xref: /openbmc/linux/drivers/spi/spi-butterfly.c (revision 791d3ef2e11100449837dc0b6fe884e60ca3a484)
1 /*
2  * parport-to-butterfly adapter
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/delay.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/parport.h>
22 
23 #include <linux/sched.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 #include <linux/spi/flash.h>
27 
28 #include <linux/mtd/partitions.h>
29 
30 /*
31  * This uses SPI to talk with an "AVR Butterfly", which is a $US20 card
32  * with a battery powered AVR microcontroller and lots of goodies.  You
33  * can use GCC to develop firmware for this.
34  *
35  * See Documentation/spi/butterfly for information about how to build
36  * and use this custom parallel port cable.
37  */
38 
39 /* DATA output bits (pins 2..9 == D0..D7) */
40 #define	butterfly_nreset (1 << 1)		/* pin 3 */
41 
42 #define	spi_sck_bit	(1 << 0)		/* pin 2 */
43 #define	spi_mosi_bit	(1 << 7)		/* pin 9 */
44 
45 #define	vcc_bits	((1 << 6) | (1 << 5))	/* pins 7, 8 */
46 
47 /* STATUS input bits */
48 #define	spi_miso_bit	PARPORT_STATUS_BUSY	/* pin 11 */
49 
50 /* CONTROL output bits */
51 #define	spi_cs_bit	PARPORT_CONTROL_SELECT	/* pin 17 */
52 
53 static inline struct butterfly *spidev_to_pp(struct spi_device *spi)
54 {
55 	return spi->controller_data;
56 }
57 
58 struct butterfly {
59 	/* REVISIT ... for now, this must be first */
60 	struct spi_bitbang	bitbang;
61 
62 	struct parport		*port;
63 	struct pardevice	*pd;
64 
65 	u8			lastbyte;
66 
67 	struct spi_device	*dataflash;
68 	struct spi_device	*butterfly;
69 	struct spi_board_info	info[2];
70 
71 };
72 
73 /*----------------------------------------------------------------------*/
74 
75 static inline void
76 setsck(struct spi_device *spi, int is_on)
77 {
78 	struct butterfly	*pp = spidev_to_pp(spi);
79 	u8			bit, byte = pp->lastbyte;
80 
81 	bit = spi_sck_bit;
82 
83 	if (is_on)
84 		byte |= bit;
85 	else
86 		byte &= ~bit;
87 	parport_write_data(pp->port, byte);
88 	pp->lastbyte = byte;
89 }
90 
91 static inline void
92 setmosi(struct spi_device *spi, int is_on)
93 {
94 	struct butterfly	*pp = spidev_to_pp(spi);
95 	u8			bit, byte = pp->lastbyte;
96 
97 	bit = spi_mosi_bit;
98 
99 	if (is_on)
100 		byte |= bit;
101 	else
102 		byte &= ~bit;
103 	parport_write_data(pp->port, byte);
104 	pp->lastbyte = byte;
105 }
106 
107 static inline int getmiso(struct spi_device *spi)
108 {
109 	struct butterfly	*pp = spidev_to_pp(spi);
110 	int			value;
111 	u8			bit;
112 
113 	bit = spi_miso_bit;
114 
115 	/* only STATUS_BUSY is NOT negated */
116 	value = !(parport_read_status(pp->port) & bit);
117 	return (bit == PARPORT_STATUS_BUSY) ? value : !value;
118 }
119 
120 static void butterfly_chipselect(struct spi_device *spi, int value)
121 {
122 	struct butterfly	*pp = spidev_to_pp(spi);
123 
124 	/* set default clock polarity */
125 	if (value != BITBANG_CS_INACTIVE)
126 		setsck(spi, spi->mode & SPI_CPOL);
127 
128 	/* here, value == "activate or not";
129 	 * most PARPORT_CONTROL_* bits are negated, so we must
130 	 * morph it to value == "bit value to write in control register"
131 	 */
132 	if (spi_cs_bit == PARPORT_CONTROL_INIT)
133 		value = !value;
134 
135 	parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0);
136 }
137 
138 /* we only needed to implement one mode here, and choose SPI_MODE_0 */
139 
140 #define spidelay(X)	do { } while (0)
141 /* #define spidelay	ndelay */
142 
143 #include "spi-bitbang-txrx.h"
144 
145 static u32
146 butterfly_txrx_word_mode0(struct spi_device *spi, unsigned nsecs, u32 word,
147 			  u8 bits)
148 {
149 	return bitbang_txrx_be_cpha0(spi, nsecs, 0, 0, word, bits);
150 }
151 
152 /*----------------------------------------------------------------------*/
153 
154 /* override default partitioning with cmdlinepart */
155 static struct mtd_partition partitions[] = { {
156 	/* JFFS2 wants partitions of 4*N blocks for this device,
157 	 * so sectors 0 and 1 can't be partitions by themselves.
158 	 */
159 
160 	/* sector 0 = 8 pages * 264 bytes/page (1 block)
161 	 * sector 1 = 248 pages * 264 bytes/page
162 	 */
163 	.name		= "bookkeeping",	/* 66 KB */
164 	.offset		= 0,
165 	.size		= (8 + 248) * 264,
166 	/* .mask_flags	= MTD_WRITEABLE, */
167 }, {
168 	/* sector 2 = 256 pages * 264 bytes/page
169 	 * sectors 3-5 = 512 pages * 264 bytes/page
170 	 */
171 	.name		= "filesystem",		/* 462 KB */
172 	.offset		= MTDPART_OFS_APPEND,
173 	.size		= MTDPART_SIZ_FULL,
174 } };
175 
176 static struct flash_platform_data flash = {
177 	.name		= "butterflash",
178 	.parts		= partitions,
179 	.nr_parts	= ARRAY_SIZE(partitions),
180 };
181 
182 /* REVISIT remove this ugly global and its "only one" limitation */
183 static struct butterfly *butterfly;
184 
185 static void butterfly_attach(struct parport *p)
186 {
187 	struct pardevice	*pd;
188 	int			status;
189 	struct butterfly	*pp;
190 	struct spi_master	*master;
191 	struct device		*dev = p->physport->dev;
192 	struct pardev_cb	butterfly_cb;
193 
194 	if (butterfly || !dev)
195 		return;
196 
197 	/* REVISIT:  this just _assumes_ a butterfly is there ... no probe,
198 	 * and no way to be selective about what it binds to.
199 	 */
200 
201 	master = spi_alloc_master(dev, sizeof(*pp));
202 	if (!master) {
203 		status = -ENOMEM;
204 		goto done;
205 	}
206 	pp = spi_master_get_devdata(master);
207 
208 	/*
209 	 * SPI and bitbang hookup
210 	 *
211 	 * use default setup(), cleanup(), and transfer() methods; and
212 	 * only bother implementing mode 0.  Start it later.
213 	 */
214 	master->bus_num = 42;
215 	master->num_chipselect = 2;
216 
217 	pp->bitbang.master = master;
218 	pp->bitbang.chipselect = butterfly_chipselect;
219 	pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0;
220 
221 	/*
222 	 * parport hookup
223 	 */
224 	pp->port = p;
225 	memset(&butterfly_cb, 0, sizeof(butterfly_cb));
226 	butterfly_cb.private = pp;
227 	pd = parport_register_dev_model(p, "spi_butterfly", &butterfly_cb, 0);
228 	if (!pd) {
229 		status = -ENOMEM;
230 		goto clean0;
231 	}
232 	pp->pd = pd;
233 
234 	status = parport_claim(pd);
235 	if (status < 0)
236 		goto clean1;
237 
238 	/*
239 	 * Butterfly reset, powerup, run firmware
240 	 */
241 	pr_debug("%s: powerup/reset Butterfly\n", p->name);
242 
243 	/* nCS for dataflash (this bit is inverted on output) */
244 	parport_frob_control(pp->port, spi_cs_bit, 0);
245 
246 	/* stabilize power with chip in reset (nRESET), and
247 	 * spi_sck_bit clear (CPOL=0)
248 	 */
249 	pp->lastbyte |= vcc_bits;
250 	parport_write_data(pp->port, pp->lastbyte);
251 	msleep(5);
252 
253 	/* take it out of reset; assume long reset delay */
254 	pp->lastbyte |= butterfly_nreset;
255 	parport_write_data(pp->port, pp->lastbyte);
256 	msleep(100);
257 
258 	/*
259 	 * Start SPI ... for now, hide that we're two physical busses.
260 	 */
261 	status = spi_bitbang_start(&pp->bitbang);
262 	if (status < 0)
263 		goto clean2;
264 
265 	/* Bus 1 lets us talk to at45db041b (firmware disables AVR SPI), AVR
266 	 * (firmware resets at45, acts as spi slave) or neither (we ignore
267 	 * both, AVR uses AT45).  Here we expect firmware for the first option.
268 	 */
269 
270 	pp->info[0].max_speed_hz = 15 * 1000 * 1000;
271 	strcpy(pp->info[0].modalias, "mtd_dataflash");
272 	pp->info[0].platform_data = &flash;
273 	pp->info[0].chip_select = 1;
274 	pp->info[0].controller_data = pp;
275 	pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]);
276 	if (pp->dataflash)
277 		pr_debug("%s: dataflash at %s\n", p->name,
278 			 dev_name(&pp->dataflash->dev));
279 
280 	pr_info("%s: AVR Butterfly\n", p->name);
281 	butterfly = pp;
282 	return;
283 
284 clean2:
285 	/* turn off VCC */
286 	parport_write_data(pp->port, 0);
287 
288 	parport_release(pp->pd);
289 clean1:
290 	parport_unregister_device(pd);
291 clean0:
292 	spi_master_put(pp->bitbang.master);
293 done:
294 	pr_debug("%s: butterfly probe, fail %d\n", p->name, status);
295 }
296 
297 static void butterfly_detach(struct parport *p)
298 {
299 	struct butterfly	*pp;
300 
301 	/* FIXME this global is ugly ... but, how to quickly get from
302 	 * the parport to the "struct butterfly" associated with it?
303 	 * "old school" driver-internal device lists?
304 	 */
305 	if (!butterfly || butterfly->port != p)
306 		return;
307 	pp = butterfly;
308 	butterfly = NULL;
309 
310 	/* stop() unregisters child devices too */
311 	spi_bitbang_stop(&pp->bitbang);
312 
313 	/* turn off VCC */
314 	parport_write_data(pp->port, 0);
315 	msleep(10);
316 
317 	parport_release(pp->pd);
318 	parport_unregister_device(pp->pd);
319 
320 	spi_master_put(pp->bitbang.master);
321 }
322 
323 static struct parport_driver butterfly_driver = {
324 	.name =		"spi_butterfly",
325 	.match_port =	butterfly_attach,
326 	.detach =	butterfly_detach,
327 	.devmodel = true,
328 };
329 
330 static int __init butterfly_init(void)
331 {
332 	return parport_register_driver(&butterfly_driver);
333 }
334 device_initcall(butterfly_init);
335 
336 static void __exit butterfly_exit(void)
337 {
338 	parport_unregister_driver(&butterfly_driver);
339 }
340 module_exit(butterfly_exit);
341 
342 MODULE_DESCRIPTION("Parport Adapter driver for AVR Butterfly");
343 MODULE_LICENSE("GPL");
344