xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 73b114ee7db1750c0b535199fae383b109bd61d0)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 struct bcm2835aux_spi {
96 	void __iomem *regs;
97 	struct clk *clk;
98 	int irq;
99 	u32 cntl[2];
100 	const u8 *tx_buf;
101 	u8 *rx_buf;
102 	int tx_len;
103 	int rx_len;
104 	int pending;
105 };
106 
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 				 u32 val)
114 {
115 	writel(val, bs->regs + reg);
116 }
117 
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119 {
120 	u32 data;
121 	int count = min(bs->rx_len, 3);
122 
123 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 	if (bs->rx_buf) {
125 		switch (count) {
126 		case 4:
127 			*bs->rx_buf++ = (data >> 24) & 0xff;
128 			/* fallthrough */
129 		case 3:
130 			*bs->rx_buf++ = (data >> 16) & 0xff;
131 			/* fallthrough */
132 		case 2:
133 			*bs->rx_buf++ = (data >> 8) & 0xff;
134 			/* fallthrough */
135 		case 1:
136 			*bs->rx_buf++ = (data >> 0) & 0xff;
137 			/* fallthrough - no default */
138 		}
139 	}
140 	bs->rx_len -= count;
141 	bs->pending -= count;
142 }
143 
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
145 {
146 	u32 data;
147 	u8 byte;
148 	int count;
149 	int i;
150 
151 	/* gather up to 3 bytes to write to the FIFO */
152 	count = min(bs->tx_len, 3);
153 	data = 0;
154 	for (i = 0; i < count; i++) {
155 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 		data |= byte << (8 * (2 - i));
157 	}
158 
159 	/* and set the variable bit-length */
160 	data |= (count * 8) << 24;
161 
162 	/* and decrement length */
163 	bs->tx_len -= count;
164 	bs->pending += count;
165 
166 	/* write to the correct TX-register */
167 	if (bs->tx_len)
168 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 	else
170 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
171 }
172 
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
174 {
175 	/* disable spi clearing fifo and interrupts */
176 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
179 }
180 
181 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
182 {
183 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
184 
185 	/* check if we have data to read */
186 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
187 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
188 		bcm2835aux_rd_fifo(bs);
189 
190 	/* check if we have data to write */
191 	while (bs->tx_len &&
192 	       (bs->pending < 12) &&
193 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
194 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
195 		bcm2835aux_wr_fifo(bs);
196 	}
197 }
198 
199 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
200 {
201 	struct spi_master *master = dev_id;
202 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
203 
204 	/* IRQ may be shared, so return if our interrupts are disabled */
205 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
206 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
207 		return IRQ_NONE;
208 
209 	/* do common fifo handling */
210 	bcm2835aux_spi_transfer_helper(bs);
211 
212 	if (!bs->tx_len) {
213 		/* disable tx fifo empty interrupt */
214 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
215 			BCM2835_AUX_SPI_CNTL1_IDLE);
216 	}
217 
218 	/* and if rx_len is 0 then disable interrupts and wake up completion */
219 	if (!bs->rx_len) {
220 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
221 		complete(&master->xfer_completion);
222 	}
223 
224 	return IRQ_HANDLED;
225 }
226 
227 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
228 					     struct spi_device *spi,
229 					     struct spi_transfer *tfr)
230 {
231 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
232 
233 	/* enable interrupts */
234 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
235 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
236 		BCM2835_AUX_SPI_CNTL1_IDLE);
237 
238 	/* and wait for finish... */
239 	return 1;
240 }
241 
242 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
243 					   struct spi_device *spi,
244 					   struct spi_transfer *tfr)
245 {
246 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
247 
248 	/* fill in registers and fifos before enabling interrupts */
249 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
250 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
251 
252 	/* fill in tx fifo with data before enabling interrupts */
253 	while ((bs->tx_len) &&
254 	       (bs->pending < 12) &&
255 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
256 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
257 		bcm2835aux_wr_fifo(bs);
258 	}
259 
260 	/* now run the interrupt mode */
261 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
262 }
263 
264 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
265 					    struct spi_device *spi,
266 					struct spi_transfer *tfr)
267 {
268 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
269 	unsigned long timeout;
270 
271 	/* configure spi */
272 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
273 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
274 
275 	/* set the timeout */
276 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
277 
278 	/* loop until finished the transfer */
279 	while (bs->rx_len) {
280 
281 		/* do common fifo handling */
282 		bcm2835aux_spi_transfer_helper(bs);
283 
284 		/* there is still data pending to read check the timeout */
285 		if (bs->rx_len && time_after(jiffies, timeout)) {
286 			dev_dbg_ratelimited(&spi->dev,
287 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
288 					    jiffies - timeout,
289 					    bs->tx_len, bs->rx_len);
290 			/* forward to interrupt handler */
291 			return __bcm2835aux_spi_transfer_one_irq(master,
292 							       spi, tfr);
293 		}
294 	}
295 
296 	/* and return without waiting for completion */
297 	return 0;
298 }
299 
300 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
301 				       struct spi_device *spi,
302 				       struct spi_transfer *tfr)
303 {
304 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
305 	unsigned long spi_hz, clk_hz, speed;
306 	unsigned long spi_used_hz;
307 
308 	/* calculate the registers to handle
309 	 *
310 	 * note that we use the variable data mode, which
311 	 * is not optimal for longer transfers as we waste registers
312 	 * resulting (potentially) in more interrupts when transferring
313 	 * more than 12 bytes
314 	 */
315 
316 	/* set clock */
317 	spi_hz = tfr->speed_hz;
318 	clk_hz = clk_get_rate(bs->clk);
319 
320 	if (spi_hz >= clk_hz / 2) {
321 		speed = 0;
322 	} else if (spi_hz) {
323 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
324 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
325 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
326 	} else { /* the slowest we can go */
327 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
328 	}
329 	/* mask out old speed from previous spi_transfer */
330 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
331 	/* set the new speed */
332 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
333 
334 	spi_used_hz = clk_hz / (2 * (speed + 1));
335 
336 	/* set transmit buffers and length */
337 	bs->tx_buf = tfr->tx_buf;
338 	bs->rx_buf = tfr->rx_buf;
339 	bs->tx_len = tfr->len;
340 	bs->rx_len = tfr->len;
341 	bs->pending = 0;
342 
343 	/* Calculate the estimated time in us the transfer runs.  Note that
344 	 * there are are 2 idle clocks cycles after each chunk getting
345 	 * transferred - in our case the chunk size is 3 bytes, so we
346 	 * approximate this by 9 cycles/byte.  This is used to find the number
347 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
348 	 * 30 µs per 300,000 Hz of bus clock.
349 	 */
350 #define HZ_PER_BYTE ((9 * 1000000) / BCM2835_AUX_SPI_POLLING_LIMIT_US)
351 	/* run in polling mode for short transfers */
352 	if (tfr->len < spi_used_hz / HZ_PER_BYTE)
353 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
354 
355 	/* run in interrupt mode for all others */
356 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
357 #undef HZ_PER_BYTE
358 }
359 
360 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
361 					  struct spi_message *msg)
362 {
363 	struct spi_device *spi = msg->spi;
364 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
365 
366 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
367 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
368 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
369 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
370 
371 	/* handle all the modes */
372 	if (spi->mode & SPI_CPOL) {
373 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
374 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
375 	} else {
376 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
377 	}
378 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
379 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
380 
381 	return 0;
382 }
383 
384 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
385 					    struct spi_message *msg)
386 {
387 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
388 
389 	bcm2835aux_spi_reset_hw(bs);
390 
391 	return 0;
392 }
393 
394 static void bcm2835aux_spi_handle_err(struct spi_master *master,
395 				      struct spi_message *msg)
396 {
397 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
398 
399 	bcm2835aux_spi_reset_hw(bs);
400 }
401 
402 static int bcm2835aux_spi_probe(struct platform_device *pdev)
403 {
404 	struct spi_master *master;
405 	struct bcm2835aux_spi *bs;
406 	struct resource *res;
407 	unsigned long clk_hz;
408 	int err;
409 
410 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
411 	if (!master) {
412 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
413 		return -ENOMEM;
414 	}
415 
416 	platform_set_drvdata(pdev, master);
417 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
418 	master->bits_per_word_mask = SPI_BPW_MASK(8);
419 	master->num_chipselect = -1;
420 	master->transfer_one = bcm2835aux_spi_transfer_one;
421 	master->handle_err = bcm2835aux_spi_handle_err;
422 	master->prepare_message = bcm2835aux_spi_prepare_message;
423 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
424 	master->dev.of_node = pdev->dev.of_node;
425 
426 	bs = spi_master_get_devdata(master);
427 
428 	/* the main area */
429 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
430 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
431 	if (IS_ERR(bs->regs)) {
432 		err = PTR_ERR(bs->regs);
433 		goto out_master_put;
434 	}
435 
436 	bs->clk = devm_clk_get(&pdev->dev, NULL);
437 	if (IS_ERR(bs->clk)) {
438 		err = PTR_ERR(bs->clk);
439 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
440 		goto out_master_put;
441 	}
442 
443 	bs->irq = platform_get_irq(pdev, 0);
444 	if (bs->irq <= 0) {
445 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
446 		err = bs->irq ? bs->irq : -ENODEV;
447 		goto out_master_put;
448 	}
449 
450 	/* this also enables the HW block */
451 	err = clk_prepare_enable(bs->clk);
452 	if (err) {
453 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
454 		goto out_master_put;
455 	}
456 
457 	/* just checking if the clock returns a sane value */
458 	clk_hz = clk_get_rate(bs->clk);
459 	if (!clk_hz) {
460 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
461 		err = -ENODEV;
462 		goto out_clk_disable;
463 	}
464 
465 	/* reset SPI-HW block */
466 	bcm2835aux_spi_reset_hw(bs);
467 
468 	err = devm_request_irq(&pdev->dev, bs->irq,
469 			       bcm2835aux_spi_interrupt,
470 			       IRQF_SHARED,
471 			       dev_name(&pdev->dev), master);
472 	if (err) {
473 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
474 		goto out_clk_disable;
475 	}
476 
477 	err = devm_spi_register_master(&pdev->dev, master);
478 	if (err) {
479 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
480 		goto out_clk_disable;
481 	}
482 
483 	return 0;
484 
485 out_clk_disable:
486 	clk_disable_unprepare(bs->clk);
487 out_master_put:
488 	spi_master_put(master);
489 	return err;
490 }
491 
492 static int bcm2835aux_spi_remove(struct platform_device *pdev)
493 {
494 	struct spi_master *master = platform_get_drvdata(pdev);
495 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
496 
497 	bcm2835aux_spi_reset_hw(bs);
498 
499 	/* disable the HW block by releasing the clock */
500 	clk_disable_unprepare(bs->clk);
501 
502 	return 0;
503 }
504 
505 static const struct of_device_id bcm2835aux_spi_match[] = {
506 	{ .compatible = "brcm,bcm2835-aux-spi", },
507 	{}
508 };
509 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
510 
511 static struct platform_driver bcm2835aux_spi_driver = {
512 	.driver		= {
513 		.name		= "spi-bcm2835aux",
514 		.of_match_table	= bcm2835aux_spi_match,
515 	},
516 	.probe		= bcm2835aux_spi_probe,
517 	.remove		= bcm2835aux_spi_remove,
518 };
519 module_platform_driver(bcm2835aux_spi_driver);
520 
521 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
522 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
523 MODULE_LICENSE("GPL");
524