xref: /openbmc/linux/drivers/scsi/sd.c (revision ff4a7481c3898ffc3cc271d6aca431d190c37247)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/mutex.h>
51 #include <linux/string_helpers.h>
52 #include <linux/async.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
101 #define SD_MINORS	16
102 #else
103 #define SD_MINORS	0
104 #endif
105 
106 static void sd_config_discard(struct scsi_disk *, unsigned int);
107 static void sd_config_write_same(struct scsi_disk *);
108 static int  sd_revalidate_disk(struct gendisk *);
109 static void sd_unlock_native_capacity(struct gendisk *disk);
110 static int  sd_probe(struct device *);
111 static int  sd_remove(struct device *);
112 static void sd_shutdown(struct device *);
113 static int sd_suspend_system(struct device *);
114 static int sd_suspend_runtime(struct device *);
115 static int sd_resume(struct device *);
116 static void sd_rescan(struct device *);
117 static int sd_init_command(struct scsi_cmnd *SCpnt);
118 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
119 static int sd_done(struct scsi_cmnd *);
120 static void sd_eh_reset(struct scsi_cmnd *);
121 static int sd_eh_action(struct scsi_cmnd *, int);
122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
123 static void scsi_disk_release(struct device *cdev);
124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
125 static void sd_print_result(const struct scsi_disk *, const char *, int);
126 
127 static DEFINE_IDA(sd_index_ida);
128 
129 /* This semaphore is used to mediate the 0->1 reference get in the
130  * face of object destruction (i.e. we can't allow a get on an
131  * object after last put) */
132 static DEFINE_MUTEX(sd_ref_mutex);
133 
134 static struct kmem_cache *sd_cdb_cache;
135 static mempool_t *sd_cdb_pool;
136 static mempool_t *sd_page_pool;
137 
138 static const char *sd_cache_types[] = {
139 	"write through", "none", "write back",
140 	"write back, no read (daft)"
141 };
142 
143 static void sd_set_flush_flag(struct scsi_disk *sdkp)
144 {
145 	bool wc = false, fua = false;
146 
147 	if (sdkp->WCE) {
148 		wc = true;
149 		if (sdkp->DPOFUA)
150 			fua = true;
151 	}
152 
153 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
154 }
155 
156 static ssize_t
157 cache_type_store(struct device *dev, struct device_attribute *attr,
158 		 const char *buf, size_t count)
159 {
160 	int ct, rcd, wce, sp;
161 	struct scsi_disk *sdkp = to_scsi_disk(dev);
162 	struct scsi_device *sdp = sdkp->device;
163 	char buffer[64];
164 	char *buffer_data;
165 	struct scsi_mode_data data;
166 	struct scsi_sense_hdr sshdr;
167 	static const char temp[] = "temporary ";
168 	int len;
169 
170 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
171 		/* no cache control on RBC devices; theoretically they
172 		 * can do it, but there's probably so many exceptions
173 		 * it's not worth the risk */
174 		return -EINVAL;
175 
176 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
177 		buf += sizeof(temp) - 1;
178 		sdkp->cache_override = 1;
179 	} else {
180 		sdkp->cache_override = 0;
181 	}
182 
183 	ct = sysfs_match_string(sd_cache_types, buf);
184 	if (ct < 0)
185 		return -EINVAL;
186 
187 	rcd = ct & 0x01 ? 1 : 0;
188 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
189 
190 	if (sdkp->cache_override) {
191 		sdkp->WCE = wce;
192 		sdkp->RCD = rcd;
193 		sd_set_flush_flag(sdkp);
194 		return count;
195 	}
196 
197 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
198 			    SD_MAX_RETRIES, &data, NULL))
199 		return -EINVAL;
200 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
201 		  data.block_descriptor_length);
202 	buffer_data = buffer + data.header_length +
203 		data.block_descriptor_length;
204 	buffer_data[2] &= ~0x05;
205 	buffer_data[2] |= wce << 2 | rcd;
206 	sp = buffer_data[0] & 0x80 ? 1 : 0;
207 	buffer_data[0] &= ~0x80;
208 
209 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
210 			     SD_MAX_RETRIES, &data, &sshdr)) {
211 		if (scsi_sense_valid(&sshdr))
212 			sd_print_sense_hdr(sdkp, &sshdr);
213 		return -EINVAL;
214 	}
215 	revalidate_disk(sdkp->disk);
216 	return count;
217 }
218 
219 static ssize_t
220 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
221 		       char *buf)
222 {
223 	struct scsi_disk *sdkp = to_scsi_disk(dev);
224 	struct scsi_device *sdp = sdkp->device;
225 
226 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
227 }
228 
229 static ssize_t
230 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
231 			const char *buf, size_t count)
232 {
233 	struct scsi_disk *sdkp = to_scsi_disk(dev);
234 	struct scsi_device *sdp = sdkp->device;
235 	bool v;
236 
237 	if (!capable(CAP_SYS_ADMIN))
238 		return -EACCES;
239 
240 	if (kstrtobool(buf, &v))
241 		return -EINVAL;
242 
243 	sdp->manage_start_stop = v;
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248 
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 	struct scsi_disk *sdkp = to_scsi_disk(dev);
253 
254 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
255 }
256 
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 		    const char *buf, size_t count)
260 {
261 	bool v;
262 	struct scsi_disk *sdkp = to_scsi_disk(dev);
263 	struct scsi_device *sdp = sdkp->device;
264 
265 	if (!capable(CAP_SYS_ADMIN))
266 		return -EACCES;
267 
268 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
269 		return -EINVAL;
270 
271 	if (kstrtobool(buf, &v))
272 		return -EINVAL;
273 
274 	sdp->allow_restart = v;
275 
276 	return count;
277 }
278 static DEVICE_ATTR_RW(allow_restart);
279 
280 static ssize_t
281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
282 {
283 	struct scsi_disk *sdkp = to_scsi_disk(dev);
284 	int ct = sdkp->RCD + 2*sdkp->WCE;
285 
286 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
287 }
288 static DEVICE_ATTR_RW(cache_type);
289 
290 static ssize_t
291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
292 {
293 	struct scsi_disk *sdkp = to_scsi_disk(dev);
294 
295 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
296 }
297 static DEVICE_ATTR_RO(FUA);
298 
299 static ssize_t
300 protection_type_show(struct device *dev, struct device_attribute *attr,
301 		     char *buf)
302 {
303 	struct scsi_disk *sdkp = to_scsi_disk(dev);
304 
305 	return sprintf(buf, "%u\n", sdkp->protection_type);
306 }
307 
308 static ssize_t
309 protection_type_store(struct device *dev, struct device_attribute *attr,
310 		      const char *buf, size_t count)
311 {
312 	struct scsi_disk *sdkp = to_scsi_disk(dev);
313 	unsigned int val;
314 	int err;
315 
316 	if (!capable(CAP_SYS_ADMIN))
317 		return -EACCES;
318 
319 	err = kstrtouint(buf, 10, &val);
320 
321 	if (err)
322 		return err;
323 
324 	if (val <= T10_PI_TYPE3_PROTECTION)
325 		sdkp->protection_type = val;
326 
327 	return count;
328 }
329 static DEVICE_ATTR_RW(protection_type);
330 
331 static ssize_t
332 protection_mode_show(struct device *dev, struct device_attribute *attr,
333 		     char *buf)
334 {
335 	struct scsi_disk *sdkp = to_scsi_disk(dev);
336 	struct scsi_device *sdp = sdkp->device;
337 	unsigned int dif, dix;
338 
339 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
340 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
341 
342 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
343 		dif = 0;
344 		dix = 1;
345 	}
346 
347 	if (!dif && !dix)
348 		return sprintf(buf, "none\n");
349 
350 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
351 }
352 static DEVICE_ATTR_RO(protection_mode);
353 
354 static ssize_t
355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
356 {
357 	struct scsi_disk *sdkp = to_scsi_disk(dev);
358 
359 	return sprintf(buf, "%u\n", sdkp->ATO);
360 }
361 static DEVICE_ATTR_RO(app_tag_own);
362 
363 static ssize_t
364 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
365 		       char *buf)
366 {
367 	struct scsi_disk *sdkp = to_scsi_disk(dev);
368 
369 	return sprintf(buf, "%u\n", sdkp->lbpme);
370 }
371 static DEVICE_ATTR_RO(thin_provisioning);
372 
373 /* sysfs_match_string() requires dense arrays */
374 static const char *lbp_mode[] = {
375 	[SD_LBP_FULL]		= "full",
376 	[SD_LBP_UNMAP]		= "unmap",
377 	[SD_LBP_WS16]		= "writesame_16",
378 	[SD_LBP_WS10]		= "writesame_10",
379 	[SD_LBP_ZERO]		= "writesame_zero",
380 	[SD_LBP_DISABLE]	= "disabled",
381 };
382 
383 static ssize_t
384 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
385 		       char *buf)
386 {
387 	struct scsi_disk *sdkp = to_scsi_disk(dev);
388 
389 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
390 }
391 
392 static ssize_t
393 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
394 			const char *buf, size_t count)
395 {
396 	struct scsi_disk *sdkp = to_scsi_disk(dev);
397 	struct scsi_device *sdp = sdkp->device;
398 	int mode;
399 
400 	if (!capable(CAP_SYS_ADMIN))
401 		return -EACCES;
402 
403 	if (sd_is_zoned(sdkp)) {
404 		sd_config_discard(sdkp, SD_LBP_DISABLE);
405 		return count;
406 	}
407 
408 	if (sdp->type != TYPE_DISK)
409 		return -EINVAL;
410 
411 	mode = sysfs_match_string(lbp_mode, buf);
412 	if (mode < 0)
413 		return -EINVAL;
414 
415 	sd_config_discard(sdkp, mode);
416 
417 	return count;
418 }
419 static DEVICE_ATTR_RW(provisioning_mode);
420 
421 /* sysfs_match_string() requires dense arrays */
422 static const char *zeroing_mode[] = {
423 	[SD_ZERO_WRITE]		= "write",
424 	[SD_ZERO_WS]		= "writesame",
425 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
426 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
427 };
428 
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 		  char *buf)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 
435 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437 
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 		   const char *buf, size_t count)
441 {
442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
443 	int mode;
444 
445 	if (!capable(CAP_SYS_ADMIN))
446 		return -EACCES;
447 
448 	mode = sysfs_match_string(zeroing_mode, buf);
449 	if (mode < 0)
450 		return -EINVAL;
451 
452 	sdkp->zeroing_mode = mode;
453 
454 	return count;
455 }
456 static DEVICE_ATTR_RW(zeroing_mode);
457 
458 static ssize_t
459 max_medium_access_timeouts_show(struct device *dev,
460 				struct device_attribute *attr, char *buf)
461 {
462 	struct scsi_disk *sdkp = to_scsi_disk(dev);
463 
464 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
465 }
466 
467 static ssize_t
468 max_medium_access_timeouts_store(struct device *dev,
469 				 struct device_attribute *attr, const char *buf,
470 				 size_t count)
471 {
472 	struct scsi_disk *sdkp = to_scsi_disk(dev);
473 	int err;
474 
475 	if (!capable(CAP_SYS_ADMIN))
476 		return -EACCES;
477 
478 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
479 
480 	return err ? err : count;
481 }
482 static DEVICE_ATTR_RW(max_medium_access_timeouts);
483 
484 static ssize_t
485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
486 			   char *buf)
487 {
488 	struct scsi_disk *sdkp = to_scsi_disk(dev);
489 
490 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
491 }
492 
493 static ssize_t
494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
495 			    const char *buf, size_t count)
496 {
497 	struct scsi_disk *sdkp = to_scsi_disk(dev);
498 	struct scsi_device *sdp = sdkp->device;
499 	unsigned long max;
500 	int err;
501 
502 	if (!capable(CAP_SYS_ADMIN))
503 		return -EACCES;
504 
505 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
506 		return -EINVAL;
507 
508 	err = kstrtoul(buf, 10, &max);
509 
510 	if (err)
511 		return err;
512 
513 	if (max == 0)
514 		sdp->no_write_same = 1;
515 	else if (max <= SD_MAX_WS16_BLOCKS) {
516 		sdp->no_write_same = 0;
517 		sdkp->max_ws_blocks = max;
518 	}
519 
520 	sd_config_write_same(sdkp);
521 
522 	return count;
523 }
524 static DEVICE_ATTR_RW(max_write_same_blocks);
525 
526 static struct attribute *sd_disk_attrs[] = {
527 	&dev_attr_cache_type.attr,
528 	&dev_attr_FUA.attr,
529 	&dev_attr_allow_restart.attr,
530 	&dev_attr_manage_start_stop.attr,
531 	&dev_attr_protection_type.attr,
532 	&dev_attr_protection_mode.attr,
533 	&dev_attr_app_tag_own.attr,
534 	&dev_attr_thin_provisioning.attr,
535 	&dev_attr_provisioning_mode.attr,
536 	&dev_attr_zeroing_mode.attr,
537 	&dev_attr_max_write_same_blocks.attr,
538 	&dev_attr_max_medium_access_timeouts.attr,
539 	NULL,
540 };
541 ATTRIBUTE_GROUPS(sd_disk);
542 
543 static struct class sd_disk_class = {
544 	.name		= "scsi_disk",
545 	.owner		= THIS_MODULE,
546 	.dev_release	= scsi_disk_release,
547 	.dev_groups	= sd_disk_groups,
548 };
549 
550 static const struct dev_pm_ops sd_pm_ops = {
551 	.suspend		= sd_suspend_system,
552 	.resume			= sd_resume,
553 	.poweroff		= sd_suspend_system,
554 	.restore		= sd_resume,
555 	.runtime_suspend	= sd_suspend_runtime,
556 	.runtime_resume		= sd_resume,
557 };
558 
559 static struct scsi_driver sd_template = {
560 	.gendrv = {
561 		.name		= "sd",
562 		.owner		= THIS_MODULE,
563 		.probe		= sd_probe,
564 		.remove		= sd_remove,
565 		.shutdown	= sd_shutdown,
566 		.pm		= &sd_pm_ops,
567 	},
568 	.rescan			= sd_rescan,
569 	.init_command		= sd_init_command,
570 	.uninit_command		= sd_uninit_command,
571 	.done			= sd_done,
572 	.eh_action		= sd_eh_action,
573 	.eh_reset		= sd_eh_reset,
574 };
575 
576 /*
577  * Dummy kobj_map->probe function.
578  * The default ->probe function will call modprobe, which is
579  * pointless as this module is already loaded.
580  */
581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
582 {
583 	return NULL;
584 }
585 
586 /*
587  * Device no to disk mapping:
588  *
589  *       major         disc2     disc  p1
590  *   |............|.............|....|....| <- dev_t
591  *    31        20 19          8 7  4 3  0
592  *
593  * Inside a major, we have 16k disks, however mapped non-
594  * contiguously. The first 16 disks are for major0, the next
595  * ones with major1, ... Disk 256 is for major0 again, disk 272
596  * for major1, ...
597  * As we stay compatible with our numbering scheme, we can reuse
598  * the well-know SCSI majors 8, 65--71, 136--143.
599  */
600 static int sd_major(int major_idx)
601 {
602 	switch (major_idx) {
603 	case 0:
604 		return SCSI_DISK0_MAJOR;
605 	case 1 ... 7:
606 		return SCSI_DISK1_MAJOR + major_idx - 1;
607 	case 8 ... 15:
608 		return SCSI_DISK8_MAJOR + major_idx - 8;
609 	default:
610 		BUG();
611 		return 0;	/* shut up gcc */
612 	}
613 }
614 
615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
616 {
617 	struct scsi_disk *sdkp = NULL;
618 
619 	mutex_lock(&sd_ref_mutex);
620 
621 	if (disk->private_data) {
622 		sdkp = scsi_disk(disk);
623 		if (scsi_device_get(sdkp->device) == 0)
624 			get_device(&sdkp->dev);
625 		else
626 			sdkp = NULL;
627 	}
628 	mutex_unlock(&sd_ref_mutex);
629 	return sdkp;
630 }
631 
632 static void scsi_disk_put(struct scsi_disk *sdkp)
633 {
634 	struct scsi_device *sdev = sdkp->device;
635 
636 	mutex_lock(&sd_ref_mutex);
637 	put_device(&sdkp->dev);
638 	scsi_device_put(sdev);
639 	mutex_unlock(&sd_ref_mutex);
640 }
641 
642 #ifdef CONFIG_BLK_SED_OPAL
643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
644 		size_t len, bool send)
645 {
646 	struct scsi_device *sdev = data;
647 	u8 cdb[12] = { 0, };
648 	int ret;
649 
650 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
651 	cdb[1] = secp;
652 	put_unaligned_be16(spsp, &cdb[2]);
653 	put_unaligned_be32(len, &cdb[6]);
654 
655 	ret = scsi_execute_req(sdev, cdb,
656 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
657 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
658 	return ret <= 0 ? ret : -EIO;
659 }
660 #endif /* CONFIG_BLK_SED_OPAL */
661 
662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
663 					   unsigned int dix, unsigned int dif)
664 {
665 	struct bio *bio = scmd->request->bio;
666 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
667 	unsigned int protect = 0;
668 
669 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
670 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
671 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
672 
673 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
674 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
675 	}
676 
677 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
678 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
679 
680 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
681 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
682 	}
683 
684 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
685 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
686 
687 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
688 			protect = 3 << 5;	/* Disable target PI checking */
689 		else
690 			protect = 1 << 5;	/* Enable target PI checking */
691 	}
692 
693 	scsi_set_prot_op(scmd, prot_op);
694 	scsi_set_prot_type(scmd, dif);
695 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
696 
697 	return protect;
698 }
699 
700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
701 {
702 	struct request_queue *q = sdkp->disk->queue;
703 	unsigned int logical_block_size = sdkp->device->sector_size;
704 	unsigned int max_blocks = 0;
705 
706 	q->limits.discard_alignment =
707 		sdkp->unmap_alignment * logical_block_size;
708 	q->limits.discard_granularity =
709 		max(sdkp->physical_block_size,
710 		    sdkp->unmap_granularity * logical_block_size);
711 	sdkp->provisioning_mode = mode;
712 
713 	switch (mode) {
714 
715 	case SD_LBP_FULL:
716 	case SD_LBP_DISABLE:
717 		blk_queue_max_discard_sectors(q, 0);
718 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
719 		return;
720 
721 	case SD_LBP_UNMAP:
722 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
723 					  (u32)SD_MAX_WS16_BLOCKS);
724 		break;
725 
726 	case SD_LBP_WS16:
727 		if (sdkp->device->unmap_limit_for_ws)
728 			max_blocks = sdkp->max_unmap_blocks;
729 		else
730 			max_blocks = sdkp->max_ws_blocks;
731 
732 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
733 		break;
734 
735 	case SD_LBP_WS10:
736 		if (sdkp->device->unmap_limit_for_ws)
737 			max_blocks = sdkp->max_unmap_blocks;
738 		else
739 			max_blocks = sdkp->max_ws_blocks;
740 
741 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
742 		break;
743 
744 	case SD_LBP_ZERO:
745 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
746 					  (u32)SD_MAX_WS10_BLOCKS);
747 		break;
748 	}
749 
750 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
751 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
752 }
753 
754 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
755 {
756 	struct scsi_device *sdp = cmd->device;
757 	struct request *rq = cmd->request;
758 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
759 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
760 	unsigned int data_len = 24;
761 	char *buf;
762 
763 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
764 	if (!rq->special_vec.bv_page)
765 		return BLKPREP_DEFER;
766 	clear_highpage(rq->special_vec.bv_page);
767 	rq->special_vec.bv_offset = 0;
768 	rq->special_vec.bv_len = data_len;
769 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
770 
771 	cmd->cmd_len = 10;
772 	cmd->cmnd[0] = UNMAP;
773 	cmd->cmnd[8] = 24;
774 
775 	buf = page_address(rq->special_vec.bv_page);
776 	put_unaligned_be16(6 + 16, &buf[0]);
777 	put_unaligned_be16(16, &buf[2]);
778 	put_unaligned_be64(sector, &buf[8]);
779 	put_unaligned_be32(nr_sectors, &buf[16]);
780 
781 	cmd->allowed = SD_MAX_RETRIES;
782 	cmd->transfersize = data_len;
783 	rq->timeout = SD_TIMEOUT;
784 	scsi_req(rq)->resid_len = data_len;
785 
786 	return scsi_init_io(cmd);
787 }
788 
789 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
790 {
791 	struct scsi_device *sdp = cmd->device;
792 	struct request *rq = cmd->request;
793 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
794 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
795 	u32 data_len = sdp->sector_size;
796 
797 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
798 	if (!rq->special_vec.bv_page)
799 		return BLKPREP_DEFER;
800 	clear_highpage(rq->special_vec.bv_page);
801 	rq->special_vec.bv_offset = 0;
802 	rq->special_vec.bv_len = data_len;
803 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
804 
805 	cmd->cmd_len = 16;
806 	cmd->cmnd[0] = WRITE_SAME_16;
807 	if (unmap)
808 		cmd->cmnd[1] = 0x8; /* UNMAP */
809 	put_unaligned_be64(sector, &cmd->cmnd[2]);
810 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
811 
812 	cmd->allowed = SD_MAX_RETRIES;
813 	cmd->transfersize = data_len;
814 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
815 	scsi_req(rq)->resid_len = data_len;
816 
817 	return scsi_init_io(cmd);
818 }
819 
820 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
821 {
822 	struct scsi_device *sdp = cmd->device;
823 	struct request *rq = cmd->request;
824 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
825 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
826 	u32 data_len = sdp->sector_size;
827 
828 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
829 	if (!rq->special_vec.bv_page)
830 		return BLKPREP_DEFER;
831 	clear_highpage(rq->special_vec.bv_page);
832 	rq->special_vec.bv_offset = 0;
833 	rq->special_vec.bv_len = data_len;
834 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
835 
836 	cmd->cmd_len = 10;
837 	cmd->cmnd[0] = WRITE_SAME;
838 	if (unmap)
839 		cmd->cmnd[1] = 0x8; /* UNMAP */
840 	put_unaligned_be32(sector, &cmd->cmnd[2]);
841 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
842 
843 	cmd->allowed = SD_MAX_RETRIES;
844 	cmd->transfersize = data_len;
845 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
846 	scsi_req(rq)->resid_len = data_len;
847 
848 	return scsi_init_io(cmd);
849 }
850 
851 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
852 {
853 	struct request *rq = cmd->request;
854 	struct scsi_device *sdp = cmd->device;
855 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
856 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
857 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
858 
859 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
860 		switch (sdkp->zeroing_mode) {
861 		case SD_ZERO_WS16_UNMAP:
862 			return sd_setup_write_same16_cmnd(cmd, true);
863 		case SD_ZERO_WS10_UNMAP:
864 			return sd_setup_write_same10_cmnd(cmd, true);
865 		}
866 	}
867 
868 	if (sdp->no_write_same)
869 		return BLKPREP_INVALID;
870 
871 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
872 		return sd_setup_write_same16_cmnd(cmd, false);
873 
874 	return sd_setup_write_same10_cmnd(cmd, false);
875 }
876 
877 static void sd_config_write_same(struct scsi_disk *sdkp)
878 {
879 	struct request_queue *q = sdkp->disk->queue;
880 	unsigned int logical_block_size = sdkp->device->sector_size;
881 
882 	if (sdkp->device->no_write_same) {
883 		sdkp->max_ws_blocks = 0;
884 		goto out;
885 	}
886 
887 	/* Some devices can not handle block counts above 0xffff despite
888 	 * supporting WRITE SAME(16). Consequently we default to 64k
889 	 * blocks per I/O unless the device explicitly advertises a
890 	 * bigger limit.
891 	 */
892 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
893 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
894 						   (u32)SD_MAX_WS16_BLOCKS);
895 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
896 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
897 						   (u32)SD_MAX_WS10_BLOCKS);
898 	else {
899 		sdkp->device->no_write_same = 1;
900 		sdkp->max_ws_blocks = 0;
901 	}
902 
903 	if (sdkp->lbprz && sdkp->lbpws)
904 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
905 	else if (sdkp->lbprz && sdkp->lbpws10)
906 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
907 	else if (sdkp->max_ws_blocks)
908 		sdkp->zeroing_mode = SD_ZERO_WS;
909 	else
910 		sdkp->zeroing_mode = SD_ZERO_WRITE;
911 
912 	if (sdkp->max_ws_blocks &&
913 	    sdkp->physical_block_size > logical_block_size) {
914 		/*
915 		 * Reporting a maximum number of blocks that is not aligned
916 		 * on the device physical size would cause a large write same
917 		 * request to be split into physically unaligned chunks by
918 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
919 		 * even if the caller of these functions took care to align the
920 		 * large request. So make sure the maximum reported is aligned
921 		 * to the device physical block size. This is only an optional
922 		 * optimization for regular disks, but this is mandatory to
923 		 * avoid failure of large write same requests directed at
924 		 * sequential write required zones of host-managed ZBC disks.
925 		 */
926 		sdkp->max_ws_blocks =
927 			round_down(sdkp->max_ws_blocks,
928 				   bytes_to_logical(sdkp->device,
929 						    sdkp->physical_block_size));
930 	}
931 
932 out:
933 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
934 					 (logical_block_size >> 9));
935 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
936 					 (logical_block_size >> 9));
937 }
938 
939 /**
940  * sd_setup_write_same_cmnd - write the same data to multiple blocks
941  * @cmd: command to prepare
942  *
943  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
944  * the preference indicated by the target device.
945  **/
946 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
947 {
948 	struct request *rq = cmd->request;
949 	struct scsi_device *sdp = cmd->device;
950 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
951 	struct bio *bio = rq->bio;
952 	sector_t sector = blk_rq_pos(rq);
953 	unsigned int nr_sectors = blk_rq_sectors(rq);
954 	unsigned int nr_bytes = blk_rq_bytes(rq);
955 	int ret;
956 
957 	if (sdkp->device->no_write_same)
958 		return BLKPREP_INVALID;
959 
960 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
961 
962 	sector >>= ilog2(sdp->sector_size) - 9;
963 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
964 
965 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
966 
967 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
968 		cmd->cmd_len = 16;
969 		cmd->cmnd[0] = WRITE_SAME_16;
970 		put_unaligned_be64(sector, &cmd->cmnd[2]);
971 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
972 	} else {
973 		cmd->cmd_len = 10;
974 		cmd->cmnd[0] = WRITE_SAME;
975 		put_unaligned_be32(sector, &cmd->cmnd[2]);
976 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
977 	}
978 
979 	cmd->transfersize = sdp->sector_size;
980 	cmd->allowed = SD_MAX_RETRIES;
981 
982 	/*
983 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
984 	 * different from the amount of data actually written to the target.
985 	 *
986 	 * We set up __data_len to the amount of data transferred via the
987 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
988 	 * to transfer a single sector of data first, but then reset it to
989 	 * the amount of data to be written right after so that the I/O path
990 	 * knows how much to actually write.
991 	 */
992 	rq->__data_len = sdp->sector_size;
993 	ret = scsi_init_io(cmd);
994 	rq->__data_len = nr_bytes;
995 
996 	return ret;
997 }
998 
999 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1000 {
1001 	struct request *rq = cmd->request;
1002 
1003 	/* flush requests don't perform I/O, zero the S/G table */
1004 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1005 
1006 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1007 	cmd->cmd_len = 10;
1008 	cmd->transfersize = 0;
1009 	cmd->allowed = SD_MAX_RETRIES;
1010 
1011 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1012 	return BLKPREP_OK;
1013 }
1014 
1015 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
1016 {
1017 	struct request *rq = SCpnt->request;
1018 	struct scsi_device *sdp = SCpnt->device;
1019 	struct gendisk *disk = rq->rq_disk;
1020 	struct scsi_disk *sdkp = scsi_disk(disk);
1021 	sector_t block = blk_rq_pos(rq);
1022 	sector_t threshold;
1023 	unsigned int this_count = blk_rq_sectors(rq);
1024 	unsigned int dif, dix;
1025 	int ret;
1026 	unsigned char protect;
1027 
1028 	ret = scsi_init_io(SCpnt);
1029 	if (ret != BLKPREP_OK)
1030 		return ret;
1031 	WARN_ON_ONCE(SCpnt != rq->special);
1032 
1033 	/* from here on until we're complete, any goto out
1034 	 * is used for a killable error condition */
1035 	ret = BLKPREP_KILL;
1036 
1037 	SCSI_LOG_HLQUEUE(1,
1038 		scmd_printk(KERN_INFO, SCpnt,
1039 			"%s: block=%llu, count=%d\n",
1040 			__func__, (unsigned long long)block, this_count));
1041 
1042 	if (!sdp || !scsi_device_online(sdp) ||
1043 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1044 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1045 						"Finishing %u sectors\n",
1046 						blk_rq_sectors(rq)));
1047 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1048 						"Retry with 0x%p\n", SCpnt));
1049 		goto out;
1050 	}
1051 
1052 	if (sdp->changed) {
1053 		/*
1054 		 * quietly refuse to do anything to a changed disc until
1055 		 * the changed bit has been reset
1056 		 */
1057 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1058 		goto out;
1059 	}
1060 
1061 	/*
1062 	 * Some SD card readers can't handle multi-sector accesses which touch
1063 	 * the last one or two hardware sectors.  Split accesses as needed.
1064 	 */
1065 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1066 		(sdp->sector_size / 512);
1067 
1068 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1069 		if (block < threshold) {
1070 			/* Access up to the threshold but not beyond */
1071 			this_count = threshold - block;
1072 		} else {
1073 			/* Access only a single hardware sector */
1074 			this_count = sdp->sector_size / 512;
1075 		}
1076 	}
1077 
1078 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1079 					(unsigned long long)block));
1080 
1081 	/*
1082 	 * If we have a 1K hardware sectorsize, prevent access to single
1083 	 * 512 byte sectors.  In theory we could handle this - in fact
1084 	 * the scsi cdrom driver must be able to handle this because
1085 	 * we typically use 1K blocksizes, and cdroms typically have
1086 	 * 2K hardware sectorsizes.  Of course, things are simpler
1087 	 * with the cdrom, since it is read-only.  For performance
1088 	 * reasons, the filesystems should be able to handle this
1089 	 * and not force the scsi disk driver to use bounce buffers
1090 	 * for this.
1091 	 */
1092 	if (sdp->sector_size == 1024) {
1093 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1094 			scmd_printk(KERN_ERR, SCpnt,
1095 				    "Bad block number requested\n");
1096 			goto out;
1097 		} else {
1098 			block = block >> 1;
1099 			this_count = this_count >> 1;
1100 		}
1101 	}
1102 	if (sdp->sector_size == 2048) {
1103 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1104 			scmd_printk(KERN_ERR, SCpnt,
1105 				    "Bad block number requested\n");
1106 			goto out;
1107 		} else {
1108 			block = block >> 2;
1109 			this_count = this_count >> 2;
1110 		}
1111 	}
1112 	if (sdp->sector_size == 4096) {
1113 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1114 			scmd_printk(KERN_ERR, SCpnt,
1115 				    "Bad block number requested\n");
1116 			goto out;
1117 		} else {
1118 			block = block >> 3;
1119 			this_count = this_count >> 3;
1120 		}
1121 	}
1122 	if (rq_data_dir(rq) == WRITE) {
1123 		SCpnt->cmnd[0] = WRITE_6;
1124 
1125 		if (blk_integrity_rq(rq))
1126 			t10_pi_prepare(SCpnt->request, sdkp->protection_type);
1127 
1128 	} else if (rq_data_dir(rq) == READ) {
1129 		SCpnt->cmnd[0] = READ_6;
1130 	} else {
1131 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1132 		goto out;
1133 	}
1134 
1135 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1136 					"%s %d/%u 512 byte blocks.\n",
1137 					(rq_data_dir(rq) == WRITE) ?
1138 					"writing" : "reading", this_count,
1139 					blk_rq_sectors(rq)));
1140 
1141 	dix = scsi_prot_sg_count(SCpnt);
1142 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1143 
1144 	if (dif || dix)
1145 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1146 	else
1147 		protect = 0;
1148 
1149 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1150 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1151 
1152 		if (unlikely(SCpnt->cmnd == NULL)) {
1153 			ret = BLKPREP_DEFER;
1154 			goto out;
1155 		}
1156 
1157 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1158 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1159 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1160 		SCpnt->cmnd[7] = 0x18;
1161 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1162 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1163 
1164 		/* LBA */
1165 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1166 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1167 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1168 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1169 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1170 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1171 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1172 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1173 
1174 		/* Expected Indirect LBA */
1175 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1176 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1177 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1178 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1179 
1180 		/* Transfer length */
1181 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1182 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1183 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1184 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1185 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1186 		SCpnt->cmnd[0] += READ_16 - READ_6;
1187 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1188 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1189 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1190 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1191 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1192 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1193 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1194 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1195 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1196 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1197 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1198 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1199 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1200 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1201 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1202 		   scsi_device_protection(SCpnt->device) ||
1203 		   SCpnt->device->use_10_for_rw) {
1204 		SCpnt->cmnd[0] += READ_10 - READ_6;
1205 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1206 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1207 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1208 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1209 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1210 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1211 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1212 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1213 	} else {
1214 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1215 			/*
1216 			 * This happens only if this drive failed
1217 			 * 10byte rw command with ILLEGAL_REQUEST
1218 			 * during operation and thus turned off
1219 			 * use_10_for_rw.
1220 			 */
1221 			scmd_printk(KERN_ERR, SCpnt,
1222 				    "FUA write on READ/WRITE(6) drive\n");
1223 			goto out;
1224 		}
1225 
1226 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1227 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1228 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1229 		SCpnt->cmnd[4] = (unsigned char) this_count;
1230 		SCpnt->cmnd[5] = 0;
1231 	}
1232 	SCpnt->sdb.length = this_count * sdp->sector_size;
1233 
1234 	/*
1235 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1236 	 * host adapter, it's safe to assume that we can at least transfer
1237 	 * this many bytes between each connect / disconnect.
1238 	 */
1239 	SCpnt->transfersize = sdp->sector_size;
1240 	SCpnt->underflow = this_count << 9;
1241 	SCpnt->allowed = SD_MAX_RETRIES;
1242 
1243 	/*
1244 	 * This indicates that the command is ready from our end to be
1245 	 * queued.
1246 	 */
1247 	ret = BLKPREP_OK;
1248  out:
1249 	return ret;
1250 }
1251 
1252 static int sd_init_command(struct scsi_cmnd *cmd)
1253 {
1254 	struct request *rq = cmd->request;
1255 
1256 	switch (req_op(rq)) {
1257 	case REQ_OP_DISCARD:
1258 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1259 		case SD_LBP_UNMAP:
1260 			return sd_setup_unmap_cmnd(cmd);
1261 		case SD_LBP_WS16:
1262 			return sd_setup_write_same16_cmnd(cmd, true);
1263 		case SD_LBP_WS10:
1264 			return sd_setup_write_same10_cmnd(cmd, true);
1265 		case SD_LBP_ZERO:
1266 			return sd_setup_write_same10_cmnd(cmd, false);
1267 		default:
1268 			return BLKPREP_INVALID;
1269 		}
1270 	case REQ_OP_WRITE_ZEROES:
1271 		return sd_setup_write_zeroes_cmnd(cmd);
1272 	case REQ_OP_WRITE_SAME:
1273 		return sd_setup_write_same_cmnd(cmd);
1274 	case REQ_OP_FLUSH:
1275 		return sd_setup_flush_cmnd(cmd);
1276 	case REQ_OP_READ:
1277 	case REQ_OP_WRITE:
1278 		return sd_setup_read_write_cmnd(cmd);
1279 	case REQ_OP_ZONE_RESET:
1280 		return sd_zbc_setup_reset_cmnd(cmd);
1281 	default:
1282 		WARN_ON_ONCE(1);
1283 		return BLKPREP_KILL;
1284 	}
1285 }
1286 
1287 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1288 {
1289 	struct request *rq = SCpnt->request;
1290 	u8 *cmnd;
1291 
1292 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1293 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1294 
1295 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1296 		cmnd = SCpnt->cmnd;
1297 		SCpnt->cmnd = NULL;
1298 		SCpnt->cmd_len = 0;
1299 		mempool_free(cmnd, sd_cdb_pool);
1300 	}
1301 }
1302 
1303 /**
1304  *	sd_open - open a scsi disk device
1305  *	@bdev: Block device of the scsi disk to open
1306  *	@mode: FMODE_* mask
1307  *
1308  *	Returns 0 if successful. Returns a negated errno value in case
1309  *	of error.
1310  *
1311  *	Note: This can be called from a user context (e.g. fsck(1) )
1312  *	or from within the kernel (e.g. as a result of a mount(1) ).
1313  *	In the latter case @inode and @filp carry an abridged amount
1314  *	of information as noted above.
1315  *
1316  *	Locking: called with bdev->bd_mutex held.
1317  **/
1318 static int sd_open(struct block_device *bdev, fmode_t mode)
1319 {
1320 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1321 	struct scsi_device *sdev;
1322 	int retval;
1323 
1324 	if (!sdkp)
1325 		return -ENXIO;
1326 
1327 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1328 
1329 	sdev = sdkp->device;
1330 
1331 	/*
1332 	 * If the device is in error recovery, wait until it is done.
1333 	 * If the device is offline, then disallow any access to it.
1334 	 */
1335 	retval = -ENXIO;
1336 	if (!scsi_block_when_processing_errors(sdev))
1337 		goto error_out;
1338 
1339 	if (sdev->removable || sdkp->write_prot)
1340 		check_disk_change(bdev);
1341 
1342 	/*
1343 	 * If the drive is empty, just let the open fail.
1344 	 */
1345 	retval = -ENOMEDIUM;
1346 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1347 		goto error_out;
1348 
1349 	/*
1350 	 * If the device has the write protect tab set, have the open fail
1351 	 * if the user expects to be able to write to the thing.
1352 	 */
1353 	retval = -EROFS;
1354 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1355 		goto error_out;
1356 
1357 	/*
1358 	 * It is possible that the disk changing stuff resulted in
1359 	 * the device being taken offline.  If this is the case,
1360 	 * report this to the user, and don't pretend that the
1361 	 * open actually succeeded.
1362 	 */
1363 	retval = -ENXIO;
1364 	if (!scsi_device_online(sdev))
1365 		goto error_out;
1366 
1367 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1368 		if (scsi_block_when_processing_errors(sdev))
1369 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1370 	}
1371 
1372 	return 0;
1373 
1374 error_out:
1375 	scsi_disk_put(sdkp);
1376 	return retval;
1377 }
1378 
1379 /**
1380  *	sd_release - invoked when the (last) close(2) is called on this
1381  *	scsi disk.
1382  *	@disk: disk to release
1383  *	@mode: FMODE_* mask
1384  *
1385  *	Returns 0.
1386  *
1387  *	Note: may block (uninterruptible) if error recovery is underway
1388  *	on this disk.
1389  *
1390  *	Locking: called with bdev->bd_mutex held.
1391  **/
1392 static void sd_release(struct gendisk *disk, fmode_t mode)
1393 {
1394 	struct scsi_disk *sdkp = scsi_disk(disk);
1395 	struct scsi_device *sdev = sdkp->device;
1396 
1397 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1398 
1399 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1400 		if (scsi_block_when_processing_errors(sdev))
1401 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1402 	}
1403 
1404 	/*
1405 	 * XXX and what if there are packets in flight and this close()
1406 	 * XXX is followed by a "rmmod sd_mod"?
1407 	 */
1408 
1409 	scsi_disk_put(sdkp);
1410 }
1411 
1412 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1413 {
1414 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1415 	struct scsi_device *sdp = sdkp->device;
1416 	struct Scsi_Host *host = sdp->host;
1417 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1418 	int diskinfo[4];
1419 
1420 	/* default to most commonly used values */
1421 	diskinfo[0] = 0x40;	/* 1 << 6 */
1422 	diskinfo[1] = 0x20;	/* 1 << 5 */
1423 	diskinfo[2] = capacity >> 11;
1424 
1425 	/* override with calculated, extended default, or driver values */
1426 	if (host->hostt->bios_param)
1427 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1428 	else
1429 		scsicam_bios_param(bdev, capacity, diskinfo);
1430 
1431 	geo->heads = diskinfo[0];
1432 	geo->sectors = diskinfo[1];
1433 	geo->cylinders = diskinfo[2];
1434 	return 0;
1435 }
1436 
1437 /**
1438  *	sd_ioctl - process an ioctl
1439  *	@bdev: target block device
1440  *	@mode: FMODE_* mask
1441  *	@cmd: ioctl command number
1442  *	@arg: this is third argument given to ioctl(2) system call.
1443  *	Often contains a pointer.
1444  *
1445  *	Returns 0 if successful (some ioctls return positive numbers on
1446  *	success as well). Returns a negated errno value in case of error.
1447  *
1448  *	Note: most ioctls are forward onto the block subsystem or further
1449  *	down in the scsi subsystem.
1450  **/
1451 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1452 		    unsigned int cmd, unsigned long arg)
1453 {
1454 	struct gendisk *disk = bdev->bd_disk;
1455 	struct scsi_disk *sdkp = scsi_disk(disk);
1456 	struct scsi_device *sdp = sdkp->device;
1457 	void __user *p = (void __user *)arg;
1458 	int error;
1459 
1460 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1461 				    "cmd=0x%x\n", disk->disk_name, cmd));
1462 
1463 	error = scsi_verify_blk_ioctl(bdev, cmd);
1464 	if (error < 0)
1465 		return error;
1466 
1467 	/*
1468 	 * If we are in the middle of error recovery, don't let anyone
1469 	 * else try and use this device.  Also, if error recovery fails, it
1470 	 * may try and take the device offline, in which case all further
1471 	 * access to the device is prohibited.
1472 	 */
1473 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1474 			(mode & FMODE_NDELAY) != 0);
1475 	if (error)
1476 		goto out;
1477 
1478 	if (is_sed_ioctl(cmd))
1479 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1480 
1481 	/*
1482 	 * Send SCSI addressing ioctls directly to mid level, send other
1483 	 * ioctls to block level and then onto mid level if they can't be
1484 	 * resolved.
1485 	 */
1486 	switch (cmd) {
1487 		case SCSI_IOCTL_GET_IDLUN:
1488 		case SCSI_IOCTL_GET_BUS_NUMBER:
1489 			error = scsi_ioctl(sdp, cmd, p);
1490 			break;
1491 		default:
1492 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1493 			if (error != -ENOTTY)
1494 				break;
1495 			error = scsi_ioctl(sdp, cmd, p);
1496 			break;
1497 	}
1498 out:
1499 	return error;
1500 }
1501 
1502 static void set_media_not_present(struct scsi_disk *sdkp)
1503 {
1504 	if (sdkp->media_present)
1505 		sdkp->device->changed = 1;
1506 
1507 	if (sdkp->device->removable) {
1508 		sdkp->media_present = 0;
1509 		sdkp->capacity = 0;
1510 	}
1511 }
1512 
1513 static int media_not_present(struct scsi_disk *sdkp,
1514 			     struct scsi_sense_hdr *sshdr)
1515 {
1516 	if (!scsi_sense_valid(sshdr))
1517 		return 0;
1518 
1519 	/* not invoked for commands that could return deferred errors */
1520 	switch (sshdr->sense_key) {
1521 	case UNIT_ATTENTION:
1522 	case NOT_READY:
1523 		/* medium not present */
1524 		if (sshdr->asc == 0x3A) {
1525 			set_media_not_present(sdkp);
1526 			return 1;
1527 		}
1528 	}
1529 	return 0;
1530 }
1531 
1532 /**
1533  *	sd_check_events - check media events
1534  *	@disk: kernel device descriptor
1535  *	@clearing: disk events currently being cleared
1536  *
1537  *	Returns mask of DISK_EVENT_*.
1538  *
1539  *	Note: this function is invoked from the block subsystem.
1540  **/
1541 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1542 {
1543 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1544 	struct scsi_device *sdp;
1545 	int retval;
1546 
1547 	if (!sdkp)
1548 		return 0;
1549 
1550 	sdp = sdkp->device;
1551 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1552 
1553 	/*
1554 	 * If the device is offline, don't send any commands - just pretend as
1555 	 * if the command failed.  If the device ever comes back online, we
1556 	 * can deal with it then.  It is only because of unrecoverable errors
1557 	 * that we would ever take a device offline in the first place.
1558 	 */
1559 	if (!scsi_device_online(sdp)) {
1560 		set_media_not_present(sdkp);
1561 		goto out;
1562 	}
1563 
1564 	/*
1565 	 * Using TEST_UNIT_READY enables differentiation between drive with
1566 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1567 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1568 	 *
1569 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1570 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1571 	 * sd_revalidate() is called.
1572 	 */
1573 	if (scsi_block_when_processing_errors(sdp)) {
1574 		struct scsi_sense_hdr sshdr = { 0, };
1575 
1576 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1577 					      &sshdr);
1578 
1579 		/* failed to execute TUR, assume media not present */
1580 		if (host_byte(retval)) {
1581 			set_media_not_present(sdkp);
1582 			goto out;
1583 		}
1584 
1585 		if (media_not_present(sdkp, &sshdr))
1586 			goto out;
1587 	}
1588 
1589 	/*
1590 	 * For removable scsi disk we have to recognise the presence
1591 	 * of a disk in the drive.
1592 	 */
1593 	if (!sdkp->media_present)
1594 		sdp->changed = 1;
1595 	sdkp->media_present = 1;
1596 out:
1597 	/*
1598 	 * sdp->changed is set under the following conditions:
1599 	 *
1600 	 *	Medium present state has changed in either direction.
1601 	 *	Device has indicated UNIT_ATTENTION.
1602 	 */
1603 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1604 	sdp->changed = 0;
1605 	scsi_disk_put(sdkp);
1606 	return retval;
1607 }
1608 
1609 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1610 {
1611 	int retries, res;
1612 	struct scsi_device *sdp = sdkp->device;
1613 	const int timeout = sdp->request_queue->rq_timeout
1614 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1615 	struct scsi_sense_hdr my_sshdr;
1616 
1617 	if (!scsi_device_online(sdp))
1618 		return -ENODEV;
1619 
1620 	/* caller might not be interested in sense, but we need it */
1621 	if (!sshdr)
1622 		sshdr = &my_sshdr;
1623 
1624 	for (retries = 3; retries > 0; --retries) {
1625 		unsigned char cmd[10] = { 0 };
1626 
1627 		cmd[0] = SYNCHRONIZE_CACHE;
1628 		/*
1629 		 * Leave the rest of the command zero to indicate
1630 		 * flush everything.
1631 		 */
1632 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1633 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1634 		if (res == 0)
1635 			break;
1636 	}
1637 
1638 	if (res) {
1639 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1640 
1641 		if (driver_byte(res) == DRIVER_SENSE)
1642 			sd_print_sense_hdr(sdkp, sshdr);
1643 
1644 		/* we need to evaluate the error return  */
1645 		if (scsi_sense_valid(sshdr) &&
1646 			(sshdr->asc == 0x3a ||	/* medium not present */
1647 			 sshdr->asc == 0x20))	/* invalid command */
1648 				/* this is no error here */
1649 				return 0;
1650 
1651 		switch (host_byte(res)) {
1652 		/* ignore errors due to racing a disconnection */
1653 		case DID_BAD_TARGET:
1654 		case DID_NO_CONNECT:
1655 			return 0;
1656 		/* signal the upper layer it might try again */
1657 		case DID_BUS_BUSY:
1658 		case DID_IMM_RETRY:
1659 		case DID_REQUEUE:
1660 		case DID_SOFT_ERROR:
1661 			return -EBUSY;
1662 		default:
1663 			return -EIO;
1664 		}
1665 	}
1666 	return 0;
1667 }
1668 
1669 static void sd_rescan(struct device *dev)
1670 {
1671 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1672 
1673 	revalidate_disk(sdkp->disk);
1674 }
1675 
1676 
1677 #ifdef CONFIG_COMPAT
1678 /*
1679  * This gets directly called from VFS. When the ioctl
1680  * is not recognized we go back to the other translation paths.
1681  */
1682 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1683 			   unsigned int cmd, unsigned long arg)
1684 {
1685 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1686 	int error;
1687 
1688 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1689 			(mode & FMODE_NDELAY) != 0);
1690 	if (error)
1691 		return error;
1692 
1693 	/*
1694 	 * Let the static ioctl translation table take care of it.
1695 	 */
1696 	if (!sdev->host->hostt->compat_ioctl)
1697 		return -ENOIOCTLCMD;
1698 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1699 }
1700 #endif
1701 
1702 static char sd_pr_type(enum pr_type type)
1703 {
1704 	switch (type) {
1705 	case PR_WRITE_EXCLUSIVE:
1706 		return 0x01;
1707 	case PR_EXCLUSIVE_ACCESS:
1708 		return 0x03;
1709 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1710 		return 0x05;
1711 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1712 		return 0x06;
1713 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1714 		return 0x07;
1715 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1716 		return 0x08;
1717 	default:
1718 		return 0;
1719 	}
1720 };
1721 
1722 static int sd_pr_command(struct block_device *bdev, u8 sa,
1723 		u64 key, u64 sa_key, u8 type, u8 flags)
1724 {
1725 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1726 	struct scsi_sense_hdr sshdr;
1727 	int result;
1728 	u8 cmd[16] = { 0, };
1729 	u8 data[24] = { 0, };
1730 
1731 	cmd[0] = PERSISTENT_RESERVE_OUT;
1732 	cmd[1] = sa;
1733 	cmd[2] = type;
1734 	put_unaligned_be32(sizeof(data), &cmd[5]);
1735 
1736 	put_unaligned_be64(key, &data[0]);
1737 	put_unaligned_be64(sa_key, &data[8]);
1738 	data[20] = flags;
1739 
1740 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1741 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1742 
1743 	if (driver_byte(result) == DRIVER_SENSE &&
1744 	    scsi_sense_valid(&sshdr)) {
1745 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1746 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1747 	}
1748 
1749 	return result;
1750 }
1751 
1752 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1753 		u32 flags)
1754 {
1755 	if (flags & ~PR_FL_IGNORE_KEY)
1756 		return -EOPNOTSUPP;
1757 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1758 			old_key, new_key, 0,
1759 			(1 << 0) /* APTPL */);
1760 }
1761 
1762 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1763 		u32 flags)
1764 {
1765 	if (flags)
1766 		return -EOPNOTSUPP;
1767 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1768 }
1769 
1770 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1771 {
1772 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1773 }
1774 
1775 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1776 		enum pr_type type, bool abort)
1777 {
1778 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1779 			     sd_pr_type(type), 0);
1780 }
1781 
1782 static int sd_pr_clear(struct block_device *bdev, u64 key)
1783 {
1784 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1785 }
1786 
1787 static const struct pr_ops sd_pr_ops = {
1788 	.pr_register	= sd_pr_register,
1789 	.pr_reserve	= sd_pr_reserve,
1790 	.pr_release	= sd_pr_release,
1791 	.pr_preempt	= sd_pr_preempt,
1792 	.pr_clear	= sd_pr_clear,
1793 };
1794 
1795 static const struct block_device_operations sd_fops = {
1796 	.owner			= THIS_MODULE,
1797 	.open			= sd_open,
1798 	.release		= sd_release,
1799 	.ioctl			= sd_ioctl,
1800 	.getgeo			= sd_getgeo,
1801 #ifdef CONFIG_COMPAT
1802 	.compat_ioctl		= sd_compat_ioctl,
1803 #endif
1804 	.check_events		= sd_check_events,
1805 	.revalidate_disk	= sd_revalidate_disk,
1806 	.unlock_native_capacity	= sd_unlock_native_capacity,
1807 	.report_zones		= sd_zbc_report_zones,
1808 	.pr_ops			= &sd_pr_ops,
1809 };
1810 
1811 /**
1812  *	sd_eh_reset - reset error handling callback
1813  *	@scmd:		sd-issued command that has failed
1814  *
1815  *	This function is called by the SCSI midlayer before starting
1816  *	SCSI EH. When counting medium access failures we have to be
1817  *	careful to register it only only once per device and SCSI EH run;
1818  *	there might be several timed out commands which will cause the
1819  *	'max_medium_access_timeouts' counter to trigger after the first
1820  *	SCSI EH run already and set the device to offline.
1821  *	So this function resets the internal counter before starting SCSI EH.
1822  **/
1823 static void sd_eh_reset(struct scsi_cmnd *scmd)
1824 {
1825 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1826 
1827 	/* New SCSI EH run, reset gate variable */
1828 	sdkp->ignore_medium_access_errors = false;
1829 }
1830 
1831 /**
1832  *	sd_eh_action - error handling callback
1833  *	@scmd:		sd-issued command that has failed
1834  *	@eh_disp:	The recovery disposition suggested by the midlayer
1835  *
1836  *	This function is called by the SCSI midlayer upon completion of an
1837  *	error test command (currently TEST UNIT READY). The result of sending
1838  *	the eh command is passed in eh_disp.  We're looking for devices that
1839  *	fail medium access commands but are OK with non access commands like
1840  *	test unit ready (so wrongly see the device as having a successful
1841  *	recovery)
1842  **/
1843 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1844 {
1845 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1846 	struct scsi_device *sdev = scmd->device;
1847 
1848 	if (!scsi_device_online(sdev) ||
1849 	    !scsi_medium_access_command(scmd) ||
1850 	    host_byte(scmd->result) != DID_TIME_OUT ||
1851 	    eh_disp != SUCCESS)
1852 		return eh_disp;
1853 
1854 	/*
1855 	 * The device has timed out executing a medium access command.
1856 	 * However, the TEST UNIT READY command sent during error
1857 	 * handling completed successfully. Either the device is in the
1858 	 * process of recovering or has it suffered an internal failure
1859 	 * that prevents access to the storage medium.
1860 	 */
1861 	if (!sdkp->ignore_medium_access_errors) {
1862 		sdkp->medium_access_timed_out++;
1863 		sdkp->ignore_medium_access_errors = true;
1864 	}
1865 
1866 	/*
1867 	 * If the device keeps failing read/write commands but TEST UNIT
1868 	 * READY always completes successfully we assume that medium
1869 	 * access is no longer possible and take the device offline.
1870 	 */
1871 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1872 		scmd_printk(KERN_ERR, scmd,
1873 			    "Medium access timeout failure. Offlining disk!\n");
1874 		mutex_lock(&sdev->state_mutex);
1875 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1876 		mutex_unlock(&sdev->state_mutex);
1877 
1878 		return SUCCESS;
1879 	}
1880 
1881 	return eh_disp;
1882 }
1883 
1884 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1885 {
1886 	struct request *req = scmd->request;
1887 	struct scsi_device *sdev = scmd->device;
1888 	unsigned int transferred, good_bytes;
1889 	u64 start_lba, end_lba, bad_lba;
1890 
1891 	/*
1892 	 * Some commands have a payload smaller than the device logical
1893 	 * block size (e.g. INQUIRY on a 4K disk).
1894 	 */
1895 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1896 		return 0;
1897 
1898 	/* Check if we have a 'bad_lba' information */
1899 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1900 				     SCSI_SENSE_BUFFERSIZE,
1901 				     &bad_lba))
1902 		return 0;
1903 
1904 	/*
1905 	 * If the bad lba was reported incorrectly, we have no idea where
1906 	 * the error is.
1907 	 */
1908 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1909 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1910 	if (bad_lba < start_lba || bad_lba >= end_lba)
1911 		return 0;
1912 
1913 	/*
1914 	 * resid is optional but mostly filled in.  When it's unused,
1915 	 * its value is zero, so we assume the whole buffer transferred
1916 	 */
1917 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1918 
1919 	/* This computation should always be done in terms of the
1920 	 * resolution of the device's medium.
1921 	 */
1922 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1923 
1924 	return min(good_bytes, transferred);
1925 }
1926 
1927 /**
1928  *	sd_done - bottom half handler: called when the lower level
1929  *	driver has completed (successfully or otherwise) a scsi command.
1930  *	@SCpnt: mid-level's per command structure.
1931  *
1932  *	Note: potentially run from within an ISR. Must not block.
1933  **/
1934 static int sd_done(struct scsi_cmnd *SCpnt)
1935 {
1936 	int result = SCpnt->result;
1937 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1938 	unsigned int sector_size = SCpnt->device->sector_size;
1939 	unsigned int resid;
1940 	struct scsi_sense_hdr sshdr;
1941 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1942 	struct request *req = SCpnt->request;
1943 	int sense_valid = 0;
1944 	int sense_deferred = 0;
1945 
1946 	switch (req_op(req)) {
1947 	case REQ_OP_DISCARD:
1948 	case REQ_OP_WRITE_ZEROES:
1949 	case REQ_OP_WRITE_SAME:
1950 	case REQ_OP_ZONE_RESET:
1951 		if (!result) {
1952 			good_bytes = blk_rq_bytes(req);
1953 			scsi_set_resid(SCpnt, 0);
1954 		} else {
1955 			good_bytes = 0;
1956 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1957 		}
1958 		break;
1959 	default:
1960 		/*
1961 		 * In case of bogus fw or device, we could end up having
1962 		 * an unaligned partial completion. Check this here and force
1963 		 * alignment.
1964 		 */
1965 		resid = scsi_get_resid(SCpnt);
1966 		if (resid & (sector_size - 1)) {
1967 			sd_printk(KERN_INFO, sdkp,
1968 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1969 				resid, sector_size);
1970 			resid = min(scsi_bufflen(SCpnt),
1971 				    round_up(resid, sector_size));
1972 			scsi_set_resid(SCpnt, resid);
1973 		}
1974 	}
1975 
1976 	if (result) {
1977 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1978 		if (sense_valid)
1979 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1980 	}
1981 	sdkp->medium_access_timed_out = 0;
1982 
1983 	if (driver_byte(result) != DRIVER_SENSE &&
1984 	    (!sense_valid || sense_deferred))
1985 		goto out;
1986 
1987 	switch (sshdr.sense_key) {
1988 	case HARDWARE_ERROR:
1989 	case MEDIUM_ERROR:
1990 		good_bytes = sd_completed_bytes(SCpnt);
1991 		break;
1992 	case RECOVERED_ERROR:
1993 		good_bytes = scsi_bufflen(SCpnt);
1994 		break;
1995 	case NO_SENSE:
1996 		/* This indicates a false check condition, so ignore it.  An
1997 		 * unknown amount of data was transferred so treat it as an
1998 		 * error.
1999 		 */
2000 		SCpnt->result = 0;
2001 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2002 		break;
2003 	case ABORTED_COMMAND:
2004 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2005 			good_bytes = sd_completed_bytes(SCpnt);
2006 		break;
2007 	case ILLEGAL_REQUEST:
2008 		switch (sshdr.asc) {
2009 		case 0x10:	/* DIX: Host detected corruption */
2010 			good_bytes = sd_completed_bytes(SCpnt);
2011 			break;
2012 		case 0x20:	/* INVALID COMMAND OPCODE */
2013 		case 0x24:	/* INVALID FIELD IN CDB */
2014 			switch (SCpnt->cmnd[0]) {
2015 			case UNMAP:
2016 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2017 				break;
2018 			case WRITE_SAME_16:
2019 			case WRITE_SAME:
2020 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2021 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2022 				} else {
2023 					sdkp->device->no_write_same = 1;
2024 					sd_config_write_same(sdkp);
2025 					req->rq_flags |= RQF_QUIET;
2026 				}
2027 				break;
2028 			}
2029 		}
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 
2035  out:
2036 	if (sd_is_zoned(sdkp))
2037 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2038 
2039 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2040 					   "sd_done: completed %d of %d bytes\n",
2041 					   good_bytes, scsi_bufflen(SCpnt)));
2042 
2043 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2044 	    good_bytes)
2045 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2046 				good_bytes / scsi_prot_interval(SCpnt));
2047 
2048 	return good_bytes;
2049 }
2050 
2051 /*
2052  * spinup disk - called only in sd_revalidate_disk()
2053  */
2054 static void
2055 sd_spinup_disk(struct scsi_disk *sdkp)
2056 {
2057 	unsigned char cmd[10];
2058 	unsigned long spintime_expire = 0;
2059 	int retries, spintime;
2060 	unsigned int the_result;
2061 	struct scsi_sense_hdr sshdr;
2062 	int sense_valid = 0;
2063 
2064 	spintime = 0;
2065 
2066 	/* Spin up drives, as required.  Only do this at boot time */
2067 	/* Spinup needs to be done for module loads too. */
2068 	do {
2069 		retries = 0;
2070 
2071 		do {
2072 			cmd[0] = TEST_UNIT_READY;
2073 			memset((void *) &cmd[1], 0, 9);
2074 
2075 			the_result = scsi_execute_req(sdkp->device, cmd,
2076 						      DMA_NONE, NULL, 0,
2077 						      &sshdr, SD_TIMEOUT,
2078 						      SD_MAX_RETRIES, NULL);
2079 
2080 			/*
2081 			 * If the drive has indicated to us that it
2082 			 * doesn't have any media in it, don't bother
2083 			 * with any more polling.
2084 			 */
2085 			if (media_not_present(sdkp, &sshdr))
2086 				return;
2087 
2088 			if (the_result)
2089 				sense_valid = scsi_sense_valid(&sshdr);
2090 			retries++;
2091 		} while (retries < 3 &&
2092 			 (!scsi_status_is_good(the_result) ||
2093 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2094 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2095 
2096 		if (driver_byte(the_result) != DRIVER_SENSE) {
2097 			/* no sense, TUR either succeeded or failed
2098 			 * with a status error */
2099 			if(!spintime && !scsi_status_is_good(the_result)) {
2100 				sd_print_result(sdkp, "Test Unit Ready failed",
2101 						the_result);
2102 			}
2103 			break;
2104 		}
2105 
2106 		/*
2107 		 * The device does not want the automatic start to be issued.
2108 		 */
2109 		if (sdkp->device->no_start_on_add)
2110 			break;
2111 
2112 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2113 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2114 				break;	/* manual intervention required */
2115 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2116 				break;	/* standby */
2117 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2118 				break;	/* unavailable */
2119 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2120 				break;	/* sanitize in progress */
2121 			/*
2122 			 * Issue command to spin up drive when not ready
2123 			 */
2124 			if (!spintime) {
2125 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2126 				cmd[0] = START_STOP;
2127 				cmd[1] = 1;	/* Return immediately */
2128 				memset((void *) &cmd[2], 0, 8);
2129 				cmd[4] = 1;	/* Start spin cycle */
2130 				if (sdkp->device->start_stop_pwr_cond)
2131 					cmd[4] |= 1 << 4;
2132 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2133 						 NULL, 0, &sshdr,
2134 						 SD_TIMEOUT, SD_MAX_RETRIES,
2135 						 NULL);
2136 				spintime_expire = jiffies + 100 * HZ;
2137 				spintime = 1;
2138 			}
2139 			/* Wait 1 second for next try */
2140 			msleep(1000);
2141 			printk(KERN_CONT ".");
2142 
2143 		/*
2144 		 * Wait for USB flash devices with slow firmware.
2145 		 * Yes, this sense key/ASC combination shouldn't
2146 		 * occur here.  It's characteristic of these devices.
2147 		 */
2148 		} else if (sense_valid &&
2149 				sshdr.sense_key == UNIT_ATTENTION &&
2150 				sshdr.asc == 0x28) {
2151 			if (!spintime) {
2152 				spintime_expire = jiffies + 5 * HZ;
2153 				spintime = 1;
2154 			}
2155 			/* Wait 1 second for next try */
2156 			msleep(1000);
2157 		} else {
2158 			/* we don't understand the sense code, so it's
2159 			 * probably pointless to loop */
2160 			if(!spintime) {
2161 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2162 				sd_print_sense_hdr(sdkp, &sshdr);
2163 			}
2164 			break;
2165 		}
2166 
2167 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2168 
2169 	if (spintime) {
2170 		if (scsi_status_is_good(the_result))
2171 			printk(KERN_CONT "ready\n");
2172 		else
2173 			printk(KERN_CONT "not responding...\n");
2174 	}
2175 }
2176 
2177 /*
2178  * Determine whether disk supports Data Integrity Field.
2179  */
2180 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2181 {
2182 	struct scsi_device *sdp = sdkp->device;
2183 	u8 type;
2184 	int ret = 0;
2185 
2186 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2187 		return ret;
2188 
2189 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2190 
2191 	if (type > T10_PI_TYPE3_PROTECTION)
2192 		ret = -ENODEV;
2193 	else if (scsi_host_dif_capable(sdp->host, type))
2194 		ret = 1;
2195 
2196 	if (sdkp->first_scan || type != sdkp->protection_type)
2197 		switch (ret) {
2198 		case -ENODEV:
2199 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2200 				  " protection type %u. Disabling disk!\n",
2201 				  type);
2202 			break;
2203 		case 1:
2204 			sd_printk(KERN_NOTICE, sdkp,
2205 				  "Enabling DIF Type %u protection\n", type);
2206 			break;
2207 		case 0:
2208 			sd_printk(KERN_NOTICE, sdkp,
2209 				  "Disabling DIF Type %u protection\n", type);
2210 			break;
2211 		}
2212 
2213 	sdkp->protection_type = type;
2214 
2215 	return ret;
2216 }
2217 
2218 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2219 			struct scsi_sense_hdr *sshdr, int sense_valid,
2220 			int the_result)
2221 {
2222 	if (driver_byte(the_result) == DRIVER_SENSE)
2223 		sd_print_sense_hdr(sdkp, sshdr);
2224 	else
2225 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2226 
2227 	/*
2228 	 * Set dirty bit for removable devices if not ready -
2229 	 * sometimes drives will not report this properly.
2230 	 */
2231 	if (sdp->removable &&
2232 	    sense_valid && sshdr->sense_key == NOT_READY)
2233 		set_media_not_present(sdkp);
2234 
2235 	/*
2236 	 * We used to set media_present to 0 here to indicate no media
2237 	 * in the drive, but some drives fail read capacity even with
2238 	 * media present, so we can't do that.
2239 	 */
2240 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2241 }
2242 
2243 #define RC16_LEN 32
2244 #if RC16_LEN > SD_BUF_SIZE
2245 #error RC16_LEN must not be more than SD_BUF_SIZE
2246 #endif
2247 
2248 #define READ_CAPACITY_RETRIES_ON_RESET	10
2249 
2250 /*
2251  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2252  * and the reported logical block size is bigger than 512 bytes. Note
2253  * that last_sector is a u64 and therefore logical_to_sectors() is not
2254  * applicable.
2255  */
2256 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2257 {
2258 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2259 
2260 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2261 		return false;
2262 
2263 	return true;
2264 }
2265 
2266 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2267 						unsigned char *buffer)
2268 {
2269 	unsigned char cmd[16];
2270 	struct scsi_sense_hdr sshdr;
2271 	int sense_valid = 0;
2272 	int the_result;
2273 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2274 	unsigned int alignment;
2275 	unsigned long long lba;
2276 	unsigned sector_size;
2277 
2278 	if (sdp->no_read_capacity_16)
2279 		return -EINVAL;
2280 
2281 	do {
2282 		memset(cmd, 0, 16);
2283 		cmd[0] = SERVICE_ACTION_IN_16;
2284 		cmd[1] = SAI_READ_CAPACITY_16;
2285 		cmd[13] = RC16_LEN;
2286 		memset(buffer, 0, RC16_LEN);
2287 
2288 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2289 					buffer, RC16_LEN, &sshdr,
2290 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2291 
2292 		if (media_not_present(sdkp, &sshdr))
2293 			return -ENODEV;
2294 
2295 		if (the_result) {
2296 			sense_valid = scsi_sense_valid(&sshdr);
2297 			if (sense_valid &&
2298 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2299 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2300 			    sshdr.ascq == 0x00)
2301 				/* Invalid Command Operation Code or
2302 				 * Invalid Field in CDB, just retry
2303 				 * silently with RC10 */
2304 				return -EINVAL;
2305 			if (sense_valid &&
2306 			    sshdr.sense_key == UNIT_ATTENTION &&
2307 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2308 				/* Device reset might occur several times,
2309 				 * give it one more chance */
2310 				if (--reset_retries > 0)
2311 					continue;
2312 		}
2313 		retries--;
2314 
2315 	} while (the_result && retries);
2316 
2317 	if (the_result) {
2318 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2319 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2320 		return -EINVAL;
2321 	}
2322 
2323 	sector_size = get_unaligned_be32(&buffer[8]);
2324 	lba = get_unaligned_be64(&buffer[0]);
2325 
2326 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2327 		sdkp->capacity = 0;
2328 		return -ENODEV;
2329 	}
2330 
2331 	if (!sd_addressable_capacity(lba, sector_size)) {
2332 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2333 			"kernel compiled with support for large block "
2334 			"devices.\n");
2335 		sdkp->capacity = 0;
2336 		return -EOVERFLOW;
2337 	}
2338 
2339 	/* Logical blocks per physical block exponent */
2340 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2341 
2342 	/* RC basis */
2343 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2344 
2345 	/* Lowest aligned logical block */
2346 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2347 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2348 	if (alignment && sdkp->first_scan)
2349 		sd_printk(KERN_NOTICE, sdkp,
2350 			  "physical block alignment offset: %u\n", alignment);
2351 
2352 	if (buffer[14] & 0x80) { /* LBPME */
2353 		sdkp->lbpme = 1;
2354 
2355 		if (buffer[14] & 0x40) /* LBPRZ */
2356 			sdkp->lbprz = 1;
2357 
2358 		sd_config_discard(sdkp, SD_LBP_WS16);
2359 	}
2360 
2361 	sdkp->capacity = lba + 1;
2362 	return sector_size;
2363 }
2364 
2365 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2366 						unsigned char *buffer)
2367 {
2368 	unsigned char cmd[16];
2369 	struct scsi_sense_hdr sshdr;
2370 	int sense_valid = 0;
2371 	int the_result;
2372 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2373 	sector_t lba;
2374 	unsigned sector_size;
2375 
2376 	do {
2377 		cmd[0] = READ_CAPACITY;
2378 		memset(&cmd[1], 0, 9);
2379 		memset(buffer, 0, 8);
2380 
2381 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2382 					buffer, 8, &sshdr,
2383 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2384 
2385 		if (media_not_present(sdkp, &sshdr))
2386 			return -ENODEV;
2387 
2388 		if (the_result) {
2389 			sense_valid = scsi_sense_valid(&sshdr);
2390 			if (sense_valid &&
2391 			    sshdr.sense_key == UNIT_ATTENTION &&
2392 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2393 				/* Device reset might occur several times,
2394 				 * give it one more chance */
2395 				if (--reset_retries > 0)
2396 					continue;
2397 		}
2398 		retries--;
2399 
2400 	} while (the_result && retries);
2401 
2402 	if (the_result) {
2403 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2404 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2405 		return -EINVAL;
2406 	}
2407 
2408 	sector_size = get_unaligned_be32(&buffer[4]);
2409 	lba = get_unaligned_be32(&buffer[0]);
2410 
2411 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2412 		/* Some buggy (usb cardreader) devices return an lba of
2413 		   0xffffffff when the want to report a size of 0 (with
2414 		   which they really mean no media is present) */
2415 		sdkp->capacity = 0;
2416 		sdkp->physical_block_size = sector_size;
2417 		return sector_size;
2418 	}
2419 
2420 	if (!sd_addressable_capacity(lba, sector_size)) {
2421 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2422 			"kernel compiled with support for large block "
2423 			"devices.\n");
2424 		sdkp->capacity = 0;
2425 		return -EOVERFLOW;
2426 	}
2427 
2428 	sdkp->capacity = lba + 1;
2429 	sdkp->physical_block_size = sector_size;
2430 	return sector_size;
2431 }
2432 
2433 static int sd_try_rc16_first(struct scsi_device *sdp)
2434 {
2435 	if (sdp->host->max_cmd_len < 16)
2436 		return 0;
2437 	if (sdp->try_rc_10_first)
2438 		return 0;
2439 	if (sdp->scsi_level > SCSI_SPC_2)
2440 		return 1;
2441 	if (scsi_device_protection(sdp))
2442 		return 1;
2443 	return 0;
2444 }
2445 
2446 /*
2447  * read disk capacity
2448  */
2449 static void
2450 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2451 {
2452 	int sector_size;
2453 	struct scsi_device *sdp = sdkp->device;
2454 
2455 	if (sd_try_rc16_first(sdp)) {
2456 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2457 		if (sector_size == -EOVERFLOW)
2458 			goto got_data;
2459 		if (sector_size == -ENODEV)
2460 			return;
2461 		if (sector_size < 0)
2462 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2463 		if (sector_size < 0)
2464 			return;
2465 	} else {
2466 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2467 		if (sector_size == -EOVERFLOW)
2468 			goto got_data;
2469 		if (sector_size < 0)
2470 			return;
2471 		if ((sizeof(sdkp->capacity) > 4) &&
2472 		    (sdkp->capacity > 0xffffffffULL)) {
2473 			int old_sector_size = sector_size;
2474 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2475 					"Trying to use READ CAPACITY(16).\n");
2476 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2477 			if (sector_size < 0) {
2478 				sd_printk(KERN_NOTICE, sdkp,
2479 					"Using 0xffffffff as device size\n");
2480 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2481 				sector_size = old_sector_size;
2482 				goto got_data;
2483 			}
2484 			/* Remember that READ CAPACITY(16) succeeded */
2485 			sdp->try_rc_10_first = 0;
2486 		}
2487 	}
2488 
2489 	/* Some devices are known to return the total number of blocks,
2490 	 * not the highest block number.  Some devices have versions
2491 	 * which do this and others which do not.  Some devices we might
2492 	 * suspect of doing this but we don't know for certain.
2493 	 *
2494 	 * If we know the reported capacity is wrong, decrement it.  If
2495 	 * we can only guess, then assume the number of blocks is even
2496 	 * (usually true but not always) and err on the side of lowering
2497 	 * the capacity.
2498 	 */
2499 	if (sdp->fix_capacity ||
2500 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2501 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2502 				"from its reported value: %llu\n",
2503 				(unsigned long long) sdkp->capacity);
2504 		--sdkp->capacity;
2505 	}
2506 
2507 got_data:
2508 	if (sector_size == 0) {
2509 		sector_size = 512;
2510 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2511 			  "assuming 512.\n");
2512 	}
2513 
2514 	if (sector_size != 512 &&
2515 	    sector_size != 1024 &&
2516 	    sector_size != 2048 &&
2517 	    sector_size != 4096) {
2518 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2519 			  sector_size);
2520 		/*
2521 		 * The user might want to re-format the drive with
2522 		 * a supported sectorsize.  Once this happens, it
2523 		 * would be relatively trivial to set the thing up.
2524 		 * For this reason, we leave the thing in the table.
2525 		 */
2526 		sdkp->capacity = 0;
2527 		/*
2528 		 * set a bogus sector size so the normal read/write
2529 		 * logic in the block layer will eventually refuse any
2530 		 * request on this device without tripping over power
2531 		 * of two sector size assumptions
2532 		 */
2533 		sector_size = 512;
2534 	}
2535 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2536 	blk_queue_physical_block_size(sdp->request_queue,
2537 				      sdkp->physical_block_size);
2538 	sdkp->device->sector_size = sector_size;
2539 
2540 	if (sdkp->capacity > 0xffffffff)
2541 		sdp->use_16_for_rw = 1;
2542 
2543 }
2544 
2545 /*
2546  * Print disk capacity
2547  */
2548 static void
2549 sd_print_capacity(struct scsi_disk *sdkp,
2550 		  sector_t old_capacity)
2551 {
2552 	int sector_size = sdkp->device->sector_size;
2553 	char cap_str_2[10], cap_str_10[10];
2554 
2555 	string_get_size(sdkp->capacity, sector_size,
2556 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2557 	string_get_size(sdkp->capacity, sector_size,
2558 			STRING_UNITS_10, cap_str_10,
2559 			sizeof(cap_str_10));
2560 
2561 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2562 		sd_printk(KERN_NOTICE, sdkp,
2563 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2564 			  (unsigned long long)sdkp->capacity,
2565 			  sector_size, cap_str_10, cap_str_2);
2566 
2567 		if (sdkp->physical_block_size != sector_size)
2568 			sd_printk(KERN_NOTICE, sdkp,
2569 				  "%u-byte physical blocks\n",
2570 				  sdkp->physical_block_size);
2571 
2572 		sd_zbc_print_zones(sdkp);
2573 	}
2574 }
2575 
2576 /* called with buffer of length 512 */
2577 static inline int
2578 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2579 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2580 		 struct scsi_sense_hdr *sshdr)
2581 {
2582 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2583 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2584 			       sshdr);
2585 }
2586 
2587 /*
2588  * read write protect setting, if possible - called only in sd_revalidate_disk()
2589  * called with buffer of length SD_BUF_SIZE
2590  */
2591 static void
2592 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2593 {
2594 	int res;
2595 	struct scsi_device *sdp = sdkp->device;
2596 	struct scsi_mode_data data;
2597 	int disk_ro = get_disk_ro(sdkp->disk);
2598 	int old_wp = sdkp->write_prot;
2599 
2600 	set_disk_ro(sdkp->disk, 0);
2601 	if (sdp->skip_ms_page_3f) {
2602 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2603 		return;
2604 	}
2605 
2606 	if (sdp->use_192_bytes_for_3f) {
2607 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2608 	} else {
2609 		/*
2610 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2611 		 * We have to start carefully: some devices hang if we ask
2612 		 * for more than is available.
2613 		 */
2614 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2615 
2616 		/*
2617 		 * Second attempt: ask for page 0 When only page 0 is
2618 		 * implemented, a request for page 3F may return Sense Key
2619 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2620 		 * CDB.
2621 		 */
2622 		if (!scsi_status_is_good(res))
2623 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2624 
2625 		/*
2626 		 * Third attempt: ask 255 bytes, as we did earlier.
2627 		 */
2628 		if (!scsi_status_is_good(res))
2629 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2630 					       &data, NULL);
2631 	}
2632 
2633 	if (!scsi_status_is_good(res)) {
2634 		sd_first_printk(KERN_WARNING, sdkp,
2635 			  "Test WP failed, assume Write Enabled\n");
2636 	} else {
2637 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2638 		set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro);
2639 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2640 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2641 				  sdkp->write_prot ? "on" : "off");
2642 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2643 		}
2644 	}
2645 }
2646 
2647 /*
2648  * sd_read_cache_type - called only from sd_revalidate_disk()
2649  * called with buffer of length SD_BUF_SIZE
2650  */
2651 static void
2652 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2653 {
2654 	int len = 0, res;
2655 	struct scsi_device *sdp = sdkp->device;
2656 
2657 	int dbd;
2658 	int modepage;
2659 	int first_len;
2660 	struct scsi_mode_data data;
2661 	struct scsi_sense_hdr sshdr;
2662 	int old_wce = sdkp->WCE;
2663 	int old_rcd = sdkp->RCD;
2664 	int old_dpofua = sdkp->DPOFUA;
2665 
2666 
2667 	if (sdkp->cache_override)
2668 		return;
2669 
2670 	first_len = 4;
2671 	if (sdp->skip_ms_page_8) {
2672 		if (sdp->type == TYPE_RBC)
2673 			goto defaults;
2674 		else {
2675 			if (sdp->skip_ms_page_3f)
2676 				goto defaults;
2677 			modepage = 0x3F;
2678 			if (sdp->use_192_bytes_for_3f)
2679 				first_len = 192;
2680 			dbd = 0;
2681 		}
2682 	} else if (sdp->type == TYPE_RBC) {
2683 		modepage = 6;
2684 		dbd = 8;
2685 	} else {
2686 		modepage = 8;
2687 		dbd = 0;
2688 	}
2689 
2690 	/* cautiously ask */
2691 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2692 			&data, &sshdr);
2693 
2694 	if (!scsi_status_is_good(res))
2695 		goto bad_sense;
2696 
2697 	if (!data.header_length) {
2698 		modepage = 6;
2699 		first_len = 0;
2700 		sd_first_printk(KERN_ERR, sdkp,
2701 				"Missing header in MODE_SENSE response\n");
2702 	}
2703 
2704 	/* that went OK, now ask for the proper length */
2705 	len = data.length;
2706 
2707 	/*
2708 	 * We're only interested in the first three bytes, actually.
2709 	 * But the data cache page is defined for the first 20.
2710 	 */
2711 	if (len < 3)
2712 		goto bad_sense;
2713 	else if (len > SD_BUF_SIZE) {
2714 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2715 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2716 		len = SD_BUF_SIZE;
2717 	}
2718 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2719 		len = 192;
2720 
2721 	/* Get the data */
2722 	if (len > first_len)
2723 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2724 				&data, &sshdr);
2725 
2726 	if (scsi_status_is_good(res)) {
2727 		int offset = data.header_length + data.block_descriptor_length;
2728 
2729 		while (offset < len) {
2730 			u8 page_code = buffer[offset] & 0x3F;
2731 			u8 spf       = buffer[offset] & 0x40;
2732 
2733 			if (page_code == 8 || page_code == 6) {
2734 				/* We're interested only in the first 3 bytes.
2735 				 */
2736 				if (len - offset <= 2) {
2737 					sd_first_printk(KERN_ERR, sdkp,
2738 						"Incomplete mode parameter "
2739 							"data\n");
2740 					goto defaults;
2741 				} else {
2742 					modepage = page_code;
2743 					goto Page_found;
2744 				}
2745 			} else {
2746 				/* Go to the next page */
2747 				if (spf && len - offset > 3)
2748 					offset += 4 + (buffer[offset+2] << 8) +
2749 						buffer[offset+3];
2750 				else if (!spf && len - offset > 1)
2751 					offset += 2 + buffer[offset+1];
2752 				else {
2753 					sd_first_printk(KERN_ERR, sdkp,
2754 							"Incomplete mode "
2755 							"parameter data\n");
2756 					goto defaults;
2757 				}
2758 			}
2759 		}
2760 
2761 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2762 		goto defaults;
2763 
2764 	Page_found:
2765 		if (modepage == 8) {
2766 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2767 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2768 		} else {
2769 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2770 			sdkp->RCD = 0;
2771 		}
2772 
2773 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2774 		if (sdp->broken_fua) {
2775 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2776 			sdkp->DPOFUA = 0;
2777 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2778 			   !sdkp->device->use_16_for_rw) {
2779 			sd_first_printk(KERN_NOTICE, sdkp,
2780 				  "Uses READ/WRITE(6), disabling FUA\n");
2781 			sdkp->DPOFUA = 0;
2782 		}
2783 
2784 		/* No cache flush allowed for write protected devices */
2785 		if (sdkp->WCE && sdkp->write_prot)
2786 			sdkp->WCE = 0;
2787 
2788 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2789 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2790 			sd_printk(KERN_NOTICE, sdkp,
2791 				  "Write cache: %s, read cache: %s, %s\n",
2792 				  sdkp->WCE ? "enabled" : "disabled",
2793 				  sdkp->RCD ? "disabled" : "enabled",
2794 				  sdkp->DPOFUA ? "supports DPO and FUA"
2795 				  : "doesn't support DPO or FUA");
2796 
2797 		return;
2798 	}
2799 
2800 bad_sense:
2801 	if (scsi_sense_valid(&sshdr) &&
2802 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2803 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2804 		/* Invalid field in CDB */
2805 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2806 	else
2807 		sd_first_printk(KERN_ERR, sdkp,
2808 				"Asking for cache data failed\n");
2809 
2810 defaults:
2811 	if (sdp->wce_default_on) {
2812 		sd_first_printk(KERN_NOTICE, sdkp,
2813 				"Assuming drive cache: write back\n");
2814 		sdkp->WCE = 1;
2815 	} else {
2816 		sd_first_printk(KERN_ERR, sdkp,
2817 				"Assuming drive cache: write through\n");
2818 		sdkp->WCE = 0;
2819 	}
2820 	sdkp->RCD = 0;
2821 	sdkp->DPOFUA = 0;
2822 }
2823 
2824 /*
2825  * The ATO bit indicates whether the DIF application tag is available
2826  * for use by the operating system.
2827  */
2828 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2829 {
2830 	int res, offset;
2831 	struct scsi_device *sdp = sdkp->device;
2832 	struct scsi_mode_data data;
2833 	struct scsi_sense_hdr sshdr;
2834 
2835 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2836 		return;
2837 
2838 	if (sdkp->protection_type == 0)
2839 		return;
2840 
2841 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2842 			      SD_MAX_RETRIES, &data, &sshdr);
2843 
2844 	if (!scsi_status_is_good(res) || !data.header_length ||
2845 	    data.length < 6) {
2846 		sd_first_printk(KERN_WARNING, sdkp,
2847 			  "getting Control mode page failed, assume no ATO\n");
2848 
2849 		if (scsi_sense_valid(&sshdr))
2850 			sd_print_sense_hdr(sdkp, &sshdr);
2851 
2852 		return;
2853 	}
2854 
2855 	offset = data.header_length + data.block_descriptor_length;
2856 
2857 	if ((buffer[offset] & 0x3f) != 0x0a) {
2858 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2859 		return;
2860 	}
2861 
2862 	if ((buffer[offset + 5] & 0x80) == 0)
2863 		return;
2864 
2865 	sdkp->ATO = 1;
2866 
2867 	return;
2868 }
2869 
2870 /**
2871  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2872  * @sdkp: disk to query
2873  */
2874 static void sd_read_block_limits(struct scsi_disk *sdkp)
2875 {
2876 	unsigned int sector_sz = sdkp->device->sector_size;
2877 	const int vpd_len = 64;
2878 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2879 
2880 	if (!buffer ||
2881 	    /* Block Limits VPD */
2882 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2883 		goto out;
2884 
2885 	blk_queue_io_min(sdkp->disk->queue,
2886 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2887 
2888 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2889 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2890 
2891 	if (buffer[3] == 0x3c) {
2892 		unsigned int lba_count, desc_count;
2893 
2894 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2895 
2896 		if (!sdkp->lbpme)
2897 			goto out;
2898 
2899 		lba_count = get_unaligned_be32(&buffer[20]);
2900 		desc_count = get_unaligned_be32(&buffer[24]);
2901 
2902 		if (lba_count && desc_count)
2903 			sdkp->max_unmap_blocks = lba_count;
2904 
2905 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2906 
2907 		if (buffer[32] & 0x80)
2908 			sdkp->unmap_alignment =
2909 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2910 
2911 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2912 
2913 			if (sdkp->max_unmap_blocks)
2914 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2915 			else
2916 				sd_config_discard(sdkp, SD_LBP_WS16);
2917 
2918 		} else {	/* LBP VPD page tells us what to use */
2919 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2920 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2921 			else if (sdkp->lbpws)
2922 				sd_config_discard(sdkp, SD_LBP_WS16);
2923 			else if (sdkp->lbpws10)
2924 				sd_config_discard(sdkp, SD_LBP_WS10);
2925 			else
2926 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2927 		}
2928 	}
2929 
2930  out:
2931 	kfree(buffer);
2932 }
2933 
2934 /**
2935  * sd_read_block_characteristics - Query block dev. characteristics
2936  * @sdkp: disk to query
2937  */
2938 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2939 {
2940 	struct request_queue *q = sdkp->disk->queue;
2941 	unsigned char *buffer;
2942 	u16 rot;
2943 	const int vpd_len = 64;
2944 
2945 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2946 
2947 	if (!buffer ||
2948 	    /* Block Device Characteristics VPD */
2949 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2950 		goto out;
2951 
2952 	rot = get_unaligned_be16(&buffer[4]);
2953 
2954 	if (rot == 1) {
2955 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2956 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2957 	} else {
2958 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2959 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
2960 	}
2961 
2962 	if (sdkp->device->type == TYPE_ZBC) {
2963 		/* Host-managed */
2964 		q->limits.zoned = BLK_ZONED_HM;
2965 	} else {
2966 		sdkp->zoned = (buffer[8] >> 4) & 3;
2967 		if (sdkp->zoned == 1)
2968 			/* Host-aware */
2969 			q->limits.zoned = BLK_ZONED_HA;
2970 		else
2971 			/*
2972 			 * Treat drive-managed devices as
2973 			 * regular block devices.
2974 			 */
2975 			q->limits.zoned = BLK_ZONED_NONE;
2976 	}
2977 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2978 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2979 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2980 
2981  out:
2982 	kfree(buffer);
2983 }
2984 
2985 /**
2986  * sd_read_block_provisioning - Query provisioning VPD page
2987  * @sdkp: disk to query
2988  */
2989 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2990 {
2991 	unsigned char *buffer;
2992 	const int vpd_len = 8;
2993 
2994 	if (sdkp->lbpme == 0)
2995 		return;
2996 
2997 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2998 
2999 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3000 		goto out;
3001 
3002 	sdkp->lbpvpd	= 1;
3003 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3004 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3005 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3006 
3007  out:
3008 	kfree(buffer);
3009 }
3010 
3011 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3012 {
3013 	struct scsi_device *sdev = sdkp->device;
3014 
3015 	if (sdev->host->no_write_same) {
3016 		sdev->no_write_same = 1;
3017 
3018 		return;
3019 	}
3020 
3021 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3022 		/* too large values might cause issues with arcmsr */
3023 		int vpd_buf_len = 64;
3024 
3025 		sdev->no_report_opcodes = 1;
3026 
3027 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3028 		 * CODES is unsupported and the device has an ATA
3029 		 * Information VPD page (SAT).
3030 		 */
3031 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3032 			sdev->no_write_same = 1;
3033 	}
3034 
3035 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3036 		sdkp->ws16 = 1;
3037 
3038 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3039 		sdkp->ws10 = 1;
3040 }
3041 
3042 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3043 {
3044 	struct scsi_device *sdev = sdkp->device;
3045 
3046 	if (!sdev->security_supported)
3047 		return;
3048 
3049 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3050 			SECURITY_PROTOCOL_IN) == 1 &&
3051 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3052 			SECURITY_PROTOCOL_OUT) == 1)
3053 		sdkp->security = 1;
3054 }
3055 
3056 /**
3057  *	sd_revalidate_disk - called the first time a new disk is seen,
3058  *	performs disk spin up, read_capacity, etc.
3059  *	@disk: struct gendisk we care about
3060  **/
3061 static int sd_revalidate_disk(struct gendisk *disk)
3062 {
3063 	struct scsi_disk *sdkp = scsi_disk(disk);
3064 	struct scsi_device *sdp = sdkp->device;
3065 	struct request_queue *q = sdkp->disk->queue;
3066 	sector_t old_capacity = sdkp->capacity;
3067 	unsigned char *buffer;
3068 	unsigned int dev_max, rw_max;
3069 
3070 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3071 				      "sd_revalidate_disk\n"));
3072 
3073 	/*
3074 	 * If the device is offline, don't try and read capacity or any
3075 	 * of the other niceties.
3076 	 */
3077 	if (!scsi_device_online(sdp))
3078 		goto out;
3079 
3080 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3081 	if (!buffer) {
3082 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3083 			  "allocation failure.\n");
3084 		goto out;
3085 	}
3086 
3087 	sd_spinup_disk(sdkp);
3088 
3089 	/*
3090 	 * Without media there is no reason to ask; moreover, some devices
3091 	 * react badly if we do.
3092 	 */
3093 	if (sdkp->media_present) {
3094 		sd_read_capacity(sdkp, buffer);
3095 
3096 		if (scsi_device_supports_vpd(sdp)) {
3097 			sd_read_block_provisioning(sdkp);
3098 			sd_read_block_limits(sdkp);
3099 			sd_read_block_characteristics(sdkp);
3100 			sd_zbc_read_zones(sdkp, buffer);
3101 		}
3102 
3103 		sd_print_capacity(sdkp, old_capacity);
3104 
3105 		sd_read_write_protect_flag(sdkp, buffer);
3106 		sd_read_cache_type(sdkp, buffer);
3107 		sd_read_app_tag_own(sdkp, buffer);
3108 		sd_read_write_same(sdkp, buffer);
3109 		sd_read_security(sdkp, buffer);
3110 	}
3111 
3112 	/*
3113 	 * We now have all cache related info, determine how we deal
3114 	 * with flush requests.
3115 	 */
3116 	sd_set_flush_flag(sdkp);
3117 
3118 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3119 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3120 
3121 	/* Some devices report a maximum block count for READ/WRITE requests. */
3122 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3123 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3124 
3125 	/*
3126 	 * Determine the device's preferred I/O size for reads and writes
3127 	 * unless the reported value is unreasonably small, large, or
3128 	 * garbage.
3129 	 */
3130 	if (sdkp->opt_xfer_blocks &&
3131 	    sdkp->opt_xfer_blocks <= dev_max &&
3132 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3133 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3134 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3135 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3136 	} else
3137 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3138 				      (sector_t)BLK_DEF_MAX_SECTORS);
3139 
3140 	/* Do not exceed controller limit */
3141 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3142 
3143 	/*
3144 	 * Only update max_sectors if previously unset or if the current value
3145 	 * exceeds the capabilities of the hardware.
3146 	 */
3147 	if (sdkp->first_scan ||
3148 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3149 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3150 		q->limits.max_sectors = rw_max;
3151 
3152 	sdkp->first_scan = 0;
3153 
3154 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3155 	sd_config_write_same(sdkp);
3156 	kfree(buffer);
3157 
3158  out:
3159 	return 0;
3160 }
3161 
3162 /**
3163  *	sd_unlock_native_capacity - unlock native capacity
3164  *	@disk: struct gendisk to set capacity for
3165  *
3166  *	Block layer calls this function if it detects that partitions
3167  *	on @disk reach beyond the end of the device.  If the SCSI host
3168  *	implements ->unlock_native_capacity() method, it's invoked to
3169  *	give it a chance to adjust the device capacity.
3170  *
3171  *	CONTEXT:
3172  *	Defined by block layer.  Might sleep.
3173  */
3174 static void sd_unlock_native_capacity(struct gendisk *disk)
3175 {
3176 	struct scsi_device *sdev = scsi_disk(disk)->device;
3177 
3178 	if (sdev->host->hostt->unlock_native_capacity)
3179 		sdev->host->hostt->unlock_native_capacity(sdev);
3180 }
3181 
3182 /**
3183  *	sd_format_disk_name - format disk name
3184  *	@prefix: name prefix - ie. "sd" for SCSI disks
3185  *	@index: index of the disk to format name for
3186  *	@buf: output buffer
3187  *	@buflen: length of the output buffer
3188  *
3189  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3190  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3191  *	which is followed by sdaaa.
3192  *
3193  *	This is basically 26 base counting with one extra 'nil' entry
3194  *	at the beginning from the second digit on and can be
3195  *	determined using similar method as 26 base conversion with the
3196  *	index shifted -1 after each digit is computed.
3197  *
3198  *	CONTEXT:
3199  *	Don't care.
3200  *
3201  *	RETURNS:
3202  *	0 on success, -errno on failure.
3203  */
3204 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3205 {
3206 	const int base = 'z' - 'a' + 1;
3207 	char *begin = buf + strlen(prefix);
3208 	char *end = buf + buflen;
3209 	char *p;
3210 	int unit;
3211 
3212 	p = end - 1;
3213 	*p = '\0';
3214 	unit = base;
3215 	do {
3216 		if (p == begin)
3217 			return -EINVAL;
3218 		*--p = 'a' + (index % unit);
3219 		index = (index / unit) - 1;
3220 	} while (index >= 0);
3221 
3222 	memmove(begin, p, end - p);
3223 	memcpy(buf, prefix, strlen(prefix));
3224 
3225 	return 0;
3226 }
3227 
3228 /*
3229  * The asynchronous part of sd_probe
3230  */
3231 static void sd_probe_async(void *data, async_cookie_t cookie)
3232 {
3233 	struct scsi_disk *sdkp = data;
3234 	struct scsi_device *sdp;
3235 	struct gendisk *gd;
3236 	u32 index;
3237 	struct device *dev;
3238 
3239 	sdp = sdkp->device;
3240 	gd = sdkp->disk;
3241 	index = sdkp->index;
3242 	dev = &sdp->sdev_gendev;
3243 
3244 	gd->major = sd_major((index & 0xf0) >> 4);
3245 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3246 
3247 	gd->fops = &sd_fops;
3248 	gd->private_data = &sdkp->driver;
3249 	gd->queue = sdkp->device->request_queue;
3250 
3251 	/* defaults, until the device tells us otherwise */
3252 	sdp->sector_size = 512;
3253 	sdkp->capacity = 0;
3254 	sdkp->media_present = 1;
3255 	sdkp->write_prot = 0;
3256 	sdkp->cache_override = 0;
3257 	sdkp->WCE = 0;
3258 	sdkp->RCD = 0;
3259 	sdkp->ATO = 0;
3260 	sdkp->first_scan = 1;
3261 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3262 
3263 	sd_revalidate_disk(gd);
3264 
3265 	gd->flags = GENHD_FL_EXT_DEVT;
3266 	if (sdp->removable) {
3267 		gd->flags |= GENHD_FL_REMOVABLE;
3268 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3269 	}
3270 
3271 	blk_pm_runtime_init(sdp->request_queue, dev);
3272 	device_add_disk(dev, gd, NULL);
3273 	if (sdkp->capacity)
3274 		sd_dif_config_host(sdkp);
3275 
3276 	sd_revalidate_disk(gd);
3277 
3278 	if (sdkp->security) {
3279 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3280 		if (sdkp->opal_dev)
3281 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3282 	}
3283 
3284 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3285 		  sdp->removable ? "removable " : "");
3286 	scsi_autopm_put_device(sdp);
3287 	put_device(&sdkp->dev);
3288 }
3289 
3290 /**
3291  *	sd_probe - called during driver initialization and whenever a
3292  *	new scsi device is attached to the system. It is called once
3293  *	for each scsi device (not just disks) present.
3294  *	@dev: pointer to device object
3295  *
3296  *	Returns 0 if successful (or not interested in this scsi device
3297  *	(e.g. scanner)); 1 when there is an error.
3298  *
3299  *	Note: this function is invoked from the scsi mid-level.
3300  *	This function sets up the mapping between a given
3301  *	<host,channel,id,lun> (found in sdp) and new device name
3302  *	(e.g. /dev/sda). More precisely it is the block device major
3303  *	and minor number that is chosen here.
3304  *
3305  *	Assume sd_probe is not re-entrant (for time being)
3306  *	Also think about sd_probe() and sd_remove() running coincidentally.
3307  **/
3308 static int sd_probe(struct device *dev)
3309 {
3310 	struct scsi_device *sdp = to_scsi_device(dev);
3311 	struct scsi_disk *sdkp;
3312 	struct gendisk *gd;
3313 	int index;
3314 	int error;
3315 
3316 	scsi_autopm_get_device(sdp);
3317 	error = -ENODEV;
3318 	if (sdp->type != TYPE_DISK &&
3319 	    sdp->type != TYPE_ZBC &&
3320 	    sdp->type != TYPE_MOD &&
3321 	    sdp->type != TYPE_RBC)
3322 		goto out;
3323 
3324 #ifndef CONFIG_BLK_DEV_ZONED
3325 	if (sdp->type == TYPE_ZBC)
3326 		goto out;
3327 #endif
3328 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3329 					"sd_probe\n"));
3330 
3331 	error = -ENOMEM;
3332 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3333 	if (!sdkp)
3334 		goto out;
3335 
3336 	gd = alloc_disk(SD_MINORS);
3337 	if (!gd)
3338 		goto out_free;
3339 
3340 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3341 	if (index < 0) {
3342 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3343 		goto out_put;
3344 	}
3345 
3346 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3347 	if (error) {
3348 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3349 		goto out_free_index;
3350 	}
3351 
3352 	sdkp->device = sdp;
3353 	sdkp->driver = &sd_template;
3354 	sdkp->disk = gd;
3355 	sdkp->index = index;
3356 	atomic_set(&sdkp->openers, 0);
3357 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3358 
3359 	if (!sdp->request_queue->rq_timeout) {
3360 		if (sdp->type != TYPE_MOD)
3361 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3362 		else
3363 			blk_queue_rq_timeout(sdp->request_queue,
3364 					     SD_MOD_TIMEOUT);
3365 	}
3366 
3367 	device_initialize(&sdkp->dev);
3368 	sdkp->dev.parent = dev;
3369 	sdkp->dev.class = &sd_disk_class;
3370 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3371 
3372 	error = device_add(&sdkp->dev);
3373 	if (error)
3374 		goto out_free_index;
3375 
3376 	get_device(dev);
3377 	dev_set_drvdata(dev, sdkp);
3378 
3379 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3380 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3381 
3382 	return 0;
3383 
3384  out_free_index:
3385 	ida_free(&sd_index_ida, index);
3386  out_put:
3387 	put_disk(gd);
3388  out_free:
3389 	kfree(sdkp);
3390  out:
3391 	scsi_autopm_put_device(sdp);
3392 	return error;
3393 }
3394 
3395 /**
3396  *	sd_remove - called whenever a scsi disk (previously recognized by
3397  *	sd_probe) is detached from the system. It is called (potentially
3398  *	multiple times) during sd module unload.
3399  *	@dev: pointer to device object
3400  *
3401  *	Note: this function is invoked from the scsi mid-level.
3402  *	This function potentially frees up a device name (e.g. /dev/sdc)
3403  *	that could be re-used by a subsequent sd_probe().
3404  *	This function is not called when the built-in sd driver is "exit-ed".
3405  **/
3406 static int sd_remove(struct device *dev)
3407 {
3408 	struct scsi_disk *sdkp;
3409 	dev_t devt;
3410 
3411 	sdkp = dev_get_drvdata(dev);
3412 	devt = disk_devt(sdkp->disk);
3413 	scsi_autopm_get_device(sdkp->device);
3414 
3415 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3416 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3417 	device_del(&sdkp->dev);
3418 	del_gendisk(sdkp->disk);
3419 	sd_shutdown(dev);
3420 
3421 	free_opal_dev(sdkp->opal_dev);
3422 
3423 	blk_register_region(devt, SD_MINORS, NULL,
3424 			    sd_default_probe, NULL, NULL);
3425 
3426 	mutex_lock(&sd_ref_mutex);
3427 	dev_set_drvdata(dev, NULL);
3428 	put_device(&sdkp->dev);
3429 	mutex_unlock(&sd_ref_mutex);
3430 
3431 	return 0;
3432 }
3433 
3434 /**
3435  *	scsi_disk_release - Called to free the scsi_disk structure
3436  *	@dev: pointer to embedded class device
3437  *
3438  *	sd_ref_mutex must be held entering this routine.  Because it is
3439  *	called on last put, you should always use the scsi_disk_get()
3440  *	scsi_disk_put() helpers which manipulate the semaphore directly
3441  *	and never do a direct put_device.
3442  **/
3443 static void scsi_disk_release(struct device *dev)
3444 {
3445 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3446 	struct gendisk *disk = sdkp->disk;
3447 
3448 	ida_free(&sd_index_ida, sdkp->index);
3449 
3450 	disk->private_data = NULL;
3451 	put_disk(disk);
3452 	put_device(&sdkp->device->sdev_gendev);
3453 
3454 	kfree(sdkp);
3455 }
3456 
3457 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3458 {
3459 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3460 	struct scsi_sense_hdr sshdr;
3461 	struct scsi_device *sdp = sdkp->device;
3462 	int res;
3463 
3464 	if (start)
3465 		cmd[4] |= 1;	/* START */
3466 
3467 	if (sdp->start_stop_pwr_cond)
3468 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3469 
3470 	if (!scsi_device_online(sdp))
3471 		return -ENODEV;
3472 
3473 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3474 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3475 	if (res) {
3476 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3477 		if (driver_byte(res) == DRIVER_SENSE)
3478 			sd_print_sense_hdr(sdkp, &sshdr);
3479 		if (scsi_sense_valid(&sshdr) &&
3480 			/* 0x3a is medium not present */
3481 			sshdr.asc == 0x3a)
3482 			res = 0;
3483 	}
3484 
3485 	/* SCSI error codes must not go to the generic layer */
3486 	if (res)
3487 		return -EIO;
3488 
3489 	return 0;
3490 }
3491 
3492 /*
3493  * Send a SYNCHRONIZE CACHE instruction down to the device through
3494  * the normal SCSI command structure.  Wait for the command to
3495  * complete.
3496  */
3497 static void sd_shutdown(struct device *dev)
3498 {
3499 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3500 
3501 	if (!sdkp)
3502 		return;         /* this can happen */
3503 
3504 	if (pm_runtime_suspended(dev))
3505 		return;
3506 
3507 	if (sdkp->WCE && sdkp->media_present) {
3508 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3509 		sd_sync_cache(sdkp, NULL);
3510 	}
3511 
3512 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3513 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3514 		sd_start_stop_device(sdkp, 0);
3515 	}
3516 }
3517 
3518 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3519 {
3520 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3521 	struct scsi_sense_hdr sshdr;
3522 	int ret = 0;
3523 
3524 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3525 		return 0;
3526 
3527 	if (sdkp->WCE && sdkp->media_present) {
3528 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3529 		ret = sd_sync_cache(sdkp, &sshdr);
3530 
3531 		if (ret) {
3532 			/* ignore OFFLINE device */
3533 			if (ret == -ENODEV)
3534 				return 0;
3535 
3536 			if (!scsi_sense_valid(&sshdr) ||
3537 			    sshdr.sense_key != ILLEGAL_REQUEST)
3538 				return ret;
3539 
3540 			/*
3541 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3542 			 * doesn't support sync. There's not much to do and
3543 			 * suspend shouldn't fail.
3544 			 */
3545 			ret = 0;
3546 		}
3547 	}
3548 
3549 	if (sdkp->device->manage_start_stop) {
3550 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3551 		/* an error is not worth aborting a system sleep */
3552 		ret = sd_start_stop_device(sdkp, 0);
3553 		if (ignore_stop_errors)
3554 			ret = 0;
3555 	}
3556 
3557 	return ret;
3558 }
3559 
3560 static int sd_suspend_system(struct device *dev)
3561 {
3562 	return sd_suspend_common(dev, true);
3563 }
3564 
3565 static int sd_suspend_runtime(struct device *dev)
3566 {
3567 	return sd_suspend_common(dev, false);
3568 }
3569 
3570 static int sd_resume(struct device *dev)
3571 {
3572 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3573 	int ret;
3574 
3575 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3576 		return 0;
3577 
3578 	if (!sdkp->device->manage_start_stop)
3579 		return 0;
3580 
3581 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3582 	ret = sd_start_stop_device(sdkp, 1);
3583 	if (!ret)
3584 		opal_unlock_from_suspend(sdkp->opal_dev);
3585 	return ret;
3586 }
3587 
3588 /**
3589  *	init_sd - entry point for this driver (both when built in or when
3590  *	a module).
3591  *
3592  *	Note: this function registers this driver with the scsi mid-level.
3593  **/
3594 static int __init init_sd(void)
3595 {
3596 	int majors = 0, i, err;
3597 
3598 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3599 
3600 	for (i = 0; i < SD_MAJORS; i++) {
3601 		if (register_blkdev(sd_major(i), "sd") != 0)
3602 			continue;
3603 		majors++;
3604 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3605 				    sd_default_probe, NULL, NULL);
3606 	}
3607 
3608 	if (!majors)
3609 		return -ENODEV;
3610 
3611 	err = class_register(&sd_disk_class);
3612 	if (err)
3613 		goto err_out;
3614 
3615 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3616 					 0, 0, NULL);
3617 	if (!sd_cdb_cache) {
3618 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3619 		err = -ENOMEM;
3620 		goto err_out_class;
3621 	}
3622 
3623 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3624 	if (!sd_cdb_pool) {
3625 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3626 		err = -ENOMEM;
3627 		goto err_out_cache;
3628 	}
3629 
3630 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3631 	if (!sd_page_pool) {
3632 		printk(KERN_ERR "sd: can't init discard page pool\n");
3633 		err = -ENOMEM;
3634 		goto err_out_ppool;
3635 	}
3636 
3637 	err = scsi_register_driver(&sd_template.gendrv);
3638 	if (err)
3639 		goto err_out_driver;
3640 
3641 	return 0;
3642 
3643 err_out_driver:
3644 	mempool_destroy(sd_page_pool);
3645 
3646 err_out_ppool:
3647 	mempool_destroy(sd_cdb_pool);
3648 
3649 err_out_cache:
3650 	kmem_cache_destroy(sd_cdb_cache);
3651 
3652 err_out_class:
3653 	class_unregister(&sd_disk_class);
3654 err_out:
3655 	for (i = 0; i < SD_MAJORS; i++)
3656 		unregister_blkdev(sd_major(i), "sd");
3657 	return err;
3658 }
3659 
3660 /**
3661  *	exit_sd - exit point for this driver (when it is a module).
3662  *
3663  *	Note: this function unregisters this driver from the scsi mid-level.
3664  **/
3665 static void __exit exit_sd(void)
3666 {
3667 	int i;
3668 
3669 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3670 
3671 	scsi_unregister_driver(&sd_template.gendrv);
3672 	mempool_destroy(sd_cdb_pool);
3673 	mempool_destroy(sd_page_pool);
3674 	kmem_cache_destroy(sd_cdb_cache);
3675 
3676 	class_unregister(&sd_disk_class);
3677 
3678 	for (i = 0; i < SD_MAJORS; i++) {
3679 		blk_unregister_region(sd_major(i), SD_MINORS);
3680 		unregister_blkdev(sd_major(i), "sd");
3681 	}
3682 }
3683 
3684 module_init(init_sd);
3685 module_exit(exit_sd);
3686 
3687 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3688 			       struct scsi_sense_hdr *sshdr)
3689 {
3690 	scsi_print_sense_hdr(sdkp->device,
3691 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3692 }
3693 
3694 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3695 			    int result)
3696 {
3697 	const char *hb_string = scsi_hostbyte_string(result);
3698 	const char *db_string = scsi_driverbyte_string(result);
3699 
3700 	if (hb_string || db_string)
3701 		sd_printk(KERN_INFO, sdkp,
3702 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3703 			  hb_string ? hb_string : "invalid",
3704 			  db_string ? db_string : "invalid");
3705 	else
3706 		sd_printk(KERN_INFO, sdkp,
3707 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3708 			  msg, host_byte(result), driver_byte(result));
3709 }
3710 
3711