xref: /openbmc/linux/drivers/spi/spi-cadence-quadspi.c (revision 1f1517fafda598839a02e39968c5063ddcfa51fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		16
35 
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
40 
41 /* Capabilities */
42 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
43 
44 struct cqspi_st;
45 
46 struct cqspi_flash_pdata {
47 	struct cqspi_st	*cqspi;
48 	u32		clk_rate;
49 	u32		read_delay;
50 	u32		tshsl_ns;
51 	u32		tsd2d_ns;
52 	u32		tchsh_ns;
53 	u32		tslch_ns;
54 	u8		inst_width;
55 	u8		addr_width;
56 	u8		data_width;
57 	bool		dtr;
58 	u8		cs;
59 };
60 
61 struct cqspi_st {
62 	struct platform_device	*pdev;
63 
64 	struct clk		*clk;
65 	unsigned int		sclk;
66 
67 	void __iomem		*iobase;
68 	void __iomem		*ahb_base;
69 	resource_size_t		ahb_size;
70 	struct completion	transfer_complete;
71 
72 	struct dma_chan		*rx_chan;
73 	struct completion	rx_dma_complete;
74 	dma_addr_t		mmap_phys_base;
75 
76 	int			current_cs;
77 	unsigned long		master_ref_clk_hz;
78 	bool			is_decoded_cs;
79 	u32			fifo_depth;
80 	u32			fifo_width;
81 	u32			num_chipselect;
82 	bool			rclk_en;
83 	u32			trigger_address;
84 	u32			wr_delay;
85 	bool			use_direct_mode;
86 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
87 	bool			use_dma_read;
88 	u32			pd_dev_id;
89 };
90 
91 struct cqspi_driver_platdata {
92 	u32 hwcaps_mask;
93 	u8 quirks;
94 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
95 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
96 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
97 };
98 
99 /* Operation timeout value */
100 #define CQSPI_TIMEOUT_MS			500
101 #define CQSPI_READ_TIMEOUT_MS			10
102 
103 /* Instruction type */
104 #define CQSPI_INST_TYPE_SINGLE			0
105 #define CQSPI_INST_TYPE_DUAL			1
106 #define CQSPI_INST_TYPE_QUAD			2
107 #define CQSPI_INST_TYPE_OCTAL			3
108 
109 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
110 #define CQSPI_DUMMY_BYTES_MAX			4
111 #define CQSPI_DUMMY_CLKS_MAX			31
112 
113 #define CQSPI_STIG_DATA_LEN_MAX			8
114 
115 /* Register map */
116 #define CQSPI_REG_CONFIG			0x00
117 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
118 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
119 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
120 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
121 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
122 #define CQSPI_REG_CONFIG_BAUD_LSB		19
123 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
124 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
125 #define CQSPI_REG_CONFIG_IDLE_LSB		31
126 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
127 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
128 
129 #define CQSPI_REG_RD_INSTR			0x04
130 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
134 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
135 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
136 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
137 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
138 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
139 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
140 
141 #define CQSPI_REG_WR_INSTR			0x08
142 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
143 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
144 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
145 
146 #define CQSPI_REG_DELAY				0x0C
147 #define CQSPI_REG_DELAY_TSLCH_LSB		0
148 #define CQSPI_REG_DELAY_TCHSH_LSB		8
149 #define CQSPI_REG_DELAY_TSD2D_LSB		16
150 #define CQSPI_REG_DELAY_TSHSL_LSB		24
151 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
152 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
153 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
154 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
155 
156 #define CQSPI_REG_READCAPTURE			0x10
157 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
158 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
159 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
160 
161 #define CQSPI_REG_SIZE				0x14
162 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
163 #define CQSPI_REG_SIZE_PAGE_LSB			4
164 #define CQSPI_REG_SIZE_BLOCK_LSB		16
165 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
166 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
167 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
168 
169 #define CQSPI_REG_SRAMPARTITION			0x18
170 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
171 
172 #define CQSPI_REG_DMA				0x20
173 #define CQSPI_REG_DMA_SINGLE_LSB		0
174 #define CQSPI_REG_DMA_BURST_LSB			8
175 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
176 #define CQSPI_REG_DMA_BURST_MASK		0xFF
177 
178 #define CQSPI_REG_REMAP				0x24
179 #define CQSPI_REG_MODE_BIT			0x28
180 
181 #define CQSPI_REG_SDRAMLEVEL			0x2C
182 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
183 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
184 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
185 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
186 
187 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
188 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
189 
190 #define CQSPI_REG_IRQSTATUS			0x40
191 #define CQSPI_REG_IRQMASK			0x44
192 
193 #define CQSPI_REG_INDIRECTRD			0x60
194 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
195 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
196 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
197 
198 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
199 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
200 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
201 
202 #define CQSPI_REG_CMDCTRL			0x90
203 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
204 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
205 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
207 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
208 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
209 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
211 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
212 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
213 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
214 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
215 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
216 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
217 
218 #define CQSPI_REG_INDIRECTWR			0x70
219 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
220 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
221 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
222 
223 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
224 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
225 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
226 
227 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
228 
229 #define CQSPI_REG_CMDADDRESS			0x94
230 #define CQSPI_REG_CMDREADDATALOWER		0xA0
231 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
232 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
233 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
234 
235 #define CQSPI_REG_POLLING_STATUS		0xB0
236 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
237 
238 #define CQSPI_REG_OP_EXT_LOWER			0xE0
239 #define CQSPI_REG_OP_EXT_READ_LSB		24
240 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
241 #define CQSPI_REG_OP_EXT_STIG_LSB		0
242 
243 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
244 
245 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
246 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
247 
248 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
249 
250 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
251 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
252 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
253 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
254 
255 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
256 
257 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
258 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
259 
260 /* Interrupt status bits */
261 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
262 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
263 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
264 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
265 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
266 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
267 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
268 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
269 
270 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
271 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
272 					 CQSPI_REG_IRQ_IND_COMP)
273 
274 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
275 					 CQSPI_REG_IRQ_WATERMARK	| \
276 					 CQSPI_REG_IRQ_UNDERFLOW)
277 
278 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
279 #define CQSPI_DMA_UNALIGN		0x3
280 
281 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
282 
283 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
284 {
285 	u32 val;
286 
287 	return readl_relaxed_poll_timeout(reg, val,
288 					  (((clr ? ~val : val) & mask) == mask),
289 					  10, CQSPI_TIMEOUT_MS * 1000);
290 }
291 
292 static bool cqspi_is_idle(struct cqspi_st *cqspi)
293 {
294 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
295 
296 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
297 }
298 
299 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
300 {
301 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
302 
303 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
304 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
305 }
306 
307 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
308 {
309 	u32 dma_status;
310 
311 	dma_status = readl(cqspi->iobase +
312 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
313 	writel(dma_status, cqspi->iobase +
314 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
315 
316 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
317 }
318 
319 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
320 {
321 	struct cqspi_st *cqspi = dev;
322 	unsigned int irq_status;
323 	struct device *device = &cqspi->pdev->dev;
324 	const struct cqspi_driver_platdata *ddata;
325 
326 	ddata = of_device_get_match_data(device);
327 
328 	/* Read interrupt status */
329 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
330 
331 	/* Clear interrupt */
332 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
333 
334 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
335 		if (ddata->get_dma_status(cqspi)) {
336 			complete(&cqspi->transfer_complete);
337 			return IRQ_HANDLED;
338 		}
339 	}
340 
341 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
342 
343 	if (irq_status)
344 		complete(&cqspi->transfer_complete);
345 
346 	return IRQ_HANDLED;
347 }
348 
349 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
350 {
351 	u32 rdreg = 0;
352 
353 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
354 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
355 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
356 
357 	return rdreg;
358 }
359 
360 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
361 {
362 	unsigned int dummy_clk;
363 
364 	if (!op->dummy.nbytes)
365 		return 0;
366 
367 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
368 	if (dtr)
369 		dummy_clk /= 2;
370 
371 	return dummy_clk;
372 }
373 
374 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
375 			      const struct spi_mem_op *op)
376 {
377 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
378 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
379 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
380 
381 	/*
382 	 * For an op to be DTR, cmd phase along with every other non-empty
383 	 * phase should have dtr field set to 1. If an op phase has zero
384 	 * nbytes, ignore its dtr field; otherwise, check its dtr field.
385 	 */
386 	f_pdata->dtr = op->cmd.dtr &&
387 		       (!op->addr.nbytes || op->addr.dtr) &&
388 		       (!op->data.nbytes || op->data.dtr);
389 
390 	switch (op->data.buswidth) {
391 	case 0:
392 		break;
393 	case 1:
394 		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
395 		break;
396 	case 2:
397 		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
398 		break;
399 	case 4:
400 		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
401 		break;
402 	case 8:
403 		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
404 		break;
405 	default:
406 		return -EINVAL;
407 	}
408 
409 	/* Right now we only support 8-8-8 DTR mode. */
410 	if (f_pdata->dtr) {
411 		switch (op->cmd.buswidth) {
412 		case 0:
413 			break;
414 		case 8:
415 			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
416 			break;
417 		default:
418 			return -EINVAL;
419 		}
420 
421 		switch (op->addr.buswidth) {
422 		case 0:
423 			break;
424 		case 8:
425 			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
426 			break;
427 		default:
428 			return -EINVAL;
429 		}
430 
431 		switch (op->data.buswidth) {
432 		case 0:
433 			break;
434 		case 8:
435 			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
436 			break;
437 		default:
438 			return -EINVAL;
439 		}
440 	}
441 
442 	return 0;
443 }
444 
445 static int cqspi_wait_idle(struct cqspi_st *cqspi)
446 {
447 	const unsigned int poll_idle_retry = 3;
448 	unsigned int count = 0;
449 	unsigned long timeout;
450 
451 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
452 	while (1) {
453 		/*
454 		 * Read few times in succession to ensure the controller
455 		 * is indeed idle, that is, the bit does not transition
456 		 * low again.
457 		 */
458 		if (cqspi_is_idle(cqspi))
459 			count++;
460 		else
461 			count = 0;
462 
463 		if (count >= poll_idle_retry)
464 			return 0;
465 
466 		if (time_after(jiffies, timeout)) {
467 			/* Timeout, in busy mode. */
468 			dev_err(&cqspi->pdev->dev,
469 				"QSPI is still busy after %dms timeout.\n",
470 				CQSPI_TIMEOUT_MS);
471 			return -ETIMEDOUT;
472 		}
473 
474 		cpu_relax();
475 	}
476 }
477 
478 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
479 {
480 	void __iomem *reg_base = cqspi->iobase;
481 	int ret;
482 
483 	/* Write the CMDCTRL without start execution. */
484 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
485 	/* Start execute */
486 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
487 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
488 
489 	/* Polling for completion. */
490 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
491 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
492 	if (ret) {
493 		dev_err(&cqspi->pdev->dev,
494 			"Flash command execution timed out.\n");
495 		return ret;
496 	}
497 
498 	/* Polling QSPI idle status. */
499 	return cqspi_wait_idle(cqspi);
500 }
501 
502 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
503 				  const struct spi_mem_op *op,
504 				  unsigned int shift)
505 {
506 	struct cqspi_st *cqspi = f_pdata->cqspi;
507 	void __iomem *reg_base = cqspi->iobase;
508 	unsigned int reg;
509 	u8 ext;
510 
511 	if (op->cmd.nbytes != 2)
512 		return -EINVAL;
513 
514 	/* Opcode extension is the LSB. */
515 	ext = op->cmd.opcode & 0xff;
516 
517 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
518 	reg &= ~(0xff << shift);
519 	reg |= ext << shift;
520 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
521 
522 	return 0;
523 }
524 
525 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
526 			    const struct spi_mem_op *op, unsigned int shift,
527 			    bool enable)
528 {
529 	struct cqspi_st *cqspi = f_pdata->cqspi;
530 	void __iomem *reg_base = cqspi->iobase;
531 	unsigned int reg;
532 	int ret;
533 
534 	reg = readl(reg_base + CQSPI_REG_CONFIG);
535 
536 	/*
537 	 * We enable dual byte opcode here. The callers have to set up the
538 	 * extension opcode based on which type of operation it is.
539 	 */
540 	if (enable) {
541 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
542 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
543 
544 		/* Set up command opcode extension. */
545 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
546 		if (ret)
547 			return ret;
548 	} else {
549 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
550 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
551 	}
552 
553 	writel(reg, reg_base + CQSPI_REG_CONFIG);
554 
555 	return cqspi_wait_idle(cqspi);
556 }
557 
558 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
559 			      const struct spi_mem_op *op)
560 {
561 	struct cqspi_st *cqspi = f_pdata->cqspi;
562 	void __iomem *reg_base = cqspi->iobase;
563 	u8 *rxbuf = op->data.buf.in;
564 	u8 opcode;
565 	size_t n_rx = op->data.nbytes;
566 	unsigned int rdreg;
567 	unsigned int reg;
568 	unsigned int dummy_clk;
569 	size_t read_len;
570 	int status;
571 
572 	status = cqspi_set_protocol(f_pdata, op);
573 	if (status)
574 		return status;
575 
576 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
577 				  f_pdata->dtr);
578 	if (status)
579 		return status;
580 
581 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
582 		dev_err(&cqspi->pdev->dev,
583 			"Invalid input argument, len %zu rxbuf 0x%p\n",
584 			n_rx, rxbuf);
585 		return -EINVAL;
586 	}
587 
588 	if (f_pdata->dtr)
589 		opcode = op->cmd.opcode >> 8;
590 	else
591 		opcode = op->cmd.opcode;
592 
593 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
594 
595 	rdreg = cqspi_calc_rdreg(f_pdata);
596 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
597 
598 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
599 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
600 		return -EOPNOTSUPP;
601 
602 	if (dummy_clk)
603 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
604 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
605 
606 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
607 
608 	/* 0 means 1 byte. */
609 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
610 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
611 	status = cqspi_exec_flash_cmd(cqspi, reg);
612 	if (status)
613 		return status;
614 
615 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
616 
617 	/* Put the read value into rx_buf */
618 	read_len = (n_rx > 4) ? 4 : n_rx;
619 	memcpy(rxbuf, &reg, read_len);
620 	rxbuf += read_len;
621 
622 	if (n_rx > 4) {
623 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
624 
625 		read_len = n_rx - read_len;
626 		memcpy(rxbuf, &reg, read_len);
627 	}
628 
629 	return 0;
630 }
631 
632 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
633 			       const struct spi_mem_op *op)
634 {
635 	struct cqspi_st *cqspi = f_pdata->cqspi;
636 	void __iomem *reg_base = cqspi->iobase;
637 	u8 opcode;
638 	const u8 *txbuf = op->data.buf.out;
639 	size_t n_tx = op->data.nbytes;
640 	unsigned int reg;
641 	unsigned int data;
642 	size_t write_len;
643 	int ret;
644 
645 	ret = cqspi_set_protocol(f_pdata, op);
646 	if (ret)
647 		return ret;
648 
649 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
650 			       f_pdata->dtr);
651 	if (ret)
652 		return ret;
653 
654 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
655 		dev_err(&cqspi->pdev->dev,
656 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
657 			n_tx, txbuf);
658 		return -EINVAL;
659 	}
660 
661 	reg = cqspi_calc_rdreg(f_pdata);
662 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
663 
664 	if (f_pdata->dtr)
665 		opcode = op->cmd.opcode >> 8;
666 	else
667 		opcode = op->cmd.opcode;
668 
669 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
670 
671 	if (op->addr.nbytes) {
672 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
673 		reg |= ((op->addr.nbytes - 1) &
674 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
675 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
676 
677 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
678 	}
679 
680 	if (n_tx) {
681 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
682 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
683 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
684 		data = 0;
685 		write_len = (n_tx > 4) ? 4 : n_tx;
686 		memcpy(&data, txbuf, write_len);
687 		txbuf += write_len;
688 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
689 
690 		if (n_tx > 4) {
691 			data = 0;
692 			write_len = n_tx - 4;
693 			memcpy(&data, txbuf, write_len);
694 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
695 		}
696 	}
697 
698 	return cqspi_exec_flash_cmd(cqspi, reg);
699 }
700 
701 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
702 			    const struct spi_mem_op *op)
703 {
704 	struct cqspi_st *cqspi = f_pdata->cqspi;
705 	void __iomem *reg_base = cqspi->iobase;
706 	unsigned int dummy_clk = 0;
707 	unsigned int reg;
708 	int ret;
709 	u8 opcode;
710 
711 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
712 			       f_pdata->dtr);
713 	if (ret)
714 		return ret;
715 
716 	if (f_pdata->dtr)
717 		opcode = op->cmd.opcode >> 8;
718 	else
719 		opcode = op->cmd.opcode;
720 
721 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
722 	reg |= cqspi_calc_rdreg(f_pdata);
723 
724 	/* Setup dummy clock cycles */
725 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
726 
727 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
728 		return -EOPNOTSUPP;
729 
730 	if (dummy_clk)
731 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
732 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
733 
734 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
735 
736 	/* Set address width */
737 	reg = readl(reg_base + CQSPI_REG_SIZE);
738 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
739 	reg |= (op->addr.nbytes - 1);
740 	writel(reg, reg_base + CQSPI_REG_SIZE);
741 	return 0;
742 }
743 
744 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
745 				       u8 *rxbuf, loff_t from_addr,
746 				       const size_t n_rx)
747 {
748 	struct cqspi_st *cqspi = f_pdata->cqspi;
749 	struct device *dev = &cqspi->pdev->dev;
750 	void __iomem *reg_base = cqspi->iobase;
751 	void __iomem *ahb_base = cqspi->ahb_base;
752 	unsigned int remaining = n_rx;
753 	unsigned int mod_bytes = n_rx % 4;
754 	unsigned int bytes_to_read = 0;
755 	u8 *rxbuf_end = rxbuf + n_rx;
756 	int ret = 0;
757 
758 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
759 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
760 
761 	/* Clear all interrupts. */
762 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
763 
764 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
765 
766 	reinit_completion(&cqspi->transfer_complete);
767 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
768 	       reg_base + CQSPI_REG_INDIRECTRD);
769 
770 	while (remaining > 0) {
771 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
772 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
773 			ret = -ETIMEDOUT;
774 
775 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
776 
777 		if (ret && bytes_to_read == 0) {
778 			dev_err(dev, "Indirect read timeout, no bytes\n");
779 			goto failrd;
780 		}
781 
782 		while (bytes_to_read != 0) {
783 			unsigned int word_remain = round_down(remaining, 4);
784 
785 			bytes_to_read *= cqspi->fifo_width;
786 			bytes_to_read = bytes_to_read > remaining ?
787 					remaining : bytes_to_read;
788 			bytes_to_read = round_down(bytes_to_read, 4);
789 			/* Read 4 byte word chunks then single bytes */
790 			if (bytes_to_read) {
791 				ioread32_rep(ahb_base, rxbuf,
792 					     (bytes_to_read / 4));
793 			} else if (!word_remain && mod_bytes) {
794 				unsigned int temp = ioread32(ahb_base);
795 
796 				bytes_to_read = mod_bytes;
797 				memcpy(rxbuf, &temp, min((unsigned int)
798 							 (rxbuf_end - rxbuf),
799 							 bytes_to_read));
800 			}
801 			rxbuf += bytes_to_read;
802 			remaining -= bytes_to_read;
803 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
804 		}
805 
806 		if (remaining > 0)
807 			reinit_completion(&cqspi->transfer_complete);
808 	}
809 
810 	/* Check indirect done status */
811 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
812 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
813 	if (ret) {
814 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
815 		goto failrd;
816 	}
817 
818 	/* Disable interrupt */
819 	writel(0, reg_base + CQSPI_REG_IRQMASK);
820 
821 	/* Clear indirect completion status */
822 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
823 
824 	return 0;
825 
826 failrd:
827 	/* Disable interrupt */
828 	writel(0, reg_base + CQSPI_REG_IRQMASK);
829 
830 	/* Cancel the indirect read */
831 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
832 	       reg_base + CQSPI_REG_INDIRECTRD);
833 	return ret;
834 }
835 
836 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
837 					  u_char *rxbuf, loff_t from_addr,
838 					  size_t n_rx)
839 {
840 	struct cqspi_st *cqspi = f_pdata->cqspi;
841 	struct device *dev = &cqspi->pdev->dev;
842 	void __iomem *reg_base = cqspi->iobase;
843 	u32 reg, bytes_to_dma;
844 	loff_t addr = from_addr;
845 	void *buf = rxbuf;
846 	dma_addr_t dma_addr;
847 	u8 bytes_rem;
848 	int ret = 0;
849 
850 	bytes_rem = n_rx % 4;
851 	bytes_to_dma = (n_rx - bytes_rem);
852 
853 	if (!bytes_to_dma)
854 		goto nondmard;
855 
856 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
857 	if (ret)
858 		return ret;
859 
860 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
861 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
862 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
863 
864 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
865 	if (dma_mapping_error(dev, dma_addr)) {
866 		dev_err(dev, "dma mapping failed\n");
867 		return -ENOMEM;
868 	}
869 
870 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
871 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
872 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
873 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
874 
875 	/* Clear all interrupts. */
876 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
877 
878 	/* Enable DMA done interrupt */
879 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
880 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
881 
882 	/* Default DMA periph configuration */
883 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
884 
885 	/* Configure DMA Dst address */
886 	writel(lower_32_bits(dma_addr),
887 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
888 	writel(upper_32_bits(dma_addr),
889 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
890 
891 	/* Configure DMA Src address */
892 	writel(cqspi->trigger_address, reg_base +
893 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
894 
895 	/* Set DMA destination size */
896 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
897 
898 	/* Set DMA destination control */
899 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
900 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
901 
902 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
903 	       reg_base + CQSPI_REG_INDIRECTRD);
904 
905 	reinit_completion(&cqspi->transfer_complete);
906 
907 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
908 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
909 		ret = -ETIMEDOUT;
910 		goto failrd;
911 	}
912 
913 	/* Disable DMA interrupt */
914 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
915 
916 	/* Clear indirect completion status */
917 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
918 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
919 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
920 
921 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
922 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
923 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
924 
925 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
926 					PM_OSPI_MUX_SEL_LINEAR);
927 	if (ret)
928 		return ret;
929 
930 nondmard:
931 	if (bytes_rem) {
932 		addr += bytes_to_dma;
933 		buf += bytes_to_dma;
934 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
935 						  bytes_rem);
936 		if (ret)
937 			return ret;
938 	}
939 
940 	return 0;
941 
942 failrd:
943 	/* Disable DMA interrupt */
944 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
945 
946 	/* Cancel the indirect read */
947 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
948 	       reg_base + CQSPI_REG_INDIRECTRD);
949 
950 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
951 
952 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
953 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
954 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
955 
956 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
957 
958 	return ret;
959 }
960 
961 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
962 			     const struct spi_mem_op *op)
963 {
964 	unsigned int reg;
965 	int ret;
966 	struct cqspi_st *cqspi = f_pdata->cqspi;
967 	void __iomem *reg_base = cqspi->iobase;
968 	u8 opcode;
969 
970 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
971 			       f_pdata->dtr);
972 	if (ret)
973 		return ret;
974 
975 	if (f_pdata->dtr)
976 		opcode = op->cmd.opcode >> 8;
977 	else
978 		opcode = op->cmd.opcode;
979 
980 	/* Set opcode. */
981 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
982 	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
983 	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
984 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
985 	reg = cqspi_calc_rdreg(f_pdata);
986 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
987 
988 	/*
989 	 * SPI NAND flashes require the address of the status register to be
990 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
991 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
992 	 * command in DTR mode.
993 	 *
994 	 * But this controller does not support address phase in the Read SR
995 	 * command when doing auto-HW polling. So, disable write completion
996 	 * polling on the controller's side. spinand and spi-nor will take
997 	 * care of polling the status register.
998 	 */
999 	reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000 	reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1001 	writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1002 
1003 	reg = readl(reg_base + CQSPI_REG_SIZE);
1004 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1005 	reg |= (op->addr.nbytes - 1);
1006 	writel(reg, reg_base + CQSPI_REG_SIZE);
1007 	return 0;
1008 }
1009 
1010 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1011 					loff_t to_addr, const u8 *txbuf,
1012 					const size_t n_tx)
1013 {
1014 	struct cqspi_st *cqspi = f_pdata->cqspi;
1015 	struct device *dev = &cqspi->pdev->dev;
1016 	void __iomem *reg_base = cqspi->iobase;
1017 	unsigned int remaining = n_tx;
1018 	unsigned int write_bytes;
1019 	int ret;
1020 
1021 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1022 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1023 
1024 	/* Clear all interrupts. */
1025 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1026 
1027 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1028 
1029 	reinit_completion(&cqspi->transfer_complete);
1030 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1031 	       reg_base + CQSPI_REG_INDIRECTWR);
1032 	/*
1033 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1034 	 * Controller programming sequence, couple of cycles of
1035 	 * QSPI_REF_CLK delay is required for the above bit to
1036 	 * be internally synchronized by the QSPI module. Provide 5
1037 	 * cycles of delay.
1038 	 */
1039 	if (cqspi->wr_delay)
1040 		ndelay(cqspi->wr_delay);
1041 
1042 	while (remaining > 0) {
1043 		size_t write_words, mod_bytes;
1044 
1045 		write_bytes = remaining;
1046 		write_words = write_bytes / 4;
1047 		mod_bytes = write_bytes % 4;
1048 		/* Write 4 bytes at a time then single bytes. */
1049 		if (write_words) {
1050 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1051 			txbuf += (write_words * 4);
1052 		}
1053 		if (mod_bytes) {
1054 			unsigned int temp = 0xFFFFFFFF;
1055 
1056 			memcpy(&temp, txbuf, mod_bytes);
1057 			iowrite32(temp, cqspi->ahb_base);
1058 			txbuf += mod_bytes;
1059 		}
1060 
1061 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1062 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1063 			dev_err(dev, "Indirect write timeout\n");
1064 			ret = -ETIMEDOUT;
1065 			goto failwr;
1066 		}
1067 
1068 		remaining -= write_bytes;
1069 
1070 		if (remaining > 0)
1071 			reinit_completion(&cqspi->transfer_complete);
1072 	}
1073 
1074 	/* Check indirect done status */
1075 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1076 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1077 	if (ret) {
1078 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1079 		goto failwr;
1080 	}
1081 
1082 	/* Disable interrupt. */
1083 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1084 
1085 	/* Clear indirect completion status */
1086 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1087 
1088 	cqspi_wait_idle(cqspi);
1089 
1090 	return 0;
1091 
1092 failwr:
1093 	/* Disable interrupt. */
1094 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1095 
1096 	/* Cancel the indirect write */
1097 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1098 	       reg_base + CQSPI_REG_INDIRECTWR);
1099 	return ret;
1100 }
1101 
1102 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1103 {
1104 	struct cqspi_st *cqspi = f_pdata->cqspi;
1105 	void __iomem *reg_base = cqspi->iobase;
1106 	unsigned int chip_select = f_pdata->cs;
1107 	unsigned int reg;
1108 
1109 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1110 	if (cqspi->is_decoded_cs) {
1111 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1112 	} else {
1113 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1114 
1115 		/* Convert CS if without decoder.
1116 		 * CS0 to 4b'1110
1117 		 * CS1 to 4b'1101
1118 		 * CS2 to 4b'1011
1119 		 * CS3 to 4b'0111
1120 		 */
1121 		chip_select = 0xF & ~(1 << chip_select);
1122 	}
1123 
1124 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1125 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1126 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1127 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1128 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1129 }
1130 
1131 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1132 					   const unsigned int ns_val)
1133 {
1134 	unsigned int ticks;
1135 
1136 	ticks = ref_clk_hz / 1000;	/* kHz */
1137 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1138 
1139 	return ticks;
1140 }
1141 
1142 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1143 {
1144 	struct cqspi_st *cqspi = f_pdata->cqspi;
1145 	void __iomem *iobase = cqspi->iobase;
1146 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1147 	unsigned int tshsl, tchsh, tslch, tsd2d;
1148 	unsigned int reg;
1149 	unsigned int tsclk;
1150 
1151 	/* calculate the number of ref ticks for one sclk tick */
1152 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1153 
1154 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1155 	/* this particular value must be at least one sclk */
1156 	if (tshsl < tsclk)
1157 		tshsl = tsclk;
1158 
1159 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1160 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1161 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1162 
1163 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1164 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1165 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1166 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1167 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1168 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1169 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1170 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1171 	writel(reg, iobase + CQSPI_REG_DELAY);
1172 }
1173 
1174 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1175 {
1176 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1177 	void __iomem *reg_base = cqspi->iobase;
1178 	u32 reg, div;
1179 
1180 	/* Recalculate the baudrate divisor based on QSPI specification. */
1181 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1182 
1183 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1184 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1185 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1186 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1187 }
1188 
1189 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1190 				   const bool bypass,
1191 				   const unsigned int delay)
1192 {
1193 	void __iomem *reg_base = cqspi->iobase;
1194 	unsigned int reg;
1195 
1196 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1197 
1198 	if (bypass)
1199 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1200 	else
1201 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1202 
1203 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1204 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1205 
1206 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1207 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1208 
1209 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1210 }
1211 
1212 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1213 {
1214 	void __iomem *reg_base = cqspi->iobase;
1215 	unsigned int reg;
1216 
1217 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1218 
1219 	if (enable)
1220 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1221 	else
1222 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1223 
1224 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1225 }
1226 
1227 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1228 			    unsigned long sclk)
1229 {
1230 	struct cqspi_st *cqspi = f_pdata->cqspi;
1231 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1232 	int switch_ck = (cqspi->sclk != sclk);
1233 
1234 	if (switch_cs || switch_ck)
1235 		cqspi_controller_enable(cqspi, 0);
1236 
1237 	/* Switch chip select. */
1238 	if (switch_cs) {
1239 		cqspi->current_cs = f_pdata->cs;
1240 		cqspi_chipselect(f_pdata);
1241 	}
1242 
1243 	/* Setup baudrate divisor and delays */
1244 	if (switch_ck) {
1245 		cqspi->sclk = sclk;
1246 		cqspi_config_baudrate_div(cqspi);
1247 		cqspi_delay(f_pdata);
1248 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1249 				       f_pdata->read_delay);
1250 	}
1251 
1252 	if (switch_cs || switch_ck)
1253 		cqspi_controller_enable(cqspi, 1);
1254 }
1255 
1256 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1257 			   const struct spi_mem_op *op)
1258 {
1259 	struct cqspi_st *cqspi = f_pdata->cqspi;
1260 	loff_t to = op->addr.val;
1261 	size_t len = op->data.nbytes;
1262 	const u_char *buf = op->data.buf.out;
1263 	int ret;
1264 
1265 	ret = cqspi_set_protocol(f_pdata, op);
1266 	if (ret)
1267 		return ret;
1268 
1269 	ret = cqspi_write_setup(f_pdata, op);
1270 	if (ret)
1271 		return ret;
1272 
1273 	/*
1274 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1275 	 * address (all 0s) with the read status register command in DTR mode.
1276 	 * But this controller does not support sending dummy address bytes to
1277 	 * the flash when it is polling the write completion register in DTR
1278 	 * mode. So, we can not use direct mode when in DTR mode for writing
1279 	 * data.
1280 	 */
1281 	if (!f_pdata->dtr && cqspi->use_direct_mode &&
1282 	    ((to + len) <= cqspi->ahb_size)) {
1283 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1284 		return cqspi_wait_idle(cqspi);
1285 	}
1286 
1287 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1288 }
1289 
1290 static void cqspi_rx_dma_callback(void *param)
1291 {
1292 	struct cqspi_st *cqspi = param;
1293 
1294 	complete(&cqspi->rx_dma_complete);
1295 }
1296 
1297 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1298 				     u_char *buf, loff_t from, size_t len)
1299 {
1300 	struct cqspi_st *cqspi = f_pdata->cqspi;
1301 	struct device *dev = &cqspi->pdev->dev;
1302 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1303 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1304 	int ret = 0;
1305 	struct dma_async_tx_descriptor *tx;
1306 	dma_cookie_t cookie;
1307 	dma_addr_t dma_dst;
1308 	struct device *ddev;
1309 
1310 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1311 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1312 		return 0;
1313 	}
1314 
1315 	ddev = cqspi->rx_chan->device->dev;
1316 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1317 	if (dma_mapping_error(ddev, dma_dst)) {
1318 		dev_err(dev, "dma mapping failed\n");
1319 		return -ENOMEM;
1320 	}
1321 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1322 				       len, flags);
1323 	if (!tx) {
1324 		dev_err(dev, "device_prep_dma_memcpy error\n");
1325 		ret = -EIO;
1326 		goto err_unmap;
1327 	}
1328 
1329 	tx->callback = cqspi_rx_dma_callback;
1330 	tx->callback_param = cqspi;
1331 	cookie = tx->tx_submit(tx);
1332 	reinit_completion(&cqspi->rx_dma_complete);
1333 
1334 	ret = dma_submit_error(cookie);
1335 	if (ret) {
1336 		dev_err(dev, "dma_submit_error %d\n", cookie);
1337 		ret = -EIO;
1338 		goto err_unmap;
1339 	}
1340 
1341 	dma_async_issue_pending(cqspi->rx_chan);
1342 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1343 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1344 		dmaengine_terminate_sync(cqspi->rx_chan);
1345 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1346 		ret = -ETIMEDOUT;
1347 		goto err_unmap;
1348 	}
1349 
1350 err_unmap:
1351 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1352 
1353 	return ret;
1354 }
1355 
1356 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1357 			  const struct spi_mem_op *op)
1358 {
1359 	struct cqspi_st *cqspi = f_pdata->cqspi;
1360 	struct device *dev = &cqspi->pdev->dev;
1361 	const struct cqspi_driver_platdata *ddata;
1362 	loff_t from = op->addr.val;
1363 	size_t len = op->data.nbytes;
1364 	u_char *buf = op->data.buf.in;
1365 	u64 dma_align = (u64)(uintptr_t)buf;
1366 	int ret;
1367 
1368 	ddata = of_device_get_match_data(dev);
1369 	ret = cqspi_set_protocol(f_pdata, op);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = cqspi_read_setup(f_pdata, op);
1374 	if (ret)
1375 		return ret;
1376 
1377 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1378 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1379 
1380 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1381 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1382 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1383 
1384 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1385 }
1386 
1387 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1388 {
1389 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1390 	struct cqspi_flash_pdata *f_pdata;
1391 
1392 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1393 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1394 
1395 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1396 		if (!op->addr.nbytes)
1397 			return cqspi_command_read(f_pdata, op);
1398 
1399 		return cqspi_read(f_pdata, op);
1400 	}
1401 
1402 	if (!op->addr.nbytes || !op->data.buf.out)
1403 		return cqspi_command_write(f_pdata, op);
1404 
1405 	return cqspi_write(f_pdata, op);
1406 }
1407 
1408 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1409 {
1410 	int ret;
1411 
1412 	ret = cqspi_mem_process(mem, op);
1413 	if (ret)
1414 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1415 
1416 	return ret;
1417 }
1418 
1419 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1420 				  const struct spi_mem_op *op)
1421 {
1422 	bool all_true, all_false;
1423 
1424 	/*
1425 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1426 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1427 	 */
1428 	all_true = op->cmd.dtr &&
1429 		   (!op->addr.nbytes || op->addr.dtr) &&
1430 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1431 		   (!op->data.nbytes || op->data.dtr);
1432 
1433 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1434 		    !op->data.dtr;
1435 
1436 	/* Mixed DTR modes not supported. */
1437 	if (!(all_true || all_false))
1438 		return false;
1439 
1440 	if (all_true)
1441 		return spi_mem_dtr_supports_op(mem, op);
1442 	else
1443 		return spi_mem_default_supports_op(mem, op);
1444 }
1445 
1446 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1447 				    struct cqspi_flash_pdata *f_pdata,
1448 				    struct device_node *np)
1449 {
1450 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1451 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1452 		return -ENXIO;
1453 	}
1454 
1455 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1456 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1457 		return -ENXIO;
1458 	}
1459 
1460 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1461 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1462 		return -ENXIO;
1463 	}
1464 
1465 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1466 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1467 		return -ENXIO;
1468 	}
1469 
1470 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1471 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1472 		return -ENXIO;
1473 	}
1474 
1475 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1476 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1477 		return -ENXIO;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1484 {
1485 	struct device *dev = &cqspi->pdev->dev;
1486 	struct device_node *np = dev->of_node;
1487 	u32 id[2];
1488 
1489 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1490 
1491 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1492 		dev_err(dev, "couldn't determine fifo-depth\n");
1493 		return -ENXIO;
1494 	}
1495 
1496 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1497 		dev_err(dev, "couldn't determine fifo-width\n");
1498 		return -ENXIO;
1499 	}
1500 
1501 	if (of_property_read_u32(np, "cdns,trigger-address",
1502 				 &cqspi->trigger_address)) {
1503 		dev_err(dev, "couldn't determine trigger-address\n");
1504 		return -ENXIO;
1505 	}
1506 
1507 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1508 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1509 
1510 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1511 
1512 	if (!of_property_read_u32_array(np, "power-domains", id,
1513 					ARRAY_SIZE(id)))
1514 		cqspi->pd_dev_id = id[1];
1515 
1516 	return 0;
1517 }
1518 
1519 static void cqspi_controller_init(struct cqspi_st *cqspi)
1520 {
1521 	u32 reg;
1522 
1523 	cqspi_controller_enable(cqspi, 0);
1524 
1525 	/* Configure the remap address register, no remap */
1526 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1527 
1528 	/* Disable all interrupts. */
1529 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1530 
1531 	/* Configure the SRAM split to 1:1 . */
1532 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1533 
1534 	/* Load indirect trigger address. */
1535 	writel(cqspi->trigger_address,
1536 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1537 
1538 	/* Program read watermark -- 1/2 of the FIFO. */
1539 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1540 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1541 	/* Program write watermark -- 1/8 of the FIFO. */
1542 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1543 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1544 
1545 	/* Disable direct access controller */
1546 	if (!cqspi->use_direct_mode) {
1547 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1548 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1549 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1550 	}
1551 
1552 	/* Enable DMA interface */
1553 	if (cqspi->use_dma_read) {
1554 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1555 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1556 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1557 	}
1558 
1559 	cqspi_controller_enable(cqspi, 1);
1560 }
1561 
1562 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1563 {
1564 	dma_cap_mask_t mask;
1565 
1566 	dma_cap_zero(mask);
1567 	dma_cap_set(DMA_MEMCPY, mask);
1568 
1569 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1570 	if (IS_ERR(cqspi->rx_chan)) {
1571 		int ret = PTR_ERR(cqspi->rx_chan);
1572 		cqspi->rx_chan = NULL;
1573 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1574 	}
1575 	init_completion(&cqspi->rx_dma_complete);
1576 
1577 	return 0;
1578 }
1579 
1580 static const char *cqspi_get_name(struct spi_mem *mem)
1581 {
1582 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1583 	struct device *dev = &cqspi->pdev->dev;
1584 
1585 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1586 }
1587 
1588 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1589 	.exec_op = cqspi_exec_mem_op,
1590 	.get_name = cqspi_get_name,
1591 	.supports_op = cqspi_supports_mem_op,
1592 };
1593 
1594 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1595 {
1596 	struct platform_device *pdev = cqspi->pdev;
1597 	struct device *dev = &pdev->dev;
1598 	struct device_node *np = dev->of_node;
1599 	struct cqspi_flash_pdata *f_pdata;
1600 	unsigned int cs;
1601 	int ret;
1602 
1603 	/* Get flash device data */
1604 	for_each_available_child_of_node(dev->of_node, np) {
1605 		ret = of_property_read_u32(np, "reg", &cs);
1606 		if (ret) {
1607 			dev_err(dev, "Couldn't determine chip select.\n");
1608 			of_node_put(np);
1609 			return ret;
1610 		}
1611 
1612 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1613 			dev_err(dev, "Chip select %d out of range.\n", cs);
1614 			of_node_put(np);
1615 			return -EINVAL;
1616 		}
1617 
1618 		f_pdata = &cqspi->f_pdata[cs];
1619 		f_pdata->cqspi = cqspi;
1620 		f_pdata->cs = cs;
1621 
1622 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1623 		if (ret) {
1624 			of_node_put(np);
1625 			return ret;
1626 		}
1627 	}
1628 
1629 	return 0;
1630 }
1631 
1632 static int cqspi_probe(struct platform_device *pdev)
1633 {
1634 	const struct cqspi_driver_platdata *ddata;
1635 	struct reset_control *rstc, *rstc_ocp;
1636 	struct device *dev = &pdev->dev;
1637 	struct spi_master *master;
1638 	struct resource *res_ahb;
1639 	struct cqspi_st *cqspi;
1640 	struct resource *res;
1641 	int ret;
1642 	int irq;
1643 
1644 	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1645 	if (!master) {
1646 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1647 		return -ENOMEM;
1648 	}
1649 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1650 	master->mem_ops = &cqspi_mem_ops;
1651 	master->dev.of_node = pdev->dev.of_node;
1652 
1653 	cqspi = spi_master_get_devdata(master);
1654 
1655 	cqspi->pdev = pdev;
1656 	platform_set_drvdata(pdev, cqspi);
1657 
1658 	/* Obtain configuration from OF. */
1659 	ret = cqspi_of_get_pdata(cqspi);
1660 	if (ret) {
1661 		dev_err(dev, "Cannot get mandatory OF data.\n");
1662 		ret = -ENODEV;
1663 		goto probe_master_put;
1664 	}
1665 
1666 	/* Obtain QSPI clock. */
1667 	cqspi->clk = devm_clk_get(dev, NULL);
1668 	if (IS_ERR(cqspi->clk)) {
1669 		dev_err(dev, "Cannot claim QSPI clock.\n");
1670 		ret = PTR_ERR(cqspi->clk);
1671 		goto probe_master_put;
1672 	}
1673 
1674 	/* Obtain and remap controller address. */
1675 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1676 	cqspi->iobase = devm_ioremap_resource(dev, res);
1677 	if (IS_ERR(cqspi->iobase)) {
1678 		dev_err(dev, "Cannot remap controller address.\n");
1679 		ret = PTR_ERR(cqspi->iobase);
1680 		goto probe_master_put;
1681 	}
1682 
1683 	/* Obtain and remap AHB address. */
1684 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1685 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1686 	if (IS_ERR(cqspi->ahb_base)) {
1687 		dev_err(dev, "Cannot remap AHB address.\n");
1688 		ret = PTR_ERR(cqspi->ahb_base);
1689 		goto probe_master_put;
1690 	}
1691 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1692 	cqspi->ahb_size = resource_size(res_ahb);
1693 
1694 	init_completion(&cqspi->transfer_complete);
1695 
1696 	/* Obtain IRQ line. */
1697 	irq = platform_get_irq(pdev, 0);
1698 	if (irq < 0) {
1699 		ret = -ENXIO;
1700 		goto probe_master_put;
1701 	}
1702 
1703 	pm_runtime_enable(dev);
1704 	ret = pm_runtime_get_sync(dev);
1705 	if (ret < 0) {
1706 		pm_runtime_put_noidle(dev);
1707 		goto probe_master_put;
1708 	}
1709 
1710 	ret = clk_prepare_enable(cqspi->clk);
1711 	if (ret) {
1712 		dev_err(dev, "Cannot enable QSPI clock.\n");
1713 		goto probe_clk_failed;
1714 	}
1715 
1716 	/* Obtain QSPI reset control */
1717 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1718 	if (IS_ERR(rstc)) {
1719 		ret = PTR_ERR(rstc);
1720 		dev_err(dev, "Cannot get QSPI reset.\n");
1721 		goto probe_reset_failed;
1722 	}
1723 
1724 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1725 	if (IS_ERR(rstc_ocp)) {
1726 		ret = PTR_ERR(rstc_ocp);
1727 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1728 		goto probe_reset_failed;
1729 	}
1730 
1731 	reset_control_assert(rstc);
1732 	reset_control_deassert(rstc);
1733 
1734 	reset_control_assert(rstc_ocp);
1735 	reset_control_deassert(rstc_ocp);
1736 
1737 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1738 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1739 	ddata  = of_device_get_match_data(dev);
1740 	if (ddata) {
1741 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1742 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1743 						cqspi->master_ref_clk_hz);
1744 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1745 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1746 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1747 			cqspi->use_direct_mode = true;
1748 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1749 			cqspi->use_dma_read = true;
1750 
1751 		if (of_device_is_compatible(pdev->dev.of_node,
1752 					    "xlnx,versal-ospi-1.0"))
1753 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1754 	}
1755 
1756 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1757 			       pdev->name, cqspi);
1758 	if (ret) {
1759 		dev_err(dev, "Cannot request IRQ.\n");
1760 		goto probe_reset_failed;
1761 	}
1762 
1763 	cqspi_wait_idle(cqspi);
1764 	cqspi_controller_init(cqspi);
1765 	cqspi->current_cs = -1;
1766 	cqspi->sclk = 0;
1767 
1768 	master->num_chipselect = cqspi->num_chipselect;
1769 
1770 	ret = cqspi_setup_flash(cqspi);
1771 	if (ret) {
1772 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1773 		goto probe_setup_failed;
1774 	}
1775 
1776 	if (cqspi->use_direct_mode) {
1777 		ret = cqspi_request_mmap_dma(cqspi);
1778 		if (ret == -EPROBE_DEFER)
1779 			goto probe_setup_failed;
1780 	}
1781 
1782 	ret = devm_spi_register_master(dev, master);
1783 	if (ret) {
1784 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1785 		goto probe_setup_failed;
1786 	}
1787 
1788 	return 0;
1789 probe_setup_failed:
1790 	cqspi_controller_enable(cqspi, 0);
1791 probe_reset_failed:
1792 	clk_disable_unprepare(cqspi->clk);
1793 probe_clk_failed:
1794 	pm_runtime_put_sync(dev);
1795 	pm_runtime_disable(dev);
1796 probe_master_put:
1797 	spi_master_put(master);
1798 	return ret;
1799 }
1800 
1801 static int cqspi_remove(struct platform_device *pdev)
1802 {
1803 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1804 
1805 	cqspi_controller_enable(cqspi, 0);
1806 
1807 	if (cqspi->rx_chan)
1808 		dma_release_channel(cqspi->rx_chan);
1809 
1810 	clk_disable_unprepare(cqspi->clk);
1811 
1812 	pm_runtime_put_sync(&pdev->dev);
1813 	pm_runtime_disable(&pdev->dev);
1814 
1815 	return 0;
1816 }
1817 
1818 #ifdef CONFIG_PM_SLEEP
1819 static int cqspi_suspend(struct device *dev)
1820 {
1821 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1822 
1823 	cqspi_controller_enable(cqspi, 0);
1824 	return 0;
1825 }
1826 
1827 static int cqspi_resume(struct device *dev)
1828 {
1829 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1830 
1831 	cqspi_controller_enable(cqspi, 1);
1832 	return 0;
1833 }
1834 
1835 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1836 	.suspend = cqspi_suspend,
1837 	.resume = cqspi_resume,
1838 };
1839 
1840 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1841 #else
1842 #define CQSPI_DEV_PM_OPS	NULL
1843 #endif
1844 
1845 static const struct cqspi_driver_platdata cdns_qspi = {
1846 	.quirks = CQSPI_DISABLE_DAC_MODE,
1847 };
1848 
1849 static const struct cqspi_driver_platdata k2g_qspi = {
1850 	.quirks = CQSPI_NEEDS_WR_DELAY,
1851 };
1852 
1853 static const struct cqspi_driver_platdata am654_ospi = {
1854 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1855 	.quirks = CQSPI_NEEDS_WR_DELAY,
1856 };
1857 
1858 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1859 	.quirks = CQSPI_DISABLE_DAC_MODE,
1860 };
1861 
1862 static const struct cqspi_driver_platdata versal_ospi = {
1863 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1864 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1865 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1866 	.get_dma_status = cqspi_get_versal_dma_status,
1867 };
1868 
1869 static const struct of_device_id cqspi_dt_ids[] = {
1870 	{
1871 		.compatible = "cdns,qspi-nor",
1872 		.data = &cdns_qspi,
1873 	},
1874 	{
1875 		.compatible = "ti,k2g-qspi",
1876 		.data = &k2g_qspi,
1877 	},
1878 	{
1879 		.compatible = "ti,am654-ospi",
1880 		.data = &am654_ospi,
1881 	},
1882 	{
1883 		.compatible = "intel,lgm-qspi",
1884 		.data = &intel_lgm_qspi,
1885 	},
1886 	{
1887 		.compatible = "xlnx,versal-ospi-1.0",
1888 		.data = (void *)&versal_ospi,
1889 	},
1890 	{ /* end of table */ }
1891 };
1892 
1893 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1894 
1895 static struct platform_driver cqspi_platform_driver = {
1896 	.probe = cqspi_probe,
1897 	.remove = cqspi_remove,
1898 	.driver = {
1899 		.name = CQSPI_NAME,
1900 		.pm = CQSPI_DEV_PM_OPS,
1901 		.of_match_table = cqspi_dt_ids,
1902 	},
1903 };
1904 
1905 module_platform_driver(cqspi_platform_driver);
1906 
1907 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1908 MODULE_LICENSE("GPL v2");
1909 MODULE_ALIAS("platform:" CQSPI_NAME);
1910 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1911 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1912 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1913 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1914 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1915