xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 7188a6f0eee3f1fae5d826cfc6d569657ff950ec)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 struct bcm2835aux_spi {
96 	void __iomem *regs;
97 	struct clk *clk;
98 	int irq;
99 	u32 cntl[2];
100 	const u8 *tx_buf;
101 	u8 *rx_buf;
102 	int tx_len;
103 	int rx_len;
104 	int pending;
105 };
106 
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 				 u32 val)
114 {
115 	writel(val, bs->regs + reg);
116 }
117 
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119 {
120 	u32 data;
121 	int count = min(bs->rx_len, 3);
122 
123 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 	if (bs->rx_buf) {
125 		switch (count) {
126 		case 4:
127 			*bs->rx_buf++ = (data >> 24) & 0xff;
128 			/* fallthrough */
129 		case 3:
130 			*bs->rx_buf++ = (data >> 16) & 0xff;
131 			/* fallthrough */
132 		case 2:
133 			*bs->rx_buf++ = (data >> 8) & 0xff;
134 			/* fallthrough */
135 		case 1:
136 			*bs->rx_buf++ = (data >> 0) & 0xff;
137 			/* fallthrough - no default */
138 		}
139 	}
140 	bs->rx_len -= count;
141 	bs->pending -= count;
142 }
143 
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
145 {
146 	u32 data;
147 	u8 byte;
148 	int count;
149 	int i;
150 
151 	/* gather up to 3 bytes to write to the FIFO */
152 	count = min(bs->tx_len, 3);
153 	data = 0;
154 	for (i = 0; i < count; i++) {
155 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 		data |= byte << (8 * (2 - i));
157 	}
158 
159 	/* and set the variable bit-length */
160 	data |= (count * 8) << 24;
161 
162 	/* and decrement length */
163 	bs->tx_len -= count;
164 	bs->pending += count;
165 
166 	/* write to the correct TX-register */
167 	if (bs->tx_len)
168 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 	else
170 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
171 }
172 
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
174 {
175 	/* disable spi clearing fifo and interrupts */
176 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
179 }
180 
181 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
182 {
183 	/* check if we have data to read */
184 	while (bs->rx_len &&
185 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
186 		  BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
187 		bcm2835aux_rd_fifo(bs);
188 	}
189 
190 	/* check if we have data to write */
191 	while (bs->tx_len &&
192 	       (bs->pending < 12) &&
193 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
194 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
195 		bcm2835aux_wr_fifo(bs);
196 	}
197 
198 	/* and check if we have reached "done" */
199 	while (bs->rx_len &&
200 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
201 		  BCM2835_AUX_SPI_STAT_BUSY))) {
202 		bcm2835aux_rd_fifo(bs);
203 	}
204 }
205 
206 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
207 {
208 	struct spi_master *master = dev_id;
209 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
210 
211 	/* IRQ may be shared, so return if our interrupts are disabled */
212 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
213 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
214 		return IRQ_NONE;
215 
216 	/* do common fifo handling */
217 	bcm2835aux_spi_transfer_helper(bs);
218 
219 	if (!bs->tx_len) {
220 		/* disable tx fifo empty interrupt */
221 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
222 			BCM2835_AUX_SPI_CNTL1_IDLE);
223 	}
224 
225 	/* and if rx_len is 0 then disable interrupts and wake up completion */
226 	if (!bs->rx_len) {
227 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
228 		complete(&master->xfer_completion);
229 	}
230 
231 	return IRQ_HANDLED;
232 }
233 
234 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
235 					     struct spi_device *spi,
236 					     struct spi_transfer *tfr)
237 {
238 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
239 
240 	/* enable interrupts */
241 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
242 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
243 		BCM2835_AUX_SPI_CNTL1_IDLE);
244 
245 	/* and wait for finish... */
246 	return 1;
247 }
248 
249 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
250 					   struct spi_device *spi,
251 					   struct spi_transfer *tfr)
252 {
253 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
254 
255 	/* fill in registers and fifos before enabling interrupts */
256 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
257 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
258 
259 	/* fill in tx fifo with data before enabling interrupts */
260 	while ((bs->tx_len) &&
261 	       (bs->pending < 12) &&
262 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
263 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
264 		bcm2835aux_wr_fifo(bs);
265 	}
266 
267 	/* now run the interrupt mode */
268 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
269 }
270 
271 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
272 					    struct spi_device *spi,
273 					struct spi_transfer *tfr)
274 {
275 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
276 	unsigned long timeout;
277 
278 	/* configure spi */
279 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
280 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
281 
282 	/* set the timeout */
283 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
284 
285 	/* loop until finished the transfer */
286 	while (bs->rx_len) {
287 
288 		/* do common fifo handling */
289 		bcm2835aux_spi_transfer_helper(bs);
290 
291 		/* there is still data pending to read check the timeout */
292 		if (bs->rx_len && time_after(jiffies, timeout)) {
293 			dev_dbg_ratelimited(&spi->dev,
294 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
295 					    jiffies - timeout,
296 					    bs->tx_len, bs->rx_len);
297 			/* forward to interrupt handler */
298 			return __bcm2835aux_spi_transfer_one_irq(master,
299 							       spi, tfr);
300 		}
301 	}
302 
303 	/* and return without waiting for completion */
304 	return 0;
305 }
306 
307 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
308 				       struct spi_device *spi,
309 				       struct spi_transfer *tfr)
310 {
311 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
312 	unsigned long spi_hz, clk_hz, speed;
313 	unsigned long spi_used_hz;
314 
315 	/* calculate the registers to handle
316 	 *
317 	 * note that we use the variable data mode, which
318 	 * is not optimal for longer transfers as we waste registers
319 	 * resulting (potentially) in more interrupts when transferring
320 	 * more than 12 bytes
321 	 */
322 
323 	/* set clock */
324 	spi_hz = tfr->speed_hz;
325 	clk_hz = clk_get_rate(bs->clk);
326 
327 	if (spi_hz >= clk_hz / 2) {
328 		speed = 0;
329 	} else if (spi_hz) {
330 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
331 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
332 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
333 	} else { /* the slowest we can go */
334 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
335 	}
336 	/* mask out old speed from previous spi_transfer */
337 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
338 	/* set the new speed */
339 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
340 
341 	spi_used_hz = clk_hz / (2 * (speed + 1));
342 
343 	/* set transmit buffers and length */
344 	bs->tx_buf = tfr->tx_buf;
345 	bs->rx_buf = tfr->rx_buf;
346 	bs->tx_len = tfr->len;
347 	bs->rx_len = tfr->len;
348 	bs->pending = 0;
349 
350 	/* Calculate the estimated time in us the transfer runs.  Note that
351 	 * there are are 2 idle clocks cycles after each chunk getting
352 	 * transferred - in our case the chunk size is 3 bytes, so we
353 	 * approximate this by 9 cycles/byte.  This is used to find the number
354 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
355 	 * 30 µs per 300,000 Hz of bus clock.
356 	 */
357 #define HZ_PER_BYTE ((9 * 1000000) / BCM2835_AUX_SPI_POLLING_LIMIT_US)
358 	/* run in polling mode for short transfers */
359 	if (tfr->len < spi_used_hz / HZ_PER_BYTE)
360 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
361 
362 	/* run in interrupt mode for all others */
363 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
364 #undef HZ_PER_BYTE
365 }
366 
367 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
368 					  struct spi_message *msg)
369 {
370 	struct spi_device *spi = msg->spi;
371 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
372 
373 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
374 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
375 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
376 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
377 
378 	/* handle all the modes */
379 	if (spi->mode & SPI_CPOL) {
380 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
381 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
382 	} else {
383 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
384 	}
385 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
386 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
387 
388 	return 0;
389 }
390 
391 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
392 					    struct spi_message *msg)
393 {
394 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
395 
396 	bcm2835aux_spi_reset_hw(bs);
397 
398 	return 0;
399 }
400 
401 static void bcm2835aux_spi_handle_err(struct spi_master *master,
402 				      struct spi_message *msg)
403 {
404 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
405 
406 	bcm2835aux_spi_reset_hw(bs);
407 }
408 
409 static int bcm2835aux_spi_probe(struct platform_device *pdev)
410 {
411 	struct spi_master *master;
412 	struct bcm2835aux_spi *bs;
413 	struct resource *res;
414 	unsigned long clk_hz;
415 	int err;
416 
417 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
418 	if (!master) {
419 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
420 		return -ENOMEM;
421 	}
422 
423 	platform_set_drvdata(pdev, master);
424 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
425 	master->bits_per_word_mask = SPI_BPW_MASK(8);
426 	master->num_chipselect = -1;
427 	master->transfer_one = bcm2835aux_spi_transfer_one;
428 	master->handle_err = bcm2835aux_spi_handle_err;
429 	master->prepare_message = bcm2835aux_spi_prepare_message;
430 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
431 	master->dev.of_node = pdev->dev.of_node;
432 
433 	bs = spi_master_get_devdata(master);
434 
435 	/* the main area */
436 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
437 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
438 	if (IS_ERR(bs->regs)) {
439 		err = PTR_ERR(bs->regs);
440 		goto out_master_put;
441 	}
442 
443 	bs->clk = devm_clk_get(&pdev->dev, NULL);
444 	if (IS_ERR(bs->clk)) {
445 		err = PTR_ERR(bs->clk);
446 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
447 		goto out_master_put;
448 	}
449 
450 	bs->irq = platform_get_irq(pdev, 0);
451 	if (bs->irq <= 0) {
452 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
453 		err = bs->irq ? bs->irq : -ENODEV;
454 		goto out_master_put;
455 	}
456 
457 	/* this also enables the HW block */
458 	err = clk_prepare_enable(bs->clk);
459 	if (err) {
460 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
461 		goto out_master_put;
462 	}
463 
464 	/* just checking if the clock returns a sane value */
465 	clk_hz = clk_get_rate(bs->clk);
466 	if (!clk_hz) {
467 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
468 		err = -ENODEV;
469 		goto out_clk_disable;
470 	}
471 
472 	/* reset SPI-HW block */
473 	bcm2835aux_spi_reset_hw(bs);
474 
475 	err = devm_request_irq(&pdev->dev, bs->irq,
476 			       bcm2835aux_spi_interrupt,
477 			       IRQF_SHARED,
478 			       dev_name(&pdev->dev), master);
479 	if (err) {
480 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
481 		goto out_clk_disable;
482 	}
483 
484 	err = devm_spi_register_master(&pdev->dev, master);
485 	if (err) {
486 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
487 		goto out_clk_disable;
488 	}
489 
490 	return 0;
491 
492 out_clk_disable:
493 	clk_disable_unprepare(bs->clk);
494 out_master_put:
495 	spi_master_put(master);
496 	return err;
497 }
498 
499 static int bcm2835aux_spi_remove(struct platform_device *pdev)
500 {
501 	struct spi_master *master = platform_get_drvdata(pdev);
502 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
503 
504 	bcm2835aux_spi_reset_hw(bs);
505 
506 	/* disable the HW block by releasing the clock */
507 	clk_disable_unprepare(bs->clk);
508 
509 	return 0;
510 }
511 
512 static const struct of_device_id bcm2835aux_spi_match[] = {
513 	{ .compatible = "brcm,bcm2835-aux-spi", },
514 	{}
515 };
516 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
517 
518 static struct platform_driver bcm2835aux_spi_driver = {
519 	.driver		= {
520 		.name		= "spi-bcm2835aux",
521 		.of_match_table	= bcm2835aux_spi_match,
522 	},
523 	.probe		= bcm2835aux_spi_probe,
524 	.remove		= bcm2835aux_spi_remove,
525 };
526 module_platform_driver(bcm2835aux_spi_driver);
527 
528 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
529 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
530 MODULE_LICENSE("GPL");
531