xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision ccd978b708b03b18196205b3baee83b5047ee453)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 struct bcm2835aux_spi {
96 	void __iomem *regs;
97 	struct clk *clk;
98 	int irq;
99 	u32 cntl[2];
100 	const u8 *tx_buf;
101 	u8 *rx_buf;
102 	int tx_len;
103 	int rx_len;
104 	int pending;
105 };
106 
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 				 u32 val)
114 {
115 	writel(val, bs->regs + reg);
116 }
117 
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119 {
120 	u32 data;
121 	int count = min(bs->rx_len, 3);
122 
123 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 	if (bs->rx_buf) {
125 		switch (count) {
126 		case 3:
127 			*bs->rx_buf++ = (data >> 16) & 0xff;
128 			/* fallthrough */
129 		case 2:
130 			*bs->rx_buf++ = (data >> 8) & 0xff;
131 			/* fallthrough */
132 		case 1:
133 			*bs->rx_buf++ = (data >> 0) & 0xff;
134 			/* fallthrough - no default */
135 		}
136 	}
137 	bs->rx_len -= count;
138 	bs->pending -= count;
139 }
140 
141 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
142 {
143 	u32 data;
144 	u8 byte;
145 	int count;
146 	int i;
147 
148 	/* gather up to 3 bytes to write to the FIFO */
149 	count = min(bs->tx_len, 3);
150 	data = 0;
151 	for (i = 0; i < count; i++) {
152 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
153 		data |= byte << (8 * (2 - i));
154 	}
155 
156 	/* and set the variable bit-length */
157 	data |= (count * 8) << 24;
158 
159 	/* and decrement length */
160 	bs->tx_len -= count;
161 	bs->pending += count;
162 
163 	/* write to the correct TX-register */
164 	if (bs->tx_len)
165 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
166 	else
167 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
168 }
169 
170 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
171 {
172 	/* disable spi clearing fifo and interrupts */
173 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
174 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
175 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
176 }
177 
178 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
179 {
180 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
181 
182 	/* check if we have data to read */
183 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
184 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
185 		bcm2835aux_rd_fifo(bs);
186 
187 	/* check if we have data to write */
188 	while (bs->tx_len &&
189 	       (bs->pending < 12) &&
190 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
191 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
192 		bcm2835aux_wr_fifo(bs);
193 	}
194 }
195 
196 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
197 {
198 	struct spi_master *master = dev_id;
199 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
200 
201 	/* IRQ may be shared, so return if our interrupts are disabled */
202 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
203 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
204 		return IRQ_NONE;
205 
206 	/* do common fifo handling */
207 	bcm2835aux_spi_transfer_helper(bs);
208 
209 	if (!bs->tx_len) {
210 		/* disable tx fifo empty interrupt */
211 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
212 			BCM2835_AUX_SPI_CNTL1_IDLE);
213 	}
214 
215 	/* and if rx_len is 0 then disable interrupts and wake up completion */
216 	if (!bs->rx_len) {
217 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
218 		complete(&master->xfer_completion);
219 	}
220 
221 	return IRQ_HANDLED;
222 }
223 
224 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
225 					     struct spi_device *spi,
226 					     struct spi_transfer *tfr)
227 {
228 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
229 
230 	/* enable interrupts */
231 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
232 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
233 		BCM2835_AUX_SPI_CNTL1_IDLE);
234 
235 	/* and wait for finish... */
236 	return 1;
237 }
238 
239 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
240 					   struct spi_device *spi,
241 					   struct spi_transfer *tfr)
242 {
243 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
244 
245 	/* fill in registers and fifos before enabling interrupts */
246 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
247 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
248 
249 	/* fill in tx fifo with data before enabling interrupts */
250 	while ((bs->tx_len) &&
251 	       (bs->pending < 12) &&
252 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
253 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
254 		bcm2835aux_wr_fifo(bs);
255 	}
256 
257 	/* now run the interrupt mode */
258 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
259 }
260 
261 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
262 					    struct spi_device *spi,
263 					struct spi_transfer *tfr)
264 {
265 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
266 	unsigned long timeout;
267 
268 	/* configure spi */
269 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
270 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
271 
272 	/* set the timeout */
273 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
274 
275 	/* loop until finished the transfer */
276 	while (bs->rx_len) {
277 
278 		/* do common fifo handling */
279 		bcm2835aux_spi_transfer_helper(bs);
280 
281 		/* there is still data pending to read check the timeout */
282 		if (bs->rx_len && time_after(jiffies, timeout)) {
283 			dev_dbg_ratelimited(&spi->dev,
284 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
285 					    jiffies - timeout,
286 					    bs->tx_len, bs->rx_len);
287 			/* forward to interrupt handler */
288 			return __bcm2835aux_spi_transfer_one_irq(master,
289 							       spi, tfr);
290 		}
291 	}
292 
293 	/* and return without waiting for completion */
294 	return 0;
295 }
296 
297 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
298 				       struct spi_device *spi,
299 				       struct spi_transfer *tfr)
300 {
301 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
302 	unsigned long spi_hz, clk_hz, speed;
303 	unsigned long spi_used_hz;
304 
305 	/* calculate the registers to handle
306 	 *
307 	 * note that we use the variable data mode, which
308 	 * is not optimal for longer transfers as we waste registers
309 	 * resulting (potentially) in more interrupts when transferring
310 	 * more than 12 bytes
311 	 */
312 
313 	/* set clock */
314 	spi_hz = tfr->speed_hz;
315 	clk_hz = clk_get_rate(bs->clk);
316 
317 	if (spi_hz >= clk_hz / 2) {
318 		speed = 0;
319 	} else if (spi_hz) {
320 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
321 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
322 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
323 	} else { /* the slowest we can go */
324 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
325 	}
326 	/* mask out old speed from previous spi_transfer */
327 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
328 	/* set the new speed */
329 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
330 
331 	spi_used_hz = clk_hz / (2 * (speed + 1));
332 
333 	/* set transmit buffers and length */
334 	bs->tx_buf = tfr->tx_buf;
335 	bs->rx_buf = tfr->rx_buf;
336 	bs->tx_len = tfr->len;
337 	bs->rx_len = tfr->len;
338 	bs->pending = 0;
339 
340 	/* Calculate the estimated time in us the transfer runs.  Note that
341 	 * there are are 2 idle clocks cycles after each chunk getting
342 	 * transferred - in our case the chunk size is 3 bytes, so we
343 	 * approximate this by 9 cycles/byte.  This is used to find the number
344 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
345 	 * 30 µs per 300,000 Hz of bus clock.
346 	 */
347 #define HZ_PER_BYTE ((9 * 1000000) / BCM2835_AUX_SPI_POLLING_LIMIT_US)
348 	/* run in polling mode for short transfers */
349 	if (tfr->len < spi_used_hz / HZ_PER_BYTE)
350 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
351 
352 	/* run in interrupt mode for all others */
353 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
354 #undef HZ_PER_BYTE
355 }
356 
357 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
358 					  struct spi_message *msg)
359 {
360 	struct spi_device *spi = msg->spi;
361 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
362 
363 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
364 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
365 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
366 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
367 
368 	/* handle all the modes */
369 	if (spi->mode & SPI_CPOL) {
370 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
371 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
372 	} else {
373 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
374 	}
375 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
376 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
377 
378 	return 0;
379 }
380 
381 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
382 					    struct spi_message *msg)
383 {
384 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
385 
386 	bcm2835aux_spi_reset_hw(bs);
387 
388 	return 0;
389 }
390 
391 static void bcm2835aux_spi_handle_err(struct spi_master *master,
392 				      struct spi_message *msg)
393 {
394 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
395 
396 	bcm2835aux_spi_reset_hw(bs);
397 }
398 
399 static int bcm2835aux_spi_setup(struct spi_device *spi)
400 {
401 	int ret;
402 
403 	/* sanity check for native cs */
404 	if (spi->mode & SPI_NO_CS)
405 		return 0;
406 	if (gpio_is_valid(spi->cs_gpio)) {
407 		/* with gpio-cs set the GPIO to the correct level
408 		 * and as output (in case the dt has the gpio not configured
409 		 * as output but native cs)
410 		 */
411 		ret = gpio_direction_output(spi->cs_gpio,
412 					    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
413 		if (ret)
414 			dev_err(&spi->dev,
415 				"could not set gpio %i as output: %i\n",
416 				spi->cs_gpio, ret);
417 
418 		return ret;
419 	}
420 
421 	/* for dt-backwards compatibility: only support native on CS0
422 	 * known things not supported with broken native CS:
423 	 * * multiple chip-selects: cs0-cs2 are all
424 	 *     simultaniously asserted whenever there is a transfer
425 	 *     this even includes SPI_NO_CS
426 	 * * SPI_CS_HIGH: cs are always asserted low
427 	 * * cs_change: cs is deasserted after each spi_transfer
428 	 * * cs_delay_usec: cs is always deasserted one SCK cycle
429 	 *     after the last transfer
430 	 * probably more...
431 	 */
432 	dev_warn(&spi->dev,
433 		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
434 
435 	if (spi->chip_select == 0)
436 		return 0;
437 
438 	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
439 
440 	return -EINVAL;
441 }
442 
443 static int bcm2835aux_spi_probe(struct platform_device *pdev)
444 {
445 	struct spi_master *master;
446 	struct bcm2835aux_spi *bs;
447 	struct resource *res;
448 	unsigned long clk_hz;
449 	int err;
450 
451 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
452 	if (!master) {
453 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
454 		return -ENOMEM;
455 	}
456 
457 	platform_set_drvdata(pdev, master);
458 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
459 	master->bits_per_word_mask = SPI_BPW_MASK(8);
460 	/* even though the driver never officially supported native CS
461 	 * allow a single native CS for legacy DT support purposes when
462 	 * no cs-gpio is configured.
463 	 * Known limitations for native cs are:
464 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
465 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
466 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
467 	 * * cs_change: cs is deasserted after each spi_transfer
468 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
469 	 *     a spi_transfer
470 	 */
471 	master->num_chipselect = 1;
472 	master->setup = bcm2835aux_spi_setup;
473 	master->transfer_one = bcm2835aux_spi_transfer_one;
474 	master->handle_err = bcm2835aux_spi_handle_err;
475 	master->prepare_message = bcm2835aux_spi_prepare_message;
476 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
477 	master->dev.of_node = pdev->dev.of_node;
478 
479 	bs = spi_master_get_devdata(master);
480 
481 	/* the main area */
482 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
483 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
484 	if (IS_ERR(bs->regs)) {
485 		err = PTR_ERR(bs->regs);
486 		goto out_master_put;
487 	}
488 
489 	bs->clk = devm_clk_get(&pdev->dev, NULL);
490 	if (IS_ERR(bs->clk)) {
491 		err = PTR_ERR(bs->clk);
492 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
493 		goto out_master_put;
494 	}
495 
496 	bs->irq = platform_get_irq(pdev, 0);
497 	if (bs->irq <= 0) {
498 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
499 		err = bs->irq ? bs->irq : -ENODEV;
500 		goto out_master_put;
501 	}
502 
503 	/* this also enables the HW block */
504 	err = clk_prepare_enable(bs->clk);
505 	if (err) {
506 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
507 		goto out_master_put;
508 	}
509 
510 	/* just checking if the clock returns a sane value */
511 	clk_hz = clk_get_rate(bs->clk);
512 	if (!clk_hz) {
513 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
514 		err = -ENODEV;
515 		goto out_clk_disable;
516 	}
517 
518 	/* reset SPI-HW block */
519 	bcm2835aux_spi_reset_hw(bs);
520 
521 	err = devm_request_irq(&pdev->dev, bs->irq,
522 			       bcm2835aux_spi_interrupt,
523 			       IRQF_SHARED,
524 			       dev_name(&pdev->dev), master);
525 	if (err) {
526 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
527 		goto out_clk_disable;
528 	}
529 
530 	err = devm_spi_register_master(&pdev->dev, master);
531 	if (err) {
532 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
533 		goto out_clk_disable;
534 	}
535 
536 	return 0;
537 
538 out_clk_disable:
539 	clk_disable_unprepare(bs->clk);
540 out_master_put:
541 	spi_master_put(master);
542 	return err;
543 }
544 
545 static int bcm2835aux_spi_remove(struct platform_device *pdev)
546 {
547 	struct spi_master *master = platform_get_drvdata(pdev);
548 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
549 
550 	bcm2835aux_spi_reset_hw(bs);
551 
552 	/* disable the HW block by releasing the clock */
553 	clk_disable_unprepare(bs->clk);
554 
555 	return 0;
556 }
557 
558 static const struct of_device_id bcm2835aux_spi_match[] = {
559 	{ .compatible = "brcm,bcm2835-aux-spi", },
560 	{}
561 };
562 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
563 
564 static struct platform_driver bcm2835aux_spi_driver = {
565 	.driver		= {
566 		.name		= "spi-bcm2835aux",
567 		.of_match_table	= bcm2835aux_spi_match,
568 	},
569 	.probe		= bcm2835aux_spi_probe,
570 	.remove		= bcm2835aux_spi_remove,
571 };
572 module_platform_driver(bcm2835aux_spi_driver);
573 
574 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
575 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
576 MODULE_LICENSE("GPL");
577