1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static int sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 static mempool_t *sd_page_pool; 137 138 static const char *sd_cache_types[] = { 139 "write through", "none", "write back", 140 "write back, no read (daft)" 141 }; 142 143 static void sd_set_flush_flag(struct scsi_disk *sdkp) 144 { 145 bool wc = false, fua = false; 146 147 if (sdkp->WCE) { 148 wc = true; 149 if (sdkp->DPOFUA) 150 fua = true; 151 } 152 153 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 154 } 155 156 static ssize_t 157 cache_type_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 int ct, rcd, wce, sp; 161 struct scsi_disk *sdkp = to_scsi_disk(dev); 162 struct scsi_device *sdp = sdkp->device; 163 char buffer[64]; 164 char *buffer_data; 165 struct scsi_mode_data data; 166 struct scsi_sense_hdr sshdr; 167 static const char temp[] = "temporary "; 168 int len; 169 170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 171 /* no cache control on RBC devices; theoretically they 172 * can do it, but there's probably so many exceptions 173 * it's not worth the risk */ 174 return -EINVAL; 175 176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 177 buf += sizeof(temp) - 1; 178 sdkp->cache_override = 1; 179 } else { 180 sdkp->cache_override = 0; 181 } 182 183 ct = sysfs_match_string(sd_cache_types, buf); 184 if (ct < 0) 185 return -EINVAL; 186 187 rcd = ct & 0x01 ? 1 : 0; 188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 189 190 if (sdkp->cache_override) { 191 sdkp->WCE = wce; 192 sdkp->RCD = rcd; 193 sd_set_flush_flag(sdkp); 194 return count; 195 } 196 197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 198 SD_MAX_RETRIES, &data, NULL)) 199 return -EINVAL; 200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 201 data.block_descriptor_length); 202 buffer_data = buffer + data.header_length + 203 data.block_descriptor_length; 204 buffer_data[2] &= ~0x05; 205 buffer_data[2] |= wce << 2 | rcd; 206 sp = buffer_data[0] & 0x80 ? 1 : 0; 207 buffer_data[0] &= ~0x80; 208 209 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 210 SD_MAX_RETRIES, &data, &sshdr)) { 211 if (scsi_sense_valid(&sshdr)) 212 sd_print_sense_hdr(sdkp, &sshdr); 213 return -EINVAL; 214 } 215 revalidate_disk(sdkp->disk); 216 return count; 217 } 218 219 static ssize_t 220 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 221 char *buf) 222 { 223 struct scsi_disk *sdkp = to_scsi_disk(dev); 224 struct scsi_device *sdp = sdkp->device; 225 226 return sprintf(buf, "%u\n", sdp->manage_start_stop); 227 } 228 229 static ssize_t 230 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 231 const char *buf, size_t count) 232 { 233 struct scsi_disk *sdkp = to_scsi_disk(dev); 234 struct scsi_device *sdp = sdkp->device; 235 bool v; 236 237 if (!capable(CAP_SYS_ADMIN)) 238 return -EACCES; 239 240 if (kstrtobool(buf, &v)) 241 return -EINVAL; 242 243 sdp->manage_start_stop = v; 244 245 return count; 246 } 247 static DEVICE_ATTR_RW(manage_start_stop); 248 249 static ssize_t 250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 251 { 252 struct scsi_disk *sdkp = to_scsi_disk(dev); 253 254 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 255 } 256 257 static ssize_t 258 allow_restart_store(struct device *dev, struct device_attribute *attr, 259 const char *buf, size_t count) 260 { 261 bool v; 262 struct scsi_disk *sdkp = to_scsi_disk(dev); 263 struct scsi_device *sdp = sdkp->device; 264 265 if (!capable(CAP_SYS_ADMIN)) 266 return -EACCES; 267 268 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 269 return -EINVAL; 270 271 if (kstrtobool(buf, &v)) 272 return -EINVAL; 273 274 sdp->allow_restart = v; 275 276 return count; 277 } 278 static DEVICE_ATTR_RW(allow_restart); 279 280 static ssize_t 281 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 282 { 283 struct scsi_disk *sdkp = to_scsi_disk(dev); 284 int ct = sdkp->RCD + 2*sdkp->WCE; 285 286 return sprintf(buf, "%s\n", sd_cache_types[ct]); 287 } 288 static DEVICE_ATTR_RW(cache_type); 289 290 static ssize_t 291 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 292 { 293 struct scsi_disk *sdkp = to_scsi_disk(dev); 294 295 return sprintf(buf, "%u\n", sdkp->DPOFUA); 296 } 297 static DEVICE_ATTR_RO(FUA); 298 299 static ssize_t 300 protection_type_show(struct device *dev, struct device_attribute *attr, 301 char *buf) 302 { 303 struct scsi_disk *sdkp = to_scsi_disk(dev); 304 305 return sprintf(buf, "%u\n", sdkp->protection_type); 306 } 307 308 static ssize_t 309 protection_type_store(struct device *dev, struct device_attribute *attr, 310 const char *buf, size_t count) 311 { 312 struct scsi_disk *sdkp = to_scsi_disk(dev); 313 unsigned int val; 314 int err; 315 316 if (!capable(CAP_SYS_ADMIN)) 317 return -EACCES; 318 319 err = kstrtouint(buf, 10, &val); 320 321 if (err) 322 return err; 323 324 if (val <= T10_PI_TYPE3_PROTECTION) 325 sdkp->protection_type = val; 326 327 return count; 328 } 329 static DEVICE_ATTR_RW(protection_type); 330 331 static ssize_t 332 protection_mode_show(struct device *dev, struct device_attribute *attr, 333 char *buf) 334 { 335 struct scsi_disk *sdkp = to_scsi_disk(dev); 336 struct scsi_device *sdp = sdkp->device; 337 unsigned int dif, dix; 338 339 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 340 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 341 342 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 343 dif = 0; 344 dix = 1; 345 } 346 347 if (!dif && !dix) 348 return sprintf(buf, "none\n"); 349 350 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 351 } 352 static DEVICE_ATTR_RO(protection_mode); 353 354 static ssize_t 355 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 356 { 357 struct scsi_disk *sdkp = to_scsi_disk(dev); 358 359 return sprintf(buf, "%u\n", sdkp->ATO); 360 } 361 static DEVICE_ATTR_RO(app_tag_own); 362 363 static ssize_t 364 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 365 char *buf) 366 { 367 struct scsi_disk *sdkp = to_scsi_disk(dev); 368 369 return sprintf(buf, "%u\n", sdkp->lbpme); 370 } 371 static DEVICE_ATTR_RO(thin_provisioning); 372 373 /* sysfs_match_string() requires dense arrays */ 374 static const char *lbp_mode[] = { 375 [SD_LBP_FULL] = "full", 376 [SD_LBP_UNMAP] = "unmap", 377 [SD_LBP_WS16] = "writesame_16", 378 [SD_LBP_WS10] = "writesame_10", 379 [SD_LBP_ZERO] = "writesame_zero", 380 [SD_LBP_DISABLE] = "disabled", 381 }; 382 383 static ssize_t 384 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 385 char *buf) 386 { 387 struct scsi_disk *sdkp = to_scsi_disk(dev); 388 389 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 390 } 391 392 static ssize_t 393 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 394 const char *buf, size_t count) 395 { 396 struct scsi_disk *sdkp = to_scsi_disk(dev); 397 struct scsi_device *sdp = sdkp->device; 398 int mode; 399 400 if (!capable(CAP_SYS_ADMIN)) 401 return -EACCES; 402 403 if (sd_is_zoned(sdkp)) { 404 sd_config_discard(sdkp, SD_LBP_DISABLE); 405 return count; 406 } 407 408 if (sdp->type != TYPE_DISK) 409 return -EINVAL; 410 411 mode = sysfs_match_string(lbp_mode, buf); 412 if (mode < 0) 413 return -EINVAL; 414 415 sd_config_discard(sdkp, mode); 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 /* sysfs_match_string() requires dense arrays */ 422 static const char *zeroing_mode[] = { 423 [SD_ZERO_WRITE] = "write", 424 [SD_ZERO_WS] = "writesame", 425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 427 }; 428 429 static ssize_t 430 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 431 char *buf) 432 { 433 struct scsi_disk *sdkp = to_scsi_disk(dev); 434 435 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 436 } 437 438 static ssize_t 439 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 440 const char *buf, size_t count) 441 { 442 struct scsi_disk *sdkp = to_scsi_disk(dev); 443 int mode; 444 445 if (!capable(CAP_SYS_ADMIN)) 446 return -EACCES; 447 448 mode = sysfs_match_string(zeroing_mode, buf); 449 if (mode < 0) 450 return -EINVAL; 451 452 sdkp->zeroing_mode = mode; 453 454 return count; 455 } 456 static DEVICE_ATTR_RW(zeroing_mode); 457 458 static ssize_t 459 max_medium_access_timeouts_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 struct scsi_disk *sdkp = to_scsi_disk(dev); 463 464 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 465 } 466 467 static ssize_t 468 max_medium_access_timeouts_store(struct device *dev, 469 struct device_attribute *attr, const char *buf, 470 size_t count) 471 { 472 struct scsi_disk *sdkp = to_scsi_disk(dev); 473 int err; 474 475 if (!capable(CAP_SYS_ADMIN)) 476 return -EACCES; 477 478 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 479 480 return err ? err : count; 481 } 482 static DEVICE_ATTR_RW(max_medium_access_timeouts); 483 484 static ssize_t 485 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 486 char *buf) 487 { 488 struct scsi_disk *sdkp = to_scsi_disk(dev); 489 490 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 491 } 492 493 static ssize_t 494 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 495 const char *buf, size_t count) 496 { 497 struct scsi_disk *sdkp = to_scsi_disk(dev); 498 struct scsi_device *sdp = sdkp->device; 499 unsigned long max; 500 int err; 501 502 if (!capable(CAP_SYS_ADMIN)) 503 return -EACCES; 504 505 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 506 return -EINVAL; 507 508 err = kstrtoul(buf, 10, &max); 509 510 if (err) 511 return err; 512 513 if (max == 0) 514 sdp->no_write_same = 1; 515 else if (max <= SD_MAX_WS16_BLOCKS) { 516 sdp->no_write_same = 0; 517 sdkp->max_ws_blocks = max; 518 } 519 520 sd_config_write_same(sdkp); 521 522 return count; 523 } 524 static DEVICE_ATTR_RW(max_write_same_blocks); 525 526 static struct attribute *sd_disk_attrs[] = { 527 &dev_attr_cache_type.attr, 528 &dev_attr_FUA.attr, 529 &dev_attr_allow_restart.attr, 530 &dev_attr_manage_start_stop.attr, 531 &dev_attr_protection_type.attr, 532 &dev_attr_protection_mode.attr, 533 &dev_attr_app_tag_own.attr, 534 &dev_attr_thin_provisioning.attr, 535 &dev_attr_provisioning_mode.attr, 536 &dev_attr_zeroing_mode.attr, 537 &dev_attr_max_write_same_blocks.attr, 538 &dev_attr_max_medium_access_timeouts.attr, 539 NULL, 540 }; 541 ATTRIBUTE_GROUPS(sd_disk); 542 543 static struct class sd_disk_class = { 544 .name = "scsi_disk", 545 .owner = THIS_MODULE, 546 .dev_release = scsi_disk_release, 547 .dev_groups = sd_disk_groups, 548 }; 549 550 static const struct dev_pm_ops sd_pm_ops = { 551 .suspend = sd_suspend_system, 552 .resume = sd_resume, 553 .poweroff = sd_suspend_system, 554 .restore = sd_resume, 555 .runtime_suspend = sd_suspend_runtime, 556 .runtime_resume = sd_resume, 557 }; 558 559 static struct scsi_driver sd_template = { 560 .gendrv = { 561 .name = "sd", 562 .owner = THIS_MODULE, 563 .probe = sd_probe, 564 .remove = sd_remove, 565 .shutdown = sd_shutdown, 566 .pm = &sd_pm_ops, 567 }, 568 .rescan = sd_rescan, 569 .init_command = sd_init_command, 570 .uninit_command = sd_uninit_command, 571 .done = sd_done, 572 .eh_action = sd_eh_action, 573 .eh_reset = sd_eh_reset, 574 }; 575 576 /* 577 * Dummy kobj_map->probe function. 578 * The default ->probe function will call modprobe, which is 579 * pointless as this module is already loaded. 580 */ 581 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 582 { 583 return NULL; 584 } 585 586 /* 587 * Device no to disk mapping: 588 * 589 * major disc2 disc p1 590 * |............|.............|....|....| <- dev_t 591 * 31 20 19 8 7 4 3 0 592 * 593 * Inside a major, we have 16k disks, however mapped non- 594 * contiguously. The first 16 disks are for major0, the next 595 * ones with major1, ... Disk 256 is for major0 again, disk 272 596 * for major1, ... 597 * As we stay compatible with our numbering scheme, we can reuse 598 * the well-know SCSI majors 8, 65--71, 136--143. 599 */ 600 static int sd_major(int major_idx) 601 { 602 switch (major_idx) { 603 case 0: 604 return SCSI_DISK0_MAJOR; 605 case 1 ... 7: 606 return SCSI_DISK1_MAJOR + major_idx - 1; 607 case 8 ... 15: 608 return SCSI_DISK8_MAJOR + major_idx - 8; 609 default: 610 BUG(); 611 return 0; /* shut up gcc */ 612 } 613 } 614 615 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 616 { 617 struct scsi_disk *sdkp = NULL; 618 619 mutex_lock(&sd_ref_mutex); 620 621 if (disk->private_data) { 622 sdkp = scsi_disk(disk); 623 if (scsi_device_get(sdkp->device) == 0) 624 get_device(&sdkp->dev); 625 else 626 sdkp = NULL; 627 } 628 mutex_unlock(&sd_ref_mutex); 629 return sdkp; 630 } 631 632 static void scsi_disk_put(struct scsi_disk *sdkp) 633 { 634 struct scsi_device *sdev = sdkp->device; 635 636 mutex_lock(&sd_ref_mutex); 637 put_device(&sdkp->dev); 638 scsi_device_put(sdev); 639 mutex_unlock(&sd_ref_mutex); 640 } 641 642 #ifdef CONFIG_BLK_SED_OPAL 643 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 644 size_t len, bool send) 645 { 646 struct scsi_device *sdev = data; 647 u8 cdb[12] = { 0, }; 648 int ret; 649 650 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 651 cdb[1] = secp; 652 put_unaligned_be16(spsp, &cdb[2]); 653 put_unaligned_be32(len, &cdb[6]); 654 655 ret = scsi_execute_req(sdev, cdb, 656 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 657 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 658 return ret <= 0 ? ret : -EIO; 659 } 660 #endif /* CONFIG_BLK_SED_OPAL */ 661 662 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 663 unsigned int dix, unsigned int dif) 664 { 665 struct bio *bio = scmd->request->bio; 666 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 667 unsigned int protect = 0; 668 669 if (dix) { /* DIX Type 0, 1, 2, 3 */ 670 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 671 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 672 673 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 674 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 675 } 676 677 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 678 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 679 680 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 681 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 682 } 683 684 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 685 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 686 687 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 688 protect = 3 << 5; /* Disable target PI checking */ 689 else 690 protect = 1 << 5; /* Enable target PI checking */ 691 } 692 693 scsi_set_prot_op(scmd, prot_op); 694 scsi_set_prot_type(scmd, dif); 695 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 696 697 return protect; 698 } 699 700 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 701 { 702 struct request_queue *q = sdkp->disk->queue; 703 unsigned int logical_block_size = sdkp->device->sector_size; 704 unsigned int max_blocks = 0; 705 706 q->limits.discard_alignment = 707 sdkp->unmap_alignment * logical_block_size; 708 q->limits.discard_granularity = 709 max(sdkp->physical_block_size, 710 sdkp->unmap_granularity * logical_block_size); 711 sdkp->provisioning_mode = mode; 712 713 switch (mode) { 714 715 case SD_LBP_FULL: 716 case SD_LBP_DISABLE: 717 blk_queue_max_discard_sectors(q, 0); 718 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 719 return; 720 721 case SD_LBP_UNMAP: 722 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 723 (u32)SD_MAX_WS16_BLOCKS); 724 break; 725 726 case SD_LBP_WS16: 727 if (sdkp->device->unmap_limit_for_ws) 728 max_blocks = sdkp->max_unmap_blocks; 729 else 730 max_blocks = sdkp->max_ws_blocks; 731 732 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 733 break; 734 735 case SD_LBP_WS10: 736 if (sdkp->device->unmap_limit_for_ws) 737 max_blocks = sdkp->max_unmap_blocks; 738 else 739 max_blocks = sdkp->max_ws_blocks; 740 741 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 742 break; 743 744 case SD_LBP_ZERO: 745 max_blocks = min_not_zero(sdkp->max_ws_blocks, 746 (u32)SD_MAX_WS10_BLOCKS); 747 break; 748 } 749 750 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 751 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 752 } 753 754 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 755 { 756 struct scsi_device *sdp = cmd->device; 757 struct request *rq = cmd->request; 758 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 759 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 760 unsigned int data_len = 24; 761 char *buf; 762 763 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 764 if (!rq->special_vec.bv_page) 765 return BLKPREP_DEFER; 766 clear_highpage(rq->special_vec.bv_page); 767 rq->special_vec.bv_offset = 0; 768 rq->special_vec.bv_len = data_len; 769 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 770 771 cmd->cmd_len = 10; 772 cmd->cmnd[0] = UNMAP; 773 cmd->cmnd[8] = 24; 774 775 buf = page_address(rq->special_vec.bv_page); 776 put_unaligned_be16(6 + 16, &buf[0]); 777 put_unaligned_be16(16, &buf[2]); 778 put_unaligned_be64(sector, &buf[8]); 779 put_unaligned_be32(nr_sectors, &buf[16]); 780 781 cmd->allowed = SD_MAX_RETRIES; 782 cmd->transfersize = data_len; 783 rq->timeout = SD_TIMEOUT; 784 scsi_req(rq)->resid_len = data_len; 785 786 return scsi_init_io(cmd); 787 } 788 789 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 790 { 791 struct scsi_device *sdp = cmd->device; 792 struct request *rq = cmd->request; 793 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 794 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 795 u32 data_len = sdp->sector_size; 796 797 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 798 if (!rq->special_vec.bv_page) 799 return BLKPREP_DEFER; 800 clear_highpage(rq->special_vec.bv_page); 801 rq->special_vec.bv_offset = 0; 802 rq->special_vec.bv_len = data_len; 803 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 804 805 cmd->cmd_len = 16; 806 cmd->cmnd[0] = WRITE_SAME_16; 807 if (unmap) 808 cmd->cmnd[1] = 0x8; /* UNMAP */ 809 put_unaligned_be64(sector, &cmd->cmnd[2]); 810 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 811 812 cmd->allowed = SD_MAX_RETRIES; 813 cmd->transfersize = data_len; 814 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 815 scsi_req(rq)->resid_len = data_len; 816 817 return scsi_init_io(cmd); 818 } 819 820 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 821 { 822 struct scsi_device *sdp = cmd->device; 823 struct request *rq = cmd->request; 824 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 825 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 826 u32 data_len = sdp->sector_size; 827 828 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 829 if (!rq->special_vec.bv_page) 830 return BLKPREP_DEFER; 831 clear_highpage(rq->special_vec.bv_page); 832 rq->special_vec.bv_offset = 0; 833 rq->special_vec.bv_len = data_len; 834 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 835 836 cmd->cmd_len = 10; 837 cmd->cmnd[0] = WRITE_SAME; 838 if (unmap) 839 cmd->cmnd[1] = 0x8; /* UNMAP */ 840 put_unaligned_be32(sector, &cmd->cmnd[2]); 841 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 842 843 cmd->allowed = SD_MAX_RETRIES; 844 cmd->transfersize = data_len; 845 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 846 scsi_req(rq)->resid_len = data_len; 847 848 return scsi_init_io(cmd); 849 } 850 851 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 852 { 853 struct request *rq = cmd->request; 854 struct scsi_device *sdp = cmd->device; 855 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 856 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 857 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 858 859 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 860 switch (sdkp->zeroing_mode) { 861 case SD_ZERO_WS16_UNMAP: 862 return sd_setup_write_same16_cmnd(cmd, true); 863 case SD_ZERO_WS10_UNMAP: 864 return sd_setup_write_same10_cmnd(cmd, true); 865 } 866 } 867 868 if (sdp->no_write_same) 869 return BLKPREP_INVALID; 870 871 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 872 return sd_setup_write_same16_cmnd(cmd, false); 873 874 return sd_setup_write_same10_cmnd(cmd, false); 875 } 876 877 static void sd_config_write_same(struct scsi_disk *sdkp) 878 { 879 struct request_queue *q = sdkp->disk->queue; 880 unsigned int logical_block_size = sdkp->device->sector_size; 881 882 if (sdkp->device->no_write_same) { 883 sdkp->max_ws_blocks = 0; 884 goto out; 885 } 886 887 /* Some devices can not handle block counts above 0xffff despite 888 * supporting WRITE SAME(16). Consequently we default to 64k 889 * blocks per I/O unless the device explicitly advertises a 890 * bigger limit. 891 */ 892 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 893 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 894 (u32)SD_MAX_WS16_BLOCKS); 895 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 896 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 897 (u32)SD_MAX_WS10_BLOCKS); 898 else { 899 sdkp->device->no_write_same = 1; 900 sdkp->max_ws_blocks = 0; 901 } 902 903 if (sdkp->lbprz && sdkp->lbpws) 904 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 905 else if (sdkp->lbprz && sdkp->lbpws10) 906 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 907 else if (sdkp->max_ws_blocks) 908 sdkp->zeroing_mode = SD_ZERO_WS; 909 else 910 sdkp->zeroing_mode = SD_ZERO_WRITE; 911 912 if (sdkp->max_ws_blocks && 913 sdkp->physical_block_size > logical_block_size) { 914 /* 915 * Reporting a maximum number of blocks that is not aligned 916 * on the device physical size would cause a large write same 917 * request to be split into physically unaligned chunks by 918 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 919 * even if the caller of these functions took care to align the 920 * large request. So make sure the maximum reported is aligned 921 * to the device physical block size. This is only an optional 922 * optimization for regular disks, but this is mandatory to 923 * avoid failure of large write same requests directed at 924 * sequential write required zones of host-managed ZBC disks. 925 */ 926 sdkp->max_ws_blocks = 927 round_down(sdkp->max_ws_blocks, 928 bytes_to_logical(sdkp->device, 929 sdkp->physical_block_size)); 930 } 931 932 out: 933 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 934 (logical_block_size >> 9)); 935 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 936 (logical_block_size >> 9)); 937 } 938 939 /** 940 * sd_setup_write_same_cmnd - write the same data to multiple blocks 941 * @cmd: command to prepare 942 * 943 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 944 * the preference indicated by the target device. 945 **/ 946 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 947 { 948 struct request *rq = cmd->request; 949 struct scsi_device *sdp = cmd->device; 950 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 951 struct bio *bio = rq->bio; 952 sector_t sector = blk_rq_pos(rq); 953 unsigned int nr_sectors = blk_rq_sectors(rq); 954 unsigned int nr_bytes = blk_rq_bytes(rq); 955 int ret; 956 957 if (sdkp->device->no_write_same) 958 return BLKPREP_INVALID; 959 960 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 961 962 sector >>= ilog2(sdp->sector_size) - 9; 963 nr_sectors >>= ilog2(sdp->sector_size) - 9; 964 965 rq->timeout = SD_WRITE_SAME_TIMEOUT; 966 967 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 968 cmd->cmd_len = 16; 969 cmd->cmnd[0] = WRITE_SAME_16; 970 put_unaligned_be64(sector, &cmd->cmnd[2]); 971 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 972 } else { 973 cmd->cmd_len = 10; 974 cmd->cmnd[0] = WRITE_SAME; 975 put_unaligned_be32(sector, &cmd->cmnd[2]); 976 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 977 } 978 979 cmd->transfersize = sdp->sector_size; 980 cmd->allowed = SD_MAX_RETRIES; 981 982 /* 983 * For WRITE SAME the data transferred via the DATA OUT buffer is 984 * different from the amount of data actually written to the target. 985 * 986 * We set up __data_len to the amount of data transferred via the 987 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 988 * to transfer a single sector of data first, but then reset it to 989 * the amount of data to be written right after so that the I/O path 990 * knows how much to actually write. 991 */ 992 rq->__data_len = sdp->sector_size; 993 ret = scsi_init_io(cmd); 994 rq->__data_len = nr_bytes; 995 996 return ret; 997 } 998 999 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1000 { 1001 struct request *rq = cmd->request; 1002 1003 /* flush requests don't perform I/O, zero the S/G table */ 1004 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1005 1006 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1007 cmd->cmd_len = 10; 1008 cmd->transfersize = 0; 1009 cmd->allowed = SD_MAX_RETRIES; 1010 1011 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1012 return BLKPREP_OK; 1013 } 1014 1015 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 1016 { 1017 struct request *rq = SCpnt->request; 1018 struct scsi_device *sdp = SCpnt->device; 1019 struct gendisk *disk = rq->rq_disk; 1020 struct scsi_disk *sdkp = scsi_disk(disk); 1021 sector_t block = blk_rq_pos(rq); 1022 sector_t threshold; 1023 unsigned int this_count = blk_rq_sectors(rq); 1024 unsigned int dif, dix; 1025 int ret; 1026 unsigned char protect; 1027 1028 ret = scsi_init_io(SCpnt); 1029 if (ret != BLKPREP_OK) 1030 return ret; 1031 WARN_ON_ONCE(SCpnt != rq->special); 1032 1033 /* from here on until we're complete, any goto out 1034 * is used for a killable error condition */ 1035 ret = BLKPREP_KILL; 1036 1037 SCSI_LOG_HLQUEUE(1, 1038 scmd_printk(KERN_INFO, SCpnt, 1039 "%s: block=%llu, count=%d\n", 1040 __func__, (unsigned long long)block, this_count)); 1041 1042 if (!sdp || !scsi_device_online(sdp) || 1043 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1044 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1045 "Finishing %u sectors\n", 1046 blk_rq_sectors(rq))); 1047 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1048 "Retry with 0x%p\n", SCpnt)); 1049 goto out; 1050 } 1051 1052 if (sdp->changed) { 1053 /* 1054 * quietly refuse to do anything to a changed disc until 1055 * the changed bit has been reset 1056 */ 1057 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1058 goto out; 1059 } 1060 1061 /* 1062 * Some SD card readers can't handle multi-sector accesses which touch 1063 * the last one or two hardware sectors. Split accesses as needed. 1064 */ 1065 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1066 (sdp->sector_size / 512); 1067 1068 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1069 if (block < threshold) { 1070 /* Access up to the threshold but not beyond */ 1071 this_count = threshold - block; 1072 } else { 1073 /* Access only a single hardware sector */ 1074 this_count = sdp->sector_size / 512; 1075 } 1076 } 1077 1078 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1079 (unsigned long long)block)); 1080 1081 /* 1082 * If we have a 1K hardware sectorsize, prevent access to single 1083 * 512 byte sectors. In theory we could handle this - in fact 1084 * the scsi cdrom driver must be able to handle this because 1085 * we typically use 1K blocksizes, and cdroms typically have 1086 * 2K hardware sectorsizes. Of course, things are simpler 1087 * with the cdrom, since it is read-only. For performance 1088 * reasons, the filesystems should be able to handle this 1089 * and not force the scsi disk driver to use bounce buffers 1090 * for this. 1091 */ 1092 if (sdp->sector_size == 1024) { 1093 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1094 scmd_printk(KERN_ERR, SCpnt, 1095 "Bad block number requested\n"); 1096 goto out; 1097 } else { 1098 block = block >> 1; 1099 this_count = this_count >> 1; 1100 } 1101 } 1102 if (sdp->sector_size == 2048) { 1103 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1104 scmd_printk(KERN_ERR, SCpnt, 1105 "Bad block number requested\n"); 1106 goto out; 1107 } else { 1108 block = block >> 2; 1109 this_count = this_count >> 2; 1110 } 1111 } 1112 if (sdp->sector_size == 4096) { 1113 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1114 scmd_printk(KERN_ERR, SCpnt, 1115 "Bad block number requested\n"); 1116 goto out; 1117 } else { 1118 block = block >> 3; 1119 this_count = this_count >> 3; 1120 } 1121 } 1122 if (rq_data_dir(rq) == WRITE) { 1123 SCpnt->cmnd[0] = WRITE_6; 1124 1125 if (blk_integrity_rq(rq)) 1126 t10_pi_prepare(SCpnt->request, sdkp->protection_type); 1127 1128 } else if (rq_data_dir(rq) == READ) { 1129 SCpnt->cmnd[0] = READ_6; 1130 } else { 1131 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1132 goto out; 1133 } 1134 1135 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1136 "%s %d/%u 512 byte blocks.\n", 1137 (rq_data_dir(rq) == WRITE) ? 1138 "writing" : "reading", this_count, 1139 blk_rq_sectors(rq))); 1140 1141 dix = scsi_prot_sg_count(SCpnt); 1142 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1143 1144 if (dif || dix) 1145 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1146 else 1147 protect = 0; 1148 1149 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1150 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1151 1152 if (unlikely(SCpnt->cmnd == NULL)) { 1153 ret = BLKPREP_DEFER; 1154 goto out; 1155 } 1156 1157 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1158 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1159 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1160 SCpnt->cmnd[7] = 0x18; 1161 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1162 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1163 1164 /* LBA */ 1165 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1166 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1167 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1168 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1169 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1170 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1171 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1172 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1173 1174 /* Expected Indirect LBA */ 1175 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1176 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1177 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1178 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1179 1180 /* Transfer length */ 1181 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1182 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1183 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1184 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1185 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1186 SCpnt->cmnd[0] += READ_16 - READ_6; 1187 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1188 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1189 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1190 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1191 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1192 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1193 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1194 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1195 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1196 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1197 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1198 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1199 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1200 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1201 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1202 scsi_device_protection(SCpnt->device) || 1203 SCpnt->device->use_10_for_rw) { 1204 SCpnt->cmnd[0] += READ_10 - READ_6; 1205 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1206 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1207 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1208 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1209 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1210 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1211 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1212 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1213 } else { 1214 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1215 /* 1216 * This happens only if this drive failed 1217 * 10byte rw command with ILLEGAL_REQUEST 1218 * during operation and thus turned off 1219 * use_10_for_rw. 1220 */ 1221 scmd_printk(KERN_ERR, SCpnt, 1222 "FUA write on READ/WRITE(6) drive\n"); 1223 goto out; 1224 } 1225 1226 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1227 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1228 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1229 SCpnt->cmnd[4] = (unsigned char) this_count; 1230 SCpnt->cmnd[5] = 0; 1231 } 1232 SCpnt->sdb.length = this_count * sdp->sector_size; 1233 1234 /* 1235 * We shouldn't disconnect in the middle of a sector, so with a dumb 1236 * host adapter, it's safe to assume that we can at least transfer 1237 * this many bytes between each connect / disconnect. 1238 */ 1239 SCpnt->transfersize = sdp->sector_size; 1240 SCpnt->underflow = this_count << 9; 1241 SCpnt->allowed = SD_MAX_RETRIES; 1242 1243 /* 1244 * This indicates that the command is ready from our end to be 1245 * queued. 1246 */ 1247 ret = BLKPREP_OK; 1248 out: 1249 return ret; 1250 } 1251 1252 static int sd_init_command(struct scsi_cmnd *cmd) 1253 { 1254 struct request *rq = cmd->request; 1255 1256 switch (req_op(rq)) { 1257 case REQ_OP_DISCARD: 1258 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1259 case SD_LBP_UNMAP: 1260 return sd_setup_unmap_cmnd(cmd); 1261 case SD_LBP_WS16: 1262 return sd_setup_write_same16_cmnd(cmd, true); 1263 case SD_LBP_WS10: 1264 return sd_setup_write_same10_cmnd(cmd, true); 1265 case SD_LBP_ZERO: 1266 return sd_setup_write_same10_cmnd(cmd, false); 1267 default: 1268 return BLKPREP_INVALID; 1269 } 1270 case REQ_OP_WRITE_ZEROES: 1271 return sd_setup_write_zeroes_cmnd(cmd); 1272 case REQ_OP_WRITE_SAME: 1273 return sd_setup_write_same_cmnd(cmd); 1274 case REQ_OP_FLUSH: 1275 return sd_setup_flush_cmnd(cmd); 1276 case REQ_OP_READ: 1277 case REQ_OP_WRITE: 1278 return sd_setup_read_write_cmnd(cmd); 1279 case REQ_OP_ZONE_RESET: 1280 return sd_zbc_setup_reset_cmnd(cmd); 1281 default: 1282 WARN_ON_ONCE(1); 1283 return BLKPREP_KILL; 1284 } 1285 } 1286 1287 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1288 { 1289 struct request *rq = SCpnt->request; 1290 u8 *cmnd; 1291 1292 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1293 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1294 1295 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1296 cmnd = SCpnt->cmnd; 1297 SCpnt->cmnd = NULL; 1298 SCpnt->cmd_len = 0; 1299 mempool_free(cmnd, sd_cdb_pool); 1300 } 1301 } 1302 1303 /** 1304 * sd_open - open a scsi disk device 1305 * @bdev: Block device of the scsi disk to open 1306 * @mode: FMODE_* mask 1307 * 1308 * Returns 0 if successful. Returns a negated errno value in case 1309 * of error. 1310 * 1311 * Note: This can be called from a user context (e.g. fsck(1) ) 1312 * or from within the kernel (e.g. as a result of a mount(1) ). 1313 * In the latter case @inode and @filp carry an abridged amount 1314 * of information as noted above. 1315 * 1316 * Locking: called with bdev->bd_mutex held. 1317 **/ 1318 static int sd_open(struct block_device *bdev, fmode_t mode) 1319 { 1320 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1321 struct scsi_device *sdev; 1322 int retval; 1323 1324 if (!sdkp) 1325 return -ENXIO; 1326 1327 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1328 1329 sdev = sdkp->device; 1330 1331 /* 1332 * If the device is in error recovery, wait until it is done. 1333 * If the device is offline, then disallow any access to it. 1334 */ 1335 retval = -ENXIO; 1336 if (!scsi_block_when_processing_errors(sdev)) 1337 goto error_out; 1338 1339 if (sdev->removable || sdkp->write_prot) 1340 check_disk_change(bdev); 1341 1342 /* 1343 * If the drive is empty, just let the open fail. 1344 */ 1345 retval = -ENOMEDIUM; 1346 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1347 goto error_out; 1348 1349 /* 1350 * If the device has the write protect tab set, have the open fail 1351 * if the user expects to be able to write to the thing. 1352 */ 1353 retval = -EROFS; 1354 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1355 goto error_out; 1356 1357 /* 1358 * It is possible that the disk changing stuff resulted in 1359 * the device being taken offline. If this is the case, 1360 * report this to the user, and don't pretend that the 1361 * open actually succeeded. 1362 */ 1363 retval = -ENXIO; 1364 if (!scsi_device_online(sdev)) 1365 goto error_out; 1366 1367 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1368 if (scsi_block_when_processing_errors(sdev)) 1369 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1370 } 1371 1372 return 0; 1373 1374 error_out: 1375 scsi_disk_put(sdkp); 1376 return retval; 1377 } 1378 1379 /** 1380 * sd_release - invoked when the (last) close(2) is called on this 1381 * scsi disk. 1382 * @disk: disk to release 1383 * @mode: FMODE_* mask 1384 * 1385 * Returns 0. 1386 * 1387 * Note: may block (uninterruptible) if error recovery is underway 1388 * on this disk. 1389 * 1390 * Locking: called with bdev->bd_mutex held. 1391 **/ 1392 static void sd_release(struct gendisk *disk, fmode_t mode) 1393 { 1394 struct scsi_disk *sdkp = scsi_disk(disk); 1395 struct scsi_device *sdev = sdkp->device; 1396 1397 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1398 1399 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1400 if (scsi_block_when_processing_errors(sdev)) 1401 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1402 } 1403 1404 /* 1405 * XXX and what if there are packets in flight and this close() 1406 * XXX is followed by a "rmmod sd_mod"? 1407 */ 1408 1409 scsi_disk_put(sdkp); 1410 } 1411 1412 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1413 { 1414 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1415 struct scsi_device *sdp = sdkp->device; 1416 struct Scsi_Host *host = sdp->host; 1417 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1418 int diskinfo[4]; 1419 1420 /* default to most commonly used values */ 1421 diskinfo[0] = 0x40; /* 1 << 6 */ 1422 diskinfo[1] = 0x20; /* 1 << 5 */ 1423 diskinfo[2] = capacity >> 11; 1424 1425 /* override with calculated, extended default, or driver values */ 1426 if (host->hostt->bios_param) 1427 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1428 else 1429 scsicam_bios_param(bdev, capacity, diskinfo); 1430 1431 geo->heads = diskinfo[0]; 1432 geo->sectors = diskinfo[1]; 1433 geo->cylinders = diskinfo[2]; 1434 return 0; 1435 } 1436 1437 /** 1438 * sd_ioctl - process an ioctl 1439 * @bdev: target block device 1440 * @mode: FMODE_* mask 1441 * @cmd: ioctl command number 1442 * @arg: this is third argument given to ioctl(2) system call. 1443 * Often contains a pointer. 1444 * 1445 * Returns 0 if successful (some ioctls return positive numbers on 1446 * success as well). Returns a negated errno value in case of error. 1447 * 1448 * Note: most ioctls are forward onto the block subsystem or further 1449 * down in the scsi subsystem. 1450 **/ 1451 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1452 unsigned int cmd, unsigned long arg) 1453 { 1454 struct gendisk *disk = bdev->bd_disk; 1455 struct scsi_disk *sdkp = scsi_disk(disk); 1456 struct scsi_device *sdp = sdkp->device; 1457 void __user *p = (void __user *)arg; 1458 int error; 1459 1460 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1461 "cmd=0x%x\n", disk->disk_name, cmd)); 1462 1463 error = scsi_verify_blk_ioctl(bdev, cmd); 1464 if (error < 0) 1465 return error; 1466 1467 /* 1468 * If we are in the middle of error recovery, don't let anyone 1469 * else try and use this device. Also, if error recovery fails, it 1470 * may try and take the device offline, in which case all further 1471 * access to the device is prohibited. 1472 */ 1473 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1474 (mode & FMODE_NDELAY) != 0); 1475 if (error) 1476 goto out; 1477 1478 if (is_sed_ioctl(cmd)) 1479 return sed_ioctl(sdkp->opal_dev, cmd, p); 1480 1481 /* 1482 * Send SCSI addressing ioctls directly to mid level, send other 1483 * ioctls to block level and then onto mid level if they can't be 1484 * resolved. 1485 */ 1486 switch (cmd) { 1487 case SCSI_IOCTL_GET_IDLUN: 1488 case SCSI_IOCTL_GET_BUS_NUMBER: 1489 error = scsi_ioctl(sdp, cmd, p); 1490 break; 1491 default: 1492 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1493 if (error != -ENOTTY) 1494 break; 1495 error = scsi_ioctl(sdp, cmd, p); 1496 break; 1497 } 1498 out: 1499 return error; 1500 } 1501 1502 static void set_media_not_present(struct scsi_disk *sdkp) 1503 { 1504 if (sdkp->media_present) 1505 sdkp->device->changed = 1; 1506 1507 if (sdkp->device->removable) { 1508 sdkp->media_present = 0; 1509 sdkp->capacity = 0; 1510 } 1511 } 1512 1513 static int media_not_present(struct scsi_disk *sdkp, 1514 struct scsi_sense_hdr *sshdr) 1515 { 1516 if (!scsi_sense_valid(sshdr)) 1517 return 0; 1518 1519 /* not invoked for commands that could return deferred errors */ 1520 switch (sshdr->sense_key) { 1521 case UNIT_ATTENTION: 1522 case NOT_READY: 1523 /* medium not present */ 1524 if (sshdr->asc == 0x3A) { 1525 set_media_not_present(sdkp); 1526 return 1; 1527 } 1528 } 1529 return 0; 1530 } 1531 1532 /** 1533 * sd_check_events - check media events 1534 * @disk: kernel device descriptor 1535 * @clearing: disk events currently being cleared 1536 * 1537 * Returns mask of DISK_EVENT_*. 1538 * 1539 * Note: this function is invoked from the block subsystem. 1540 **/ 1541 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1542 { 1543 struct scsi_disk *sdkp = scsi_disk_get(disk); 1544 struct scsi_device *sdp; 1545 int retval; 1546 1547 if (!sdkp) 1548 return 0; 1549 1550 sdp = sdkp->device; 1551 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1552 1553 /* 1554 * If the device is offline, don't send any commands - just pretend as 1555 * if the command failed. If the device ever comes back online, we 1556 * can deal with it then. It is only because of unrecoverable errors 1557 * that we would ever take a device offline in the first place. 1558 */ 1559 if (!scsi_device_online(sdp)) { 1560 set_media_not_present(sdkp); 1561 goto out; 1562 } 1563 1564 /* 1565 * Using TEST_UNIT_READY enables differentiation between drive with 1566 * no cartridge loaded - NOT READY, drive with changed cartridge - 1567 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1568 * 1569 * Drives that auto spin down. eg iomega jaz 1G, will be started 1570 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1571 * sd_revalidate() is called. 1572 */ 1573 if (scsi_block_when_processing_errors(sdp)) { 1574 struct scsi_sense_hdr sshdr = { 0, }; 1575 1576 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1577 &sshdr); 1578 1579 /* failed to execute TUR, assume media not present */ 1580 if (host_byte(retval)) { 1581 set_media_not_present(sdkp); 1582 goto out; 1583 } 1584 1585 if (media_not_present(sdkp, &sshdr)) 1586 goto out; 1587 } 1588 1589 /* 1590 * For removable scsi disk we have to recognise the presence 1591 * of a disk in the drive. 1592 */ 1593 if (!sdkp->media_present) 1594 sdp->changed = 1; 1595 sdkp->media_present = 1; 1596 out: 1597 /* 1598 * sdp->changed is set under the following conditions: 1599 * 1600 * Medium present state has changed in either direction. 1601 * Device has indicated UNIT_ATTENTION. 1602 */ 1603 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1604 sdp->changed = 0; 1605 scsi_disk_put(sdkp); 1606 return retval; 1607 } 1608 1609 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1610 { 1611 int retries, res; 1612 struct scsi_device *sdp = sdkp->device; 1613 const int timeout = sdp->request_queue->rq_timeout 1614 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1615 struct scsi_sense_hdr my_sshdr; 1616 1617 if (!scsi_device_online(sdp)) 1618 return -ENODEV; 1619 1620 /* caller might not be interested in sense, but we need it */ 1621 if (!sshdr) 1622 sshdr = &my_sshdr; 1623 1624 for (retries = 3; retries > 0; --retries) { 1625 unsigned char cmd[10] = { 0 }; 1626 1627 cmd[0] = SYNCHRONIZE_CACHE; 1628 /* 1629 * Leave the rest of the command zero to indicate 1630 * flush everything. 1631 */ 1632 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1633 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1634 if (res == 0) 1635 break; 1636 } 1637 1638 if (res) { 1639 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1640 1641 if (driver_byte(res) == DRIVER_SENSE) 1642 sd_print_sense_hdr(sdkp, sshdr); 1643 1644 /* we need to evaluate the error return */ 1645 if (scsi_sense_valid(sshdr) && 1646 (sshdr->asc == 0x3a || /* medium not present */ 1647 sshdr->asc == 0x20)) /* invalid command */ 1648 /* this is no error here */ 1649 return 0; 1650 1651 switch (host_byte(res)) { 1652 /* ignore errors due to racing a disconnection */ 1653 case DID_BAD_TARGET: 1654 case DID_NO_CONNECT: 1655 return 0; 1656 /* signal the upper layer it might try again */ 1657 case DID_BUS_BUSY: 1658 case DID_IMM_RETRY: 1659 case DID_REQUEUE: 1660 case DID_SOFT_ERROR: 1661 return -EBUSY; 1662 default: 1663 return -EIO; 1664 } 1665 } 1666 return 0; 1667 } 1668 1669 static void sd_rescan(struct device *dev) 1670 { 1671 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1672 1673 revalidate_disk(sdkp->disk); 1674 } 1675 1676 1677 #ifdef CONFIG_COMPAT 1678 /* 1679 * This gets directly called from VFS. When the ioctl 1680 * is not recognized we go back to the other translation paths. 1681 */ 1682 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1683 unsigned int cmd, unsigned long arg) 1684 { 1685 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1686 int error; 1687 1688 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1689 (mode & FMODE_NDELAY) != 0); 1690 if (error) 1691 return error; 1692 1693 /* 1694 * Let the static ioctl translation table take care of it. 1695 */ 1696 if (!sdev->host->hostt->compat_ioctl) 1697 return -ENOIOCTLCMD; 1698 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1699 } 1700 #endif 1701 1702 static char sd_pr_type(enum pr_type type) 1703 { 1704 switch (type) { 1705 case PR_WRITE_EXCLUSIVE: 1706 return 0x01; 1707 case PR_EXCLUSIVE_ACCESS: 1708 return 0x03; 1709 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1710 return 0x05; 1711 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1712 return 0x06; 1713 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1714 return 0x07; 1715 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1716 return 0x08; 1717 default: 1718 return 0; 1719 } 1720 }; 1721 1722 static int sd_pr_command(struct block_device *bdev, u8 sa, 1723 u64 key, u64 sa_key, u8 type, u8 flags) 1724 { 1725 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1726 struct scsi_sense_hdr sshdr; 1727 int result; 1728 u8 cmd[16] = { 0, }; 1729 u8 data[24] = { 0, }; 1730 1731 cmd[0] = PERSISTENT_RESERVE_OUT; 1732 cmd[1] = sa; 1733 cmd[2] = type; 1734 put_unaligned_be32(sizeof(data), &cmd[5]); 1735 1736 put_unaligned_be64(key, &data[0]); 1737 put_unaligned_be64(sa_key, &data[8]); 1738 data[20] = flags; 1739 1740 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1741 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1742 1743 if (driver_byte(result) == DRIVER_SENSE && 1744 scsi_sense_valid(&sshdr)) { 1745 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1746 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1747 } 1748 1749 return result; 1750 } 1751 1752 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1753 u32 flags) 1754 { 1755 if (flags & ~PR_FL_IGNORE_KEY) 1756 return -EOPNOTSUPP; 1757 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1758 old_key, new_key, 0, 1759 (1 << 0) /* APTPL */); 1760 } 1761 1762 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1763 u32 flags) 1764 { 1765 if (flags) 1766 return -EOPNOTSUPP; 1767 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1768 } 1769 1770 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1771 { 1772 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1773 } 1774 1775 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1776 enum pr_type type, bool abort) 1777 { 1778 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1779 sd_pr_type(type), 0); 1780 } 1781 1782 static int sd_pr_clear(struct block_device *bdev, u64 key) 1783 { 1784 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1785 } 1786 1787 static const struct pr_ops sd_pr_ops = { 1788 .pr_register = sd_pr_register, 1789 .pr_reserve = sd_pr_reserve, 1790 .pr_release = sd_pr_release, 1791 .pr_preempt = sd_pr_preempt, 1792 .pr_clear = sd_pr_clear, 1793 }; 1794 1795 static const struct block_device_operations sd_fops = { 1796 .owner = THIS_MODULE, 1797 .open = sd_open, 1798 .release = sd_release, 1799 .ioctl = sd_ioctl, 1800 .getgeo = sd_getgeo, 1801 #ifdef CONFIG_COMPAT 1802 .compat_ioctl = sd_compat_ioctl, 1803 #endif 1804 .check_events = sd_check_events, 1805 .revalidate_disk = sd_revalidate_disk, 1806 .unlock_native_capacity = sd_unlock_native_capacity, 1807 .report_zones = sd_zbc_report_zones, 1808 .pr_ops = &sd_pr_ops, 1809 }; 1810 1811 /** 1812 * sd_eh_reset - reset error handling callback 1813 * @scmd: sd-issued command that has failed 1814 * 1815 * This function is called by the SCSI midlayer before starting 1816 * SCSI EH. When counting medium access failures we have to be 1817 * careful to register it only only once per device and SCSI EH run; 1818 * there might be several timed out commands which will cause the 1819 * 'max_medium_access_timeouts' counter to trigger after the first 1820 * SCSI EH run already and set the device to offline. 1821 * So this function resets the internal counter before starting SCSI EH. 1822 **/ 1823 static void sd_eh_reset(struct scsi_cmnd *scmd) 1824 { 1825 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1826 1827 /* New SCSI EH run, reset gate variable */ 1828 sdkp->ignore_medium_access_errors = false; 1829 } 1830 1831 /** 1832 * sd_eh_action - error handling callback 1833 * @scmd: sd-issued command that has failed 1834 * @eh_disp: The recovery disposition suggested by the midlayer 1835 * 1836 * This function is called by the SCSI midlayer upon completion of an 1837 * error test command (currently TEST UNIT READY). The result of sending 1838 * the eh command is passed in eh_disp. We're looking for devices that 1839 * fail medium access commands but are OK with non access commands like 1840 * test unit ready (so wrongly see the device as having a successful 1841 * recovery) 1842 **/ 1843 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1844 { 1845 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1846 struct scsi_device *sdev = scmd->device; 1847 1848 if (!scsi_device_online(sdev) || 1849 !scsi_medium_access_command(scmd) || 1850 host_byte(scmd->result) != DID_TIME_OUT || 1851 eh_disp != SUCCESS) 1852 return eh_disp; 1853 1854 /* 1855 * The device has timed out executing a medium access command. 1856 * However, the TEST UNIT READY command sent during error 1857 * handling completed successfully. Either the device is in the 1858 * process of recovering or has it suffered an internal failure 1859 * that prevents access to the storage medium. 1860 */ 1861 if (!sdkp->ignore_medium_access_errors) { 1862 sdkp->medium_access_timed_out++; 1863 sdkp->ignore_medium_access_errors = true; 1864 } 1865 1866 /* 1867 * If the device keeps failing read/write commands but TEST UNIT 1868 * READY always completes successfully we assume that medium 1869 * access is no longer possible and take the device offline. 1870 */ 1871 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1872 scmd_printk(KERN_ERR, scmd, 1873 "Medium access timeout failure. Offlining disk!\n"); 1874 mutex_lock(&sdev->state_mutex); 1875 scsi_device_set_state(sdev, SDEV_OFFLINE); 1876 mutex_unlock(&sdev->state_mutex); 1877 1878 return SUCCESS; 1879 } 1880 1881 return eh_disp; 1882 } 1883 1884 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1885 { 1886 struct request *req = scmd->request; 1887 struct scsi_device *sdev = scmd->device; 1888 unsigned int transferred, good_bytes; 1889 u64 start_lba, end_lba, bad_lba; 1890 1891 /* 1892 * Some commands have a payload smaller than the device logical 1893 * block size (e.g. INQUIRY on a 4K disk). 1894 */ 1895 if (scsi_bufflen(scmd) <= sdev->sector_size) 1896 return 0; 1897 1898 /* Check if we have a 'bad_lba' information */ 1899 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1900 SCSI_SENSE_BUFFERSIZE, 1901 &bad_lba)) 1902 return 0; 1903 1904 /* 1905 * If the bad lba was reported incorrectly, we have no idea where 1906 * the error is. 1907 */ 1908 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1909 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1910 if (bad_lba < start_lba || bad_lba >= end_lba) 1911 return 0; 1912 1913 /* 1914 * resid is optional but mostly filled in. When it's unused, 1915 * its value is zero, so we assume the whole buffer transferred 1916 */ 1917 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1918 1919 /* This computation should always be done in terms of the 1920 * resolution of the device's medium. 1921 */ 1922 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1923 1924 return min(good_bytes, transferred); 1925 } 1926 1927 /** 1928 * sd_done - bottom half handler: called when the lower level 1929 * driver has completed (successfully or otherwise) a scsi command. 1930 * @SCpnt: mid-level's per command structure. 1931 * 1932 * Note: potentially run from within an ISR. Must not block. 1933 **/ 1934 static int sd_done(struct scsi_cmnd *SCpnt) 1935 { 1936 int result = SCpnt->result; 1937 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1938 unsigned int sector_size = SCpnt->device->sector_size; 1939 unsigned int resid; 1940 struct scsi_sense_hdr sshdr; 1941 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1942 struct request *req = SCpnt->request; 1943 int sense_valid = 0; 1944 int sense_deferred = 0; 1945 1946 switch (req_op(req)) { 1947 case REQ_OP_DISCARD: 1948 case REQ_OP_WRITE_ZEROES: 1949 case REQ_OP_WRITE_SAME: 1950 case REQ_OP_ZONE_RESET: 1951 if (!result) { 1952 good_bytes = blk_rq_bytes(req); 1953 scsi_set_resid(SCpnt, 0); 1954 } else { 1955 good_bytes = 0; 1956 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1957 } 1958 break; 1959 default: 1960 /* 1961 * In case of bogus fw or device, we could end up having 1962 * an unaligned partial completion. Check this here and force 1963 * alignment. 1964 */ 1965 resid = scsi_get_resid(SCpnt); 1966 if (resid & (sector_size - 1)) { 1967 sd_printk(KERN_INFO, sdkp, 1968 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1969 resid, sector_size); 1970 resid = min(scsi_bufflen(SCpnt), 1971 round_up(resid, sector_size)); 1972 scsi_set_resid(SCpnt, resid); 1973 } 1974 } 1975 1976 if (result) { 1977 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1978 if (sense_valid) 1979 sense_deferred = scsi_sense_is_deferred(&sshdr); 1980 } 1981 sdkp->medium_access_timed_out = 0; 1982 1983 if (driver_byte(result) != DRIVER_SENSE && 1984 (!sense_valid || sense_deferred)) 1985 goto out; 1986 1987 switch (sshdr.sense_key) { 1988 case HARDWARE_ERROR: 1989 case MEDIUM_ERROR: 1990 good_bytes = sd_completed_bytes(SCpnt); 1991 break; 1992 case RECOVERED_ERROR: 1993 good_bytes = scsi_bufflen(SCpnt); 1994 break; 1995 case NO_SENSE: 1996 /* This indicates a false check condition, so ignore it. An 1997 * unknown amount of data was transferred so treat it as an 1998 * error. 1999 */ 2000 SCpnt->result = 0; 2001 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2002 break; 2003 case ABORTED_COMMAND: 2004 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2005 good_bytes = sd_completed_bytes(SCpnt); 2006 break; 2007 case ILLEGAL_REQUEST: 2008 switch (sshdr.asc) { 2009 case 0x10: /* DIX: Host detected corruption */ 2010 good_bytes = sd_completed_bytes(SCpnt); 2011 break; 2012 case 0x20: /* INVALID COMMAND OPCODE */ 2013 case 0x24: /* INVALID FIELD IN CDB */ 2014 switch (SCpnt->cmnd[0]) { 2015 case UNMAP: 2016 sd_config_discard(sdkp, SD_LBP_DISABLE); 2017 break; 2018 case WRITE_SAME_16: 2019 case WRITE_SAME: 2020 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2021 sd_config_discard(sdkp, SD_LBP_DISABLE); 2022 } else { 2023 sdkp->device->no_write_same = 1; 2024 sd_config_write_same(sdkp); 2025 req->rq_flags |= RQF_QUIET; 2026 } 2027 break; 2028 } 2029 } 2030 break; 2031 default: 2032 break; 2033 } 2034 2035 out: 2036 if (sd_is_zoned(sdkp)) 2037 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2038 2039 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2040 "sd_done: completed %d of %d bytes\n", 2041 good_bytes, scsi_bufflen(SCpnt))); 2042 2043 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2044 good_bytes) 2045 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2046 good_bytes / scsi_prot_interval(SCpnt)); 2047 2048 return good_bytes; 2049 } 2050 2051 /* 2052 * spinup disk - called only in sd_revalidate_disk() 2053 */ 2054 static void 2055 sd_spinup_disk(struct scsi_disk *sdkp) 2056 { 2057 unsigned char cmd[10]; 2058 unsigned long spintime_expire = 0; 2059 int retries, spintime; 2060 unsigned int the_result; 2061 struct scsi_sense_hdr sshdr; 2062 int sense_valid = 0; 2063 2064 spintime = 0; 2065 2066 /* Spin up drives, as required. Only do this at boot time */ 2067 /* Spinup needs to be done for module loads too. */ 2068 do { 2069 retries = 0; 2070 2071 do { 2072 cmd[0] = TEST_UNIT_READY; 2073 memset((void *) &cmd[1], 0, 9); 2074 2075 the_result = scsi_execute_req(sdkp->device, cmd, 2076 DMA_NONE, NULL, 0, 2077 &sshdr, SD_TIMEOUT, 2078 SD_MAX_RETRIES, NULL); 2079 2080 /* 2081 * If the drive has indicated to us that it 2082 * doesn't have any media in it, don't bother 2083 * with any more polling. 2084 */ 2085 if (media_not_present(sdkp, &sshdr)) 2086 return; 2087 2088 if (the_result) 2089 sense_valid = scsi_sense_valid(&sshdr); 2090 retries++; 2091 } while (retries < 3 && 2092 (!scsi_status_is_good(the_result) || 2093 ((driver_byte(the_result) == DRIVER_SENSE) && 2094 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2095 2096 if (driver_byte(the_result) != DRIVER_SENSE) { 2097 /* no sense, TUR either succeeded or failed 2098 * with a status error */ 2099 if(!spintime && !scsi_status_is_good(the_result)) { 2100 sd_print_result(sdkp, "Test Unit Ready failed", 2101 the_result); 2102 } 2103 break; 2104 } 2105 2106 /* 2107 * The device does not want the automatic start to be issued. 2108 */ 2109 if (sdkp->device->no_start_on_add) 2110 break; 2111 2112 if (sense_valid && sshdr.sense_key == NOT_READY) { 2113 if (sshdr.asc == 4 && sshdr.ascq == 3) 2114 break; /* manual intervention required */ 2115 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2116 break; /* standby */ 2117 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2118 break; /* unavailable */ 2119 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2120 break; /* sanitize in progress */ 2121 /* 2122 * Issue command to spin up drive when not ready 2123 */ 2124 if (!spintime) { 2125 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2126 cmd[0] = START_STOP; 2127 cmd[1] = 1; /* Return immediately */ 2128 memset((void *) &cmd[2], 0, 8); 2129 cmd[4] = 1; /* Start spin cycle */ 2130 if (sdkp->device->start_stop_pwr_cond) 2131 cmd[4] |= 1 << 4; 2132 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2133 NULL, 0, &sshdr, 2134 SD_TIMEOUT, SD_MAX_RETRIES, 2135 NULL); 2136 spintime_expire = jiffies + 100 * HZ; 2137 spintime = 1; 2138 } 2139 /* Wait 1 second for next try */ 2140 msleep(1000); 2141 printk(KERN_CONT "."); 2142 2143 /* 2144 * Wait for USB flash devices with slow firmware. 2145 * Yes, this sense key/ASC combination shouldn't 2146 * occur here. It's characteristic of these devices. 2147 */ 2148 } else if (sense_valid && 2149 sshdr.sense_key == UNIT_ATTENTION && 2150 sshdr.asc == 0x28) { 2151 if (!spintime) { 2152 spintime_expire = jiffies + 5 * HZ; 2153 spintime = 1; 2154 } 2155 /* Wait 1 second for next try */ 2156 msleep(1000); 2157 } else { 2158 /* we don't understand the sense code, so it's 2159 * probably pointless to loop */ 2160 if(!spintime) { 2161 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2162 sd_print_sense_hdr(sdkp, &sshdr); 2163 } 2164 break; 2165 } 2166 2167 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2168 2169 if (spintime) { 2170 if (scsi_status_is_good(the_result)) 2171 printk(KERN_CONT "ready\n"); 2172 else 2173 printk(KERN_CONT "not responding...\n"); 2174 } 2175 } 2176 2177 /* 2178 * Determine whether disk supports Data Integrity Field. 2179 */ 2180 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2181 { 2182 struct scsi_device *sdp = sdkp->device; 2183 u8 type; 2184 int ret = 0; 2185 2186 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2187 return ret; 2188 2189 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2190 2191 if (type > T10_PI_TYPE3_PROTECTION) 2192 ret = -ENODEV; 2193 else if (scsi_host_dif_capable(sdp->host, type)) 2194 ret = 1; 2195 2196 if (sdkp->first_scan || type != sdkp->protection_type) 2197 switch (ret) { 2198 case -ENODEV: 2199 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2200 " protection type %u. Disabling disk!\n", 2201 type); 2202 break; 2203 case 1: 2204 sd_printk(KERN_NOTICE, sdkp, 2205 "Enabling DIF Type %u protection\n", type); 2206 break; 2207 case 0: 2208 sd_printk(KERN_NOTICE, sdkp, 2209 "Disabling DIF Type %u protection\n", type); 2210 break; 2211 } 2212 2213 sdkp->protection_type = type; 2214 2215 return ret; 2216 } 2217 2218 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2219 struct scsi_sense_hdr *sshdr, int sense_valid, 2220 int the_result) 2221 { 2222 if (driver_byte(the_result) == DRIVER_SENSE) 2223 sd_print_sense_hdr(sdkp, sshdr); 2224 else 2225 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2226 2227 /* 2228 * Set dirty bit for removable devices if not ready - 2229 * sometimes drives will not report this properly. 2230 */ 2231 if (sdp->removable && 2232 sense_valid && sshdr->sense_key == NOT_READY) 2233 set_media_not_present(sdkp); 2234 2235 /* 2236 * We used to set media_present to 0 here to indicate no media 2237 * in the drive, but some drives fail read capacity even with 2238 * media present, so we can't do that. 2239 */ 2240 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2241 } 2242 2243 #define RC16_LEN 32 2244 #if RC16_LEN > SD_BUF_SIZE 2245 #error RC16_LEN must not be more than SD_BUF_SIZE 2246 #endif 2247 2248 #define READ_CAPACITY_RETRIES_ON_RESET 10 2249 2250 /* 2251 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2252 * and the reported logical block size is bigger than 512 bytes. Note 2253 * that last_sector is a u64 and therefore logical_to_sectors() is not 2254 * applicable. 2255 */ 2256 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2257 { 2258 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2259 2260 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2261 return false; 2262 2263 return true; 2264 } 2265 2266 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2267 unsigned char *buffer) 2268 { 2269 unsigned char cmd[16]; 2270 struct scsi_sense_hdr sshdr; 2271 int sense_valid = 0; 2272 int the_result; 2273 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2274 unsigned int alignment; 2275 unsigned long long lba; 2276 unsigned sector_size; 2277 2278 if (sdp->no_read_capacity_16) 2279 return -EINVAL; 2280 2281 do { 2282 memset(cmd, 0, 16); 2283 cmd[0] = SERVICE_ACTION_IN_16; 2284 cmd[1] = SAI_READ_CAPACITY_16; 2285 cmd[13] = RC16_LEN; 2286 memset(buffer, 0, RC16_LEN); 2287 2288 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2289 buffer, RC16_LEN, &sshdr, 2290 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2291 2292 if (media_not_present(sdkp, &sshdr)) 2293 return -ENODEV; 2294 2295 if (the_result) { 2296 sense_valid = scsi_sense_valid(&sshdr); 2297 if (sense_valid && 2298 sshdr.sense_key == ILLEGAL_REQUEST && 2299 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2300 sshdr.ascq == 0x00) 2301 /* Invalid Command Operation Code or 2302 * Invalid Field in CDB, just retry 2303 * silently with RC10 */ 2304 return -EINVAL; 2305 if (sense_valid && 2306 sshdr.sense_key == UNIT_ATTENTION && 2307 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2308 /* Device reset might occur several times, 2309 * give it one more chance */ 2310 if (--reset_retries > 0) 2311 continue; 2312 } 2313 retries--; 2314 2315 } while (the_result && retries); 2316 2317 if (the_result) { 2318 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2319 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2320 return -EINVAL; 2321 } 2322 2323 sector_size = get_unaligned_be32(&buffer[8]); 2324 lba = get_unaligned_be64(&buffer[0]); 2325 2326 if (sd_read_protection_type(sdkp, buffer) < 0) { 2327 sdkp->capacity = 0; 2328 return -ENODEV; 2329 } 2330 2331 if (!sd_addressable_capacity(lba, sector_size)) { 2332 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2333 "kernel compiled with support for large block " 2334 "devices.\n"); 2335 sdkp->capacity = 0; 2336 return -EOVERFLOW; 2337 } 2338 2339 /* Logical blocks per physical block exponent */ 2340 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2341 2342 /* RC basis */ 2343 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2344 2345 /* Lowest aligned logical block */ 2346 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2347 blk_queue_alignment_offset(sdp->request_queue, alignment); 2348 if (alignment && sdkp->first_scan) 2349 sd_printk(KERN_NOTICE, sdkp, 2350 "physical block alignment offset: %u\n", alignment); 2351 2352 if (buffer[14] & 0x80) { /* LBPME */ 2353 sdkp->lbpme = 1; 2354 2355 if (buffer[14] & 0x40) /* LBPRZ */ 2356 sdkp->lbprz = 1; 2357 2358 sd_config_discard(sdkp, SD_LBP_WS16); 2359 } 2360 2361 sdkp->capacity = lba + 1; 2362 return sector_size; 2363 } 2364 2365 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2366 unsigned char *buffer) 2367 { 2368 unsigned char cmd[16]; 2369 struct scsi_sense_hdr sshdr; 2370 int sense_valid = 0; 2371 int the_result; 2372 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2373 sector_t lba; 2374 unsigned sector_size; 2375 2376 do { 2377 cmd[0] = READ_CAPACITY; 2378 memset(&cmd[1], 0, 9); 2379 memset(buffer, 0, 8); 2380 2381 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2382 buffer, 8, &sshdr, 2383 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2384 2385 if (media_not_present(sdkp, &sshdr)) 2386 return -ENODEV; 2387 2388 if (the_result) { 2389 sense_valid = scsi_sense_valid(&sshdr); 2390 if (sense_valid && 2391 sshdr.sense_key == UNIT_ATTENTION && 2392 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2393 /* Device reset might occur several times, 2394 * give it one more chance */ 2395 if (--reset_retries > 0) 2396 continue; 2397 } 2398 retries--; 2399 2400 } while (the_result && retries); 2401 2402 if (the_result) { 2403 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2404 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2405 return -EINVAL; 2406 } 2407 2408 sector_size = get_unaligned_be32(&buffer[4]); 2409 lba = get_unaligned_be32(&buffer[0]); 2410 2411 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2412 /* Some buggy (usb cardreader) devices return an lba of 2413 0xffffffff when the want to report a size of 0 (with 2414 which they really mean no media is present) */ 2415 sdkp->capacity = 0; 2416 sdkp->physical_block_size = sector_size; 2417 return sector_size; 2418 } 2419 2420 if (!sd_addressable_capacity(lba, sector_size)) { 2421 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2422 "kernel compiled with support for large block " 2423 "devices.\n"); 2424 sdkp->capacity = 0; 2425 return -EOVERFLOW; 2426 } 2427 2428 sdkp->capacity = lba + 1; 2429 sdkp->physical_block_size = sector_size; 2430 return sector_size; 2431 } 2432 2433 static int sd_try_rc16_first(struct scsi_device *sdp) 2434 { 2435 if (sdp->host->max_cmd_len < 16) 2436 return 0; 2437 if (sdp->try_rc_10_first) 2438 return 0; 2439 if (sdp->scsi_level > SCSI_SPC_2) 2440 return 1; 2441 if (scsi_device_protection(sdp)) 2442 return 1; 2443 return 0; 2444 } 2445 2446 /* 2447 * read disk capacity 2448 */ 2449 static void 2450 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2451 { 2452 int sector_size; 2453 struct scsi_device *sdp = sdkp->device; 2454 2455 if (sd_try_rc16_first(sdp)) { 2456 sector_size = read_capacity_16(sdkp, sdp, buffer); 2457 if (sector_size == -EOVERFLOW) 2458 goto got_data; 2459 if (sector_size == -ENODEV) 2460 return; 2461 if (sector_size < 0) 2462 sector_size = read_capacity_10(sdkp, sdp, buffer); 2463 if (sector_size < 0) 2464 return; 2465 } else { 2466 sector_size = read_capacity_10(sdkp, sdp, buffer); 2467 if (sector_size == -EOVERFLOW) 2468 goto got_data; 2469 if (sector_size < 0) 2470 return; 2471 if ((sizeof(sdkp->capacity) > 4) && 2472 (sdkp->capacity > 0xffffffffULL)) { 2473 int old_sector_size = sector_size; 2474 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2475 "Trying to use READ CAPACITY(16).\n"); 2476 sector_size = read_capacity_16(sdkp, sdp, buffer); 2477 if (sector_size < 0) { 2478 sd_printk(KERN_NOTICE, sdkp, 2479 "Using 0xffffffff as device size\n"); 2480 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2481 sector_size = old_sector_size; 2482 goto got_data; 2483 } 2484 /* Remember that READ CAPACITY(16) succeeded */ 2485 sdp->try_rc_10_first = 0; 2486 } 2487 } 2488 2489 /* Some devices are known to return the total number of blocks, 2490 * not the highest block number. Some devices have versions 2491 * which do this and others which do not. Some devices we might 2492 * suspect of doing this but we don't know for certain. 2493 * 2494 * If we know the reported capacity is wrong, decrement it. If 2495 * we can only guess, then assume the number of blocks is even 2496 * (usually true but not always) and err on the side of lowering 2497 * the capacity. 2498 */ 2499 if (sdp->fix_capacity || 2500 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2501 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2502 "from its reported value: %llu\n", 2503 (unsigned long long) sdkp->capacity); 2504 --sdkp->capacity; 2505 } 2506 2507 got_data: 2508 if (sector_size == 0) { 2509 sector_size = 512; 2510 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2511 "assuming 512.\n"); 2512 } 2513 2514 if (sector_size != 512 && 2515 sector_size != 1024 && 2516 sector_size != 2048 && 2517 sector_size != 4096) { 2518 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2519 sector_size); 2520 /* 2521 * The user might want to re-format the drive with 2522 * a supported sectorsize. Once this happens, it 2523 * would be relatively trivial to set the thing up. 2524 * For this reason, we leave the thing in the table. 2525 */ 2526 sdkp->capacity = 0; 2527 /* 2528 * set a bogus sector size so the normal read/write 2529 * logic in the block layer will eventually refuse any 2530 * request on this device without tripping over power 2531 * of two sector size assumptions 2532 */ 2533 sector_size = 512; 2534 } 2535 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2536 blk_queue_physical_block_size(sdp->request_queue, 2537 sdkp->physical_block_size); 2538 sdkp->device->sector_size = sector_size; 2539 2540 if (sdkp->capacity > 0xffffffff) 2541 sdp->use_16_for_rw = 1; 2542 2543 } 2544 2545 /* 2546 * Print disk capacity 2547 */ 2548 static void 2549 sd_print_capacity(struct scsi_disk *sdkp, 2550 sector_t old_capacity) 2551 { 2552 int sector_size = sdkp->device->sector_size; 2553 char cap_str_2[10], cap_str_10[10]; 2554 2555 string_get_size(sdkp->capacity, sector_size, 2556 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2557 string_get_size(sdkp->capacity, sector_size, 2558 STRING_UNITS_10, cap_str_10, 2559 sizeof(cap_str_10)); 2560 2561 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2562 sd_printk(KERN_NOTICE, sdkp, 2563 "%llu %d-byte logical blocks: (%s/%s)\n", 2564 (unsigned long long)sdkp->capacity, 2565 sector_size, cap_str_10, cap_str_2); 2566 2567 if (sdkp->physical_block_size != sector_size) 2568 sd_printk(KERN_NOTICE, sdkp, 2569 "%u-byte physical blocks\n", 2570 sdkp->physical_block_size); 2571 2572 sd_zbc_print_zones(sdkp); 2573 } 2574 } 2575 2576 /* called with buffer of length 512 */ 2577 static inline int 2578 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2579 unsigned char *buffer, int len, struct scsi_mode_data *data, 2580 struct scsi_sense_hdr *sshdr) 2581 { 2582 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2583 SD_TIMEOUT, SD_MAX_RETRIES, data, 2584 sshdr); 2585 } 2586 2587 /* 2588 * read write protect setting, if possible - called only in sd_revalidate_disk() 2589 * called with buffer of length SD_BUF_SIZE 2590 */ 2591 static void 2592 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2593 { 2594 int res; 2595 struct scsi_device *sdp = sdkp->device; 2596 struct scsi_mode_data data; 2597 int disk_ro = get_disk_ro(sdkp->disk); 2598 int old_wp = sdkp->write_prot; 2599 2600 set_disk_ro(sdkp->disk, 0); 2601 if (sdp->skip_ms_page_3f) { 2602 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2603 return; 2604 } 2605 2606 if (sdp->use_192_bytes_for_3f) { 2607 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2608 } else { 2609 /* 2610 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2611 * We have to start carefully: some devices hang if we ask 2612 * for more than is available. 2613 */ 2614 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2615 2616 /* 2617 * Second attempt: ask for page 0 When only page 0 is 2618 * implemented, a request for page 3F may return Sense Key 2619 * 5: Illegal Request, Sense Code 24: Invalid field in 2620 * CDB. 2621 */ 2622 if (!scsi_status_is_good(res)) 2623 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2624 2625 /* 2626 * Third attempt: ask 255 bytes, as we did earlier. 2627 */ 2628 if (!scsi_status_is_good(res)) 2629 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2630 &data, NULL); 2631 } 2632 2633 if (!scsi_status_is_good(res)) { 2634 sd_first_printk(KERN_WARNING, sdkp, 2635 "Test WP failed, assume Write Enabled\n"); 2636 } else { 2637 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2638 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2639 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2640 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2641 sdkp->write_prot ? "on" : "off"); 2642 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2643 } 2644 } 2645 } 2646 2647 /* 2648 * sd_read_cache_type - called only from sd_revalidate_disk() 2649 * called with buffer of length SD_BUF_SIZE 2650 */ 2651 static void 2652 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2653 { 2654 int len = 0, res; 2655 struct scsi_device *sdp = sdkp->device; 2656 2657 int dbd; 2658 int modepage; 2659 int first_len; 2660 struct scsi_mode_data data; 2661 struct scsi_sense_hdr sshdr; 2662 int old_wce = sdkp->WCE; 2663 int old_rcd = sdkp->RCD; 2664 int old_dpofua = sdkp->DPOFUA; 2665 2666 2667 if (sdkp->cache_override) 2668 return; 2669 2670 first_len = 4; 2671 if (sdp->skip_ms_page_8) { 2672 if (sdp->type == TYPE_RBC) 2673 goto defaults; 2674 else { 2675 if (sdp->skip_ms_page_3f) 2676 goto defaults; 2677 modepage = 0x3F; 2678 if (sdp->use_192_bytes_for_3f) 2679 first_len = 192; 2680 dbd = 0; 2681 } 2682 } else if (sdp->type == TYPE_RBC) { 2683 modepage = 6; 2684 dbd = 8; 2685 } else { 2686 modepage = 8; 2687 dbd = 0; 2688 } 2689 2690 /* cautiously ask */ 2691 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2692 &data, &sshdr); 2693 2694 if (!scsi_status_is_good(res)) 2695 goto bad_sense; 2696 2697 if (!data.header_length) { 2698 modepage = 6; 2699 first_len = 0; 2700 sd_first_printk(KERN_ERR, sdkp, 2701 "Missing header in MODE_SENSE response\n"); 2702 } 2703 2704 /* that went OK, now ask for the proper length */ 2705 len = data.length; 2706 2707 /* 2708 * We're only interested in the first three bytes, actually. 2709 * But the data cache page is defined for the first 20. 2710 */ 2711 if (len < 3) 2712 goto bad_sense; 2713 else if (len > SD_BUF_SIZE) { 2714 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2715 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2716 len = SD_BUF_SIZE; 2717 } 2718 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2719 len = 192; 2720 2721 /* Get the data */ 2722 if (len > first_len) 2723 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2724 &data, &sshdr); 2725 2726 if (scsi_status_is_good(res)) { 2727 int offset = data.header_length + data.block_descriptor_length; 2728 2729 while (offset < len) { 2730 u8 page_code = buffer[offset] & 0x3F; 2731 u8 spf = buffer[offset] & 0x40; 2732 2733 if (page_code == 8 || page_code == 6) { 2734 /* We're interested only in the first 3 bytes. 2735 */ 2736 if (len - offset <= 2) { 2737 sd_first_printk(KERN_ERR, sdkp, 2738 "Incomplete mode parameter " 2739 "data\n"); 2740 goto defaults; 2741 } else { 2742 modepage = page_code; 2743 goto Page_found; 2744 } 2745 } else { 2746 /* Go to the next page */ 2747 if (spf && len - offset > 3) 2748 offset += 4 + (buffer[offset+2] << 8) + 2749 buffer[offset+3]; 2750 else if (!spf && len - offset > 1) 2751 offset += 2 + buffer[offset+1]; 2752 else { 2753 sd_first_printk(KERN_ERR, sdkp, 2754 "Incomplete mode " 2755 "parameter data\n"); 2756 goto defaults; 2757 } 2758 } 2759 } 2760 2761 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2762 goto defaults; 2763 2764 Page_found: 2765 if (modepage == 8) { 2766 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2767 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2768 } else { 2769 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2770 sdkp->RCD = 0; 2771 } 2772 2773 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2774 if (sdp->broken_fua) { 2775 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2776 sdkp->DPOFUA = 0; 2777 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2778 !sdkp->device->use_16_for_rw) { 2779 sd_first_printk(KERN_NOTICE, sdkp, 2780 "Uses READ/WRITE(6), disabling FUA\n"); 2781 sdkp->DPOFUA = 0; 2782 } 2783 2784 /* No cache flush allowed for write protected devices */ 2785 if (sdkp->WCE && sdkp->write_prot) 2786 sdkp->WCE = 0; 2787 2788 if (sdkp->first_scan || old_wce != sdkp->WCE || 2789 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2790 sd_printk(KERN_NOTICE, sdkp, 2791 "Write cache: %s, read cache: %s, %s\n", 2792 sdkp->WCE ? "enabled" : "disabled", 2793 sdkp->RCD ? "disabled" : "enabled", 2794 sdkp->DPOFUA ? "supports DPO and FUA" 2795 : "doesn't support DPO or FUA"); 2796 2797 return; 2798 } 2799 2800 bad_sense: 2801 if (scsi_sense_valid(&sshdr) && 2802 sshdr.sense_key == ILLEGAL_REQUEST && 2803 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2804 /* Invalid field in CDB */ 2805 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2806 else 2807 sd_first_printk(KERN_ERR, sdkp, 2808 "Asking for cache data failed\n"); 2809 2810 defaults: 2811 if (sdp->wce_default_on) { 2812 sd_first_printk(KERN_NOTICE, sdkp, 2813 "Assuming drive cache: write back\n"); 2814 sdkp->WCE = 1; 2815 } else { 2816 sd_first_printk(KERN_ERR, sdkp, 2817 "Assuming drive cache: write through\n"); 2818 sdkp->WCE = 0; 2819 } 2820 sdkp->RCD = 0; 2821 sdkp->DPOFUA = 0; 2822 } 2823 2824 /* 2825 * The ATO bit indicates whether the DIF application tag is available 2826 * for use by the operating system. 2827 */ 2828 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2829 { 2830 int res, offset; 2831 struct scsi_device *sdp = sdkp->device; 2832 struct scsi_mode_data data; 2833 struct scsi_sense_hdr sshdr; 2834 2835 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2836 return; 2837 2838 if (sdkp->protection_type == 0) 2839 return; 2840 2841 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2842 SD_MAX_RETRIES, &data, &sshdr); 2843 2844 if (!scsi_status_is_good(res) || !data.header_length || 2845 data.length < 6) { 2846 sd_first_printk(KERN_WARNING, sdkp, 2847 "getting Control mode page failed, assume no ATO\n"); 2848 2849 if (scsi_sense_valid(&sshdr)) 2850 sd_print_sense_hdr(sdkp, &sshdr); 2851 2852 return; 2853 } 2854 2855 offset = data.header_length + data.block_descriptor_length; 2856 2857 if ((buffer[offset] & 0x3f) != 0x0a) { 2858 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2859 return; 2860 } 2861 2862 if ((buffer[offset + 5] & 0x80) == 0) 2863 return; 2864 2865 sdkp->ATO = 1; 2866 2867 return; 2868 } 2869 2870 /** 2871 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2872 * @sdkp: disk to query 2873 */ 2874 static void sd_read_block_limits(struct scsi_disk *sdkp) 2875 { 2876 unsigned int sector_sz = sdkp->device->sector_size; 2877 const int vpd_len = 64; 2878 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2879 2880 if (!buffer || 2881 /* Block Limits VPD */ 2882 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2883 goto out; 2884 2885 blk_queue_io_min(sdkp->disk->queue, 2886 get_unaligned_be16(&buffer[6]) * sector_sz); 2887 2888 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2889 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2890 2891 if (buffer[3] == 0x3c) { 2892 unsigned int lba_count, desc_count; 2893 2894 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2895 2896 if (!sdkp->lbpme) 2897 goto out; 2898 2899 lba_count = get_unaligned_be32(&buffer[20]); 2900 desc_count = get_unaligned_be32(&buffer[24]); 2901 2902 if (lba_count && desc_count) 2903 sdkp->max_unmap_blocks = lba_count; 2904 2905 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2906 2907 if (buffer[32] & 0x80) 2908 sdkp->unmap_alignment = 2909 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2910 2911 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2912 2913 if (sdkp->max_unmap_blocks) 2914 sd_config_discard(sdkp, SD_LBP_UNMAP); 2915 else 2916 sd_config_discard(sdkp, SD_LBP_WS16); 2917 2918 } else { /* LBP VPD page tells us what to use */ 2919 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2920 sd_config_discard(sdkp, SD_LBP_UNMAP); 2921 else if (sdkp->lbpws) 2922 sd_config_discard(sdkp, SD_LBP_WS16); 2923 else if (sdkp->lbpws10) 2924 sd_config_discard(sdkp, SD_LBP_WS10); 2925 else 2926 sd_config_discard(sdkp, SD_LBP_DISABLE); 2927 } 2928 } 2929 2930 out: 2931 kfree(buffer); 2932 } 2933 2934 /** 2935 * sd_read_block_characteristics - Query block dev. characteristics 2936 * @sdkp: disk to query 2937 */ 2938 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2939 { 2940 struct request_queue *q = sdkp->disk->queue; 2941 unsigned char *buffer; 2942 u16 rot; 2943 const int vpd_len = 64; 2944 2945 buffer = kmalloc(vpd_len, GFP_KERNEL); 2946 2947 if (!buffer || 2948 /* Block Device Characteristics VPD */ 2949 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2950 goto out; 2951 2952 rot = get_unaligned_be16(&buffer[4]); 2953 2954 if (rot == 1) { 2955 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2956 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2957 } else { 2958 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2959 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 2960 } 2961 2962 if (sdkp->device->type == TYPE_ZBC) { 2963 /* Host-managed */ 2964 q->limits.zoned = BLK_ZONED_HM; 2965 } else { 2966 sdkp->zoned = (buffer[8] >> 4) & 3; 2967 if (sdkp->zoned == 1) 2968 /* Host-aware */ 2969 q->limits.zoned = BLK_ZONED_HA; 2970 else 2971 /* 2972 * Treat drive-managed devices as 2973 * regular block devices. 2974 */ 2975 q->limits.zoned = BLK_ZONED_NONE; 2976 } 2977 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2978 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2979 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2980 2981 out: 2982 kfree(buffer); 2983 } 2984 2985 /** 2986 * sd_read_block_provisioning - Query provisioning VPD page 2987 * @sdkp: disk to query 2988 */ 2989 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2990 { 2991 unsigned char *buffer; 2992 const int vpd_len = 8; 2993 2994 if (sdkp->lbpme == 0) 2995 return; 2996 2997 buffer = kmalloc(vpd_len, GFP_KERNEL); 2998 2999 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3000 goto out; 3001 3002 sdkp->lbpvpd = 1; 3003 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3004 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3005 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3006 3007 out: 3008 kfree(buffer); 3009 } 3010 3011 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3012 { 3013 struct scsi_device *sdev = sdkp->device; 3014 3015 if (sdev->host->no_write_same) { 3016 sdev->no_write_same = 1; 3017 3018 return; 3019 } 3020 3021 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3022 /* too large values might cause issues with arcmsr */ 3023 int vpd_buf_len = 64; 3024 3025 sdev->no_report_opcodes = 1; 3026 3027 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3028 * CODES is unsupported and the device has an ATA 3029 * Information VPD page (SAT). 3030 */ 3031 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3032 sdev->no_write_same = 1; 3033 } 3034 3035 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3036 sdkp->ws16 = 1; 3037 3038 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3039 sdkp->ws10 = 1; 3040 } 3041 3042 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3043 { 3044 struct scsi_device *sdev = sdkp->device; 3045 3046 if (!sdev->security_supported) 3047 return; 3048 3049 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3050 SECURITY_PROTOCOL_IN) == 1 && 3051 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3052 SECURITY_PROTOCOL_OUT) == 1) 3053 sdkp->security = 1; 3054 } 3055 3056 /** 3057 * sd_revalidate_disk - called the first time a new disk is seen, 3058 * performs disk spin up, read_capacity, etc. 3059 * @disk: struct gendisk we care about 3060 **/ 3061 static int sd_revalidate_disk(struct gendisk *disk) 3062 { 3063 struct scsi_disk *sdkp = scsi_disk(disk); 3064 struct scsi_device *sdp = sdkp->device; 3065 struct request_queue *q = sdkp->disk->queue; 3066 sector_t old_capacity = sdkp->capacity; 3067 unsigned char *buffer; 3068 unsigned int dev_max, rw_max; 3069 3070 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3071 "sd_revalidate_disk\n")); 3072 3073 /* 3074 * If the device is offline, don't try and read capacity or any 3075 * of the other niceties. 3076 */ 3077 if (!scsi_device_online(sdp)) 3078 goto out; 3079 3080 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3081 if (!buffer) { 3082 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3083 "allocation failure.\n"); 3084 goto out; 3085 } 3086 3087 sd_spinup_disk(sdkp); 3088 3089 /* 3090 * Without media there is no reason to ask; moreover, some devices 3091 * react badly if we do. 3092 */ 3093 if (sdkp->media_present) { 3094 sd_read_capacity(sdkp, buffer); 3095 3096 if (scsi_device_supports_vpd(sdp)) { 3097 sd_read_block_provisioning(sdkp); 3098 sd_read_block_limits(sdkp); 3099 sd_read_block_characteristics(sdkp); 3100 sd_zbc_read_zones(sdkp, buffer); 3101 } 3102 3103 sd_print_capacity(sdkp, old_capacity); 3104 3105 sd_read_write_protect_flag(sdkp, buffer); 3106 sd_read_cache_type(sdkp, buffer); 3107 sd_read_app_tag_own(sdkp, buffer); 3108 sd_read_write_same(sdkp, buffer); 3109 sd_read_security(sdkp, buffer); 3110 } 3111 3112 /* 3113 * We now have all cache related info, determine how we deal 3114 * with flush requests. 3115 */ 3116 sd_set_flush_flag(sdkp); 3117 3118 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3119 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3120 3121 /* Some devices report a maximum block count for READ/WRITE requests. */ 3122 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3123 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3124 3125 /* 3126 * Determine the device's preferred I/O size for reads and writes 3127 * unless the reported value is unreasonably small, large, or 3128 * garbage. 3129 */ 3130 if (sdkp->opt_xfer_blocks && 3131 sdkp->opt_xfer_blocks <= dev_max && 3132 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3133 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3134 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3135 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3136 } else 3137 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3138 (sector_t)BLK_DEF_MAX_SECTORS); 3139 3140 /* Do not exceed controller limit */ 3141 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3142 3143 /* 3144 * Only update max_sectors if previously unset or if the current value 3145 * exceeds the capabilities of the hardware. 3146 */ 3147 if (sdkp->first_scan || 3148 q->limits.max_sectors > q->limits.max_dev_sectors || 3149 q->limits.max_sectors > q->limits.max_hw_sectors) 3150 q->limits.max_sectors = rw_max; 3151 3152 sdkp->first_scan = 0; 3153 3154 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3155 sd_config_write_same(sdkp); 3156 kfree(buffer); 3157 3158 out: 3159 return 0; 3160 } 3161 3162 /** 3163 * sd_unlock_native_capacity - unlock native capacity 3164 * @disk: struct gendisk to set capacity for 3165 * 3166 * Block layer calls this function if it detects that partitions 3167 * on @disk reach beyond the end of the device. If the SCSI host 3168 * implements ->unlock_native_capacity() method, it's invoked to 3169 * give it a chance to adjust the device capacity. 3170 * 3171 * CONTEXT: 3172 * Defined by block layer. Might sleep. 3173 */ 3174 static void sd_unlock_native_capacity(struct gendisk *disk) 3175 { 3176 struct scsi_device *sdev = scsi_disk(disk)->device; 3177 3178 if (sdev->host->hostt->unlock_native_capacity) 3179 sdev->host->hostt->unlock_native_capacity(sdev); 3180 } 3181 3182 /** 3183 * sd_format_disk_name - format disk name 3184 * @prefix: name prefix - ie. "sd" for SCSI disks 3185 * @index: index of the disk to format name for 3186 * @buf: output buffer 3187 * @buflen: length of the output buffer 3188 * 3189 * SCSI disk names starts at sda. The 26th device is sdz and the 3190 * 27th is sdaa. The last one for two lettered suffix is sdzz 3191 * which is followed by sdaaa. 3192 * 3193 * This is basically 26 base counting with one extra 'nil' entry 3194 * at the beginning from the second digit on and can be 3195 * determined using similar method as 26 base conversion with the 3196 * index shifted -1 after each digit is computed. 3197 * 3198 * CONTEXT: 3199 * Don't care. 3200 * 3201 * RETURNS: 3202 * 0 on success, -errno on failure. 3203 */ 3204 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3205 { 3206 const int base = 'z' - 'a' + 1; 3207 char *begin = buf + strlen(prefix); 3208 char *end = buf + buflen; 3209 char *p; 3210 int unit; 3211 3212 p = end - 1; 3213 *p = '\0'; 3214 unit = base; 3215 do { 3216 if (p == begin) 3217 return -EINVAL; 3218 *--p = 'a' + (index % unit); 3219 index = (index / unit) - 1; 3220 } while (index >= 0); 3221 3222 memmove(begin, p, end - p); 3223 memcpy(buf, prefix, strlen(prefix)); 3224 3225 return 0; 3226 } 3227 3228 /* 3229 * The asynchronous part of sd_probe 3230 */ 3231 static void sd_probe_async(void *data, async_cookie_t cookie) 3232 { 3233 struct scsi_disk *sdkp = data; 3234 struct scsi_device *sdp; 3235 struct gendisk *gd; 3236 u32 index; 3237 struct device *dev; 3238 3239 sdp = sdkp->device; 3240 gd = sdkp->disk; 3241 index = sdkp->index; 3242 dev = &sdp->sdev_gendev; 3243 3244 gd->major = sd_major((index & 0xf0) >> 4); 3245 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3246 3247 gd->fops = &sd_fops; 3248 gd->private_data = &sdkp->driver; 3249 gd->queue = sdkp->device->request_queue; 3250 3251 /* defaults, until the device tells us otherwise */ 3252 sdp->sector_size = 512; 3253 sdkp->capacity = 0; 3254 sdkp->media_present = 1; 3255 sdkp->write_prot = 0; 3256 sdkp->cache_override = 0; 3257 sdkp->WCE = 0; 3258 sdkp->RCD = 0; 3259 sdkp->ATO = 0; 3260 sdkp->first_scan = 1; 3261 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3262 3263 sd_revalidate_disk(gd); 3264 3265 gd->flags = GENHD_FL_EXT_DEVT; 3266 if (sdp->removable) { 3267 gd->flags |= GENHD_FL_REMOVABLE; 3268 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3269 } 3270 3271 blk_pm_runtime_init(sdp->request_queue, dev); 3272 device_add_disk(dev, gd, NULL); 3273 if (sdkp->capacity) 3274 sd_dif_config_host(sdkp); 3275 3276 sd_revalidate_disk(gd); 3277 3278 if (sdkp->security) { 3279 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3280 if (sdkp->opal_dev) 3281 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3282 } 3283 3284 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3285 sdp->removable ? "removable " : ""); 3286 scsi_autopm_put_device(sdp); 3287 put_device(&sdkp->dev); 3288 } 3289 3290 /** 3291 * sd_probe - called during driver initialization and whenever a 3292 * new scsi device is attached to the system. It is called once 3293 * for each scsi device (not just disks) present. 3294 * @dev: pointer to device object 3295 * 3296 * Returns 0 if successful (or not interested in this scsi device 3297 * (e.g. scanner)); 1 when there is an error. 3298 * 3299 * Note: this function is invoked from the scsi mid-level. 3300 * This function sets up the mapping between a given 3301 * <host,channel,id,lun> (found in sdp) and new device name 3302 * (e.g. /dev/sda). More precisely it is the block device major 3303 * and minor number that is chosen here. 3304 * 3305 * Assume sd_probe is not re-entrant (for time being) 3306 * Also think about sd_probe() and sd_remove() running coincidentally. 3307 **/ 3308 static int sd_probe(struct device *dev) 3309 { 3310 struct scsi_device *sdp = to_scsi_device(dev); 3311 struct scsi_disk *sdkp; 3312 struct gendisk *gd; 3313 int index; 3314 int error; 3315 3316 scsi_autopm_get_device(sdp); 3317 error = -ENODEV; 3318 if (sdp->type != TYPE_DISK && 3319 sdp->type != TYPE_ZBC && 3320 sdp->type != TYPE_MOD && 3321 sdp->type != TYPE_RBC) 3322 goto out; 3323 3324 #ifndef CONFIG_BLK_DEV_ZONED 3325 if (sdp->type == TYPE_ZBC) 3326 goto out; 3327 #endif 3328 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3329 "sd_probe\n")); 3330 3331 error = -ENOMEM; 3332 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3333 if (!sdkp) 3334 goto out; 3335 3336 gd = alloc_disk(SD_MINORS); 3337 if (!gd) 3338 goto out_free; 3339 3340 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3341 if (index < 0) { 3342 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3343 goto out_put; 3344 } 3345 3346 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3347 if (error) { 3348 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3349 goto out_free_index; 3350 } 3351 3352 sdkp->device = sdp; 3353 sdkp->driver = &sd_template; 3354 sdkp->disk = gd; 3355 sdkp->index = index; 3356 atomic_set(&sdkp->openers, 0); 3357 atomic_set(&sdkp->device->ioerr_cnt, 0); 3358 3359 if (!sdp->request_queue->rq_timeout) { 3360 if (sdp->type != TYPE_MOD) 3361 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3362 else 3363 blk_queue_rq_timeout(sdp->request_queue, 3364 SD_MOD_TIMEOUT); 3365 } 3366 3367 device_initialize(&sdkp->dev); 3368 sdkp->dev.parent = dev; 3369 sdkp->dev.class = &sd_disk_class; 3370 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3371 3372 error = device_add(&sdkp->dev); 3373 if (error) 3374 goto out_free_index; 3375 3376 get_device(dev); 3377 dev_set_drvdata(dev, sdkp); 3378 3379 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3380 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3381 3382 return 0; 3383 3384 out_free_index: 3385 ida_free(&sd_index_ida, index); 3386 out_put: 3387 put_disk(gd); 3388 out_free: 3389 kfree(sdkp); 3390 out: 3391 scsi_autopm_put_device(sdp); 3392 return error; 3393 } 3394 3395 /** 3396 * sd_remove - called whenever a scsi disk (previously recognized by 3397 * sd_probe) is detached from the system. It is called (potentially 3398 * multiple times) during sd module unload. 3399 * @dev: pointer to device object 3400 * 3401 * Note: this function is invoked from the scsi mid-level. 3402 * This function potentially frees up a device name (e.g. /dev/sdc) 3403 * that could be re-used by a subsequent sd_probe(). 3404 * This function is not called when the built-in sd driver is "exit-ed". 3405 **/ 3406 static int sd_remove(struct device *dev) 3407 { 3408 struct scsi_disk *sdkp; 3409 dev_t devt; 3410 3411 sdkp = dev_get_drvdata(dev); 3412 devt = disk_devt(sdkp->disk); 3413 scsi_autopm_get_device(sdkp->device); 3414 3415 async_synchronize_full_domain(&scsi_sd_pm_domain); 3416 async_synchronize_full_domain(&scsi_sd_probe_domain); 3417 device_del(&sdkp->dev); 3418 del_gendisk(sdkp->disk); 3419 sd_shutdown(dev); 3420 3421 free_opal_dev(sdkp->opal_dev); 3422 3423 blk_register_region(devt, SD_MINORS, NULL, 3424 sd_default_probe, NULL, NULL); 3425 3426 mutex_lock(&sd_ref_mutex); 3427 dev_set_drvdata(dev, NULL); 3428 put_device(&sdkp->dev); 3429 mutex_unlock(&sd_ref_mutex); 3430 3431 return 0; 3432 } 3433 3434 /** 3435 * scsi_disk_release - Called to free the scsi_disk structure 3436 * @dev: pointer to embedded class device 3437 * 3438 * sd_ref_mutex must be held entering this routine. Because it is 3439 * called on last put, you should always use the scsi_disk_get() 3440 * scsi_disk_put() helpers which manipulate the semaphore directly 3441 * and never do a direct put_device. 3442 **/ 3443 static void scsi_disk_release(struct device *dev) 3444 { 3445 struct scsi_disk *sdkp = to_scsi_disk(dev); 3446 struct gendisk *disk = sdkp->disk; 3447 3448 ida_free(&sd_index_ida, sdkp->index); 3449 3450 disk->private_data = NULL; 3451 put_disk(disk); 3452 put_device(&sdkp->device->sdev_gendev); 3453 3454 kfree(sdkp); 3455 } 3456 3457 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3458 { 3459 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3460 struct scsi_sense_hdr sshdr; 3461 struct scsi_device *sdp = sdkp->device; 3462 int res; 3463 3464 if (start) 3465 cmd[4] |= 1; /* START */ 3466 3467 if (sdp->start_stop_pwr_cond) 3468 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3469 3470 if (!scsi_device_online(sdp)) 3471 return -ENODEV; 3472 3473 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3474 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3475 if (res) { 3476 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3477 if (driver_byte(res) == DRIVER_SENSE) 3478 sd_print_sense_hdr(sdkp, &sshdr); 3479 if (scsi_sense_valid(&sshdr) && 3480 /* 0x3a is medium not present */ 3481 sshdr.asc == 0x3a) 3482 res = 0; 3483 } 3484 3485 /* SCSI error codes must not go to the generic layer */ 3486 if (res) 3487 return -EIO; 3488 3489 return 0; 3490 } 3491 3492 /* 3493 * Send a SYNCHRONIZE CACHE instruction down to the device through 3494 * the normal SCSI command structure. Wait for the command to 3495 * complete. 3496 */ 3497 static void sd_shutdown(struct device *dev) 3498 { 3499 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3500 3501 if (!sdkp) 3502 return; /* this can happen */ 3503 3504 if (pm_runtime_suspended(dev)) 3505 return; 3506 3507 if (sdkp->WCE && sdkp->media_present) { 3508 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3509 sd_sync_cache(sdkp, NULL); 3510 } 3511 3512 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3513 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3514 sd_start_stop_device(sdkp, 0); 3515 } 3516 } 3517 3518 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3519 { 3520 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3521 struct scsi_sense_hdr sshdr; 3522 int ret = 0; 3523 3524 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3525 return 0; 3526 3527 if (sdkp->WCE && sdkp->media_present) { 3528 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3529 ret = sd_sync_cache(sdkp, &sshdr); 3530 3531 if (ret) { 3532 /* ignore OFFLINE device */ 3533 if (ret == -ENODEV) 3534 return 0; 3535 3536 if (!scsi_sense_valid(&sshdr) || 3537 sshdr.sense_key != ILLEGAL_REQUEST) 3538 return ret; 3539 3540 /* 3541 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3542 * doesn't support sync. There's not much to do and 3543 * suspend shouldn't fail. 3544 */ 3545 ret = 0; 3546 } 3547 } 3548 3549 if (sdkp->device->manage_start_stop) { 3550 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3551 /* an error is not worth aborting a system sleep */ 3552 ret = sd_start_stop_device(sdkp, 0); 3553 if (ignore_stop_errors) 3554 ret = 0; 3555 } 3556 3557 return ret; 3558 } 3559 3560 static int sd_suspend_system(struct device *dev) 3561 { 3562 return sd_suspend_common(dev, true); 3563 } 3564 3565 static int sd_suspend_runtime(struct device *dev) 3566 { 3567 return sd_suspend_common(dev, false); 3568 } 3569 3570 static int sd_resume(struct device *dev) 3571 { 3572 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3573 int ret; 3574 3575 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3576 return 0; 3577 3578 if (!sdkp->device->manage_start_stop) 3579 return 0; 3580 3581 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3582 ret = sd_start_stop_device(sdkp, 1); 3583 if (!ret) 3584 opal_unlock_from_suspend(sdkp->opal_dev); 3585 return ret; 3586 } 3587 3588 /** 3589 * init_sd - entry point for this driver (both when built in or when 3590 * a module). 3591 * 3592 * Note: this function registers this driver with the scsi mid-level. 3593 **/ 3594 static int __init init_sd(void) 3595 { 3596 int majors = 0, i, err; 3597 3598 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3599 3600 for (i = 0; i < SD_MAJORS; i++) { 3601 if (register_blkdev(sd_major(i), "sd") != 0) 3602 continue; 3603 majors++; 3604 blk_register_region(sd_major(i), SD_MINORS, NULL, 3605 sd_default_probe, NULL, NULL); 3606 } 3607 3608 if (!majors) 3609 return -ENODEV; 3610 3611 err = class_register(&sd_disk_class); 3612 if (err) 3613 goto err_out; 3614 3615 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3616 0, 0, NULL); 3617 if (!sd_cdb_cache) { 3618 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3619 err = -ENOMEM; 3620 goto err_out_class; 3621 } 3622 3623 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3624 if (!sd_cdb_pool) { 3625 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3626 err = -ENOMEM; 3627 goto err_out_cache; 3628 } 3629 3630 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3631 if (!sd_page_pool) { 3632 printk(KERN_ERR "sd: can't init discard page pool\n"); 3633 err = -ENOMEM; 3634 goto err_out_ppool; 3635 } 3636 3637 err = scsi_register_driver(&sd_template.gendrv); 3638 if (err) 3639 goto err_out_driver; 3640 3641 return 0; 3642 3643 err_out_driver: 3644 mempool_destroy(sd_page_pool); 3645 3646 err_out_ppool: 3647 mempool_destroy(sd_cdb_pool); 3648 3649 err_out_cache: 3650 kmem_cache_destroy(sd_cdb_cache); 3651 3652 err_out_class: 3653 class_unregister(&sd_disk_class); 3654 err_out: 3655 for (i = 0; i < SD_MAJORS; i++) 3656 unregister_blkdev(sd_major(i), "sd"); 3657 return err; 3658 } 3659 3660 /** 3661 * exit_sd - exit point for this driver (when it is a module). 3662 * 3663 * Note: this function unregisters this driver from the scsi mid-level. 3664 **/ 3665 static void __exit exit_sd(void) 3666 { 3667 int i; 3668 3669 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3670 3671 scsi_unregister_driver(&sd_template.gendrv); 3672 mempool_destroy(sd_cdb_pool); 3673 mempool_destroy(sd_page_pool); 3674 kmem_cache_destroy(sd_cdb_cache); 3675 3676 class_unregister(&sd_disk_class); 3677 3678 for (i = 0; i < SD_MAJORS; i++) { 3679 blk_unregister_region(sd_major(i), SD_MINORS); 3680 unregister_blkdev(sd_major(i), "sd"); 3681 } 3682 } 3683 3684 module_init(init_sd); 3685 module_exit(exit_sd); 3686 3687 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3688 struct scsi_sense_hdr *sshdr) 3689 { 3690 scsi_print_sense_hdr(sdkp->device, 3691 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3692 } 3693 3694 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3695 int result) 3696 { 3697 const char *hb_string = scsi_hostbyte_string(result); 3698 const char *db_string = scsi_driverbyte_string(result); 3699 3700 if (hb_string || db_string) 3701 sd_printk(KERN_INFO, sdkp, 3702 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3703 hb_string ? hb_string : "invalid", 3704 db_string ? db_string : "invalid"); 3705 else 3706 sd_printk(KERN_INFO, sdkp, 3707 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3708 msg, host_byte(result), driver_byte(result)); 3709 } 3710 3711