
1280 			rx_thres = 2;
1281 		} else {
1282 			tx_thres = TX_THRESH_DFLT;
1283 			rx_thres = RX_THRESH_DFLT;
1284 		}
1285 		break;
1286 	}
1287 
1288 	/* Only alloc on first setup */
1289 	chip = spi_get_ctldata(spi);
1290 	if (!chip) {
1291 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1292 		if (!chip)
1293 			return -ENOMEM;
1294 
1295 		if (drv_data->ssp_type == CE4100_SSP) {
1296 			if (spi->chip_select > 4) {
1297 				dev_err(&spi->dev,
1298 					"failed setup: cs number must not be > 4.\n");
1299 				kfree(chip);
1300 				return -EINVAL;
1301 			}
1302 
1303 			chip->frm = spi->chip_select;
1304 		}
1305 		chip->enable_dma = drv_data->controller_info->enable_dma;
1306 		chip->timeout = TIMOUT_DFLT;
1307 	}
1308 
1309 	/* protocol drivers may change the chip settings, so...
1310 	 * if chip_info exists, use it */
1311 	chip_info = spi->controller_data;
1312 
1313 	/* chip_info isn't always needed */
1314 	chip->cr1 = 0;
1315 	if (chip_info) {
1316 		if (chip_info->timeout)
1317 			chip->timeout = chip_info->timeout;
1318 		if (chip_info->tx_threshold)
1319 			tx_thres = chip_info->tx_threshold;
1320 		if (chip_info->tx_hi_threshold)
1321 			tx_hi_thres = chip_info->tx_hi_threshold;
1322 		if (chip_info->rx_threshold)
1323 			rx_thres = chip_info->rx_threshold;
1324 		chip->dma_threshold = 0;
1325 		if (chip_info->enable_loopback)
1326 			chip->cr1 = SSCR1_LBM;
1327 	}
1328 	if (spi_controller_is_slave(drv_data->controller)) {
1329 		chip->cr1 |= SSCR1_SCFR;
1330 		chip->cr1 |= SSCR1_SCLKDIR;
1331 		chip->cr1 |= SSCR1_SFRMDIR;
1332 		chip->cr1 |= SSCR1_SPH;
1333 	}
1334 
1335 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1336 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1337 				| SSITF_TxHiThresh(tx_hi_thres);
1338 
1339 	/* set dma burst and threshold outside of chip_info path so that if
1340 	 * chip_info goes away after setting chip->enable_dma, the
1341 	 * burst and threshold can still respond to changes in bits_per_word */
1342 	if (chip->enable_dma) {
1343 		/* set up legal burst and threshold for dma */
1344 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1345 						spi->bits_per_word,
1346 						&chip->dma_burst_size,
1347 						&chip->dma_threshold)) {
1348 			dev_warn(&spi->dev,
1349 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1350 		}
1351 		dev_dbg(&spi->dev,
1352 			"in setup: DMA burst size set to %u\n",
1353 			chip->dma_burst_size);
1354 	}
1355 
1356 	switch (drv_data->ssp_type) {
1357 	case QUARK_X1000_SSP:
1358 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1359 				   & QUARK_X1000_SSCR1_RFT)
1360 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1361 				   & QUARK_X1000_SSCR1_TFT);
1362 		break;
1363 	case CE4100_SSP:
1364 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1365 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1366 		break;
1367 	default:
1368 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1369 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1370 		break;
1371 	}
1372 
1373 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1374 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1375 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1376 
1377 	if (spi->mode & SPI_LOOP)
1378 		chip->cr1 |= SSCR1_LBM;
1379 
1380 	if (spi->bits_per_word <= 8) {
1381 		chip->n_bytes = 1;
1382 		chip->read = u8_reader;
1383 		chip->write = u8_writer;
1384 	} else if (spi->bits_per_word <= 16) {
1385 		chip->n_bytes = 2;
1386 		chip->read = u16_reader;
1387 		chip->write = u16_writer;
1388 	} else if (spi->bits_per_word <= 32) {
1389 		chip->n_bytes = 4;
1390 		chip->read = u32_reader;
1391 		chip->write = u32_writer;
1392 	}
1393 
1394 	spi_set_ctldata(spi, chip);
1395 
1396 	if (drv_data->ssp_type == CE4100_SSP)
1397 		return 0;
1398 
1399 	return setup_cs(spi, chip, chip_info);
1400 }
1401 
1402 static void cleanup(struct spi_device *spi)
1403 {
1404 	struct chip_data *chip = spi_get_ctldata(spi);
1405 	struct driver_data *drv_data =
1406 		spi_controller_get_devdata(spi->controller);
1407 
1408 	if (!chip)
1409 		return;
1410 
1411 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1412 	    chip->gpiod_cs)
1413 		gpiod_put(chip->gpiod_cs);
1414 
1415 	kfree(chip);
1416 }
1417 
1418 #ifdef CONFIG_ACPI
1419 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1420 	{ "INT33C0", LPSS_LPT_SSP },
1421 	{ "INT33C1", LPSS_LPT_SSP },
1422 	{ "INT3430", LPSS_LPT_SSP },
1423 	{ "INT3431", LPSS_LPT_SSP },
1424 	{ "80860F0E", LPSS_BYT_SSP },
1425 	{ "8086228E", LPSS_BSW_SSP },
1426 	{ },
1427 };
1428 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1429 #endif
1430 
1431 /*
1432  * PCI IDs of compound devices that integrate both host controller and private
1433  * integrated DMA engine. Please note these are not used in module
1434  * autoloading and probing in this module but matching the LPSS SSP type.
1435  */
1436 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1437 	/* SPT-LP */
1438 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1439 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1440 	/* SPT-H */
1441 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1442 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1443 	/* KBL-H */
1444 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1445 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1446 	/* CML-V */
1447 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1448 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1449 	/* BXT A-Step */
1450 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1451 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1452 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1453 	/* BXT B-Step */
1454 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1455 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1457 	/* GLK */
1458 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1460 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1461 	/* ICL-LP */
1462 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1463 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1464 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1465 	/* EHL */
1466 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1467 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1468 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1469 	/* JSL */
1470 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1471 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1472 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1473 	/* TGL-H */
1474 	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1475 	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1476 	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1478 	/* ADL-P */
1479 	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1480 	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1482 	/* ADL-M */
1483 	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1484 	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1486 	/* APL */
1487 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1488 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1489 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1490 	/* ADL-S */
1491 	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1492 	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1493 	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1494 	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1495 	/* CNL-LP */
1496 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1497 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1498 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1499 	/* CNL-H */
1500 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1501 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1502 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1503 	/* CML-LP */
1504 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1505 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1506 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1507 	/* CML-H */
1508 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1509 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1510 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1511 	/* TGL-LP */
1512 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1513 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1514 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1515 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1516 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1517 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1518 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1519 	{ },
1520 };
1521 
1522 static const struct of_device_id pxa2xx_spi_of_match[] = {
1523 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1524 	{},
1525 };
1526 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1527 
1528 #ifdef CONFIG_ACPI
1529 
1530 static int pxa2xx_spi_get_port_id(struct device *dev)
1531 {
1532 	struct acpi_device *adev;
1533 	unsigned int devid;
1534 	int port_id = -1;
1535 
1536 	adev = ACPI_COMPANION(dev);
1537 	if (adev && adev->pnp.unique_id &&
1538 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1539 		port_id = devid;
1540 	return port_id;
1541 }
1542 
1543 #else /* !CONFIG_ACPI */
1544 
1545 static int pxa2xx_spi_get_port_id(struct device *dev)
1546 {
1547 	return -1;
1548 }
1549 
1550 #endif /* CONFIG_ACPI */
1551 
1552 
1553 #ifdef CONFIG_PCI
1554 
1555 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1556 {
1557 	return param == chan->device->dev;
1558 }
1559 
1560 #endif /* CONFIG_PCI */
1561 
1562 static struct pxa2xx_spi_controller *
1563 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1564 {
1565 	struct pxa2xx_spi_controller *pdata;
1566 	struct ssp_device *ssp;
1567 	struct resource *res;
1568 	struct device *parent = pdev->dev.parent;
1569 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1570 	const struct pci_device_id *pcidev_id = NULL;
1571 	enum pxa_ssp_type type;
1572 	const void *match;
1573 
1574 	if (pcidev)
1575 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1576 
1577 	match = device_get_match_data(&pdev->dev);
1578 	if (match)
1579 		type = (enum pxa_ssp_type)match;
1580 	else if (pcidev_id)
1581 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1582 	else
1583 		return ERR_PTR(-EINVAL);
1584 
1585 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1586 	if (!pdata)
1587 		return ERR_PTR(-ENOMEM);
1588 
1589 	ssp = &pdata->ssp;
1590 
1591 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1592 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1593 	if (IS_ERR(ssp->mmio_base))
1594 		return ERR_CAST(ssp->mmio_base);
1595 
1596 	ssp->phys_base = res->start;
1597 
1598 #ifdef CONFIG_PCI
1599 	if (pcidev_id) {
1600 		pdata->tx_param = parent;
1601 		pdata->rx_param = parent;
1602 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1603 	}
1604 #endif
1605 
1606 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1607 	if (IS_ERR(ssp->clk))
1608 		return ERR_CAST(ssp->clk);
1609 
1610 	ssp->irq = platform_get_irq(pdev, 0);
1611 	if (ssp->irq < 0)
1612 		return ERR_PTR(ssp->irq);
1613 
1614 	ssp->type = type;
1615 	ssp->dev = &pdev->dev;
1616 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1617 
1618 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1619 	pdata->num_chipselect = 1;
1620 	pdata->enable_dma = true;
1621 	pdata->dma_burst_size = 1;
1622 
1623 	return pdata;
1624 }
1625 
1626 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1627 				      unsigned int cs)
1628 {
1629 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1630 
1631 	if (has_acpi_companion(drv_data->ssp->dev)) {
1632 		switch (drv_data->ssp_type) {
1633 		/*
1634 		 * For Atoms the ACPI DeviceSelection used by the Windows
1635 		 * driver starts from 1 instead of 0 so translate it here
1636 		 * to match what Linux expects.
1637 		 */
1638 		case LPSS_BYT_SSP:
1639 		case LPSS_BSW_SSP:
1640 			return cs - 1;
1641 
1642 		default:
1643 			break;
1644 		}
1645 	}
1646 
1647 	return cs;
1648 }
1649 
1650 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1651 {
1652 	return MAX_DMA_LEN;
1653 }
1654 
1655 static int pxa2xx_spi_probe(struct platform_device *pdev)
1656 {
1657 	struct device *dev = &pdev->dev;
1658 	struct pxa2xx_spi_controller *platform_info;
1659 	struct spi_controller *controller;
1660 	struct driver_data *drv_data;
1661 	struct ssp_device *ssp;
1662 	const struct lpss_config *config;
1663 	int status, count;
1664 	u32 tmp;
1665 
1666 	platform_info = dev_get_platdata(dev);
1667 	if (!platform_info) {
1668 		platform_info = pxa2xx_spi_init_pdata(pdev);
1669 		if (IS_ERR(platform_info)) {
1670 			dev_err(&pdev->dev, "missing platform data\n");
1671 			return PTR_ERR(platform_info);
1672 		}
1673 	}
1674 
1675 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1676 	if (!ssp)
1677 		ssp = &platform_info->ssp;
1678 
1679 	if (!ssp->mmio_base) {
1680 		dev_err(&pdev->dev, "failed to get ssp\n");
1681 		return -ENODEV;
1682 	}
1683 
1684 	if (platform_info->is_slave)
1685 		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1686 	else
1687 		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1688 
1689 	if (!controller) {
1690 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1691 		status = -ENOMEM;
1692 		goto out_error_controller_alloc;
1693 	}
1694 	drv_data = spi_controller_get_devdata(controller);
1695 	drv_data->controller = controller;
1696 	drv_data->controller_info = platform_info;
1697 	drv_data->ssp = ssp;
1698 
1699 	controller->dev.of_node = pdev->dev.of_node;
1700 	/* the spi->mode bits understood by this driver: */
1701 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1702 
1703 	controller->bus_num = ssp->port_id;
1704 	controller->dma_alignment = DMA_ALIGNMENT;
1705 	controller->cleanup = cleanup;
1706 	controller->setup = setup;
1707 	controller->set_cs = pxa2xx_spi_set_cs;
1708 	controller->transfer_one = pxa2xx_spi_transfer_one;
1709 	controller->slave_abort = pxa2xx_spi_slave_abort;
1710 	controller->handle_err = pxa2xx_spi_handle_err;
1711 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1712 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1713 	controller->auto_runtime_pm = true;
1714 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1715 
1716 	drv_data->ssp_type = ssp->type;
1717 
1718 	if (pxa25x_ssp_comp(drv_data)) {
1719 		switch (drv_data->ssp_type) {
1720 		case QUARK_X1000_SSP:
1721 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1722 			break;
1723 		default:
1724 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1725 			break;
1726 		}
1727 
1728 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1729 		drv_data->dma_cr1 = 0;
1730 		drv_data->clear_sr = SSSR_ROR;
1731 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1732 	} else {
1733 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1734 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1735 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1736 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1737 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1738 						| SSSR_ROR | SSSR_TUR;
1739 	}
1740 
1741 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1742 			drv_data);
1743 	if (status < 0) {
1744 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1745 		goto out_error_controller_alloc;
1746 	}
1747 
1748 	/* Setup DMA if requested */
1749 	if (platform_info->enable_dma) {
1750 		status = pxa2xx_spi_dma_setup(drv_data);
1751 		if (status) {
1752 			dev_warn(dev, "no DMA channels available, using PIO\n");
1753 			platform_info->enable_dma = false;
1754 		} else {
1755 			controller->can_dma = pxa2xx_spi_can_dma;
1756 			controller->max_dma_len = MAX_DMA_LEN;
1757 			controller->max_transfer_size =
1758 				pxa2xx_spi_max_dma_transfer_size;
1759 		}
1760 	}
1761 
1762 	/* Enable SOC clock */
1763 	status = clk_prepare_enable(ssp->clk);
1764 	if (status)
1765 		goto out_error_dma_irq_alloc;
1766 
1767 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1768 	/*
1769 	 * Set minimum speed for all other platforms than Intel Quark which is
1770 	 * able do under 1 Hz transfers.
1771 	 */
1772 	if (!pxa25x_ssp_comp(drv_data))
1773 		controller->min_speed_hz =
1774 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1775 	else if (!is_quark_x1000_ssp(drv_data))
1776 		controller->min_speed_hz =
1777 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1778 
1779 	pxa_ssp_disable(ssp);
1780 
1781 	/* Load default SSP configuration */
1782 	switch (drv_data->ssp_type) {
1783 	case QUARK_X1000_SSP:
1784 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1785 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1786 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1787 
1788 		/* using the Motorola SPI protocol and use 8 bit frame */
1789 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1790 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1791 		break;
1792 	case CE4100_SSP:
1793 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1794 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1795 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1796 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1797 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1798 		break;
1799 	default:
1800 
1801 		if (spi_controller_is_slave(controller)) {
1802 			tmp = SSCR1_SCFR |
1803 			      SSCR1_SCLKDIR |
1804 			      SSCR1_SFRMDIR |
1805 			      SSCR1_RxTresh(2) |
1806 			      SSCR1_TxTresh(1) |
1807 			      SSCR1_SPH;
1808 		} else {
1809 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1810 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1811 		}
1812 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1813 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1814 		if (!spi_controller_is_slave(controller))
1815 			tmp |= SSCR0_SCR(2);
1816 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1817 		break;
1818 	}
1819 
1820 	if (!pxa25x_ssp_comp(drv_data))
1821 		pxa2xx_spi_write(drv_data, SSTO, 0);
1822 
1823 	if (!is_quark_x1000_ssp(drv_data))
1824 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1825 
1826 	if (is_lpss_ssp(drv_data)) {
1827 		lpss_ssp_setup(drv_data);
1828 		config = lpss_get_config(drv_data);
1829 		if (config->reg_capabilities >= 0) {
1830 			tmp = __lpss_ssp_read_priv(drv_data,
1831 						   config->reg_capabilities);
1832 			tmp &= LPSS_CAPS_CS_EN_MASK;
1833 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1834 			platform_info->num_chipselect = ffz(tmp);
1835 		} else if (config->cs_num) {
1836 			platform_info->num_chipselect = config->cs_num;
1837 		}
1838 	}
1839 	controller->num_chipselect = platform_info->num_chipselect;
1840 
1841 	count = gpiod_count(&pdev->dev, "cs");
1842 	if (count > 0) {
1843 		int i;
1844 
1845 		controller->num_chipselect = max_t(int, count,
1846 			controller->num_chipselect);
1847 
1848 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1849 			controller->num_chipselect, sizeof(struct gpio_desc *),
1850 			GFP_KERNEL);
1851 		if (!drv_data->cs_gpiods) {
1852 			status = -ENOMEM;
1853 			goto out_error_clock_enabled;
1854 		}
1855 
1856 		for (i = 0; i < controller->num_chipselect; i++) {
1857 			struct gpio_desc *gpiod;
1858 
1859 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1860 			if (IS_ERR(gpiod)) {
1861 				/* Means use native chip select */
1862 				if (PTR_ERR(gpiod) == -ENOENT)
1863 					continue;
1864 
1865 				status = PTR_ERR(gpiod);
1866 				goto out_error_clock_enabled;
1867 			} else {
1868 				drv_data->cs_gpiods[i] = gpiod;
1869 			}
1870 		}
1871 	}
1872 
1873 	if (platform_info->is_slave) {
1874 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1875 						"ready", GPIOD_OUT_LOW);
1876 		if (IS_ERR(drv_data->gpiod_ready)) {
1877 			status = PTR_ERR(drv_data->gpiod_ready);
1878 			goto out_error_clock_enabled;
1879 		}
1880 	}
1881 
1882 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1883 	pm_runtime_use_autosuspend(&pdev->dev);
1884 	pm_runtime_set_active(&pdev->dev);
1885 	pm_runtime_enable(&pdev->dev);
1886 
1887 	/* Register with the SPI framework */
1888 	platform_set_drvdata(pdev, drv_data);
1889 	status = spi_register_controller(controller);
1890 	if (status != 0) {
1891 		dev_err(&pdev->dev, "problem registering spi controller\n");
1892 		goto out_error_pm_runtime_enabled;
1893 	}
1894 
1895 	return status;
1896 
1897 out_error_pm_runtime_enabled:
1898 	pm_runtime_disable(&pdev->dev);
1899 
1900 out_error_clock_enabled:
1901 	clk_disable_unprepare(ssp->clk);
1902 
1903 out_error_dma_irq_alloc:
1904 	pxa2xx_spi_dma_release(drv_data);
1905 	free_irq(ssp->irq, drv_data);
1906 
1907 out_error_controller_alloc:
1908 	pxa_ssp_free(ssp);
1909 	return status;
1910 }
1911 
1912 static int pxa2xx_spi_remove(struct platform_device *pdev)
1913 {
1914 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1915 	struct ssp_device *ssp = drv_data->ssp;
1916 
1917 	pm_runtime_get_sync(&pdev->dev);
1918 
1919 	spi_unregister_controller(drv_data->controller);
1920 
1921 	/* Disable the SSP at the peripheral and SOC level */
1922 	pxa_ssp_disable(ssp);
1923 	clk_disable_unprepare(ssp->clk);
1924 
1925 	/* Release DMA */
1926 	if (drv_data->controller_info->enable_dma)
1927 		pxa2xx_spi_dma_release(drv_data);
1928 
1929 	pm_runtime_put_noidle(&pdev->dev);
1930 	pm_runtime_disable(&pdev->dev);
1931 
1932 	/* Release IRQ */
1933 	free_irq(ssp->irq, drv_data);
1934 
1935 	/* Release SSP */
1936 	pxa_ssp_free(ssp);
1937 
1938 	return 0;
1939 }
1940 
1941 #ifdef CONFIG_PM_SLEEP
1942 static int pxa2xx_spi_suspend(struct device *dev)
1943 {
1944 	struct driver_data *drv_data = dev_get_drvdata(dev);
1945 	struct ssp_device *ssp = drv_data->ssp;
1946 	int status;
1947 
1948 	status = spi_controller_suspend(drv_data->controller);
1949 	if (status != 0)
1950 		return status;
1951 
1952 	pxa_ssp_disable(ssp);
1953 
1954 	if (!pm_runtime_suspended(dev))
1955 		clk_disable_unprepare(ssp->clk);
1956 
1957 	return 0;
1958 }
1959 
1960 static int pxa2xx_spi_resume(struct device *dev)
1961 {
1962 	struct driver_data *drv_data = dev_get_drvdata(dev);
1963 	struct ssp_device *ssp = drv_data->ssp;
1964 	int status;
1965 
1966 	/* Enable the SSP clock */
1967 	if (!pm_runtime_suspended(dev)) {
1968 		status = clk_prepare_enable(ssp->clk);
1969 		if (status)
1970 			return status;
1971 	}
1972 
1973 	/* Start the queue running */
1974 	return spi_controller_resume(drv_data->controller);
1975 }
1976 #endif
1977 
1978 #ifdef CONFIG_PM
1979 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1980 {
1981 	struct driver_data *drv_data = dev_get_drvdata(dev);
1982 
1983 	clk_disable_unprepare(drv_data->ssp->clk);
1984 	return 0;
1985 }
1986 
1987 static int pxa2xx_spi_runtime_resume(struct device *dev)
1988 {
1989 	struct driver_data *drv_data = dev_get_drvdata(dev);
1990 	int status;
1991 
1992 	status = clk_prepare_enable(drv_data->ssp->clk);
1993 	return status;
1994 }
1995 #endif
1996 
1997 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1998 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1999 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2000 			   pxa2xx_spi_runtime_resume, NULL)
2001 };
2002 
2003 static struct platform_driver driver = {
2004 	.driver = {
2005 		.name	= "pxa2xx-spi",
2006 		.pm	= &pxa2xx_spi_pm_ops,
2007 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2008 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2009 	},
2010 	.probe = pxa2xx_spi_probe,
2011 	.remove = pxa2xx_spi_remove,
2012 };
2013 
2014 static int __init pxa2xx_spi_init(void)
2015 {
2016 	return platform_driver_register(&driver);
2017 }
2018 subsys_initcall(pxa2xx_spi_init);
2019 
2020 static void __exit pxa2xx_spi_exit(void)
2021 {
2022 	platform_driver_unregister(&driver);
2023 }
2024 module_exit(pxa2xx_spi_exit);
2025 
2026 MODULE_SOFTDEP("pre: dw_dmac");
2027