xref: /openbmc/linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include "sym_glue.h"
41 #include "sym_nvram.h"
42 
43 #if 0
44 #define SYM_DEBUG_GENERIC_SUPPORT
45 #endif
46 
47 /*
48  *  Needed function prototypes.
49  */
50 static void sym_int_ma (struct sym_hcb *np);
51 static void sym_int_sir (struct sym_hcb *np);
52 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
53 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
54 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
55 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
56 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
57 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
58 
59 /*
60  *  Print a buffer in hexadecimal format with a ".\n" at end.
61  */
62 static void sym_printl_hex(u_char *p, int n)
63 {
64 	while (n-- > 0)
65 		printf (" %x", *p++);
66 	printf (".\n");
67 }
68 
69 /*
70  *  Print out the content of a SCSI message.
71  */
72 static int sym_show_msg (u_char * msg)
73 {
74 	u_char i;
75 	printf ("%x",*msg);
76 	if (*msg==M_EXTENDED) {
77 		for (i=1;i<8;i++) {
78 			if (i-1>msg[1]) break;
79 			printf ("-%x",msg[i]);
80 		}
81 		return (i+1);
82 	} else if ((*msg & 0xf0) == 0x20) {
83 		printf ("-%x",msg[1]);
84 		return (2);
85 	}
86 	return (1);
87 }
88 
89 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
90 {
91 	sym_print_addr(cp->cmd, "%s: ", label);
92 
93 	sym_show_msg(msg);
94 	printf(".\n");
95 }
96 
97 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
98 {
99 	struct sym_tcb *tp = &np->target[target];
100 	dev_info(&tp->sdev->sdev_target->dev, "%s: ", label);
101 
102 	sym_show_msg(msg);
103 	printf(".\n");
104 }
105 
106 /*
107  *  Print something that tells about extended errors.
108  */
109 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
110 {
111 	if (x_status & XE_PARITY_ERR) {
112 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
113 	}
114 	if (x_status & XE_EXTRA_DATA) {
115 		sym_print_addr(cmd, "extraneous data discarded.\n");
116 	}
117 	if (x_status & XE_BAD_PHASE) {
118 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
119 	}
120 	if (x_status & XE_SODL_UNRUN) {
121 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
122 	}
123 	if (x_status & XE_SWIDE_OVRUN) {
124 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
125 	}
126 }
127 
128 /*
129  *  Return a string for SCSI BUS mode.
130  */
131 static char *sym_scsi_bus_mode(int mode)
132 {
133 	switch(mode) {
134 	case SMODE_HVD:	return "HVD";
135 	case SMODE_SE:	return "SE";
136 	case SMODE_LVD: return "LVD";
137 	}
138 	return "??";
139 }
140 
141 /*
142  *  Soft reset the chip.
143  *
144  *  Raising SRST when the chip is running may cause
145  *  problems on dual function chips (see below).
146  *  On the other hand, LVD devices need some delay
147  *  to settle and report actual BUS mode in STEST4.
148  */
149 static void sym_chip_reset (struct sym_hcb *np)
150 {
151 	OUTB(np, nc_istat, SRST);
152 	udelay(10);
153 	OUTB(np, nc_istat, 0);
154 	udelay(2000);	/* For BUS MODE to settle */
155 }
156 
157 /*
158  *  Really soft reset the chip.:)
159  *
160  *  Some 896 and 876 chip revisions may hang-up if we set
161  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
162  *  are running.
163  *  So, we need to abort the current operation prior to
164  *  soft resetting the chip.
165  */
166 static void sym_soft_reset (struct sym_hcb *np)
167 {
168 	u_char istat = 0;
169 	int i;
170 
171 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
172 		goto do_chip_reset;
173 
174 	OUTB(np, nc_istat, CABRT);
175 	for (i = 100000 ; i ; --i) {
176 		istat = INB(np, nc_istat);
177 		if (istat & SIP) {
178 			INW(np, nc_sist);
179 		}
180 		else if (istat & DIP) {
181 			if (INB(np, nc_dstat) & ABRT)
182 				break;
183 		}
184 		udelay(5);
185 	}
186 	OUTB(np, nc_istat, 0);
187 	if (!i)
188 		printf("%s: unable to abort current chip operation, "
189 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
190 do_chip_reset:
191 	sym_chip_reset(np);
192 }
193 
194 /*
195  *  Start reset process.
196  *
197  *  The interrupt handler will reinitialize the chip.
198  */
199 static void sym_start_reset(struct sym_hcb *np)
200 {
201 	sym_reset_scsi_bus(np, 1);
202 }
203 
204 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
205 {
206 	u32 term;
207 	int retv = 0;
208 
209 	sym_soft_reset(np);	/* Soft reset the chip */
210 	if (enab_int)
211 		OUTW(np, nc_sien, RST);
212 	/*
213 	 *  Enable Tolerant, reset IRQD if present and
214 	 *  properly set IRQ mode, prior to resetting the bus.
215 	 */
216 	OUTB(np, nc_stest3, TE);
217 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
218 	OUTB(np, nc_scntl1, CRST);
219 	udelay(200);
220 
221 	if (!SYM_SETUP_SCSI_BUS_CHECK)
222 		goto out;
223 	/*
224 	 *  Check for no terminators or SCSI bus shorts to ground.
225 	 *  Read SCSI data bus, data parity bits and control signals.
226 	 *  We are expecting RESET to be TRUE and other signals to be
227 	 *  FALSE.
228 	 */
229 	term =	INB(np, nc_sstat0);
230 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
231 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
232 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
233 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
234 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
235 
236 	if (!np->maxwide)
237 		term &= 0x3ffff;
238 
239 	if (term != (2<<7)) {
240 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
241 			sym_name(np));
242 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
243 			"0x%lx, expecting 0x%lx\n",
244 			sym_name(np),
245 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
246 			(u_long)term, (u_long)(2<<7));
247 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
248 			retv = 1;
249 	}
250 out:
251 	OUTB(np, nc_scntl1, 0);
252 	return retv;
253 }
254 
255 /*
256  *  Select SCSI clock frequency
257  */
258 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
259 {
260 	/*
261 	 *  If multiplier not present or not selected, leave here.
262 	 */
263 	if (np->multiplier <= 1) {
264 		OUTB(np, nc_scntl3, scntl3);
265 		return;
266 	}
267 
268 	if (sym_verbose >= 2)
269 		printf ("%s: enabling clock multiplier\n", sym_name(np));
270 
271 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
272 	/*
273 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
274 	 *  Otherwise wait 50 micro-seconds (at least).
275 	 */
276 	if (np->features & FE_LCKFRQ) {
277 		int i = 20;
278 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
279 			udelay(20);
280 		if (!i)
281 			printf("%s: the chip cannot lock the frequency\n",
282 				sym_name(np));
283 	} else
284 		udelay((50+10));
285 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
286 	OUTB(np, nc_scntl3, scntl3);
287 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
288 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
289 }
290 
291 
292 /*
293  *  Determine the chip's clock frequency.
294  *
295  *  This is essential for the negotiation of the synchronous
296  *  transfer rate.
297  *
298  *  Note: we have to return the correct value.
299  *  THERE IS NO SAFE DEFAULT VALUE.
300  *
301  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
302  *  53C860 and 53C875 rev. 1 support fast20 transfers but
303  *  do not have a clock doubler and so are provided with a
304  *  80 MHz clock. All other fast20 boards incorporate a doubler
305  *  and so should be delivered with a 40 MHz clock.
306  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
307  *  clock and provide a clock quadrupler (160 Mhz).
308  */
309 
310 /*
311  *  calculate SCSI clock frequency (in KHz)
312  */
313 static unsigned getfreq (struct sym_hcb *np, int gen)
314 {
315 	unsigned int ms = 0;
316 	unsigned int f;
317 
318 	/*
319 	 * Measure GEN timer delay in order
320 	 * to calculate SCSI clock frequency
321 	 *
322 	 * This code will never execute too
323 	 * many loop iterations (if DELAY is
324 	 * reasonably correct). It could get
325 	 * too low a delay (too high a freq.)
326 	 * if the CPU is slow executing the
327 	 * loop for some reason (an NMI, for
328 	 * example). For this reason we will
329 	 * if multiple measurements are to be
330 	 * performed trust the higher delay
331 	 * (lower frequency returned).
332 	 */
333 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
334 	INW(np, nc_sist);	/* clear pending scsi interrupt */
335 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
336 	INW(np, nc_sist);	/* another one, just to be sure :) */
337 	/*
338 	 * The C1010-33 core does not report GEN in SIST,
339 	 * if this interrupt is masked in SIEN.
340 	 * I don't know yet if the C1010-66 behaves the same way.
341 	 */
342 	if (np->features & FE_C10) {
343 		OUTW(np, nc_sien, GEN);
344 		OUTB(np, nc_istat1, SIRQD);
345 	}
346 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
347 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
348 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
349 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
350 		udelay(1000/4);    /* count in 1/4 of ms */
351 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
352 	/*
353 	 * Undo C1010-33 specific settings.
354 	 */
355 	if (np->features & FE_C10) {
356 		OUTW(np, nc_sien, 0);
357 		OUTB(np, nc_istat1, 0);
358 	}
359  	/*
360  	 * set prescaler to divide by whatever 0 means
361  	 * 0 ought to choose divide by 2, but appears
362  	 * to set divide by 3.5 mode in my 53c810 ...
363  	 */
364  	OUTB(np, nc_scntl3, 0);
365 
366   	/*
367  	 * adjust for prescaler, and convert into KHz
368   	 */
369 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
370 
371 	/*
372 	 * The C1010-33 result is biased by a factor
373 	 * of 2/3 compared to earlier chips.
374 	 */
375 	if (np->features & FE_C10)
376 		f = (f * 2) / 3;
377 
378 	if (sym_verbose >= 2)
379 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
380 			sym_name(np), gen, ms/4, f);
381 
382 	return f;
383 }
384 
385 static unsigned sym_getfreq (struct sym_hcb *np)
386 {
387 	u_int f1, f2;
388 	int gen = 8;
389 
390 	getfreq (np, gen);	/* throw away first result */
391 	f1 = getfreq (np, gen);
392 	f2 = getfreq (np, gen);
393 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
394 	return f1;
395 }
396 
397 /*
398  *  Get/probe chip SCSI clock frequency
399  */
400 static void sym_getclock (struct sym_hcb *np, int mult)
401 {
402 	unsigned char scntl3 = np->sv_scntl3;
403 	unsigned char stest1 = np->sv_stest1;
404 	unsigned f1;
405 
406 	np->multiplier = 1;
407 	f1 = 40000;
408 	/*
409 	 *  True with 875/895/896/895A with clock multiplier selected
410 	 */
411 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
412 		if (sym_verbose >= 2)
413 			printf ("%s: clock multiplier found\n", sym_name(np));
414 		np->multiplier = mult;
415 	}
416 
417 	/*
418 	 *  If multiplier not found or scntl3 not 7,5,3,
419 	 *  reset chip and get frequency from general purpose timer.
420 	 *  Otherwise trust scntl3 BIOS setting.
421 	 */
422 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
423 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
424 		f1 = sym_getfreq (np);
425 
426 		if (sym_verbose)
427 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
428 
429 		if	(f1 <	45000)		f1 =  40000;
430 		else if (f1 <	55000)		f1 =  50000;
431 		else				f1 =  80000;
432 
433 		if (f1 < 80000 && mult > 1) {
434 			if (sym_verbose >= 2)
435 				printf ("%s: clock multiplier assumed\n",
436 					sym_name(np));
437 			np->multiplier	= mult;
438 		}
439 	} else {
440 		if	((scntl3 & 7) == 3)	f1 =  40000;
441 		else if	((scntl3 & 7) == 5)	f1 =  80000;
442 		else 				f1 = 160000;
443 
444 		f1 /= np->multiplier;
445 	}
446 
447 	/*
448 	 *  Compute controller synchronous parameters.
449 	 */
450 	f1		*= np->multiplier;
451 	np->clock_khz	= f1;
452 }
453 
454 /*
455  *  Get/probe PCI clock frequency
456  */
457 static int sym_getpciclock (struct sym_hcb *np)
458 {
459 	int f = 0;
460 
461 	/*
462 	 *  For now, we only need to know about the actual
463 	 *  PCI BUS clock frequency for C1010-66 chips.
464 	 */
465 #if 1
466 	if (np->features & FE_66MHZ) {
467 #else
468 	if (1) {
469 #endif
470 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
471 		f = sym_getfreq(np);
472 		OUTB(np, nc_stest1, 0);
473 	}
474 	np->pciclk_khz = f;
475 
476 	return f;
477 }
478 
479 /*
480  *  SYMBIOS chip clock divisor table.
481  *
482  *  Divisors are multiplied by 10,000,000 in order to make
483  *  calculations more simple.
484  */
485 #define _5M 5000000
486 static u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
487 
488 /*
489  *  Get clock factor and sync divisor for a given
490  *  synchronous factor period.
491  */
492 static int
493 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
494 {
495 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
496 	int	div = np->clock_divn;	/* Number of divisors supported	*/
497 	u32	fak;			/* Sync factor in sxfer		*/
498 	u32	per;			/* Period in tenths of ns	*/
499 	u32	kpc;			/* (per * clk)			*/
500 	int	ret;
501 
502 	/*
503 	 *  Compute the synchronous period in tenths of nano-seconds
504 	 */
505 	if (dt && sfac <= 9)	per = 125;
506 	else if	(sfac <= 10)	per = 250;
507 	else if	(sfac == 11)	per = 303;
508 	else if	(sfac == 12)	per = 500;
509 	else			per = 40 * sfac;
510 	ret = per;
511 
512 	kpc = per * clk;
513 	if (dt)
514 		kpc <<= 1;
515 
516 	/*
517 	 *  For earliest C10 revision 0, we cannot use extra
518 	 *  clocks for the setting of the SCSI clocking.
519 	 *  Note that this limits the lowest sync data transfer
520 	 *  to 5 Mega-transfers per second and may result in
521 	 *  using higher clock divisors.
522 	 */
523 #if 1
524 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
525 		/*
526 		 *  Look for the lowest clock divisor that allows an
527 		 *  output speed not faster than the period.
528 		 */
529 		while (div > 0) {
530 			--div;
531 			if (kpc > (div_10M[div] << 2)) {
532 				++div;
533 				break;
534 			}
535 		}
536 		fak = 0;			/* No extra clocks */
537 		if (div == np->clock_divn) {	/* Are we too fast ? */
538 			ret = -1;
539 		}
540 		*divp = div;
541 		*fakp = fak;
542 		return ret;
543 	}
544 #endif
545 
546 	/*
547 	 *  Look for the greatest clock divisor that allows an
548 	 *  input speed faster than the period.
549 	 */
550 	while (div-- > 0)
551 		if (kpc >= (div_10M[div] << 2)) break;
552 
553 	/*
554 	 *  Calculate the lowest clock factor that allows an output
555 	 *  speed not faster than the period, and the max output speed.
556 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
557 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
558 	 */
559 	if (dt) {
560 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
561 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
562 	} else {
563 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
564 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
565 	}
566 
567 	/*
568 	 *  Check against our hardware limits, or bugs :).
569 	 */
570 	if (fak > 2) {
571 		fak = 2;
572 		ret = -1;
573 	}
574 
575 	/*
576 	 *  Compute and return sync parameters.
577 	 */
578 	*divp = div;
579 	*fakp = fak;
580 
581 	return ret;
582 }
583 
584 /*
585  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
586  *  128 transfers. All chips support at least 16 transfers
587  *  bursts. The 825A, 875 and 895 chips support bursts of up
588  *  to 128 transfers and the 895A and 896 support bursts of up
589  *  to 64 transfers. All other chips support up to 16
590  *  transfers bursts.
591  *
592  *  For PCI 32 bit data transfers each transfer is a DWORD.
593  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
594  *
595  *  We use log base 2 (burst length) as internal code, with
596  *  value 0 meaning "burst disabled".
597  */
598 
599 /*
600  *  Burst length from burst code.
601  */
602 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
603 
604 /*
605  *  Burst code from io register bits.
606  */
607 #define burst_code(dmode, ctest4, ctest5) \
608 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
609 
610 /*
611  *  Set initial io register bits from burst code.
612  */
613 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
614 {
615 	np->rv_ctest4	&= ~0x80;
616 	np->rv_dmode	&= ~(0x3 << 6);
617 	np->rv_ctest5	&= ~0x4;
618 
619 	if (!bc) {
620 		np->rv_ctest4	|= 0x80;
621 	}
622 	else {
623 		--bc;
624 		np->rv_dmode	|= ((bc & 0x3) << 6);
625 		np->rv_ctest5	|= (bc & 0x4);
626 	}
627 }
628 
629 
630 /*
631  * Print out the list of targets that have some flag disabled by user.
632  */
633 static void sym_print_targets_flag(struct sym_hcb *np, int mask, char *msg)
634 {
635 	int cnt;
636 	int i;
637 
638 	for (cnt = 0, i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
639 		if (i == np->myaddr)
640 			continue;
641 		if (np->target[i].usrflags & mask) {
642 			if (!cnt++)
643 				printf("%s: %s disabled for targets",
644 					sym_name(np), msg);
645 			printf(" %d", i);
646 		}
647 	}
648 	if (cnt)
649 		printf(".\n");
650 }
651 
652 /*
653  *  Save initial settings of some IO registers.
654  *  Assumed to have been set by BIOS.
655  *  We cannot reset the chip prior to reading the
656  *  IO registers, since informations will be lost.
657  *  Since the SCRIPTS processor may be running, this
658  *  is not safe on paper, but it seems to work quite
659  *  well. :)
660  */
661 static void sym_save_initial_setting (struct sym_hcb *np)
662 {
663 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
664 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
665 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
666 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
667 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
668 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
669 	np->sv_gpcntl	= INB(np, nc_gpcntl);
670 	np->sv_stest1	= INB(np, nc_stest1);
671 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
672 	np->sv_stest4	= INB(np, nc_stest4);
673 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
674 		np->sv_scntl4	= INB(np, nc_scntl4);
675 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
676 	}
677 	else
678 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
679 }
680 
681 /*
682  *  Prepare io register values used by sym_start_up()
683  *  according to selected and supported features.
684  */
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686 {
687 	u_char	burst_max;
688 	u32	period;
689 	int i;
690 
691 	/*
692 	 *  Wide ?
693 	 */
694 	np->maxwide	= (np->features & FE_WIDE)? 1 : 0;
695 
696 	/*
697 	 *  Guess the frequency of the chip's clock.
698 	 */
699 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
700 		np->clock_khz = 160000;
701 	else if	(np->features & FE_ULTRA)
702 		np->clock_khz = 80000;
703 	else
704 		np->clock_khz = 40000;
705 
706 	/*
707 	 *  Get the clock multiplier factor.
708  	 */
709 	if	(np->features & FE_QUAD)
710 		np->multiplier	= 4;
711 	else if	(np->features & FE_DBLR)
712 		np->multiplier	= 2;
713 	else
714 		np->multiplier	= 1;
715 
716 	/*
717 	 *  Measure SCSI clock frequency for chips
718 	 *  it may vary from assumed one.
719 	 */
720 	if (np->features & FE_VARCLK)
721 		sym_getclock(np, np->multiplier);
722 
723 	/*
724 	 * Divisor to be used for async (timer pre-scaler).
725 	 */
726 	i = np->clock_divn - 1;
727 	while (--i >= 0) {
728 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
729 			++i;
730 			break;
731 		}
732 	}
733 	np->rv_scntl3 = i+1;
734 
735 	/*
736 	 * The C1010 uses hardwired divisors for async.
737 	 * So, we just throw away, the async. divisor.:-)
738 	 */
739 	if (np->features & FE_C10)
740 		np->rv_scntl3 = 0;
741 
742 	/*
743 	 * Minimum synchronous period factor supported by the chip.
744 	 * Btw, 'period' is in tenths of nanoseconds.
745 	 */
746 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
747 
748 	if	(period <= 250)		np->minsync = 10;
749 	else if	(period <= 303)		np->minsync = 11;
750 	else if	(period <= 500)		np->minsync = 12;
751 	else				np->minsync = (period + 40 - 1) / 40;
752 
753 	/*
754 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
755 	 */
756 	if	(np->minsync < 25 &&
757 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
758 		np->minsync = 25;
759 	else if	(np->minsync < 12 &&
760 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
761 		np->minsync = 12;
762 
763 	/*
764 	 * Maximum synchronous period factor supported by the chip.
765 	 */
766 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
767 	np->maxsync = period > 2540 ? 254 : period / 10;
768 
769 	/*
770 	 * If chip is a C1010, guess the sync limits in DT mode.
771 	 */
772 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
773 		if (np->clock_khz == 160000) {
774 			np->minsync_dt = 9;
775 			np->maxsync_dt = 50;
776 			np->maxoffs_dt = nvram->type ? 62 : 31;
777 		}
778 	}
779 
780 	/*
781 	 *  64 bit addressing  (895A/896/1010) ?
782 	 */
783 	if (np->features & FE_DAC) {
784 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
785 		np->rv_ccntl1	|= (DDAC);
786 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
787 		if (!np->use_dac)
788 			np->rv_ccntl1	|= (DDAC);
789 		else
790 			np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
791 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
792 		if (!np->use_dac)
793 			np->rv_ccntl1	|= (DDAC);
794 		else
795 			np->rv_ccntl1	|= (0 | EXTIBMV);
796 #endif
797 	}
798 
799 	/*
800 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
801   	 */
802 	if (np->features & FE_NOPM)
803 		np->rv_ccntl0	|= (ENPMJ);
804 
805  	/*
806 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
807 	 *  In dual channel mode, contention occurs if internal cycles
808 	 *  are used. Disable internal cycles.
809 	 */
810 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
811 	    np->revision_id < 0x1)
812 		np->rv_ccntl0	|=  DILS;
813 
814 	/*
815 	 *  Select burst length (dwords)
816 	 */
817 	burst_max	= SYM_SETUP_BURST_ORDER;
818 	if (burst_max == 255)
819 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
820 				       np->sv_ctest5);
821 	if (burst_max > 7)
822 		burst_max = 7;
823 	if (burst_max > np->maxburst)
824 		burst_max = np->maxburst;
825 
826 	/*
827 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
828 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
829 	 *  based transactions on LOAD/STORE instructions. So we have
830 	 *  to prevent these chips from using such PCI transactions in
831 	 *  this driver. The generic ncr driver that does not use
832 	 *  LOAD/STORE instructions does not need this work-around.
833 	 */
834 	if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
835 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
836 	    (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
837 	     np->revision_id <= 0x1))
838 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
839 
840 	/*
841 	 *  Select all supported special features.
842 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
843 	 *  does not help, but burst op fetch (BOF) does.
844 	 *  Disabling PFEN makes sure BOF will be used.
845 	 */
846 	if (np->features & FE_ERL)
847 		np->rv_dmode	|= ERL;		/* Enable Read Line */
848 	if (np->features & FE_BOF)
849 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
850 	if (np->features & FE_ERMP)
851 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
852 #if 1
853 	if ((np->features & FE_PFEN) && !np->ram_ba)
854 #else
855 	if (np->features & FE_PFEN)
856 #endif
857 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
858 	if (np->features & FE_CLSE)
859 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
860 	if (np->features & FE_WRIE)
861 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
862 	if (np->features & FE_DFS)
863 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
864 
865 	/*
866 	 *  Select some other
867 	 */
868 	np->rv_ctest4	|= MPEE; /* Master parity checking */
869 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
870 
871 	/*
872 	 *  Get parity checking, host ID and verbose mode from NVRAM
873 	 */
874 	np->myaddr = 255;
875 	sym_nvram_setup_host(shost, np, nvram);
876 
877 	/*
878 	 *  Get SCSI addr of host adapter (set by bios?).
879 	 */
880 	if (np->myaddr == 255) {
881 		np->myaddr = INB(np, nc_scid) & 0x07;
882 		if (!np->myaddr)
883 			np->myaddr = SYM_SETUP_HOST_ID;
884 	}
885 
886 	/*
887 	 *  Prepare initial io register bits for burst length
888 	 */
889 	sym_init_burst(np, burst_max);
890 
891 	/*
892 	 *  Set SCSI BUS mode.
893 	 *  - LVD capable chips (895/895A/896/1010) report the
894 	 *    current BUS mode through the STEST4 IO register.
895 	 *  - For previous generation chips (825/825A/875),
896 	 *    user has to tell us how to check against HVD,
897 	 *    since a 100% safe algorithm is not possible.
898 	 */
899 	np->scsi_mode = SMODE_SE;
900 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
901 		np->scsi_mode = (np->sv_stest4 & SMODE);
902 	else if	(np->features & FE_DIFF) {
903 		if (SYM_SETUP_SCSI_DIFF == 1) {
904 			if (np->sv_scntl3) {
905 				if (np->sv_stest2 & 0x20)
906 					np->scsi_mode = SMODE_HVD;
907 			}
908 			else if (nvram->type == SYM_SYMBIOS_NVRAM) {
909 				if (!(INB(np, nc_gpreg) & 0x08))
910 					np->scsi_mode = SMODE_HVD;
911 			}
912 		}
913 		else if	(SYM_SETUP_SCSI_DIFF == 2)
914 			np->scsi_mode = SMODE_HVD;
915 	}
916 	if (np->scsi_mode == SMODE_HVD)
917 		np->rv_stest2 |= 0x20;
918 
919 	/*
920 	 *  Set LED support from SCRIPTS.
921 	 *  Ignore this feature for boards known to use a
922 	 *  specific GPIO wiring and for the 895A, 896
923 	 *  and 1010 that drive the LED directly.
924 	 */
925 	if ((SYM_SETUP_SCSI_LED ||
926 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
927 	      (nvram->type == SYM_TEKRAM_NVRAM &&
928 	       np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
929 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
930 		np->features |= FE_LED0;
931 
932 	/*
933 	 *  Set irq mode.
934 	 */
935 	switch(SYM_SETUP_IRQ_MODE & 3) {
936 	case 2:
937 		np->rv_dcntl	|= IRQM;
938 		break;
939 	case 1:
940 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
941 		break;
942 	default:
943 		break;
944 	}
945 
946 	/*
947 	 *  Configure targets according to driver setup.
948 	 *  If NVRAM present get targets setup from NVRAM.
949 	 */
950 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
951 		struct sym_tcb *tp = &np->target[i];
952 
953 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
954 		tp->usrtags = SYM_SETUP_MAX_TAG;
955 
956 		sym_nvram_setup_target(np, i, nvram);
957 
958 		if (!tp->usrtags)
959 			tp->usrflags &= ~SYM_TAGS_ENABLED;
960 	}
961 
962 	/*
963 	 *  Let user know about the settings.
964 	 */
965 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
966 		sym_nvram_type(nvram), np->myaddr,
967 		(np->features & FE_ULTRA3) ? 80 :
968 		(np->features & FE_ULTRA2) ? 40 :
969 		(np->features & FE_ULTRA)  ? 20 : 10,
970 		sym_scsi_bus_mode(np->scsi_mode),
971 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
972 	/*
973 	 *  Tell him more on demand.
974 	 */
975 	if (sym_verbose) {
976 		printf("%s: %s IRQ line driver%s\n",
977 			sym_name(np),
978 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
979 			np->ram_ba ? ", using on-chip SRAM" : "");
980 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
981 		if (np->features & FE_NOPM)
982 			printf("%s: handling phase mismatch from SCRIPTS.\n",
983 			       sym_name(np));
984 	}
985 	/*
986 	 *  And still more.
987 	 */
988 	if (sym_verbose >= 2) {
989 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
990 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
991 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
992 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
993 
994 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
995 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
996 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
997 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
998 	}
999 	/*
1000 	 *  Let user be aware of targets that have some disable flags set.
1001 	 */
1002 	sym_print_targets_flag(np, SYM_SCAN_BOOT_DISABLED, "SCAN AT BOOT");
1003 	if (sym_verbose)
1004 		sym_print_targets_flag(np, SYM_SCAN_LUNS_DISABLED,
1005 				       "SCAN FOR LUNS");
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  *  Test the pci bus snoop logic :-(
1012  *
1013  *  Has to be called with interrupts disabled.
1014  */
1015 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1016 static int sym_regtest (struct sym_hcb *np)
1017 {
1018 	register volatile u32 data;
1019 	/*
1020 	 *  chip registers may NOT be cached.
1021 	 *  write 0xffffffff to a read only register area,
1022 	 *  and try to read it back.
1023 	 */
1024 	data = 0xffffffff;
1025 	OUTL(np, nc_dstat, data);
1026 	data = INL(np, nc_dstat);
1027 #if 1
1028 	if (data == 0xffffffff) {
1029 #else
1030 	if ((data & 0xe2f0fffd) != 0x02000080) {
1031 #endif
1032 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1033 			(unsigned) data);
1034 		return (0x10);
1035 	}
1036 	return (0);
1037 }
1038 #endif
1039 
1040 static int sym_snooptest (struct sym_hcb *np)
1041 {
1042 	u32	sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1043 	int	i, err=0;
1044 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1045 	err |= sym_regtest (np);
1046 	if (err) return (err);
1047 #endif
1048 restart_test:
1049 	/*
1050 	 *  Enable Master Parity Checking as we intend
1051 	 *  to enable it for normal operations.
1052 	 */
1053 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1054 	/*
1055 	 *  init
1056 	 */
1057 	pc  = SCRIPTZ_BA(np, snooptest);
1058 	host_wr = 1;
1059 	sym_wr  = 2;
1060 	/*
1061 	 *  Set memory and register.
1062 	 */
1063 	np->scratch = cpu_to_scr(host_wr);
1064 	OUTL(np, nc_temp, sym_wr);
1065 	/*
1066 	 *  Start script (exchange values)
1067 	 */
1068 	OUTL(np, nc_dsa, np->hcb_ba);
1069 	OUTL_DSP(np, pc);
1070 	/*
1071 	 *  Wait 'til done (with timeout)
1072 	 */
1073 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1074 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1075 			break;
1076 	if (i>=SYM_SNOOP_TIMEOUT) {
1077 		printf ("CACHE TEST FAILED: timeout.\n");
1078 		return (0x20);
1079 	}
1080 	/*
1081 	 *  Check for fatal DMA errors.
1082 	 */
1083 	dstat = INB(np, nc_dstat);
1084 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1085 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1086 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1087 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1088 			sym_name(np));
1089 		np->rv_ctest4 &= ~MPEE;
1090 		goto restart_test;
1091 	}
1092 #endif
1093 	if (dstat & (MDPE|BF|IID)) {
1094 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1095 		return (0x80);
1096 	}
1097 	/*
1098 	 *  Save termination position.
1099 	 */
1100 	pc = INL(np, nc_dsp);
1101 	/*
1102 	 *  Read memory and register.
1103 	 */
1104 	host_rd = scr_to_cpu(np->scratch);
1105 	sym_rd  = INL(np, nc_scratcha);
1106 	sym_bk  = INL(np, nc_temp);
1107 	/*
1108 	 *  Check termination position.
1109 	 */
1110 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1111 		printf ("CACHE TEST FAILED: script execution failed.\n");
1112 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1113 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1114 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1115 		return (0x40);
1116 	}
1117 	/*
1118 	 *  Show results.
1119 	 */
1120 	if (host_wr != sym_rd) {
1121 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1122 			(int) host_wr, (int) sym_rd);
1123 		err |= 1;
1124 	}
1125 	if (host_rd != sym_wr) {
1126 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1127 			(int) sym_wr, (int) host_rd);
1128 		err |= 2;
1129 	}
1130 	if (sym_bk != sym_wr) {
1131 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1132 			(int) sym_wr, (int) sym_bk);
1133 		err |= 4;
1134 	}
1135 
1136 	return (err);
1137 }
1138 
1139 /*
1140  *  log message for real hard errors
1141  *
1142  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1143  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1144  *
1145  *  exception register:
1146  *  	ds:	dstat
1147  *  	si:	sist
1148  *
1149  *  SCSI bus lines:
1150  *  	so:	control lines as driven by chip.
1151  *  	si:	control lines as seen by chip.
1152  *  	sd:	scsi data lines as seen by chip.
1153  *
1154  *  wide/fastmode:
1155  *  	sx:	sxfer  (see the manual)
1156  *  	s3:	scntl3 (see the manual)
1157  *  	s4:	scntl4 (see the manual)
1158  *
1159  *  current script command:
1160  *  	dsp:	script address (relative to start of script).
1161  *  	dbc:	first word of script command.
1162  *
1163  *  First 24 register of the chip:
1164  *  	r0..rf
1165  */
1166 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1167 {
1168 	u32	dsp;
1169 	int	script_ofs;
1170 	int	script_size;
1171 	char	*script_name;
1172 	u_char	*script_base;
1173 	int	i;
1174 
1175 	dsp	= INL(np, nc_dsp);
1176 
1177 	if	(dsp > np->scripta_ba &&
1178 		 dsp <= np->scripta_ba + np->scripta_sz) {
1179 		script_ofs	= dsp - np->scripta_ba;
1180 		script_size	= np->scripta_sz;
1181 		script_base	= (u_char *) np->scripta0;
1182 		script_name	= "scripta";
1183 	}
1184 	else if (np->scriptb_ba < dsp &&
1185 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1186 		script_ofs	= dsp - np->scriptb_ba;
1187 		script_size	= np->scriptb_sz;
1188 		script_base	= (u_char *) np->scriptb0;
1189 		script_name	= "scriptb";
1190 	} else {
1191 		script_ofs	= dsp;
1192 		script_size	= 0;
1193 		script_base	= NULL;
1194 		script_name	= "mem";
1195 	}
1196 
1197 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1198 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1199 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1200 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1201 		(unsigned)INB(np, nc_scntl3),
1202 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1203 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1204 
1205 	if (((script_ofs & 3) == 0) &&
1206 	    (unsigned)script_ofs < script_size) {
1207 		printf ("%s: script cmd = %08x\n", sym_name(np),
1208 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1209 	}
1210 
1211         printf ("%s: regdump:", sym_name(np));
1212         for (i=0; i<24;i++)
1213             printf (" %02x", (unsigned)INB_OFF(np, i));
1214         printf (".\n");
1215 
1216 	/*
1217 	 *  PCI BUS error.
1218 	 */
1219 	if (dstat & (MDPE|BF))
1220 		sym_log_bus_error(np);
1221 }
1222 
1223 static struct sym_chip sym_dev_table[] = {
1224  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1225  FE_ERL}
1226  ,
1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1228  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1229  FE_BOF}
1230  ,
1231 #else
1232  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1233  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1234  ,
1235 #endif
1236  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1237  FE_BOF|FE_ERL}
1238  ,
1239  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1240  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1241  ,
1242  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1243  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1244  ,
1245  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1246  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1247  ,
1248  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1249  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1250  FE_RAM|FE_DIFF|FE_VARCLK}
1251  ,
1252  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1253  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1254  FE_RAM|FE_DIFF|FE_VARCLK}
1255  ,
1256  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1257  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1258  FE_RAM|FE_DIFF|FE_VARCLK}
1259  ,
1260  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1261  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1262  FE_RAM|FE_DIFF|FE_VARCLK}
1263  ,
1264 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1265  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1266  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1267  FE_RAM|FE_LCKFRQ}
1268  ,
1269 #else
1270  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1271  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1272  FE_RAM|FE_LCKFRQ}
1273  ,
1274 #endif
1275  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1276  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1277  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1278  ,
1279  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1280  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1281  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1282  ,
1283  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1284  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1285  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1286  ,
1287  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1288  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1289  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1290  FE_C10}
1291  ,
1292  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1293  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1294  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1295  FE_C10|FE_U3EN}
1296  ,
1297  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1298  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1299  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1300  FE_C10|FE_U3EN}
1301  ,
1302  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1303  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1304  FE_RAM|FE_IO256|FE_LEDC}
1305 };
1306 
1307 #define sym_num_devs \
1308 	(sizeof(sym_dev_table) / sizeof(sym_dev_table[0]))
1309 
1310 /*
1311  *  Look up the chip table.
1312  *
1313  *  Return a pointer to the chip entry if found,
1314  *  zero otherwise.
1315  */
1316 struct sym_chip *
1317 sym_lookup_chip_table (u_short device_id, u_char revision)
1318 {
1319 	struct	sym_chip *chip;
1320 	int	i;
1321 
1322 	for (i = 0; i < sym_num_devs; i++) {
1323 		chip = &sym_dev_table[i];
1324 		if (device_id != chip->device_id)
1325 			continue;
1326 		if (revision > chip->revision_id)
1327 			continue;
1328 		return chip;
1329 	}
1330 
1331 	return NULL;
1332 }
1333 
1334 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1335 /*
1336  *  Lookup the 64 bit DMA segments map.
1337  *  This is only used if the direct mapping
1338  *  has been unsuccessful.
1339  */
1340 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1341 {
1342 	int i;
1343 
1344 	if (!np->use_dac)
1345 		goto weird;
1346 
1347 	/* Look up existing mappings */
1348 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1349 		if (h == np->dmap_bah[i])
1350 			return i;
1351 	}
1352 	/* If direct mapping is free, get it */
1353 	if (!np->dmap_bah[s])
1354 		goto new;
1355 	/* Collision -> lookup free mappings */
1356 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1357 		if (!np->dmap_bah[s])
1358 			goto new;
1359 	}
1360 weird:
1361 	panic("sym: ran out of 64 bit DMA segment registers");
1362 	return -1;
1363 new:
1364 	np->dmap_bah[s] = h;
1365 	np->dmap_dirty = 1;
1366 	return s;
1367 }
1368 
1369 /*
1370  *  Update IO registers scratch C..R so they will be
1371  *  in sync. with queued CCB expectations.
1372  */
1373 static void sym_update_dmap_regs(struct sym_hcb *np)
1374 {
1375 	int o, i;
1376 
1377 	if (!np->dmap_dirty)
1378 		return;
1379 	o = offsetof(struct sym_reg, nc_scrx[0]);
1380 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1381 		OUTL_OFF(np, o, np->dmap_bah[i]);
1382 		o += 4;
1383 	}
1384 	np->dmap_dirty = 0;
1385 }
1386 #endif
1387 
1388 /* Enforce all the fiddly SPI rules and the chip limitations */
1389 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1390 		struct sym_trans *goal)
1391 {
1392 	if (!spi_support_wide(starget))
1393 		goal->width = 0;
1394 
1395 	if (!spi_support_sync(starget)) {
1396 		goal->iu = 0;
1397 		goal->dt = 0;
1398 		goal->qas = 0;
1399 		goal->period = 0;
1400 		goal->offset = 0;
1401 		return;
1402 	}
1403 
1404 	if (spi_support_dt(starget)) {
1405 		if (spi_support_dt_only(starget))
1406 			goal->dt = 1;
1407 
1408 		if (goal->offset == 0)
1409 			goal->dt = 0;
1410 	} else {
1411 		goal->dt = 0;
1412 	}
1413 
1414 	/* Some targets fail to properly negotiate DT in SE mode */
1415 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1416 		goal->dt = 0;
1417 
1418 	if (goal->dt) {
1419 		/* all DT transfers must be wide */
1420 		goal->width = 1;
1421 		if (goal->offset > np->maxoffs_dt)
1422 			goal->offset = np->maxoffs_dt;
1423 		if (goal->period < np->minsync_dt)
1424 			goal->period = np->minsync_dt;
1425 		if (goal->period > np->maxsync_dt)
1426 			goal->period = np->maxsync_dt;
1427 	} else {
1428 		goal->iu = goal->qas = 0;
1429 		if (goal->offset > np->maxoffs)
1430 			goal->offset = np->maxoffs;
1431 		if (goal->period < np->minsync)
1432 			goal->period = np->minsync;
1433 		if (goal->period > np->maxsync)
1434 			goal->period = np->maxsync;
1435 	}
1436 }
1437 
1438 /*
1439  *  Prepare the next negotiation message if needed.
1440  *
1441  *  Fill in the part of message buffer that contains the
1442  *  negotiation and the nego_status field of the CCB.
1443  *  Returns the size of the message in bytes.
1444  */
1445 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1446 {
1447 	struct sym_tcb *tp = &np->target[cp->target];
1448 	struct scsi_target *starget = tp->sdev->sdev_target;
1449 	struct sym_trans *goal = &tp->tgoal;
1450 	int msglen = 0;
1451 	int nego;
1452 
1453 	sym_check_goals(np, starget, goal);
1454 
1455 	/*
1456 	 * Many devices implement PPR in a buggy way, so only use it if we
1457 	 * really want to.
1458 	 */
1459 	if (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)) {
1460 		nego = NS_PPR;
1461 	} else if (spi_width(starget) != goal->width) {
1462 		nego = NS_WIDE;
1463 	} else if (spi_period(starget) != goal->period ||
1464 		   spi_offset(starget) != goal->offset) {
1465 		nego = NS_SYNC;
1466 	} else {
1467 		goal->check_nego = 0;
1468 		nego = 0;
1469 	}
1470 
1471 	switch (nego) {
1472 	case NS_SYNC:
1473 		msgptr[msglen++] = M_EXTENDED;
1474 		msgptr[msglen++] = 3;
1475 		msgptr[msglen++] = M_X_SYNC_REQ;
1476 		msgptr[msglen++] = goal->period;
1477 		msgptr[msglen++] = goal->offset;
1478 		break;
1479 	case NS_WIDE:
1480 		msgptr[msglen++] = M_EXTENDED;
1481 		msgptr[msglen++] = 2;
1482 		msgptr[msglen++] = M_X_WIDE_REQ;
1483 		msgptr[msglen++] = goal->width;
1484 		break;
1485 	case NS_PPR:
1486 		msgptr[msglen++] = M_EXTENDED;
1487 		msgptr[msglen++] = 6;
1488 		msgptr[msglen++] = M_X_PPR_REQ;
1489 		msgptr[msglen++] = goal->period;
1490 		msgptr[msglen++] = 0;
1491 		msgptr[msglen++] = goal->offset;
1492 		msgptr[msglen++] = goal->width;
1493 		msgptr[msglen++] = (goal->iu ? PPR_OPT_IU : 0) |
1494 					(goal->dt ? PPR_OPT_DT : 0) |
1495 					(goal->qas ? PPR_OPT_QAS : 0);
1496 		break;
1497 	}
1498 
1499 	cp->nego_status = nego;
1500 
1501 	if (nego) {
1502 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1503 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1504 			sym_print_nego_msg(np, cp->target,
1505 					  nego == NS_SYNC ? "sync msgout" :
1506 					  nego == NS_WIDE ? "wide msgout" :
1507 					  "ppr msgout", msgptr);
1508 		}
1509 	}
1510 
1511 	return msglen;
1512 }
1513 
1514 /*
1515  *  Insert a job into the start queue.
1516  */
1517 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1518 {
1519 	u_short	qidx;
1520 
1521 #ifdef SYM_CONF_IARB_SUPPORT
1522 	/*
1523 	 *  If the previously queued CCB is not yet done,
1524 	 *  set the IARB hint. The SCRIPTS will go with IARB
1525 	 *  for this job when starting the previous one.
1526 	 *  We leave devices a chance to win arbitration by
1527 	 *  not using more than 'iarb_max' consecutive
1528 	 *  immediate arbitrations.
1529 	 */
1530 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1531 		np->last_cp->host_flags |= HF_HINT_IARB;
1532 		++np->iarb_count;
1533 	}
1534 	else
1535 		np->iarb_count = 0;
1536 	np->last_cp = cp;
1537 #endif
1538 
1539 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1540 	/*
1541 	 *  Make SCRIPTS aware of the 64 bit DMA
1542 	 *  segment registers not being up-to-date.
1543 	 */
1544 	if (np->dmap_dirty)
1545 		cp->host_xflags |= HX_DMAP_DIRTY;
1546 #endif
1547 
1548 	/*
1549 	 *  Insert first the idle task and then our job.
1550 	 *  The MBs should ensure proper ordering.
1551 	 */
1552 	qidx = np->squeueput + 2;
1553 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1554 
1555 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1556 	MEMORY_WRITE_BARRIER();
1557 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1558 
1559 	np->squeueput = qidx;
1560 
1561 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1562 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1563 
1564 	/*
1565 	 *  Script processor may be waiting for reselect.
1566 	 *  Wake it up.
1567 	 */
1568 	MEMORY_WRITE_BARRIER();
1569 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1570 }
1571 
1572 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1573 /*
1574  *  Start next ready-to-start CCBs.
1575  */
1576 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1577 {
1578 	SYM_QUEHEAD *qp;
1579 	struct sym_ccb *cp;
1580 
1581 	/*
1582 	 *  Paranoia, as usual. :-)
1583 	 */
1584 	assert(!lp->started_tags || !lp->started_no_tag);
1585 
1586 	/*
1587 	 *  Try to start as many commands as asked by caller.
1588 	 *  Prevent from having both tagged and untagged
1589 	 *  commands queued to the device at the same time.
1590 	 */
1591 	while (maxn--) {
1592 		qp = sym_remque_head(&lp->waiting_ccbq);
1593 		if (!qp)
1594 			break;
1595 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1596 		if (cp->tag != NO_TAG) {
1597 			if (lp->started_no_tag ||
1598 			    lp->started_tags >= lp->started_max) {
1599 				sym_insque_head(qp, &lp->waiting_ccbq);
1600 				break;
1601 			}
1602 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1603 			lp->head.resel_sa =
1604 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1605 			++lp->started_tags;
1606 		} else {
1607 			if (lp->started_no_tag || lp->started_tags) {
1608 				sym_insque_head(qp, &lp->waiting_ccbq);
1609 				break;
1610 			}
1611 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1612 			lp->head.resel_sa =
1613 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1614 			++lp->started_no_tag;
1615 		}
1616 		cp->started = 1;
1617 		sym_insque_tail(qp, &lp->started_ccbq);
1618 		sym_put_start_queue(np, cp);
1619 	}
1620 }
1621 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1622 
1623 /*
1624  *  The chip may have completed jobs. Look at the DONE QUEUE.
1625  *
1626  *  On paper, memory read barriers may be needed here to
1627  *  prevent out of order LOADs by the CPU from having
1628  *  prefetched stale data prior to DMA having occurred.
1629  */
1630 static int sym_wakeup_done (struct sym_hcb *np)
1631 {
1632 	struct sym_ccb *cp;
1633 	int i, n;
1634 	u32 dsa;
1635 
1636 	n = 0;
1637 	i = np->dqueueget;
1638 
1639 	/* MEMORY_READ_BARRIER(); */
1640 	while (1) {
1641 		dsa = scr_to_cpu(np->dqueue[i]);
1642 		if (!dsa)
1643 			break;
1644 		np->dqueue[i] = 0;
1645 		if ((i = i+2) >= MAX_QUEUE*2)
1646 			i = 0;
1647 
1648 		cp = sym_ccb_from_dsa(np, dsa);
1649 		if (cp) {
1650 			MEMORY_READ_BARRIER();
1651 			sym_complete_ok (np, cp);
1652 			++n;
1653 		}
1654 		else
1655 			printf ("%s: bad DSA (%x) in done queue.\n",
1656 				sym_name(np), (u_int) dsa);
1657 	}
1658 	np->dqueueget = i;
1659 
1660 	return n;
1661 }
1662 
1663 /*
1664  *  Complete all CCBs queued to the COMP queue.
1665  *
1666  *  These CCBs are assumed:
1667  *  - Not to be referenced either by devices or
1668  *    SCRIPTS-related queues and datas.
1669  *  - To have to be completed with an error condition
1670  *    or requeued.
1671  *
1672  *  The device queue freeze count is incremented
1673  *  for each CCB that does not prevent this.
1674  *  This function is called when all CCBs involved
1675  *  in error handling/recovery have been reaped.
1676  */
1677 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1678 {
1679 	SYM_QUEHEAD *qp;
1680 	struct sym_ccb *cp;
1681 
1682 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1683 		struct scsi_cmnd *cmd;
1684 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1685 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1686 		/* Leave quiet CCBs waiting for resources */
1687 		if (cp->host_status == HS_WAIT)
1688 			continue;
1689 		cmd = cp->cmd;
1690 		if (cam_status)
1691 			sym_set_cam_status(cmd, cam_status);
1692 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1693 		if (sym_get_cam_status(cmd) == CAM_REQUEUE_REQ) {
1694 			struct sym_tcb *tp = &np->target[cp->target];
1695 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1696 			if (lp) {
1697 				sym_remque(&cp->link2_ccbq);
1698 				sym_insque_tail(&cp->link2_ccbq,
1699 				                &lp->waiting_ccbq);
1700 				if (cp->started) {
1701 					if (cp->tag != NO_TAG)
1702 						--lp->started_tags;
1703 					else
1704 						--lp->started_no_tag;
1705 				}
1706 			}
1707 			cp->started = 0;
1708 			continue;
1709 		}
1710 #endif
1711 		sym_free_ccb(np, cp);
1712 		sym_xpt_done(np, cmd);
1713 	}
1714 }
1715 
1716 /*
1717  *  Complete all active CCBs with error.
1718  *  Used on CHIP/SCSI RESET.
1719  */
1720 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1721 {
1722 	/*
1723 	 *  Move all active CCBs to the COMP queue
1724 	 *  and flush this queue.
1725 	 */
1726 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1727 	sym_que_init(&np->busy_ccbq);
1728 	sym_flush_comp_queue(np, cam_status);
1729 }
1730 
1731 /*
1732  *  Start chip.
1733  *
1734  *  'reason' means:
1735  *     0: initialisation.
1736  *     1: SCSI BUS RESET delivered or received.
1737  *     2: SCSI BUS MODE changed.
1738  */
1739 void sym_start_up (struct sym_hcb *np, int reason)
1740 {
1741  	int	i;
1742 	u32	phys;
1743 
1744  	/*
1745 	 *  Reset chip if asked, otherwise just clear fifos.
1746  	 */
1747 	if (reason == 1)
1748 		sym_soft_reset(np);
1749 	else {
1750 		OUTB(np, nc_stest3, TE|CSF);
1751 		OUTONB(np, nc_ctest3, CLF);
1752 	}
1753 
1754 	/*
1755 	 *  Clear Start Queue
1756 	 */
1757 	phys = np->squeue_ba;
1758 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1759 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1760 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1761 	}
1762 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1763 
1764 	/*
1765 	 *  Start at first entry.
1766 	 */
1767 	np->squeueput = 0;
1768 
1769 	/*
1770 	 *  Clear Done Queue
1771 	 */
1772 	phys = np->dqueue_ba;
1773 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1774 		np->dqueue[i]   = 0;
1775 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1776 	}
1777 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1778 
1779 	/*
1780 	 *  Start at first entry.
1781 	 */
1782 	np->dqueueget = 0;
1783 
1784 	/*
1785 	 *  Install patches in scripts.
1786 	 *  This also let point to first position the start
1787 	 *  and done queue pointers used from SCRIPTS.
1788 	 */
1789 	np->fw_patch(np);
1790 
1791 	/*
1792 	 *  Wakeup all pending jobs.
1793 	 */
1794 	sym_flush_busy_queue(np, CAM_SCSI_BUS_RESET);
1795 
1796 	/*
1797 	 *  Init chip.
1798 	 */
1799 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1800 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1801 
1802 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1803 					/*  full arb., ena parity, par->ATN  */
1804 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1805 
1806 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1807 
1808 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1809 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1810 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1811 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1812 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1813 
1814 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1815 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1816 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1817 
1818 	/* Extended Sreq/Sack filtering not supported on the C10 */
1819 	if (np->features & FE_C10)
1820 		OUTB(np, nc_stest2, np->rv_stest2);
1821 	else
1822 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1823 
1824 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1825 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1826 
1827 	/*
1828 	 *  For now, disable AIP generation on C1010-66.
1829 	 */
1830 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1831 		OUTB(np, nc_aipcntl1, DISAIP);
1832 
1833 	/*
1834 	 *  C10101 rev. 0 errata.
1835 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1836 	 *  STEST1 register to disable SGE. We probably should do
1837 	 *  that from SCRIPTS for each selection/reselection, but
1838 	 *  I just don't want. :)
1839 	 */
1840 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1841 	    np->revision_id < 1)
1842 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1843 
1844 	/*
1845 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1846 	 *  Disable overlapped arbitration for some dual function devices,
1847 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1848 	 */
1849 	if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1850 		OUTB(np, nc_ctest0, (1<<5));
1851 	else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1852 		np->rv_ccntl0 |= DPR;
1853 
1854 	/*
1855 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1856 	 *  and/or hardware phase mismatch, since only such chips
1857 	 *  seem to support those IO registers.
1858 	 */
1859 	if (np->features & (FE_DAC|FE_NOPM)) {
1860 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1861 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1862 	}
1863 
1864 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1865 	/*
1866 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1867 	 *  DMA address range our data structures are located in.
1868 	 */
1869 	if (np->use_dac) {
1870 		np->dmap_bah[0] = 0;	/* ??? */
1871 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1872 		OUTL(np, nc_drs, np->dmap_bah[0]);
1873 	}
1874 #endif
1875 
1876 	/*
1877 	 *  If phase mismatch handled by scripts (895A/896/1010),
1878 	 *  set PM jump addresses.
1879 	 */
1880 	if (np->features & FE_NOPM) {
1881 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1882 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1883 	}
1884 
1885 	/*
1886 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1887 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1888 	 */
1889 	if (np->features & FE_LED0)
1890 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1891 	else if (np->features & FE_LEDC)
1892 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1893 
1894 	/*
1895 	 *      enable ints
1896 	 */
1897 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1898 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1899 
1900 	/*
1901 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1902 	 *  Try to eat the spurious SBMC interrupt that may occur when
1903 	 *  we reset the chip but not the SCSI BUS (at initialization).
1904 	 */
1905 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1906 		OUTONW(np, nc_sien, SBMC);
1907 		if (reason == 0) {
1908 			mdelay(100);
1909 			INW(np, nc_sist);
1910 		}
1911 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1912 	}
1913 
1914 	/*
1915 	 *  Fill in target structure.
1916 	 *  Reinitialize usrsync.
1917 	 *  Reinitialize usrwide.
1918 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1919 	 */
1920 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1921 		struct sym_tcb *tp = &np->target[i];
1922 
1923 		tp->to_reset  = 0;
1924 		tp->head.sval = 0;
1925 		tp->head.wval = np->rv_scntl3;
1926 		tp->head.uval = 0;
1927 	}
1928 
1929 	/*
1930 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1931 	 *  and start script processor.
1932 	 *  We do the download preferently from the CPU.
1933 	 *  For platforms that may not support PCI memory mapping,
1934 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1935 	 */
1936 	phys = SCRIPTA_BA(np, init);
1937 	if (np->ram_ba) {
1938 		if (sym_verbose >= 2)
1939 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1940 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1941 		if (np->ram_ws == 8192) {
1942 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1943 			phys = scr_to_cpu(np->scr_ram_seg);
1944 			OUTL(np, nc_mmws, phys);
1945 			OUTL(np, nc_mmrs, phys);
1946 			OUTL(np, nc_sfs,  phys);
1947 			phys = SCRIPTB_BA(np, start64);
1948 		}
1949 	}
1950 
1951 	np->istat_sem = 0;
1952 
1953 	OUTL(np, nc_dsa, np->hcb_ba);
1954 	OUTL_DSP(np, phys);
1955 
1956 	/*
1957 	 *  Notify the XPT about the RESET condition.
1958 	 */
1959 	if (reason != 0)
1960 		sym_xpt_async_bus_reset(np);
1961 }
1962 
1963 /*
1964  *  Switch trans mode for current job and its target.
1965  */
1966 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1967 			 u_char per, u_char wide, u_char div, u_char fak)
1968 {
1969 	SYM_QUEHEAD *qp;
1970 	u_char sval, wval, uval;
1971 	struct sym_tcb *tp = &np->target[target];
1972 
1973 	assert(target == (INB(np, nc_sdid) & 0x0f));
1974 
1975 	sval = tp->head.sval;
1976 	wval = tp->head.wval;
1977 	uval = tp->head.uval;
1978 
1979 #if 0
1980 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1981 		sval, wval, uval, np->rv_scntl3);
1982 #endif
1983 	/*
1984 	 *  Set the offset.
1985 	 */
1986 	if (!(np->features & FE_C10))
1987 		sval = (sval & ~0x1f) | ofs;
1988 	else
1989 		sval = (sval & ~0x3f) | ofs;
1990 
1991 	/*
1992 	 *  Set the sync divisor and extra clock factor.
1993 	 */
1994 	if (ofs != 0) {
1995 		wval = (wval & ~0x70) | ((div+1) << 4);
1996 		if (!(np->features & FE_C10))
1997 			sval = (sval & ~0xe0) | (fak << 5);
1998 		else {
1999 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
2000 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
2001 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
2002 		}
2003 	}
2004 
2005 	/*
2006 	 *  Set the bus width.
2007 	 */
2008 	wval = wval & ~EWS;
2009 	if (wide != 0)
2010 		wval |= EWS;
2011 
2012 	/*
2013 	 *  Set misc. ultra enable bits.
2014 	 */
2015 	if (np->features & FE_C10) {
2016 		uval = uval & ~(U3EN|AIPCKEN);
2017 		if (opts)	{
2018 			assert(np->features & FE_U3EN);
2019 			uval |= U3EN;
2020 		}
2021 	} else {
2022 		wval = wval & ~ULTRA;
2023 		if (per <= 12)	wval |= ULTRA;
2024 	}
2025 
2026 	/*
2027 	 *   Stop there if sync parameters are unchanged.
2028 	 */
2029 	if (tp->head.sval == sval &&
2030 	    tp->head.wval == wval &&
2031 	    tp->head.uval == uval)
2032 		return;
2033 	tp->head.sval = sval;
2034 	tp->head.wval = wval;
2035 	tp->head.uval = uval;
2036 
2037 	/*
2038 	 *  Disable extended Sreq/Sack filtering if per < 50.
2039 	 *  Not supported on the C1010.
2040 	 */
2041 	if (per < 50 && !(np->features & FE_C10))
2042 		OUTOFFB(np, nc_stest2, EXT);
2043 
2044 	/*
2045 	 *  set actual value and sync_status
2046 	 */
2047 	OUTB(np, nc_sxfer,  tp->head.sval);
2048 	OUTB(np, nc_scntl3, tp->head.wval);
2049 
2050 	if (np->features & FE_C10) {
2051 		OUTB(np, nc_scntl4, tp->head.uval);
2052 	}
2053 
2054 	/*
2055 	 *  patch ALL busy ccbs of this target.
2056 	 */
2057 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2058 		struct sym_ccb *cp;
2059 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2060 		if (cp->target != target)
2061 			continue;
2062 		cp->phys.select.sel_scntl3 = tp->head.wval;
2063 		cp->phys.select.sel_sxfer  = tp->head.sval;
2064 		if (np->features & FE_C10) {
2065 			cp->phys.select.sel_scntl4 = tp->head.uval;
2066 		}
2067 	}
2068 }
2069 
2070 /*
2071  *  We received a WDTR.
2072  *  Let everything be aware of the changes.
2073  */
2074 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2075 {
2076 	struct sym_tcb *tp = &np->target[target];
2077 	struct scsi_target *starget = tp->sdev->sdev_target;
2078 
2079 	if (spi_width(starget) == wide)
2080 		return;
2081 
2082 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2083 
2084 	tp->tgoal.width = wide;
2085 	spi_offset(starget) = 0;
2086 	spi_period(starget) = 0;
2087 	spi_width(starget) = wide;
2088 	spi_iu(starget) = 0;
2089 	spi_dt(starget) = 0;
2090 	spi_qas(starget) = 0;
2091 
2092 	if (sym_verbose >= 3)
2093 		spi_display_xfer_agreement(starget);
2094 }
2095 
2096 /*
2097  *  We received a SDTR.
2098  *  Let everything be aware of the changes.
2099  */
2100 static void
2101 sym_setsync(struct sym_hcb *np, int target,
2102             u_char ofs, u_char per, u_char div, u_char fak)
2103 {
2104 	struct sym_tcb *tp = &np->target[target];
2105 	struct scsi_target *starget = tp->sdev->sdev_target;
2106 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2107 
2108 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2109 
2110 	spi_period(starget) = per;
2111 	spi_offset(starget) = ofs;
2112 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2113 
2114 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2115 		tp->tgoal.period = per;
2116 		tp->tgoal.offset = ofs;
2117 		tp->tgoal.check_nego = 0;
2118 	}
2119 
2120 	spi_display_xfer_agreement(starget);
2121 }
2122 
2123 /*
2124  *  We received a PPR.
2125  *  Let everything be aware of the changes.
2126  */
2127 static void
2128 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2129              u_char per, u_char wide, u_char div, u_char fak)
2130 {
2131 	struct sym_tcb *tp = &np->target[target];
2132 	struct scsi_target *starget = tp->sdev->sdev_target;
2133 
2134 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2135 
2136 	spi_width(starget) = tp->tgoal.width = wide;
2137 	spi_period(starget) = tp->tgoal.period = per;
2138 	spi_offset(starget) = tp->tgoal.offset = ofs;
2139 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2140 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2141 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2142 	tp->tgoal.check_nego = 0;
2143 
2144 	spi_display_xfer_agreement(starget);
2145 }
2146 
2147 /*
2148  *  generic recovery from scsi interrupt
2149  *
2150  *  The doc says that when the chip gets an SCSI interrupt,
2151  *  it tries to stop in an orderly fashion, by completing
2152  *  an instruction fetch that had started or by flushing
2153  *  the DMA fifo for a write to memory that was executing.
2154  *  Such a fashion is not enough to know if the instruction
2155  *  that was just before the current DSP value has been
2156  *  executed or not.
2157  *
2158  *  There are some small SCRIPTS sections that deal with
2159  *  the start queue and the done queue that may break any
2160  *  assomption from the C code if we are interrupted
2161  *  inside, so we reset if this happens. Btw, since these
2162  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2163  *  started SCSI operations, it is very unlikely to happen.
2164  *
2165  *  All the driver data structures are supposed to be
2166  *  allocated from the same 4 GB memory window, so there
2167  *  is a 1 to 1 relationship between DSA and driver data
2168  *  structures. Since we are careful :) to invalidate the
2169  *  DSA when we complete a command or when the SCRIPTS
2170  *  pushes a DSA into a queue, we can trust it when it
2171  *  points to a CCB.
2172  */
2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2174 {
2175 	u32	dsp	= INL(np, nc_dsp);
2176 	u32	dsa	= INL(np, nc_dsa);
2177 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2178 
2179 	/*
2180 	 *  If we haven't been interrupted inside the SCRIPTS
2181 	 *  critical pathes, we can safely restart the SCRIPTS
2182 	 *  and trust the DSA value if it matches a CCB.
2183 	 */
2184 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2185 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2186 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2187 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2188 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2189 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2190 	    (!(dsp > SCRIPTA_BA(np, done) &&
2191 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2192 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2193 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2194 		/*
2195 		 *  If we have a CCB, let the SCRIPTS call us back for
2196 		 *  the handling of the error with SCRATCHA filled with
2197 		 *  STARTPOS. This way, we will be able to freeze the
2198 		 *  device queue and requeue awaiting IOs.
2199 		 */
2200 		if (cp) {
2201 			cp->host_status = hsts;
2202 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2203 		}
2204 		/*
2205 		 *  Otherwise just restart the SCRIPTS.
2206 		 */
2207 		else {
2208 			OUTL(np, nc_dsa, 0xffffff);
2209 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2210 		}
2211 	}
2212 	else
2213 		goto reset_all;
2214 
2215 	return;
2216 
2217 reset_all:
2218 	sym_start_reset(np);
2219 }
2220 
2221 /*
2222  *  chip exception handler for selection timeout
2223  */
2224 static void sym_int_sto (struct sym_hcb *np)
2225 {
2226 	u32 dsp	= INL(np, nc_dsp);
2227 
2228 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2229 
2230 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2231 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2232 	else
2233 		sym_start_reset(np);
2234 }
2235 
2236 /*
2237  *  chip exception handler for unexpected disconnect
2238  */
2239 static void sym_int_udc (struct sym_hcb *np)
2240 {
2241 	printf ("%s: unexpected disconnect\n", sym_name(np));
2242 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2243 }
2244 
2245 /*
2246  *  chip exception handler for SCSI bus mode change
2247  *
2248  *  spi2-r12 11.2.3 says a transceiver mode change must
2249  *  generate a reset event and a device that detects a reset
2250  *  event shall initiate a hard reset. It says also that a
2251  *  device that detects a mode change shall set data transfer
2252  *  mode to eight bit asynchronous, etc...
2253  *  So, just reinitializing all except chip should be enough.
2254  */
2255 static void sym_int_sbmc (struct sym_hcb *np)
2256 {
2257 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2258 
2259 	/*
2260 	 *  Notify user.
2261 	 */
2262 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2263 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2264 
2265 	/*
2266 	 *  Should suspend command processing for a few seconds and
2267 	 *  reinitialize all except the chip.
2268 	 */
2269 	sym_start_up (np, 2);
2270 }
2271 
2272 /*
2273  *  chip exception handler for SCSI parity error.
2274  *
2275  *  When the chip detects a SCSI parity error and is
2276  *  currently executing a (CH)MOV instruction, it does
2277  *  not interrupt immediately, but tries to finish the
2278  *  transfer of the current scatter entry before
2279  *  interrupting. The following situations may occur:
2280  *
2281  *  - The complete scatter entry has been transferred
2282  *    without the device having changed phase.
2283  *    The chip will then interrupt with the DSP pointing
2284  *    to the instruction that follows the MOV.
2285  *
2286  *  - A phase mismatch occurs before the MOV finished
2287  *    and phase errors are to be handled by the C code.
2288  *    The chip will then interrupt with both PAR and MA
2289  *    conditions set.
2290  *
2291  *  - A phase mismatch occurs before the MOV finished and
2292  *    phase errors are to be handled by SCRIPTS.
2293  *    The chip will load the DSP with the phase mismatch
2294  *    JUMP address and interrupt the host processor.
2295  */
2296 static void sym_int_par (struct sym_hcb *np, u_short sist)
2297 {
2298 	u_char	hsts	= INB(np, HS_PRT);
2299 	u32	dsp	= INL(np, nc_dsp);
2300 	u32	dbc	= INL(np, nc_dbc);
2301 	u32	dsa	= INL(np, nc_dsa);
2302 	u_char	sbcl	= INB(np, nc_sbcl);
2303 	u_char	cmd	= dbc >> 24;
2304 	int phase	= cmd & 7;
2305 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2306 
2307 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2308 		sym_name(np), hsts, dbc, sbcl);
2309 
2310 	/*
2311 	 *  Check that the chip is connected to the SCSI BUS.
2312 	 */
2313 	if (!(INB(np, nc_scntl1) & ISCON)) {
2314 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2315 		return;
2316 	}
2317 
2318 	/*
2319 	 *  If the nexus is not clearly identified, reset the bus.
2320 	 *  We will try to do better later.
2321 	 */
2322 	if (!cp)
2323 		goto reset_all;
2324 
2325 	/*
2326 	 *  Check instruction was a MOV, direction was INPUT and
2327 	 *  ATN is asserted.
2328 	 */
2329 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2330 		goto reset_all;
2331 
2332 	/*
2333 	 *  Keep track of the parity error.
2334 	 */
2335 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2336 	cp->xerr_status |= XE_PARITY_ERR;
2337 
2338 	/*
2339 	 *  Prepare the message to send to the device.
2340 	 */
2341 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2342 
2343 	/*
2344 	 *  If the old phase was DATA IN phase, we have to deal with
2345 	 *  the 3 situations described above.
2346 	 *  For other input phases (MSG IN and STATUS), the device
2347 	 *  must resend the whole thing that failed parity checking
2348 	 *  or signal error. So, jumping to dispatcher should be OK.
2349 	 */
2350 	if (phase == 1 || phase == 5) {
2351 		/* Phase mismatch handled by SCRIPTS */
2352 		if (dsp == SCRIPTB_BA(np, pm_handle))
2353 			OUTL_DSP(np, dsp);
2354 		/* Phase mismatch handled by the C code */
2355 		else if (sist & MA)
2356 			sym_int_ma (np);
2357 		/* No phase mismatch occurred */
2358 		else {
2359 			sym_set_script_dp (np, cp, dsp);
2360 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2361 		}
2362 	}
2363 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2364 #if 1				/* in message-in phase due to the relection  */
2365 		goto reset_all; /* path and various message anticipations.   */
2366 #else
2367 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2368 #endif
2369 	else
2370 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2371 	return;
2372 
2373 reset_all:
2374 	sym_start_reset(np);
2375 	return;
2376 }
2377 
2378 /*
2379  *  chip exception handler for phase errors.
2380  *
2381  *  We have to construct a new transfer descriptor,
2382  *  to transfer the rest of the current block.
2383  */
2384 static void sym_int_ma (struct sym_hcb *np)
2385 {
2386 	u32	dbc;
2387 	u32	rest;
2388 	u32	dsp;
2389 	u32	dsa;
2390 	u32	nxtdsp;
2391 	u32	*vdsp;
2392 	u32	oadr, olen;
2393 	u32	*tblp;
2394         u32	newcmd;
2395 	u_int	delta;
2396 	u_char	cmd;
2397 	u_char	hflags, hflags0;
2398 	struct	sym_pmc *pm;
2399 	struct sym_ccb *cp;
2400 
2401 	dsp	= INL(np, nc_dsp);
2402 	dbc	= INL(np, nc_dbc);
2403 	dsa	= INL(np, nc_dsa);
2404 
2405 	cmd	= dbc >> 24;
2406 	rest	= dbc & 0xffffff;
2407 	delta	= 0;
2408 
2409 	/*
2410 	 *  locate matching cp if any.
2411 	 */
2412 	cp = sym_ccb_from_dsa(np, dsa);
2413 
2414 	/*
2415 	 *  Donnot take into account dma fifo and various buffers in
2416 	 *  INPUT phase since the chip flushes everything before
2417 	 *  raising the MA interrupt for interrupted INPUT phases.
2418 	 *  For DATA IN phase, we will check for the SWIDE later.
2419 	 */
2420 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2421 		u_char ss0, ss2;
2422 
2423 		if (np->features & FE_DFBC)
2424 			delta = INW(np, nc_dfbc);
2425 		else {
2426 			u32 dfifo;
2427 
2428 			/*
2429 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2430 			 */
2431 			dfifo = INL(np, nc_dfifo);
2432 
2433 			/*
2434 			 *  Calculate remaining bytes in DMA fifo.
2435 			 *  (CTEST5 = dfifo >> 16)
2436 			 */
2437 			if (dfifo & (DFS << 16))
2438 				delta = ((((dfifo >> 8) & 0x300) |
2439 				          (dfifo & 0xff)) - rest) & 0x3ff;
2440 			else
2441 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2442 		}
2443 
2444 		/*
2445 		 *  The data in the dma fifo has not been transfered to
2446 		 *  the target -> add the amount to the rest
2447 		 *  and clear the data.
2448 		 *  Check the sstat2 register in case of wide transfer.
2449 		 */
2450 		rest += delta;
2451 		ss0  = INB(np, nc_sstat0);
2452 		if (ss0 & OLF) rest++;
2453 		if (!(np->features & FE_C10))
2454 			if (ss0 & ORF) rest++;
2455 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2456 			ss2 = INB(np, nc_sstat2);
2457 			if (ss2 & OLF1) rest++;
2458 			if (!(np->features & FE_C10))
2459 				if (ss2 & ORF1) rest++;
2460 		}
2461 
2462 		/*
2463 		 *  Clear fifos.
2464 		 */
2465 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2466 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2467 	}
2468 
2469 	/*
2470 	 *  log the information
2471 	 */
2472 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2473 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2474 			(unsigned) rest, (unsigned) delta);
2475 
2476 	/*
2477 	 *  try to find the interrupted script command,
2478 	 *  and the address at which to continue.
2479 	 */
2480 	vdsp	= NULL;
2481 	nxtdsp	= 0;
2482 	if	(dsp >  np->scripta_ba &&
2483 		 dsp <= np->scripta_ba + np->scripta_sz) {
2484 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2485 		nxtdsp = dsp;
2486 	}
2487 	else if	(dsp >  np->scriptb_ba &&
2488 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2489 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2490 		nxtdsp = dsp;
2491 	}
2492 
2493 	/*
2494 	 *  log the information
2495 	 */
2496 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2497 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2498 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2499 	}
2500 
2501 	if (!vdsp) {
2502 		printf ("%s: interrupted SCRIPT address not found.\n",
2503 			sym_name (np));
2504 		goto reset_all;
2505 	}
2506 
2507 	if (!cp) {
2508 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2509 			sym_name (np));
2510 		goto reset_all;
2511 	}
2512 
2513 	/*
2514 	 *  get old startaddress and old length.
2515 	 */
2516 	oadr = scr_to_cpu(vdsp[1]);
2517 
2518 	if (cmd & 0x10) {	/* Table indirect */
2519 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2520 		olen = scr_to_cpu(tblp[0]);
2521 		oadr = scr_to_cpu(tblp[1]);
2522 	} else {
2523 		tblp = (u32 *) 0;
2524 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2525 	}
2526 
2527 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2528 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2529 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2530 			tblp,
2531 			(unsigned) olen,
2532 			(unsigned) oadr);
2533 	}
2534 
2535 	/*
2536 	 *  check cmd against assumed interrupted script command.
2537 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2538 	 *  the phase.
2539 	 */
2540 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2541 		sym_print_addr(cp->cmd,
2542 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2543 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2544 
2545 		goto reset_all;
2546 	}
2547 
2548 	/*
2549 	 *  if old phase not dataphase, leave here.
2550 	 */
2551 	if (cmd & 2) {
2552 		sym_print_addr(cp->cmd,
2553 			"phase change %x-%x %d@%08x resid=%d.\n",
2554 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2555 			(unsigned)oadr, (unsigned)rest);
2556 		goto unexpected_phase;
2557 	}
2558 
2559 	/*
2560 	 *  Choose the correct PM save area.
2561 	 *
2562 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2563 	 *  this stuff. The equivalent code is implemented in
2564 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2565 	 *  handle PM from the SCRIPTS processor.
2566 	 */
2567 	hflags0 = INB(np, HF_PRT);
2568 	hflags = hflags0;
2569 
2570 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2571 		if (hflags & HF_IN_PM0)
2572 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2573 		else if	(hflags & HF_IN_PM1)
2574 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2575 
2576 		if (hflags & HF_DP_SAVED)
2577 			hflags ^= HF_ACT_PM;
2578 	}
2579 
2580 	if (!(hflags & HF_ACT_PM)) {
2581 		pm = &cp->phys.pm0;
2582 		newcmd = SCRIPTA_BA(np, pm0_data);
2583 	}
2584 	else {
2585 		pm = &cp->phys.pm1;
2586 		newcmd = SCRIPTA_BA(np, pm1_data);
2587 	}
2588 
2589 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2590 	if (hflags != hflags0)
2591 		OUTB(np, HF_PRT, hflags);
2592 
2593 	/*
2594 	 *  fillin the phase mismatch context
2595 	 */
2596 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2597 	pm->sg.size = cpu_to_scr(rest);
2598 	pm->ret     = cpu_to_scr(nxtdsp);
2599 
2600 	/*
2601 	 *  If we have a SWIDE,
2602 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2603 	 *  - compute the SCRIPTS address to restart from,
2604 	 *  - move current data pointer context by one byte.
2605 	 */
2606 	nxtdsp = SCRIPTA_BA(np, dispatch);
2607 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2608 	    (INB(np, nc_scntl2) & WSR)) {
2609 		u32 tmp;
2610 
2611 		/*
2612 		 *  Set up the table indirect for the MOVE
2613 		 *  of the residual byte and adjust the data
2614 		 *  pointer context.
2615 		 */
2616 		tmp = scr_to_cpu(pm->sg.addr);
2617 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2618 		pm->sg.addr = cpu_to_scr(tmp + 1);
2619 		tmp = scr_to_cpu(pm->sg.size);
2620 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2621 		pm->sg.size = cpu_to_scr(tmp - 1);
2622 
2623 		/*
2624 		 *  If only the residual byte is to be moved,
2625 		 *  no PM context is needed.
2626 		 */
2627 		if ((tmp&0xffffff) == 1)
2628 			newcmd = pm->ret;
2629 
2630 		/*
2631 		 *  Prepare the address of SCRIPTS that will
2632 		 *  move the residual byte to memory.
2633 		 */
2634 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2635 	}
2636 
2637 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2638 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2639 			hflags0, hflags, newcmd,
2640 			(unsigned)scr_to_cpu(pm->sg.addr),
2641 			(unsigned)scr_to_cpu(pm->sg.size),
2642 			(unsigned)scr_to_cpu(pm->ret));
2643 	}
2644 
2645 	/*
2646 	 *  Restart the SCRIPTS processor.
2647 	 */
2648 	sym_set_script_dp (np, cp, newcmd);
2649 	OUTL_DSP(np, nxtdsp);
2650 	return;
2651 
2652 	/*
2653 	 *  Unexpected phase changes that occurs when the current phase
2654 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2655 	 *  Such event may only happen when the SCRIPTS is using a
2656 	 *  multibyte SCSI MOVE.
2657 	 *
2658 	 *  Phase change		Some possible cause
2659 	 *
2660 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2661 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2662 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2663 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2664 	 *  			negotiation messages.
2665 	 *
2666 	 *  The code below does not care of the new phase and so
2667 	 *  trusts the target. Why to annoy it ?
2668 	 *  If the interrupted phase is COMMAND phase, we restart at
2669 	 *  dispatcher.
2670 	 *  If a target does not get all the messages after selection,
2671 	 *  the code assumes blindly that the target discards extended
2672 	 *  messages and clears the negotiation status.
2673 	 *  If the target does not want all our response to negotiation,
2674 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2675 	 *  bloat for such a should_not_happen situation).
2676 	 *  In all other situation, we reset the BUS.
2677 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2678 	 */
2679 unexpected_phase:
2680 	dsp -= 8;
2681 	nxtdsp = 0;
2682 
2683 	switch (cmd & 7) {
2684 	case 2:	/* COMMAND phase */
2685 		nxtdsp = SCRIPTA_BA(np, dispatch);
2686 		break;
2687 #if 0
2688 	case 3:	/* STATUS  phase */
2689 		nxtdsp = SCRIPTA_BA(np, dispatch);
2690 		break;
2691 #endif
2692 	case 6:	/* MSG OUT phase */
2693 		/*
2694 		 *  If the device may want to use untagged when we want
2695 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2696 		 *  since we will not be able to handle reselect.
2697 		 *  Otherwise, we just don't care.
2698 		 */
2699 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2700 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2701 				cp->host_status = HS_BUSY;
2702 				np->msgout[0] = IDENTIFY(0, cp->lun);
2703 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2704 			}
2705 			else
2706 				nxtdsp = SCRIPTB_BA(np, ident_break);
2707 		}
2708 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2709 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2710 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2711 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2712 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2713 				struct scsi_device *dev = cp->cmd->device;
2714 				dev->ppr = 0;
2715 			}
2716 		}
2717 		break;
2718 #if 0
2719 	case 7:	/* MSG IN  phase */
2720 		nxtdsp = SCRIPTA_BA(np, clrack);
2721 		break;
2722 #endif
2723 	}
2724 
2725 	if (nxtdsp) {
2726 		OUTL_DSP(np, nxtdsp);
2727 		return;
2728 	}
2729 
2730 reset_all:
2731 	sym_start_reset(np);
2732 }
2733 
2734 /*
2735  *  chip interrupt handler
2736  *
2737  *  In normal situations, interrupt conditions occur one at
2738  *  a time. But when something bad happens on the SCSI BUS,
2739  *  the chip may raise several interrupt flags before
2740  *  stopping and interrupting the CPU. The additionnal
2741  *  interrupt flags are stacked in some extra registers
2742  *  after the SIP and/or DIP flag has been raised in the
2743  *  ISTAT. After the CPU has read the interrupt condition
2744  *  flag from SIST or DSTAT, the chip unstacks the other
2745  *  interrupt flags and sets the corresponding bits in
2746  *  SIST or DSTAT. Since the chip starts stacking once the
2747  *  SIP or DIP flag is set, there is a small window of time
2748  *  where the stacking does not occur.
2749  *
2750  *  Typically, multiple interrupt conditions may happen in
2751  *  the following situations:
2752  *
2753  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2754  *    When an parity error is detected in input phase
2755  *    and the device switches to msg-in phase inside a
2756  *    block MOV.
2757  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2758  *    When a stupid device does not want to handle the
2759  *    recovery of an SCSI parity error.
2760  *  - Some combinations of STO, PAR, UDC, ...
2761  *    When using non compliant SCSI stuff, when user is
2762  *    doing non compliant hot tampering on the BUS, when
2763  *    something really bad happens to a device, etc ...
2764  *
2765  *  The heuristic suggested by SYMBIOS to handle
2766  *  multiple interrupts is to try unstacking all
2767  *  interrupts conditions and to handle them on some
2768  *  priority based on error severity.
2769  *  This will work when the unstacking has been
2770  *  successful, but we cannot be 100 % sure of that,
2771  *  since the CPU may have been faster to unstack than
2772  *  the chip is able to stack. Hmmm ... But it seems that
2773  *  such a situation is very unlikely to happen.
2774  *
2775  *  If this happen, for example STO caught by the CPU
2776  *  then UDC happenning before the CPU have restarted
2777  *  the SCRIPTS, the driver may wrongly complete the
2778  *  same command on UDC, since the SCRIPTS didn't restart
2779  *  and the DSA still points to the same command.
2780  *  We avoid this situation by setting the DSA to an
2781  *  invalid value when the CCB is completed and before
2782  *  restarting the SCRIPTS.
2783  *
2784  *  Another issue is that we need some section of our
2785  *  recovery procedures to be somehow uninterruptible but
2786  *  the SCRIPTS processor does not provides such a
2787  *  feature. For this reason, we handle recovery preferently
2788  *  from the C code and check against some SCRIPTS critical
2789  *  sections from the C code.
2790  *
2791  *  Hopefully, the interrupt handling of the driver is now
2792  *  able to resist to weird BUS error conditions, but donnot
2793  *  ask me for any guarantee that it will never fail. :-)
2794  *  Use at your own decision and risk.
2795  */
2796 
2797 void sym_interrupt (struct sym_hcb *np)
2798 {
2799 	u_char	istat, istatc;
2800 	u_char	dstat;
2801 	u_short	sist;
2802 
2803 	/*
2804 	 *  interrupt on the fly ?
2805 	 *  (SCRIPTS may still be running)
2806 	 *
2807 	 *  A `dummy read' is needed to ensure that the
2808 	 *  clear of the INTF flag reaches the device
2809 	 *  and that posted writes are flushed to memory
2810 	 *  before the scanning of the DONE queue.
2811 	 *  Note that SCRIPTS also (dummy) read to memory
2812 	 *  prior to deliver the INTF interrupt condition.
2813 	 */
2814 	istat = INB(np, nc_istat);
2815 	if (istat & INTF) {
2816 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2817 		istat = INB(np, nc_istat);		/* DUMMY READ */
2818 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2819 		sym_wakeup_done(np);
2820 	}
2821 
2822 	if (!(istat & (SIP|DIP)))
2823 		return;
2824 
2825 #if 0	/* We should never get this one */
2826 	if (istat & CABRT)
2827 		OUTB(np, nc_istat, CABRT);
2828 #endif
2829 
2830 	/*
2831 	 *  PAR and MA interrupts may occur at the same time,
2832 	 *  and we need to know of both in order to handle
2833 	 *  this situation properly. We try to unstack SCSI
2834 	 *  interrupts for that reason. BTW, I dislike a LOT
2835 	 *  such a loop inside the interrupt routine.
2836 	 *  Even if DMA interrupt stacking is very unlikely to
2837 	 *  happen, we also try unstacking these ones, since
2838 	 *  this has no performance impact.
2839 	 */
2840 	sist	= 0;
2841 	dstat	= 0;
2842 	istatc	= istat;
2843 	do {
2844 		if (istatc & SIP)
2845 			sist  |= INW(np, nc_sist);
2846 		if (istatc & DIP)
2847 			dstat |= INB(np, nc_dstat);
2848 		istatc = INB(np, nc_istat);
2849 		istat |= istatc;
2850 	} while (istatc & (SIP|DIP));
2851 
2852 	if (DEBUG_FLAGS & DEBUG_TINY)
2853 		printf ("<%d|%x:%x|%x:%x>",
2854 			(int)INB(np, nc_scr0),
2855 			dstat,sist,
2856 			(unsigned)INL(np, nc_dsp),
2857 			(unsigned)INL(np, nc_dbc));
2858 	/*
2859 	 *  On paper, a memory read barrier may be needed here to
2860 	 *  prevent out of order LOADs by the CPU from having
2861 	 *  prefetched stale data prior to DMA having occurred.
2862 	 *  And since we are paranoid ... :)
2863 	 */
2864 	MEMORY_READ_BARRIER();
2865 
2866 	/*
2867 	 *  First, interrupts we want to service cleanly.
2868 	 *
2869 	 *  Phase mismatch (MA) is the most frequent interrupt
2870 	 *  for chip earlier than the 896 and so we have to service
2871 	 *  it as quickly as possible.
2872 	 *  A SCSI parity error (PAR) may be combined with a phase
2873 	 *  mismatch condition (MA).
2874 	 *  Programmed interrupts (SIR) are used to call the C code
2875 	 *  from SCRIPTS.
2876 	 *  The single step interrupt (SSI) is not used in this
2877 	 *  driver.
2878 	 */
2879 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2880 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2881 		if	(sist & PAR)	sym_int_par (np, sist);
2882 		else if (sist & MA)	sym_int_ma (np);
2883 		else if (dstat & SIR)	sym_int_sir (np);
2884 		else if (dstat & SSI)	OUTONB_STD();
2885 		else			goto unknown_int;
2886 		return;
2887 	}
2888 
2889 	/*
2890 	 *  Now, interrupts that donnot happen in normal
2891 	 *  situations and that we may need to recover from.
2892 	 *
2893 	 *  On SCSI RESET (RST), we reset everything.
2894 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2895 	 *  active CCBs with RESET status, prepare all devices
2896 	 *  for negotiating again and restart the SCRIPTS.
2897 	 *  On STO and UDC, we complete the CCB with the corres-
2898 	 *  ponding status and restart the SCRIPTS.
2899 	 */
2900 	if (sist & RST) {
2901 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2902 		sym_start_up (np, 1);
2903 		return;
2904 	}
2905 
2906 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2907 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2908 
2909 	if (!(sist  & (GEN|HTH|SGE)) &&
2910 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2911 		if	(sist & SBMC)	sym_int_sbmc (np);
2912 		else if (sist & STO)	sym_int_sto (np);
2913 		else if (sist & UDC)	sym_int_udc (np);
2914 		else			goto unknown_int;
2915 		return;
2916 	}
2917 
2918 	/*
2919 	 *  Now, interrupts we are not able to recover cleanly.
2920 	 *
2921 	 *  Log message for hard errors.
2922 	 *  Reset everything.
2923 	 */
2924 
2925 	sym_log_hard_error(np, sist, dstat);
2926 
2927 	if ((sist & (GEN|HTH|SGE)) ||
2928 		(dstat & (MDPE|BF|ABRT|IID))) {
2929 		sym_start_reset(np);
2930 		return;
2931 	}
2932 
2933 unknown_int:
2934 	/*
2935 	 *  We just miss the cause of the interrupt. :(
2936 	 *  Print a message. The timeout will do the real work.
2937 	 */
2938 	printf(	"%s: unknown interrupt(s) ignored, "
2939 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2940 		sym_name(np), istat, dstat, sist);
2941 }
2942 
2943 /*
2944  *  Dequeue from the START queue all CCBs that match
2945  *  a given target/lun/task condition (-1 means all),
2946  *  and move them from the BUSY queue to the COMP queue
2947  *  with CAM_REQUEUE_REQ status condition.
2948  *  This function is used during error handling/recovery.
2949  *  It is called with SCRIPTS not running.
2950  */
2951 static int
2952 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2953 {
2954 	int j;
2955 	struct sym_ccb *cp;
2956 
2957 	/*
2958 	 *  Make sure the starting index is within range.
2959 	 */
2960 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2961 
2962 	/*
2963 	 *  Walk until end of START queue and dequeue every job
2964 	 *  that matches the target/lun/task condition.
2965 	 */
2966 	j = i;
2967 	while (i != np->squeueput) {
2968 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2969 		assert(cp);
2970 #ifdef SYM_CONF_IARB_SUPPORT
2971 		/* Forget hints for IARB, they may be no longer relevant */
2972 		cp->host_flags &= ~HF_HINT_IARB;
2973 #endif
2974 		if ((target == -1 || cp->target == target) &&
2975 		    (lun    == -1 || cp->lun    == lun)    &&
2976 		    (task   == -1 || cp->tag    == task)) {
2977 			sym_set_cam_status(cp->cmd, CAM_REQUEUE_REQ);
2978 			sym_remque(&cp->link_ccbq);
2979 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2980 		}
2981 		else {
2982 			if (i != j)
2983 				np->squeue[j] = np->squeue[i];
2984 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2985 		}
2986 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2987 	}
2988 	if (i != j)		/* Copy back the idle task if needed */
2989 		np->squeue[j] = np->squeue[i];
2990 	np->squeueput = j;	/* Update our current start queue pointer */
2991 
2992 	return (i - j) / 2;
2993 }
2994 
2995 /*
2996  *  chip handler for bad SCSI status condition
2997  *
2998  *  In case of bad SCSI status, we unqueue all the tasks
2999  *  currently queued to the controller but not yet started
3000  *  and then restart the SCRIPTS processor immediately.
3001  *
3002  *  QUEUE FULL and BUSY conditions are handled the same way.
3003  *  Basically all the not yet started tasks are requeued in
3004  *  device queue and the queue is frozen until a completion.
3005  *
3006  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3007  *  the CCB of the failed command to prepare a REQUEST SENSE
3008  *  SCSI command and queue it to the controller queue.
3009  *
3010  *  SCRATCHA is assumed to have been loaded with STARTPOS
3011  *  before the SCRIPTS called the C code.
3012  */
3013 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3014 {
3015 	u32		startp;
3016 	u_char		s_status = cp->ssss_status;
3017 	u_char		h_flags  = cp->host_flags;
3018 	int		msglen;
3019 	int		i;
3020 
3021 	/*
3022 	 *  Compute the index of the next job to start from SCRIPTS.
3023 	 */
3024 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3025 
3026 	/*
3027 	 *  The last CCB queued used for IARB hint may be
3028 	 *  no longer relevant. Forget it.
3029 	 */
3030 #ifdef SYM_CONF_IARB_SUPPORT
3031 	if (np->last_cp)
3032 		np->last_cp = 0;
3033 #endif
3034 
3035 	/*
3036 	 *  Now deal with the SCSI status.
3037 	 */
3038 	switch(s_status) {
3039 	case S_BUSY:
3040 	case S_QUEUE_FULL:
3041 		if (sym_verbose >= 2) {
3042 			sym_print_addr(cp->cmd, "%s\n",
3043 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3044 		}
3045 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3046 		sym_complete_error (np, cp);
3047 		break;
3048 	case S_TERMINATED:
3049 	case S_CHECK_COND:
3050 		/*
3051 		 *  If we get an SCSI error when requesting sense, give up.
3052 		 */
3053 		if (h_flags & HF_SENSE) {
3054 			sym_complete_error (np, cp);
3055 			break;
3056 		}
3057 
3058 		/*
3059 		 *  Dequeue all queued CCBs for that device not yet started,
3060 		 *  and restart the SCRIPTS processor immediately.
3061 		 */
3062 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3063 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3064 
3065  		/*
3066 		 *  Save some info of the actual IO.
3067 		 *  Compute the data residual.
3068 		 */
3069 		cp->sv_scsi_status = cp->ssss_status;
3070 		cp->sv_xerr_status = cp->xerr_status;
3071 		cp->sv_resid = sym_compute_residual(np, cp);
3072 
3073 		/*
3074 		 *  Prepare all needed data structures for
3075 		 *  requesting sense data.
3076 		 */
3077 
3078 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3079 		msglen = 1;
3080 
3081 		/*
3082 		 *  If we are currently using anything different from
3083 		 *  async. 8 bit data transfers with that target,
3084 		 *  start a negotiation, since the device may want
3085 		 *  to report us a UNIT ATTENTION condition due to
3086 		 *  a cause we currently ignore, and we donnot want
3087 		 *  to be stuck with WIDE and/or SYNC data transfer.
3088 		 *
3089 		 *  cp->nego_status is filled by sym_prepare_nego().
3090 		 */
3091 		cp->nego_status = 0;
3092 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3093 		/*
3094 		 *  Message table indirect structure.
3095 		 */
3096 		cp->phys.smsg.addr	= cpu_to_scr(CCB_BA(cp, scsi_smsg2));
3097 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3098 
3099 		/*
3100 		 *  sense command
3101 		 */
3102 		cp->phys.cmd.addr	= cpu_to_scr(CCB_BA(cp, sensecmd));
3103 		cp->phys.cmd.size	= cpu_to_scr(6);
3104 
3105 		/*
3106 		 *  patch requested size into sense command
3107 		 */
3108 		cp->sensecmd[0]		= REQUEST_SENSE;
3109 		cp->sensecmd[1]		= 0;
3110 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3111 			cp->sensecmd[1]	= cp->lun << 5;
3112 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3113 		cp->data_len		= SYM_SNS_BBUF_LEN;
3114 
3115 		/*
3116 		 *  sense data
3117 		 */
3118 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3119 		cp->phys.sense.addr	= cpu_to_scr(CCB_BA(cp, sns_bbuf));
3120 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3121 
3122 		/*
3123 		 *  requeue the command.
3124 		 */
3125 		startp = SCRIPTB_BA(np, sdata_in);
3126 
3127 		cp->phys.head.savep	= cpu_to_scr(startp);
3128 		cp->phys.head.lastp	= cpu_to_scr(startp);
3129 		cp->startp		= cpu_to_scr(startp);
3130 		cp->goalp		= cpu_to_scr(startp + 16);
3131 
3132 		cp->host_xflags = 0;
3133 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3134 		cp->ssss_status = S_ILLEGAL;
3135 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3136 		cp->xerr_status = 0;
3137 		cp->extra_bytes = 0;
3138 
3139 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3140 
3141 		/*
3142 		 *  Requeue the command.
3143 		 */
3144 		sym_put_start_queue(np, cp);
3145 
3146 		/*
3147 		 *  Give back to upper layer everything we have dequeued.
3148 		 */
3149 		sym_flush_comp_queue(np, 0);
3150 		break;
3151 	}
3152 }
3153 
3154 /*
3155  *  After a device has accepted some management message
3156  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3157  *  a device signals a UNIT ATTENTION condition, some
3158  *  tasks are thrown away by the device. We are required
3159  *  to reflect that on our tasks list since the device
3160  *  will never complete these tasks.
3161  *
3162  *  This function move from the BUSY queue to the COMP
3163  *  queue all disconnected CCBs for a given target that
3164  *  match the following criteria:
3165  *  - lun=-1  means any logical UNIT otherwise a given one.
3166  *  - task=-1 means any task, otherwise a given one.
3167  */
3168 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3169 {
3170 	SYM_QUEHEAD qtmp, *qp;
3171 	int i = 0;
3172 	struct sym_ccb *cp;
3173 
3174 	/*
3175 	 *  Move the entire BUSY queue to our temporary queue.
3176 	 */
3177 	sym_que_init(&qtmp);
3178 	sym_que_splice(&np->busy_ccbq, &qtmp);
3179 	sym_que_init(&np->busy_ccbq);
3180 
3181 	/*
3182 	 *  Put all CCBs that matches our criteria into
3183 	 *  the COMP queue and put back other ones into
3184 	 *  the BUSY queue.
3185 	 */
3186 	while ((qp = sym_remque_head(&qtmp)) != 0) {
3187 		struct scsi_cmnd *cmd;
3188 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3189 		cmd = cp->cmd;
3190 		if (cp->host_status != HS_DISCONNECT ||
3191 		    cp->target != target	     ||
3192 		    (lun  != -1 && cp->lun != lun)   ||
3193 		    (task != -1 &&
3194 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3195 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3196 			continue;
3197 		}
3198 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3199 
3200 		/* Preserve the software timeout condition */
3201 		if (sym_get_cam_status(cmd) != CAM_CMD_TIMEOUT)
3202 			sym_set_cam_status(cmd, cam_status);
3203 		++i;
3204 #if 0
3205 printf("XXXX TASK @%p CLEARED\n", cp);
3206 #endif
3207 	}
3208 	return i;
3209 }
3210 
3211 /*
3212  *  chip handler for TASKS recovery
3213  *
3214  *  We cannot safely abort a command, while the SCRIPTS
3215  *  processor is running, since we just would be in race
3216  *  with it.
3217  *
3218  *  As long as we have tasks to abort, we keep the SEM
3219  *  bit set in the ISTAT. When this bit is set, the
3220  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3221  *  each time it enters the scheduler.
3222  *
3223  *  If we have to reset a target, clear tasks of a unit,
3224  *  or to perform the abort of a disconnected job, we
3225  *  restart the SCRIPTS for selecting the target. Once
3226  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3227  *  If it loses arbitration, the SCRIPTS will interrupt again
3228  *  the next time it will enter its scheduler, and so on ...
3229  *
3230  *  On SIR_TARGET_SELECTED, we scan for the more
3231  *  appropriate thing to do:
3232  *
3233  *  - If nothing, we just sent a M_ABORT message to the
3234  *    target to get rid of the useless SCSI bus ownership.
3235  *    According to the specs, no tasks shall be affected.
3236  *  - If the target is to be reset, we send it a M_RESET
3237  *    message.
3238  *  - If a logical UNIT is to be cleared , we send the
3239  *    IDENTIFY(lun) + M_ABORT.
3240  *  - If an untagged task is to be aborted, we send the
3241  *    IDENTIFY(lun) + M_ABORT.
3242  *  - If a tagged task is to be aborted, we send the
3243  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3244  *
3245  *  Once our 'kiss of death' :) message has been accepted
3246  *  by the target, the SCRIPTS interrupts again
3247  *  (SIR_ABORT_SENT). On this interrupt, we complete
3248  *  all the CCBs that should have been aborted by the
3249  *  target according to our message.
3250  */
3251 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3252 {
3253 	SYM_QUEHEAD *qp;
3254 	struct sym_ccb *cp;
3255 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3256 	struct scsi_target *starget;
3257 	int target=-1, lun=-1, task;
3258 	int i, k;
3259 
3260 	switch(num) {
3261 	/*
3262 	 *  The SCRIPTS processor stopped before starting
3263 	 *  the next command in order to allow us to perform
3264 	 *  some task recovery.
3265 	 */
3266 	case SIR_SCRIPT_STOPPED:
3267 		/*
3268 		 *  Do we have any target to reset or unit to clear ?
3269 		 */
3270 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3271 			tp = &np->target[i];
3272 			if (tp->to_reset ||
3273 			    (tp->lun0p && tp->lun0p->to_clear)) {
3274 				target = i;
3275 				break;
3276 			}
3277 			if (!tp->lunmp)
3278 				continue;
3279 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3280 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3281 					target	= i;
3282 					break;
3283 				}
3284 			}
3285 			if (target != -1)
3286 				break;
3287 		}
3288 
3289 		/*
3290 		 *  If not, walk the busy queue for any
3291 		 *  disconnected CCB to be aborted.
3292 		 */
3293 		if (target == -1) {
3294 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3295 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3296 				if (cp->host_status != HS_DISCONNECT)
3297 					continue;
3298 				if (cp->to_abort) {
3299 					target = cp->target;
3300 					break;
3301 				}
3302 			}
3303 		}
3304 
3305 		/*
3306 		 *  If some target is to be selected,
3307 		 *  prepare and start the selection.
3308 		 */
3309 		if (target != -1) {
3310 			tp = &np->target[target];
3311 			np->abrt_sel.sel_id	= target;
3312 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3313 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3314 			OUTL(np, nc_dsa, np->hcb_ba);
3315 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3316 			return;
3317 		}
3318 
3319 		/*
3320 		 *  Now look for a CCB to abort that haven't started yet.
3321 		 *  Btw, the SCRIPTS processor is still stopped, so
3322 		 *  we are not in race.
3323 		 */
3324 		i = 0;
3325 		cp = NULL;
3326 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3327 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3328 			if (cp->host_status != HS_BUSY &&
3329 			    cp->host_status != HS_NEGOTIATE)
3330 				continue;
3331 			if (!cp->to_abort)
3332 				continue;
3333 #ifdef SYM_CONF_IARB_SUPPORT
3334 			/*
3335 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3336 			 *    want to cancel the last queued CCB, since the
3337 			 *    SCRIPTS may have anticipated the selection.
3338 			 */
3339 			if (cp == np->last_cp) {
3340 				cp->to_abort = 0;
3341 				continue;
3342 			}
3343 #endif
3344 			i = 1;	/* Means we have found some */
3345 			break;
3346 		}
3347 		if (!i) {
3348 			/*
3349 			 *  We are done, so we donnot need
3350 			 *  to synchronize with the SCRIPTS anylonger.
3351 			 *  Remove the SEM flag from the ISTAT.
3352 			 */
3353 			np->istat_sem = 0;
3354 			OUTB(np, nc_istat, SIGP);
3355 			break;
3356 		}
3357 		/*
3358 		 *  Compute index of next position in the start
3359 		 *  queue the SCRIPTS intends to start and dequeue
3360 		 *  all CCBs for that device that haven't been started.
3361 		 */
3362 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3363 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3364 
3365 		/*
3366 		 *  Make sure at least our IO to abort has been dequeued.
3367 		 */
3368 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3369 		assert(i && sym_get_cam_status(cp->cmd) == CAM_REQUEUE_REQ);
3370 #else
3371 		sym_remque(&cp->link_ccbq);
3372 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3373 #endif
3374 		/*
3375 		 *  Keep track in cam status of the reason of the abort.
3376 		 */
3377 		if (cp->to_abort == 2)
3378 			sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
3379 		else
3380 			sym_set_cam_status(cp->cmd, CAM_REQ_ABORTED);
3381 
3382 		/*
3383 		 *  Complete with error everything that we have dequeued.
3384 	 	 */
3385 		sym_flush_comp_queue(np, 0);
3386 		break;
3387 	/*
3388 	 *  The SCRIPTS processor has selected a target
3389 	 *  we may have some manual recovery to perform for.
3390 	 */
3391 	case SIR_TARGET_SELECTED:
3392 		target = INB(np, nc_sdid) & 0xf;
3393 		tp = &np->target[target];
3394 
3395 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3396 
3397 		/*
3398 		 *  If the target is to be reset, prepare a
3399 		 *  M_RESET message and clear the to_reset flag
3400 		 *  since we donnot expect this operation to fail.
3401 		 */
3402 		if (tp->to_reset) {
3403 			np->abrt_msg[0] = M_RESET;
3404 			np->abrt_tbl.size = 1;
3405 			tp->to_reset = 0;
3406 			break;
3407 		}
3408 
3409 		/*
3410 		 *  Otherwise, look for some logical unit to be cleared.
3411 		 */
3412 		if (tp->lun0p && tp->lun0p->to_clear)
3413 			lun = 0;
3414 		else if (tp->lunmp) {
3415 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3416 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3417 					lun = k;
3418 					break;
3419 				}
3420 			}
3421 		}
3422 
3423 		/*
3424 		 *  If a logical unit is to be cleared, prepare
3425 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3426 		 */
3427 		if (lun != -1) {
3428 			struct sym_lcb *lp = sym_lp(tp, lun);
3429 			lp->to_clear = 0; /* We don't expect to fail here */
3430 			np->abrt_msg[0] = IDENTIFY(0, lun);
3431 			np->abrt_msg[1] = M_ABORT;
3432 			np->abrt_tbl.size = 2;
3433 			break;
3434 		}
3435 
3436 		/*
3437 		 *  Otherwise, look for some disconnected job to
3438 		 *  abort for this target.
3439 		 */
3440 		i = 0;
3441 		cp = NULL;
3442 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3443 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3444 			if (cp->host_status != HS_DISCONNECT)
3445 				continue;
3446 			if (cp->target != target)
3447 				continue;
3448 			if (!cp->to_abort)
3449 				continue;
3450 			i = 1;	/* Means we have some */
3451 			break;
3452 		}
3453 
3454 		/*
3455 		 *  If we have none, probably since the device has
3456 		 *  completed the command before we won abitration,
3457 		 *  send a M_ABORT message without IDENTIFY.
3458 		 *  According to the specs, the device must just
3459 		 *  disconnect the BUS and not abort any task.
3460 		 */
3461 		if (!i) {
3462 			np->abrt_msg[0] = M_ABORT;
3463 			np->abrt_tbl.size = 1;
3464 			break;
3465 		}
3466 
3467 		/*
3468 		 *  We have some task to abort.
3469 		 *  Set the IDENTIFY(lun)
3470 		 */
3471 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3472 
3473 		/*
3474 		 *  If we want to abort an untagged command, we
3475 		 *  will send a IDENTIFY + M_ABORT.
3476 		 *  Otherwise (tagged command), we will send
3477 		 *  a IDENTITFY + task attributes + ABORT TAG.
3478 		 */
3479 		if (cp->tag == NO_TAG) {
3480 			np->abrt_msg[1] = M_ABORT;
3481 			np->abrt_tbl.size = 2;
3482 		} else {
3483 			np->abrt_msg[1] = cp->scsi_smsg[1];
3484 			np->abrt_msg[2] = cp->scsi_smsg[2];
3485 			np->abrt_msg[3] = M_ABORT_TAG;
3486 			np->abrt_tbl.size = 4;
3487 		}
3488 		/*
3489 		 *  Keep track of software timeout condition, since the
3490 		 *  peripheral driver may not count retries on abort
3491 		 *  conditions not due to timeout.
3492 		 */
3493 		if (cp->to_abort == 2)
3494 			sym_set_cam_status(cp->cmd, CAM_CMD_TIMEOUT);
3495 		cp->to_abort = 0; /* We donnot expect to fail here */
3496 		break;
3497 
3498 	/*
3499 	 *  The target has accepted our message and switched
3500 	 *  to BUS FREE phase as we expected.
3501 	 */
3502 	case SIR_ABORT_SENT:
3503 		target = INB(np, nc_sdid) & 0xf;
3504 		tp = &np->target[target];
3505 		starget = tp->sdev->sdev_target;
3506 
3507 		/*
3508 		**  If we didn't abort anything, leave here.
3509 		*/
3510 		if (np->abrt_msg[0] == M_ABORT)
3511 			break;
3512 
3513 		/*
3514 		 *  If we sent a M_RESET, then a hardware reset has
3515 		 *  been performed by the target.
3516 		 *  - Reset everything to async 8 bit
3517 		 *  - Tell ourself to negotiate next time :-)
3518 		 *  - Prepare to clear all disconnected CCBs for
3519 		 *    this target from our task list (lun=task=-1)
3520 		 */
3521 		lun = -1;
3522 		task = -1;
3523 		if (np->abrt_msg[0] == M_RESET) {
3524 			tp->head.sval = 0;
3525 			tp->head.wval = np->rv_scntl3;
3526 			tp->head.uval = 0;
3527 			spi_period(starget) = 0;
3528 			spi_offset(starget) = 0;
3529 			spi_width(starget) = 0;
3530 			spi_iu(starget) = 0;
3531 			spi_dt(starget) = 0;
3532 			spi_qas(starget) = 0;
3533 			tp->tgoal.check_nego = 1;
3534 		}
3535 
3536 		/*
3537 		 *  Otherwise, check for the LUN and TASK(s)
3538 		 *  concerned by the cancelation.
3539 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3540 		 *  or an ABORT message :-)
3541 		 */
3542 		else {
3543 			lun = np->abrt_msg[0] & 0x3f;
3544 			if (np->abrt_msg[1] == M_ABORT_TAG)
3545 				task = np->abrt_msg[2];
3546 		}
3547 
3548 		/*
3549 		 *  Complete all the CCBs the device should have
3550 		 *  aborted due to our 'kiss of death' message.
3551 		 */
3552 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3553 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3554 		sym_clear_tasks(np, CAM_REQ_ABORTED, target, lun, task);
3555 		sym_flush_comp_queue(np, 0);
3556 
3557  		/*
3558 		 *  If we sent a BDR, make upper layer aware of that.
3559  		 */
3560 		if (np->abrt_msg[0] == M_RESET)
3561 			sym_xpt_async_sent_bdr(np, target);
3562 		break;
3563 	}
3564 
3565 	/*
3566 	 *  Print to the log the message we intend to send.
3567 	 */
3568 	if (num == SIR_TARGET_SELECTED) {
3569 		dev_info(&tp->sdev->sdev_target->dev, "control msgout:");
3570 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3571 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3572 	}
3573 
3574 	/*
3575 	 *  Let the SCRIPTS processor continue.
3576 	 */
3577 	OUTONB_STD();
3578 }
3579 
3580 /*
3581  *  Gerard's alchemy:) that deals with with the data
3582  *  pointer for both MDP and the residual calculation.
3583  *
3584  *  I didn't want to bloat the code by more than 200
3585  *  lines for the handling of both MDP and the residual.
3586  *  This has been achieved by using a data pointer
3587  *  representation consisting in an index in the data
3588  *  array (dp_sg) and a negative offset (dp_ofs) that
3589  *  have the following meaning:
3590  *
3591  *  - dp_sg = SYM_CONF_MAX_SG
3592  *    we are at the end of the data script.
3593  *  - dp_sg < SYM_CONF_MAX_SG
3594  *    dp_sg points to the next entry of the scatter array
3595  *    we want to transfer.
3596  *  - dp_ofs < 0
3597  *    dp_ofs represents the residual of bytes of the
3598  *    previous entry scatter entry we will send first.
3599  *  - dp_ofs = 0
3600  *    no residual to send first.
3601  *
3602  *  The function sym_evaluate_dp() accepts an arbitray
3603  *  offset (basically from the MDP message) and returns
3604  *  the corresponding values of dp_sg and dp_ofs.
3605  */
3606 
3607 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3608 {
3609 	u32	dp_scr;
3610 	int	dp_ofs, dp_sg, dp_sgmin;
3611 	int	tmp;
3612 	struct sym_pmc *pm;
3613 
3614 	/*
3615 	 *  Compute the resulted data pointer in term of a script
3616 	 *  address within some DATA script and a signed byte offset.
3617 	 */
3618 	dp_scr = scr;
3619 	dp_ofs = *ofs;
3620 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3621 		pm = &cp->phys.pm0;
3622 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3623 		pm = &cp->phys.pm1;
3624 	else
3625 		pm = NULL;
3626 
3627 	if (pm) {
3628 		dp_scr  = scr_to_cpu(pm->ret);
3629 		dp_ofs -= scr_to_cpu(pm->sg.size);
3630 	}
3631 
3632 	/*
3633 	 *  If we are auto-sensing, then we are done.
3634 	 */
3635 	if (cp->host_flags & HF_SENSE) {
3636 		*ofs = dp_ofs;
3637 		return 0;
3638 	}
3639 
3640 	/*
3641 	 *  Deduce the index of the sg entry.
3642 	 *  Keep track of the index of the first valid entry.
3643 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3644 	 *  end of the data.
3645 	 */
3646 	tmp = scr_to_cpu(sym_goalp(cp));
3647 	dp_sg = SYM_CONF_MAX_SG;
3648 	if (dp_scr != tmp)
3649 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3650 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3651 
3652 	/*
3653 	 *  Move to the sg entry the data pointer belongs to.
3654 	 *
3655 	 *  If we are inside the data area, we expect result to be:
3656 	 *
3657 	 *  Either,
3658 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3659 	 *      the data pointer belongs to (or the end of the data)
3660 	 *  Or,
3661 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3662 	 *      the data pointer belongs to + 1.
3663 	 */
3664 	if (dp_ofs < 0) {
3665 		int n;
3666 		while (dp_sg > dp_sgmin) {
3667 			--dp_sg;
3668 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3669 			n = dp_ofs + (tmp & 0xffffff);
3670 			if (n > 0) {
3671 				++dp_sg;
3672 				break;
3673 			}
3674 			dp_ofs = n;
3675 		}
3676 	}
3677 	else if (dp_ofs > 0) {
3678 		while (dp_sg < SYM_CONF_MAX_SG) {
3679 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3680 			dp_ofs -= (tmp & 0xffffff);
3681 			++dp_sg;
3682 			if (dp_ofs <= 0)
3683 				break;
3684 		}
3685 	}
3686 
3687 	/*
3688 	 *  Make sure the data pointer is inside the data area.
3689 	 *  If not, return some error.
3690 	 */
3691 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3692 		goto out_err;
3693 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3694 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3695 		goto out_err;
3696 
3697 	/*
3698 	 *  Save the extreme pointer if needed.
3699 	 */
3700 	if (dp_sg > cp->ext_sg ||
3701             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3702 		cp->ext_sg  = dp_sg;
3703 		cp->ext_ofs = dp_ofs;
3704 	}
3705 
3706 	/*
3707 	 *  Return data.
3708 	 */
3709 	*ofs = dp_ofs;
3710 	return dp_sg;
3711 
3712 out_err:
3713 	return -1;
3714 }
3715 
3716 /*
3717  *  chip handler for MODIFY DATA POINTER MESSAGE
3718  *
3719  *  We also call this function on IGNORE WIDE RESIDUE
3720  *  messages that do not match a SWIDE full condition.
3721  *  Btw, we assume in that situation that such a message
3722  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3723  */
3724 
3725 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3726 {
3727 	int dp_ofs	= ofs;
3728 	u32	dp_scr	= sym_get_script_dp (np, cp);
3729 	u32	dp_ret;
3730 	u32	tmp;
3731 	u_char	hflags;
3732 	int	dp_sg;
3733 	struct	sym_pmc *pm;
3734 
3735 	/*
3736 	 *  Not supported for auto-sense.
3737 	 */
3738 	if (cp->host_flags & HF_SENSE)
3739 		goto out_reject;
3740 
3741 	/*
3742 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3743 	 *  to the resulted data pointer.
3744 	 */
3745 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3746 	if (dp_sg < 0)
3747 		goto out_reject;
3748 
3749 	/*
3750 	 *  And our alchemy:) allows to easily calculate the data
3751 	 *  script address we want to return for the next data phase.
3752 	 */
3753 	dp_ret = cpu_to_scr(sym_goalp(cp));
3754 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3755 
3756 	/*
3757 	 *  If offset / scatter entry is zero we donnot need
3758 	 *  a context for the new current data pointer.
3759 	 */
3760 	if (dp_ofs == 0) {
3761 		dp_scr = dp_ret;
3762 		goto out_ok;
3763 	}
3764 
3765 	/*
3766 	 *  Get a context for the new current data pointer.
3767 	 */
3768 	hflags = INB(np, HF_PRT);
3769 
3770 	if (hflags & HF_DP_SAVED)
3771 		hflags ^= HF_ACT_PM;
3772 
3773 	if (!(hflags & HF_ACT_PM)) {
3774 		pm  = &cp->phys.pm0;
3775 		dp_scr = SCRIPTA_BA(np, pm0_data);
3776 	}
3777 	else {
3778 		pm = &cp->phys.pm1;
3779 		dp_scr = SCRIPTA_BA(np, pm1_data);
3780 	}
3781 
3782 	hflags &= ~(HF_DP_SAVED);
3783 
3784 	OUTB(np, HF_PRT, hflags);
3785 
3786 	/*
3787 	 *  Set up the new current data pointer.
3788 	 *  ofs < 0 there, and for the next data phase, we
3789 	 *  want to transfer part of the data of the sg entry
3790 	 *  corresponding to index dp_sg-1 prior to returning
3791 	 *  to the main data script.
3792 	 */
3793 	pm->ret = cpu_to_scr(dp_ret);
3794 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3795 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3796 	pm->sg.addr = cpu_to_scr(tmp);
3797 	pm->sg.size = cpu_to_scr(-dp_ofs);
3798 
3799 out_ok:
3800 	sym_set_script_dp (np, cp, dp_scr);
3801 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3802 	return;
3803 
3804 out_reject:
3805 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3806 }
3807 
3808 
3809 /*
3810  *  chip calculation of the data residual.
3811  *
3812  *  As I used to say, the requirement of data residual
3813  *  in SCSI is broken, useless and cannot be achieved
3814  *  without huge complexity.
3815  *  But most OSes and even the official CAM require it.
3816  *  When stupidity happens to be so widely spread inside
3817  *  a community, it gets hard to convince.
3818  *
3819  *  Anyway, I don't care, since I am not going to use
3820  *  any software that considers this data residual as
3821  *  a relevant information. :)
3822  */
3823 
3824 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3825 {
3826 	int dp_sg, dp_sgmin, resid = 0;
3827 	int dp_ofs = 0;
3828 
3829 	/*
3830 	 *  Check for some data lost or just thrown away.
3831 	 *  We are not required to be quite accurate in this
3832 	 *  situation. Btw, if we are odd for output and the
3833 	 *  device claims some more data, it may well happen
3834 	 *  than our residual be zero. :-)
3835 	 */
3836 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3837 		if (cp->xerr_status & XE_EXTRA_DATA)
3838 			resid -= cp->extra_bytes;
3839 		if (cp->xerr_status & XE_SODL_UNRUN)
3840 			++resid;
3841 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3842 			--resid;
3843 	}
3844 
3845 	/*
3846 	 *  If all data has been transferred,
3847 	 *  there is no residual.
3848 	 */
3849 	if (cp->phys.head.lastp == sym_goalp(cp))
3850 		return resid;
3851 
3852 	/*
3853 	 *  If no data transfer occurs, or if the data
3854 	 *  pointer is weird, return full residual.
3855 	 */
3856 	if (cp->startp == cp->phys.head.lastp ||
3857 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3858 			    &dp_ofs) < 0) {
3859 		return cp->data_len;
3860 	}
3861 
3862 	/*
3863 	 *  If we were auto-sensing, then we are done.
3864 	 */
3865 	if (cp->host_flags & HF_SENSE) {
3866 		return -dp_ofs;
3867 	}
3868 
3869 	/*
3870 	 *  We are now full comfortable in the computation
3871 	 *  of the data residual (2's complement).
3872 	 */
3873 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3874 	resid = -cp->ext_ofs;
3875 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3876 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3877 		resid += (tmp & 0xffffff);
3878 	}
3879 
3880 	/*
3881 	 *  Hopefully, the result is not too wrong.
3882 	 */
3883 	return resid;
3884 }
3885 
3886 /*
3887  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3888  *
3889  *  When we try to negotiate, we append the negotiation message
3890  *  to the identify and (maybe) simple tag message.
3891  *  The host status field is set to HS_NEGOTIATE to mark this
3892  *  situation.
3893  *
3894  *  If the target doesn't answer this message immediately
3895  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3896  *  will be raised eventually.
3897  *  The handler removes the HS_NEGOTIATE status, and sets the
3898  *  negotiated value to the default (async / nowide).
3899  *
3900  *  If we receive a matching answer immediately, we check it
3901  *  for validity, and set the values.
3902  *
3903  *  If we receive a Reject message immediately, we assume the
3904  *  negotiation has failed, and fall back to standard values.
3905  *
3906  *  If we receive a negotiation message while not in HS_NEGOTIATE
3907  *  state, it's a target initiated negotiation. We prepare a
3908  *  (hopefully) valid answer, set our parameters, and send back
3909  *  this answer to the target.
3910  *
3911  *  If the target doesn't fetch the answer (no message out phase),
3912  *  we assume the negotiation has failed, and fall back to default
3913  *  settings (SIR_NEGO_PROTO interrupt).
3914  *
3915  *  When we set the values, we adjust them in all ccbs belonging
3916  *  to this target, in the controller's register, and in the "phys"
3917  *  field of the controller's struct sym_hcb.
3918  */
3919 
3920 /*
3921  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3922  */
3923 static int
3924 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3925 {
3926 	int target = cp->target;
3927 	u_char	chg, ofs, per, fak, div;
3928 
3929 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3930 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3931 	}
3932 
3933 	/*
3934 	 *  Get requested values.
3935 	 */
3936 	chg = 0;
3937 	per = np->msgin[3];
3938 	ofs = np->msgin[4];
3939 
3940 	/*
3941 	 *  Check values against our limits.
3942 	 */
3943 	if (ofs) {
3944 		if (ofs > np->maxoffs)
3945 			{chg = 1; ofs = np->maxoffs;}
3946 	}
3947 
3948 	if (ofs) {
3949 		if (per < np->minsync)
3950 			{chg = 1; per = np->minsync;}
3951 	}
3952 
3953 	/*
3954 	 *  Get new chip synchronous parameters value.
3955 	 */
3956 	div = fak = 0;
3957 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3958 		goto reject_it;
3959 
3960 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3961 		sym_print_addr(cp->cmd,
3962 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3963 				ofs, per, div, fak, chg);
3964 	}
3965 
3966 	/*
3967 	 *  If it was an answer we want to change,
3968 	 *  then it isn't acceptable. Reject it.
3969 	 */
3970 	if (!req && chg)
3971 		goto reject_it;
3972 
3973 	/*
3974 	 *  Apply new values.
3975 	 */
3976 	sym_setsync (np, target, ofs, per, div, fak);
3977 
3978 	/*
3979 	 *  It was an answer. We are done.
3980 	 */
3981 	if (!req)
3982 		return 0;
3983 
3984 	/*
3985 	 *  It was a request. Prepare an answer message.
3986 	 */
3987 	np->msgout[0] = M_EXTENDED;
3988 	np->msgout[1] = 3;
3989 	np->msgout[2] = M_X_SYNC_REQ;
3990 	np->msgout[3] = per;
3991 	np->msgout[4] = ofs;
3992 
3993 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3994 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3995 	}
3996 
3997 	np->msgin [0] = M_NOOP;
3998 
3999 	return 0;
4000 
4001 reject_it:
4002 	sym_setsync (np, target, 0, 0, 0, 0);
4003 	return -1;
4004 }
4005 
4006 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4007 {
4008 	int req = 1;
4009 	int result;
4010 
4011 	/*
4012 	 *  Request or answer ?
4013 	 */
4014 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4015 		OUTB(np, HS_PRT, HS_BUSY);
4016 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4017 			goto reject_it;
4018 		req = 0;
4019 	}
4020 
4021 	/*
4022 	 *  Check and apply new values.
4023 	 */
4024 	result = sym_sync_nego_check(np, req, cp);
4025 	if (result)	/* Not acceptable, reject it */
4026 		goto reject_it;
4027 	if (req) {	/* Was a request, send response. */
4028 		cp->nego_status = NS_SYNC;
4029 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4030 	}
4031 	else		/* Was a response, we are done. */
4032 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4033 	return;
4034 
4035 reject_it:
4036 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4037 }
4038 
4039 /*
4040  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4041  */
4042 static int
4043 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4044 {
4045 	struct sym_tcb *tp = &np->target[target];
4046 	unsigned char fak, div;
4047 	int dt, chg = 0;
4048 
4049 	unsigned char per = np->msgin[3];
4050 	unsigned char ofs = np->msgin[5];
4051 	unsigned char wide = np->msgin[6];
4052 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4053 
4054 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4055 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4056 	}
4057 
4058 	/*
4059 	 *  Check values against our limits.
4060 	 */
4061 	if (wide > np->maxwide) {
4062 		chg = 1;
4063 		wide = np->maxwide;
4064 	}
4065 	if (!wide || !(np->features & FE_U3EN))
4066 		opts = 0;
4067 
4068 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4069 		chg = 1;
4070 
4071 	dt = opts & PPR_OPT_DT;
4072 
4073 	if (ofs) {
4074 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4075 		if (ofs > maxoffs) {
4076 			chg = 1;
4077 			ofs = maxoffs;
4078 		}
4079 	}
4080 
4081 	if (ofs) {
4082 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4083 		if (per < minsync) {
4084 			chg = 1;
4085 			per = minsync;
4086 		}
4087 	}
4088 
4089 	/*
4090 	 *  Get new chip synchronous parameters value.
4091 	 */
4092 	div = fak = 0;
4093 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4094 		goto reject_it;
4095 
4096 	/*
4097 	 *  If it was an answer we want to change,
4098 	 *  then it isn't acceptable. Reject it.
4099 	 */
4100 	if (!req && chg)
4101 		goto reject_it;
4102 
4103 	/*
4104 	 *  Apply new values.
4105 	 */
4106 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4107 
4108 	/*
4109 	 *  It was an answer. We are done.
4110 	 */
4111 	if (!req)
4112 		return 0;
4113 
4114 	/*
4115 	 *  It was a request. Prepare an answer message.
4116 	 */
4117 	np->msgout[0] = M_EXTENDED;
4118 	np->msgout[1] = 6;
4119 	np->msgout[2] = M_X_PPR_REQ;
4120 	np->msgout[3] = per;
4121 	np->msgout[4] = 0;
4122 	np->msgout[5] = ofs;
4123 	np->msgout[6] = wide;
4124 	np->msgout[7] = opts;
4125 
4126 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4127 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4128 	}
4129 
4130 	np->msgin [0] = M_NOOP;
4131 
4132 	return 0;
4133 
4134 reject_it:
4135 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4136 	/*
4137 	 *  If it is a device response that should result in
4138 	 *  ST, we may want to try a legacy negotiation later.
4139 	 */
4140 	if (!req && !opts) {
4141 		tp->tgoal.period = per;
4142 		tp->tgoal.offset = ofs;
4143 		tp->tgoal.width = wide;
4144 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4145 		tp->tgoal.check_nego = 1;
4146 	}
4147 	return -1;
4148 }
4149 
4150 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4151 {
4152 	int req = 1;
4153 	int result;
4154 
4155 	/*
4156 	 *  Request or answer ?
4157 	 */
4158 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4159 		OUTB(np, HS_PRT, HS_BUSY);
4160 		if (cp->nego_status && cp->nego_status != NS_PPR)
4161 			goto reject_it;
4162 		req = 0;
4163 	}
4164 
4165 	/*
4166 	 *  Check and apply new values.
4167 	 */
4168 	result = sym_ppr_nego_check(np, req, cp->target);
4169 	if (result)	/* Not acceptable, reject it */
4170 		goto reject_it;
4171 	if (req) {	/* Was a request, send response. */
4172 		cp->nego_status = NS_PPR;
4173 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4174 	}
4175 	else		/* Was a response, we are done. */
4176 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4177 	return;
4178 
4179 reject_it:
4180 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4181 }
4182 
4183 /*
4184  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4185  */
4186 static int
4187 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4188 {
4189 	int target = cp->target;
4190 	u_char	chg, wide;
4191 
4192 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4193 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4194 	}
4195 
4196 	/*
4197 	 *  Get requested values.
4198 	 */
4199 	chg  = 0;
4200 	wide = np->msgin[3];
4201 
4202 	/*
4203 	 *  Check values against our limits.
4204 	 */
4205 	if (wide > np->maxwide) {
4206 		chg = 1;
4207 		wide = np->maxwide;
4208 	}
4209 
4210 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4211 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4212 				wide, chg);
4213 	}
4214 
4215 	/*
4216 	 *  If it was an answer we want to change,
4217 	 *  then it isn't acceptable. Reject it.
4218 	 */
4219 	if (!req && chg)
4220 		goto reject_it;
4221 
4222 	/*
4223 	 *  Apply new values.
4224 	 */
4225 	sym_setwide (np, target, wide);
4226 
4227 	/*
4228 	 *  It was an answer. We are done.
4229 	 */
4230 	if (!req)
4231 		return 0;
4232 
4233 	/*
4234 	 *  It was a request. Prepare an answer message.
4235 	 */
4236 	np->msgout[0] = M_EXTENDED;
4237 	np->msgout[1] = 2;
4238 	np->msgout[2] = M_X_WIDE_REQ;
4239 	np->msgout[3] = wide;
4240 
4241 	np->msgin [0] = M_NOOP;
4242 
4243 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4244 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4245 	}
4246 
4247 	return 0;
4248 
4249 reject_it:
4250 	return -1;
4251 }
4252 
4253 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4254 {
4255 	int req = 1;
4256 	int result;
4257 
4258 	/*
4259 	 *  Request or answer ?
4260 	 */
4261 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4262 		OUTB(np, HS_PRT, HS_BUSY);
4263 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4264 			goto reject_it;
4265 		req = 0;
4266 	}
4267 
4268 	/*
4269 	 *  Check and apply new values.
4270 	 */
4271 	result = sym_wide_nego_check(np, req, cp);
4272 	if (result)	/* Not acceptable, reject it */
4273 		goto reject_it;
4274 	if (req) {	/* Was a request, send response. */
4275 		cp->nego_status = NS_WIDE;
4276 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4277 	} else {		/* Was a response. */
4278 		/*
4279 		 * Negotiate for SYNC immediately after WIDE response.
4280 		 * This allows to negotiate for both WIDE and SYNC on
4281 		 * a single SCSI command (Suggested by Justin Gibbs).
4282 		 */
4283 		if (tp->tgoal.offset) {
4284 			np->msgout[0] = M_EXTENDED;
4285 			np->msgout[1] = 3;
4286 			np->msgout[2] = M_X_SYNC_REQ;
4287 			np->msgout[3] = tp->tgoal.period;
4288 			np->msgout[4] = tp->tgoal.offset;
4289 
4290 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4291 				sym_print_nego_msg(np, cp->target,
4292 				                   "sync msgout", np->msgout);
4293 			}
4294 
4295 			cp->nego_status = NS_SYNC;
4296 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4297 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4298 			return;
4299 		} else
4300 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4301 	}
4302 
4303 	return;
4304 
4305 reject_it:
4306 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4307 }
4308 
4309 /*
4310  *  Reset DT, SYNC or WIDE to default settings.
4311  *
4312  *  Called when a negotiation does not succeed either
4313  *  on rejection or on protocol error.
4314  *
4315  *  A target that understands a PPR message should never
4316  *  reject it, and messing with it is very unlikely.
4317  *  So, if a PPR makes problems, we may just want to
4318  *  try a legacy negotiation later.
4319  */
4320 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4321 {
4322 	switch (cp->nego_status) {
4323 	case NS_PPR:
4324 #if 0
4325 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4326 #else
4327 		if (tp->tgoal.period < np->minsync)
4328 			tp->tgoal.period = np->minsync;
4329 		if (tp->tgoal.offset > np->maxoffs)
4330 			tp->tgoal.offset = np->maxoffs;
4331 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4332 		tp->tgoal.check_nego = 1;
4333 #endif
4334 		break;
4335 	case NS_SYNC:
4336 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4337 		break;
4338 	case NS_WIDE:
4339 		sym_setwide (np, cp->target, 0);
4340 		break;
4341 	}
4342 	np->msgin [0] = M_NOOP;
4343 	np->msgout[0] = M_NOOP;
4344 	cp->nego_status = 0;
4345 }
4346 
4347 /*
4348  *  chip handler for MESSAGE REJECT received in response to
4349  *  PPR, WIDE or SYNCHRONOUS negotiation.
4350  */
4351 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4352 {
4353 	sym_nego_default(np, tp, cp);
4354 	OUTB(np, HS_PRT, HS_BUSY);
4355 }
4356 
4357 /*
4358  *  chip exception handler for programmed interrupts.
4359  */
4360 static void sym_int_sir (struct sym_hcb *np)
4361 {
4362 	u_char	num	= INB(np, nc_dsps);
4363 	u32	dsa	= INL(np, nc_dsa);
4364 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4365 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4366 	struct sym_tcb *tp	= &np->target[target];
4367 	int	tmp;
4368 
4369 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4370 
4371 	switch (num) {
4372 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4373 	/*
4374 	 *  SCRIPTS tell us that we may have to update
4375 	 *  64 bit DMA segment registers.
4376 	 */
4377 	case SIR_DMAP_DIRTY:
4378 		sym_update_dmap_regs(np);
4379 		goto out;
4380 #endif
4381 	/*
4382 	 *  Command has been completed with error condition
4383 	 *  or has been auto-sensed.
4384 	 */
4385 	case SIR_COMPLETE_ERROR:
4386 		sym_complete_error(np, cp);
4387 		return;
4388 	/*
4389 	 *  The C code is currently trying to recover from something.
4390 	 *  Typically, user want to abort some command.
4391 	 */
4392 	case SIR_SCRIPT_STOPPED:
4393 	case SIR_TARGET_SELECTED:
4394 	case SIR_ABORT_SENT:
4395 		sym_sir_task_recovery(np, num);
4396 		return;
4397 	/*
4398 	 *  The device didn't go to MSG OUT phase after having
4399 	 *  been selected with ATN. We donnot want to handle
4400 	 *  that.
4401 	 */
4402 	case SIR_SEL_ATN_NO_MSG_OUT:
4403 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4404 			sym_name (np), target);
4405 		goto out_stuck;
4406 	/*
4407 	 *  The device didn't switch to MSG IN phase after
4408 	 *  having reseleted the initiator.
4409 	 */
4410 	case SIR_RESEL_NO_MSG_IN:
4411 		printf ("%s:%d: No MSG IN phase after reselection.\n",
4412 			sym_name (np), target);
4413 		goto out_stuck;
4414 	/*
4415 	 *  After reselection, the device sent a message that wasn't
4416 	 *  an IDENTIFY.
4417 	 */
4418 	case SIR_RESEL_NO_IDENTIFY:
4419 		printf ("%s:%d: No IDENTIFY after reselection.\n",
4420 			sym_name (np), target);
4421 		goto out_stuck;
4422 	/*
4423 	 *  The device reselected a LUN we donnot know about.
4424 	 */
4425 	case SIR_RESEL_BAD_LUN:
4426 		np->msgout[0] = M_RESET;
4427 		goto out;
4428 	/*
4429 	 *  The device reselected for an untagged nexus and we
4430 	 *  haven't any.
4431 	 */
4432 	case SIR_RESEL_BAD_I_T_L:
4433 		np->msgout[0] = M_ABORT;
4434 		goto out;
4435 	/*
4436 	 *  The device reselected for a tagged nexus that we donnot
4437 	 *  have.
4438 	 */
4439 	case SIR_RESEL_BAD_I_T_L_Q:
4440 		np->msgout[0] = M_ABORT_TAG;
4441 		goto out;
4442 	/*
4443 	 *  The SCRIPTS let us know that the device has grabbed
4444 	 *  our message and will abort the job.
4445 	 */
4446 	case SIR_RESEL_ABORTED:
4447 		np->lastmsg = np->msgout[0];
4448 		np->msgout[0] = M_NOOP;
4449 		printf ("%s:%d: message %x sent on bad reselection.\n",
4450 			sym_name (np), target, np->lastmsg);
4451 		goto out;
4452 	/*
4453 	 *  The SCRIPTS let us know that a message has been
4454 	 *  successfully sent to the device.
4455 	 */
4456 	case SIR_MSG_OUT_DONE:
4457 		np->lastmsg = np->msgout[0];
4458 		np->msgout[0] = M_NOOP;
4459 		/* Should we really care of that */
4460 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4461 			if (cp) {
4462 				cp->xerr_status &= ~XE_PARITY_ERR;
4463 				if (!cp->xerr_status)
4464 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4465 			}
4466 		}
4467 		goto out;
4468 	/*
4469 	 *  The device didn't send a GOOD SCSI status.
4470 	 *  We may have some work to do prior to allow
4471 	 *  the SCRIPTS processor to continue.
4472 	 */
4473 	case SIR_BAD_SCSI_STATUS:
4474 		if (!cp)
4475 			goto out;
4476 		sym_sir_bad_scsi_status(np, num, cp);
4477 		return;
4478 	/*
4479 	 *  We are asked by the SCRIPTS to prepare a
4480 	 *  REJECT message.
4481 	 */
4482 	case SIR_REJECT_TO_SEND:
4483 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4484 		np->msgout[0] = M_REJECT;
4485 		goto out;
4486 	/*
4487 	 *  We have been ODD at the end of a DATA IN
4488 	 *  transfer and the device didn't send a
4489 	 *  IGNORE WIDE RESIDUE message.
4490 	 *  It is a data overrun condition.
4491 	 */
4492 	case SIR_SWIDE_OVERRUN:
4493 		if (cp) {
4494 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4495 			cp->xerr_status |= XE_SWIDE_OVRUN;
4496 		}
4497 		goto out;
4498 	/*
4499 	 *  We have been ODD at the end of a DATA OUT
4500 	 *  transfer.
4501 	 *  It is a data underrun condition.
4502 	 */
4503 	case SIR_SODL_UNDERRUN:
4504 		if (cp) {
4505 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4506 			cp->xerr_status |= XE_SODL_UNRUN;
4507 		}
4508 		goto out;
4509 	/*
4510 	 *  The device wants us to tranfer more data than
4511 	 *  expected or in the wrong direction.
4512 	 *  The number of extra bytes is in scratcha.
4513 	 *  It is a data overrun condition.
4514 	 */
4515 	case SIR_DATA_OVERRUN:
4516 		if (cp) {
4517 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4518 			cp->xerr_status |= XE_EXTRA_DATA;
4519 			cp->extra_bytes += INL(np, nc_scratcha);
4520 		}
4521 		goto out;
4522 	/*
4523 	 *  The device switched to an illegal phase (4/5).
4524 	 */
4525 	case SIR_BAD_PHASE:
4526 		if (cp) {
4527 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4528 			cp->xerr_status |= XE_BAD_PHASE;
4529 		}
4530 		goto out;
4531 	/*
4532 	 *  We received a message.
4533 	 */
4534 	case SIR_MSG_RECEIVED:
4535 		if (!cp)
4536 			goto out_stuck;
4537 		switch (np->msgin [0]) {
4538 		/*
4539 		 *  We received an extended message.
4540 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4541 		 *  and reject all other extended messages.
4542 		 */
4543 		case M_EXTENDED:
4544 			switch (np->msgin [2]) {
4545 			case M_X_MODIFY_DP:
4546 				if (DEBUG_FLAGS & DEBUG_POINTER)
4547 					sym_print_msg(cp,"modify DP",np->msgin);
4548 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4549 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4550 				sym_modify_dp(np, tp, cp, tmp);
4551 				return;
4552 			case M_X_SYNC_REQ:
4553 				sym_sync_nego(np, tp, cp);
4554 				return;
4555 			case M_X_PPR_REQ:
4556 				sym_ppr_nego(np, tp, cp);
4557 				return;
4558 			case M_X_WIDE_REQ:
4559 				sym_wide_nego(np, tp, cp);
4560 				return;
4561 			default:
4562 				goto out_reject;
4563 			}
4564 			break;
4565 		/*
4566 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4567 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4568 		 *  RESIDUE messages that haven't been anticipated by
4569 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4570 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4571 		 */
4572 		case M_IGN_RESIDUE:
4573 			if (DEBUG_FLAGS & DEBUG_POINTER)
4574 				sym_print_msg(cp,"ign wide residue", np->msgin);
4575 			if (cp->host_flags & HF_SENSE)
4576 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4577 			else
4578 				sym_modify_dp(np, tp, cp, -1);
4579 			return;
4580 		case M_REJECT:
4581 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4582 				sym_nego_rejected(np, tp, cp);
4583 			else {
4584 				sym_print_addr(cp->cmd,
4585 					"M_REJECT received (%x:%x).\n",
4586 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4587 			}
4588 			goto out_clrack;
4589 			break;
4590 		default:
4591 			goto out_reject;
4592 		}
4593 		break;
4594 	/*
4595 	 *  We received an unknown message.
4596 	 *  Ignore all MSG IN phases and reject it.
4597 	 */
4598 	case SIR_MSG_WEIRD:
4599 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4600 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4601 		return;
4602 	/*
4603 	 *  Negotiation failed.
4604 	 *  Target does not send us the reply.
4605 	 *  Remove the HS_NEGOTIATE status.
4606 	 */
4607 	case SIR_NEGO_FAILED:
4608 		OUTB(np, HS_PRT, HS_BUSY);
4609 	/*
4610 	 *  Negotiation failed.
4611 	 *  Target does not want answer message.
4612 	 */
4613 	case SIR_NEGO_PROTO:
4614 		sym_nego_default(np, tp, cp);
4615 		goto out;
4616 	}
4617 
4618 out:
4619 	OUTONB_STD();
4620 	return;
4621 out_reject:
4622 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4623 	return;
4624 out_clrack:
4625 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4626 	return;
4627 out_stuck:
4628 	return;
4629 }
4630 
4631 /*
4632  *  Acquire a control block
4633  */
4634 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4635 {
4636 	u_char tn = cmd->device->id;
4637 	u_char ln = cmd->device->lun;
4638 	struct sym_tcb *tp = &np->target[tn];
4639 	struct sym_lcb *lp = sym_lp(tp, ln);
4640 	u_short tag = NO_TAG;
4641 	SYM_QUEHEAD *qp;
4642 	struct sym_ccb *cp = NULL;
4643 
4644 	/*
4645 	 *  Look for a free CCB
4646 	 */
4647 	if (sym_que_empty(&np->free_ccbq))
4648 		sym_alloc_ccb(np);
4649 	qp = sym_remque_head(&np->free_ccbq);
4650 	if (!qp)
4651 		goto out;
4652 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4653 
4654 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4655 	/*
4656 	 *  If the LCB is not yet available and the LUN
4657 	 *  has been probed ok, try to allocate the LCB.
4658 	 */
4659 	if (!lp && sym_is_bit(tp->lun_map, ln)) {
4660 		lp = sym_alloc_lcb(np, tn, ln);
4661 		if (!lp)
4662 			goto out_free;
4663 	}
4664 #endif
4665 
4666 	/*
4667 	 *  If the LCB is not available here, then the
4668 	 *  logical unit is not yet discovered. For those
4669 	 *  ones only accept 1 SCSI IO per logical unit,
4670 	 *  since we cannot allow disconnections.
4671 	 */
4672 	if (!lp) {
4673 		if (!sym_is_bit(tp->busy0_map, ln))
4674 			sym_set_bit(tp->busy0_map, ln);
4675 		else
4676 			goto out_free;
4677 	} else {
4678 		/*
4679 		 *  If we have been asked for a tagged command.
4680 		 */
4681 		if (tag_order) {
4682 			/*
4683 			 *  Debugging purpose.
4684 			 */
4685 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4686 			assert(lp->busy_itl == 0);
4687 #endif
4688 			/*
4689 			 *  Allocate resources for tags if not yet.
4690 			 */
4691 			if (!lp->cb_tags) {
4692 				sym_alloc_lcb_tags(np, tn, ln);
4693 				if (!lp->cb_tags)
4694 					goto out_free;
4695 			}
4696 			/*
4697 			 *  Get a tag for this SCSI IO and set up
4698 			 *  the CCB bus address for reselection,
4699 			 *  and count it for this LUN.
4700 			 *  Toggle reselect path to tagged.
4701 			 */
4702 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4703 				tag = lp->cb_tags[lp->ia_tag];
4704 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4705 					lp->ia_tag = 0;
4706 				++lp->busy_itlq;
4707 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4708 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4709 				lp->head.resel_sa =
4710 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4711 #endif
4712 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4713 				cp->tags_si = lp->tags_si;
4714 				++lp->tags_sum[cp->tags_si];
4715 				++lp->tags_since;
4716 #endif
4717 			}
4718 			else
4719 				goto out_free;
4720 		}
4721 		/*
4722 		 *  This command will not be tagged.
4723 		 *  If we already have either a tagged or untagged
4724 		 *  one, refuse to overlap this untagged one.
4725 		 */
4726 		else {
4727 			/*
4728 			 *  Debugging purpose.
4729 			 */
4730 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4731 			assert(lp->busy_itl == 0 && lp->busy_itlq == 0);
4732 #endif
4733 			/*
4734 			 *  Count this nexus for this LUN.
4735 			 *  Set up the CCB bus address for reselection.
4736 			 *  Toggle reselect path to untagged.
4737 			 */
4738 			++lp->busy_itl;
4739 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4740 			if (lp->busy_itl == 1) {
4741 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4742 				lp->head.resel_sa =
4743 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4744 			}
4745 			else
4746 				goto out_free;
4747 #endif
4748 		}
4749 	}
4750 	/*
4751 	 *  Put the CCB into the busy queue.
4752 	 */
4753 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4754 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4755 	if (lp) {
4756 		sym_remque(&cp->link2_ccbq);
4757 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4758 	}
4759 
4760 #endif
4761 	/*
4762 	 *  Remember all informations needed to free this CCB.
4763 	 */
4764 	cp->to_abort = 0;
4765 	cp->tag	   = tag;
4766 	cp->order  = tag_order;
4767 	cp->target = tn;
4768 	cp->lun    = ln;
4769 
4770 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4771 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4772 	}
4773 
4774 out:
4775 	return cp;
4776 out_free:
4777 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4778 	return NULL;
4779 }
4780 
4781 /*
4782  *  Release one control block
4783  */
4784 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4785 {
4786 	struct sym_tcb *tp = &np->target[cp->target];
4787 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4788 
4789 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4790 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4791 				cp, cp->tag);
4792 	}
4793 
4794 	/*
4795 	 *  If LCB available,
4796 	 */
4797 	if (lp) {
4798 		/*
4799 		 *  If tagged, release the tag, set the relect path
4800 		 */
4801 		if (cp->tag != NO_TAG) {
4802 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4803 			--lp->tags_sum[cp->tags_si];
4804 #endif
4805 			/*
4806 			 *  Free the tag value.
4807 			 */
4808 			lp->cb_tags[lp->if_tag] = cp->tag;
4809 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4810 				lp->if_tag = 0;
4811 			/*
4812 			 *  Make the reselect path invalid,
4813 			 *  and uncount this CCB.
4814 			 */
4815 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4816 			--lp->busy_itlq;
4817 		} else {	/* Untagged */
4818 			/*
4819 			 *  Make the reselect path invalid,
4820 			 *  and uncount this CCB.
4821 			 */
4822 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4823 			--lp->busy_itl;
4824 		}
4825 		/*
4826 		 *  If no JOB active, make the LUN reselect path invalid.
4827 		 */
4828 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4829 			lp->head.resel_sa =
4830 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4831 	}
4832 	/*
4833 	 *  Otherwise, we only accept 1 IO per LUN.
4834 	 *  Clear the bit that keeps track of this IO.
4835 	 */
4836 	else
4837 		sym_clr_bit(tp->busy0_map, cp->lun);
4838 
4839 	/*
4840 	 *  We donnot queue more than 1 ccb per target
4841 	 *  with negotiation at any time. If this ccb was
4842 	 *  used for negotiation, clear this info in the tcb.
4843 	 */
4844 	if (cp == tp->nego_cp)
4845 		tp->nego_cp = NULL;
4846 
4847 #ifdef SYM_CONF_IARB_SUPPORT
4848 	/*
4849 	 *  If we just complete the last queued CCB,
4850 	 *  clear this info that is no longer relevant.
4851 	 */
4852 	if (cp == np->last_cp)
4853 		np->last_cp = 0;
4854 #endif
4855 
4856 	/*
4857 	 *  Make this CCB available.
4858 	 */
4859 	cp->cmd = NULL;
4860 	cp->host_status = HS_IDLE;
4861 	sym_remque(&cp->link_ccbq);
4862 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4863 
4864 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4865 	if (lp) {
4866 		sym_remque(&cp->link2_ccbq);
4867 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4868 		if (cp->started) {
4869 			if (cp->tag != NO_TAG)
4870 				--lp->started_tags;
4871 			else
4872 				--lp->started_no_tag;
4873 		}
4874 	}
4875 	cp->started = 0;
4876 #endif
4877 }
4878 
4879 /*
4880  *  Allocate a CCB from memory and initialize its fixed part.
4881  */
4882 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4883 {
4884 	struct sym_ccb *cp = NULL;
4885 	int hcode;
4886 
4887 	/*
4888 	 *  Prevent from allocating more CCBs than we can
4889 	 *  queue to the controller.
4890 	 */
4891 	if (np->actccbs >= SYM_CONF_MAX_START)
4892 		return NULL;
4893 
4894 	/*
4895 	 *  Allocate memory for this CCB.
4896 	 */
4897 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4898 	if (!cp)
4899 		goto out_free;
4900 
4901 	/*
4902 	 *  Count it.
4903 	 */
4904 	np->actccbs++;
4905 
4906 	/*
4907 	 *  Compute the bus address of this ccb.
4908 	 */
4909 	cp->ccb_ba = vtobus(cp);
4910 
4911 	/*
4912 	 *  Insert this ccb into the hashed list.
4913 	 */
4914 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4915 	cp->link_ccbh = np->ccbh[hcode];
4916 	np->ccbh[hcode] = cp;
4917 
4918 	/*
4919 	 *  Initialyze the start and restart actions.
4920 	 */
4921 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4922 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4923 
4924  	/*
4925 	 *  Initilialyze some other fields.
4926 	 */
4927 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4928 
4929 	/*
4930 	 *  Chain into free ccb queue.
4931 	 */
4932 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4933 
4934 	/*
4935 	 *  Chain into optionnal lists.
4936 	 */
4937 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4938 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4939 #endif
4940 	return cp;
4941 out_free:
4942 	if (cp)
4943 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4944 	return NULL;
4945 }
4946 
4947 /*
4948  *  Look up a CCB from a DSA value.
4949  */
4950 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4951 {
4952 	int hcode;
4953 	struct sym_ccb *cp;
4954 
4955 	hcode = CCB_HASH_CODE(dsa);
4956 	cp = np->ccbh[hcode];
4957 	while (cp) {
4958 		if (cp->ccb_ba == dsa)
4959 			break;
4960 		cp = cp->link_ccbh;
4961 	}
4962 
4963 	return cp;
4964 }
4965 
4966 /*
4967  *  Target control block initialisation.
4968  *  Nothing important to do at the moment.
4969  */
4970 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4971 {
4972 #if 0	/*  Hmmm... this checking looks paranoid. */
4973 	/*
4974 	 *  Check some alignments required by the chip.
4975 	 */
4976 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4977 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4978 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4979 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4980 #endif
4981 }
4982 
4983 /*
4984  *  Lun control block allocation and initialization.
4985  */
4986 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4987 {
4988 	struct sym_tcb *tp = &np->target[tn];
4989 	struct sym_lcb *lp = sym_lp(tp, ln);
4990 
4991 	/*
4992 	 *  Already done, just return.
4993 	 */
4994 	if (lp)
4995 		return lp;
4996 
4997 	/*
4998 	 *  Donnot allow LUN control block
4999 	 *  allocation for not probed LUNs.
5000 	 */
5001 	if (!sym_is_bit(tp->lun_map, ln))
5002 		return NULL;
5003 
5004 	/*
5005 	 *  Initialize the target control block if not yet.
5006 	 */
5007 	sym_init_tcb (np, tn);
5008 
5009 	/*
5010 	 *  Allocate the LCB bus address array.
5011 	 *  Compute the bus address of this table.
5012 	 */
5013 	if (ln && !tp->luntbl) {
5014 		int i;
5015 
5016 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
5017 		if (!tp->luntbl)
5018 			goto fail;
5019 		for (i = 0 ; i < 64 ; i++)
5020 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5021 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
5022 	}
5023 
5024 	/*
5025 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
5026 	 */
5027 	if (ln && !tp->lunmp) {
5028 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5029 				GFP_KERNEL);
5030 		if (!tp->lunmp)
5031 			goto fail;
5032 	}
5033 
5034 	/*
5035 	 *  Allocate the lcb.
5036 	 *  Make it available to the chip.
5037 	 */
5038 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5039 	if (!lp)
5040 		goto fail;
5041 	if (ln) {
5042 		tp->lunmp[ln] = lp;
5043 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5044 	}
5045 	else {
5046 		tp->lun0p = lp;
5047 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5048 	}
5049 
5050 	/*
5051 	 *  Let the itl task point to error handling.
5052 	 */
5053 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5054 
5055 	/*
5056 	 *  Set the reselect pattern to our default. :)
5057 	 */
5058 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5059 
5060 	/*
5061 	 *  Set user capabilities.
5062 	 */
5063 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5064 
5065 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5066 	/*
5067 	 *  Initialize device queueing.
5068 	 */
5069 	sym_que_init(&lp->waiting_ccbq);
5070 	sym_que_init(&lp->started_ccbq);
5071 	lp->started_max   = SYM_CONF_MAX_TASK;
5072 	lp->started_limit = SYM_CONF_MAX_TASK;
5073 #endif
5074 	/*
5075 	 *  If we are busy, count the IO.
5076 	 */
5077 	if (sym_is_bit(tp->busy0_map, ln)) {
5078 		lp->busy_itl = 1;
5079 		sym_clr_bit(tp->busy0_map, ln);
5080 	}
5081 fail:
5082 	return lp;
5083 }
5084 
5085 /*
5086  *  Allocate LCB resources for tagged command queuing.
5087  */
5088 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5089 {
5090 	struct sym_tcb *tp = &np->target[tn];
5091 	struct sym_lcb *lp = sym_lp(tp, ln);
5092 	int i;
5093 
5094 	/*
5095 	 *  If LCB not available, try to allocate it.
5096 	 */
5097 	if (!lp && !(lp = sym_alloc_lcb(np, tn, ln)))
5098 		goto fail;
5099 
5100 	/*
5101 	 *  Allocate the task table and and the tag allocation
5102 	 *  circular buffer. We want both or none.
5103 	 */
5104 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5105 	if (!lp->itlq_tbl)
5106 		goto fail;
5107 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_KERNEL);
5108 	if (!lp->cb_tags) {
5109 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5110 		lp->itlq_tbl = NULL;
5111 		goto fail;
5112 	}
5113 
5114 	/*
5115 	 *  Initialize the task table with invalid entries.
5116 	 */
5117 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5118 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5119 
5120 	/*
5121 	 *  Fill up the tag buffer with tag numbers.
5122 	 */
5123 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5124 		lp->cb_tags[i] = i;
5125 
5126 	/*
5127 	 *  Make the task table available to SCRIPTS,
5128 	 *  And accept tagged commands now.
5129 	 */
5130 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5131 
5132 	return;
5133 fail:
5134 	return;
5135 }
5136 
5137 /*
5138  *  Queue a SCSI IO to the controller.
5139  */
5140 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5141 {
5142 	struct scsi_device *sdev = cmd->device;
5143 	struct sym_tcb *tp;
5144 	struct sym_lcb *lp;
5145 	u_char	*msgptr;
5146 	u_int   msglen;
5147 	int can_disconnect;
5148 
5149 	/*
5150 	 *  Keep track of the IO in our CCB.
5151 	 */
5152 	cp->cmd = cmd;
5153 
5154 	/*
5155 	 *  Retrieve the target descriptor.
5156 	 */
5157 	tp = &np->target[cp->target];
5158 
5159 	/*
5160 	 *  Retrieve the lun descriptor.
5161 	 */
5162 	lp = sym_lp(tp, sdev->lun);
5163 
5164 	can_disconnect = (cp->tag != NO_TAG) ||
5165 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5166 
5167 	msgptr = cp->scsi_smsg;
5168 	msglen = 0;
5169 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5170 
5171 	/*
5172 	 *  Build the tag message if present.
5173 	 */
5174 	if (cp->tag != NO_TAG) {
5175 		u_char order = cp->order;
5176 
5177 		switch(order) {
5178 		case M_ORDERED_TAG:
5179 			break;
5180 		case M_HEAD_TAG:
5181 			break;
5182 		default:
5183 			order = M_SIMPLE_TAG;
5184 		}
5185 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5186 		/*
5187 		 *  Avoid too much reordering of SCSI commands.
5188 		 *  The algorithm tries to prevent completion of any
5189 		 *  tagged command from being delayed against more
5190 		 *  than 3 times the max number of queued commands.
5191 		 */
5192 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5193 			lp->tags_si = !(lp->tags_si);
5194 			if (lp->tags_sum[lp->tags_si]) {
5195 				order = M_ORDERED_TAG;
5196 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5197 					sym_print_addr(cmd,
5198 						"ordered tag forced.\n");
5199 				}
5200 			}
5201 			lp->tags_since = 0;
5202 		}
5203 #endif
5204 		msgptr[msglen++] = order;
5205 
5206 		/*
5207 		 *  For less than 128 tags, actual tags are numbered
5208 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5209 		 *  with devices that have problems with #TAG 0 or too
5210 		 *  great #TAG numbers. For more tags (up to 256),
5211 		 *  we use directly our tag number.
5212 		 */
5213 #if SYM_CONF_MAX_TASK > (512/4)
5214 		msgptr[msglen++] = cp->tag;
5215 #else
5216 		msgptr[msglen++] = (cp->tag << 1) + 1;
5217 #endif
5218 	}
5219 
5220 	/*
5221 	 *  Build a negotiation message if needed.
5222 	 *  (nego_status is filled by sym_prepare_nego())
5223 	 */
5224 	cp->nego_status = 0;
5225 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5226 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5227 	}
5228 
5229 	/*
5230 	 *  Startqueue
5231 	 */
5232 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5233 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5234 
5235 	/*
5236 	 *  select
5237 	 */
5238 	cp->phys.select.sel_id		= cp->target;
5239 	cp->phys.select.sel_scntl3	= tp->head.wval;
5240 	cp->phys.select.sel_sxfer	= tp->head.sval;
5241 	cp->phys.select.sel_scntl4	= tp->head.uval;
5242 
5243 	/*
5244 	 *  message
5245 	 */
5246 	cp->phys.smsg.addr	= cpu_to_scr(CCB_BA(cp, scsi_smsg));
5247 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5248 
5249 	/*
5250 	 *  status
5251 	 */
5252 	cp->host_xflags		= 0;
5253 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5254 	cp->ssss_status		= S_ILLEGAL;
5255 	cp->xerr_status		= 0;
5256 	cp->host_flags		= 0;
5257 	cp->extra_bytes		= 0;
5258 
5259 	/*
5260 	 *  extreme data pointer.
5261 	 *  shall be positive, so -1 is lower than lowest.:)
5262 	 */
5263 	cp->ext_sg  = -1;
5264 	cp->ext_ofs = 0;
5265 
5266 	/*
5267 	 *  Build the CDB and DATA descriptor block
5268 	 *  and start the IO.
5269 	 */
5270 	return sym_setup_data_and_start(np, cmd, cp);
5271 }
5272 
5273 /*
5274  *  Reset a SCSI target (all LUNs of this target).
5275  */
5276 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5277 {
5278 	struct sym_tcb *tp;
5279 
5280 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5281 		return -1;
5282 
5283 	tp = &np->target[target];
5284 	tp->to_reset = 1;
5285 
5286 	np->istat_sem = SEM;
5287 	OUTB(np, nc_istat, SIGP|SEM);
5288 
5289 	return 0;
5290 }
5291 
5292 /*
5293  *  Abort a SCSI IO.
5294  */
5295 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5296 {
5297 	/*
5298 	 *  Check that the IO is active.
5299 	 */
5300 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5301 		return -1;
5302 
5303 	/*
5304 	 *  If a previous abort didn't succeed in time,
5305 	 *  perform a BUS reset.
5306 	 */
5307 	if (cp->to_abort) {
5308 		sym_reset_scsi_bus(np, 1);
5309 		return 0;
5310 	}
5311 
5312 	/*
5313 	 *  Mark the CCB for abort and allow time for.
5314 	 */
5315 	cp->to_abort = timed_out ? 2 : 1;
5316 
5317 	/*
5318 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5319 	 */
5320 	np->istat_sem = SEM;
5321 	OUTB(np, nc_istat, SIGP|SEM);
5322 	return 0;
5323 }
5324 
5325 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5326 {
5327 	struct sym_ccb *cp;
5328 	SYM_QUEHEAD *qp;
5329 
5330 	/*
5331 	 *  Look up our CCB control block.
5332 	 */
5333 	cp = NULL;
5334 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5335 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5336 		if (cp2->cmd == cmd) {
5337 			cp = cp2;
5338 			break;
5339 		}
5340 	}
5341 
5342 	return sym_abort_ccb(np, cp, timed_out);
5343 }
5344 
5345 /*
5346  *  Complete execution of a SCSI command with extented
5347  *  error, SCSI status error, or having been auto-sensed.
5348  *
5349  *  The SCRIPTS processor is not running there, so we
5350  *  can safely access IO registers and remove JOBs from
5351  *  the START queue.
5352  *  SCRATCHA is assumed to have been loaded with STARTPOS
5353  *  before the SCRIPTS called the C code.
5354  */
5355 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5356 {
5357 	struct scsi_device *sdev;
5358 	struct scsi_cmnd *cmd;
5359 	struct sym_tcb *tp;
5360 	struct sym_lcb *lp;
5361 	int resid;
5362 	int i;
5363 
5364 	/*
5365 	 *  Paranoid check. :)
5366 	 */
5367 	if (!cp || !cp->cmd)
5368 		return;
5369 
5370 	cmd = cp->cmd;
5371 	sdev = cmd->device;
5372 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5373 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5374 			cp->host_status, cp->ssss_status, cp->host_flags);
5375 	}
5376 
5377 	/*
5378 	 *  Get target and lun pointers.
5379 	 */
5380 	tp = &np->target[cp->target];
5381 	lp = sym_lp(tp, sdev->lun);
5382 
5383 	/*
5384 	 *  Check for extended errors.
5385 	 */
5386 	if (cp->xerr_status) {
5387 		if (sym_verbose)
5388 			sym_print_xerr(cmd, cp->xerr_status);
5389 		if (cp->host_status == HS_COMPLETE)
5390 			cp->host_status = HS_COMP_ERR;
5391 	}
5392 
5393 	/*
5394 	 *  Calculate the residual.
5395 	 */
5396 	resid = sym_compute_residual(np, cp);
5397 
5398 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5399 		resid  = 0;		 /* throw them away. :)		    */
5400 		cp->sv_resid = 0;
5401 	}
5402 #ifdef DEBUG_2_0_X
5403 if (resid)
5404 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5405 #endif
5406 
5407 	/*
5408 	 *  Dequeue all queued CCBs for that device
5409 	 *  not yet started by SCRIPTS.
5410 	 */
5411 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5412 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5413 
5414 	/*
5415 	 *  Restart the SCRIPTS processor.
5416 	 */
5417 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5418 
5419 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5420 	if (cp->host_status == HS_COMPLETE &&
5421 	    cp->ssss_status == S_QUEUE_FULL) {
5422 		if (!lp || lp->started_tags - i < 2)
5423 			goto weirdness;
5424 		/*
5425 		 *  Decrease queue depth as needed.
5426 		 */
5427 		lp->started_max = lp->started_tags - i - 1;
5428 		lp->num_sgood = 0;
5429 
5430 		if (sym_verbose >= 2) {
5431 			sym_print_addr(cmd, " queue depth is now %d\n",
5432 					lp->started_max);
5433 		}
5434 
5435 		/*
5436 		 *  Repair the CCB.
5437 		 */
5438 		cp->host_status = HS_BUSY;
5439 		cp->ssss_status = S_ILLEGAL;
5440 
5441 		/*
5442 		 *  Let's requeue it to device.
5443 		 */
5444 		sym_set_cam_status(cmd, CAM_REQUEUE_REQ);
5445 		goto finish;
5446 	}
5447 weirdness:
5448 #endif
5449 	/*
5450 	 *  Build result in CAM ccb.
5451 	 */
5452 	sym_set_cam_result_error(np, cp, resid);
5453 
5454 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5455 finish:
5456 #endif
5457 	/*
5458 	 *  Add this one to the COMP queue.
5459 	 */
5460 	sym_remque(&cp->link_ccbq);
5461 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5462 
5463 	/*
5464 	 *  Complete all those commands with either error
5465 	 *  or requeue condition.
5466 	 */
5467 	sym_flush_comp_queue(np, 0);
5468 
5469 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5470 	/*
5471 	 *  Donnot start more than 1 command after an error.
5472 	 */
5473 	if (lp)
5474 		sym_start_next_ccbs(np, lp, 1);
5475 #endif
5476 }
5477 
5478 /*
5479  *  Complete execution of a successful SCSI command.
5480  *
5481  *  Only successful commands go to the DONE queue,
5482  *  since we need to have the SCRIPTS processor
5483  *  stopped on any error condition.
5484  *  The SCRIPTS processor is running while we are
5485  *  completing successful commands.
5486  */
5487 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5488 {
5489 	struct sym_tcb *tp;
5490 	struct sym_lcb *lp;
5491 	struct scsi_cmnd *cmd;
5492 	int resid;
5493 
5494 	/*
5495 	 *  Paranoid check. :)
5496 	 */
5497 	if (!cp || !cp->cmd)
5498 		return;
5499 	assert (cp->host_status == HS_COMPLETE);
5500 
5501 	/*
5502 	 *  Get user command.
5503 	 */
5504 	cmd = cp->cmd;
5505 
5506 	/*
5507 	 *  Get target and lun pointers.
5508 	 */
5509 	tp = &np->target[cp->target];
5510 	lp = sym_lp(tp, cp->lun);
5511 
5512 	/*
5513 	 *  Assume device discovered on first success.
5514 	 */
5515 	if (!lp)
5516 		sym_set_bit(tp->lun_map, cp->lun);
5517 
5518 	/*
5519 	 *  If all data have been transferred, given than no
5520 	 *  extended error did occur, there is no residual.
5521 	 */
5522 	resid = 0;
5523 	if (cp->phys.head.lastp != sym_goalp(cp))
5524 		resid = sym_compute_residual(np, cp);
5525 
5526 	/*
5527 	 *  Wrong transfer residuals may be worse than just always
5528 	 *  returning zero. User can disable this feature in
5529 	 *  sym53c8xx.h. Residual support is enabled by default.
5530 	 */
5531 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5532 		resid  = 0;
5533 #ifdef DEBUG_2_0_X
5534 if (resid)
5535 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5536 #endif
5537 
5538 	/*
5539 	 *  Build result in CAM ccb.
5540 	 */
5541 	sym_set_cam_result_ok(cp, cmd, resid);
5542 
5543 #ifdef	SYM_OPT_SNIFF_INQUIRY
5544 	/*
5545 	 *  On standard INQUIRY response (EVPD and CmDt
5546 	 *  not set), sniff out device capabilities.
5547 	 */
5548 	if (cp->cdb_buf[0] == INQUIRY && !(cp->cdb_buf[1] & 0x3))
5549 		sym_sniff_inquiry(np, cmd, resid);
5550 #endif
5551 
5552 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5553 	/*
5554 	 *  If max number of started ccbs had been reduced,
5555 	 *  increase it if 200 good status received.
5556 	 */
5557 	if (lp && lp->started_max < lp->started_limit) {
5558 		++lp->num_sgood;
5559 		if (lp->num_sgood >= 200) {
5560 			lp->num_sgood = 0;
5561 			++lp->started_max;
5562 			if (sym_verbose >= 2) {
5563 				sym_print_addr(cmd, " queue depth is now %d\n",
5564 				       lp->started_max);
5565 			}
5566 		}
5567 	}
5568 #endif
5569 
5570 	/*
5571 	 *  Free our CCB.
5572 	 */
5573 	sym_free_ccb (np, cp);
5574 
5575 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5576 	/*
5577 	 *  Requeue a couple of awaiting scsi commands.
5578 	 */
5579 	if (lp && !sym_que_empty(&lp->waiting_ccbq))
5580 		sym_start_next_ccbs(np, lp, 2);
5581 #endif
5582 	/*
5583 	 *  Complete the command.
5584 	 */
5585 	sym_xpt_done(np, cmd);
5586 }
5587 
5588 /*
5589  *  Soft-attach the controller.
5590  */
5591 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5592 {
5593 	struct sym_hcb *np = sym_get_hcb(shost);
5594 	int i;
5595 
5596 	/*
5597 	 *  Get some info about the firmware.
5598 	 */
5599 	np->scripta_sz	 = fw->a_size;
5600 	np->scriptb_sz	 = fw->b_size;
5601 	np->scriptz_sz	 = fw->z_size;
5602 	np->fw_setup	 = fw->setup;
5603 	np->fw_patch	 = fw->patch;
5604 	np->fw_name	 = fw->name;
5605 
5606 	/*
5607 	 *  Save setting of some IO registers, so we will
5608 	 *  be able to probe specific implementations.
5609 	 */
5610 	sym_save_initial_setting (np);
5611 
5612 	/*
5613 	 *  Reset the chip now, since it has been reported
5614 	 *  that SCSI clock calibration may not work properly
5615 	 *  if the chip is currently active.
5616 	 */
5617 	sym_chip_reset(np);
5618 
5619 	/*
5620 	 *  Prepare controller and devices settings, according
5621 	 *  to chip features, user set-up and driver set-up.
5622 	 */
5623 	sym_prepare_setting(shost, np, nvram);
5624 
5625 	/*
5626 	 *  Check the PCI clock frequency.
5627 	 *  Must be performed after prepare_setting since it destroys
5628 	 *  STEST1 that is used to probe for the clock doubler.
5629 	 */
5630 	i = sym_getpciclock(np);
5631 	if (i > 37000 && !(np->features & FE_66MHZ))
5632 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5633 			sym_name(np), i);
5634 
5635 	/*
5636 	 *  Allocate the start queue.
5637 	 */
5638 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5639 	if (!np->squeue)
5640 		goto attach_failed;
5641 	np->squeue_ba = vtobus(np->squeue);
5642 
5643 	/*
5644 	 *  Allocate the done queue.
5645 	 */
5646 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5647 	if (!np->dqueue)
5648 		goto attach_failed;
5649 	np->dqueue_ba = vtobus(np->dqueue);
5650 
5651 	/*
5652 	 *  Allocate the target bus address array.
5653 	 */
5654 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5655 	if (!np->targtbl)
5656 		goto attach_failed;
5657 	np->targtbl_ba = vtobus(np->targtbl);
5658 
5659 	/*
5660 	 *  Allocate SCRIPTS areas.
5661 	 */
5662 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5663 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5664 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5665 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5666 		goto attach_failed;
5667 
5668 	/*
5669 	 *  Allocate the array of lists of CCBs hashed by DSA.
5670 	 */
5671 	np->ccbh = kcalloc(sizeof(struct sym_ccb **), CCB_HASH_SIZE, GFP_KERNEL);
5672 	if (!np->ccbh)
5673 		goto attach_failed;
5674 
5675 	/*
5676 	 *  Initialyze the CCB free and busy queues.
5677 	 */
5678 	sym_que_init(&np->free_ccbq);
5679 	sym_que_init(&np->busy_ccbq);
5680 	sym_que_init(&np->comp_ccbq);
5681 
5682 	/*
5683 	 *  Initialization for optional handling
5684 	 *  of device queueing.
5685 	 */
5686 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5687 	sym_que_init(&np->dummy_ccbq);
5688 #endif
5689 	/*
5690 	 *  Allocate some CCB. We need at least ONE.
5691 	 */
5692 	if (!sym_alloc_ccb(np))
5693 		goto attach_failed;
5694 
5695 	/*
5696 	 *  Calculate BUS addresses where we are going
5697 	 *  to load the SCRIPTS.
5698 	 */
5699 	np->scripta_ba	= vtobus(np->scripta0);
5700 	np->scriptb_ba	= vtobus(np->scriptb0);
5701 	np->scriptz_ba	= vtobus(np->scriptz0);
5702 
5703 	if (np->ram_ba) {
5704 		np->scripta_ba	= np->ram_ba;
5705 		if (np->features & FE_RAM8K) {
5706 			np->ram_ws = 8192;
5707 			np->scriptb_ba = np->scripta_ba + 4096;
5708 #if 0	/* May get useful for 64 BIT PCI addressing */
5709 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5710 #endif
5711 		}
5712 		else
5713 			np->ram_ws = 4096;
5714 	}
5715 
5716 	/*
5717 	 *  Copy scripts to controller instance.
5718 	 */
5719 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5720 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5721 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5722 
5723 	/*
5724 	 *  Setup variable parts in scripts and compute
5725 	 *  scripts bus addresses used from the C code.
5726 	 */
5727 	np->fw_setup(np, fw);
5728 
5729 	/*
5730 	 *  Bind SCRIPTS with physical addresses usable by the
5731 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5732 	 */
5733 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5734 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5735 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5736 
5737 #ifdef SYM_CONF_IARB_SUPPORT
5738 	/*
5739 	 *    If user wants IARB to be set when we win arbitration
5740 	 *    and have other jobs, compute the max number of consecutive
5741 	 *    settings of IARB hints before we leave devices a chance to
5742 	 *    arbitrate for reselection.
5743 	 */
5744 #ifdef	SYM_SETUP_IARB_MAX
5745 	np->iarb_max = SYM_SETUP_IARB_MAX;
5746 #else
5747 	np->iarb_max = 4;
5748 #endif
5749 #endif
5750 
5751 	/*
5752 	 *  Prepare the idle and invalid task actions.
5753 	 */
5754 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5755 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5756 	np->idletask_ba		= vtobus(&np->idletask);
5757 
5758 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5759 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5760 	np->notask_ba		= vtobus(&np->notask);
5761 
5762 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5763 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5764 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5765 
5766 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5767 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5768 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5769 
5770 	/*
5771 	 *  Allocate and prepare the lun JUMP table that is used
5772 	 *  for a target prior the probing of devices (bad lun table).
5773 	 *  A private table will be allocated for the target on the
5774 	 *  first INQUIRY response received.
5775 	 */
5776 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5777 	if (!np->badluntbl)
5778 		goto attach_failed;
5779 
5780 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5781 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5782 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5783 
5784 	/*
5785 	 *  Prepare the bus address array that contains the bus
5786 	 *  address of each target control block.
5787 	 *  For now, assume all logical units are wrong. :)
5788 	 */
5789 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5790 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5791 		np->target[i].head.luntbl_sa =
5792 				cpu_to_scr(vtobus(np->badluntbl));
5793 		np->target[i].head.lun0_sa =
5794 				cpu_to_scr(vtobus(&np->badlun_sa));
5795 	}
5796 
5797 	/*
5798 	 *  Now check the cache handling of the pci chipset.
5799 	 */
5800 	if (sym_snooptest (np)) {
5801 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5802 		goto attach_failed;
5803 	}
5804 
5805 	/*
5806 	 *  Sigh! we are done.
5807 	 */
5808 	return 0;
5809 
5810 attach_failed:
5811 	return -ENXIO;
5812 }
5813 
5814 /*
5815  *  Free everything that has been allocated for this device.
5816  */
5817 void sym_hcb_free(struct sym_hcb *np)
5818 {
5819 	SYM_QUEHEAD *qp;
5820 	struct sym_ccb *cp;
5821 	struct sym_tcb *tp;
5822 	struct sym_lcb *lp;
5823 	int target, lun;
5824 
5825 	if (np->scriptz0)
5826 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5827 	if (np->scriptb0)
5828 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5829 	if (np->scripta0)
5830 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5831 	if (np->squeue)
5832 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5833 	if (np->dqueue)
5834 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5835 
5836 	if (np->actccbs) {
5837 		while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5838 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5839 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5840 		}
5841 	}
5842 	kfree(np->ccbh);
5843 
5844 	if (np->badluntbl)
5845 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5846 
5847 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5848 		tp = &np->target[target];
5849 		for (lun = 0 ; lun < SYM_CONF_MAX_LUN ; lun++) {
5850 			lp = sym_lp(tp, lun);
5851 			if (!lp)
5852 				continue;
5853 			if (lp->itlq_tbl)
5854 				sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4,
5855 				       "ITLQ_TBL");
5856 			kfree(lp->cb_tags);
5857 			sym_mfree_dma(lp, sizeof(*lp), "LCB");
5858 		}
5859 #if SYM_CONF_MAX_LUN > 1
5860 		kfree(tp->lunmp);
5861 #endif
5862 	}
5863 	if (np->targtbl)
5864 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5865 }
5866