xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 5fd917afc4bfe77686a29a7923c301b6f55b2377)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /* define polling limits */
40 unsigned int polling_limit_us = 30;
41 module_param(polling_limit_us, uint, 0664);
42 MODULE_PARM_DESC(polling_limit_us,
43 		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
44 
45 /*
46  * spi register defines
47  *
48  * note there is garbage in the "official" documentation,
49  * so some data is taken from the file:
50  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
51  * inside of:
52  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
53  */
54 
55 /* SPI register offsets */
56 #define BCM2835_AUX_SPI_CNTL0	0x00
57 #define BCM2835_AUX_SPI_CNTL1	0x04
58 #define BCM2835_AUX_SPI_STAT	0x08
59 #define BCM2835_AUX_SPI_PEEK	0x0C
60 #define BCM2835_AUX_SPI_IO	0x20
61 #define BCM2835_AUX_SPI_TXHOLD	0x30
62 
63 /* Bitfields in CNTL0 */
64 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
65 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
66 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
67 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
68 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
69 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
70 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
71 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
72 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
73 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
74 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
75 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
76 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
77 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
78 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
79 
80 /* Bitfields in CNTL1 */
81 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
82 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
83 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
84 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
85 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
86 
87 /* Bitfields in STAT */
88 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
89 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
90 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
91 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
92 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
93 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
94 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
95 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
96 
97 struct bcm2835aux_spi {
98 	void __iomem *regs;
99 	struct clk *clk;
100 	int irq;
101 	u32 cntl[2];
102 	const u8 *tx_buf;
103 	u8 *rx_buf;
104 	int tx_len;
105 	int rx_len;
106 	int pending;
107 };
108 
109 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
110 {
111 	return readl(bs->regs + reg);
112 }
113 
114 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
115 				 u32 val)
116 {
117 	writel(val, bs->regs + reg);
118 }
119 
120 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
121 {
122 	u32 data;
123 	int count = min(bs->rx_len, 3);
124 
125 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
126 	if (bs->rx_buf) {
127 		switch (count) {
128 		case 3:
129 			*bs->rx_buf++ = (data >> 16) & 0xff;
130 			/* fallthrough */
131 		case 2:
132 			*bs->rx_buf++ = (data >> 8) & 0xff;
133 			/* fallthrough */
134 		case 1:
135 			*bs->rx_buf++ = (data >> 0) & 0xff;
136 			/* fallthrough - no default */
137 		}
138 	}
139 	bs->rx_len -= count;
140 	bs->pending -= count;
141 }
142 
143 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
144 {
145 	u32 data;
146 	u8 byte;
147 	int count;
148 	int i;
149 
150 	/* gather up to 3 bytes to write to the FIFO */
151 	count = min(bs->tx_len, 3);
152 	data = 0;
153 	for (i = 0; i < count; i++) {
154 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
155 		data |= byte << (8 * (2 - i));
156 	}
157 
158 	/* and set the variable bit-length */
159 	data |= (count * 8) << 24;
160 
161 	/* and decrement length */
162 	bs->tx_len -= count;
163 	bs->pending += count;
164 
165 	/* write to the correct TX-register */
166 	if (bs->tx_len)
167 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
168 	else
169 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
170 }
171 
172 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
173 {
174 	/* disable spi clearing fifo and interrupts */
175 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
176 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
177 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
178 }
179 
180 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
181 {
182 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
183 
184 	/* check if we have data to read */
185 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
186 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
187 		bcm2835aux_rd_fifo(bs);
188 
189 	/* check if we have data to write */
190 	while (bs->tx_len &&
191 	       (bs->pending < 12) &&
192 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
193 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
194 		bcm2835aux_wr_fifo(bs);
195 	}
196 }
197 
198 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
199 {
200 	struct spi_master *master = dev_id;
201 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
202 
203 	/* IRQ may be shared, so return if our interrupts are disabled */
204 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
205 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
206 		return IRQ_NONE;
207 
208 	/* do common fifo handling */
209 	bcm2835aux_spi_transfer_helper(bs);
210 
211 	if (!bs->tx_len) {
212 		/* disable tx fifo empty interrupt */
213 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
214 			BCM2835_AUX_SPI_CNTL1_IDLE);
215 	}
216 
217 	/* and if rx_len is 0 then disable interrupts and wake up completion */
218 	if (!bs->rx_len) {
219 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
220 		complete(&master->xfer_completion);
221 	}
222 
223 	return IRQ_HANDLED;
224 }
225 
226 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
227 					     struct spi_device *spi,
228 					     struct spi_transfer *tfr)
229 {
230 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
231 
232 	/* enable interrupts */
233 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
234 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
235 		BCM2835_AUX_SPI_CNTL1_IDLE);
236 
237 	/* and wait for finish... */
238 	return 1;
239 }
240 
241 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
242 					   struct spi_device *spi,
243 					   struct spi_transfer *tfr)
244 {
245 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
246 
247 	/* fill in registers and fifos before enabling interrupts */
248 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
249 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
250 
251 	/* fill in tx fifo with data before enabling interrupts */
252 	while ((bs->tx_len) &&
253 	       (bs->pending < 12) &&
254 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
255 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
256 		bcm2835aux_wr_fifo(bs);
257 	}
258 
259 	/* now run the interrupt mode */
260 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
261 }
262 
263 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
264 					    struct spi_device *spi,
265 					struct spi_transfer *tfr)
266 {
267 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
268 	unsigned long timeout;
269 
270 	/* configure spi */
271 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
272 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
273 
274 	/* set the timeout to at least 2 jiffies */
275 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
276 
277 	/* loop until finished the transfer */
278 	while (bs->rx_len) {
279 
280 		/* do common fifo handling */
281 		bcm2835aux_spi_transfer_helper(bs);
282 
283 		/* there is still data pending to read check the timeout */
284 		if (bs->rx_len && time_after(jiffies, timeout)) {
285 			dev_dbg_ratelimited(&spi->dev,
286 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
287 					    jiffies - timeout,
288 					    bs->tx_len, bs->rx_len);
289 			/* forward to interrupt handler */
290 			return __bcm2835aux_spi_transfer_one_irq(master,
291 							       spi, tfr);
292 		}
293 	}
294 
295 	/* and return without waiting for completion */
296 	return 0;
297 }
298 
299 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
300 				       struct spi_device *spi,
301 				       struct spi_transfer *tfr)
302 {
303 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
304 	unsigned long spi_hz, clk_hz, speed, spi_used_hz;
305 	unsigned long hz_per_byte, byte_limit;
306 
307 	/* calculate the registers to handle
308 	 *
309 	 * note that we use the variable data mode, which
310 	 * is not optimal for longer transfers as we waste registers
311 	 * resulting (potentially) in more interrupts when transferring
312 	 * more than 12 bytes
313 	 */
314 
315 	/* set clock */
316 	spi_hz = tfr->speed_hz;
317 	clk_hz = clk_get_rate(bs->clk);
318 
319 	if (spi_hz >= clk_hz / 2) {
320 		speed = 0;
321 	} else if (spi_hz) {
322 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
323 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
324 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
325 	} else { /* the slowest we can go */
326 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
327 	}
328 	/* mask out old speed from previous spi_transfer */
329 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
330 	/* set the new speed */
331 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
332 
333 	spi_used_hz = clk_hz / (2 * (speed + 1));
334 
335 	/* set transmit buffers and length */
336 	bs->tx_buf = tfr->tx_buf;
337 	bs->rx_buf = tfr->rx_buf;
338 	bs->tx_len = tfr->len;
339 	bs->rx_len = tfr->len;
340 	bs->pending = 0;
341 
342 	/* Calculate the estimated time in us the transfer runs.  Note that
343 	 * there are are 2 idle clocks cycles after each chunk getting
344 	 * transferred - in our case the chunk size is 3 bytes, so we
345 	 * approximate this by 9 cycles/byte.  This is used to find the number
346 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
347 	 * 30 µs per 300,000 Hz of bus clock.
348 	 */
349 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
350 	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
351 
352 	/* run in polling mode for short transfers */
353 	if (tfr->len < byte_limit)
354 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
355 
356 	/* run in interrupt mode for all others */
357 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
358 }
359 
360 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
361 					  struct spi_message *msg)
362 {
363 	struct spi_device *spi = msg->spi;
364 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
365 
366 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
367 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
368 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
369 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
370 
371 	/* handle all the modes */
372 	if (spi->mode & SPI_CPOL) {
373 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
374 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
375 	} else {
376 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
377 	}
378 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
379 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
380 
381 	return 0;
382 }
383 
384 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
385 					    struct spi_message *msg)
386 {
387 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
388 
389 	bcm2835aux_spi_reset_hw(bs);
390 
391 	return 0;
392 }
393 
394 static void bcm2835aux_spi_handle_err(struct spi_master *master,
395 				      struct spi_message *msg)
396 {
397 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
398 
399 	bcm2835aux_spi_reset_hw(bs);
400 }
401 
402 static int bcm2835aux_spi_setup(struct spi_device *spi)
403 {
404 	int ret;
405 
406 	/* sanity check for native cs */
407 	if (spi->mode & SPI_NO_CS)
408 		return 0;
409 	if (gpio_is_valid(spi->cs_gpio)) {
410 		/* with gpio-cs set the GPIO to the correct level
411 		 * and as output (in case the dt has the gpio not configured
412 		 * as output but native cs)
413 		 */
414 		ret = gpio_direction_output(spi->cs_gpio,
415 					    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
416 		if (ret)
417 			dev_err(&spi->dev,
418 				"could not set gpio %i as output: %i\n",
419 				spi->cs_gpio, ret);
420 
421 		return ret;
422 	}
423 
424 	/* for dt-backwards compatibility: only support native on CS0
425 	 * known things not supported with broken native CS:
426 	 * * multiple chip-selects: cs0-cs2 are all
427 	 *     simultaniously asserted whenever there is a transfer
428 	 *     this even includes SPI_NO_CS
429 	 * * SPI_CS_HIGH: cs are always asserted low
430 	 * * cs_change: cs is deasserted after each spi_transfer
431 	 * * cs_delay_usec: cs is always deasserted one SCK cycle
432 	 *     after the last transfer
433 	 * probably more...
434 	 */
435 	dev_warn(&spi->dev,
436 		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
437 
438 	if (spi->chip_select == 0)
439 		return 0;
440 
441 	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
442 
443 	return -EINVAL;
444 }
445 
446 static int bcm2835aux_spi_probe(struct platform_device *pdev)
447 {
448 	struct spi_master *master;
449 	struct bcm2835aux_spi *bs;
450 	struct resource *res;
451 	unsigned long clk_hz;
452 	int err;
453 
454 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
455 	if (!master) {
456 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
457 		return -ENOMEM;
458 	}
459 
460 	platform_set_drvdata(pdev, master);
461 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
462 	master->bits_per_word_mask = SPI_BPW_MASK(8);
463 	/* even though the driver never officially supported native CS
464 	 * allow a single native CS for legacy DT support purposes when
465 	 * no cs-gpio is configured.
466 	 * Known limitations for native cs are:
467 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
468 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
469 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
470 	 * * cs_change: cs is deasserted after each spi_transfer
471 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
472 	 *     a spi_transfer
473 	 */
474 	master->num_chipselect = 1;
475 	master->setup = bcm2835aux_spi_setup;
476 	master->transfer_one = bcm2835aux_spi_transfer_one;
477 	master->handle_err = bcm2835aux_spi_handle_err;
478 	master->prepare_message = bcm2835aux_spi_prepare_message;
479 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
480 	master->dev.of_node = pdev->dev.of_node;
481 
482 	bs = spi_master_get_devdata(master);
483 
484 	/* the main area */
485 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
486 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
487 	if (IS_ERR(bs->regs)) {
488 		err = PTR_ERR(bs->regs);
489 		goto out_master_put;
490 	}
491 
492 	bs->clk = devm_clk_get(&pdev->dev, NULL);
493 	if (IS_ERR(bs->clk)) {
494 		err = PTR_ERR(bs->clk);
495 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
496 		goto out_master_put;
497 	}
498 
499 	bs->irq = platform_get_irq(pdev, 0);
500 	if (bs->irq <= 0) {
501 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
502 		err = bs->irq ? bs->irq : -ENODEV;
503 		goto out_master_put;
504 	}
505 
506 	/* this also enables the HW block */
507 	err = clk_prepare_enable(bs->clk);
508 	if (err) {
509 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
510 		goto out_master_put;
511 	}
512 
513 	/* just checking if the clock returns a sane value */
514 	clk_hz = clk_get_rate(bs->clk);
515 	if (!clk_hz) {
516 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
517 		err = -ENODEV;
518 		goto out_clk_disable;
519 	}
520 
521 	/* reset SPI-HW block */
522 	bcm2835aux_spi_reset_hw(bs);
523 
524 	err = devm_request_irq(&pdev->dev, bs->irq,
525 			       bcm2835aux_spi_interrupt,
526 			       IRQF_SHARED,
527 			       dev_name(&pdev->dev), master);
528 	if (err) {
529 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
530 		goto out_clk_disable;
531 	}
532 
533 	err = devm_spi_register_master(&pdev->dev, master);
534 	if (err) {
535 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
536 		goto out_clk_disable;
537 	}
538 
539 	return 0;
540 
541 out_clk_disable:
542 	clk_disable_unprepare(bs->clk);
543 out_master_put:
544 	spi_master_put(master);
545 	return err;
546 }
547 
548 static int bcm2835aux_spi_remove(struct platform_device *pdev)
549 {
550 	struct spi_master *master = platform_get_drvdata(pdev);
551 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
552 
553 	bcm2835aux_spi_reset_hw(bs);
554 
555 	/* disable the HW block by releasing the clock */
556 	clk_disable_unprepare(bs->clk);
557 
558 	return 0;
559 }
560 
561 static const struct of_device_id bcm2835aux_spi_match[] = {
562 	{ .compatible = "brcm,bcm2835-aux-spi", },
563 	{}
564 };
565 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
566 
567 static struct platform_driver bcm2835aux_spi_driver = {
568 	.driver		= {
569 		.name		= "spi-bcm2835aux",
570 		.of_match_table	= bcm2835aux_spi_match,
571 	},
572 	.probe		= bcm2835aux_spi_probe,
573 	.remove		= bcm2835aux_spi_remove,
574 };
575 module_platform_driver(bcm2835aux_spi_driver);
576 
577 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
578 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
579 MODULE_LICENSE("GPL");
580