xref: /openbmc/linux/drivers/spi/spi-pxa2xx.c (revision 02bc933ebb59208f42c2e6305b2c17fd306f695d)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/platform_device.h>
25 #include <linux/spi/pxa2xx_spi.h>
26 #include <linux/spi/spi.h>
27 #include <linux/delay.h>
28 #include <linux/gpio.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/acpi.h>
33 
34 #include "spi-pxa2xx.h"
35 
36 MODULE_AUTHOR("Stephen Street");
37 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
38 MODULE_LICENSE("GPL");
39 MODULE_ALIAS("platform:pxa2xx-spi");
40 
41 #define TIMOUT_DFLT		1000
42 
43 /*
44  * for testing SSCR1 changes that require SSP restart, basically
45  * everything except the service and interrupt enables, the pxa270 developer
46  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
47  * list, but the PXA255 dev man says all bits without really meaning the
48  * service and interrupt enables
49  */
50 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
51 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
52 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
53 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
54 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
55 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
56 
57 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
58 				| QUARK_X1000_SSCR1_EFWR	\
59 				| QUARK_X1000_SSCR1_RFT		\
60 				| QUARK_X1000_SSCR1_TFT		\
61 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
62 
63 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
64 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
65 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
66 
67 struct lpss_config {
68 	/* LPSS offset from drv_data->ioaddr */
69 	unsigned offset;
70 	/* Register offsets from drv_data->lpss_base or -1 */
71 	int reg_general;
72 	int reg_ssp;
73 	int reg_cs_ctrl;
74 	/* FIFO thresholds */
75 	u32 rx_threshold;
76 	u32 tx_threshold_lo;
77 	u32 tx_threshold_hi;
78 };
79 
80 /* Keep these sorted with enum pxa_ssp_type */
81 static const struct lpss_config lpss_platforms[] = {
82 	{	/* LPSS_LPT_SSP */
83 		.offset = 0x800,
84 		.reg_general = 0x08,
85 		.reg_ssp = 0x0c,
86 		.reg_cs_ctrl = 0x18,
87 		.rx_threshold = 64,
88 		.tx_threshold_lo = 160,
89 		.tx_threshold_hi = 224,
90 	},
91 	{	/* LPSS_BYT_SSP */
92 		.offset = 0x400,
93 		.reg_general = 0x08,
94 		.reg_ssp = 0x0c,
95 		.reg_cs_ctrl = 0x18,
96 		.rx_threshold = 64,
97 		.tx_threshold_lo = 160,
98 		.tx_threshold_hi = 224,
99 	},
100 };
101 
102 static inline const struct lpss_config
103 *lpss_get_config(const struct driver_data *drv_data)
104 {
105 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
106 }
107 
108 static bool is_lpss_ssp(const struct driver_data *drv_data)
109 {
110 	switch (drv_data->ssp_type) {
111 	case LPSS_LPT_SSP:
112 	case LPSS_BYT_SSP:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
120 {
121 	return drv_data->ssp_type == QUARK_X1000_SSP;
122 }
123 
124 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
125 {
126 	switch (drv_data->ssp_type) {
127 	case QUARK_X1000_SSP:
128 		return QUARK_X1000_SSCR1_CHANGE_MASK;
129 	default:
130 		return SSCR1_CHANGE_MASK;
131 	}
132 }
133 
134 static u32
135 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
136 {
137 	switch (drv_data->ssp_type) {
138 	case QUARK_X1000_SSP:
139 		return RX_THRESH_QUARK_X1000_DFLT;
140 	default:
141 		return RX_THRESH_DFLT;
142 	}
143 }
144 
145 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
146 {
147 	u32 mask;
148 
149 	switch (drv_data->ssp_type) {
150 	case QUARK_X1000_SSP:
151 		mask = QUARK_X1000_SSSR_TFL_MASK;
152 		break;
153 	default:
154 		mask = SSSR_TFL_MASK;
155 		break;
156 	}
157 
158 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
159 }
160 
161 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
162 				     u32 *sccr1_reg)
163 {
164 	u32 mask;
165 
166 	switch (drv_data->ssp_type) {
167 	case QUARK_X1000_SSP:
168 		mask = QUARK_X1000_SSCR1_RFT;
169 		break;
170 	default:
171 		mask = SSCR1_RFT;
172 		break;
173 	}
174 	*sccr1_reg &= ~mask;
175 }
176 
177 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
178 				   u32 *sccr1_reg, u32 threshold)
179 {
180 	switch (drv_data->ssp_type) {
181 	case QUARK_X1000_SSP:
182 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
183 		break;
184 	default:
185 		*sccr1_reg |= SSCR1_RxTresh(threshold);
186 		break;
187 	}
188 }
189 
190 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
191 				  u32 clk_div, u8 bits)
192 {
193 	switch (drv_data->ssp_type) {
194 	case QUARK_X1000_SSP:
195 		return clk_div
196 			| QUARK_X1000_SSCR0_Motorola
197 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
198 			| SSCR0_SSE;
199 	default:
200 		return clk_div
201 			| SSCR0_Motorola
202 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
203 			| SSCR0_SSE
204 			| (bits > 16 ? SSCR0_EDSS : 0);
205 	}
206 }
207 
208 /*
209  * Read and write LPSS SSP private registers. Caller must first check that
210  * is_lpss_ssp() returns true before these can be called.
211  */
212 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
213 {
214 	WARN_ON(!drv_data->lpss_base);
215 	return readl(drv_data->lpss_base + offset);
216 }
217 
218 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
219 				  unsigned offset, u32 value)
220 {
221 	WARN_ON(!drv_data->lpss_base);
222 	writel(value, drv_data->lpss_base + offset);
223 }
224 
225 /*
226  * lpss_ssp_setup - perform LPSS SSP specific setup
227  * @drv_data: pointer to the driver private data
228  *
229  * Perform LPSS SSP specific setup. This function must be called first if
230  * one is going to use LPSS SSP private registers.
231  */
232 static void lpss_ssp_setup(struct driver_data *drv_data)
233 {
234 	const struct lpss_config *config;
235 	u32 value;
236 
237 	config = lpss_get_config(drv_data);
238 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
239 
240 	/* Enable software chip select control */
241 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
242 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
243 
244 	/* Enable multiblock DMA transfers */
245 	if (drv_data->master_info->enable_dma) {
246 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
247 
248 		if (config->reg_general >= 0) {
249 			value = __lpss_ssp_read_priv(drv_data,
250 						     config->reg_general);
251 			value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
252 			__lpss_ssp_write_priv(drv_data,
253 					      config->reg_general, value);
254 		}
255 	}
256 }
257 
258 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
259 {
260 	const struct lpss_config *config;
261 	u32 value;
262 
263 	config = lpss_get_config(drv_data);
264 
265 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
266 	if (enable)
267 		value &= ~SPI_CS_CONTROL_CS_HIGH;
268 	else
269 		value |= SPI_CS_CONTROL_CS_HIGH;
270 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
271 }
272 
273 static void cs_assert(struct driver_data *drv_data)
274 {
275 	struct chip_data *chip = drv_data->cur_chip;
276 
277 	if (drv_data->ssp_type == CE4100_SSP) {
278 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
279 		return;
280 	}
281 
282 	if (chip->cs_control) {
283 		chip->cs_control(PXA2XX_CS_ASSERT);
284 		return;
285 	}
286 
287 	if (gpio_is_valid(chip->gpio_cs)) {
288 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
289 		return;
290 	}
291 
292 	if (is_lpss_ssp(drv_data))
293 		lpss_ssp_cs_control(drv_data, true);
294 }
295 
296 static void cs_deassert(struct driver_data *drv_data)
297 {
298 	struct chip_data *chip = drv_data->cur_chip;
299 
300 	if (drv_data->ssp_type == CE4100_SSP)
301 		return;
302 
303 	if (chip->cs_control) {
304 		chip->cs_control(PXA2XX_CS_DEASSERT);
305 		return;
306 	}
307 
308 	if (gpio_is_valid(chip->gpio_cs)) {
309 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
310 		return;
311 	}
312 
313 	if (is_lpss_ssp(drv_data))
314 		lpss_ssp_cs_control(drv_data, false);
315 }
316 
317 int pxa2xx_spi_flush(struct driver_data *drv_data)
318 {
319 	unsigned long limit = loops_per_jiffy << 1;
320 
321 	do {
322 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
323 			pxa2xx_spi_read(drv_data, SSDR);
324 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
325 	write_SSSR_CS(drv_data, SSSR_ROR);
326 
327 	return limit;
328 }
329 
330 static int null_writer(struct driver_data *drv_data)
331 {
332 	u8 n_bytes = drv_data->n_bytes;
333 
334 	if (pxa2xx_spi_txfifo_full(drv_data)
335 		|| (drv_data->tx == drv_data->tx_end))
336 		return 0;
337 
338 	pxa2xx_spi_write(drv_data, SSDR, 0);
339 	drv_data->tx += n_bytes;
340 
341 	return 1;
342 }
343 
344 static int null_reader(struct driver_data *drv_data)
345 {
346 	u8 n_bytes = drv_data->n_bytes;
347 
348 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
349 	       && (drv_data->rx < drv_data->rx_end)) {
350 		pxa2xx_spi_read(drv_data, SSDR);
351 		drv_data->rx += n_bytes;
352 	}
353 
354 	return drv_data->rx == drv_data->rx_end;
355 }
356 
357 static int u8_writer(struct driver_data *drv_data)
358 {
359 	if (pxa2xx_spi_txfifo_full(drv_data)
360 		|| (drv_data->tx == drv_data->tx_end))
361 		return 0;
362 
363 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
364 	++drv_data->tx;
365 
366 	return 1;
367 }
368 
369 static int u8_reader(struct driver_data *drv_data)
370 {
371 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
372 	       && (drv_data->rx < drv_data->rx_end)) {
373 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
374 		++drv_data->rx;
375 	}
376 
377 	return drv_data->rx == drv_data->rx_end;
378 }
379 
380 static int u16_writer(struct driver_data *drv_data)
381 {
382 	if (pxa2xx_spi_txfifo_full(drv_data)
383 		|| (drv_data->tx == drv_data->tx_end))
384 		return 0;
385 
386 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
387 	drv_data->tx += 2;
388 
389 	return 1;
390 }
391 
392 static int u16_reader(struct driver_data *drv_data)
393 {
394 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
395 	       && (drv_data->rx < drv_data->rx_end)) {
396 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
397 		drv_data->rx += 2;
398 	}
399 
400 	return drv_data->rx == drv_data->rx_end;
401 }
402 
403 static int u32_writer(struct driver_data *drv_data)
404 {
405 	if (pxa2xx_spi_txfifo_full(drv_data)
406 		|| (drv_data->tx == drv_data->tx_end))
407 		return 0;
408 
409 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
410 	drv_data->tx += 4;
411 
412 	return 1;
413 }
414 
415 static int u32_reader(struct driver_data *drv_data)
416 {
417 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
418 	       && (drv_data->rx < drv_data->rx_end)) {
419 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
420 		drv_data->rx += 4;
421 	}
422 
423 	return drv_data->rx == drv_data->rx_end;
424 }
425 
426 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
427 {
428 	struct spi_message *msg = drv_data->cur_msg;
429 	struct spi_transfer *trans = drv_data->cur_transfer;
430 
431 	/* Move to next transfer */
432 	if (trans->transfer_list.next != &msg->transfers) {
433 		drv_data->cur_transfer =
434 			list_entry(trans->transfer_list.next,
435 					struct spi_transfer,
436 					transfer_list);
437 		return RUNNING_STATE;
438 	} else
439 		return DONE_STATE;
440 }
441 
442 /* caller already set message->status; dma and pio irqs are blocked */
443 static void giveback(struct driver_data *drv_data)
444 {
445 	struct spi_transfer* last_transfer;
446 	struct spi_message *msg;
447 
448 	msg = drv_data->cur_msg;
449 	drv_data->cur_msg = NULL;
450 	drv_data->cur_transfer = NULL;
451 
452 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
453 					transfer_list);
454 
455 	/* Delay if requested before any change in chip select */
456 	if (last_transfer->delay_usecs)
457 		udelay(last_transfer->delay_usecs);
458 
459 	/* Drop chip select UNLESS cs_change is true or we are returning
460 	 * a message with an error, or next message is for another chip
461 	 */
462 	if (!last_transfer->cs_change)
463 		cs_deassert(drv_data);
464 	else {
465 		struct spi_message *next_msg;
466 
467 		/* Holding of cs was hinted, but we need to make sure
468 		 * the next message is for the same chip.  Don't waste
469 		 * time with the following tests unless this was hinted.
470 		 *
471 		 * We cannot postpone this until pump_messages, because
472 		 * after calling msg->complete (below) the driver that
473 		 * sent the current message could be unloaded, which
474 		 * could invalidate the cs_control() callback...
475 		 */
476 
477 		/* get a pointer to the next message, if any */
478 		next_msg = spi_get_next_queued_message(drv_data->master);
479 
480 		/* see if the next and current messages point
481 		 * to the same chip
482 		 */
483 		if (next_msg && next_msg->spi != msg->spi)
484 			next_msg = NULL;
485 		if (!next_msg || msg->state == ERROR_STATE)
486 			cs_deassert(drv_data);
487 	}
488 
489 	drv_data->cur_chip = NULL;
490 	spi_finalize_current_message(drv_data->master);
491 }
492 
493 static void reset_sccr1(struct driver_data *drv_data)
494 {
495 	struct chip_data *chip = drv_data->cur_chip;
496 	u32 sccr1_reg;
497 
498 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
499 	sccr1_reg &= ~SSCR1_RFT;
500 	sccr1_reg |= chip->threshold;
501 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
502 }
503 
504 static void int_error_stop(struct driver_data *drv_data, const char* msg)
505 {
506 	/* Stop and reset SSP */
507 	write_SSSR_CS(drv_data, drv_data->clear_sr);
508 	reset_sccr1(drv_data);
509 	if (!pxa25x_ssp_comp(drv_data))
510 		pxa2xx_spi_write(drv_data, SSTO, 0);
511 	pxa2xx_spi_flush(drv_data);
512 	pxa2xx_spi_write(drv_data, SSCR0,
513 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
514 
515 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
516 
517 	drv_data->cur_msg->state = ERROR_STATE;
518 	tasklet_schedule(&drv_data->pump_transfers);
519 }
520 
521 static void int_transfer_complete(struct driver_data *drv_data)
522 {
523 	/* Stop SSP */
524 	write_SSSR_CS(drv_data, drv_data->clear_sr);
525 	reset_sccr1(drv_data);
526 	if (!pxa25x_ssp_comp(drv_data))
527 		pxa2xx_spi_write(drv_data, SSTO, 0);
528 
529 	/* Update total byte transferred return count actual bytes read */
530 	drv_data->cur_msg->actual_length += drv_data->len -
531 				(drv_data->rx_end - drv_data->rx);
532 
533 	/* Transfer delays and chip select release are
534 	 * handled in pump_transfers or giveback
535 	 */
536 
537 	/* Move to next transfer */
538 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
539 
540 	/* Schedule transfer tasklet */
541 	tasklet_schedule(&drv_data->pump_transfers);
542 }
543 
544 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
545 {
546 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
547 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
548 
549 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
550 
551 	if (irq_status & SSSR_ROR) {
552 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
553 		return IRQ_HANDLED;
554 	}
555 
556 	if (irq_status & SSSR_TINT) {
557 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
558 		if (drv_data->read(drv_data)) {
559 			int_transfer_complete(drv_data);
560 			return IRQ_HANDLED;
561 		}
562 	}
563 
564 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
565 	do {
566 		if (drv_data->read(drv_data)) {
567 			int_transfer_complete(drv_data);
568 			return IRQ_HANDLED;
569 		}
570 	} while (drv_data->write(drv_data));
571 
572 	if (drv_data->read(drv_data)) {
573 		int_transfer_complete(drv_data);
574 		return IRQ_HANDLED;
575 	}
576 
577 	if (drv_data->tx == drv_data->tx_end) {
578 		u32 bytes_left;
579 		u32 sccr1_reg;
580 
581 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
582 		sccr1_reg &= ~SSCR1_TIE;
583 
584 		/*
585 		 * PXA25x_SSP has no timeout, set up rx threshould for the
586 		 * remaining RX bytes.
587 		 */
588 		if (pxa25x_ssp_comp(drv_data)) {
589 			u32 rx_thre;
590 
591 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
592 
593 			bytes_left = drv_data->rx_end - drv_data->rx;
594 			switch (drv_data->n_bytes) {
595 			case 4:
596 				bytes_left >>= 1;
597 			case 2:
598 				bytes_left >>= 1;
599 			}
600 
601 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
602 			if (rx_thre > bytes_left)
603 				rx_thre = bytes_left;
604 
605 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
606 		}
607 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
608 	}
609 
610 	/* We did something */
611 	return IRQ_HANDLED;
612 }
613 
614 static irqreturn_t ssp_int(int irq, void *dev_id)
615 {
616 	struct driver_data *drv_data = dev_id;
617 	u32 sccr1_reg;
618 	u32 mask = drv_data->mask_sr;
619 	u32 status;
620 
621 	/*
622 	 * The IRQ might be shared with other peripherals so we must first
623 	 * check that are we RPM suspended or not. If we are we assume that
624 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
625 	 * interrupt is enabled).
626 	 */
627 	if (pm_runtime_suspended(&drv_data->pdev->dev))
628 		return IRQ_NONE;
629 
630 	/*
631 	 * If the device is not yet in RPM suspended state and we get an
632 	 * interrupt that is meant for another device, check if status bits
633 	 * are all set to one. That means that the device is already
634 	 * powered off.
635 	 */
636 	status = pxa2xx_spi_read(drv_data, SSSR);
637 	if (status == ~0)
638 		return IRQ_NONE;
639 
640 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
641 
642 	/* Ignore possible writes if we don't need to write */
643 	if (!(sccr1_reg & SSCR1_TIE))
644 		mask &= ~SSSR_TFS;
645 
646 	/* Ignore RX timeout interrupt if it is disabled */
647 	if (!(sccr1_reg & SSCR1_TINTE))
648 		mask &= ~SSSR_TINT;
649 
650 	if (!(status & mask))
651 		return IRQ_NONE;
652 
653 	if (!drv_data->cur_msg) {
654 
655 		pxa2xx_spi_write(drv_data, SSCR0,
656 				 pxa2xx_spi_read(drv_data, SSCR0)
657 				 & ~SSCR0_SSE);
658 		pxa2xx_spi_write(drv_data, SSCR1,
659 				 pxa2xx_spi_read(drv_data, SSCR1)
660 				 & ~drv_data->int_cr1);
661 		if (!pxa25x_ssp_comp(drv_data))
662 			pxa2xx_spi_write(drv_data, SSTO, 0);
663 		write_SSSR_CS(drv_data, drv_data->clear_sr);
664 
665 		dev_err(&drv_data->pdev->dev,
666 			"bad message state in interrupt handler\n");
667 
668 		/* Never fail */
669 		return IRQ_HANDLED;
670 	}
671 
672 	return drv_data->transfer_handler(drv_data);
673 }
674 
675 /*
676  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
677  * input frequency by fractions of 2^24. It also has a divider by 5.
678  *
679  * There are formulas to get baud rate value for given input frequency and
680  * divider parameters, such as DDS_CLK_RATE and SCR:
681  *
682  * Fsys = 200MHz
683  *
684  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
685  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
686  *
687  * DDS_CLK_RATE either 2^n or 2^n / 5.
688  * SCR is in range 0 .. 255
689  *
690  * Divisor = 5^i * 2^j * 2 * k
691  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
692  *       j = [0, 23]     j = 0 iff i = 1
693  *       k = [1, 256]
694  * Special case: j = 0, i = 1: Divisor = 2 / 5
695  *
696  * Accordingly to the specification the recommended values for DDS_CLK_RATE
697  * are:
698  *	Case 1:		2^n, n = [0, 23]
699  *	Case 2:		2^24 * 2 / 5 (0x666666)
700  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
701  *
702  * In all cases the lowest possible value is better.
703  *
704  * The function calculates parameters for all cases and chooses the one closest
705  * to the asked baud rate.
706  */
707 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
708 {
709 	unsigned long xtal = 200000000;
710 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
711 						   see (2) */
712 						/* case 3 */
713 	unsigned long fref1 = fref / 2;		/* case 1 */
714 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
715 	unsigned long scale;
716 	unsigned long q, q1, q2;
717 	long r, r1, r2;
718 	u32 mul;
719 
720 	/* Case 1 */
721 
722 	/* Set initial value for DDS_CLK_RATE */
723 	mul = (1 << 24) >> 1;
724 
725 	/* Calculate initial quot */
726 	q1 = DIV_ROUND_CLOSEST(fref1, rate);
727 
728 	/* Scale q1 if it's too big */
729 	if (q1 > 256) {
730 		/* Scale q1 to range [1, 512] */
731 		scale = fls_long(q1 - 1);
732 		if (scale > 9) {
733 			q1 >>= scale - 9;
734 			mul >>= scale - 9;
735 		}
736 
737 		/* Round the result if we have a remainder */
738 		q1 += q1 & 1;
739 	}
740 
741 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
742 	scale = __ffs(q1);
743 	q1 >>= scale;
744 	mul >>= scale;
745 
746 	/* Get the remainder */
747 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
748 
749 	/* Case 2 */
750 
751 	q2 = DIV_ROUND_CLOSEST(fref2, rate);
752 	r2 = abs(fref2 / q2 - rate);
753 
754 	/*
755 	 * Choose the best between two: less remainder we have the better. We
756 	 * can't go case 2 if q2 is greater than 256 since SCR register can
757 	 * hold only values 0 .. 255.
758 	 */
759 	if (r2 >= r1 || q2 > 256) {
760 		/* case 1 is better */
761 		r = r1;
762 		q = q1;
763 	} else {
764 		/* case 2 is better */
765 		r = r2;
766 		q = q2;
767 		mul = (1 << 24) * 2 / 5;
768 	}
769 
770 	/* Check case 3 only If the divisor is big enough */
771 	if (fref / rate >= 80) {
772 		u64 fssp;
773 		u32 m;
774 
775 		/* Calculate initial quot */
776 		q1 = DIV_ROUND_CLOSEST(fref, rate);
777 		m = (1 << 24) / q1;
778 
779 		/* Get the remainder */
780 		fssp = (u64)fref * m;
781 		do_div(fssp, 1 << 24);
782 		r1 = abs(fssp - rate);
783 
784 		/* Choose this one if it suits better */
785 		if (r1 < r) {
786 			/* case 3 is better */
787 			q = 1;
788 			mul = m;
789 		}
790 	}
791 
792 	*dds = mul;
793 	return q - 1;
794 }
795 
796 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
797 {
798 	unsigned long ssp_clk = drv_data->max_clk_rate;
799 	const struct ssp_device *ssp = drv_data->ssp;
800 
801 	rate = min_t(int, ssp_clk, rate);
802 
803 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
804 		return (ssp_clk / (2 * rate) - 1) & 0xff;
805 	else
806 		return (ssp_clk / rate - 1) & 0xfff;
807 }
808 
809 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
810 					   struct chip_data *chip, int rate)
811 {
812 	unsigned int clk_div;
813 
814 	switch (drv_data->ssp_type) {
815 	case QUARK_X1000_SSP:
816 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
817 		break;
818 	default:
819 		clk_div = ssp_get_clk_div(drv_data, rate);
820 		break;
821 	}
822 	return clk_div << 8;
823 }
824 
825 static void pump_transfers(unsigned long data)
826 {
827 	struct driver_data *drv_data = (struct driver_data *)data;
828 	struct spi_message *message = NULL;
829 	struct spi_transfer *transfer = NULL;
830 	struct spi_transfer *previous = NULL;
831 	struct chip_data *chip = NULL;
832 	u32 clk_div = 0;
833 	u8 bits = 0;
834 	u32 speed = 0;
835 	u32 cr0;
836 	u32 cr1;
837 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
838 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
839 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
840 
841 	/* Get current state information */
842 	message = drv_data->cur_msg;
843 	transfer = drv_data->cur_transfer;
844 	chip = drv_data->cur_chip;
845 
846 	/* Handle for abort */
847 	if (message->state == ERROR_STATE) {
848 		message->status = -EIO;
849 		giveback(drv_data);
850 		return;
851 	}
852 
853 	/* Handle end of message */
854 	if (message->state == DONE_STATE) {
855 		message->status = 0;
856 		giveback(drv_data);
857 		return;
858 	}
859 
860 	/* Delay if requested at end of transfer before CS change */
861 	if (message->state == RUNNING_STATE) {
862 		previous = list_entry(transfer->transfer_list.prev,
863 					struct spi_transfer,
864 					transfer_list);
865 		if (previous->delay_usecs)
866 			udelay(previous->delay_usecs);
867 
868 		/* Drop chip select only if cs_change is requested */
869 		if (previous->cs_change)
870 			cs_deassert(drv_data);
871 	}
872 
873 	/* Check if we can DMA this transfer */
874 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
875 
876 		/* reject already-mapped transfers; PIO won't always work */
877 		if (message->is_dma_mapped
878 				|| transfer->rx_dma || transfer->tx_dma) {
879 			dev_err(&drv_data->pdev->dev,
880 				"pump_transfers: mapped transfer length of "
881 				"%u is greater than %d\n",
882 				transfer->len, MAX_DMA_LEN);
883 			message->status = -EINVAL;
884 			giveback(drv_data);
885 			return;
886 		}
887 
888 		/* warn ... we force this to PIO mode */
889 		dev_warn_ratelimited(&message->spi->dev,
890 				     "pump_transfers: DMA disabled for transfer length %ld "
891 				     "greater than %d\n",
892 				     (long)drv_data->len, MAX_DMA_LEN);
893 	}
894 
895 	/* Setup the transfer state based on the type of transfer */
896 	if (pxa2xx_spi_flush(drv_data) == 0) {
897 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
898 		message->status = -EIO;
899 		giveback(drv_data);
900 		return;
901 	}
902 	drv_data->n_bytes = chip->n_bytes;
903 	drv_data->tx = (void *)transfer->tx_buf;
904 	drv_data->tx_end = drv_data->tx + transfer->len;
905 	drv_data->rx = transfer->rx_buf;
906 	drv_data->rx_end = drv_data->rx + transfer->len;
907 	drv_data->rx_dma = transfer->rx_dma;
908 	drv_data->tx_dma = transfer->tx_dma;
909 	drv_data->len = transfer->len;
910 	drv_data->write = drv_data->tx ? chip->write : null_writer;
911 	drv_data->read = drv_data->rx ? chip->read : null_reader;
912 
913 	/* Change speed and bit per word on a per transfer */
914 	cr0 = chip->cr0;
915 	if (transfer->speed_hz || transfer->bits_per_word) {
916 
917 		bits = chip->bits_per_word;
918 		speed = chip->speed_hz;
919 
920 		if (transfer->speed_hz)
921 			speed = transfer->speed_hz;
922 
923 		if (transfer->bits_per_word)
924 			bits = transfer->bits_per_word;
925 
926 		clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
927 
928 		if (bits <= 8) {
929 			drv_data->n_bytes = 1;
930 			drv_data->read = drv_data->read != null_reader ?
931 						u8_reader : null_reader;
932 			drv_data->write = drv_data->write != null_writer ?
933 						u8_writer : null_writer;
934 		} else if (bits <= 16) {
935 			drv_data->n_bytes = 2;
936 			drv_data->read = drv_data->read != null_reader ?
937 						u16_reader : null_reader;
938 			drv_data->write = drv_data->write != null_writer ?
939 						u16_writer : null_writer;
940 		} else if (bits <= 32) {
941 			drv_data->n_bytes = 4;
942 			drv_data->read = drv_data->read != null_reader ?
943 						u32_reader : null_reader;
944 			drv_data->write = drv_data->write != null_writer ?
945 						u32_writer : null_writer;
946 		}
947 		/* if bits/word is changed in dma mode, then must check the
948 		 * thresholds and burst also */
949 		if (chip->enable_dma) {
950 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
951 							message->spi,
952 							bits, &dma_burst,
953 							&dma_thresh))
954 				dev_warn_ratelimited(&message->spi->dev,
955 						     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
956 		}
957 
958 		cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
959 	}
960 
961 	message->state = RUNNING_STATE;
962 
963 	drv_data->dma_mapped = 0;
964 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
965 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
966 	if (drv_data->dma_mapped) {
967 
968 		/* Ensure we have the correct interrupt handler */
969 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
970 
971 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
972 
973 		/* Clear status and start DMA engine */
974 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
975 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
976 
977 		pxa2xx_spi_dma_start(drv_data);
978 	} else {
979 		/* Ensure we have the correct interrupt handler	*/
980 		drv_data->transfer_handler = interrupt_transfer;
981 
982 		/* Clear status  */
983 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
984 		write_SSSR_CS(drv_data, drv_data->clear_sr);
985 	}
986 
987 	if (is_lpss_ssp(drv_data)) {
988 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
989 		    != chip->lpss_rx_threshold)
990 			pxa2xx_spi_write(drv_data, SSIRF,
991 					 chip->lpss_rx_threshold);
992 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
993 		    != chip->lpss_tx_threshold)
994 			pxa2xx_spi_write(drv_data, SSITF,
995 					 chip->lpss_tx_threshold);
996 	}
997 
998 	if (is_quark_x1000_ssp(drv_data) &&
999 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1000 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1001 
1002 	/* see if we need to reload the config registers */
1003 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1004 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1005 	    != (cr1 & change_mask)) {
1006 		/* stop the SSP, and update the other bits */
1007 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1008 		if (!pxa25x_ssp_comp(drv_data))
1009 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1010 		/* first set CR1 without interrupt and service enables */
1011 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1012 		/* restart the SSP */
1013 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1014 
1015 	} else {
1016 		if (!pxa25x_ssp_comp(drv_data))
1017 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1018 	}
1019 
1020 	cs_assert(drv_data);
1021 
1022 	/* after chip select, release the data by enabling service
1023 	 * requests and interrupts, without changing any mode bits */
1024 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1025 }
1026 
1027 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1028 					   struct spi_message *msg)
1029 {
1030 	struct driver_data *drv_data = spi_master_get_devdata(master);
1031 
1032 	drv_data->cur_msg = msg;
1033 	/* Initial message state*/
1034 	drv_data->cur_msg->state = START_STATE;
1035 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1036 						struct spi_transfer,
1037 						transfer_list);
1038 
1039 	/* prepare to setup the SSP, in pump_transfers, using the per
1040 	 * chip configuration */
1041 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1042 
1043 	/* Mark as busy and launch transfers */
1044 	tasklet_schedule(&drv_data->pump_transfers);
1045 	return 0;
1046 }
1047 
1048 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1049 {
1050 	struct driver_data *drv_data = spi_master_get_devdata(master);
1051 
1052 	/* Disable the SSP now */
1053 	pxa2xx_spi_write(drv_data, SSCR0,
1054 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1055 
1056 	return 0;
1057 }
1058 
1059 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1060 		    struct pxa2xx_spi_chip *chip_info)
1061 {
1062 	int err = 0;
1063 
1064 	if (chip == NULL || chip_info == NULL)
1065 		return 0;
1066 
1067 	/* NOTE: setup() can be called multiple times, possibly with
1068 	 * different chip_info, release previously requested GPIO
1069 	 */
1070 	if (gpio_is_valid(chip->gpio_cs))
1071 		gpio_free(chip->gpio_cs);
1072 
1073 	/* If (*cs_control) is provided, ignore GPIO chip select */
1074 	if (chip_info->cs_control) {
1075 		chip->cs_control = chip_info->cs_control;
1076 		return 0;
1077 	}
1078 
1079 	if (gpio_is_valid(chip_info->gpio_cs)) {
1080 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1081 		if (err) {
1082 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1083 				chip_info->gpio_cs);
1084 			return err;
1085 		}
1086 
1087 		chip->gpio_cs = chip_info->gpio_cs;
1088 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1089 
1090 		err = gpio_direction_output(chip->gpio_cs,
1091 					!chip->gpio_cs_inverted);
1092 	}
1093 
1094 	return err;
1095 }
1096 
1097 static int setup(struct spi_device *spi)
1098 {
1099 	struct pxa2xx_spi_chip *chip_info = NULL;
1100 	struct chip_data *chip;
1101 	const struct lpss_config *config;
1102 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1103 	unsigned int clk_div;
1104 	uint tx_thres, tx_hi_thres, rx_thres;
1105 
1106 	switch (drv_data->ssp_type) {
1107 	case QUARK_X1000_SSP:
1108 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1109 		tx_hi_thres = 0;
1110 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1111 		break;
1112 	case LPSS_LPT_SSP:
1113 	case LPSS_BYT_SSP:
1114 		config = lpss_get_config(drv_data);
1115 		tx_thres = config->tx_threshold_lo;
1116 		tx_hi_thres = config->tx_threshold_hi;
1117 		rx_thres = config->rx_threshold;
1118 		break;
1119 	default:
1120 		tx_thres = TX_THRESH_DFLT;
1121 		tx_hi_thres = 0;
1122 		rx_thres = RX_THRESH_DFLT;
1123 		break;
1124 	}
1125 
1126 	/* Only alloc on first setup */
1127 	chip = spi_get_ctldata(spi);
1128 	if (!chip) {
1129 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1130 		if (!chip)
1131 			return -ENOMEM;
1132 
1133 		if (drv_data->ssp_type == CE4100_SSP) {
1134 			if (spi->chip_select > 4) {
1135 				dev_err(&spi->dev,
1136 					"failed setup: cs number must not be > 4.\n");
1137 				kfree(chip);
1138 				return -EINVAL;
1139 			}
1140 
1141 			chip->frm = spi->chip_select;
1142 		} else
1143 			chip->gpio_cs = -1;
1144 		chip->enable_dma = 0;
1145 		chip->timeout = TIMOUT_DFLT;
1146 	}
1147 
1148 	/* protocol drivers may change the chip settings, so...
1149 	 * if chip_info exists, use it */
1150 	chip_info = spi->controller_data;
1151 
1152 	/* chip_info isn't always needed */
1153 	chip->cr1 = 0;
1154 	if (chip_info) {
1155 		if (chip_info->timeout)
1156 			chip->timeout = chip_info->timeout;
1157 		if (chip_info->tx_threshold)
1158 			tx_thres = chip_info->tx_threshold;
1159 		if (chip_info->tx_hi_threshold)
1160 			tx_hi_thres = chip_info->tx_hi_threshold;
1161 		if (chip_info->rx_threshold)
1162 			rx_thres = chip_info->rx_threshold;
1163 		chip->enable_dma = drv_data->master_info->enable_dma;
1164 		chip->dma_threshold = 0;
1165 		if (chip_info->enable_loopback)
1166 			chip->cr1 = SSCR1_LBM;
1167 	} else if (ACPI_HANDLE(&spi->dev)) {
1168 		/*
1169 		 * Slave devices enumerated from ACPI namespace don't
1170 		 * usually have chip_info but we still might want to use
1171 		 * DMA with them.
1172 		 */
1173 		chip->enable_dma = drv_data->master_info->enable_dma;
1174 	}
1175 
1176 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1177 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1178 				| SSITF_TxHiThresh(tx_hi_thres);
1179 
1180 	/* set dma burst and threshold outside of chip_info path so that if
1181 	 * chip_info goes away after setting chip->enable_dma, the
1182 	 * burst and threshold can still respond to changes in bits_per_word */
1183 	if (chip->enable_dma) {
1184 		/* set up legal burst and threshold for dma */
1185 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1186 						spi->bits_per_word,
1187 						&chip->dma_burst_size,
1188 						&chip->dma_threshold)) {
1189 			dev_warn(&spi->dev,
1190 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1191 		}
1192 	}
1193 
1194 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1195 	chip->speed_hz = spi->max_speed_hz;
1196 
1197 	chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1198 					   spi->bits_per_word);
1199 	switch (drv_data->ssp_type) {
1200 	case QUARK_X1000_SSP:
1201 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1202 				   & QUARK_X1000_SSCR1_RFT)
1203 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1204 				   & QUARK_X1000_SSCR1_TFT);
1205 		break;
1206 	default:
1207 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1208 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1209 		break;
1210 	}
1211 
1212 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1213 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1214 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1215 
1216 	if (spi->mode & SPI_LOOP)
1217 		chip->cr1 |= SSCR1_LBM;
1218 
1219 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1220 	if (!pxa25x_ssp_comp(drv_data))
1221 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1222 			drv_data->max_clk_rate
1223 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1224 			chip->enable_dma ? "DMA" : "PIO");
1225 	else
1226 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1227 			drv_data->max_clk_rate / 2
1228 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1229 			chip->enable_dma ? "DMA" : "PIO");
1230 
1231 	if (spi->bits_per_word <= 8) {
1232 		chip->n_bytes = 1;
1233 		chip->read = u8_reader;
1234 		chip->write = u8_writer;
1235 	} else if (spi->bits_per_word <= 16) {
1236 		chip->n_bytes = 2;
1237 		chip->read = u16_reader;
1238 		chip->write = u16_writer;
1239 	} else if (spi->bits_per_word <= 32) {
1240 		if (!is_quark_x1000_ssp(drv_data))
1241 			chip->cr0 |= SSCR0_EDSS;
1242 		chip->n_bytes = 4;
1243 		chip->read = u32_reader;
1244 		chip->write = u32_writer;
1245 	}
1246 	chip->bits_per_word = spi->bits_per_word;
1247 
1248 	spi_set_ctldata(spi, chip);
1249 
1250 	if (drv_data->ssp_type == CE4100_SSP)
1251 		return 0;
1252 
1253 	return setup_cs(spi, chip, chip_info);
1254 }
1255 
1256 static void cleanup(struct spi_device *spi)
1257 {
1258 	struct chip_data *chip = spi_get_ctldata(spi);
1259 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1260 
1261 	if (!chip)
1262 		return;
1263 
1264 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1265 		gpio_free(chip->gpio_cs);
1266 
1267 	kfree(chip);
1268 }
1269 
1270 #ifdef CONFIG_ACPI
1271 
1272 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1273 	{ "INT33C0", LPSS_LPT_SSP },
1274 	{ "INT33C1", LPSS_LPT_SSP },
1275 	{ "INT3430", LPSS_LPT_SSP },
1276 	{ "INT3431", LPSS_LPT_SSP },
1277 	{ "80860F0E", LPSS_BYT_SSP },
1278 	{ "8086228E", LPSS_BYT_SSP },
1279 	{ },
1280 };
1281 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1282 
1283 static struct pxa2xx_spi_master *
1284 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1285 {
1286 	struct pxa2xx_spi_master *pdata;
1287 	struct acpi_device *adev;
1288 	struct ssp_device *ssp;
1289 	struct resource *res;
1290 	const struct acpi_device_id *id;
1291 	int devid, type;
1292 
1293 	if (!ACPI_HANDLE(&pdev->dev) ||
1294 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1295 		return NULL;
1296 
1297 	id = acpi_match_device(pdev->dev.driver->acpi_match_table, &pdev->dev);
1298 	if (id)
1299 		type = (int)id->driver_data;
1300 	else
1301 		return NULL;
1302 
1303 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1304 	if (!pdata)
1305 		return NULL;
1306 
1307 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1308 	if (!res)
1309 		return NULL;
1310 
1311 	ssp = &pdata->ssp;
1312 
1313 	ssp->phys_base = res->start;
1314 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1315 	if (IS_ERR(ssp->mmio_base))
1316 		return NULL;
1317 
1318 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1319 	ssp->irq = platform_get_irq(pdev, 0);
1320 	ssp->type = type;
1321 	ssp->pdev = pdev;
1322 
1323 	ssp->port_id = -1;
1324 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1325 		ssp->port_id = devid;
1326 
1327 	pdata->num_chipselect = 1;
1328 	pdata->enable_dma = true;
1329 
1330 	return pdata;
1331 }
1332 
1333 #else
1334 static inline struct pxa2xx_spi_master *
1335 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1336 {
1337 	return NULL;
1338 }
1339 #endif
1340 
1341 static int pxa2xx_spi_probe(struct platform_device *pdev)
1342 {
1343 	struct device *dev = &pdev->dev;
1344 	struct pxa2xx_spi_master *platform_info;
1345 	struct spi_master *master;
1346 	struct driver_data *drv_data;
1347 	struct ssp_device *ssp;
1348 	int status;
1349 	u32 tmp;
1350 
1351 	platform_info = dev_get_platdata(dev);
1352 	if (!platform_info) {
1353 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1354 		if (!platform_info) {
1355 			dev_err(&pdev->dev, "missing platform data\n");
1356 			return -ENODEV;
1357 		}
1358 	}
1359 
1360 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1361 	if (!ssp)
1362 		ssp = &platform_info->ssp;
1363 
1364 	if (!ssp->mmio_base) {
1365 		dev_err(&pdev->dev, "failed to get ssp\n");
1366 		return -ENODEV;
1367 	}
1368 
1369 	/* Allocate master with space for drv_data and null dma buffer */
1370 	master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1371 	if (!master) {
1372 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1373 		pxa_ssp_free(ssp);
1374 		return -ENOMEM;
1375 	}
1376 	drv_data = spi_master_get_devdata(master);
1377 	drv_data->master = master;
1378 	drv_data->master_info = platform_info;
1379 	drv_data->pdev = pdev;
1380 	drv_data->ssp = ssp;
1381 
1382 	master->dev.parent = &pdev->dev;
1383 	master->dev.of_node = pdev->dev.of_node;
1384 	/* the spi->mode bits understood by this driver: */
1385 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1386 
1387 	master->bus_num = ssp->port_id;
1388 	master->num_chipselect = platform_info->num_chipselect;
1389 	master->dma_alignment = DMA_ALIGNMENT;
1390 	master->cleanup = cleanup;
1391 	master->setup = setup;
1392 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1393 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1394 	master->auto_runtime_pm = true;
1395 
1396 	drv_data->ssp_type = ssp->type;
1397 	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1398 
1399 	drv_data->ioaddr = ssp->mmio_base;
1400 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1401 	if (pxa25x_ssp_comp(drv_data)) {
1402 		switch (drv_data->ssp_type) {
1403 		case QUARK_X1000_SSP:
1404 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1405 			break;
1406 		default:
1407 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1408 			break;
1409 		}
1410 
1411 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1412 		drv_data->dma_cr1 = 0;
1413 		drv_data->clear_sr = SSSR_ROR;
1414 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1415 	} else {
1416 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1417 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1418 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1419 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1420 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1421 	}
1422 
1423 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1424 			drv_data);
1425 	if (status < 0) {
1426 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1427 		goto out_error_master_alloc;
1428 	}
1429 
1430 	/* Setup DMA if requested */
1431 	drv_data->tx_channel = -1;
1432 	drv_data->rx_channel = -1;
1433 	if (platform_info->enable_dma) {
1434 		status = pxa2xx_spi_dma_setup(drv_data);
1435 		if (status) {
1436 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1437 			platform_info->enable_dma = false;
1438 		}
1439 	}
1440 
1441 	/* Enable SOC clock */
1442 	clk_prepare_enable(ssp->clk);
1443 
1444 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1445 
1446 	/* Load default SSP configuration */
1447 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1448 	switch (drv_data->ssp_type) {
1449 	case QUARK_X1000_SSP:
1450 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1451 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1452 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1453 
1454 		/* using the Motorola SPI protocol and use 8 bit frame */
1455 		pxa2xx_spi_write(drv_data, SSCR0,
1456 				 QUARK_X1000_SSCR0_Motorola
1457 				 | QUARK_X1000_SSCR0_DataSize(8));
1458 		break;
1459 	default:
1460 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1461 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1462 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1463 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1464 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1465 		break;
1466 	}
1467 
1468 	if (!pxa25x_ssp_comp(drv_data))
1469 		pxa2xx_spi_write(drv_data, SSTO, 0);
1470 
1471 	if (!is_quark_x1000_ssp(drv_data))
1472 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1473 
1474 	if (is_lpss_ssp(drv_data))
1475 		lpss_ssp_setup(drv_data);
1476 
1477 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1478 		     (unsigned long)drv_data);
1479 
1480 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1481 	pm_runtime_use_autosuspend(&pdev->dev);
1482 	pm_runtime_set_active(&pdev->dev);
1483 	pm_runtime_enable(&pdev->dev);
1484 
1485 	/* Register with the SPI framework */
1486 	platform_set_drvdata(pdev, drv_data);
1487 	status = devm_spi_register_master(&pdev->dev, master);
1488 	if (status != 0) {
1489 		dev_err(&pdev->dev, "problem registering spi master\n");
1490 		goto out_error_clock_enabled;
1491 	}
1492 
1493 	return status;
1494 
1495 out_error_clock_enabled:
1496 	clk_disable_unprepare(ssp->clk);
1497 	pxa2xx_spi_dma_release(drv_data);
1498 	free_irq(ssp->irq, drv_data);
1499 
1500 out_error_master_alloc:
1501 	spi_master_put(master);
1502 	pxa_ssp_free(ssp);
1503 	return status;
1504 }
1505 
1506 static int pxa2xx_spi_remove(struct platform_device *pdev)
1507 {
1508 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1509 	struct ssp_device *ssp;
1510 
1511 	if (!drv_data)
1512 		return 0;
1513 	ssp = drv_data->ssp;
1514 
1515 	pm_runtime_get_sync(&pdev->dev);
1516 
1517 	/* Disable the SSP at the peripheral and SOC level */
1518 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1519 	clk_disable_unprepare(ssp->clk);
1520 
1521 	/* Release DMA */
1522 	if (drv_data->master_info->enable_dma)
1523 		pxa2xx_spi_dma_release(drv_data);
1524 
1525 	pm_runtime_put_noidle(&pdev->dev);
1526 	pm_runtime_disable(&pdev->dev);
1527 
1528 	/* Release IRQ */
1529 	free_irq(ssp->irq, drv_data);
1530 
1531 	/* Release SSP */
1532 	pxa_ssp_free(ssp);
1533 
1534 	return 0;
1535 }
1536 
1537 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1538 {
1539 	int status = 0;
1540 
1541 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1542 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1543 }
1544 
1545 #ifdef CONFIG_PM_SLEEP
1546 static int pxa2xx_spi_suspend(struct device *dev)
1547 {
1548 	struct driver_data *drv_data = dev_get_drvdata(dev);
1549 	struct ssp_device *ssp = drv_data->ssp;
1550 	int status = 0;
1551 
1552 	status = spi_master_suspend(drv_data->master);
1553 	if (status != 0)
1554 		return status;
1555 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1556 
1557 	if (!pm_runtime_suspended(dev))
1558 		clk_disable_unprepare(ssp->clk);
1559 
1560 	return 0;
1561 }
1562 
1563 static int pxa2xx_spi_resume(struct device *dev)
1564 {
1565 	struct driver_data *drv_data = dev_get_drvdata(dev);
1566 	struct ssp_device *ssp = drv_data->ssp;
1567 	int status = 0;
1568 
1569 	pxa2xx_spi_dma_resume(drv_data);
1570 
1571 	/* Enable the SSP clock */
1572 	if (!pm_runtime_suspended(dev))
1573 		clk_prepare_enable(ssp->clk);
1574 
1575 	/* Restore LPSS private register bits */
1576 	if (is_lpss_ssp(drv_data))
1577 		lpss_ssp_setup(drv_data);
1578 
1579 	/* Start the queue running */
1580 	status = spi_master_resume(drv_data->master);
1581 	if (status != 0) {
1582 		dev_err(dev, "problem starting queue (%d)\n", status);
1583 		return status;
1584 	}
1585 
1586 	return 0;
1587 }
1588 #endif
1589 
1590 #ifdef CONFIG_PM
1591 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1592 {
1593 	struct driver_data *drv_data = dev_get_drvdata(dev);
1594 
1595 	clk_disable_unprepare(drv_data->ssp->clk);
1596 	return 0;
1597 }
1598 
1599 static int pxa2xx_spi_runtime_resume(struct device *dev)
1600 {
1601 	struct driver_data *drv_data = dev_get_drvdata(dev);
1602 
1603 	clk_prepare_enable(drv_data->ssp->clk);
1604 	return 0;
1605 }
1606 #endif
1607 
1608 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1609 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1610 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1611 			   pxa2xx_spi_runtime_resume, NULL)
1612 };
1613 
1614 static struct platform_driver driver = {
1615 	.driver = {
1616 		.name	= "pxa2xx-spi",
1617 		.pm	= &pxa2xx_spi_pm_ops,
1618 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1619 	},
1620 	.probe = pxa2xx_spi_probe,
1621 	.remove = pxa2xx_spi_remove,
1622 	.shutdown = pxa2xx_spi_shutdown,
1623 };
1624 
1625 static int __init pxa2xx_spi_init(void)
1626 {
1627 	return platform_driver_register(&driver);
1628 }
1629 subsys_initcall(pxa2xx_spi_init);
1630 
1631 static void __exit pxa2xx_spi_exit(void)
1632 {
1633 	platform_driver_unregister(&driver);
1634 }
1635 module_exit(pxa2xx_spi_exit);
1636