1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/bitops.h> 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/err.h> 14 #include <linux/errno.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/gpio.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/of.h> 24 #include <linux/pci.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/property.h> 28 #include <linux/slab.h> 29 30 #include <linux/spi/pxa2xx_spi.h> 31 #include <linux/spi/spi.h> 32 33 #include "spi-pxa2xx.h" 34 35 MODULE_AUTHOR("Stephen Street"); 36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 37 MODULE_LICENSE("GPL"); 38 MODULE_ALIAS("platform:pxa2xx-spi"); 39 40 #define TIMOUT_DFLT 1000 41 42 /* 43 * for testing SSCR1 changes that require SSP restart, basically 44 * everything except the service and interrupt enables, the pxa270 developer 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 46 * list, but the PXA255 dev man says all bits without really meaning the 47 * service and interrupt enables 48 */ 49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 55 56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 57 | QUARK_X1000_SSCR1_EFWR \ 58 | QUARK_X1000_SSCR1_RFT \ 59 | QUARK_X1000_SSCR1_TFT \ 60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 61 62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 68 69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 70 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 71 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 72 #define LPSS_CAPS_CS_EN_SHIFT 9 73 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 74 75 #define LPSS_PRIV_CLOCK_GATE 0x38 76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 78 79 struct lpss_config { 80 /* LPSS offset from drv_data->ioaddr */ 81 unsigned offset; 82 /* Register offsets from drv_data->lpss_base or -1 */ 83 int reg_general; 84 int reg_ssp; 85 int reg_cs_ctrl; 86 int reg_capabilities; 87 /* FIFO thresholds */ 88 u32 rx_threshold; 89 u32 tx_threshold_lo; 90 u32 tx_threshold_hi; 91 /* Chip select control */ 92 unsigned cs_sel_shift; 93 unsigned cs_sel_mask; 94 unsigned cs_num; 95 /* Quirks */ 96 unsigned cs_clk_stays_gated : 1; 97 }; 98 99 /* Keep these sorted with enum pxa_ssp_type */ 100 static const struct lpss_config lpss_platforms[] = { 101 { /* LPSS_LPT_SSP */ 102 .offset = 0x800, 103 .reg_general = 0x08, 104 .reg_ssp = 0x0c, 105 .reg_cs_ctrl = 0x18, 106 .reg_capabilities = -1, 107 .rx_threshold = 64, 108 .tx_threshold_lo = 160, 109 .tx_threshold_hi = 224, 110 }, 111 { /* LPSS_BYT_SSP */ 112 .offset = 0x400, 113 .reg_general = 0x08, 114 .reg_ssp = 0x0c, 115 .reg_cs_ctrl = 0x18, 116 .reg_capabilities = -1, 117 .rx_threshold = 64, 118 .tx_threshold_lo = 160, 119 .tx_threshold_hi = 224, 120 }, 121 { /* LPSS_BSW_SSP */ 122 .offset = 0x400, 123 .reg_general = 0x08, 124 .reg_ssp = 0x0c, 125 .reg_cs_ctrl = 0x18, 126 .reg_capabilities = -1, 127 .rx_threshold = 64, 128 .tx_threshold_lo = 160, 129 .tx_threshold_hi = 224, 130 .cs_sel_shift = 2, 131 .cs_sel_mask = 1 << 2, 132 .cs_num = 2, 133 }, 134 { /* LPSS_SPT_SSP */ 135 .offset = 0x200, 136 .reg_general = -1, 137 .reg_ssp = 0x20, 138 .reg_cs_ctrl = 0x24, 139 .reg_capabilities = -1, 140 .rx_threshold = 1, 141 .tx_threshold_lo = 32, 142 .tx_threshold_hi = 56, 143 }, 144 { /* LPSS_BXT_SSP */ 145 .offset = 0x200, 146 .reg_general = -1, 147 .reg_ssp = 0x20, 148 .reg_cs_ctrl = 0x24, 149 .reg_capabilities = 0xfc, 150 .rx_threshold = 1, 151 .tx_threshold_lo = 16, 152 .tx_threshold_hi = 48, 153 .cs_sel_shift = 8, 154 .cs_sel_mask = 3 << 8, 155 .cs_clk_stays_gated = true, 156 }, 157 { /* LPSS_CNL_SSP */ 158 .offset = 0x200, 159 .reg_general = -1, 160 .reg_ssp = 0x20, 161 .reg_cs_ctrl = 0x24, 162 .reg_capabilities = 0xfc, 163 .rx_threshold = 1, 164 .tx_threshold_lo = 32, 165 .tx_threshold_hi = 56, 166 .cs_sel_shift = 8, 167 .cs_sel_mask = 3 << 8, 168 .cs_clk_stays_gated = true, 169 }, 170 }; 171 172 static inline const struct lpss_config 173 *lpss_get_config(const struct driver_data *drv_data) 174 { 175 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 176 } 177 178 static bool is_lpss_ssp(const struct driver_data *drv_data) 179 { 180 switch (drv_data->ssp_type) { 181 case LPSS_LPT_SSP: 182 case LPSS_BYT_SSP: 183 case LPSS_BSW_SSP: 184 case LPSS_SPT_SSP: 185 case LPSS_BXT_SSP: 186 case LPSS_CNL_SSP: 187 return true; 188 default: 189 return false; 190 } 191 } 192 193 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 194 { 195 return drv_data->ssp_type == QUARK_X1000_SSP; 196 } 197 198 static bool is_mmp2_ssp(const struct driver_data *drv_data) 199 { 200 return drv_data->ssp_type == MMP2_SSP; 201 } 202 203 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) 204 { 205 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) 206 pxa2xx_spi_write(drv_data, reg, value & mask); 207 } 208 209 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 210 { 211 switch (drv_data->ssp_type) { 212 case QUARK_X1000_SSP: 213 return QUARK_X1000_SSCR1_CHANGE_MASK; 214 case CE4100_SSP: 215 return CE4100_SSCR1_CHANGE_MASK; 216 default: 217 return SSCR1_CHANGE_MASK; 218 } 219 } 220 221 static u32 222 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 223 { 224 switch (drv_data->ssp_type) { 225 case QUARK_X1000_SSP: 226 return RX_THRESH_QUARK_X1000_DFLT; 227 case CE4100_SSP: 228 return RX_THRESH_CE4100_DFLT; 229 default: 230 return RX_THRESH_DFLT; 231 } 232 } 233 234 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 235 { 236 u32 mask; 237 238 switch (drv_data->ssp_type) { 239 case QUARK_X1000_SSP: 240 mask = QUARK_X1000_SSSR_TFL_MASK; 241 break; 242 case CE4100_SSP: 243 mask = CE4100_SSSR_TFL_MASK; 244 break; 245 default: 246 mask = SSSR_TFL_MASK; 247 break; 248 } 249 250 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 251 } 252 253 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 254 u32 *sccr1_reg) 255 { 256 u32 mask; 257 258 switch (drv_data->ssp_type) { 259 case QUARK_X1000_SSP: 260 mask = QUARK_X1000_SSCR1_RFT; 261 break; 262 case CE4100_SSP: 263 mask = CE4100_SSCR1_RFT; 264 break; 265 default: 266 mask = SSCR1_RFT; 267 break; 268 } 269 *sccr1_reg &= ~mask; 270 } 271 272 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 273 u32 *sccr1_reg, u32 threshold) 274 { 275 switch (drv_data->ssp_type) { 276 case QUARK_X1000_SSP: 277 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 278 break; 279 case CE4100_SSP: 280 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 281 break; 282 default: 283 *sccr1_reg |= SSCR1_RxTresh(threshold); 284 break; 285 } 286 } 287 288 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 289 u32 clk_div, u8 bits) 290 { 291 switch (drv_data->ssp_type) { 292 case QUARK_X1000_SSP: 293 return clk_div 294 | QUARK_X1000_SSCR0_Motorola 295 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); 296 default: 297 return clk_div 298 | SSCR0_Motorola 299 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 300 | (bits > 16 ? SSCR0_EDSS : 0); 301 } 302 } 303 304 /* 305 * Read and write LPSS SSP private registers. Caller must first check that 306 * is_lpss_ssp() returns true before these can be called. 307 */ 308 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 309 { 310 WARN_ON(!drv_data->lpss_base); 311 return readl(drv_data->lpss_base + offset); 312 } 313 314 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 315 unsigned offset, u32 value) 316 { 317 WARN_ON(!drv_data->lpss_base); 318 writel(value, drv_data->lpss_base + offset); 319 } 320 321 /* 322 * lpss_ssp_setup - perform LPSS SSP specific setup 323 * @drv_data: pointer to the driver private data 324 * 325 * Perform LPSS SSP specific setup. This function must be called first if 326 * one is going to use LPSS SSP private registers. 327 */ 328 static void lpss_ssp_setup(struct driver_data *drv_data) 329 { 330 const struct lpss_config *config; 331 u32 value; 332 333 config = lpss_get_config(drv_data); 334 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; 335 336 /* Enable software chip select control */ 337 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 338 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 339 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 340 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 341 342 /* Enable multiblock DMA transfers */ 343 if (drv_data->controller_info->enable_dma) { 344 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 345 346 if (config->reg_general >= 0) { 347 value = __lpss_ssp_read_priv(drv_data, 348 config->reg_general); 349 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 350 __lpss_ssp_write_priv(drv_data, 351 config->reg_general, value); 352 } 353 } 354 } 355 356 static void lpss_ssp_select_cs(struct spi_device *spi, 357 const struct lpss_config *config) 358 { 359 struct driver_data *drv_data = 360 spi_controller_get_devdata(spi->controller); 361 u32 value, cs; 362 363 if (!config->cs_sel_mask) 364 return; 365 366 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 367 368 cs = spi->chip_select; 369 cs <<= config->cs_sel_shift; 370 if (cs != (value & config->cs_sel_mask)) { 371 /* 372 * When switching another chip select output active the 373 * output must be selected first and wait 2 ssp_clk cycles 374 * before changing state to active. Otherwise a short 375 * glitch will occur on the previous chip select since 376 * output select is latched but state control is not. 377 */ 378 value &= ~config->cs_sel_mask; 379 value |= cs; 380 __lpss_ssp_write_priv(drv_data, 381 config->reg_cs_ctrl, value); 382 ndelay(1000000000 / 383 (drv_data->controller->max_speed_hz / 2)); 384 } 385 } 386 387 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 388 { 389 struct driver_data *drv_data = 390 spi_controller_get_devdata(spi->controller); 391 const struct lpss_config *config; 392 u32 value; 393 394 config = lpss_get_config(drv_data); 395 396 if (enable) 397 lpss_ssp_select_cs(spi, config); 398 399 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 400 if (enable) 401 value &= ~LPSS_CS_CONTROL_CS_HIGH; 402 else 403 value |= LPSS_CS_CONTROL_CS_HIGH; 404 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 405 if (config->cs_clk_stays_gated) { 406 u32 clkgate; 407 408 /* 409 * Changing CS alone when dynamic clock gating is on won't 410 * actually flip CS at that time. This ruins SPI transfers 411 * that specify delays, or have no data. Toggle the clock mode 412 * to force on briefly to poke the CS pin to move. 413 */ 414 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 415 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 416 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 417 418 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 419 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 420 } 421 } 422 423 static void cs_assert(struct spi_device *spi) 424 { 425 struct chip_data *chip = spi_get_ctldata(spi); 426 struct driver_data *drv_data = 427 spi_controller_get_devdata(spi->controller); 428 429 if (drv_data->ssp_type == CE4100_SSP) { 430 pxa2xx_spi_write(drv_data, SSSR, chip->frm); 431 return; 432 } 433 434 if (chip->cs_control) { 435 chip->cs_control(PXA2XX_CS_ASSERT); 436 return; 437 } 438 439 if (chip->gpiod_cs) { 440 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted); 441 return; 442 } 443 444 if (is_lpss_ssp(drv_data)) 445 lpss_ssp_cs_control(spi, true); 446 } 447 448 static void cs_deassert(struct spi_device *spi) 449 { 450 struct chip_data *chip = spi_get_ctldata(spi); 451 struct driver_data *drv_data = 452 spi_controller_get_devdata(spi->controller); 453 unsigned long timeout; 454 455 if (drv_data->ssp_type == CE4100_SSP) 456 return; 457 458 /* Wait until SSP becomes idle before deasserting the CS */ 459 timeout = jiffies + msecs_to_jiffies(10); 460 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 461 !time_after(jiffies, timeout)) 462 cpu_relax(); 463 464 if (chip->cs_control) { 465 chip->cs_control(PXA2XX_CS_DEASSERT); 466 return; 467 } 468 469 if (chip->gpiod_cs) { 470 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted); 471 return; 472 } 473 474 if (is_lpss_ssp(drv_data)) 475 lpss_ssp_cs_control(spi, false); 476 } 477 478 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 479 { 480 if (level) 481 cs_deassert(spi); 482 else 483 cs_assert(spi); 484 } 485 486 int pxa2xx_spi_flush(struct driver_data *drv_data) 487 { 488 unsigned long limit = loops_per_jiffy << 1; 489 490 do { 491 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 492 pxa2xx_spi_read(drv_data, SSDR); 493 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 494 write_SSSR_CS(drv_data, SSSR_ROR); 495 496 return limit; 497 } 498 499 static void pxa2xx_spi_off(struct driver_data *drv_data) 500 { 501 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 502 if (is_mmp2_ssp(drv_data)) 503 return; 504 505 pxa_ssp_disable(drv_data->ssp); 506 } 507 508 static int null_writer(struct driver_data *drv_data) 509 { 510 u8 n_bytes = drv_data->n_bytes; 511 512 if (pxa2xx_spi_txfifo_full(drv_data) 513 || (drv_data->tx == drv_data->tx_end)) 514 return 0; 515 516 pxa2xx_spi_write(drv_data, SSDR, 0); 517 drv_data->tx += n_bytes; 518 519 return 1; 520 } 521 522 static int null_reader(struct driver_data *drv_data) 523 { 524 u8 n_bytes = drv_data->n_bytes; 525 526 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 527 && (drv_data->rx < drv_data->rx_end)) { 528 pxa2xx_spi_read(drv_data, SSDR); 529 drv_data->rx += n_bytes; 530 } 531 532 return drv_data->rx == drv_data->rx_end; 533 } 534 535 static int u8_writer(struct driver_data *drv_data) 536 { 537 if (pxa2xx_spi_txfifo_full(drv_data) 538 || (drv_data->tx == drv_data->tx_end)) 539 return 0; 540 541 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 542 ++drv_data->tx; 543 544 return 1; 545 } 546 547 static int u8_reader(struct driver_data *drv_data) 548 { 549 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 550 && (drv_data->rx < drv_data->rx_end)) { 551 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 552 ++drv_data->rx; 553 } 554 555 return drv_data->rx == drv_data->rx_end; 556 } 557 558 static int u16_writer(struct driver_data *drv_data) 559 { 560 if (pxa2xx_spi_txfifo_full(drv_data) 561 || (drv_data->tx == drv_data->tx_end)) 562 return 0; 563 564 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 565 drv_data->tx += 2; 566 567 return 1; 568 } 569 570 static int u16_reader(struct driver_data *drv_data) 571 { 572 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 573 && (drv_data->rx < drv_data->rx_end)) { 574 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 575 drv_data->rx += 2; 576 } 577 578 return drv_data->rx == drv_data->rx_end; 579 } 580 581 static int u32_writer(struct driver_data *drv_data) 582 { 583 if (pxa2xx_spi_txfifo_full(drv_data) 584 || (drv_data->tx == drv_data->tx_end)) 585 return 0; 586 587 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 588 drv_data->tx += 4; 589 590 return 1; 591 } 592 593 static int u32_reader(struct driver_data *drv_data) 594 { 595 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 596 && (drv_data->rx < drv_data->rx_end)) { 597 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 598 drv_data->rx += 4; 599 } 600 601 return drv_data->rx == drv_data->rx_end; 602 } 603 604 static void reset_sccr1(struct driver_data *drv_data) 605 { 606 struct chip_data *chip = 607 spi_get_ctldata(drv_data->controller->cur_msg->spi); 608 u32 sccr1_reg; 609 610 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 611 switch (drv_data->ssp_type) { 612 case QUARK_X1000_SSP: 613 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT; 614 break; 615 case CE4100_SSP: 616 sccr1_reg &= ~CE4100_SSCR1_RFT; 617 break; 618 default: 619 sccr1_reg &= ~SSCR1_RFT; 620 break; 621 } 622 sccr1_reg |= chip->threshold; 623 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 624 } 625 626 static void int_stop_and_reset(struct driver_data *drv_data) 627 { 628 /* Clear and disable interrupts */ 629 write_SSSR_CS(drv_data, drv_data->clear_sr); 630 reset_sccr1(drv_data); 631 if (pxa25x_ssp_comp(drv_data)) 632 return; 633 634 pxa2xx_spi_write(drv_data, SSTO, 0); 635 } 636 637 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) 638 { 639 int_stop_and_reset(drv_data); 640 pxa2xx_spi_flush(drv_data); 641 pxa2xx_spi_off(drv_data); 642 643 dev_err(drv_data->ssp->dev, "%s\n", msg); 644 645 drv_data->controller->cur_msg->status = err; 646 spi_finalize_current_transfer(drv_data->controller); 647 } 648 649 static void int_transfer_complete(struct driver_data *drv_data) 650 { 651 int_stop_and_reset(drv_data); 652 653 spi_finalize_current_transfer(drv_data->controller); 654 } 655 656 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 657 { 658 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 659 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 660 661 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 662 663 if (irq_status & SSSR_ROR) { 664 int_error_stop(drv_data, "interrupt_transfer: fifo overrun", -EIO); 665 return IRQ_HANDLED; 666 } 667 668 if (irq_status & SSSR_TUR) { 669 int_error_stop(drv_data, "interrupt_transfer: fifo underrun", -EIO); 670 return IRQ_HANDLED; 671 } 672 673 if (irq_status & SSSR_TINT) { 674 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 675 if (drv_data->read(drv_data)) { 676 int_transfer_complete(drv_data); 677 return IRQ_HANDLED; 678 } 679 } 680 681 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 682 do { 683 if (drv_data->read(drv_data)) { 684 int_transfer_complete(drv_data); 685 return IRQ_HANDLED; 686 } 687 } while (drv_data->write(drv_data)); 688 689 if (drv_data->read(drv_data)) { 690 int_transfer_complete(drv_data); 691 return IRQ_HANDLED; 692 } 693 694 if (drv_data->tx == drv_data->tx_end) { 695 u32 bytes_left; 696 u32 sccr1_reg; 697 698 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 699 sccr1_reg &= ~SSCR1_TIE; 700 701 /* 702 * PXA25x_SSP has no timeout, set up rx threshould for the 703 * remaining RX bytes. 704 */ 705 if (pxa25x_ssp_comp(drv_data)) { 706 u32 rx_thre; 707 708 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 709 710 bytes_left = drv_data->rx_end - drv_data->rx; 711 switch (drv_data->n_bytes) { 712 case 4: 713 bytes_left >>= 2; 714 break; 715 case 2: 716 bytes_left >>= 1; 717 break; 718 } 719 720 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 721 if (rx_thre > bytes_left) 722 rx_thre = bytes_left; 723 724 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 725 } 726 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 727 } 728 729 /* We did something */ 730 return IRQ_HANDLED; 731 } 732 733 static void handle_bad_msg(struct driver_data *drv_data) 734 { 735 pxa2xx_spi_off(drv_data); 736 pxa2xx_spi_write(drv_data, SSCR1, 737 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1); 738 if (!pxa25x_ssp_comp(drv_data)) 739 pxa2xx_spi_write(drv_data, SSTO, 0); 740 write_SSSR_CS(drv_data, drv_data->clear_sr); 741 742 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); 743 } 744 745 static irqreturn_t ssp_int(int irq, void *dev_id) 746 { 747 struct driver_data *drv_data = dev_id; 748 u32 sccr1_reg; 749 u32 mask = drv_data->mask_sr; 750 u32 status; 751 752 /* 753 * The IRQ might be shared with other peripherals so we must first 754 * check that are we RPM suspended or not. If we are we assume that 755 * the IRQ was not for us (we shouldn't be RPM suspended when the 756 * interrupt is enabled). 757 */ 758 if (pm_runtime_suspended(drv_data->ssp->dev)) 759 return IRQ_NONE; 760 761 /* 762 * If the device is not yet in RPM suspended state and we get an 763 * interrupt that is meant for another device, check if status bits 764 * are all set to one. That means that the device is already 765 * powered off. 766 */ 767 status = pxa2xx_spi_read(drv_data, SSSR); 768 if (status == ~0) 769 return IRQ_NONE; 770 771 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 772 773 /* Ignore possible writes if we don't need to write */ 774 if (!(sccr1_reg & SSCR1_TIE)) 775 mask &= ~SSSR_TFS; 776 777 /* Ignore RX timeout interrupt if it is disabled */ 778 if (!(sccr1_reg & SSCR1_TINTE)) 779 mask &= ~SSSR_TINT; 780 781 if (!(status & mask)) 782 return IRQ_NONE; 783 784 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 785 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 786 787 if (!drv_data->controller->cur_msg) { 788 handle_bad_msg(drv_data); 789 /* Never fail */ 790 return IRQ_HANDLED; 791 } 792 793 return drv_data->transfer_handler(drv_data); 794 } 795 796 /* 797 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 798 * input frequency by fractions of 2^24. It also has a divider by 5. 799 * 800 * There are formulas to get baud rate value for given input frequency and 801 * divider parameters, such as DDS_CLK_RATE and SCR: 802 * 803 * Fsys = 200MHz 804 * 805 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 806 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 807 * 808 * DDS_CLK_RATE either 2^n or 2^n / 5. 809 * SCR is in range 0 .. 255 810 * 811 * Divisor = 5^i * 2^j * 2 * k 812 * i = [0, 1] i = 1 iff j = 0 or j > 3 813 * j = [0, 23] j = 0 iff i = 1 814 * k = [1, 256] 815 * Special case: j = 0, i = 1: Divisor = 2 / 5 816 * 817 * Accordingly to the specification the recommended values for DDS_CLK_RATE 818 * are: 819 * Case 1: 2^n, n = [0, 23] 820 * Case 2: 2^24 * 2 / 5 (0x666666) 821 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 822 * 823 * In all cases the lowest possible value is better. 824 * 825 * The function calculates parameters for all cases and chooses the one closest 826 * to the asked baud rate. 827 */ 828 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 829 { 830 unsigned long xtal = 200000000; 831 unsigned long fref = xtal / 2; /* mandatory division by 2, 832 see (2) */ 833 /* case 3 */ 834 unsigned long fref1 = fref / 2; /* case 1 */ 835 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 836 unsigned long scale; 837 unsigned long q, q1, q2; 838 long r, r1, r2; 839 u32 mul; 840 841 /* Case 1 */ 842 843 /* Set initial value for DDS_CLK_RATE */ 844 mul = (1 << 24) >> 1; 845 846 /* Calculate initial quot */ 847 q1 = DIV_ROUND_UP(fref1, rate); 848 849 /* Scale q1 if it's too big */ 850 if (q1 > 256) { 851 /* Scale q1 to range [1, 512] */ 852 scale = fls_long(q1 - 1); 853 if (scale > 9) { 854 q1 >>= scale - 9; 855 mul >>= scale - 9; 856 } 857 858 /* Round the result if we have a remainder */ 859 q1 += q1 & 1; 860 } 861 862 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 863 scale = __ffs(q1); 864 q1 >>= scale; 865 mul >>= scale; 866 867 /* Get the remainder */ 868 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 869 870 /* Case 2 */ 871 872 q2 = DIV_ROUND_UP(fref2, rate); 873 r2 = abs(fref2 / q2 - rate); 874 875 /* 876 * Choose the best between two: less remainder we have the better. We 877 * can't go case 2 if q2 is greater than 256 since SCR register can 878 * hold only values 0 .. 255. 879 */ 880 if (r2 >= r1 || q2 > 256) { 881 /* case 1 is better */ 882 r = r1; 883 q = q1; 884 } else { 885 /* case 2 is better */ 886 r = r2; 887 q = q2; 888 mul = (1 << 24) * 2 / 5; 889 } 890 891 /* Check case 3 only if the divisor is big enough */ 892 if (fref / rate >= 80) { 893 u64 fssp; 894 u32 m; 895 896 /* Calculate initial quot */ 897 q1 = DIV_ROUND_UP(fref, rate); 898 m = (1 << 24) / q1; 899 900 /* Get the remainder */ 901 fssp = (u64)fref * m; 902 do_div(fssp, 1 << 24); 903 r1 = abs(fssp - rate); 904 905 /* Choose this one if it suits better */ 906 if (r1 < r) { 907 /* case 3 is better */ 908 q = 1; 909 mul = m; 910 } 911 } 912 913 *dds = mul; 914 return q - 1; 915 } 916 917 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 918 { 919 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 920 const struct ssp_device *ssp = drv_data->ssp; 921 922 rate = min_t(int, ssp_clk, rate); 923 924 /* 925 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 926 * that the SSP transmission rate can be greater than the device rate 927 */ 928 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 929 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 930 else 931 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 932 } 933 934 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 935 int rate) 936 { 937 struct chip_data *chip = 938 spi_get_ctldata(drv_data->controller->cur_msg->spi); 939 unsigned int clk_div; 940 941 switch (drv_data->ssp_type) { 942 case QUARK_X1000_SSP: 943 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 944 break; 945 default: 946 clk_div = ssp_get_clk_div(drv_data, rate); 947 break; 948 } 949 return clk_div << 8; 950 } 951 952 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 953 struct spi_device *spi, 954 struct spi_transfer *xfer) 955 { 956 struct chip_data *chip = spi_get_ctldata(spi); 957 958 return chip->enable_dma && 959 xfer->len <= MAX_DMA_LEN && 960 xfer->len >= chip->dma_burst_size; 961 } 962 963 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 964 struct spi_device *spi, 965 struct spi_transfer *transfer) 966 { 967 struct driver_data *drv_data = spi_controller_get_devdata(controller); 968 struct spi_message *message = controller->cur_msg; 969 struct chip_data *chip = spi_get_ctldata(spi); 970 u32 dma_thresh = chip->dma_threshold; 971 u32 dma_burst = chip->dma_burst_size; 972 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 973 u32 clk_div; 974 u8 bits; 975 u32 speed; 976 u32 cr0; 977 u32 cr1; 978 int err; 979 int dma_mapped; 980 981 /* Check if we can DMA this transfer */ 982 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) { 983 984 /* reject already-mapped transfers; PIO won't always work */ 985 if (message->is_dma_mapped 986 || transfer->rx_dma || transfer->tx_dma) { 987 dev_err(&spi->dev, 988 "Mapped transfer length of %u is greater than %d\n", 989 transfer->len, MAX_DMA_LEN); 990 return -EINVAL; 991 } 992 993 /* warn ... we force this to PIO mode */ 994 dev_warn_ratelimited(&spi->dev, 995 "DMA disabled for transfer length %ld greater than %d\n", 996 (long)transfer->len, MAX_DMA_LEN); 997 } 998 999 /* Setup the transfer state based on the type of transfer */ 1000 if (pxa2xx_spi_flush(drv_data) == 0) { 1001 dev_err(&spi->dev, "Flush failed\n"); 1002 return -EIO; 1003 } 1004 drv_data->n_bytes = chip->n_bytes; 1005 drv_data->tx = (void *)transfer->tx_buf; 1006 drv_data->tx_end = drv_data->tx + transfer->len; 1007 drv_data->rx = transfer->rx_buf; 1008 drv_data->rx_end = drv_data->rx + transfer->len; 1009 drv_data->write = drv_data->tx ? chip->write : null_writer; 1010 drv_data->read = drv_data->rx ? chip->read : null_reader; 1011 1012 /* Change speed and bit per word on a per transfer */ 1013 bits = transfer->bits_per_word; 1014 speed = transfer->speed_hz; 1015 1016 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 1017 1018 if (bits <= 8) { 1019 drv_data->n_bytes = 1; 1020 drv_data->read = drv_data->read != null_reader ? 1021 u8_reader : null_reader; 1022 drv_data->write = drv_data->write != null_writer ? 1023 u8_writer : null_writer; 1024 } else if (bits <= 16) { 1025 drv_data->n_bytes = 2; 1026 drv_data->read = drv_data->read != null_reader ? 1027 u16_reader : null_reader; 1028 drv_data->write = drv_data->write != null_writer ? 1029 u16_writer : null_writer; 1030 } else if (bits <= 32) { 1031 drv_data->n_bytes = 4; 1032 drv_data->read = drv_data->read != null_reader ? 1033 u32_reader : null_reader; 1034 drv_data->write = drv_data->write != null_writer ? 1035 u32_writer : null_writer; 1036 } 1037 /* 1038 * if bits/word is changed in dma mode, then must check the 1039 * thresholds and burst also 1040 */ 1041 if (chip->enable_dma) { 1042 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 1043 spi, 1044 bits, &dma_burst, 1045 &dma_thresh)) 1046 dev_warn_ratelimited(&spi->dev, 1047 "DMA burst size reduced to match bits_per_word\n"); 1048 } 1049 1050 dma_mapped = controller->can_dma && 1051 controller->can_dma(controller, spi, transfer) && 1052 controller->cur_msg_mapped; 1053 if (dma_mapped) { 1054 1055 /* Ensure we have the correct interrupt handler */ 1056 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1057 1058 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1059 if (err) 1060 return err; 1061 1062 /* Clear status and start DMA engine */ 1063 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1064 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1065 1066 pxa2xx_spi_dma_start(drv_data); 1067 } else { 1068 /* Ensure we have the correct interrupt handler */ 1069 drv_data->transfer_handler = interrupt_transfer; 1070 1071 /* Clear status */ 1072 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1073 write_SSSR_CS(drv_data, drv_data->clear_sr); 1074 } 1075 1076 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1077 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1078 if (!pxa25x_ssp_comp(drv_data)) 1079 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1080 controller->max_speed_hz 1081 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1082 dma_mapped ? "DMA" : "PIO"); 1083 else 1084 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1085 controller->max_speed_hz / 2 1086 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1087 dma_mapped ? "DMA" : "PIO"); 1088 1089 if (is_lpss_ssp(drv_data)) { 1090 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); 1091 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); 1092 } 1093 1094 if (is_quark_x1000_ssp(drv_data)) 1095 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); 1096 1097 /* Stop the SSP */ 1098 if (!is_mmp2_ssp(drv_data)) 1099 pxa_ssp_disable(drv_data->ssp); 1100 1101 if (!pxa25x_ssp_comp(drv_data)) 1102 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1103 1104 /* first set CR1 without interrupt and service enables */ 1105 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); 1106 1107 /* see if we need to reload the config registers */ 1108 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); 1109 1110 /* Restart the SSP */ 1111 pxa_ssp_enable(drv_data->ssp); 1112 1113 if (is_mmp2_ssp(drv_data)) { 1114 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR) 1115 & SSSR_TFL_MASK) >> 8; 1116 1117 if (tx_level) { 1118 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */ 1119 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n", 1120 tx_level); 1121 if (tx_level > transfer->len) 1122 tx_level = transfer->len; 1123 drv_data->tx += tx_level; 1124 } 1125 } 1126 1127 if (spi_controller_is_slave(controller)) { 1128 while (drv_data->write(drv_data)) 1129 ; 1130 if (drv_data->gpiod_ready) { 1131 gpiod_set_value(drv_data->gpiod_ready, 1); 1132 udelay(1); 1133 gpiod_set_value(drv_data->gpiod_ready, 0); 1134 } 1135 } 1136 1137 /* 1138 * Release the data by enabling service requests and interrupts, 1139 * without changing any mode bits 1140 */ 1141 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1142 1143 return 1; 1144 } 1145 1146 static int pxa2xx_spi_slave_abort(struct spi_controller *controller) 1147 { 1148 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1149 1150 int_error_stop(drv_data, "transfer aborted", -EINTR); 1151 1152 return 0; 1153 } 1154 1155 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1156 struct spi_message *msg) 1157 { 1158 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1159 1160 /* Disable the SSP */ 1161 pxa2xx_spi_off(drv_data); 1162 /* Clear and disable interrupts and service requests */ 1163 write_SSSR_CS(drv_data, drv_data->clear_sr); 1164 pxa2xx_spi_write(drv_data, SSCR1, 1165 pxa2xx_spi_read(drv_data, SSCR1) 1166 & ~(drv_data->int_cr1 | drv_data->dma_cr1)); 1167 if (!pxa25x_ssp_comp(drv_data)) 1168 pxa2xx_spi_write(drv_data, SSTO, 0); 1169 1170 /* 1171 * Stop the DMA if running. Note DMA callback handler may have unset 1172 * the dma_running already, which is fine as stopping is not needed 1173 * then but we shouldn't rely this flag for anything else than 1174 * stopping. For instance to differentiate between PIO and DMA 1175 * transfers. 1176 */ 1177 if (atomic_read(&drv_data->dma_running)) 1178 pxa2xx_spi_dma_stop(drv_data); 1179 } 1180 1181 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1182 { 1183 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1184 1185 /* Disable the SSP now */ 1186 pxa2xx_spi_off(drv_data); 1187 1188 return 0; 1189 } 1190 1191 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1192 struct pxa2xx_spi_chip *chip_info) 1193 { 1194 struct driver_data *drv_data = 1195 spi_controller_get_devdata(spi->controller); 1196 struct gpio_desc *gpiod; 1197 int err = 0; 1198 1199 if (chip == NULL) 1200 return 0; 1201 1202 if (drv_data->cs_gpiods) { 1203 gpiod = drv_data->cs_gpiods[spi->chip_select]; 1204 if (gpiod) { 1205 chip->gpiod_cs = gpiod; 1206 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1207 gpiod_set_value(gpiod, chip->gpio_cs_inverted); 1208 } 1209 1210 return 0; 1211 } 1212 1213 if (chip_info == NULL) 1214 return 0; 1215 1216 /* NOTE: setup() can be called multiple times, possibly with 1217 * different chip_info, release previously requested GPIO 1218 */ 1219 if (chip->gpiod_cs) { 1220 gpiod_put(chip->gpiod_cs); 1221 chip->gpiod_cs = NULL; 1222 } 1223 1224 /* If (*cs_control) is provided, ignore GPIO chip select */ 1225 if (chip_info->cs_control) { 1226 chip->cs_control = chip_info->cs_control; 1227 return 0; 1228 } 1229 1230 if (gpio_is_valid(chip_info->gpio_cs)) { 1231 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1232 if (err) { 1233 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1234 chip_info->gpio_cs); 1235 return err; 1236 } 1237 1238 gpiod = gpio_to_desc(chip_info->gpio_cs); 1239 chip->gpiod_cs = gpiod; 1240 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1241 1242 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted); 1243 } 1244 1245 return err; 1246 } 1247 1248 static int setup(struct spi_device *spi) 1249 { 1250 struct pxa2xx_spi_chip *chip_info; 1251 struct chip_data *chip; 1252 const struct lpss_config *config; 1253 struct driver_data *drv_data = 1254 spi_controller_get_devdata(spi->controller); 1255 uint tx_thres, tx_hi_thres, rx_thres; 1256 1257 switch (drv_data->ssp_type) { 1258 case QUARK_X1000_SSP: 1259 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1260 tx_hi_thres = 0; 1261 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1262 break; 1263 case CE4100_SSP: 1264 tx_thres = TX_THRESH_CE4100_DFLT; 1265 tx_hi_thres = 0; 1266 rx_thres = RX_THRESH_CE4100_DFLT; 1267 break; 1268 case LPSS_LPT_SSP: 1269 case LPSS_BYT_SSP: 1270 case LPSS_BSW_SSP: 1271 case LPSS_SPT_SSP: 1272 case LPSS_BXT_SSP: 1273 case LPSS_CNL_SSP: 1274 config = lpss_get_config(drv_data); 1275 tx_thres = config->tx_threshold_lo; 1276 tx_hi_thres = config->tx_threshold_hi; 1277 rx_thres = config->rx_threshold; 1278 break; 1279 default: 1280 tx_hi_thres = 0; 1281 if (spi_controller_is_slave(drv_data->controller)) { 1282 tx_thres = 1; 1283 rx_thres = 2; 1284 } else { 1285 tx_thres = TX_THRESH_DFLT; 1286 rx_thres = RX_THRESH_DFLT; 1287 } 1288 break; 1289 } 1290 1291 /* Only alloc on first setup */ 1292 chip = spi_get_ctldata(spi); 1293 if (!chip) { 1294 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1295 if (!chip) 1296 return -ENOMEM; 1297 1298 if (drv_data->ssp_type == CE4100_SSP) { 1299 if (spi->chip_select > 4) { 1300 dev_err(&spi->dev, 1301 "failed setup: cs number must not be > 4.\n"); 1302 kfree(chip); 1303 return -EINVAL; 1304 } 1305 1306 chip->frm = spi->chip_select; 1307 } 1308 chip->enable_dma = drv_data->controller_info->enable_dma; 1309 chip->timeout = TIMOUT_DFLT; 1310 } 1311 1312 /* protocol drivers may change the chip settings, so... 1313 * if chip_info exists, use it */ 1314 chip_info = spi->controller_data; 1315 1316 /* chip_info isn't always needed */ 1317 chip->cr1 = 0; 1318 if (chip_info) { 1319 if (chip_info->timeout) 1320 chip->timeout = chip_info->timeout; 1321 if (chip_info->tx_threshold) 1322 tx_thres = chip_info->tx_threshold; 1323 if (chip_info->tx_hi_threshold) 1324 tx_hi_thres = chip_info->tx_hi_threshold; 1325 if (chip_info->rx_threshold) 1326 rx_thres = chip_info->rx_threshold; 1327 chip->dma_threshold = 0; 1328 if (chip_info->enable_loopback) 1329 chip->cr1 = SSCR1_LBM; 1330 } 1331 if (spi_controller_is_slave(drv_data->controller)) { 1332 chip->cr1 |= SSCR1_SCFR; 1333 chip->cr1 |= SSCR1_SCLKDIR; 1334 chip->cr1 |= SSCR1_SFRMDIR; 1335 chip->cr1 |= SSCR1_SPH; 1336 } 1337 1338 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1339 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1340 | SSITF_TxHiThresh(tx_hi_thres); 1341 1342 /* set dma burst and threshold outside of chip_info path so that if 1343 * chip_info goes away after setting chip->enable_dma, the 1344 * burst and threshold can still respond to changes in bits_per_word */ 1345 if (chip->enable_dma) { 1346 /* set up legal burst and threshold for dma */ 1347 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1348 spi->bits_per_word, 1349 &chip->dma_burst_size, 1350 &chip->dma_threshold)) { 1351 dev_warn(&spi->dev, 1352 "in setup: DMA burst size reduced to match bits_per_word\n"); 1353 } 1354 dev_dbg(&spi->dev, 1355 "in setup: DMA burst size set to %u\n", 1356 chip->dma_burst_size); 1357 } 1358 1359 switch (drv_data->ssp_type) { 1360 case QUARK_X1000_SSP: 1361 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1362 & QUARK_X1000_SSCR1_RFT) 1363 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1364 & QUARK_X1000_SSCR1_TFT); 1365 break; 1366 case CE4100_SSP: 1367 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1368 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1369 break; 1370 default: 1371 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1372 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1373 break; 1374 } 1375 1376 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1377 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1378 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1379 1380 if (spi->mode & SPI_LOOP) 1381 chip->cr1 |= SSCR1_LBM; 1382 1383 if (spi->bits_per_word <= 8) { 1384 chip->n_bytes = 1; 1385 chip->read = u8_reader; 1386 chip->write = u8_writer; 1387 } else if (spi->bits_per_word <= 16) { 1388 chip->n_bytes = 2; 1389 chip->read = u16_reader; 1390 chip->write = u16_writer; 1391 } else if (spi->bits_per_word <= 32) { 1392 chip->n_bytes = 4; 1393 chip->read = u32_reader; 1394 chip->write = u32_writer; 1395 } 1396 1397 spi_set_ctldata(spi, chip); 1398 1399 if (drv_data->ssp_type == CE4100_SSP) 1400 return 0; 1401 1402 return setup_cs(spi, chip, chip_info); 1403 } 1404 1405 static void cleanup(struct spi_device *spi) 1406 { 1407 struct chip_data *chip = spi_get_ctldata(spi); 1408 struct driver_data *drv_data = 1409 spi_controller_get_devdata(spi->controller); 1410 1411 if (!chip) 1412 return; 1413 1414 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods && 1415 chip->gpiod_cs) 1416 gpiod_put(chip->gpiod_cs); 1417 1418 kfree(chip); 1419 } 1420 1421 #ifdef CONFIG_ACPI 1422 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1423 { "INT33C0", LPSS_LPT_SSP }, 1424 { "INT33C1", LPSS_LPT_SSP }, 1425 { "INT3430", LPSS_LPT_SSP }, 1426 { "INT3431", LPSS_LPT_SSP }, 1427 { "80860F0E", LPSS_BYT_SSP }, 1428 { "8086228E", LPSS_BSW_SSP }, 1429 { }, 1430 }; 1431 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1432 #endif 1433 1434 /* 1435 * PCI IDs of compound devices that integrate both host controller and private 1436 * integrated DMA engine. Please note these are not used in module 1437 * autoloading and probing in this module but matching the LPSS SSP type. 1438 */ 1439 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1440 /* SPT-LP */ 1441 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1442 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1443 /* SPT-H */ 1444 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1445 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1446 /* KBL-H */ 1447 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP }, 1448 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP }, 1449 /* CML-V */ 1450 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP }, 1451 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP }, 1452 /* BXT A-Step */ 1453 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1454 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1455 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1456 /* BXT B-Step */ 1457 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP }, 1458 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP }, 1459 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP }, 1460 /* GLK */ 1461 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP }, 1462 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP }, 1463 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP }, 1464 /* ICL-LP */ 1465 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP }, 1466 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP }, 1467 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP }, 1468 /* EHL */ 1469 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP }, 1470 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP }, 1471 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP }, 1472 /* JSL */ 1473 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP }, 1474 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP }, 1475 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP }, 1476 /* TGL-H */ 1477 { PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP }, 1478 { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, 1479 { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, 1480 { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, 1481 /* ADL-P */ 1482 { PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP }, 1483 { PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP }, 1484 { PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP }, 1485 /* ADL-M */ 1486 { PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP }, 1487 { PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP }, 1488 { PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP }, 1489 /* APL */ 1490 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1491 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1492 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1493 /* ADL-S */ 1494 { PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP }, 1495 { PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP }, 1496 { PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP }, 1497 { PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP }, 1498 /* CNL-LP */ 1499 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP }, 1500 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP }, 1501 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP }, 1502 /* CNL-H */ 1503 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP }, 1504 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP }, 1505 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP }, 1506 /* CML-LP */ 1507 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP }, 1508 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP }, 1509 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP }, 1510 /* CML-H */ 1511 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP }, 1512 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP }, 1513 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP }, 1514 /* TGL-LP */ 1515 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP }, 1516 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP }, 1517 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP }, 1518 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP }, 1519 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP }, 1520 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP }, 1521 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP }, 1522 { }, 1523 }; 1524 1525 static const struct of_device_id pxa2xx_spi_of_match[] = { 1526 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1527 {}, 1528 }; 1529 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1530 1531 #ifdef CONFIG_ACPI 1532 1533 static int pxa2xx_spi_get_port_id(struct device *dev) 1534 { 1535 struct acpi_device *adev; 1536 unsigned int devid; 1537 int port_id = -1; 1538 1539 adev = ACPI_COMPANION(dev); 1540 if (adev && adev->pnp.unique_id && 1541 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1542 port_id = devid; 1543 return port_id; 1544 } 1545 1546 #else /* !CONFIG_ACPI */ 1547 1548 static int pxa2xx_spi_get_port_id(struct device *dev) 1549 { 1550 return -1; 1551 } 1552 1553 #endif /* CONFIG_ACPI */ 1554 1555 1556 #ifdef CONFIG_PCI 1557 1558 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1559 { 1560 return param == chan->device->dev; 1561 } 1562 1563 #endif /* CONFIG_PCI */ 1564 1565 static struct pxa2xx_spi_controller * 1566 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1567 { 1568 struct pxa2xx_spi_controller *pdata; 1569 struct ssp_device *ssp; 1570 struct resource *res; 1571 struct device *parent = pdev->dev.parent; 1572 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL; 1573 const struct pci_device_id *pcidev_id = NULL; 1574 enum pxa_ssp_type type; 1575 const void *match; 1576 1577 if (pcidev) 1578 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev); 1579 1580 match = device_get_match_data(&pdev->dev); 1581 if (match) 1582 type = (enum pxa_ssp_type)match; 1583 else if (pcidev_id) 1584 type = (enum pxa_ssp_type)pcidev_id->driver_data; 1585 else 1586 return ERR_PTR(-EINVAL); 1587 1588 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1589 if (!pdata) 1590 return ERR_PTR(-ENOMEM); 1591 1592 ssp = &pdata->ssp; 1593 1594 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1595 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1596 if (IS_ERR(ssp->mmio_base)) 1597 return ERR_CAST(ssp->mmio_base); 1598 1599 ssp->phys_base = res->start; 1600 1601 #ifdef CONFIG_PCI 1602 if (pcidev_id) { 1603 pdata->tx_param = parent; 1604 pdata->rx_param = parent; 1605 pdata->dma_filter = pxa2xx_spi_idma_filter; 1606 } 1607 #endif 1608 1609 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1610 if (IS_ERR(ssp->clk)) 1611 return ERR_CAST(ssp->clk); 1612 1613 ssp->irq = platform_get_irq(pdev, 0); 1614 if (ssp->irq < 0) 1615 return ERR_PTR(ssp->irq); 1616 1617 ssp->type = type; 1618 ssp->dev = &pdev->dev; 1619 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev); 1620 1621 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave"); 1622 pdata->num_chipselect = 1; 1623 pdata->enable_dma = true; 1624 pdata->dma_burst_size = 1; 1625 1626 return pdata; 1627 } 1628 1629 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1630 unsigned int cs) 1631 { 1632 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1633 1634 if (has_acpi_companion(drv_data->ssp->dev)) { 1635 switch (drv_data->ssp_type) { 1636 /* 1637 * For Atoms the ACPI DeviceSelection used by the Windows 1638 * driver starts from 1 instead of 0 so translate it here 1639 * to match what Linux expects. 1640 */ 1641 case LPSS_BYT_SSP: 1642 case LPSS_BSW_SSP: 1643 return cs - 1; 1644 1645 default: 1646 break; 1647 } 1648 } 1649 1650 return cs; 1651 } 1652 1653 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1654 { 1655 return MAX_DMA_LEN; 1656 } 1657 1658 static int pxa2xx_spi_probe(struct platform_device *pdev) 1659 { 1660 struct device *dev = &pdev->dev; 1661 struct pxa2xx_spi_controller *platform_info; 1662 struct spi_controller *controller; 1663 struct driver_data *drv_data; 1664 struct ssp_device *ssp; 1665 const struct lpss_config *config; 1666 int status, count; 1667 u32 tmp; 1668 1669 platform_info = dev_get_platdata(dev); 1670 if (!platform_info) { 1671 platform_info = pxa2xx_spi_init_pdata(pdev); 1672 if (IS_ERR(platform_info)) { 1673 dev_err(&pdev->dev, "missing platform data\n"); 1674 return PTR_ERR(platform_info); 1675 } 1676 } 1677 1678 ssp = pxa_ssp_request(pdev->id, pdev->name); 1679 if (!ssp) 1680 ssp = &platform_info->ssp; 1681 1682 if (!ssp->mmio_base) { 1683 dev_err(&pdev->dev, "failed to get ssp\n"); 1684 return -ENODEV; 1685 } 1686 1687 if (platform_info->is_slave) 1688 controller = devm_spi_alloc_slave(dev, sizeof(*drv_data)); 1689 else 1690 controller = devm_spi_alloc_master(dev, sizeof(*drv_data)); 1691 1692 if (!controller) { 1693 dev_err(&pdev->dev, "cannot alloc spi_controller\n"); 1694 status = -ENOMEM; 1695 goto out_error_controller_alloc; 1696 } 1697 drv_data = spi_controller_get_devdata(controller); 1698 drv_data->controller = controller; 1699 drv_data->controller_info = platform_info; 1700 drv_data->ssp = ssp; 1701 1702 controller->dev.of_node = pdev->dev.of_node; 1703 /* the spi->mode bits understood by this driver: */ 1704 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1705 1706 controller->bus_num = ssp->port_id; 1707 controller->dma_alignment = DMA_ALIGNMENT; 1708 controller->cleanup = cleanup; 1709 controller->setup = setup; 1710 controller->set_cs = pxa2xx_spi_set_cs; 1711 controller->transfer_one = pxa2xx_spi_transfer_one; 1712 controller->slave_abort = pxa2xx_spi_slave_abort; 1713 controller->handle_err = pxa2xx_spi_handle_err; 1714 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1715 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1716 controller->auto_runtime_pm = true; 1717 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1718 1719 drv_data->ssp_type = ssp->type; 1720 1721 if (pxa25x_ssp_comp(drv_data)) { 1722 switch (drv_data->ssp_type) { 1723 case QUARK_X1000_SSP: 1724 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1725 break; 1726 default: 1727 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1728 break; 1729 } 1730 1731 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1732 drv_data->dma_cr1 = 0; 1733 drv_data->clear_sr = SSSR_ROR; 1734 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1735 } else { 1736 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1737 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1738 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1739 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1740 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1741 | SSSR_ROR | SSSR_TUR; 1742 } 1743 1744 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1745 drv_data); 1746 if (status < 0) { 1747 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1748 goto out_error_controller_alloc; 1749 } 1750 1751 /* Setup DMA if requested */ 1752 if (platform_info->enable_dma) { 1753 status = pxa2xx_spi_dma_setup(drv_data); 1754 if (status) { 1755 dev_warn(dev, "no DMA channels available, using PIO\n"); 1756 platform_info->enable_dma = false; 1757 } else { 1758 controller->can_dma = pxa2xx_spi_can_dma; 1759 controller->max_dma_len = MAX_DMA_LEN; 1760 controller->max_transfer_size = 1761 pxa2xx_spi_max_dma_transfer_size; 1762 } 1763 } 1764 1765 /* Enable SOC clock */ 1766 status = clk_prepare_enable(ssp->clk); 1767 if (status) 1768 goto out_error_dma_irq_alloc; 1769 1770 controller->max_speed_hz = clk_get_rate(ssp->clk); 1771 /* 1772 * Set minimum speed for all other platforms than Intel Quark which is 1773 * able do under 1 Hz transfers. 1774 */ 1775 if (!pxa25x_ssp_comp(drv_data)) 1776 controller->min_speed_hz = 1777 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1778 else if (!is_quark_x1000_ssp(drv_data)) 1779 controller->min_speed_hz = 1780 DIV_ROUND_UP(controller->max_speed_hz, 512); 1781 1782 pxa_ssp_disable(ssp); 1783 1784 /* Load default SSP configuration */ 1785 switch (drv_data->ssp_type) { 1786 case QUARK_X1000_SSP: 1787 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1788 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1789 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1790 1791 /* using the Motorola SPI protocol and use 8 bit frame */ 1792 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1793 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1794 break; 1795 case CE4100_SSP: 1796 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1797 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1798 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1799 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1800 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1801 break; 1802 default: 1803 1804 if (spi_controller_is_slave(controller)) { 1805 tmp = SSCR1_SCFR | 1806 SSCR1_SCLKDIR | 1807 SSCR1_SFRMDIR | 1808 SSCR1_RxTresh(2) | 1809 SSCR1_TxTresh(1) | 1810 SSCR1_SPH; 1811 } else { 1812 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1813 SSCR1_TxTresh(TX_THRESH_DFLT); 1814 } 1815 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1816 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1817 if (!spi_controller_is_slave(controller)) 1818 tmp |= SSCR0_SCR(2); 1819 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1820 break; 1821 } 1822 1823 if (!pxa25x_ssp_comp(drv_data)) 1824 pxa2xx_spi_write(drv_data, SSTO, 0); 1825 1826 if (!is_quark_x1000_ssp(drv_data)) 1827 pxa2xx_spi_write(drv_data, SSPSP, 0); 1828 1829 if (is_lpss_ssp(drv_data)) { 1830 lpss_ssp_setup(drv_data); 1831 config = lpss_get_config(drv_data); 1832 if (config->reg_capabilities >= 0) { 1833 tmp = __lpss_ssp_read_priv(drv_data, 1834 config->reg_capabilities); 1835 tmp &= LPSS_CAPS_CS_EN_MASK; 1836 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1837 platform_info->num_chipselect = ffz(tmp); 1838 } else if (config->cs_num) { 1839 platform_info->num_chipselect = config->cs_num; 1840 } 1841 } 1842 controller->num_chipselect = platform_info->num_chipselect; 1843 1844 count = gpiod_count(&pdev->dev, "cs"); 1845 if (count > 0) { 1846 int i; 1847 1848 controller->num_chipselect = max_t(int, count, 1849 controller->num_chipselect); 1850 1851 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev, 1852 controller->num_chipselect, sizeof(struct gpio_desc *), 1853 GFP_KERNEL); 1854 if (!drv_data->cs_gpiods) { 1855 status = -ENOMEM; 1856 goto out_error_clock_enabled; 1857 } 1858 1859 for (i = 0; i < controller->num_chipselect; i++) { 1860 struct gpio_desc *gpiod; 1861 1862 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS); 1863 if (IS_ERR(gpiod)) { 1864 /* Means use native chip select */ 1865 if (PTR_ERR(gpiod) == -ENOENT) 1866 continue; 1867 1868 status = PTR_ERR(gpiod); 1869 goto out_error_clock_enabled; 1870 } else { 1871 drv_data->cs_gpiods[i] = gpiod; 1872 } 1873 } 1874 } 1875 1876 if (platform_info->is_slave) { 1877 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1878 "ready", GPIOD_OUT_LOW); 1879 if (IS_ERR(drv_data->gpiod_ready)) { 1880 status = PTR_ERR(drv_data->gpiod_ready); 1881 goto out_error_clock_enabled; 1882 } 1883 } 1884 1885 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1886 pm_runtime_use_autosuspend(&pdev->dev); 1887 pm_runtime_set_active(&pdev->dev); 1888 pm_runtime_enable(&pdev->dev); 1889 1890 /* Register with the SPI framework */ 1891 platform_set_drvdata(pdev, drv_data); 1892 status = spi_register_controller(controller); 1893 if (status != 0) { 1894 dev_err(&pdev->dev, "problem registering spi controller\n"); 1895 goto out_error_pm_runtime_enabled; 1896 } 1897 1898 return status; 1899 1900 out_error_pm_runtime_enabled: 1901 pm_runtime_disable(&pdev->dev); 1902 1903 out_error_clock_enabled: 1904 clk_disable_unprepare(ssp->clk); 1905 1906 out_error_dma_irq_alloc: 1907 pxa2xx_spi_dma_release(drv_data); 1908 free_irq(ssp->irq, drv_data); 1909 1910 out_error_controller_alloc: 1911 pxa_ssp_free(ssp); 1912 return status; 1913 } 1914 1915 static int pxa2xx_spi_remove(struct platform_device *pdev) 1916 { 1917 struct driver_data *drv_data = platform_get_drvdata(pdev); 1918 struct ssp_device *ssp = drv_data->ssp; 1919 1920 pm_runtime_get_sync(&pdev->dev); 1921 1922 spi_unregister_controller(drv_data->controller); 1923 1924 /* Disable the SSP at the peripheral and SOC level */ 1925 pxa_ssp_disable(ssp); 1926 clk_disable_unprepare(ssp->clk); 1927 1928 /* Release DMA */ 1929 if (drv_data->controller_info->enable_dma) 1930 pxa2xx_spi_dma_release(drv_data); 1931 1932 pm_runtime_put_noidle(&pdev->dev); 1933 pm_runtime_disable(&pdev->dev); 1934 1935 /* Release IRQ */ 1936 free_irq(ssp->irq, drv_data); 1937 1938 /* Release SSP */ 1939 pxa_ssp_free(ssp); 1940 1941 return 0; 1942 } 1943 1944 #ifdef CONFIG_PM_SLEEP 1945 static int pxa2xx_spi_suspend(struct device *dev) 1946 { 1947 struct driver_data *drv_data = dev_get_drvdata(dev); 1948 struct ssp_device *ssp = drv_data->ssp; 1949 int status; 1950 1951 status = spi_controller_suspend(drv_data->controller); 1952 if (status != 0) 1953 return status; 1954 1955 pxa_ssp_disable(ssp); 1956 1957 if (!pm_runtime_suspended(dev)) 1958 clk_disable_unprepare(ssp->clk); 1959 1960 return 0; 1961 } 1962 1963 static int pxa2xx_spi_resume(struct device *dev) 1964 { 1965 struct driver_data *drv_data = dev_get_drvdata(dev); 1966 struct ssp_device *ssp = drv_data->ssp; 1967 int status; 1968 1969 /* Enable the SSP clock */ 1970 if (!pm_runtime_suspended(dev)) { 1971 status = clk_prepare_enable(ssp->clk); 1972 if (status) 1973 return status; 1974 } 1975 1976 /* Start the queue running */ 1977 return spi_controller_resume(drv_data->controller); 1978 } 1979 #endif 1980 1981 #ifdef CONFIG_PM 1982 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1983 { 1984 struct driver_data *drv_data = dev_get_drvdata(dev); 1985 1986 clk_disable_unprepare(drv_data->ssp->clk); 1987 return 0; 1988 } 1989 1990 static int pxa2xx_spi_runtime_resume(struct device *dev) 1991 { 1992 struct driver_data *drv_data = dev_get_drvdata(dev); 1993 int status; 1994 1995 status = clk_prepare_enable(drv_data->ssp->clk); 1996 return status; 1997 } 1998 #endif 1999 2000 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 2001 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 2002 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 2003 pxa2xx_spi_runtime_resume, NULL) 2004 }; 2005 2006 static struct platform_driver driver = { 2007 .driver = { 2008 .name = "pxa2xx-spi", 2009 .pm = &pxa2xx_spi_pm_ops, 2010 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 2011 .of_match_table = of_match_ptr(pxa2xx_spi_of_match), 2012 }, 2013 .probe = pxa2xx_spi_probe, 2014 .remove = pxa2xx_spi_remove, 2015 }; 2016 2017 static int __init pxa2xx_spi_init(void) 2018 { 2019 return platform_driver_register(&driver); 2020 } 2021 subsys_initcall(pxa2xx_spi_init); 2022 2023 static void __exit pxa2xx_spi_exit(void) 2024 { 2025 platform_driver_unregister(&driver); 2026 } 2027 module_exit(pxa2xx_spi_exit); 2028 2029 MODULE_SOFTDEP("pre: dw_dmac"); 2030