xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision 17bc4815de586d001c82d0ddf75247283c3f002a)
1 /*
2  * Driver for Broadcom BCM2835 SPI Controllers
3  *
4  * Copyright (C) 2012 Chris Boot
5  * Copyright (C) 2013 Stephen Warren
6  * Copyright (C) 2015 Martin Sperl
7  *
8  * This driver is inspired by:
9  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
10  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  */
22 
23 #include <linux/clk.h>
24 #include <linux/completion.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/err.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_device.h>
36 #include <linux/of_gpio.h>
37 #include <linux/of_irq.h>
38 #include <linux/spi/spi.h>
39 
40 /* SPI register offsets */
41 #define BCM2835_SPI_CS			0x00
42 #define BCM2835_SPI_FIFO		0x04
43 #define BCM2835_SPI_CLK			0x08
44 #define BCM2835_SPI_DLEN		0x0c
45 #define BCM2835_SPI_LTOH		0x10
46 #define BCM2835_SPI_DC			0x14
47 
48 /* Bitfields in CS */
49 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
50 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
51 #define BCM2835_SPI_CS_CSPOL2		0x00800000
52 #define BCM2835_SPI_CS_CSPOL1		0x00400000
53 #define BCM2835_SPI_CS_CSPOL0		0x00200000
54 #define BCM2835_SPI_CS_RXF		0x00100000
55 #define BCM2835_SPI_CS_RXR		0x00080000
56 #define BCM2835_SPI_CS_TXD		0x00040000
57 #define BCM2835_SPI_CS_RXD		0x00020000
58 #define BCM2835_SPI_CS_DONE		0x00010000
59 #define BCM2835_SPI_CS_LEN		0x00002000
60 #define BCM2835_SPI_CS_REN		0x00001000
61 #define BCM2835_SPI_CS_ADCS		0x00000800
62 #define BCM2835_SPI_CS_INTR		0x00000400
63 #define BCM2835_SPI_CS_INTD		0x00000200
64 #define BCM2835_SPI_CS_DMAEN		0x00000100
65 #define BCM2835_SPI_CS_TA		0x00000080
66 #define BCM2835_SPI_CS_CSPOL		0x00000040
67 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
68 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
69 #define BCM2835_SPI_CS_CPOL		0x00000008
70 #define BCM2835_SPI_CS_CPHA		0x00000004
71 #define BCM2835_SPI_CS_CS_10		0x00000002
72 #define BCM2835_SPI_CS_CS_01		0x00000001
73 
74 #define BCM2835_SPI_FIFO_SIZE		64
75 #define BCM2835_SPI_FIFO_SIZE_3_4	48
76 #define BCM2835_SPI_POLLING_LIMIT_US	30
77 #define BCM2835_SPI_POLLING_JIFFIES	2
78 #define BCM2835_SPI_DMA_MIN_LENGTH	96
79 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
80 				| SPI_NO_CS | SPI_3WIRE)
81 
82 #define DRV_NAME	"spi-bcm2835"
83 
84 /**
85  * struct bcm2835_spi - BCM2835 SPI controller
86  * @regs: base address of register map
87  * @clk: core clock, divided to calculate serial clock
88  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
89  * @tfr: SPI transfer currently processed
90  * @tx_buf: pointer whence next transmitted byte is read
91  * @rx_buf: pointer where next received byte is written
92  * @tx_len: remaining bytes to transmit
93  * @rx_len: remaining bytes to receive
94  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95  *	length is not a multiple of 4 (to overcome hardware limitation)
96  * @rx_prologue: bytes received without DMA if first RX sglist entry's
97  *	length is not a multiple of 4 (to overcome hardware limitation)
98  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99  * @dma_pending: whether a DMA transfer is in progress
100  */
101 struct bcm2835_spi {
102 	void __iomem *regs;
103 	struct clk *clk;
104 	int irq;
105 	struct spi_transfer *tfr;
106 	const u8 *tx_buf;
107 	u8 *rx_buf;
108 	int tx_len;
109 	int rx_len;
110 	int tx_prologue;
111 	int rx_prologue;
112 	unsigned int tx_spillover;
113 	unsigned int dma_pending;
114 };
115 
116 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
117 {
118 	return readl(bs->regs + reg);
119 }
120 
121 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
122 {
123 	writel(val, bs->regs + reg);
124 }
125 
126 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
127 {
128 	u8 byte;
129 
130 	while ((bs->rx_len) &&
131 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
132 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
133 		if (bs->rx_buf)
134 			*bs->rx_buf++ = byte;
135 		bs->rx_len--;
136 	}
137 }
138 
139 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
140 {
141 	u8 byte;
142 
143 	while ((bs->tx_len) &&
144 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
145 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
146 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
147 		bs->tx_len--;
148 	}
149 }
150 
151 /**
152  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
153  * @bs: BCM2835 SPI controller
154  * @count: bytes to read from RX FIFO
155  *
156  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
157  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
158  * in the CS register is set (such that a read from the FIFO register receives
159  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
160  */
161 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
162 {
163 	u32 val;
164 	int len;
165 
166 	bs->rx_len -= count;
167 
168 	while (count > 0) {
169 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
170 		len = min(count, 4);
171 		memcpy(bs->rx_buf, &val, len);
172 		bs->rx_buf += len;
173 		count -= 4;
174 	}
175 }
176 
177 /**
178  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
179  * @bs: BCM2835 SPI controller
180  * @count: bytes to write to TX FIFO
181  *
182  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
183  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
184  * in the CS register is set (such that a write to the FIFO register transmits
185  * 32-bit instead of just 8-bit).
186  */
187 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
188 {
189 	u32 val;
190 	int len;
191 
192 	bs->tx_len -= count;
193 
194 	while (count > 0) {
195 		if (bs->tx_buf) {
196 			len = min(count, 4);
197 			memcpy(&val, bs->tx_buf, len);
198 			bs->tx_buf += len;
199 		} else {
200 			val = 0;
201 		}
202 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
203 		count -= 4;
204 	}
205 }
206 
207 /**
208  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
209  * @bs: BCM2835 SPI controller
210  *
211  * The caller must ensure that the RX FIFO can accommodate as many bytes
212  * as have been written to the TX FIFO:  Transmission is halted once the
213  * RX FIFO is full, causing this function to spin forever.
214  */
215 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
216 {
217 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
218 		cpu_relax();
219 }
220 
221 /**
222  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
223  * @bs: BCM2835 SPI controller
224  * @count: bytes available for reading in RX FIFO
225  */
226 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
227 {
228 	u8 val;
229 
230 	count = min(count, bs->rx_len);
231 	bs->rx_len -= count;
232 
233 	while (count) {
234 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
235 		if (bs->rx_buf)
236 			*bs->rx_buf++ = val;
237 		count--;
238 	}
239 }
240 
241 /**
242  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
243  * @bs: BCM2835 SPI controller
244  * @count: bytes available for writing in TX FIFO
245  */
246 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
247 {
248 	u8 val;
249 
250 	count = min(count, bs->tx_len);
251 	bs->tx_len -= count;
252 
253 	while (count) {
254 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
255 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
256 		count--;
257 	}
258 }
259 
260 static void bcm2835_spi_reset_hw(struct spi_master *master)
261 {
262 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
263 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
264 
265 	/* Disable SPI interrupts and transfer */
266 	cs &= ~(BCM2835_SPI_CS_INTR |
267 		BCM2835_SPI_CS_INTD |
268 		BCM2835_SPI_CS_DMAEN |
269 		BCM2835_SPI_CS_TA);
270 	/* and reset RX/TX FIFOS */
271 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
272 
273 	/* and reset the SPI_HW */
274 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
275 	/* as well as DLEN */
276 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
277 }
278 
279 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
280 {
281 	struct spi_master *master = dev_id;
282 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
283 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
284 
285 	/*
286 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
287 	 * or if RXR is set (RX FIFO >= ¾ full).
288 	 */
289 	if (cs & BCM2835_SPI_CS_RXF)
290 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
291 	else if (cs & BCM2835_SPI_CS_RXR)
292 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
293 
294 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
295 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
296 
297 	/* Read as many bytes as possible from FIFO */
298 	bcm2835_rd_fifo(bs);
299 	/* Write as many bytes as possible to FIFO */
300 	bcm2835_wr_fifo(bs);
301 
302 	if (!bs->rx_len) {
303 		/* Transfer complete - reset SPI HW */
304 		bcm2835_spi_reset_hw(master);
305 		/* wake up the framework */
306 		complete(&master->xfer_completion);
307 	}
308 
309 	return IRQ_HANDLED;
310 }
311 
312 static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
313 					struct spi_device *spi,
314 					struct spi_transfer *tfr,
315 					u32 cs, bool fifo_empty)
316 {
317 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
318 
319 	/*
320 	 * Enable HW block, but with interrupts still disabled.
321 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
322 	 */
323 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
324 
325 	/* fill TX FIFO as much as possible */
326 	if (fifo_empty)
327 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
328 	bcm2835_wr_fifo(bs);
329 
330 	/* enable interrupts */
331 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
332 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
333 
334 	/* signal that we need to wait for completion */
335 	return 1;
336 }
337 
338 /*
339  * DMA support
340  *
341  * this implementation has currently a few issues in so far as it does
342  * not work arrount limitations of the HW.
343  *
344  * the main one being that DMA transfers are limited to 16 bit
345  * (so 0 to 65535 bytes) by the SPI HW due to BCM2835_SPI_DLEN
346  *
347  * there may be a few more border-cases we may need to address as well
348  * but unfortunately this would mean splitting up the scatter-gather
349  * list making it slightly unpractical...
350  */
351 
352 /**
353  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
354  * @master: SPI master
355  * @tfr: SPI transfer
356  * @bs: BCM2835 SPI controller
357  * @cs: CS register
358  *
359  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
360  * Only the final write access is permitted to transmit less than 4 bytes, the
361  * SPI controller deduces its intended size from the DLEN register.
362  *
363  * If a TX or RX sglist contains multiple entries, one per page, and the first
364  * entry starts in the middle of a page, that first entry's length may not be
365  * a multiple of 4.  Subsequent entries are fine because they span an entire
366  * page, hence do have a length that's a multiple of 4.
367  *
368  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
369  * because they are contiguous in physical memory and therefore not split on
370  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
371  * buffers.
372  *
373  * The DMA engine is incapable of combining sglist entries into a continuous
374  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
375  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
376  * entry is rounded up by throwing away received bytes.
377  *
378  * Overcome this limitation by transferring the first few bytes without DMA:
379  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
380  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
381  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
382  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
383  *
384  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
385  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
386  * Caution, the additional 4 bytes spill over to the second TX sglist entry
387  * if the length of the first is *exactly* 1.
388  *
389  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
390  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
391  *
392  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
393  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
394  * the width but also garbles the FIFO's contents.  The prologue must therefore
395  * be transmitted in 32-bit width to ensure that the following DMA transfer can
396  * pick up the residue in the RX FIFO in ungarbled form.
397  */
398 static void bcm2835_spi_transfer_prologue(struct spi_master *master,
399 					  struct spi_transfer *tfr,
400 					  struct bcm2835_spi *bs,
401 					  u32 cs)
402 {
403 	int tx_remaining;
404 
405 	bs->tfr		 = tfr;
406 	bs->tx_prologue  = 0;
407 	bs->rx_prologue  = 0;
408 	bs->tx_spillover = false;
409 
410 	if (!sg_is_last(&tfr->tx_sg.sgl[0]))
411 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
412 
413 	if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
414 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
415 
416 		if (bs->rx_prologue > bs->tx_prologue) {
417 			if (sg_is_last(&tfr->tx_sg.sgl[0])) {
418 				bs->tx_prologue  = bs->rx_prologue;
419 			} else {
420 				bs->tx_prologue += 4;
421 				bs->tx_spillover =
422 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
423 			}
424 		}
425 	}
426 
427 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
428 	if (!bs->tx_prologue)
429 		return;
430 
431 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
432 	if (bs->rx_prologue) {
433 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
434 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
435 						  | BCM2835_SPI_CS_DMAEN);
436 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
437 		bcm2835_wait_tx_fifo_empty(bs);
438 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
439 		bcm2835_spi_reset_hw(master);
440 
441 		dma_sync_single_for_device(master->dma_rx->device->dev,
442 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
443 					   bs->rx_prologue, DMA_FROM_DEVICE);
444 
445 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
446 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
447 	}
448 
449 	/*
450 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
451 	 * Also adjust second entry if prologue spills over to it.
452 	 */
453 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
454 	if (tx_remaining) {
455 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
456 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
457 						  | BCM2835_SPI_CS_DMAEN);
458 		bcm2835_wr_fifo_count(bs, tx_remaining);
459 		bcm2835_wait_tx_fifo_empty(bs);
460 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
461 	}
462 
463 	if (likely(!bs->tx_spillover)) {
464 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
465 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
466 	} else {
467 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
468 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
469 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
470 	}
471 }
472 
473 /**
474  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
475  * @bs: BCM2835 SPI controller
476  *
477  * Undo changes which were made to an SPI transfer's sglist when transmitting
478  * the prologue.  This is necessary to ensure the same memory ranges are
479  * unmapped that were originally mapped.
480  */
481 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
482 {
483 	struct spi_transfer *tfr = bs->tfr;
484 
485 	if (!bs->tx_prologue)
486 		return;
487 
488 	if (bs->rx_prologue) {
489 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
490 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
491 	}
492 
493 	if (likely(!bs->tx_spillover)) {
494 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
495 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
496 	} else {
497 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
498 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
499 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
500 	}
501 }
502 
503 static void bcm2835_spi_dma_done(void *data)
504 {
505 	struct spi_master *master = data;
506 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
507 
508 	/* reset fifo and HW */
509 	bcm2835_spi_reset_hw(master);
510 
511 	/* and terminate tx-dma as we do not have an irq for it
512 	 * because when the rx dma will terminate and this callback
513 	 * is called the tx-dma must have finished - can't get to this
514 	 * situation otherwise...
515 	 */
516 	if (cmpxchg(&bs->dma_pending, true, false)) {
517 		dmaengine_terminate_async(master->dma_tx);
518 		bcm2835_spi_undo_prologue(bs);
519 	}
520 
521 	/* and mark as completed */;
522 	complete(&master->xfer_completion);
523 }
524 
525 static int bcm2835_spi_prepare_sg(struct spi_master *master,
526 				  struct spi_transfer *tfr,
527 				  bool is_tx)
528 {
529 	struct dma_chan *chan;
530 	struct scatterlist *sgl;
531 	unsigned int nents;
532 	enum dma_transfer_direction dir;
533 	unsigned long flags;
534 
535 	struct dma_async_tx_descriptor *desc;
536 	dma_cookie_t cookie;
537 
538 	if (is_tx) {
539 		dir   = DMA_MEM_TO_DEV;
540 		chan  = master->dma_tx;
541 		nents = tfr->tx_sg.nents;
542 		sgl   = tfr->tx_sg.sgl;
543 		flags = 0 /* no  tx interrupt */;
544 
545 	} else {
546 		dir   = DMA_DEV_TO_MEM;
547 		chan  = master->dma_rx;
548 		nents = tfr->rx_sg.nents;
549 		sgl   = tfr->rx_sg.sgl;
550 		flags = DMA_PREP_INTERRUPT;
551 	}
552 	/* prepare the channel */
553 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
554 	if (!desc)
555 		return -EINVAL;
556 
557 	/* set callback for rx */
558 	if (!is_tx) {
559 		desc->callback = bcm2835_spi_dma_done;
560 		desc->callback_param = master;
561 	}
562 
563 	/* submit it to DMA-engine */
564 	cookie = dmaengine_submit(desc);
565 
566 	return dma_submit_error(cookie);
567 }
568 
569 static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
570 					struct spi_device *spi,
571 					struct spi_transfer *tfr,
572 					u32 cs)
573 {
574 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
575 	int ret;
576 
577 	/*
578 	 * Transfer first few bytes without DMA if length of first TX or RX
579 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
580 	 */
581 	bcm2835_spi_transfer_prologue(master, tfr, bs, cs);
582 
583 	/* setup tx-DMA */
584 	ret = bcm2835_spi_prepare_sg(master, tfr, true);
585 	if (ret)
586 		goto err_reset_hw;
587 
588 	/* start TX early */
589 	dma_async_issue_pending(master->dma_tx);
590 
591 	/* mark as dma pending */
592 	bs->dma_pending = 1;
593 
594 	/* set the DMA length */
595 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
596 
597 	/* start the HW */
598 	bcm2835_wr(bs, BCM2835_SPI_CS,
599 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
600 
601 	/* setup rx-DMA late - to run transfers while
602 	 * mapping of the rx buffers still takes place
603 	 * this saves 10us or more.
604 	 */
605 	ret = bcm2835_spi_prepare_sg(master, tfr, false);
606 	if (ret) {
607 		/* need to reset on errors */
608 		dmaengine_terminate_sync(master->dma_tx);
609 		bs->dma_pending = false;
610 		goto err_reset_hw;
611 	}
612 
613 	/* start rx dma late */
614 	dma_async_issue_pending(master->dma_rx);
615 
616 	/* wait for wakeup in framework */
617 	return 1;
618 
619 err_reset_hw:
620 	bcm2835_spi_reset_hw(master);
621 	bcm2835_spi_undo_prologue(bs);
622 	return ret;
623 }
624 
625 static bool bcm2835_spi_can_dma(struct spi_master *master,
626 				struct spi_device *spi,
627 				struct spi_transfer *tfr)
628 {
629 	/* we start DMA efforts only on bigger transfers */
630 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
631 		return false;
632 
633 	/* BCM2835_SPI_DLEN has defined a max transfer size as
634 	 * 16 bit, so max is 65535
635 	 * we can revisit this by using an alternative transfer
636 	 * method - ideally this would get done without any more
637 	 * interaction...
638 	 */
639 	if (tfr->len > 65535) {
640 		dev_warn_once(&spi->dev,
641 			      "transfer size of %d too big for dma-transfer\n",
642 			      tfr->len);
643 		return false;
644 	}
645 
646 	/* return OK */
647 	return true;
648 }
649 
650 static void bcm2835_dma_release(struct spi_master *master)
651 {
652 	if (master->dma_tx) {
653 		dmaengine_terminate_sync(master->dma_tx);
654 		dma_release_channel(master->dma_tx);
655 		master->dma_tx = NULL;
656 	}
657 	if (master->dma_rx) {
658 		dmaengine_terminate_sync(master->dma_rx);
659 		dma_release_channel(master->dma_rx);
660 		master->dma_rx = NULL;
661 	}
662 }
663 
664 static void bcm2835_dma_init(struct spi_master *master, struct device *dev)
665 {
666 	struct dma_slave_config slave_config;
667 	const __be32 *addr;
668 	dma_addr_t dma_reg_base;
669 	int ret;
670 
671 	/* base address in dma-space */
672 	addr = of_get_address(master->dev.of_node, 0, NULL, NULL);
673 	if (!addr) {
674 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
675 		goto err;
676 	}
677 	dma_reg_base = be32_to_cpup(addr);
678 
679 	/* get tx/rx dma */
680 	master->dma_tx = dma_request_slave_channel(dev, "tx");
681 	if (!master->dma_tx) {
682 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
683 		goto err;
684 	}
685 	master->dma_rx = dma_request_slave_channel(dev, "rx");
686 	if (!master->dma_rx) {
687 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
688 		goto err_release;
689 	}
690 
691 	/* configure DMAs */
692 	slave_config.direction = DMA_MEM_TO_DEV;
693 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
694 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
695 
696 	ret = dmaengine_slave_config(master->dma_tx, &slave_config);
697 	if (ret)
698 		goto err_config;
699 
700 	slave_config.direction = DMA_DEV_TO_MEM;
701 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
702 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703 
704 	ret = dmaengine_slave_config(master->dma_rx, &slave_config);
705 	if (ret)
706 		goto err_config;
707 
708 	/* all went well, so set can_dma */
709 	master->can_dma = bcm2835_spi_can_dma;
710 	master->max_dma_len = 65535; /* limitation by BCM2835_SPI_DLEN */
711 	/* need to do TX AND RX DMA, so we need dummy buffers */
712 	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
713 
714 	return;
715 
716 err_config:
717 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
718 		ret);
719 err_release:
720 	bcm2835_dma_release(master);
721 err:
722 	return;
723 }
724 
725 static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
726 					 struct spi_device *spi,
727 					 struct spi_transfer *tfr,
728 					 u32 cs,
729 					 unsigned long long xfer_time_us)
730 {
731 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
732 	unsigned long timeout;
733 
734 	/* enable HW block without interrupts */
735 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
736 
737 	/* fill in the fifo before timeout calculations
738 	 * if we are interrupted here, then the data is
739 	 * getting transferred by the HW while we are interrupted
740 	 */
741 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
742 
743 	/* set the timeout */
744 	timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
745 
746 	/* loop until finished the transfer */
747 	while (bs->rx_len) {
748 		/* fill in tx fifo with remaining data */
749 		bcm2835_wr_fifo(bs);
750 
751 		/* read from fifo as much as possible */
752 		bcm2835_rd_fifo(bs);
753 
754 		/* if there is still data pending to read
755 		 * then check the timeout
756 		 */
757 		if (bs->rx_len && time_after(jiffies, timeout)) {
758 			dev_dbg_ratelimited(&spi->dev,
759 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
760 					    jiffies - timeout,
761 					    bs->tx_len, bs->rx_len);
762 			/* fall back to interrupt mode */
763 			return bcm2835_spi_transfer_one_irq(master, spi,
764 							    tfr, cs, false);
765 		}
766 	}
767 
768 	/* Transfer complete - reset SPI HW */
769 	bcm2835_spi_reset_hw(master);
770 	/* and return without waiting for completion */
771 	return 0;
772 }
773 
774 static int bcm2835_spi_transfer_one(struct spi_master *master,
775 				    struct spi_device *spi,
776 				    struct spi_transfer *tfr)
777 {
778 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
779 	unsigned long spi_hz, clk_hz, cdiv;
780 	unsigned long spi_used_hz;
781 	unsigned long long xfer_time_us;
782 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
783 
784 	/* set clock */
785 	spi_hz = tfr->speed_hz;
786 	clk_hz = clk_get_rate(bs->clk);
787 
788 	if (spi_hz >= clk_hz / 2) {
789 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
790 	} else if (spi_hz) {
791 		/* CDIV must be a multiple of two */
792 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
793 		cdiv += (cdiv % 2);
794 
795 		if (cdiv >= 65536)
796 			cdiv = 0; /* 0 is the slowest we can go */
797 	} else {
798 		cdiv = 0; /* 0 is the slowest we can go */
799 	}
800 	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
801 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
802 
803 	/* handle all the 3-wire mode */
804 	if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
805 		cs |= BCM2835_SPI_CS_REN;
806 	else
807 		cs &= ~BCM2835_SPI_CS_REN;
808 
809 	/*
810 	 * The driver always uses software-controlled GPIO Chip Select.
811 	 * Set the hardware-controlled native Chip Select to an invalid
812 	 * value to prevent it from interfering.
813 	 */
814 	cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
815 
816 	/* set transmit buffers and length */
817 	bs->tx_buf = tfr->tx_buf;
818 	bs->rx_buf = tfr->rx_buf;
819 	bs->tx_len = tfr->len;
820 	bs->rx_len = tfr->len;
821 
822 	/* calculate the estimated time in us the transfer runs */
823 	xfer_time_us = (unsigned long long)tfr->len
824 		* 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
825 		* 1000000;
826 	do_div(xfer_time_us, spi_used_hz);
827 
828 	/* for short requests run polling*/
829 	if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
830 		return bcm2835_spi_transfer_one_poll(master, spi, tfr,
831 						     cs, xfer_time_us);
832 
833 	/* run in dma mode if conditions are right */
834 	if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr))
835 		return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
836 
837 	/* run in interrupt-mode */
838 	return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, true);
839 }
840 
841 static int bcm2835_spi_prepare_message(struct spi_master *master,
842 				       struct spi_message *msg)
843 {
844 	struct spi_device *spi = msg->spi;
845 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
846 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
847 
848 	cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA);
849 
850 	if (spi->mode & SPI_CPOL)
851 		cs |= BCM2835_SPI_CS_CPOL;
852 	if (spi->mode & SPI_CPHA)
853 		cs |= BCM2835_SPI_CS_CPHA;
854 
855 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
856 
857 	return 0;
858 }
859 
860 static void bcm2835_spi_handle_err(struct spi_master *master,
861 				   struct spi_message *msg)
862 {
863 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
864 
865 	/* if an error occurred and we have an active dma, then terminate */
866 	if (cmpxchg(&bs->dma_pending, true, false)) {
867 		dmaengine_terminate_sync(master->dma_tx);
868 		dmaengine_terminate_sync(master->dma_rx);
869 		bcm2835_spi_undo_prologue(bs);
870 	}
871 	/* and reset */
872 	bcm2835_spi_reset_hw(master);
873 }
874 
875 static int chip_match_name(struct gpio_chip *chip, void *data)
876 {
877 	return !strcmp(chip->label, data);
878 }
879 
880 static int bcm2835_spi_setup(struct spi_device *spi)
881 {
882 	int err;
883 	struct gpio_chip *chip;
884 	/*
885 	 * sanity checking the native-chipselects
886 	 */
887 	if (spi->mode & SPI_NO_CS)
888 		return 0;
889 	if (gpio_is_valid(spi->cs_gpio))
890 		return 0;
891 	if (spi->chip_select > 1) {
892 		/* error in the case of native CS requested with CS > 1
893 		 * officially there is a CS2, but it is not documented
894 		 * which GPIO is connected with that...
895 		 */
896 		dev_err(&spi->dev,
897 			"setup: only two native chip-selects are supported\n");
898 		return -EINVAL;
899 	}
900 	/* now translate native cs to GPIO */
901 
902 	/* get the gpio chip for the base */
903 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
904 	if (!chip)
905 		return 0;
906 
907 	/* and calculate the real CS */
908 	spi->cs_gpio = chip->base + 8 - spi->chip_select;
909 
910 	/* and set up the "mode" and level */
911 	dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
912 		 spi->chip_select, spi->cs_gpio);
913 
914 	/* set up GPIO as output and pull to the correct level */
915 	err = gpio_direction_output(spi->cs_gpio,
916 				    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
917 	if (err) {
918 		dev_err(&spi->dev,
919 			"could not set CS%i gpio %i as output: %i",
920 			spi->chip_select, spi->cs_gpio, err);
921 		return err;
922 	}
923 
924 	return 0;
925 }
926 
927 static int bcm2835_spi_probe(struct platform_device *pdev)
928 {
929 	struct spi_master *master;
930 	struct bcm2835_spi *bs;
931 	struct resource *res;
932 	int err;
933 
934 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
935 	if (!master) {
936 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
937 		return -ENOMEM;
938 	}
939 
940 	platform_set_drvdata(pdev, master);
941 
942 	master->mode_bits = BCM2835_SPI_MODE_BITS;
943 	master->bits_per_word_mask = SPI_BPW_MASK(8);
944 	master->num_chipselect = 3;
945 	master->setup = bcm2835_spi_setup;
946 	master->transfer_one = bcm2835_spi_transfer_one;
947 	master->handle_err = bcm2835_spi_handle_err;
948 	master->prepare_message = bcm2835_spi_prepare_message;
949 	master->dev.of_node = pdev->dev.of_node;
950 
951 	bs = spi_master_get_devdata(master);
952 
953 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
954 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
955 	if (IS_ERR(bs->regs)) {
956 		err = PTR_ERR(bs->regs);
957 		goto out_master_put;
958 	}
959 
960 	bs->clk = devm_clk_get(&pdev->dev, NULL);
961 	if (IS_ERR(bs->clk)) {
962 		err = PTR_ERR(bs->clk);
963 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
964 		goto out_master_put;
965 	}
966 
967 	bs->irq = platform_get_irq(pdev, 0);
968 	if (bs->irq <= 0) {
969 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
970 		err = bs->irq ? bs->irq : -ENODEV;
971 		goto out_master_put;
972 	}
973 
974 	clk_prepare_enable(bs->clk);
975 
976 	bcm2835_dma_init(master, &pdev->dev);
977 
978 	/* initialise the hardware with the default polarities */
979 	bcm2835_wr(bs, BCM2835_SPI_CS,
980 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
981 
982 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
983 			       dev_name(&pdev->dev), master);
984 	if (err) {
985 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
986 		goto out_clk_disable;
987 	}
988 
989 	err = devm_spi_register_master(&pdev->dev, master);
990 	if (err) {
991 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
992 		goto out_clk_disable;
993 	}
994 
995 	return 0;
996 
997 out_clk_disable:
998 	clk_disable_unprepare(bs->clk);
999 out_master_put:
1000 	spi_master_put(master);
1001 	return err;
1002 }
1003 
1004 static int bcm2835_spi_remove(struct platform_device *pdev)
1005 {
1006 	struct spi_master *master = platform_get_drvdata(pdev);
1007 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
1008 
1009 	/* Clear FIFOs, and disable the HW block */
1010 	bcm2835_wr(bs, BCM2835_SPI_CS,
1011 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1012 
1013 	clk_disable_unprepare(bs->clk);
1014 
1015 	bcm2835_dma_release(master);
1016 
1017 	return 0;
1018 }
1019 
1020 static const struct of_device_id bcm2835_spi_match[] = {
1021 	{ .compatible = "brcm,bcm2835-spi", },
1022 	{}
1023 };
1024 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1025 
1026 static struct platform_driver bcm2835_spi_driver = {
1027 	.driver		= {
1028 		.name		= DRV_NAME,
1029 		.of_match_table	= bcm2835_spi_match,
1030 	},
1031 	.probe		= bcm2835_spi_probe,
1032 	.remove		= bcm2835_spi_remove,
1033 };
1034 module_platform_driver(bcm2835_spi_driver);
1035 
1036 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1037 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1038 MODULE_LICENSE("GPL");
1039