xref: /openbmc/linux/drivers/scsi/sym53c8xx_2/sym_fw2.h (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  * This driver is derived from the Linux sym53c8xx driver.
8  * Copyright (C) 1998-2000  Gerard Roudier
9  *
10  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11  * a port of the FreeBSD ncr driver to Linux-1.2.13.
12  *
13  * The original ncr driver has been written for 386bsd and FreeBSD by
14  *         Wolfgang Stanglmeier        <wolf@cologne.de>
15  *         Stefan Esser                <se@mi.Uni-Koeln.de>
16  * Copyright (C) 1994  Wolfgang Stanglmeier
17  *
18  * Other major contributions:
19  *
20  * NVRAM detection and reading.
21  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22  *
23  *-----------------------------------------------------------------------------
24  *
25  * This program is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * This program is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38  */
39 
40 /*
41  *  Scripts for SYMBIOS-Processor
42  *
43  *  We have to know the offsets of all labels before we reach
44  *  them (for forward jumps). Therefore we declare a struct
45  *  here. If you make changes inside the script,
46  *
47  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
48  */
49 
50 /*
51  *  Script fragments which are loaded into the on-chip RAM
52  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
53  *  Must not exceed 4K bytes.
54  */
55 struct SYM_FWA_SCR {
56 	u32 start		[ 14];
57 	u32 getjob_begin	[  4];
58 	u32 getjob_end		[  4];
59 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
60 	u32 select		[  6];
61 #else
62 	u32 select		[  4];
63 #endif
64 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
65 	u32 is_dmap_dirty	[  4];
66 #endif
67 	u32 wf_sel_done		[  2];
68 	u32 sel_done		[  2];
69 	u32 send_ident		[  2];
70 #ifdef SYM_CONF_IARB_SUPPORT
71 	u32 select2		[  8];
72 #else
73 	u32 select2		[  2];
74 #endif
75 	u32 command		[  2];
76 	u32 dispatch		[ 28];
77 	u32 sel_no_cmd		[ 10];
78 	u32 init		[  6];
79 	u32 clrack		[  4];
80 	u32 datai_done		[ 10];
81 	u32 datai_done_wsr	[ 20];
82 	u32 datao_done		[ 10];
83 	u32 datao_done_wss	[  6];
84 	u32 datai_phase		[  4];
85 	u32 datao_phase		[  6];
86 	u32 msg_in		[  2];
87 	u32 msg_in2		[ 10];
88 #ifdef SYM_CONF_IARB_SUPPORT
89 	u32 status		[ 14];
90 #else
91 	u32 status		[ 10];
92 #endif
93 	u32 complete		[  6];
94 	u32 complete2		[ 12];
95 	u32 done		[ 14];
96 	u32 done_end		[  2];
97 	u32 complete_error	[  4];
98 	u32 save_dp		[ 12];
99 	u32 restore_dp		[  8];
100 	u32 disconnect		[ 12];
101 #ifdef SYM_CONF_IARB_SUPPORT
102 	u32 idle		[  4];
103 #else
104 	u32 idle		[  2];
105 #endif
106 #ifdef SYM_CONF_IARB_SUPPORT
107 	u32 ungetjob		[  6];
108 #else
109 	u32 ungetjob		[  4];
110 #endif
111 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
112 	u32 reselect		[  4];
113 #else
114 	u32 reselect		[  2];
115 #endif
116 	u32 reselected		[ 22];
117 	u32 resel_scntl4	[ 20];
118 	u32 resel_lun0		[  6];
119 #if   SYM_CONF_MAX_TASK*4 > 512
120 	u32 resel_tag		[ 26];
121 #elif SYM_CONF_MAX_TASK*4 > 256
122 	u32 resel_tag		[ 20];
123 #else
124 	u32 resel_tag		[ 16];
125 #endif
126 	u32 resel_dsa		[  2];
127 	u32 resel_dsa1		[  4];
128 	u32 resel_no_tag	[  6];
129 	u32 data_in		[SYM_CONF_MAX_SG * 2];
130 	u32 data_in2		[  4];
131 	u32 data_out		[SYM_CONF_MAX_SG * 2];
132 	u32 data_out2		[  4];
133 	u32 pm0_data		[ 12];
134 	u32 pm0_data_out	[  6];
135 	u32 pm0_data_end	[  6];
136 	u32 pm1_data		[ 12];
137 	u32 pm1_data_out	[  6];
138 	u32 pm1_data_end	[  6];
139 };
140 
141 /*
142  *  Script fragments which stay in main memory for all chips
143  *  except for chips that support 8K on-chip RAM.
144  */
145 struct SYM_FWB_SCR {
146 	u32 start64		[  2];
147 	u32 no_data		[  2];
148 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
149 	u32 sel_for_abort	[ 18];
150 #else
151 	u32 sel_for_abort	[ 16];
152 #endif
153 	u32 sel_for_abort_1	[  2];
154 	u32 msg_in_etc		[ 12];
155 	u32 msg_received	[  4];
156 	u32 msg_weird_seen	[  4];
157 	u32 msg_extended	[ 20];
158 	u32 msg_bad		[  6];
159 	u32 msg_weird		[  4];
160 	u32 msg_weird1		[  8];
161 
162 	u32 wdtr_resp		[  6];
163 	u32 send_wdtr		[  4];
164 	u32 sdtr_resp		[  6];
165 	u32 send_sdtr		[  4];
166 	u32 ppr_resp		[  6];
167 	u32 send_ppr		[  4];
168 	u32 nego_bad_phase	[  4];
169 	u32 msg_out		[  4];
170 	u32 msg_out_done	[  4];
171 	u32 data_ovrun		[  2];
172 	u32 data_ovrun1		[ 22];
173 	u32 data_ovrun2		[  8];
174 	u32 abort_resel		[ 16];
175 	u32 resend_ident	[  4];
176 	u32 ident_break		[  4];
177 	u32 ident_break_atn	[  4];
178 	u32 sdata_in		[  6];
179 	u32 resel_bad_lun	[  4];
180 	u32 bad_i_t_l		[  4];
181 	u32 bad_i_t_l_q		[  4];
182 	u32 bad_status		[  6];
183 	u32 pm_handle		[ 20];
184 	u32 pm_handle1		[  4];
185 	u32 pm_save		[  4];
186 	u32 pm0_save		[ 12];
187 	u32 pm_save_end		[  4];
188 	u32 pm1_save		[ 14];
189 
190 	/* WSR handling */
191 	u32 pm_wsr_handle	[ 38];
192 	u32 wsr_ma_helper	[  4];
193 
194 #ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
195 	/* Unknown direction handling */
196 	u32 data_io		[  2];
197 	u32 data_io_in		[  2];
198 	u32 data_io_com		[  6];
199 	u32 data_io_out		[  8];
200 #endif
201 	/* Data area */
202 	u32 zero		[  1];
203 	u32 scratch		[  1];
204 	u32 pm0_data_addr	[  1];
205 	u32 pm1_data_addr	[  1];
206 	u32 done_pos		[  1];
207 	u32 startpos		[  1];
208 	u32 targtbl		[  1];
209 };
210 
211 /*
212  *  Script fragments used at initialisations.
213  *  Only runs out of main memory.
214  */
215 struct SYM_FWZ_SCR {
216 	u32 snooptest		[  6];
217 	u32 snoopend		[  2];
218 };
219 
220 static struct SYM_FWA_SCR SYM_FWA_SCR = {
221 /*--------------------------< START >----------------------------*/ {
222 	/*
223 	 *  Switch the LED on.
224 	 *  Will be patched with a NO_OP if LED
225 	 *  not needed or not desired.
226 	 */
227 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
228 		0,
229 	/*
230 	 *      Clear SIGP.
231 	 */
232 	SCR_FROM_REG (ctest2),
233 		0,
234 	/*
235 	 *  Stop here if the C code wants to perform
236 	 *  some error recovery procedure manually.
237 	 *  (Indicate this by setting SEM in ISTAT)
238 	 */
239 	SCR_FROM_REG (istat),
240 		0,
241 	/*
242 	 *  Report to the C code the next position in
243 	 *  the start queue the SCRIPTS will schedule.
244 	 *  The C code must not change SCRATCHA.
245 	 */
246 	SCR_LOAD_ABS (scratcha, 4),
247 		PADDR_B (startpos),
248 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
249 		SIR_SCRIPT_STOPPED,
250 	/*
251 	 *  Start the next job.
252 	 *
253 	 *  @DSA     = start point for this job.
254 	 *  SCRATCHA = address of this job in the start queue.
255 	 *
256 	 *  We will restore startpos with SCRATCHA if we fails the
257 	 *  arbitration or if it is the idle job.
258 	 *
259 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
260 	 *  is a critical path. If it is partially executed, it then
261 	 *  may happen that the job address is not yet in the DSA
262 	 *  and the next queue position points to the next JOB.
263 	 */
264 	SCR_LOAD_ABS (dsa, 4),
265 		PADDR_B (startpos),
266 	SCR_LOAD_REL (temp, 4),
267 		4,
268 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
269 	SCR_STORE_ABS (temp, 4),
270 		PADDR_B (startpos),
271 	SCR_LOAD_REL (dsa, 4),
272 		0,
273 }/*-------------------------< GETJOB_END >-----------------------*/,{
274 	SCR_LOAD_REL (temp, 4),
275 		0,
276 	SCR_RETURN,
277 		0,
278 }/*-------------------------< SELECT >---------------------------*/,{
279 	/*
280 	 *  DSA	contains the address of a scheduled
281 	 *  	data structure.
282 	 *
283 	 *  SCRATCHA contains the address of the start queue
284 	 *  	entry which points to the next job.
285 	 *
286 	 *  Set Initiator mode.
287 	 *
288 	 *  (Target mode is left as an exercise for the reader)
289 	 */
290 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
291 	SCR_CLR (SCR_TRG),
292 		0,
293 #endif
294 	/*
295 	 *      And try to select this target.
296 	 */
297 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
298 		PADDR_A (ungetjob),
299 	/*
300 	 *  Now there are 4 possibilities:
301 	 *
302 	 *  (1) The chip loses arbitration.
303 	 *  This is ok, because it will try again,
304 	 *  when the bus becomes idle.
305 	 *  (But beware of the timeout function!)
306 	 *
307 	 *  (2) The chip is reselected.
308 	 *  Then the script processor takes the jump
309 	 *  to the RESELECT label.
310 	 *
311 	 *  (3) The chip wins arbitration.
312 	 *  Then it will execute SCRIPTS instruction until
313 	 *  the next instruction that checks SCSI phase.
314 	 *  Then will stop and wait for selection to be
315 	 *  complete or selection time-out to occur.
316 	 *
317 	 *  After having won arbitration, the SCRIPTS
318 	 *  processor is able to execute instructions while
319 	 *  the SCSI core is performing SCSI selection.
320 	 */
321 	/*
322 	 *      Initialize the status registers
323 	 */
324 	SCR_LOAD_REL (scr0, 4),
325 		offsetof (struct sym_ccb, phys.head.status),
326 	/*
327 	 *  We may need help from CPU if the DMA segment
328 	 *  registers aren't up-to-date for this IO.
329 	 *  Patched with NOOP for chips that donnot
330 	 *  support DAC addressing.
331 	 */
332 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
333 }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
334 	SCR_FROM_REG (HX_REG),
335 		0,
336 	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
337 		SIR_DMAP_DIRTY,
338 #endif
339 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
340 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
341 		SIR_SEL_ATN_NO_MSG_OUT,
342 }/*-------------------------< SEL_DONE >-------------------------*/,{
343 	/*
344 	 *  C1010-33 errata work-around.
345 	 *  Due to a race, the SCSI core may not have
346 	 *  loaded SCNTL3 on SEL_TBL instruction.
347 	 *  We reload it once phase is stable.
348 	 *  Patched with a NOOP for other chips.
349 	 */
350 	SCR_LOAD_REL (scntl3, 1),
351 		offsetof(struct sym_dsb, select.sel_scntl3),
352 }/*-------------------------< SEND_IDENT >-----------------------*/,{
353 	/*
354 	 *  Selection complete.
355 	 *  Send the IDENTIFY and possibly the TAG message
356 	 *  and negotiation message if present.
357 	 */
358 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
359 		offsetof (struct sym_dsb, smsg),
360 }/*-------------------------< SELECT2 >--------------------------*/,{
361 #ifdef SYM_CONF_IARB_SUPPORT
362 	/*
363 	 *  Set IMMEDIATE ARBITRATION if we have been given
364 	 *  a hint to do so. (Some job to do after this one).
365 	 */
366 	SCR_FROM_REG (HF_REG),
367 		0,
368 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
369 		8,
370 	SCR_REG_REG (scntl1, SCR_OR, IARB),
371 		0,
372 #endif
373 	/*
374 	 *  Anticipate the COMMAND phase.
375 	 *  This is the PHASE we expect at this point.
376 	 */
377 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
378 		PADDR_A (sel_no_cmd),
379 }/*-------------------------< COMMAND >--------------------------*/,{
380 	/*
381 	 *  ... and send the command
382 	 */
383 	SCR_MOVE_TBL ^ SCR_COMMAND,
384 		offsetof (struct sym_dsb, cmd),
385 }/*-------------------------< DISPATCH >-------------------------*/,{
386 	/*
387 	 *  MSG_IN is the only phase that shall be
388 	 *  entered at least once for each (re)selection.
389 	 *  So we test it first.
390 	 */
391 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
392 		PADDR_A (msg_in),
393 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
394 		PADDR_A (datao_phase),
395 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
396 		PADDR_A (datai_phase),
397 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
398 		PADDR_A (status),
399 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
400 		PADDR_A (command),
401 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
402 		PADDR_B (msg_out),
403 	/*
404 	 *  Discard as many illegal phases as
405 	 *  required and tell the C code about.
406 	 */
407 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
408 		16,
409 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
410 		HADDR_1 (scratch),
411 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
412 		-16,
413 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
414 		16,
415 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
416 		HADDR_1 (scratch),
417 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
418 		-16,
419 	SCR_INT,
420 		SIR_BAD_PHASE,
421 	SCR_JUMP,
422 		PADDR_A (dispatch),
423 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
424 	/*
425 	 *  The target does not switch to command
426 	 *  phase after IDENTIFY has been sent.
427 	 *
428 	 *  If it stays in MSG OUT phase send it
429 	 *  the IDENTIFY again.
430 	 */
431 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
432 		PADDR_B (resend_ident),
433 	/*
434 	 *  If target does not switch to MSG IN phase
435 	 *  and we sent a negotiation, assert the
436 	 *  failure immediately.
437 	 */
438 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
439 		PADDR_A (dispatch),
440 	SCR_FROM_REG (HS_REG),
441 		0,
442 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
443 		SIR_NEGO_FAILED,
444 	/*
445 	 *  Jump to dispatcher.
446 	 */
447 	SCR_JUMP,
448 		PADDR_A (dispatch),
449 }/*-------------------------< INIT >-----------------------------*/,{
450 	/*
451 	 *  Wait for the SCSI RESET signal to be
452 	 *  inactive before restarting operations,
453 	 *  since the chip may hang on SEL_ATN
454 	 *  if SCSI RESET is active.
455 	 */
456 	SCR_FROM_REG (sstat0),
457 		0,
458 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
459 		-16,
460 	SCR_JUMP,
461 		PADDR_A (start),
462 }/*-------------------------< CLRACK >---------------------------*/,{
463 	/*
464 	 *  Terminate possible pending message phase.
465 	 */
466 	SCR_CLR (SCR_ACK),
467 		0,
468 	SCR_JUMP,
469 		PADDR_A (dispatch),
470 }/*-------------------------< DATAI_DONE >-----------------------*/,{
471 	/*
472 	 *  Save current pointer to LASTP.
473 	 */
474 	SCR_STORE_REL (temp, 4),
475 		offsetof (struct sym_ccb, phys.head.lastp),
476 	/*
477 	 *  If the SWIDE is not full, jump to dispatcher.
478 	 *  We anticipate a STATUS phase.
479 	 */
480 	SCR_FROM_REG (scntl2),
481 		0,
482 	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
483 		PADDR_A (datai_done_wsr),
484 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
485 		PADDR_A (status),
486 	SCR_JUMP,
487 		PADDR_A (dispatch),
488 }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
489 	/*
490 	 *  The SWIDE is full.
491 	 *  Clear this condition.
492 	 */
493 	SCR_REG_REG (scntl2, SCR_OR, WSR),
494 		0,
495 	/*
496 	 *  We are expecting an IGNORE RESIDUE message
497 	 *  from the device, otherwise we are in data
498 	 *  overrun condition. Check against MSG_IN phase.
499 	 */
500 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
501 		SIR_SWIDE_OVERRUN,
502 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
503 		PADDR_A (dispatch),
504 	/*
505 	 *  We are in MSG_IN phase,
506 	 *  Read the first byte of the message.
507 	 *  If it is not an IGNORE RESIDUE message,
508 	 *  signal overrun and jump to message
509 	 *  processing.
510 	 */
511 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
512 		HADDR_1 (msgin[0]),
513 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
514 		SIR_SWIDE_OVERRUN,
515 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
516 		PADDR_A (msg_in2),
517 	/*
518 	 *  We got the message we expected.
519 	 *  Read the 2nd byte, and jump to dispatcher.
520 	 */
521 	SCR_CLR (SCR_ACK),
522 		0,
523 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
524 		HADDR_1 (msgin[1]),
525 	SCR_CLR (SCR_ACK),
526 		0,
527 	SCR_JUMP,
528 		PADDR_A (dispatch),
529 }/*-------------------------< DATAO_DONE >-----------------------*/,{
530 	/*
531 	 *  Save current pointer to LASTP.
532 	 */
533 	SCR_STORE_REL (temp, 4),
534 		offsetof (struct sym_ccb, phys.head.lastp),
535 	/*
536 	 *  If the SODL is not full jump to dispatcher.
537 	 *  We anticipate a STATUS phase.
538 	 */
539 	SCR_FROM_REG (scntl2),
540 		0,
541 	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
542 		PADDR_A (datao_done_wss),
543 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
544 		PADDR_A (status),
545 	SCR_JUMP,
546 		PADDR_A (dispatch),
547 }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
548 	/*
549 	 *  The SODL is full, clear this condition.
550 	 */
551 	SCR_REG_REG (scntl2, SCR_OR, WSS),
552 		0,
553 	/*
554 	 *  And signal a DATA UNDERRUN condition
555 	 *  to the C code.
556 	 */
557 	SCR_INT,
558 		SIR_SODL_UNDERRUN,
559 	SCR_JUMP,
560 		PADDR_A (dispatch),
561 }/*-------------------------< DATAI_PHASE >----------------------*/,{
562 	/*
563 	 *  Jump to current pointer.
564 	 */
565 	SCR_LOAD_REL (temp, 4),
566 		offsetof (struct sym_ccb, phys.head.lastp),
567 	SCR_RETURN,
568 		0,
569 }/*-------------------------< DATAO_PHASE >----------------------*/,{
570 	/*
571 	 *  C1010-66 errata work-around.
572 	 *  Extra clocks of data hold must be inserted
573 	 *  in DATA OUT phase on 33 MHz PCI BUS.
574 	 *  Patched with a NOOP for other chips.
575 	 */
576 	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
577 		0,
578 	/*
579 	 *  Jump to current pointer.
580 	 */
581 	SCR_LOAD_REL (temp, 4),
582 		offsetof (struct sym_ccb, phys.head.lastp),
583 	SCR_RETURN,
584 		0,
585 }/*-------------------------< MSG_IN >---------------------------*/,{
586 	/*
587 	 *  Get the first byte of the message.
588 	 *
589 	 *  The script processor doesn't negate the
590 	 *  ACK signal after this transfer.
591 	 */
592 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
593 		HADDR_1 (msgin[0]),
594 }/*-------------------------< MSG_IN2 >--------------------------*/,{
595 	/*
596 	 *  Check first against 1 byte messages
597 	 *  that we handle from SCRIPTS.
598 	 */
599 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
600 		PADDR_A (complete),
601 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
602 		PADDR_A (disconnect),
603 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
604 		PADDR_A (save_dp),
605 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
606 		PADDR_A (restore_dp),
607 	/*
608 	 *  We handle all other messages from the
609 	 *  C code, so no need to waste on-chip RAM
610 	 *  for those ones.
611 	 */
612 	SCR_JUMP,
613 		PADDR_B (msg_in_etc),
614 }/*-------------------------< STATUS >---------------------------*/,{
615 	/*
616 	 *  get the status
617 	 */
618 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
619 		HADDR_1 (scratch),
620 #ifdef SYM_CONF_IARB_SUPPORT
621 	/*
622 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
623 	 *  since we may have to tamper the start queue from
624 	 *  the C code.
625 	 */
626 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
627 		8,
628 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
629 		0,
630 #endif
631 	/*
632 	 *  save status to scsi_status.
633 	 *  mark as complete.
634 	 */
635 	SCR_TO_REG (SS_REG),
636 		0,
637 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
638 		0,
639 	/*
640 	 *  Anticipate the MESSAGE PHASE for
641 	 *  the TASK COMPLETE message.
642 	 */
643 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
644 		PADDR_A (msg_in),
645 	SCR_JUMP,
646 		PADDR_A (dispatch),
647 }/*-------------------------< COMPLETE >-------------------------*/,{
648 	/*
649 	 *  Complete message.
650 	 *
651 	 *  When we terminate the cycle by clearing ACK,
652 	 *  the target may disconnect immediately.
653 	 *
654 	 *  We don't want to be told of an "unexpected disconnect",
655 	 *  so we disable this feature.
656 	 */
657 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
658 		0,
659 	/*
660 	 *  Terminate cycle ...
661 	 */
662 	SCR_CLR (SCR_ACK|SCR_ATN),
663 		0,
664 	/*
665 	 *  ... and wait for the disconnect.
666 	 */
667 	SCR_WAIT_DISC,
668 		0,
669 }/*-------------------------< COMPLETE2 >------------------------*/,{
670 	/*
671 	 *  Save host status.
672 	 */
673 	SCR_STORE_REL (scr0, 4),
674 		offsetof (struct sym_ccb, phys.head.status),
675 	/*
676 	 *  Some bridges may reorder DMA writes to memory.
677 	 *  We donnot want the CPU to deal with completions
678 	 *  without all the posted write having been flushed
679 	 *  to memory. This DUMMY READ should flush posted
680 	 *  buffers prior to the CPU having to deal with
681 	 *  completions.
682 	 */
683 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
684 		offsetof (struct sym_ccb, phys.head.status),
685 
686 	/*
687 	 *  If command resulted in not GOOD status,
688 	 *  call the C code if needed.
689 	 */
690 	SCR_FROM_REG (SS_REG),
691 		0,
692 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
693 		PADDR_B (bad_status),
694 	/*
695 	 *  If we performed an auto-sense, call
696 	 *  the C code to synchronyze task aborts
697 	 *  with UNIT ATTENTION conditions.
698 	 */
699 	SCR_FROM_REG (HF_REG),
700 		0,
701 	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
702 		PADDR_A (complete_error),
703 }/*-------------------------< DONE >-----------------------------*/,{
704 	/*
705 	 *  Copy the DSA to the DONE QUEUE and
706 	 *  signal completion to the host.
707 	 *  If we are interrupted between DONE
708 	 *  and DONE_END, we must reset, otherwise
709 	 *  the completed CCB may be lost.
710 	 */
711 	SCR_STORE_ABS (dsa, 4),
712 		PADDR_B (scratch),
713 	SCR_LOAD_ABS (dsa, 4),
714 		PADDR_B (done_pos),
715 	SCR_LOAD_ABS (scratcha, 4),
716 		PADDR_B (scratch),
717 	SCR_STORE_REL (scratcha, 4),
718 		0,
719 	/*
720 	 *  The instruction below reads the DONE QUEUE next
721 	 *  free position from memory.
722 	 *  In addition it ensures that all PCI posted writes
723 	 *  are flushed and so the DSA value of the done
724 	 *  CCB is visible by the CPU before INTFLY is raised.
725 	 */
726 	SCR_LOAD_REL (scratcha, 4),
727 		4,
728 	SCR_INT_FLY,
729 		0,
730 	SCR_STORE_ABS (scratcha, 4),
731 		PADDR_B (done_pos),
732 }/*-------------------------< DONE_END >-------------------------*/,{
733 	SCR_JUMP,
734 		PADDR_A (start),
735 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
736 	SCR_LOAD_ABS (scratcha, 4),
737 		PADDR_B (startpos),
738 	SCR_INT,
739 		SIR_COMPLETE_ERROR,
740 }/*-------------------------< SAVE_DP >--------------------------*/,{
741 	/*
742 	 *  Clear ACK immediately.
743 	 *  No need to delay it.
744 	 */
745 	SCR_CLR (SCR_ACK),
746 		0,
747 	/*
748 	 *  Keep track we received a SAVE DP, so
749 	 *  we will switch to the other PM context
750 	 *  on the next PM since the DP may point
751 	 *  to the current PM context.
752 	 */
753 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
754 		0,
755 	/*
756 	 *  SAVE_DP message:
757 	 *  Copy LASTP to SAVEP.
758 	 */
759 	SCR_LOAD_REL (scratcha, 4),
760 		offsetof (struct sym_ccb, phys.head.lastp),
761 	SCR_STORE_REL (scratcha, 4),
762 		offsetof (struct sym_ccb, phys.head.savep),
763 	/*
764 	 *  Anticipate the MESSAGE PHASE for
765 	 *  the DISCONNECT message.
766 	 */
767 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
768 		PADDR_A (msg_in),
769 	SCR_JUMP,
770 		PADDR_A (dispatch),
771 }/*-------------------------< RESTORE_DP >-----------------------*/,{
772 	/*
773 	 *  Clear ACK immediately.
774 	 *  No need to delay it.
775 	 */
776 	SCR_CLR (SCR_ACK),
777 		0,
778 	/*
779 	 *  Copy SAVEP to LASTP.
780 	 */
781 	SCR_LOAD_REL  (scratcha, 4),
782 		offsetof (struct sym_ccb, phys.head.savep),
783 	SCR_STORE_REL (scratcha, 4),
784 		offsetof (struct sym_ccb, phys.head.lastp),
785 	SCR_JUMP,
786 		PADDR_A (dispatch),
787 }/*-------------------------< DISCONNECT >-----------------------*/,{
788 	/*
789 	 *  DISCONNECTing  ...
790 	 *
791 	 *  disable the "unexpected disconnect" feature,
792 	 *  and remove the ACK signal.
793 	 */
794 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
795 		0,
796 	SCR_CLR (SCR_ACK|SCR_ATN),
797 		0,
798 	/*
799 	 *  Wait for the disconnect.
800 	 */
801 	SCR_WAIT_DISC,
802 		0,
803 	/*
804 	 *  Status is: DISCONNECTED.
805 	 */
806 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
807 		0,
808 	/*
809 	 *  Save host status.
810 	 */
811 	SCR_STORE_REL (scr0, 4),
812 		offsetof (struct sym_ccb, phys.head.status),
813 	SCR_JUMP,
814 		PADDR_A (start),
815 }/*-------------------------< IDLE >-----------------------------*/,{
816 	/*
817 	 *  Nothing to do?
818 	 *  Switch the LED off and wait for reselect.
819 	 *  Will be patched with a NO_OP if LED
820 	 *  not needed or not desired.
821 	 */
822 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
823 		0,
824 #ifdef SYM_CONF_IARB_SUPPORT
825 	SCR_JUMPR,
826 		8,
827 #endif
828 }/*-------------------------< UNGETJOB >-------------------------*/,{
829 #ifdef SYM_CONF_IARB_SUPPORT
830 	/*
831 	 *  Set IMMEDIATE ARBITRATION, for the next time.
832 	 *  This will give us better chance to win arbitration
833 	 *  for the job we just wanted to do.
834 	 */
835 	SCR_REG_REG (scntl1, SCR_OR, IARB),
836 		0,
837 #endif
838 	/*
839 	 *  We are not able to restart the SCRIPTS if we are
840 	 *  interrupted and these instruction haven't been
841 	 *  all executed. BTW, this is very unlikely to
842 	 *  happen, but we check that from the C code.
843 	 */
844 	SCR_LOAD_REG (dsa, 0xff),
845 		0,
846 	SCR_STORE_ABS (scratcha, 4),
847 		PADDR_B (startpos),
848 }/*-------------------------< RESELECT >-------------------------*/,{
849 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
850 	/*
851 	 *  Make sure we are in initiator mode.
852 	 */
853 	SCR_CLR (SCR_TRG),
854 		0,
855 #endif
856 	/*
857 	 *  Sleep waiting for a reselection.
858 	 */
859 	SCR_WAIT_RESEL,
860 		PADDR_A(start),
861 }/*-------------------------< RESELECTED >-----------------------*/,{
862 	/*
863 	 *  Switch the LED on.
864 	 *  Will be patched with a NO_OP if LED
865 	 *  not needed or not desired.
866 	 */
867 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
868 		0,
869 	/*
870 	 *  load the target id into the sdid
871 	 */
872 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
873 		0,
874 	SCR_TO_REG (sdid),
875 		0,
876 	/*
877 	 *  Load the target control block address
878 	 */
879 	SCR_LOAD_ABS (dsa, 4),
880 		PADDR_B (targtbl),
881 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
882 		0,
883 	SCR_REG_REG (dsa, SCR_SHL, 0),
884 		0,
885 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
886 		0,
887 	SCR_LOAD_REL (dsa, 4),
888 		0,
889 	/*
890 	 *  We expect MESSAGE IN phase.
891 	 *  If not, get help from the C code.
892 	 */
893 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
894 		SIR_RESEL_NO_MSG_IN,
895 	/*
896 	 *  Load the legacy synchronous transfer registers.
897 	 */
898 	SCR_LOAD_REL (scntl3, 1),
899 		offsetof(struct sym_tcb, head.wval),
900 	SCR_LOAD_REL (sxfer, 1),
901 		offsetof(struct sym_tcb, head.sval),
902 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
903 	/*
904 	 *  The C1010 uses a new synchronous timing scheme.
905 	 *  Will be patched with a NO_OP if not a C1010.
906 	 */
907 	SCR_LOAD_REL (scntl4, 1),
908 		offsetof(struct sym_tcb, head.uval),
909 	/*
910 	 *  Get the IDENTIFY message.
911 	 */
912 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
913 		HADDR_1 (msgin),
914 	/*
915 	 *  If IDENTIFY LUN #0, use a faster path
916 	 *  to find the LCB structure.
917 	 */
918 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
919 		PADDR_A (resel_lun0),
920 	/*
921 	 *  If message isn't an IDENTIFY,
922 	 *  tell the C code about.
923 	 */
924 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
925 		SIR_RESEL_NO_IDENTIFY,
926 	/*
927 	 *  It is an IDENTIFY message,
928 	 *  Load the LUN control block address.
929 	 */
930 	SCR_LOAD_REL (dsa, 4),
931 		offsetof(struct sym_tcb, head.luntbl_sa),
932 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
933 		0,
934 	SCR_REG_REG (dsa, SCR_SHL, 0),
935 		0,
936 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
937 		0,
938 	SCR_LOAD_REL (dsa, 4),
939 		0,
940 	SCR_JUMPR,
941 		8,
942 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
943 	/*
944 	 *  LUN 0 special case (but usual one :))
945 	 */
946 	SCR_LOAD_REL (dsa, 4),
947 		offsetof(struct sym_tcb, head.lun0_sa),
948 	/*
949 	 *  Jump indirectly to the reselect action for this LUN.
950 	 */
951 	SCR_LOAD_REL (temp, 4),
952 		offsetof(struct sym_lcb, head.resel_sa),
953 	SCR_RETURN,
954 		0,
955 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
956 }/*-------------------------< RESEL_TAG >------------------------*/,{
957 	/*
958 	 *  ACK the IDENTIFY previously received.
959 	 */
960 	SCR_CLR (SCR_ACK),
961 		0,
962 	/*
963 	 *  It shall be a tagged command.
964 	 *  Read SIMPLE+TAG.
965 	 *  The C code will deal with errors.
966 	 *  Agressive optimization, is'nt it? :)
967 	 */
968 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
969 		HADDR_1 (msgin),
970 	/*
971 	 *  Load the pointer to the tagged task
972 	 *  table for this LUN.
973 	 */
974 	SCR_LOAD_REL (dsa, 4),
975 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
976 	/*
977 	 *  The SIDL still contains the TAG value.
978 	 *  Agressive optimization, isn't it? :):)
979 	 */
980 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
981 		0,
982 #if SYM_CONF_MAX_TASK*4 > 512
983 	SCR_JUMPR ^ IFFALSE (CARRYSET),
984 		8,
985 	SCR_REG_REG (dsa1, SCR_OR, 2),
986 		0,
987 	SCR_REG_REG (sfbr, SCR_SHL, 0),
988 		0,
989 	SCR_JUMPR ^ IFFALSE (CARRYSET),
990 		8,
991 	SCR_REG_REG (dsa1, SCR_OR, 1),
992 		0,
993 #elif SYM_CONF_MAX_TASK*4 > 256
994 	SCR_JUMPR ^ IFFALSE (CARRYSET),
995 		8,
996 	SCR_REG_REG (dsa1, SCR_OR, 1),
997 		0,
998 #endif
999 	/*
1000 	 *  Retrieve the DSA of this task.
1001 	 *  JUMP indirectly to the restart point of the CCB.
1002 	 */
1003 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
1004 		0,
1005 	SCR_LOAD_REL (dsa, 4),
1006 		0,
1007 	SCR_LOAD_REL (temp, 4),
1008 		offsetof(struct sym_ccb, phys.head.go.restart),
1009 	SCR_RETURN,
1010 		0,
1011 	/* In normal situations we branch to RESEL_DSA */
1012 }/*-------------------------< RESEL_DSA >------------------------*/,{
1013 	/*
1014 	 *  ACK the IDENTIFY or TAG previously received.
1015 	 */
1016 	SCR_CLR (SCR_ACK),
1017 		0,
1018 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1019 	/*
1020 	 *      Initialize the status registers
1021 	 */
1022 	SCR_LOAD_REL (scr0, 4),
1023 		offsetof (struct sym_ccb, phys.head.status),
1024 	/*
1025 	 *  Jump to dispatcher.
1026 	 */
1027 	SCR_JUMP,
1028 		PADDR_A (dispatch),
1029 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1030 	/*
1031 	 *  Load the DSA with the unique ITL task.
1032 	 */
1033 	SCR_LOAD_REL (dsa, 4),
1034 		offsetof(struct sym_lcb, head.itl_task_sa),
1035 	/*
1036 	 *  JUMP indirectly to the restart point of the CCB.
1037 	 */
1038 	SCR_LOAD_REL (temp, 4),
1039 		offsetof(struct sym_ccb, phys.head.go.restart),
1040 	SCR_RETURN,
1041 		0,
1042 	/* In normal situations we branch to RESEL_DSA */
1043 }/*-------------------------< DATA_IN >--------------------------*/,{
1044 /*
1045  *  Because the size depends on the
1046  *  #define SYM_CONF_MAX_SG parameter,
1047  *  it is filled in at runtime.
1048  *
1049  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1050  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1051  *  ||		offsetof (struct sym_dsb, data[ i]),
1052  *  ##==========================================
1053  */
1054 0
1055 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1056 	SCR_CALL,
1057 		PADDR_A (datai_done),
1058 	SCR_JUMP,
1059 		PADDR_B (data_ovrun),
1060 }/*-------------------------< DATA_OUT >-------------------------*/,{
1061 /*
1062  *  Because the size depends on the
1063  *  #define SYM_CONF_MAX_SG parameter,
1064  *  it is filled in at runtime.
1065  *
1066  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1067  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1068  *  ||		offsetof (struct sym_dsb, data[ i]),
1069  *  ##==========================================
1070  */
1071 0
1072 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1073 	SCR_CALL,
1074 		PADDR_A (datao_done),
1075 	SCR_JUMP,
1076 		PADDR_B (data_ovrun),
1077 }/*-------------------------< PM0_DATA >-------------------------*/,{
1078 	/*
1079 	 *  Read our host flags to SFBR, so we will be able
1080 	 *  to check against the data direction we expect.
1081 	 */
1082 	SCR_FROM_REG (HF_REG),
1083 		0,
1084 	/*
1085 	 *  Check against actual DATA PHASE.
1086 	 */
1087 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1088 		PADDR_A (pm0_data_out),
1089 	/*
1090 	 *  Actual phase is DATA IN.
1091 	 *  Check against expected direction.
1092 	 */
1093 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1094 		PADDR_B (data_ovrun),
1095 	/*
1096 	 *  Keep track we are moving data from the
1097 	 *  PM0 DATA mini-script.
1098 	 */
1099 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1100 		0,
1101 	/*
1102 	 *  Move the data to memory.
1103 	 */
1104 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1105 		offsetof (struct sym_ccb, phys.pm0.sg),
1106 	SCR_JUMP,
1107 		PADDR_A (pm0_data_end),
1108 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1109 	/*
1110 	 *  Actual phase is DATA OUT.
1111 	 *  Check against expected direction.
1112 	 */
1113 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1114 		PADDR_B (data_ovrun),
1115 	/*
1116 	 *  Keep track we are moving data from the
1117 	 *  PM0 DATA mini-script.
1118 	 */
1119 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1120 		0,
1121 	/*
1122 	 *  Move the data from memory.
1123 	 */
1124 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1125 		offsetof (struct sym_ccb, phys.pm0.sg),
1126 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1127 	/*
1128 	 *  Clear the flag that told we were moving
1129 	 *  data from the PM0 DATA mini-script.
1130 	 */
1131 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1132 		0,
1133 	/*
1134 	 *  Return to the previous DATA script which
1135 	 *  is guaranteed by design (if no bug) to be
1136 	 *  the main DATA script for this transfer.
1137 	 */
1138 	SCR_LOAD_REL (temp, 4),
1139 		offsetof (struct sym_ccb, phys.pm0.ret),
1140 	SCR_RETURN,
1141 		0,
1142 }/*-------------------------< PM1_DATA >-------------------------*/,{
1143 	/*
1144 	 *  Read our host flags to SFBR, so we will be able
1145 	 *  to check against the data direction we expect.
1146 	 */
1147 	SCR_FROM_REG (HF_REG),
1148 		0,
1149 	/*
1150 	 *  Check against actual DATA PHASE.
1151 	 */
1152 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1153 		PADDR_A (pm1_data_out),
1154 	/*
1155 	 *  Actual phase is DATA IN.
1156 	 *  Check against expected direction.
1157 	 */
1158 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1159 		PADDR_B (data_ovrun),
1160 	/*
1161 	 *  Keep track we are moving data from the
1162 	 *  PM1 DATA mini-script.
1163 	 */
1164 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1165 		0,
1166 	/*
1167 	 *  Move the data to memory.
1168 	 */
1169 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1170 		offsetof (struct sym_ccb, phys.pm1.sg),
1171 	SCR_JUMP,
1172 		PADDR_A (pm1_data_end),
1173 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1174 	/*
1175 	 *  Actual phase is DATA OUT.
1176 	 *  Check against expected direction.
1177 	 */
1178 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1179 		PADDR_B (data_ovrun),
1180 	/*
1181 	 *  Keep track we are moving data from the
1182 	 *  PM1 DATA mini-script.
1183 	 */
1184 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1185 		0,
1186 	/*
1187 	 *  Move the data from memory.
1188 	 */
1189 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1190 		offsetof (struct sym_ccb, phys.pm1.sg),
1191 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1192 	/*
1193 	 *  Clear the flag that told we were moving
1194 	 *  data from the PM1 DATA mini-script.
1195 	 */
1196 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1197 		0,
1198 	/*
1199 	 *  Return to the previous DATA script which
1200 	 *  is guaranteed by design (if no bug) to be
1201 	 *  the main DATA script for this transfer.
1202 	 */
1203 	SCR_LOAD_REL (temp, 4),
1204 		offsetof (struct sym_ccb, phys.pm1.ret),
1205 	SCR_RETURN,
1206 		0,
1207 }/*-------------------------<>-----------------------------------*/
1208 };
1209 
1210 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1211 /*--------------------------< START64 >--------------------------*/ {
1212 	/*
1213 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1214 	 *  For now, there is no specific stuff for those
1215 	 *  chips at this point, but this may come.
1216 	 */
1217 	SCR_JUMP,
1218 		PADDR_A (init),
1219 }/*-------------------------< NO_DATA >--------------------------*/,{
1220 	SCR_JUMP,
1221 		PADDR_B (data_ovrun),
1222 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1223 	/*
1224 	 *  We are jumped here by the C code, if we have
1225 	 *  some target to reset or some disconnected
1226 	 *  job to abort. Since error recovery is a serious
1227 	 *  busyness, we will really reset the SCSI BUS, if
1228 	 *  case of a SCSI interrupt occurring in this path.
1229 	 */
1230 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1231 	/*
1232 	 *  Set initiator mode.
1233 	 */
1234 	SCR_CLR (SCR_TRG),
1235 		0,
1236 #endif
1237 	/*
1238 	 *      And try to select this target.
1239 	 */
1240 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1241 		PADDR_A (reselect),
1242 	/*
1243 	 *  Wait for the selection to complete or
1244 	 *  the selection to time out.
1245 	 */
1246 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1247 		-8,
1248 	/*
1249 	 *  Call the C code.
1250 	 */
1251 	SCR_INT,
1252 		SIR_TARGET_SELECTED,
1253 	/*
1254 	 *  The C code should let us continue here.
1255 	 *  Send the 'kiss of death' message.
1256 	 *  We expect an immediate disconnect once
1257 	 *  the target has eaten the message.
1258 	 */
1259 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1260 		0,
1261 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1262 		offsetof (struct sym_hcb, abrt_tbl),
1263 	SCR_CLR (SCR_ACK|SCR_ATN),
1264 		0,
1265 	SCR_WAIT_DISC,
1266 		0,
1267 	/*
1268 	 *  Tell the C code that we are done.
1269 	 */
1270 	SCR_INT,
1271 		SIR_ABORT_SENT,
1272 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1273 	/*
1274 	 *  Jump at scheduler.
1275 	 */
1276 	SCR_JUMP,
1277 		PADDR_A (start),
1278 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1279 	/*
1280 	 *  If it is an EXTENDED (variable size message)
1281 	 *  Handle it.
1282 	 */
1283 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1284 		PADDR_B (msg_extended),
1285 	/*
1286 	 *  Let the C code handle any other
1287 	 *  1 byte message.
1288 	 */
1289 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1290 		PADDR_B (msg_received),
1291 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1292 		PADDR_B (msg_received),
1293 	/*
1294 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1295 	 *  So, let the C code deal with these ones too.
1296 	 */
1297 	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1298 		PADDR_B (msg_weird_seen),
1299 	SCR_CLR (SCR_ACK),
1300 		0,
1301 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1302 		HADDR_1 (msgin[1]),
1303 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1304 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1305 		0,
1306 	SCR_INT,
1307 		SIR_MSG_RECEIVED,
1308 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1309 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1310 		0,
1311 	SCR_INT,
1312 		SIR_MSG_WEIRD,
1313 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1314 	/*
1315 	 *  Clear ACK and get the next byte
1316 	 *  assumed to be the message length.
1317 	 */
1318 	SCR_CLR (SCR_ACK),
1319 		0,
1320 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1321 		HADDR_1 (msgin[1]),
1322 	/*
1323 	 *  Try to catch some unlikely situations as 0 length
1324 	 *  or too large the length.
1325 	 */
1326 	SCR_JUMP ^ IFTRUE (DATA (0)),
1327 		PADDR_B (msg_weird_seen),
1328 	SCR_TO_REG (scratcha),
1329 		0,
1330 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1331 		0,
1332 	SCR_JUMP ^ IFTRUE (CARRYSET),
1333 		PADDR_B (msg_weird_seen),
1334 	/*
1335 	 *  We donnot handle extended messages from SCRIPTS.
1336 	 *  Read the amount of data correponding to the
1337 	 *  message length and call the C code.
1338 	 */
1339 	SCR_STORE_REL (scratcha, 1),
1340 		offsetof (struct sym_dsb, smsg_ext.size),
1341 	SCR_CLR (SCR_ACK),
1342 		0,
1343 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1344 		offsetof (struct sym_dsb, smsg_ext),
1345 	SCR_JUMP,
1346 		PADDR_B (msg_received),
1347 }/*-------------------------< MSG_BAD >--------------------------*/,{
1348 	/*
1349 	 *  unimplemented message - reject it.
1350 	 */
1351 	SCR_INT,
1352 		SIR_REJECT_TO_SEND,
1353 	SCR_SET (SCR_ATN),
1354 		0,
1355 	SCR_JUMP,
1356 		PADDR_A (clrack),
1357 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1358 	/*
1359 	 *  weird message received
1360 	 *  ignore all MSG IN phases and reject it.
1361 	 */
1362 	SCR_INT,
1363 		SIR_REJECT_TO_SEND,
1364 	SCR_SET (SCR_ATN),
1365 		0,
1366 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1367 	SCR_CLR (SCR_ACK),
1368 		0,
1369 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1370 		PADDR_A (dispatch),
1371 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1372 		HADDR_1 (scratch),
1373 	SCR_JUMP,
1374 		PADDR_B (msg_weird1),
1375 }/*-------------------------< WDTR_RESP >------------------------*/,{
1376 	/*
1377 	 *  let the target fetch our answer.
1378 	 */
1379 	SCR_SET (SCR_ATN),
1380 		0,
1381 	SCR_CLR (SCR_ACK),
1382 		0,
1383 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1384 		PADDR_B (nego_bad_phase),
1385 }/*-------------------------< SEND_WDTR >------------------------*/,{
1386 	/*
1387 	 *  Send the M_X_WIDE_REQ
1388 	 */
1389 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1390 		HADDR_1 (msgout),
1391 	SCR_JUMP,
1392 		PADDR_B (msg_out_done),
1393 }/*-------------------------< SDTR_RESP >------------------------*/,{
1394 	/*
1395 	 *  let the target fetch our answer.
1396 	 */
1397 	SCR_SET (SCR_ATN),
1398 		0,
1399 	SCR_CLR (SCR_ACK),
1400 		0,
1401 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1402 		PADDR_B (nego_bad_phase),
1403 }/*-------------------------< SEND_SDTR >------------------------*/,{
1404 	/*
1405 	 *  Send the M_X_SYNC_REQ
1406 	 */
1407 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1408 		HADDR_1 (msgout),
1409 	SCR_JUMP,
1410 		PADDR_B (msg_out_done),
1411 }/*-------------------------< PPR_RESP >-------------------------*/,{
1412 	/*
1413 	 *  let the target fetch our answer.
1414 	 */
1415 	SCR_SET (SCR_ATN),
1416 		0,
1417 	SCR_CLR (SCR_ACK),
1418 		0,
1419 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1420 		PADDR_B (nego_bad_phase),
1421 }/*-------------------------< SEND_PPR >-------------------------*/,{
1422 	/*
1423 	 *  Send the M_X_PPR_REQ
1424 	 */
1425 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1426 		HADDR_1 (msgout),
1427 	SCR_JUMP,
1428 		PADDR_B (msg_out_done),
1429 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1430 	SCR_INT,
1431 		SIR_NEGO_PROTO,
1432 	SCR_JUMP,
1433 		PADDR_A (dispatch),
1434 }/*-------------------------< MSG_OUT >--------------------------*/,{
1435 	/*
1436 	 *  The target requests a message.
1437 	 *  We donnot send messages that may
1438 	 *  require the device to go to bus free.
1439 	 */
1440 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1441 		HADDR_1 (msgout),
1442 	/*
1443 	 *  ... wait for the next phase
1444 	 *  if it's a message out, send it again, ...
1445 	 */
1446 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1447 		PADDR_B (msg_out),
1448 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1449 	/*
1450 	 *  Let the C code be aware of the
1451 	 *  sent message and clear the message.
1452 	 */
1453 	SCR_INT,
1454 		SIR_MSG_OUT_DONE,
1455 	/*
1456 	 *  ... and process the next phase
1457 	 */
1458 	SCR_JUMP,
1459 		PADDR_A (dispatch),
1460 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1461 	/*
1462 	 *  Use scratcha to count the extra bytes.
1463 	 */
1464 	SCR_LOAD_ABS (scratcha, 4),
1465 		PADDR_B (zero),
1466 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1467 	/*
1468 	 *  The target may want to transfer too much data.
1469 	 *
1470 	 *  If phase is DATA OUT write 1 byte and count it.
1471 	 */
1472 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1473 		16,
1474 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1475 		HADDR_1 (scratch),
1476 	SCR_JUMP,
1477 		PADDR_B (data_ovrun2),
1478 	/*
1479 	 *  If WSR is set, clear this condition, and
1480 	 *  count this byte.
1481 	 */
1482 	SCR_FROM_REG (scntl2),
1483 		0,
1484 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1485 		16,
1486 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1487 		0,
1488 	SCR_JUMP,
1489 		PADDR_B (data_ovrun2),
1490 	/*
1491 	 *  Finally check against DATA IN phase.
1492 	 *  Signal data overrun to the C code
1493 	 *  and jump to dispatcher if not so.
1494 	 *  Read 1 byte otherwise and count it.
1495 	 */
1496 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1497 		16,
1498 	SCR_INT,
1499 		SIR_DATA_OVERRUN,
1500 	SCR_JUMP,
1501 		PADDR_A (dispatch),
1502 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1503 		HADDR_1 (scratch),
1504 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1505 	/*
1506 	 *  Count this byte.
1507 	 *  This will allow to return a negative
1508 	 *  residual to user.
1509 	 */
1510 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1511 		0,
1512 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1513 		0,
1514 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1515 		0,
1516 	/*
1517 	 *  .. and repeat as required.
1518 	 */
1519 	SCR_JUMP,
1520 		PADDR_B (data_ovrun1),
1521 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1522 	SCR_SET (SCR_ATN),
1523 		0,
1524 	SCR_CLR (SCR_ACK),
1525 		0,
1526 	/*
1527 	 *  send the abort/abortag/reset message
1528 	 *  we expect an immediate disconnect
1529 	 */
1530 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1531 		0,
1532 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1533 		HADDR_1 (msgout),
1534 	SCR_CLR (SCR_ACK|SCR_ATN),
1535 		0,
1536 	SCR_WAIT_DISC,
1537 		0,
1538 	SCR_INT,
1539 		SIR_RESEL_ABORTED,
1540 	SCR_JUMP,
1541 		PADDR_A (start),
1542 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1543 	/*
1544 	 *  The target stays in MSG OUT phase after having acked
1545 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1546 	 *  behave this way on parity error.
1547 	 *  We must send it again all the messages.
1548 	 */
1549 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1550 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1551 	SCR_JUMP,
1552 		PADDR_A (send_ident),
1553 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1554 	SCR_CLR (SCR_ATN),
1555 		0,
1556 	SCR_JUMP,
1557 		PADDR_A (select2),
1558 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1559 	SCR_SET (SCR_ATN),
1560 		0,
1561 	SCR_JUMP,
1562 		PADDR_A (select2),
1563 }/*-------------------------< SDATA_IN >-------------------------*/,{
1564 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1565 		offsetof (struct sym_dsb, sense),
1566 	SCR_CALL,
1567 		PADDR_A (datai_done),
1568 	SCR_JUMP,
1569 		PADDR_B (data_ovrun),
1570 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1571 	/*
1572 	 *  Message is an IDENTIFY, but lun is unknown.
1573 	 *  Signal problem to C code for logging the event.
1574 	 *  Send a M_ABORT to clear all pending tasks.
1575 	 */
1576 	SCR_INT,
1577 		SIR_RESEL_BAD_LUN,
1578 	SCR_JUMP,
1579 		PADDR_B (abort_resel),
1580 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1581 	/*
1582 	 *  We donnot have a task for that I_T_L.
1583 	 *  Signal problem to C code for logging the event.
1584 	 *  Send a M_ABORT message.
1585 	 */
1586 	SCR_INT,
1587 		SIR_RESEL_BAD_I_T_L,
1588 	SCR_JUMP,
1589 		PADDR_B (abort_resel),
1590 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1591 	/*
1592 	 *  We donnot have a task that matches the tag.
1593 	 *  Signal problem to C code for logging the event.
1594 	 *  Send a M_ABORTTAG message.
1595 	 */
1596 	SCR_INT,
1597 		SIR_RESEL_BAD_I_T_L_Q,
1598 	SCR_JUMP,
1599 		PADDR_B (abort_resel),
1600 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1601 	/*
1602 	 *  Anything different from INTERMEDIATE
1603 	 *  CONDITION MET should be a bad SCSI status,
1604 	 *  given that GOOD status has already been tested.
1605 	 *  Call the C code.
1606 	 */
1607 	SCR_LOAD_ABS (scratcha, 4),
1608 		PADDR_B (startpos),
1609 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1610 		SIR_BAD_SCSI_STATUS,
1611 	SCR_RETURN,
1612 		0,
1613 }/*-------------------------< PM_HANDLE >------------------------*/,{
1614 	/*
1615 	 *  Phase mismatch handling.
1616 	 *
1617 	 *  Since we have to deal with 2 SCSI data pointers
1618 	 *  (current and saved), we need at least 2 contexts.
1619 	 *  Each context (pm0 and pm1) has a saved area, a
1620 	 *  SAVE mini-script and a DATA phase mini-script.
1621 	 */
1622 	/*
1623 	 *  Get the PM handling flags.
1624 	 */
1625 	SCR_FROM_REG (HF_REG),
1626 		0,
1627 	/*
1628 	 *  If no flags (1rst PM for example), avoid
1629 	 *  all the below heavy flags testing.
1630 	 *  This makes the normal case a bit faster.
1631 	 */
1632 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1633 		PADDR_B (pm_handle1),
1634 	/*
1635 	 *  If we received a SAVE DP, switch to the
1636 	 *  other PM context since the savep may point
1637 	 *  to the current PM context.
1638 	 */
1639 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1640 		8,
1641 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1642 		0,
1643 	/*
1644 	 *  If we have been interrupt in a PM DATA mini-script,
1645 	 *  we take the return address from the corresponding
1646 	 *  saved area.
1647 	 *  This ensure the return address always points to the
1648 	 *  main DATA script for this transfer.
1649 	 */
1650 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1651 		PADDR_B (pm_handle1),
1652 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1653 		16,
1654 	SCR_LOAD_REL (ia, 4),
1655 		offsetof(struct sym_ccb, phys.pm0.ret),
1656 	SCR_JUMP,
1657 		PADDR_B (pm_save),
1658 	SCR_LOAD_REL (ia, 4),
1659 		offsetof(struct sym_ccb, phys.pm1.ret),
1660 	SCR_JUMP,
1661 		PADDR_B (pm_save),
1662 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1663 	/*
1664 	 *  Normal case.
1665 	 *  Update the return address so that it
1666 	 *  will point after the interrupted MOVE.
1667 	 */
1668 	SCR_REG_REG (ia, SCR_ADD, 8),
1669 		0,
1670 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1671 		0,
1672 }/*-------------------------< PM_SAVE >--------------------------*/,{
1673 	/*
1674 	 *  Clear all the flags that told us if we were
1675 	 *  interrupted in a PM DATA mini-script and/or
1676 	 *  we received a SAVE DP.
1677 	 */
1678 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1679 		0,
1680 	/*
1681 	 *  Choose the current PM context.
1682 	 */
1683 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1684 		PADDR_B (pm1_save),
1685 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1686 	SCR_STORE_REL (ia, 4),
1687 		offsetof(struct sym_ccb, phys.pm0.ret),
1688 	/*
1689 	 *  If WSR bit is set, either UA and RBC may
1690 	 *  have to be changed whether the device wants
1691 	 *  to ignore this residue or not.
1692 	 */
1693 	SCR_FROM_REG (scntl2),
1694 		0,
1695 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1696 		PADDR_B (pm_wsr_handle),
1697 	/*
1698 	 *  Save the remaining byte count, the updated
1699 	 *  address and the return address.
1700 	 */
1701 	SCR_STORE_REL (rbc, 4),
1702 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1703 	SCR_STORE_REL (ua, 4),
1704 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1705 	/*
1706 	 *  Set the current pointer at the PM0 DATA mini-script.
1707 	 */
1708 	SCR_LOAD_ABS (ia, 4),
1709 		PADDR_B (pm0_data_addr),
1710 }/*-------------------------< PM_SAVE_END >----------------------*/,{
1711 	SCR_STORE_REL (ia, 4),
1712 		offsetof(struct sym_ccb, phys.head.lastp),
1713 	SCR_JUMP,
1714 		PADDR_A (dispatch),
1715 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1716 	SCR_STORE_REL (ia, 4),
1717 		offsetof(struct sym_ccb, phys.pm1.ret),
1718 	/*
1719 	 *  If WSR bit is set, either UA and RBC may
1720 	 *  have to be changed whether the device wants
1721 	 *  to ignore this residue or not.
1722 	 */
1723 	SCR_FROM_REG (scntl2),
1724 		0,
1725 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1726 		PADDR_B (pm_wsr_handle),
1727 	/*
1728 	 *  Save the remaining byte count, the updated
1729 	 *  address and the return address.
1730 	 */
1731 	SCR_STORE_REL (rbc, 4),
1732 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1733 	SCR_STORE_REL (ua, 4),
1734 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1735 	/*
1736 	 *  Set the current pointer at the PM1 DATA mini-script.
1737 	 */
1738 	SCR_LOAD_ABS (ia, 4),
1739 		PADDR_B (pm1_data_addr),
1740 	SCR_JUMP,
1741 		PADDR_B (pm_save_end),
1742 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1743 	/*
1744 	 *  Phase mismatch handling from SCRIPT with WSR set.
1745 	 *  Such a condition can occur if the chip wants to
1746 	 *  execute a CHMOV(size > 1) when the WSR bit is
1747 	 *  set and the target changes PHASE.
1748 	 *
1749 	 *  We must move the residual byte to memory.
1750 	 *
1751 	 *  UA contains bit 0..31 of the address to
1752 	 *  move the residual byte.
1753 	 *  Move it to the table indirect.
1754 	 */
1755 	SCR_STORE_REL (ua, 4),
1756 		offsetof (struct sym_ccb, phys.wresid.addr),
1757 	/*
1758 	 *  Increment UA (move address to next position).
1759 	 */
1760 	SCR_REG_REG (ua, SCR_ADD, 1),
1761 		0,
1762 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1763 		0,
1764 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1765 		0,
1766 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1767 		0,
1768 	/*
1769 	 *  Compute SCRATCHA as:
1770 	 *  - size to transfer = 1 byte.
1771 	 *  - bit 24..31 = high address bit [32...39].
1772 	 */
1773 	SCR_LOAD_ABS (scratcha, 4),
1774 		PADDR_B (zero),
1775 	SCR_REG_REG (scratcha, SCR_OR, 1),
1776 		0,
1777 	SCR_FROM_REG (rbc3),
1778 		0,
1779 	SCR_TO_REG (scratcha3),
1780 		0,
1781 	/*
1782 	 *  Move this value to the table indirect.
1783 	 */
1784 	SCR_STORE_REL (scratcha, 4),
1785 		offsetof (struct sym_ccb, phys.wresid.size),
1786 	/*
1787 	 *  Wait for a valid phase.
1788 	 *  While testing with bogus QUANTUM drives, the C1010
1789 	 *  sometimes raised a spurious phase mismatch with
1790 	 *  WSR and the CHMOV(1) triggered another PM.
1791 	 *  Waiting explicitely for the PHASE seemed to avoid
1792 	 *  the nested phase mismatch. Btw, this didn't happen
1793 	 *  using my IBM drives.
1794 	 */
1795 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1796 		0,
1797 	/*
1798 	 *  Perform the move of the residual byte.
1799 	 */
1800 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1801 		offsetof (struct sym_ccb, phys.wresid),
1802 	/*
1803 	 *  We can now handle the phase mismatch with UA fixed.
1804 	 *  RBC[0..23]=0 is a special case that does not require
1805 	 *  a PM context. The C code also checks against this.
1806 	 */
1807 	SCR_FROM_REG (rbc),
1808 		0,
1809 	SCR_RETURN ^ IFFALSE (DATA (0)),
1810 		0,
1811 	SCR_FROM_REG (rbc1),
1812 		0,
1813 	SCR_RETURN ^ IFFALSE (DATA (0)),
1814 		0,
1815 	SCR_FROM_REG (rbc2),
1816 		0,
1817 	SCR_RETURN ^ IFFALSE (DATA (0)),
1818 		0,
1819 	/*
1820 	 *  RBC[0..23]=0.
1821 	 *  Not only we donnot need a PM context, but this would
1822 	 *  lead to a bogus CHMOV(0). This condition means that
1823 	 *  the residual was the last byte to move from this CHMOV.
1824 	 *  So, we just have to move the current data script pointer
1825 	 *  (i.e. TEMP) to the SCRIPTS address following the
1826 	 *  interrupted CHMOV and jump to dispatcher.
1827 	 *  IA contains the data pointer to save.
1828 	 */
1829 	SCR_JUMP,
1830 		PADDR_B (pm_save_end),
1831 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1832 	/*
1833 	 *  Helper for the C code when WSR bit is set.
1834 	 *  Perform the move of the residual byte.
1835 	 */
1836 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1837 		offsetof (struct sym_ccb, phys.wresid),
1838 	SCR_JUMP,
1839 		PADDR_A (dispatch),
1840 
1841 #ifdef SYM_OPT_HANDLE_DIR_UNKNOWN
1842 }/*-------------------------< DATA_IO >--------------------------*/,{
1843 	/*
1844 	 *  We jump here if the data direction was unknown at the
1845 	 *  time we had to queue the command to the scripts processor.
1846 	 *  Pointers had been set as follow in this situation:
1847 	 *    savep   -->   DATA_IO
1848 	 *    lastp   -->   start pointer when DATA_IN
1849 	 *    wlastp  -->   start pointer when DATA_OUT
1850 	 *  This script sets savep and lastp according to the
1851 	 *  direction chosen by the target.
1852 	 */
1853 	SCR_JUMP ^ IFTRUE (WHEN (SCR_DATA_OUT)),
1854 		PADDR_B (data_io_out),
1855 }/*-------------------------< DATA_IO_IN >-----------------------*/,{
1856 	/*
1857 	 *  Direction is DATA IN.
1858 	 */
1859 	SCR_LOAD_REL  (scratcha, 4),
1860 		offsetof (struct sym_ccb, phys.head.lastp),
1861 }/*-------------------------< DATA_IO_COM >----------------------*/,{
1862 	SCR_STORE_REL (scratcha, 4),
1863 		offsetof (struct sym_ccb, phys.head.savep),
1864 
1865 	/*
1866 	 *  Jump to the SCRIPTS according to actual direction.
1867 	 */
1868 	SCR_LOAD_REL  (temp, 4),
1869 		offsetof (struct sym_ccb, phys.head.savep),
1870 	SCR_RETURN,
1871 		0,
1872 }/*-------------------------< DATA_IO_OUT >----------------------*/,{
1873 	/*
1874 	 *  Direction is DATA OUT.
1875 	 */
1876 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN)),
1877 		0,
1878 	SCR_LOAD_REL  (scratcha, 4),
1879 		offsetof (struct sym_ccb, phys.head.wlastp),
1880 	SCR_STORE_REL (scratcha, 4),
1881 		offsetof (struct sym_ccb, phys.head.lastp),
1882 	SCR_JUMP,
1883 		PADDR_B(data_io_com),
1884 #endif /* SYM_OPT_HANDLE_DIR_UNKNOWN */
1885 
1886 }/*-------------------------< ZERO >-----------------------------*/,{
1887 	SCR_DATA_ZERO,
1888 }/*-------------------------< SCRATCH >--------------------------*/,{
1889 	SCR_DATA_ZERO,
1890 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1891 	SCR_DATA_ZERO,
1892 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1893 	SCR_DATA_ZERO,
1894 }/*-------------------------< DONE_POS >-------------------------*/,{
1895 	SCR_DATA_ZERO,
1896 }/*-------------------------< STARTPOS >-------------------------*/,{
1897 	SCR_DATA_ZERO,
1898 }/*-------------------------< TARGTBL >--------------------------*/,{
1899 	SCR_DATA_ZERO,
1900 }/*-------------------------<>-----------------------------------*/
1901 };
1902 
1903 static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1904  /*-------------------------< SNOOPTEST >------------------------*/{
1905 	/*
1906 	 *  Read the variable from memory.
1907 	 */
1908 	SCR_LOAD_REL (scratcha, 4),
1909 		offsetof(struct sym_hcb, scratch),
1910 	/*
1911 	 *  Write the variable to memory.
1912 	 */
1913 	SCR_STORE_REL (temp, 4),
1914 		offsetof(struct sym_hcb, scratch),
1915 	/*
1916 	 *  Read back the variable from memory.
1917 	 */
1918 	SCR_LOAD_REL (temp, 4),
1919 		offsetof(struct sym_hcb, scratch),
1920 }/*-------------------------< SNOOPEND >-------------------------*/,{
1921 	/*
1922 	 *  And stop.
1923 	 */
1924 	SCR_INT,
1925 		99,
1926 }/*-------------------------<>-----------------------------------*/
1927 };
1928