xref: /openbmc/linux/drivers/spi/spi-fsl-dspi.c (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright 2013 Freescale Semiconductor, Inc.
4 //
5 // Freescale DSPI driver
6 // This file contains a driver for the Freescale DSPI
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/regmap.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/spi-fsl-dspi.h>
20 
21 #define DRIVER_NAME			"fsl-dspi"
22 
23 #ifdef CONFIG_M5441x
24 #define DSPI_FIFO_SIZE			16
25 #else
26 #define DSPI_FIFO_SIZE			4
27 #endif
28 #define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
29 
30 #define SPI_MCR				0x00
31 #define SPI_MCR_MASTER			BIT(31)
32 #define SPI_MCR_PCSIS			(0x3F << 16)
33 #define SPI_MCR_CLR_TXF			BIT(11)
34 #define SPI_MCR_CLR_RXF			BIT(10)
35 #define SPI_MCR_XSPI			BIT(3)
36 
37 #define SPI_TCR				0x08
38 #define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
39 
40 #define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
41 #define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
42 #define SPI_CTAR_CPOL			BIT(26)
43 #define SPI_CTAR_CPHA			BIT(25)
44 #define SPI_CTAR_LSBFE			BIT(24)
45 #define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
46 #define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
47 #define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
48 #define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
49 #define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
50 #define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
51 #define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
52 #define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
53 #define SPI_CTAR_SCALE_BITS		0xf
54 
55 #define SPI_CTAR0_SLAVE			0x0c
56 
57 #define SPI_SR				0x2c
58 #define SPI_SR_TCFQF			BIT(31)
59 #define SPI_SR_EOQF			BIT(28)
60 #define SPI_SR_TFUF			BIT(27)
61 #define SPI_SR_TFFF			BIT(25)
62 #define SPI_SR_CMDTCF			BIT(23)
63 #define SPI_SR_SPEF			BIT(21)
64 #define SPI_SR_RFOF			BIT(19)
65 #define SPI_SR_TFIWF			BIT(18)
66 #define SPI_SR_RFDF			BIT(17)
67 #define SPI_SR_CMDFFF			BIT(16)
68 #define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
69 					SPI_SR_TFUF | SPI_SR_TFFF | \
70 					SPI_SR_CMDTCF | SPI_SR_SPEF | \
71 					SPI_SR_RFOF | SPI_SR_TFIWF | \
72 					SPI_SR_RFDF | SPI_SR_CMDFFF)
73 
74 #define SPI_RSER_TFFFE			BIT(25)
75 #define SPI_RSER_TFFFD			BIT(24)
76 #define SPI_RSER_RFDFE			BIT(17)
77 #define SPI_RSER_RFDFD			BIT(16)
78 
79 #define SPI_RSER			0x30
80 #define SPI_RSER_TCFQE			BIT(31)
81 #define SPI_RSER_EOQFE			BIT(28)
82 
83 #define SPI_PUSHR			0x34
84 #define SPI_PUSHR_CMD_CONT		BIT(15)
85 #define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
86 #define SPI_PUSHR_CMD_EOQ		BIT(11)
87 #define SPI_PUSHR_CMD_CTCNT		BIT(10)
88 #define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
89 
90 #define SPI_PUSHR_SLAVE			0x34
91 
92 #define SPI_POPR			0x38
93 
94 #define SPI_TXFR0			0x3c
95 #define SPI_TXFR1			0x40
96 #define SPI_TXFR2			0x44
97 #define SPI_TXFR3			0x48
98 #define SPI_RXFR0			0x7c
99 #define SPI_RXFR1			0x80
100 #define SPI_RXFR2			0x84
101 #define SPI_RXFR3			0x88
102 
103 #define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
104 #define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
105 #define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
106 
107 #define SPI_SREX			0x13c
108 
109 #define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
110 #define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
111 
112 /* Register offsets for regmap_pushr */
113 #define PUSHR_CMD			0x0
114 #define PUSHR_TX			0x2
115 
116 #define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
117 
118 struct chip_data {
119 	u32			ctar_val;
120 	u16			void_write_data;
121 };
122 
123 enum dspi_trans_mode {
124 	DSPI_EOQ_MODE = 0,
125 	DSPI_TCFQ_MODE,
126 	DSPI_DMA_MODE,
127 };
128 
129 struct fsl_dspi_devtype_data {
130 	enum dspi_trans_mode	trans_mode;
131 	u8			max_clock_factor;
132 	bool			ptp_sts_supported;
133 	bool			xspi_mode;
134 };
135 
136 static const struct fsl_dspi_devtype_data vf610_data = {
137 	.trans_mode		= DSPI_DMA_MODE,
138 	.max_clock_factor	= 2,
139 };
140 
141 static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
142 	.trans_mode		= DSPI_TCFQ_MODE,
143 	.max_clock_factor	= 8,
144 	.ptp_sts_supported	= true,
145 	.xspi_mode		= true,
146 };
147 
148 static const struct fsl_dspi_devtype_data ls2085a_data = {
149 	.trans_mode		= DSPI_TCFQ_MODE,
150 	.max_clock_factor	= 8,
151 	.ptp_sts_supported	= true,
152 };
153 
154 static const struct fsl_dspi_devtype_data coldfire_data = {
155 	.trans_mode		= DSPI_EOQ_MODE,
156 	.max_clock_factor	= 8,
157 };
158 
159 struct fsl_dspi_dma {
160 	/* Length of transfer in words of DSPI_FIFO_SIZE */
161 	u32					curr_xfer_len;
162 
163 	u32					*tx_dma_buf;
164 	struct dma_chan				*chan_tx;
165 	dma_addr_t				tx_dma_phys;
166 	struct completion			cmd_tx_complete;
167 	struct dma_async_tx_descriptor		*tx_desc;
168 
169 	u32					*rx_dma_buf;
170 	struct dma_chan				*chan_rx;
171 	dma_addr_t				rx_dma_phys;
172 	struct completion			cmd_rx_complete;
173 	struct dma_async_tx_descriptor		*rx_desc;
174 };
175 
176 struct fsl_dspi {
177 	struct spi_controller			*ctlr;
178 	struct platform_device			*pdev;
179 
180 	struct regmap				*regmap;
181 	struct regmap				*regmap_pushr;
182 	int					irq;
183 	struct clk				*clk;
184 
185 	struct spi_transfer			*cur_transfer;
186 	struct spi_message			*cur_msg;
187 	struct chip_data			*cur_chip;
188 	size_t					progress;
189 	size_t					len;
190 	const void				*tx;
191 	void					*rx;
192 	void					*rx_end;
193 	u16					void_write_data;
194 	u16					tx_cmd;
195 	u8					bits_per_word;
196 	u8					bytes_per_word;
197 	const struct fsl_dspi_devtype_data	*devtype_data;
198 
199 	wait_queue_head_t			waitq;
200 	u32					waitflags;
201 
202 	struct fsl_dspi_dma			*dma;
203 };
204 
205 static u32 dspi_pop_tx(struct fsl_dspi *dspi)
206 {
207 	u32 txdata = 0;
208 
209 	if (dspi->tx) {
210 		if (dspi->bytes_per_word == 1)
211 			txdata = *(u8 *)dspi->tx;
212 		else if (dspi->bytes_per_word == 2)
213 			txdata = *(u16 *)dspi->tx;
214 		else  /* dspi->bytes_per_word == 4 */
215 			txdata = *(u32 *)dspi->tx;
216 		dspi->tx += dspi->bytes_per_word;
217 	}
218 	dspi->len -= dspi->bytes_per_word;
219 	return txdata;
220 }
221 
222 static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
223 {
224 	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
225 
226 	if (spi_controller_is_slave(dspi->ctlr))
227 		return data;
228 
229 	if (dspi->len > 0)
230 		cmd |= SPI_PUSHR_CMD_CONT;
231 	return cmd << 16 | data;
232 }
233 
234 static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
235 {
236 	if (!dspi->rx)
237 		return;
238 
239 	/* Mask off undefined bits */
240 	rxdata &= (1 << dspi->bits_per_word) - 1;
241 
242 	if (dspi->bytes_per_word == 1)
243 		*(u8 *)dspi->rx = rxdata;
244 	else if (dspi->bytes_per_word == 2)
245 		*(u16 *)dspi->rx = rxdata;
246 	else /* dspi->bytes_per_word == 4 */
247 		*(u32 *)dspi->rx = rxdata;
248 	dspi->rx += dspi->bytes_per_word;
249 }
250 
251 static void dspi_tx_dma_callback(void *arg)
252 {
253 	struct fsl_dspi *dspi = arg;
254 	struct fsl_dspi_dma *dma = dspi->dma;
255 
256 	complete(&dma->cmd_tx_complete);
257 }
258 
259 static void dspi_rx_dma_callback(void *arg)
260 {
261 	struct fsl_dspi *dspi = arg;
262 	struct fsl_dspi_dma *dma = dspi->dma;
263 	int i;
264 
265 	if (dspi->rx) {
266 		for (i = 0; i < dma->curr_xfer_len; i++)
267 			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
268 	}
269 
270 	complete(&dma->cmd_rx_complete);
271 }
272 
273 static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
274 {
275 	struct device *dev = &dspi->pdev->dev;
276 	struct fsl_dspi_dma *dma = dspi->dma;
277 	int time_left;
278 	int i;
279 
280 	for (i = 0; i < dma->curr_xfer_len; i++)
281 		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
282 
283 	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
284 					dma->tx_dma_phys,
285 					dma->curr_xfer_len *
286 					DMA_SLAVE_BUSWIDTH_4_BYTES,
287 					DMA_MEM_TO_DEV,
288 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
289 	if (!dma->tx_desc) {
290 		dev_err(dev, "Not able to get desc for DMA xfer\n");
291 		return -EIO;
292 	}
293 
294 	dma->tx_desc->callback = dspi_tx_dma_callback;
295 	dma->tx_desc->callback_param = dspi;
296 	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
297 		dev_err(dev, "DMA submit failed\n");
298 		return -EINVAL;
299 	}
300 
301 	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
302 					dma->rx_dma_phys,
303 					dma->curr_xfer_len *
304 					DMA_SLAVE_BUSWIDTH_4_BYTES,
305 					DMA_DEV_TO_MEM,
306 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
307 	if (!dma->rx_desc) {
308 		dev_err(dev, "Not able to get desc for DMA xfer\n");
309 		return -EIO;
310 	}
311 
312 	dma->rx_desc->callback = dspi_rx_dma_callback;
313 	dma->rx_desc->callback_param = dspi;
314 	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
315 		dev_err(dev, "DMA submit failed\n");
316 		return -EINVAL;
317 	}
318 
319 	reinit_completion(&dspi->dma->cmd_rx_complete);
320 	reinit_completion(&dspi->dma->cmd_tx_complete);
321 
322 	dma_async_issue_pending(dma->chan_rx);
323 	dma_async_issue_pending(dma->chan_tx);
324 
325 	if (spi_controller_is_slave(dspi->ctlr)) {
326 		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
327 		return 0;
328 	}
329 
330 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
331 						DMA_COMPLETION_TIMEOUT);
332 	if (time_left == 0) {
333 		dev_err(dev, "DMA tx timeout\n");
334 		dmaengine_terminate_all(dma->chan_tx);
335 		dmaengine_terminate_all(dma->chan_rx);
336 		return -ETIMEDOUT;
337 	}
338 
339 	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
340 						DMA_COMPLETION_TIMEOUT);
341 	if (time_left == 0) {
342 		dev_err(dev, "DMA rx timeout\n");
343 		dmaengine_terminate_all(dma->chan_tx);
344 		dmaengine_terminate_all(dma->chan_rx);
345 		return -ETIMEDOUT;
346 	}
347 
348 	return 0;
349 }
350 
351 static int dspi_dma_xfer(struct fsl_dspi *dspi)
352 {
353 	struct spi_message *message = dspi->cur_msg;
354 	struct device *dev = &dspi->pdev->dev;
355 	struct fsl_dspi_dma *dma = dspi->dma;
356 	int curr_remaining_bytes;
357 	int bytes_per_buffer;
358 	int ret = 0;
359 
360 	curr_remaining_bytes = dspi->len;
361 	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
362 	while (curr_remaining_bytes) {
363 		/* Check if current transfer fits the DMA buffer */
364 		dma->curr_xfer_len = curr_remaining_bytes
365 			/ dspi->bytes_per_word;
366 		if (dma->curr_xfer_len > bytes_per_buffer)
367 			dma->curr_xfer_len = bytes_per_buffer;
368 
369 		ret = dspi_next_xfer_dma_submit(dspi);
370 		if (ret) {
371 			dev_err(dev, "DMA transfer failed\n");
372 			goto exit;
373 
374 		} else {
375 			const int len =
376 				dma->curr_xfer_len * dspi->bytes_per_word;
377 			curr_remaining_bytes -= len;
378 			message->actual_length += len;
379 			if (curr_remaining_bytes < 0)
380 				curr_remaining_bytes = 0;
381 		}
382 	}
383 
384 exit:
385 	return ret;
386 }
387 
388 static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
389 {
390 	struct device *dev = &dspi->pdev->dev;
391 	struct dma_slave_config cfg;
392 	struct fsl_dspi_dma *dma;
393 	int ret;
394 
395 	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
396 	if (!dma)
397 		return -ENOMEM;
398 
399 	dma->chan_rx = dma_request_slave_channel(dev, "rx");
400 	if (!dma->chan_rx) {
401 		dev_err(dev, "rx dma channel not available\n");
402 		ret = -ENODEV;
403 		return ret;
404 	}
405 
406 	dma->chan_tx = dma_request_slave_channel(dev, "tx");
407 	if (!dma->chan_tx) {
408 		dev_err(dev, "tx dma channel not available\n");
409 		ret = -ENODEV;
410 		goto err_tx_channel;
411 	}
412 
413 	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
414 					     &dma->tx_dma_phys, GFP_KERNEL);
415 	if (!dma->tx_dma_buf) {
416 		ret = -ENOMEM;
417 		goto err_tx_dma_buf;
418 	}
419 
420 	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
421 					     &dma->rx_dma_phys, GFP_KERNEL);
422 	if (!dma->rx_dma_buf) {
423 		ret = -ENOMEM;
424 		goto err_rx_dma_buf;
425 	}
426 
427 	cfg.src_addr = phy_addr + SPI_POPR;
428 	cfg.dst_addr = phy_addr + SPI_PUSHR;
429 	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
430 	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
431 	cfg.src_maxburst = 1;
432 	cfg.dst_maxburst = 1;
433 
434 	cfg.direction = DMA_DEV_TO_MEM;
435 	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
436 	if (ret) {
437 		dev_err(dev, "can't configure rx dma channel\n");
438 		ret = -EINVAL;
439 		goto err_slave_config;
440 	}
441 
442 	cfg.direction = DMA_MEM_TO_DEV;
443 	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
444 	if (ret) {
445 		dev_err(dev, "can't configure tx dma channel\n");
446 		ret = -EINVAL;
447 		goto err_slave_config;
448 	}
449 
450 	dspi->dma = dma;
451 	init_completion(&dma->cmd_tx_complete);
452 	init_completion(&dma->cmd_rx_complete);
453 
454 	return 0;
455 
456 err_slave_config:
457 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
458 			dma->rx_dma_buf, dma->rx_dma_phys);
459 err_rx_dma_buf:
460 	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
461 			dma->tx_dma_buf, dma->tx_dma_phys);
462 err_tx_dma_buf:
463 	dma_release_channel(dma->chan_tx);
464 err_tx_channel:
465 	dma_release_channel(dma->chan_rx);
466 
467 	devm_kfree(dev, dma);
468 	dspi->dma = NULL;
469 
470 	return ret;
471 }
472 
473 static void dspi_release_dma(struct fsl_dspi *dspi)
474 {
475 	struct fsl_dspi_dma *dma = dspi->dma;
476 	struct device *dev = &dspi->pdev->dev;
477 
478 	if (!dma)
479 		return;
480 
481 	if (dma->chan_tx) {
482 		dma_unmap_single(dev, dma->tx_dma_phys,
483 				 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
484 		dma_release_channel(dma->chan_tx);
485 	}
486 
487 	if (dma->chan_rx) {
488 		dma_unmap_single(dev, dma->rx_dma_phys,
489 				 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
490 		dma_release_channel(dma->chan_rx);
491 	}
492 }
493 
494 static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
495 			   unsigned long clkrate)
496 {
497 	/* Valid baud rate pre-scaler values */
498 	int pbr_tbl[4] = {2, 3, 5, 7};
499 	int brs[16] = {	2,	4,	6,	8,
500 			16,	32,	64,	128,
501 			256,	512,	1024,	2048,
502 			4096,	8192,	16384,	32768 };
503 	int scale_needed, scale, minscale = INT_MAX;
504 	int i, j;
505 
506 	scale_needed = clkrate / speed_hz;
507 	if (clkrate % speed_hz)
508 		scale_needed++;
509 
510 	for (i = 0; i < ARRAY_SIZE(brs); i++)
511 		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
512 			scale = brs[i] * pbr_tbl[j];
513 			if (scale >= scale_needed) {
514 				if (scale < minscale) {
515 					minscale = scale;
516 					*br = i;
517 					*pbr = j;
518 				}
519 				break;
520 			}
521 		}
522 
523 	if (minscale == INT_MAX) {
524 		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
525 			speed_hz, clkrate);
526 		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
527 		*br =  ARRAY_SIZE(brs) - 1;
528 	}
529 }
530 
531 static void ns_delay_scale(char *psc, char *sc, int delay_ns,
532 			   unsigned long clkrate)
533 {
534 	int scale_needed, scale, minscale = INT_MAX;
535 	int pscale_tbl[4] = {1, 3, 5, 7};
536 	u32 remainder;
537 	int i, j;
538 
539 	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
540 				   &remainder);
541 	if (remainder)
542 		scale_needed++;
543 
544 	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
545 		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
546 			scale = pscale_tbl[i] * (2 << j);
547 			if (scale >= scale_needed) {
548 				if (scale < minscale) {
549 					minscale = scale;
550 					*psc = i;
551 					*sc = j;
552 				}
553 				break;
554 			}
555 		}
556 
557 	if (minscale == INT_MAX) {
558 		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
559 			delay_ns, clkrate);
560 		*psc = ARRAY_SIZE(pscale_tbl) - 1;
561 		*sc = SPI_CTAR_SCALE_BITS;
562 	}
563 }
564 
565 static void fifo_write(struct fsl_dspi *dspi)
566 {
567 	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
568 }
569 
570 static void cmd_fifo_write(struct fsl_dspi *dspi)
571 {
572 	u16 cmd = dspi->tx_cmd;
573 
574 	if (dspi->len > 0)
575 		cmd |= SPI_PUSHR_CMD_CONT;
576 	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
577 }
578 
579 static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
580 {
581 	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
582 }
583 
584 static void dspi_tcfq_write(struct fsl_dspi *dspi)
585 {
586 	/* Clear transfer count */
587 	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
588 
589 	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
590 		/* Write the CMD FIFO entry first, and then the two
591 		 * corresponding TX FIFO entries.
592 		 */
593 		u32 data = dspi_pop_tx(dspi);
594 
595 		cmd_fifo_write(dspi);
596 		tx_fifo_write(dspi, data & 0xFFFF);
597 		tx_fifo_write(dspi, data >> 16);
598 	} else {
599 		/* Write one entry to both TX FIFO and CMD FIFO
600 		 * simultaneously.
601 		 */
602 		fifo_write(dspi);
603 	}
604 }
605 
606 static u32 fifo_read(struct fsl_dspi *dspi)
607 {
608 	u32 rxdata = 0;
609 
610 	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
611 	return rxdata;
612 }
613 
614 static void dspi_tcfq_read(struct fsl_dspi *dspi)
615 {
616 	dspi_push_rx(dspi, fifo_read(dspi));
617 }
618 
619 static void dspi_eoq_write(struct fsl_dspi *dspi)
620 {
621 	int fifo_size = DSPI_FIFO_SIZE;
622 	u16 xfer_cmd = dspi->tx_cmd;
623 
624 	/* Fill TX FIFO with as many transfers as possible */
625 	while (dspi->len && fifo_size--) {
626 		dspi->tx_cmd = xfer_cmd;
627 		/* Request EOQF for last transfer in FIFO */
628 		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
629 			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
630 		/* Clear transfer count for first transfer in FIFO */
631 		if (fifo_size == (DSPI_FIFO_SIZE - 1))
632 			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
633 		/* Write combined TX FIFO and CMD FIFO entry */
634 		fifo_write(dspi);
635 	}
636 }
637 
638 static void dspi_eoq_read(struct fsl_dspi *dspi)
639 {
640 	int fifo_size = DSPI_FIFO_SIZE;
641 
642 	/* Read one FIFO entry and push to rx buffer */
643 	while ((dspi->rx < dspi->rx_end) && fifo_size--)
644 		dspi_push_rx(dspi, fifo_read(dspi));
645 }
646 
647 static int dspi_rxtx(struct fsl_dspi *dspi)
648 {
649 	struct spi_message *msg = dspi->cur_msg;
650 	enum dspi_trans_mode trans_mode;
651 	u16 spi_tcnt;
652 	u32 spi_tcr;
653 
654 	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
655 				dspi->progress, !dspi->irq);
656 
657 	/* Get transfer counter (in number of SPI transfers). It was
658 	 * reset to 0 when transfer(s) were started.
659 	 */
660 	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
661 	spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
662 	/* Update total number of bytes that were transferred */
663 	msg->actual_length += spi_tcnt * dspi->bytes_per_word;
664 	dspi->progress += spi_tcnt;
665 
666 	trans_mode = dspi->devtype_data->trans_mode;
667 	if (trans_mode == DSPI_EOQ_MODE)
668 		dspi_eoq_read(dspi);
669 	else if (trans_mode == DSPI_TCFQ_MODE)
670 		dspi_tcfq_read(dspi);
671 
672 	if (!dspi->len)
673 		/* Success! */
674 		return 0;
675 
676 	spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
677 			       dspi->progress, !dspi->irq);
678 
679 	if (trans_mode == DSPI_EOQ_MODE)
680 		dspi_eoq_write(dspi);
681 	else if (trans_mode == DSPI_TCFQ_MODE)
682 		dspi_tcfq_write(dspi);
683 
684 	return -EINPROGRESS;
685 }
686 
687 static int dspi_poll(struct fsl_dspi *dspi)
688 {
689 	int tries = 1000;
690 	u32 spi_sr;
691 
692 	do {
693 		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
694 		regmap_write(dspi->regmap, SPI_SR, spi_sr);
695 
696 		if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
697 			break;
698 	} while (--tries);
699 
700 	if (!tries)
701 		return -ETIMEDOUT;
702 
703 	return dspi_rxtx(dspi);
704 }
705 
706 static irqreturn_t dspi_interrupt(int irq, void *dev_id)
707 {
708 	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
709 	u32 spi_sr;
710 
711 	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
712 	regmap_write(dspi->regmap, SPI_SR, spi_sr);
713 
714 	if (!(spi_sr & SPI_SR_EOQF))
715 		return IRQ_NONE;
716 
717 	if (dspi_rxtx(dspi) == 0) {
718 		dspi->waitflags = 1;
719 		wake_up_interruptible(&dspi->waitq);
720 	}
721 
722 	return IRQ_HANDLED;
723 }
724 
725 static int dspi_transfer_one_message(struct spi_controller *ctlr,
726 				     struct spi_message *message)
727 {
728 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
729 	struct spi_device *spi = message->spi;
730 	enum dspi_trans_mode trans_mode;
731 	struct spi_transfer *transfer;
732 	int status = 0;
733 
734 	message->actual_length = 0;
735 
736 	list_for_each_entry(transfer, &message->transfers, transfer_list) {
737 		dspi->cur_transfer = transfer;
738 		dspi->cur_msg = message;
739 		dspi->cur_chip = spi_get_ctldata(spi);
740 		/* Prepare command word for CMD FIFO */
741 		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
742 			       SPI_PUSHR_CMD_PCS(spi->chip_select);
743 		if (list_is_last(&dspi->cur_transfer->transfer_list,
744 				 &dspi->cur_msg->transfers)) {
745 			/* Leave PCS activated after last transfer when
746 			 * cs_change is set.
747 			 */
748 			if (transfer->cs_change)
749 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
750 		} else {
751 			/* Keep PCS active between transfers in same message
752 			 * when cs_change is not set, and de-activate PCS
753 			 * between transfers in the same message when
754 			 * cs_change is set.
755 			 */
756 			if (!transfer->cs_change)
757 				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
758 		}
759 
760 		dspi->void_write_data = dspi->cur_chip->void_write_data;
761 
762 		dspi->tx = transfer->tx_buf;
763 		dspi->rx = transfer->rx_buf;
764 		dspi->rx_end = dspi->rx + transfer->len;
765 		dspi->len = transfer->len;
766 		dspi->progress = 0;
767 		/* Validated transfer specific frame size (defaults applied) */
768 		dspi->bits_per_word = transfer->bits_per_word;
769 		if (transfer->bits_per_word <= 8)
770 			dspi->bytes_per_word = 1;
771 		else if (transfer->bits_per_word <= 16)
772 			dspi->bytes_per_word = 2;
773 		else
774 			dspi->bytes_per_word = 4;
775 
776 		regmap_update_bits(dspi->regmap, SPI_MCR,
777 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
778 				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
779 		regmap_write(dspi->regmap, SPI_CTAR(0),
780 			     dspi->cur_chip->ctar_val |
781 			     SPI_FRAME_BITS(transfer->bits_per_word));
782 		if (dspi->devtype_data->xspi_mode)
783 			regmap_write(dspi->regmap, SPI_CTARE(0),
784 				     SPI_FRAME_EBITS(transfer->bits_per_word) |
785 				     SPI_CTARE_DTCP(1));
786 
787 		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
788 				       dspi->progress, !dspi->irq);
789 
790 		trans_mode = dspi->devtype_data->trans_mode;
791 		switch (trans_mode) {
792 		case DSPI_EOQ_MODE:
793 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
794 			dspi_eoq_write(dspi);
795 			break;
796 		case DSPI_TCFQ_MODE:
797 			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
798 			dspi_tcfq_write(dspi);
799 			break;
800 		case DSPI_DMA_MODE:
801 			regmap_write(dspi->regmap, SPI_RSER,
802 				     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
803 				     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
804 			status = dspi_dma_xfer(dspi);
805 			break;
806 		default:
807 			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
808 				trans_mode);
809 			status = -EINVAL;
810 			goto out;
811 		}
812 
813 		if (!dspi->irq) {
814 			do {
815 				status = dspi_poll(dspi);
816 			} while (status == -EINPROGRESS);
817 		} else if (trans_mode != DSPI_DMA_MODE) {
818 			status = wait_event_interruptible(dspi->waitq,
819 							  dspi->waitflags);
820 			dspi->waitflags = 0;
821 		}
822 		if (status)
823 			dev_err(&dspi->pdev->dev,
824 				"Waiting for transfer to complete failed!\n");
825 
826 		spi_transfer_delay_exec(transfer);
827 	}
828 
829 out:
830 	message->status = status;
831 	spi_finalize_current_message(ctlr);
832 
833 	return status;
834 }
835 
836 static int dspi_setup(struct spi_device *spi)
837 {
838 	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
839 	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
840 	u32 cs_sck_delay = 0, sck_cs_delay = 0;
841 	struct fsl_dspi_platform_data *pdata;
842 	unsigned char pasc = 0, asc = 0;
843 	struct chip_data *chip;
844 	unsigned long clkrate;
845 
846 	/* Only alloc on first setup */
847 	chip = spi_get_ctldata(spi);
848 	if (chip == NULL) {
849 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
850 		if (!chip)
851 			return -ENOMEM;
852 	}
853 
854 	pdata = dev_get_platdata(&dspi->pdev->dev);
855 
856 	if (!pdata) {
857 		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
858 				     &cs_sck_delay);
859 
860 		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
861 				     &sck_cs_delay);
862 	} else {
863 		cs_sck_delay = pdata->cs_sck_delay;
864 		sck_cs_delay = pdata->sck_cs_delay;
865 	}
866 
867 	chip->void_write_data = 0;
868 
869 	clkrate = clk_get_rate(dspi->clk);
870 	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
871 
872 	/* Set PCS to SCK delay scale values */
873 	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
874 
875 	/* Set After SCK delay scale values */
876 	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
877 
878 	chip->ctar_val = 0;
879 	if (spi->mode & SPI_CPOL)
880 		chip->ctar_val |= SPI_CTAR_CPOL;
881 	if (spi->mode & SPI_CPHA)
882 		chip->ctar_val |= SPI_CTAR_CPHA;
883 
884 	if (!spi_controller_is_slave(dspi->ctlr)) {
885 		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
886 				  SPI_CTAR_CSSCK(cssck) |
887 				  SPI_CTAR_PASC(pasc) |
888 				  SPI_CTAR_ASC(asc) |
889 				  SPI_CTAR_PBR(pbr) |
890 				  SPI_CTAR_BR(br);
891 
892 		if (spi->mode & SPI_LSB_FIRST)
893 			chip->ctar_val |= SPI_CTAR_LSBFE;
894 	}
895 
896 	spi_set_ctldata(spi, chip);
897 
898 	return 0;
899 }
900 
901 static void dspi_cleanup(struct spi_device *spi)
902 {
903 	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
904 
905 	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
906 		spi->controller->bus_num, spi->chip_select);
907 
908 	kfree(chip);
909 }
910 
911 static const struct of_device_id fsl_dspi_dt_ids[] = {
912 	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
913 	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
914 	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
915 	{ /* sentinel */ }
916 };
917 MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
918 
919 #ifdef CONFIG_PM_SLEEP
920 static int dspi_suspend(struct device *dev)
921 {
922 	struct spi_controller *ctlr = dev_get_drvdata(dev);
923 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
924 
925 	spi_controller_suspend(ctlr);
926 	clk_disable_unprepare(dspi->clk);
927 
928 	pinctrl_pm_select_sleep_state(dev);
929 
930 	return 0;
931 }
932 
933 static int dspi_resume(struct device *dev)
934 {
935 	struct spi_controller *ctlr = dev_get_drvdata(dev);
936 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
937 	int ret;
938 
939 	pinctrl_pm_select_default_state(dev);
940 
941 	ret = clk_prepare_enable(dspi->clk);
942 	if (ret)
943 		return ret;
944 	spi_controller_resume(ctlr);
945 
946 	return 0;
947 }
948 #endif /* CONFIG_PM_SLEEP */
949 
950 static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
951 
952 static const struct regmap_range dspi_volatile_ranges[] = {
953 	regmap_reg_range(SPI_MCR, SPI_TCR),
954 	regmap_reg_range(SPI_SR, SPI_SR),
955 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
956 };
957 
958 static const struct regmap_access_table dspi_volatile_table = {
959 	.yes_ranges	= dspi_volatile_ranges,
960 	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
961 };
962 
963 static const struct regmap_config dspi_regmap_config = {
964 	.reg_bits	= 32,
965 	.val_bits	= 32,
966 	.reg_stride	= 4,
967 	.max_register	= 0x88,
968 	.volatile_table	= &dspi_volatile_table,
969 };
970 
971 static const struct regmap_range dspi_xspi_volatile_ranges[] = {
972 	regmap_reg_range(SPI_MCR, SPI_TCR),
973 	regmap_reg_range(SPI_SR, SPI_SR),
974 	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
975 	regmap_reg_range(SPI_SREX, SPI_SREX),
976 };
977 
978 static const struct regmap_access_table dspi_xspi_volatile_table = {
979 	.yes_ranges	= dspi_xspi_volatile_ranges,
980 	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
981 };
982 
983 static const struct regmap_config dspi_xspi_regmap_config[] = {
984 	{
985 		.reg_bits	= 32,
986 		.val_bits	= 32,
987 		.reg_stride	= 4,
988 		.max_register	= 0x13c,
989 		.volatile_table	= &dspi_xspi_volatile_table,
990 	},
991 	{
992 		.name		= "pushr",
993 		.reg_bits	= 16,
994 		.val_bits	= 16,
995 		.reg_stride	= 2,
996 		.max_register	= 0x2,
997 	},
998 };
999 
1000 static void dspi_init(struct fsl_dspi *dspi)
1001 {
1002 	unsigned int mcr = SPI_MCR_PCSIS;
1003 
1004 	if (dspi->devtype_data->xspi_mode)
1005 		mcr |= SPI_MCR_XSPI;
1006 	if (!spi_controller_is_slave(dspi->ctlr))
1007 		mcr |= SPI_MCR_MASTER;
1008 
1009 	regmap_write(dspi->regmap, SPI_MCR, mcr);
1010 	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1011 	if (dspi->devtype_data->xspi_mode)
1012 		regmap_write(dspi->regmap, SPI_CTARE(0),
1013 			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1014 }
1015 
1016 static int dspi_slave_abort(struct spi_master *master)
1017 {
1018 	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1019 
1020 	/*
1021 	 * Terminate all pending DMA transactions for the SPI working
1022 	 * in SLAVE mode.
1023 	 */
1024 	dmaengine_terminate_sync(dspi->dma->chan_rx);
1025 	dmaengine_terminate_sync(dspi->dma->chan_tx);
1026 
1027 	/* Clear the internal DSPI RX and TX FIFO buffers */
1028 	regmap_update_bits(dspi->regmap, SPI_MCR,
1029 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1030 			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1031 
1032 	return 0;
1033 }
1034 
1035 static int dspi_probe(struct platform_device *pdev)
1036 {
1037 	struct device_node *np = pdev->dev.of_node;
1038 	const struct regmap_config *regmap_config;
1039 	struct fsl_dspi_platform_data *pdata;
1040 	struct spi_controller *ctlr;
1041 	int ret, cs_num, bus_num;
1042 	struct fsl_dspi *dspi;
1043 	struct resource *res;
1044 	void __iomem *base;
1045 
1046 	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1047 	if (!ctlr)
1048 		return -ENOMEM;
1049 
1050 	dspi = spi_controller_get_devdata(ctlr);
1051 	dspi->pdev = pdev;
1052 	dspi->ctlr = ctlr;
1053 
1054 	ctlr->setup = dspi_setup;
1055 	ctlr->transfer_one_message = dspi_transfer_one_message;
1056 	ctlr->dev.of_node = pdev->dev.of_node;
1057 
1058 	ctlr->cleanup = dspi_cleanup;
1059 	ctlr->slave_abort = dspi_slave_abort;
1060 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1061 
1062 	pdata = dev_get_platdata(&pdev->dev);
1063 	if (pdata) {
1064 		ctlr->num_chipselect = pdata->cs_num;
1065 		ctlr->bus_num = pdata->bus_num;
1066 
1067 		dspi->devtype_data = &coldfire_data;
1068 	} else {
1069 
1070 		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1071 		if (ret < 0) {
1072 			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1073 			goto out_ctlr_put;
1074 		}
1075 		ctlr->num_chipselect = cs_num;
1076 
1077 		ret = of_property_read_u32(np, "bus-num", &bus_num);
1078 		if (ret < 0) {
1079 			dev_err(&pdev->dev, "can't get bus-num\n");
1080 			goto out_ctlr_put;
1081 		}
1082 		ctlr->bus_num = bus_num;
1083 
1084 		if (of_property_read_bool(np, "spi-slave"))
1085 			ctlr->slave = true;
1086 
1087 		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1088 		if (!dspi->devtype_data) {
1089 			dev_err(&pdev->dev, "can't get devtype_data\n");
1090 			ret = -EFAULT;
1091 			goto out_ctlr_put;
1092 		}
1093 	}
1094 
1095 	if (dspi->devtype_data->xspi_mode)
1096 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1097 	else
1098 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1099 
1100 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1101 	base = devm_ioremap_resource(&pdev->dev, res);
1102 	if (IS_ERR(base)) {
1103 		ret = PTR_ERR(base);
1104 		goto out_ctlr_put;
1105 	}
1106 
1107 	if (dspi->devtype_data->xspi_mode)
1108 		regmap_config = &dspi_xspi_regmap_config[0];
1109 	else
1110 		regmap_config = &dspi_regmap_config;
1111 	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1112 	if (IS_ERR(dspi->regmap)) {
1113 		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1114 				PTR_ERR(dspi->regmap));
1115 		ret = PTR_ERR(dspi->regmap);
1116 		goto out_ctlr_put;
1117 	}
1118 
1119 	if (dspi->devtype_data->xspi_mode) {
1120 		dspi->regmap_pushr = devm_regmap_init_mmio(
1121 			&pdev->dev, base + SPI_PUSHR,
1122 			&dspi_xspi_regmap_config[1]);
1123 		if (IS_ERR(dspi->regmap_pushr)) {
1124 			dev_err(&pdev->dev,
1125 				"failed to init pushr regmap: %ld\n",
1126 				PTR_ERR(dspi->regmap_pushr));
1127 			ret = PTR_ERR(dspi->regmap_pushr);
1128 			goto out_ctlr_put;
1129 		}
1130 	}
1131 
1132 	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1133 	if (IS_ERR(dspi->clk)) {
1134 		ret = PTR_ERR(dspi->clk);
1135 		dev_err(&pdev->dev, "unable to get clock\n");
1136 		goto out_ctlr_put;
1137 	}
1138 	ret = clk_prepare_enable(dspi->clk);
1139 	if (ret)
1140 		goto out_ctlr_put;
1141 
1142 	dspi_init(dspi);
1143 
1144 	if (dspi->devtype_data->trans_mode == DSPI_TCFQ_MODE)
1145 		goto poll_mode;
1146 
1147 	dspi->irq = platform_get_irq(pdev, 0);
1148 	if (dspi->irq <= 0) {
1149 		dev_info(&pdev->dev,
1150 			 "can't get platform irq, using poll mode\n");
1151 		dspi->irq = 0;
1152 		goto poll_mode;
1153 	}
1154 
1155 	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1156 			       IRQF_SHARED, pdev->name, dspi);
1157 	if (ret < 0) {
1158 		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1159 		goto out_clk_put;
1160 	}
1161 
1162 	init_waitqueue_head(&dspi->waitq);
1163 
1164 poll_mode:
1165 
1166 	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1167 		ret = dspi_request_dma(dspi, res->start);
1168 		if (ret < 0) {
1169 			dev_err(&pdev->dev, "can't get dma channels\n");
1170 			goto out_clk_put;
1171 		}
1172 	}
1173 
1174 	ctlr->max_speed_hz =
1175 		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1176 
1177 	ctlr->ptp_sts_supported = dspi->devtype_data->ptp_sts_supported;
1178 
1179 	platform_set_drvdata(pdev, ctlr);
1180 
1181 	ret = spi_register_controller(ctlr);
1182 	if (ret != 0) {
1183 		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1184 		goto out_clk_put;
1185 	}
1186 
1187 	return ret;
1188 
1189 out_clk_put:
1190 	clk_disable_unprepare(dspi->clk);
1191 out_ctlr_put:
1192 	spi_controller_put(ctlr);
1193 
1194 	return ret;
1195 }
1196 
1197 static int dspi_remove(struct platform_device *pdev)
1198 {
1199 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1200 	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1201 
1202 	/* Disconnect from the SPI framework */
1203 	dspi_release_dma(dspi);
1204 	clk_disable_unprepare(dspi->clk);
1205 	spi_unregister_controller(dspi->ctlr);
1206 
1207 	return 0;
1208 }
1209 
1210 static struct platform_driver fsl_dspi_driver = {
1211 	.driver.name		= DRIVER_NAME,
1212 	.driver.of_match_table	= fsl_dspi_dt_ids,
1213 	.driver.owner		= THIS_MODULE,
1214 	.driver.pm		= &dspi_pm,
1215 	.probe			= dspi_probe,
1216 	.remove			= dspi_remove,
1217 };
1218 module_platform_driver(fsl_dspi_driver);
1219 
1220 MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1221 MODULE_LICENSE("GPL");
1222 MODULE_ALIAS("platform:" DRIVER_NAME);
1223