xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 8048d151eb4d74d5c533dbe10a846ea0b7495c6b)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/debugfs.h>
25 #include <linux/delay.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_irq.h>
36 #include <linux/regmap.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spinlock.h>
39 
40 /* define polling limits */
41 unsigned int polling_limit_us = 30;
42 module_param(polling_limit_us, uint, 0664);
43 MODULE_PARM_DESC(polling_limit_us,
44 		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
45 
46 /*
47  * spi register defines
48  *
49  * note there is garbage in the "official" documentation,
50  * so some data is taken from the file:
51  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
52  * inside of:
53  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
54  */
55 
56 /* SPI register offsets */
57 #define BCM2835_AUX_SPI_CNTL0	0x00
58 #define BCM2835_AUX_SPI_CNTL1	0x04
59 #define BCM2835_AUX_SPI_STAT	0x08
60 #define BCM2835_AUX_SPI_PEEK	0x0C
61 #define BCM2835_AUX_SPI_IO	0x20
62 #define BCM2835_AUX_SPI_TXHOLD	0x30
63 
64 /* Bitfields in CNTL0 */
65 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
66 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
67 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
68 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
69 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
70 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
71 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
72 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
73 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
74 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
75 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
76 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
77 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
78 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
79 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
80 
81 /* Bitfields in CNTL1 */
82 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
83 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
84 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
85 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
86 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
87 
88 /* Bitfields in STAT */
89 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
90 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
91 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
92 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
93 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
94 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
95 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
96 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
97 
98 struct bcm2835aux_spi {
99 	void __iomem *regs;
100 	struct clk *clk;
101 	int irq;
102 	u32 cntl[2];
103 	const u8 *tx_buf;
104 	u8 *rx_buf;
105 	int tx_len;
106 	int rx_len;
107 	int pending;
108 
109 	u64 count_transfer_polling;
110 	u64 count_transfer_irq;
111 	u64 count_transfer_irq_after_poll;
112 
113 	struct dentry *debugfs_dir;
114 };
115 
116 #if defined(CONFIG_DEBUG_FS)
117 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
118 				      const char *dname)
119 {
120 	char name[64];
121 	struct dentry *dir;
122 
123 	/* get full name */
124 	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
125 
126 	/* the base directory */
127 	dir = debugfs_create_dir(name, NULL);
128 	bs->debugfs_dir = dir;
129 
130 	/* the counters */
131 	debugfs_create_u64("count_transfer_polling", 0444, dir,
132 			   &bs->count_transfer_polling);
133 	debugfs_create_u64("count_transfer_irq", 0444, dir,
134 			   &bs->count_transfer_irq);
135 	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
136 			   &bs->count_transfer_irq_after_poll);
137 }
138 
139 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
140 {
141 	debugfs_remove_recursive(bs->debugfs_dir);
142 	bs->debugfs_dir = NULL;
143 }
144 #else
145 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs)
146 {
147 }
148 
149 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
150 {
151 }
152 #endif /* CONFIG_DEBUG_FS */
153 
154 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
155 {
156 	return readl(bs->regs + reg);
157 }
158 
159 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
160 				 u32 val)
161 {
162 	writel(val, bs->regs + reg);
163 }
164 
165 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
166 {
167 	u32 data;
168 	int count = min(bs->rx_len, 3);
169 
170 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
171 	if (bs->rx_buf) {
172 		switch (count) {
173 		case 3:
174 			*bs->rx_buf++ = (data >> 16) & 0xff;
175 			/* fallthrough */
176 		case 2:
177 			*bs->rx_buf++ = (data >> 8) & 0xff;
178 			/* fallthrough */
179 		case 1:
180 			*bs->rx_buf++ = (data >> 0) & 0xff;
181 			/* fallthrough - no default */
182 		}
183 	}
184 	bs->rx_len -= count;
185 	bs->pending -= count;
186 }
187 
188 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
189 {
190 	u32 data;
191 	u8 byte;
192 	int count;
193 	int i;
194 
195 	/* gather up to 3 bytes to write to the FIFO */
196 	count = min(bs->tx_len, 3);
197 	data = 0;
198 	for (i = 0; i < count; i++) {
199 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
200 		data |= byte << (8 * (2 - i));
201 	}
202 
203 	/* and set the variable bit-length */
204 	data |= (count * 8) << 24;
205 
206 	/* and decrement length */
207 	bs->tx_len -= count;
208 	bs->pending += count;
209 
210 	/* write to the correct TX-register */
211 	if (bs->tx_len)
212 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
213 	else
214 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
215 }
216 
217 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
218 {
219 	/* disable spi clearing fifo and interrupts */
220 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
221 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
222 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
223 }
224 
225 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
226 {
227 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
228 
229 	/* check if we have data to read */
230 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
231 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
232 		bcm2835aux_rd_fifo(bs);
233 
234 	/* check if we have data to write */
235 	while (bs->tx_len &&
236 	       (bs->pending < 12) &&
237 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
238 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
239 		bcm2835aux_wr_fifo(bs);
240 	}
241 }
242 
243 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
244 {
245 	struct spi_master *master = dev_id;
246 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
247 
248 	/* IRQ may be shared, so return if our interrupts are disabled */
249 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
250 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
251 		return IRQ_NONE;
252 
253 	/* do common fifo handling */
254 	bcm2835aux_spi_transfer_helper(bs);
255 
256 	if (!bs->tx_len) {
257 		/* disable tx fifo empty interrupt */
258 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
259 			BCM2835_AUX_SPI_CNTL1_IDLE);
260 	}
261 
262 	/* and if rx_len is 0 then disable interrupts and wake up completion */
263 	if (!bs->rx_len) {
264 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
265 		complete(&master->xfer_completion);
266 	}
267 
268 	return IRQ_HANDLED;
269 }
270 
271 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
272 					     struct spi_device *spi,
273 					     struct spi_transfer *tfr)
274 {
275 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
276 
277 	/* enable interrupts */
278 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
279 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
280 		BCM2835_AUX_SPI_CNTL1_IDLE);
281 
282 	/* and wait for finish... */
283 	return 1;
284 }
285 
286 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
287 					   struct spi_device *spi,
288 					   struct spi_transfer *tfr)
289 {
290 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
291 
292 	/* update statistics */
293 	bs->count_transfer_irq++;
294 
295 	/* fill in registers and fifos before enabling interrupts */
296 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
297 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
298 
299 	/* fill in tx fifo with data before enabling interrupts */
300 	while ((bs->tx_len) &&
301 	       (bs->pending < 12) &&
302 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
303 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
304 		bcm2835aux_wr_fifo(bs);
305 	}
306 
307 	/* now run the interrupt mode */
308 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
309 }
310 
311 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
312 					    struct spi_device *spi,
313 					struct spi_transfer *tfr)
314 {
315 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
316 	unsigned long timeout;
317 
318 	/* update statistics */
319 	bs->count_transfer_polling++;
320 
321 	/* configure spi */
322 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
323 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
324 
325 	/* set the timeout to at least 2 jiffies */
326 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
327 
328 	/* loop until finished the transfer */
329 	while (bs->rx_len) {
330 
331 		/* do common fifo handling */
332 		bcm2835aux_spi_transfer_helper(bs);
333 
334 		/* there is still data pending to read check the timeout */
335 		if (bs->rx_len && time_after(jiffies, timeout)) {
336 			dev_dbg_ratelimited(&spi->dev,
337 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
338 					    jiffies - timeout,
339 					    bs->tx_len, bs->rx_len);
340 			/* forward to interrupt handler */
341 			bs->count_transfer_irq_after_poll++;
342 			return __bcm2835aux_spi_transfer_one_irq(master,
343 							       spi, tfr);
344 		}
345 	}
346 
347 	/* and return without waiting for completion */
348 	return 0;
349 }
350 
351 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
352 				       struct spi_device *spi,
353 				       struct spi_transfer *tfr)
354 {
355 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
356 	unsigned long spi_hz, clk_hz, speed, spi_used_hz;
357 	unsigned long hz_per_byte, byte_limit;
358 
359 	/* calculate the registers to handle
360 	 *
361 	 * note that we use the variable data mode, which
362 	 * is not optimal for longer transfers as we waste registers
363 	 * resulting (potentially) in more interrupts when transferring
364 	 * more than 12 bytes
365 	 */
366 
367 	/* set clock */
368 	spi_hz = tfr->speed_hz;
369 	clk_hz = clk_get_rate(bs->clk);
370 
371 	if (spi_hz >= clk_hz / 2) {
372 		speed = 0;
373 	} else if (spi_hz) {
374 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
375 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
376 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
377 	} else { /* the slowest we can go */
378 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
379 	}
380 	/* mask out old speed from previous spi_transfer */
381 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
382 	/* set the new speed */
383 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
384 
385 	spi_used_hz = clk_hz / (2 * (speed + 1));
386 
387 	/* set transmit buffers and length */
388 	bs->tx_buf = tfr->tx_buf;
389 	bs->rx_buf = tfr->rx_buf;
390 	bs->tx_len = tfr->len;
391 	bs->rx_len = tfr->len;
392 	bs->pending = 0;
393 
394 	/* Calculate the estimated time in us the transfer runs.  Note that
395 	 * there are are 2 idle clocks cycles after each chunk getting
396 	 * transferred - in our case the chunk size is 3 bytes, so we
397 	 * approximate this by 9 cycles/byte.  This is used to find the number
398 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
399 	 * 30 µs per 300,000 Hz of bus clock.
400 	 */
401 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
402 	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
403 
404 	/* run in polling mode for short transfers */
405 	if (tfr->len < byte_limit)
406 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
407 
408 	/* run in interrupt mode for all others */
409 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
410 }
411 
412 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
413 					  struct spi_message *msg)
414 {
415 	struct spi_device *spi = msg->spi;
416 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
417 
418 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
419 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
420 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
421 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
422 
423 	/* handle all the modes */
424 	if (spi->mode & SPI_CPOL) {
425 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
426 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
427 	} else {
428 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
429 	}
430 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
431 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
432 
433 	return 0;
434 }
435 
436 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
437 					    struct spi_message *msg)
438 {
439 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
440 
441 	bcm2835aux_spi_reset_hw(bs);
442 
443 	return 0;
444 }
445 
446 static void bcm2835aux_spi_handle_err(struct spi_master *master,
447 				      struct spi_message *msg)
448 {
449 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
450 
451 	bcm2835aux_spi_reset_hw(bs);
452 }
453 
454 static int bcm2835aux_spi_setup(struct spi_device *spi)
455 {
456 	int ret;
457 
458 	/* sanity check for native cs */
459 	if (spi->mode & SPI_NO_CS)
460 		return 0;
461 	if (gpio_is_valid(spi->cs_gpio)) {
462 		/* with gpio-cs set the GPIO to the correct level
463 		 * and as output (in case the dt has the gpio not configured
464 		 * as output but native cs)
465 		 */
466 		ret = gpio_direction_output(spi->cs_gpio,
467 					    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
468 		if (ret)
469 			dev_err(&spi->dev,
470 				"could not set gpio %i as output: %i\n",
471 				spi->cs_gpio, ret);
472 
473 		return ret;
474 	}
475 
476 	/* for dt-backwards compatibility: only support native on CS0
477 	 * known things not supported with broken native CS:
478 	 * * multiple chip-selects: cs0-cs2 are all
479 	 *     simultaniously asserted whenever there is a transfer
480 	 *     this even includes SPI_NO_CS
481 	 * * SPI_CS_HIGH: cs are always asserted low
482 	 * * cs_change: cs is deasserted after each spi_transfer
483 	 * * cs_delay_usec: cs is always deasserted one SCK cycle
484 	 *     after the last transfer
485 	 * probably more...
486 	 */
487 	dev_warn(&spi->dev,
488 		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
489 
490 	if (spi->chip_select == 0)
491 		return 0;
492 
493 	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
494 
495 	return -EINVAL;
496 }
497 
498 static int bcm2835aux_spi_probe(struct platform_device *pdev)
499 {
500 	struct spi_master *master;
501 	struct bcm2835aux_spi *bs;
502 	struct resource *res;
503 	unsigned long clk_hz;
504 	int err;
505 
506 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
507 	if (!master) {
508 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
509 		return -ENOMEM;
510 	}
511 
512 	platform_set_drvdata(pdev, master);
513 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
514 	master->bits_per_word_mask = SPI_BPW_MASK(8);
515 	/* even though the driver never officially supported native CS
516 	 * allow a single native CS for legacy DT support purposes when
517 	 * no cs-gpio is configured.
518 	 * Known limitations for native cs are:
519 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
520 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
521 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
522 	 * * cs_change: cs is deasserted after each spi_transfer
523 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
524 	 *     a spi_transfer
525 	 */
526 	master->num_chipselect = 1;
527 	master->setup = bcm2835aux_spi_setup;
528 	master->transfer_one = bcm2835aux_spi_transfer_one;
529 	master->handle_err = bcm2835aux_spi_handle_err;
530 	master->prepare_message = bcm2835aux_spi_prepare_message;
531 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
532 	master->dev.of_node = pdev->dev.of_node;
533 
534 	bs = spi_master_get_devdata(master);
535 
536 	/* the main area */
537 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
538 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
539 	if (IS_ERR(bs->regs)) {
540 		err = PTR_ERR(bs->regs);
541 		goto out_master_put;
542 	}
543 
544 	bs->clk = devm_clk_get(&pdev->dev, NULL);
545 	if (IS_ERR(bs->clk)) {
546 		err = PTR_ERR(bs->clk);
547 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
548 		goto out_master_put;
549 	}
550 
551 	bs->irq = platform_get_irq(pdev, 0);
552 	if (bs->irq <= 0) {
553 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
554 		err = bs->irq ? bs->irq : -ENODEV;
555 		goto out_master_put;
556 	}
557 
558 	/* this also enables the HW block */
559 	err = clk_prepare_enable(bs->clk);
560 	if (err) {
561 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
562 		goto out_master_put;
563 	}
564 
565 	/* just checking if the clock returns a sane value */
566 	clk_hz = clk_get_rate(bs->clk);
567 	if (!clk_hz) {
568 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
569 		err = -ENODEV;
570 		goto out_clk_disable;
571 	}
572 
573 	/* reset SPI-HW block */
574 	bcm2835aux_spi_reset_hw(bs);
575 
576 	err = devm_request_irq(&pdev->dev, bs->irq,
577 			       bcm2835aux_spi_interrupt,
578 			       IRQF_SHARED,
579 			       dev_name(&pdev->dev), master);
580 	if (err) {
581 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
582 		goto out_clk_disable;
583 	}
584 
585 	err = devm_spi_register_master(&pdev->dev, master);
586 	if (err) {
587 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
588 		goto out_clk_disable;
589 	}
590 
591 	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
592 
593 	return 0;
594 
595 out_clk_disable:
596 	clk_disable_unprepare(bs->clk);
597 out_master_put:
598 	spi_master_put(master);
599 	return err;
600 }
601 
602 static int bcm2835aux_spi_remove(struct platform_device *pdev)
603 {
604 	struct spi_master *master = platform_get_drvdata(pdev);
605 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
606 
607 	bcm2835aux_debugfs_remove(bs);
608 
609 	bcm2835aux_spi_reset_hw(bs);
610 
611 	/* disable the HW block by releasing the clock */
612 	clk_disable_unprepare(bs->clk);
613 
614 	return 0;
615 }
616 
617 static const struct of_device_id bcm2835aux_spi_match[] = {
618 	{ .compatible = "brcm,bcm2835-aux-spi", },
619 	{}
620 };
621 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
622 
623 static struct platform_driver bcm2835aux_spi_driver = {
624 	.driver		= {
625 		.name		= "spi-bcm2835aux",
626 		.of_match_table	= bcm2835aux_spi_match,
627 	},
628 	.probe		= bcm2835aux_spi_probe,
629 	.remove		= bcm2835aux_spi_remove,
630 };
631 module_platform_driver(bcm2835aux_spi_driver);
632 
633 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
634 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
635 MODULE_LICENSE("GPL");
636