1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .dev_release = scsi_disk_release, 591 .dev_groups = sd_disk_groups, 592 }; 593 594 static const struct dev_pm_ops sd_pm_ops = { 595 .suspend = sd_suspend_system, 596 .resume = sd_resume_system, 597 .poweroff = sd_suspend_system, 598 .restore = sd_resume_system, 599 .runtime_suspend = sd_suspend_runtime, 600 .runtime_resume = sd_resume_runtime, 601 }; 602 603 static struct scsi_driver sd_template = { 604 .gendrv = { 605 .name = "sd", 606 .owner = THIS_MODULE, 607 .probe = sd_probe, 608 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 609 .remove = sd_remove, 610 .shutdown = sd_shutdown, 611 .pm = &sd_pm_ops, 612 }, 613 .rescan = sd_rescan, 614 .init_command = sd_init_command, 615 .uninit_command = sd_uninit_command, 616 .done = sd_done, 617 .eh_action = sd_eh_action, 618 .eh_reset = sd_eh_reset, 619 }; 620 621 /* 622 * Don't request a new module, as that could deadlock in multipath 623 * environment. 624 */ 625 static void sd_default_probe(dev_t devt) 626 { 627 } 628 629 /* 630 * Device no to disk mapping: 631 * 632 * major disc2 disc p1 633 * |............|.............|....|....| <- dev_t 634 * 31 20 19 8 7 4 3 0 635 * 636 * Inside a major, we have 16k disks, however mapped non- 637 * contiguously. The first 16 disks are for major0, the next 638 * ones with major1, ... Disk 256 is for major0 again, disk 272 639 * for major1, ... 640 * As we stay compatible with our numbering scheme, we can reuse 641 * the well-know SCSI majors 8, 65--71, 136--143. 642 */ 643 static int sd_major(int major_idx) 644 { 645 switch (major_idx) { 646 case 0: 647 return SCSI_DISK0_MAJOR; 648 case 1 ... 7: 649 return SCSI_DISK1_MAJOR + major_idx - 1; 650 case 8 ... 15: 651 return SCSI_DISK8_MAJOR + major_idx - 8; 652 default: 653 BUG(); 654 return 0; /* shut up gcc */ 655 } 656 } 657 658 #ifdef CONFIG_BLK_SED_OPAL 659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 660 size_t len, bool send) 661 { 662 struct scsi_disk *sdkp = data; 663 struct scsi_device *sdev = sdkp->device; 664 u8 cdb[12] = { 0, }; 665 const struct scsi_exec_args exec_args = { 666 .req_flags = BLK_MQ_REQ_PM, 667 }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 676 buffer, len, SD_TIMEOUT, sdkp->max_retries, 677 &exec_args); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 } 834 835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 836 { 837 struct page *page; 838 839 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 840 if (!page) 841 return NULL; 842 clear_highpage(page); 843 bvec_set_page(&rq->special_vec, page, data_len, 0); 844 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 845 return bvec_virt(&rq->special_vec); 846 } 847 848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 849 { 850 struct scsi_device *sdp = cmd->device; 851 struct request *rq = scsi_cmd_to_rq(cmd); 852 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 853 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 854 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 855 unsigned int data_len = 24; 856 char *buf; 857 858 buf = sd_set_special_bvec(rq, data_len); 859 if (!buf) 860 return BLK_STS_RESOURCE; 861 862 cmd->cmd_len = 10; 863 cmd->cmnd[0] = UNMAP; 864 cmd->cmnd[8] = 24; 865 866 put_unaligned_be16(6 + 16, &buf[0]); 867 put_unaligned_be16(16, &buf[2]); 868 put_unaligned_be64(lba, &buf[8]); 869 put_unaligned_be32(nr_blocks, &buf[16]); 870 871 cmd->allowed = sdkp->max_retries; 872 cmd->transfersize = data_len; 873 rq->timeout = SD_TIMEOUT; 874 875 return scsi_alloc_sgtables(cmd); 876 } 877 878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 879 bool unmap) 880 { 881 struct scsi_device *sdp = cmd->device; 882 struct request *rq = scsi_cmd_to_rq(cmd); 883 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 884 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 885 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 886 u32 data_len = sdp->sector_size; 887 888 if (!sd_set_special_bvec(rq, data_len)) 889 return BLK_STS_RESOURCE; 890 891 cmd->cmd_len = 16; 892 cmd->cmnd[0] = WRITE_SAME_16; 893 if (unmap) 894 cmd->cmnd[1] = 0x8; /* UNMAP */ 895 put_unaligned_be64(lba, &cmd->cmnd[2]); 896 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 if (!sd_set_special_bvec(rq, data_len)) 916 return BLK_STS_RESOURCE; 917 918 cmd->cmd_len = 10; 919 cmd->cmnd[0] = WRITE_SAME; 920 if (unmap) 921 cmd->cmnd[1] = 0x8; /* UNMAP */ 922 put_unaligned_be32(lba, &cmd->cmnd[2]); 923 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 924 925 cmd->allowed = sdkp->max_retries; 926 cmd->transfersize = data_len; 927 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 928 929 return scsi_alloc_sgtables(cmd); 930 } 931 932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 933 { 934 struct request *rq = scsi_cmd_to_rq(cmd); 935 struct scsi_device *sdp = cmd->device; 936 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 937 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 938 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 939 940 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 941 switch (sdkp->zeroing_mode) { 942 case SD_ZERO_WS16_UNMAP: 943 return sd_setup_write_same16_cmnd(cmd, true); 944 case SD_ZERO_WS10_UNMAP: 945 return sd_setup_write_same10_cmnd(cmd, true); 946 } 947 } 948 949 if (sdp->no_write_same) { 950 rq->rq_flags |= RQF_QUIET; 951 return BLK_STS_TARGET; 952 } 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() even if the caller of this 1002 * functions took care to align the large request. So make sure 1003 * the maximum reported is aligned to the device physical block 1004 * size. This is only an optional optimization for regular 1005 * disks, but this is mandatory to avoid failure of large write 1006 * same requests directed at sequential write required zones of 1007 * host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 } 1019 1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = scsi_cmd_to_rq(cmd); 1023 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1024 1025 /* flush requests don't perform I/O, zero the S/G table */ 1026 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1027 1028 if (cmd->device->use_16_for_sync) { 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1030 cmd->cmd_len = 16; 1031 } else { 1032 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1033 cmd->cmd_len = 10; 1034 } 1035 cmd->transfersize = 0; 1036 cmd->allowed = sdkp->max_retries; 1037 1038 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1039 return BLK_STS_OK; 1040 } 1041 1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1043 sector_t lba, unsigned int nr_blocks, 1044 unsigned char flags, unsigned int dld) 1045 { 1046 cmd->cmd_len = SD_EXT_CDB_SIZE; 1047 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1048 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1049 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1050 cmd->cmnd[10] = flags; 1051 cmd->cmnd[11] = dld & 0x07; 1052 put_unaligned_be64(lba, &cmd->cmnd[12]); 1053 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1054 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1055 1056 return BLK_STS_OK; 1057 } 1058 1059 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1060 sector_t lba, unsigned int nr_blocks, 1061 unsigned char flags, unsigned int dld) 1062 { 1063 cmd->cmd_len = 16; 1064 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1065 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1066 cmd->cmnd[14] = (dld & 0x03) << 6; 1067 cmd->cmnd[15] = 0; 1068 put_unaligned_be64(lba, &cmd->cmnd[2]); 1069 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1070 1071 return BLK_STS_OK; 1072 } 1073 1074 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1075 sector_t lba, unsigned int nr_blocks, 1076 unsigned char flags) 1077 { 1078 cmd->cmd_len = 10; 1079 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1080 cmd->cmnd[1] = flags; 1081 cmd->cmnd[6] = 0; 1082 cmd->cmnd[9] = 0; 1083 put_unaligned_be32(lba, &cmd->cmnd[2]); 1084 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1085 1086 return BLK_STS_OK; 1087 } 1088 1089 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1090 sector_t lba, unsigned int nr_blocks, 1091 unsigned char flags) 1092 { 1093 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1094 if (WARN_ON_ONCE(nr_blocks == 0)) 1095 return BLK_STS_IOERR; 1096 1097 if (unlikely(flags & 0x8)) { 1098 /* 1099 * This happens only if this drive failed 10byte rw 1100 * command with ILLEGAL_REQUEST during operation and 1101 * thus turned off use_10_for_rw. 1102 */ 1103 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1104 return BLK_STS_IOERR; 1105 } 1106 1107 cmd->cmd_len = 6; 1108 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1109 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1110 cmd->cmnd[2] = (lba >> 8) & 0xff; 1111 cmd->cmnd[3] = lba & 0xff; 1112 cmd->cmnd[4] = nr_blocks; 1113 cmd->cmnd[5] = 0; 1114 1115 return BLK_STS_OK; 1116 } 1117 1118 /* 1119 * Check if a command has a duration limit set. If it does, and the target 1120 * device supports CDL and the feature is enabled, return the limit 1121 * descriptor index to use. Return 0 (no limit) otherwise. 1122 */ 1123 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1124 { 1125 struct scsi_device *sdp = sdkp->device; 1126 int hint; 1127 1128 if (!sdp->cdl_supported || !sdp->cdl_enable) 1129 return 0; 1130 1131 /* 1132 * Use "no limit" if the request ioprio does not specify a duration 1133 * limit hint. 1134 */ 1135 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1136 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1137 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1138 return 0; 1139 1140 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1141 } 1142 1143 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1144 { 1145 struct request *rq = scsi_cmd_to_rq(cmd); 1146 struct scsi_device *sdp = cmd->device; 1147 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1148 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1149 sector_t threshold; 1150 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1151 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1152 bool write = rq_data_dir(rq) == WRITE; 1153 unsigned char protect, fua; 1154 unsigned int dld; 1155 blk_status_t ret; 1156 unsigned int dif; 1157 bool dix; 1158 1159 ret = scsi_alloc_sgtables(cmd); 1160 if (ret != BLK_STS_OK) 1161 return ret; 1162 1163 ret = BLK_STS_IOERR; 1164 if (!scsi_device_online(sdp) || sdp->changed) { 1165 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1166 goto fail; 1167 } 1168 1169 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1170 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1171 goto fail; 1172 } 1173 1174 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1175 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1176 goto fail; 1177 } 1178 1179 /* 1180 * Some SD card readers can't handle accesses which touch the 1181 * last one or two logical blocks. Split accesses as needed. 1182 */ 1183 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1184 1185 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1186 if (lba < threshold) { 1187 /* Access up to the threshold but not beyond */ 1188 nr_blocks = threshold - lba; 1189 } else { 1190 /* Access only a single logical block */ 1191 nr_blocks = 1; 1192 } 1193 } 1194 1195 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1196 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1197 if (ret) 1198 goto fail; 1199 } 1200 1201 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1202 dix = scsi_prot_sg_count(cmd); 1203 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1204 dld = sd_cdl_dld(sdkp, cmd); 1205 1206 if (dif || dix) 1207 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1208 else 1209 protect = 0; 1210 1211 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1212 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1213 protect | fua, dld); 1214 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1215 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1216 protect | fua, dld); 1217 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1218 sdp->use_10_for_rw || protect) { 1219 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1220 protect | fua); 1221 } else { 1222 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1223 protect | fua); 1224 } 1225 1226 if (unlikely(ret != BLK_STS_OK)) 1227 goto fail; 1228 1229 /* 1230 * We shouldn't disconnect in the middle of a sector, so with a dumb 1231 * host adapter, it's safe to assume that we can at least transfer 1232 * this many bytes between each connect / disconnect. 1233 */ 1234 cmd->transfersize = sdp->sector_size; 1235 cmd->underflow = nr_blocks << 9; 1236 cmd->allowed = sdkp->max_retries; 1237 cmd->sdb.length = nr_blocks * sdp->sector_size; 1238 1239 SCSI_LOG_HLQUEUE(1, 1240 scmd_printk(KERN_INFO, cmd, 1241 "%s: block=%llu, count=%d\n", __func__, 1242 (unsigned long long)blk_rq_pos(rq), 1243 blk_rq_sectors(rq))); 1244 SCSI_LOG_HLQUEUE(2, 1245 scmd_printk(KERN_INFO, cmd, 1246 "%s %d/%u 512 byte blocks.\n", 1247 write ? "writing" : "reading", nr_blocks, 1248 blk_rq_sectors(rq))); 1249 1250 /* 1251 * This indicates that the command is ready from our end to be queued. 1252 */ 1253 return BLK_STS_OK; 1254 fail: 1255 scsi_free_sgtables(cmd); 1256 return ret; 1257 } 1258 1259 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1260 { 1261 struct request *rq = scsi_cmd_to_rq(cmd); 1262 1263 switch (req_op(rq)) { 1264 case REQ_OP_DISCARD: 1265 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1266 case SD_LBP_UNMAP: 1267 return sd_setup_unmap_cmnd(cmd); 1268 case SD_LBP_WS16: 1269 return sd_setup_write_same16_cmnd(cmd, true); 1270 case SD_LBP_WS10: 1271 return sd_setup_write_same10_cmnd(cmd, true); 1272 case SD_LBP_ZERO: 1273 return sd_setup_write_same10_cmnd(cmd, false); 1274 default: 1275 return BLK_STS_TARGET; 1276 } 1277 case REQ_OP_WRITE_ZEROES: 1278 return sd_setup_write_zeroes_cmnd(cmd); 1279 case REQ_OP_FLUSH: 1280 return sd_setup_flush_cmnd(cmd); 1281 case REQ_OP_READ: 1282 case REQ_OP_WRITE: 1283 case REQ_OP_ZONE_APPEND: 1284 return sd_setup_read_write_cmnd(cmd); 1285 case REQ_OP_ZONE_RESET: 1286 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1287 false); 1288 case REQ_OP_ZONE_RESET_ALL: 1289 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1290 true); 1291 case REQ_OP_ZONE_OPEN: 1292 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1293 case REQ_OP_ZONE_CLOSE: 1294 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1295 case REQ_OP_ZONE_FINISH: 1296 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1297 default: 1298 WARN_ON_ONCE(1); 1299 return BLK_STS_NOTSUPP; 1300 } 1301 } 1302 1303 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1304 { 1305 struct request *rq = scsi_cmd_to_rq(SCpnt); 1306 1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1308 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1309 } 1310 1311 static bool sd_need_revalidate(struct block_device *bdev, 1312 struct scsi_disk *sdkp) 1313 { 1314 if (sdkp->device->removable || sdkp->write_prot) { 1315 if (bdev_check_media_change(bdev)) 1316 return true; 1317 } 1318 1319 /* 1320 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1321 * nothing to do with partitions, BLKRRPART is used to force a full 1322 * revalidate after things like a format for historical reasons. 1323 */ 1324 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1325 } 1326 1327 /** 1328 * sd_open - open a scsi disk device 1329 * @bdev: Block device of the scsi disk to open 1330 * @mode: FMODE_* mask 1331 * 1332 * Returns 0 if successful. Returns a negated errno value in case 1333 * of error. 1334 * 1335 * Note: This can be called from a user context (e.g. fsck(1) ) 1336 * or from within the kernel (e.g. as a result of a mount(1) ). 1337 * In the latter case @inode and @filp carry an abridged amount 1338 * of information as noted above. 1339 * 1340 * Locking: called with bdev->bd_disk->open_mutex held. 1341 **/ 1342 static int sd_open(struct block_device *bdev, fmode_t mode) 1343 { 1344 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1345 struct scsi_device *sdev = sdkp->device; 1346 int retval; 1347 1348 if (scsi_device_get(sdev)) 1349 return -ENXIO; 1350 1351 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1352 1353 /* 1354 * If the device is in error recovery, wait until it is done. 1355 * If the device is offline, then disallow any access to it. 1356 */ 1357 retval = -ENXIO; 1358 if (!scsi_block_when_processing_errors(sdev)) 1359 goto error_out; 1360 1361 if (sd_need_revalidate(bdev, sdkp)) 1362 sd_revalidate_disk(bdev->bd_disk); 1363 1364 /* 1365 * If the drive is empty, just let the open fail. 1366 */ 1367 retval = -ENOMEDIUM; 1368 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1369 goto error_out; 1370 1371 /* 1372 * If the device has the write protect tab set, have the open fail 1373 * if the user expects to be able to write to the thing. 1374 */ 1375 retval = -EROFS; 1376 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1377 goto error_out; 1378 1379 /* 1380 * It is possible that the disk changing stuff resulted in 1381 * the device being taken offline. If this is the case, 1382 * report this to the user, and don't pretend that the 1383 * open actually succeeded. 1384 */ 1385 retval = -ENXIO; 1386 if (!scsi_device_online(sdev)) 1387 goto error_out; 1388 1389 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1390 if (scsi_block_when_processing_errors(sdev)) 1391 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1392 } 1393 1394 return 0; 1395 1396 error_out: 1397 scsi_device_put(sdev); 1398 return retval; 1399 } 1400 1401 /** 1402 * sd_release - invoked when the (last) close(2) is called on this 1403 * scsi disk. 1404 * @disk: disk to release 1405 * @mode: FMODE_* mask 1406 * 1407 * Returns 0. 1408 * 1409 * Note: may block (uninterruptible) if error recovery is underway 1410 * on this disk. 1411 * 1412 * Locking: called with bdev->bd_disk->open_mutex held. 1413 **/ 1414 static void sd_release(struct gendisk *disk, fmode_t mode) 1415 { 1416 struct scsi_disk *sdkp = scsi_disk(disk); 1417 struct scsi_device *sdev = sdkp->device; 1418 1419 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1420 1421 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1422 if (scsi_block_when_processing_errors(sdev)) 1423 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1424 } 1425 1426 scsi_device_put(sdev); 1427 } 1428 1429 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1430 { 1431 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1432 struct scsi_device *sdp = sdkp->device; 1433 struct Scsi_Host *host = sdp->host; 1434 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1435 int diskinfo[4]; 1436 1437 /* default to most commonly used values */ 1438 diskinfo[0] = 0x40; /* 1 << 6 */ 1439 diskinfo[1] = 0x20; /* 1 << 5 */ 1440 diskinfo[2] = capacity >> 11; 1441 1442 /* override with calculated, extended default, or driver values */ 1443 if (host->hostt->bios_param) 1444 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1445 else 1446 scsicam_bios_param(bdev, capacity, diskinfo); 1447 1448 geo->heads = diskinfo[0]; 1449 geo->sectors = diskinfo[1]; 1450 geo->cylinders = diskinfo[2]; 1451 return 0; 1452 } 1453 1454 /** 1455 * sd_ioctl - process an ioctl 1456 * @bdev: target block device 1457 * @mode: FMODE_* mask 1458 * @cmd: ioctl command number 1459 * @arg: this is third argument given to ioctl(2) system call. 1460 * Often contains a pointer. 1461 * 1462 * Returns 0 if successful (some ioctls return positive numbers on 1463 * success as well). Returns a negated errno value in case of error. 1464 * 1465 * Note: most ioctls are forward onto the block subsystem or further 1466 * down in the scsi subsystem. 1467 **/ 1468 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1469 unsigned int cmd, unsigned long arg) 1470 { 1471 struct gendisk *disk = bdev->bd_disk; 1472 struct scsi_disk *sdkp = scsi_disk(disk); 1473 struct scsi_device *sdp = sdkp->device; 1474 void __user *p = (void __user *)arg; 1475 int error; 1476 1477 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1478 "cmd=0x%x\n", disk->disk_name, cmd)); 1479 1480 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1481 return -ENOIOCTLCMD; 1482 1483 /* 1484 * If we are in the middle of error recovery, don't let anyone 1485 * else try and use this device. Also, if error recovery fails, it 1486 * may try and take the device offline, in which case all further 1487 * access to the device is prohibited. 1488 */ 1489 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1490 (mode & FMODE_NDELAY) != 0); 1491 if (error) 1492 return error; 1493 1494 if (is_sed_ioctl(cmd)) 1495 return sed_ioctl(sdkp->opal_dev, cmd, p); 1496 return scsi_ioctl(sdp, mode, cmd, p); 1497 } 1498 1499 static void set_media_not_present(struct scsi_disk *sdkp) 1500 { 1501 if (sdkp->media_present) 1502 sdkp->device->changed = 1; 1503 1504 if (sdkp->device->removable) { 1505 sdkp->media_present = 0; 1506 sdkp->capacity = 0; 1507 } 1508 } 1509 1510 static int media_not_present(struct scsi_disk *sdkp, 1511 struct scsi_sense_hdr *sshdr) 1512 { 1513 if (!scsi_sense_valid(sshdr)) 1514 return 0; 1515 1516 /* not invoked for commands that could return deferred errors */ 1517 switch (sshdr->sense_key) { 1518 case UNIT_ATTENTION: 1519 case NOT_READY: 1520 /* medium not present */ 1521 if (sshdr->asc == 0x3A) { 1522 set_media_not_present(sdkp); 1523 return 1; 1524 } 1525 } 1526 return 0; 1527 } 1528 1529 /** 1530 * sd_check_events - check media events 1531 * @disk: kernel device descriptor 1532 * @clearing: disk events currently being cleared 1533 * 1534 * Returns mask of DISK_EVENT_*. 1535 * 1536 * Note: this function is invoked from the block subsystem. 1537 **/ 1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1539 { 1540 struct scsi_disk *sdkp = disk->private_data; 1541 struct scsi_device *sdp; 1542 int retval; 1543 bool disk_changed; 1544 1545 if (!sdkp) 1546 return 0; 1547 1548 sdp = sdkp->device; 1549 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1550 1551 /* 1552 * If the device is offline, don't send any commands - just pretend as 1553 * if the command failed. If the device ever comes back online, we 1554 * can deal with it then. It is only because of unrecoverable errors 1555 * that we would ever take a device offline in the first place. 1556 */ 1557 if (!scsi_device_online(sdp)) { 1558 set_media_not_present(sdkp); 1559 goto out; 1560 } 1561 1562 /* 1563 * Using TEST_UNIT_READY enables differentiation between drive with 1564 * no cartridge loaded - NOT READY, drive with changed cartridge - 1565 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1566 * 1567 * Drives that auto spin down. eg iomega jaz 1G, will be started 1568 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1569 * sd_revalidate() is called. 1570 */ 1571 if (scsi_block_when_processing_errors(sdp)) { 1572 struct scsi_sense_hdr sshdr = { 0, }; 1573 1574 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1575 &sshdr); 1576 1577 /* failed to execute TUR, assume media not present */ 1578 if (retval < 0 || host_byte(retval)) { 1579 set_media_not_present(sdkp); 1580 goto out; 1581 } 1582 1583 if (media_not_present(sdkp, &sshdr)) 1584 goto out; 1585 } 1586 1587 /* 1588 * For removable scsi disk we have to recognise the presence 1589 * of a disk in the drive. 1590 */ 1591 if (!sdkp->media_present) 1592 sdp->changed = 1; 1593 sdkp->media_present = 1; 1594 out: 1595 /* 1596 * sdp->changed is set under the following conditions: 1597 * 1598 * Medium present state has changed in either direction. 1599 * Device has indicated UNIT_ATTENTION. 1600 */ 1601 disk_changed = sdp->changed; 1602 sdp->changed = 0; 1603 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1604 } 1605 1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1607 { 1608 int retries, res; 1609 struct scsi_device *sdp = sdkp->device; 1610 const int timeout = sdp->request_queue->rq_timeout 1611 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1612 struct scsi_sense_hdr my_sshdr; 1613 const struct scsi_exec_args exec_args = { 1614 .req_flags = BLK_MQ_REQ_PM, 1615 /* caller might not be interested in sense, but we need it */ 1616 .sshdr = sshdr ? : &my_sshdr, 1617 }; 1618 1619 if (!scsi_device_online(sdp)) 1620 return -ENODEV; 1621 1622 sshdr = exec_args.sshdr; 1623 1624 for (retries = 3; retries > 0; --retries) { 1625 unsigned char cmd[16] = { 0 }; 1626 1627 if (sdp->use_16_for_sync) 1628 cmd[0] = SYNCHRONIZE_CACHE_16; 1629 else 1630 cmd[0] = SYNCHRONIZE_CACHE; 1631 /* 1632 * Leave the rest of the command zero to indicate 1633 * flush everything. 1634 */ 1635 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1636 timeout, sdkp->max_retries, &exec_args); 1637 if (res == 0) 1638 break; 1639 } 1640 1641 if (res) { 1642 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1643 1644 if (res < 0) 1645 return res; 1646 1647 if (scsi_status_is_check_condition(res) && 1648 scsi_sense_valid(sshdr)) { 1649 sd_print_sense_hdr(sdkp, sshdr); 1650 1651 /* we need to evaluate the error return */ 1652 if (sshdr->asc == 0x3a || /* medium not present */ 1653 sshdr->asc == 0x20 || /* invalid command */ 1654 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1655 /* this is no error here */ 1656 return 0; 1657 } 1658 1659 switch (host_byte(res)) { 1660 /* ignore errors due to racing a disconnection */ 1661 case DID_BAD_TARGET: 1662 case DID_NO_CONNECT: 1663 return 0; 1664 /* signal the upper layer it might try again */ 1665 case DID_BUS_BUSY: 1666 case DID_IMM_RETRY: 1667 case DID_REQUEUE: 1668 case DID_SOFT_ERROR: 1669 return -EBUSY; 1670 default: 1671 return -EIO; 1672 } 1673 } 1674 return 0; 1675 } 1676 1677 static void sd_rescan(struct device *dev) 1678 { 1679 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1680 1681 sd_revalidate_disk(sdkp->disk); 1682 } 1683 1684 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1685 enum blk_unique_id type) 1686 { 1687 struct scsi_device *sdev = scsi_disk(disk)->device; 1688 const struct scsi_vpd *vpd; 1689 const unsigned char *d; 1690 int ret = -ENXIO, len; 1691 1692 rcu_read_lock(); 1693 vpd = rcu_dereference(sdev->vpd_pg83); 1694 if (!vpd) 1695 goto out_unlock; 1696 1697 ret = -EINVAL; 1698 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1699 /* we only care about designators with LU association */ 1700 if (((d[1] >> 4) & 0x3) != 0x00) 1701 continue; 1702 if ((d[1] & 0xf) != type) 1703 continue; 1704 1705 /* 1706 * Only exit early if a 16-byte descriptor was found. Otherwise 1707 * keep looking as one with more entropy might still show up. 1708 */ 1709 len = d[3]; 1710 if (len != 8 && len != 12 && len != 16) 1711 continue; 1712 ret = len; 1713 memcpy(id, d + 4, len); 1714 if (len == 16) 1715 break; 1716 } 1717 out_unlock: 1718 rcu_read_unlock(); 1719 return ret; 1720 } 1721 1722 static char sd_pr_type(enum pr_type type) 1723 { 1724 switch (type) { 1725 case PR_WRITE_EXCLUSIVE: 1726 return 0x01; 1727 case PR_EXCLUSIVE_ACCESS: 1728 return 0x03; 1729 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1730 return 0x05; 1731 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1732 return 0x06; 1733 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1734 return 0x07; 1735 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1736 return 0x08; 1737 default: 1738 return 0; 1739 } 1740 }; 1741 1742 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1743 { 1744 switch (host_byte(result)) { 1745 case DID_TRANSPORT_MARGINAL: 1746 case DID_TRANSPORT_DISRUPTED: 1747 case DID_BUS_BUSY: 1748 return PR_STS_RETRY_PATH_FAILURE; 1749 case DID_NO_CONNECT: 1750 return PR_STS_PATH_FAILED; 1751 case DID_TRANSPORT_FAILFAST: 1752 return PR_STS_PATH_FAST_FAILED; 1753 } 1754 1755 switch (status_byte(result)) { 1756 case SAM_STAT_RESERVATION_CONFLICT: 1757 return PR_STS_RESERVATION_CONFLICT; 1758 case SAM_STAT_CHECK_CONDITION: 1759 if (!scsi_sense_valid(sshdr)) 1760 return PR_STS_IOERR; 1761 1762 if (sshdr->sense_key == ILLEGAL_REQUEST && 1763 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1764 return -EINVAL; 1765 1766 fallthrough; 1767 default: 1768 return PR_STS_IOERR; 1769 } 1770 } 1771 1772 static int sd_pr_command(struct block_device *bdev, u8 sa, 1773 u64 key, u64 sa_key, u8 type, u8 flags) 1774 { 1775 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1776 struct scsi_device *sdev = sdkp->device; 1777 struct scsi_sense_hdr sshdr; 1778 const struct scsi_exec_args exec_args = { 1779 .sshdr = &sshdr, 1780 }; 1781 int result; 1782 u8 cmd[16] = { 0, }; 1783 u8 data[24] = { 0, }; 1784 1785 cmd[0] = PERSISTENT_RESERVE_OUT; 1786 cmd[1] = sa; 1787 cmd[2] = type; 1788 put_unaligned_be32(sizeof(data), &cmd[5]); 1789 1790 put_unaligned_be64(key, &data[0]); 1791 put_unaligned_be64(sa_key, &data[8]); 1792 data[20] = flags; 1793 1794 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1795 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1796 &exec_args); 1797 1798 if (scsi_status_is_check_condition(result) && 1799 scsi_sense_valid(&sshdr)) { 1800 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1801 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1802 } 1803 1804 if (result <= 0) 1805 return result; 1806 1807 return sd_scsi_to_pr_err(&sshdr, result); 1808 } 1809 1810 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1811 u32 flags) 1812 { 1813 if (flags & ~PR_FL_IGNORE_KEY) 1814 return -EOPNOTSUPP; 1815 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1816 old_key, new_key, 0, 1817 (1 << 0) /* APTPL */); 1818 } 1819 1820 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1821 u32 flags) 1822 { 1823 if (flags) 1824 return -EOPNOTSUPP; 1825 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1826 } 1827 1828 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1829 { 1830 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1831 } 1832 1833 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1834 enum pr_type type, bool abort) 1835 { 1836 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1837 sd_pr_type(type), 0); 1838 } 1839 1840 static int sd_pr_clear(struct block_device *bdev, u64 key) 1841 { 1842 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1843 } 1844 1845 static const struct pr_ops sd_pr_ops = { 1846 .pr_register = sd_pr_register, 1847 .pr_reserve = sd_pr_reserve, 1848 .pr_release = sd_pr_release, 1849 .pr_preempt = sd_pr_preempt, 1850 .pr_clear = sd_pr_clear, 1851 }; 1852 1853 static void scsi_disk_free_disk(struct gendisk *disk) 1854 { 1855 struct scsi_disk *sdkp = scsi_disk(disk); 1856 1857 put_device(&sdkp->disk_dev); 1858 } 1859 1860 static const struct block_device_operations sd_fops = { 1861 .owner = THIS_MODULE, 1862 .open = sd_open, 1863 .release = sd_release, 1864 .ioctl = sd_ioctl, 1865 .getgeo = sd_getgeo, 1866 .compat_ioctl = blkdev_compat_ptr_ioctl, 1867 .check_events = sd_check_events, 1868 .unlock_native_capacity = sd_unlock_native_capacity, 1869 .report_zones = sd_zbc_report_zones, 1870 .get_unique_id = sd_get_unique_id, 1871 .free_disk = scsi_disk_free_disk, 1872 .pr_ops = &sd_pr_ops, 1873 }; 1874 1875 /** 1876 * sd_eh_reset - reset error handling callback 1877 * @scmd: sd-issued command that has failed 1878 * 1879 * This function is called by the SCSI midlayer before starting 1880 * SCSI EH. When counting medium access failures we have to be 1881 * careful to register it only only once per device and SCSI EH run; 1882 * there might be several timed out commands which will cause the 1883 * 'max_medium_access_timeouts' counter to trigger after the first 1884 * SCSI EH run already and set the device to offline. 1885 * So this function resets the internal counter before starting SCSI EH. 1886 **/ 1887 static void sd_eh_reset(struct scsi_cmnd *scmd) 1888 { 1889 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1890 1891 /* New SCSI EH run, reset gate variable */ 1892 sdkp->ignore_medium_access_errors = false; 1893 } 1894 1895 /** 1896 * sd_eh_action - error handling callback 1897 * @scmd: sd-issued command that has failed 1898 * @eh_disp: The recovery disposition suggested by the midlayer 1899 * 1900 * This function is called by the SCSI midlayer upon completion of an 1901 * error test command (currently TEST UNIT READY). The result of sending 1902 * the eh command is passed in eh_disp. We're looking for devices that 1903 * fail medium access commands but are OK with non access commands like 1904 * test unit ready (so wrongly see the device as having a successful 1905 * recovery) 1906 **/ 1907 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1908 { 1909 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1910 struct scsi_device *sdev = scmd->device; 1911 1912 if (!scsi_device_online(sdev) || 1913 !scsi_medium_access_command(scmd) || 1914 host_byte(scmd->result) != DID_TIME_OUT || 1915 eh_disp != SUCCESS) 1916 return eh_disp; 1917 1918 /* 1919 * The device has timed out executing a medium access command. 1920 * However, the TEST UNIT READY command sent during error 1921 * handling completed successfully. Either the device is in the 1922 * process of recovering or has it suffered an internal failure 1923 * that prevents access to the storage medium. 1924 */ 1925 if (!sdkp->ignore_medium_access_errors) { 1926 sdkp->medium_access_timed_out++; 1927 sdkp->ignore_medium_access_errors = true; 1928 } 1929 1930 /* 1931 * If the device keeps failing read/write commands but TEST UNIT 1932 * READY always completes successfully we assume that medium 1933 * access is no longer possible and take the device offline. 1934 */ 1935 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1936 scmd_printk(KERN_ERR, scmd, 1937 "Medium access timeout failure. Offlining disk!\n"); 1938 mutex_lock(&sdev->state_mutex); 1939 scsi_device_set_state(sdev, SDEV_OFFLINE); 1940 mutex_unlock(&sdev->state_mutex); 1941 1942 return SUCCESS; 1943 } 1944 1945 return eh_disp; 1946 } 1947 1948 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1949 { 1950 struct request *req = scsi_cmd_to_rq(scmd); 1951 struct scsi_device *sdev = scmd->device; 1952 unsigned int transferred, good_bytes; 1953 u64 start_lba, end_lba, bad_lba; 1954 1955 /* 1956 * Some commands have a payload smaller than the device logical 1957 * block size (e.g. INQUIRY on a 4K disk). 1958 */ 1959 if (scsi_bufflen(scmd) <= sdev->sector_size) 1960 return 0; 1961 1962 /* Check if we have a 'bad_lba' information */ 1963 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1964 SCSI_SENSE_BUFFERSIZE, 1965 &bad_lba)) 1966 return 0; 1967 1968 /* 1969 * If the bad lba was reported incorrectly, we have no idea where 1970 * the error is. 1971 */ 1972 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1973 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1974 if (bad_lba < start_lba || bad_lba >= end_lba) 1975 return 0; 1976 1977 /* 1978 * resid is optional but mostly filled in. When it's unused, 1979 * its value is zero, so we assume the whole buffer transferred 1980 */ 1981 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1982 1983 /* This computation should always be done in terms of the 1984 * resolution of the device's medium. 1985 */ 1986 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1987 1988 return min(good_bytes, transferred); 1989 } 1990 1991 /** 1992 * sd_done - bottom half handler: called when the lower level 1993 * driver has completed (successfully or otherwise) a scsi command. 1994 * @SCpnt: mid-level's per command structure. 1995 * 1996 * Note: potentially run from within an ISR. Must not block. 1997 **/ 1998 static int sd_done(struct scsi_cmnd *SCpnt) 1999 { 2000 int result = SCpnt->result; 2001 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2002 unsigned int sector_size = SCpnt->device->sector_size; 2003 unsigned int resid; 2004 struct scsi_sense_hdr sshdr; 2005 struct request *req = scsi_cmd_to_rq(SCpnt); 2006 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2007 int sense_valid = 0; 2008 int sense_deferred = 0; 2009 2010 switch (req_op(req)) { 2011 case REQ_OP_DISCARD: 2012 case REQ_OP_WRITE_ZEROES: 2013 case REQ_OP_ZONE_RESET: 2014 case REQ_OP_ZONE_RESET_ALL: 2015 case REQ_OP_ZONE_OPEN: 2016 case REQ_OP_ZONE_CLOSE: 2017 case REQ_OP_ZONE_FINISH: 2018 if (!result) { 2019 good_bytes = blk_rq_bytes(req); 2020 scsi_set_resid(SCpnt, 0); 2021 } else { 2022 good_bytes = 0; 2023 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2024 } 2025 break; 2026 default: 2027 /* 2028 * In case of bogus fw or device, we could end up having 2029 * an unaligned partial completion. Check this here and force 2030 * alignment. 2031 */ 2032 resid = scsi_get_resid(SCpnt); 2033 if (resid & (sector_size - 1)) { 2034 sd_printk(KERN_INFO, sdkp, 2035 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2036 resid, sector_size); 2037 scsi_print_command(SCpnt); 2038 resid = min(scsi_bufflen(SCpnt), 2039 round_up(resid, sector_size)); 2040 scsi_set_resid(SCpnt, resid); 2041 } 2042 } 2043 2044 if (result) { 2045 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2046 if (sense_valid) 2047 sense_deferred = scsi_sense_is_deferred(&sshdr); 2048 } 2049 sdkp->medium_access_timed_out = 0; 2050 2051 if (!scsi_status_is_check_condition(result) && 2052 (!sense_valid || sense_deferred)) 2053 goto out; 2054 2055 switch (sshdr.sense_key) { 2056 case HARDWARE_ERROR: 2057 case MEDIUM_ERROR: 2058 good_bytes = sd_completed_bytes(SCpnt); 2059 break; 2060 case RECOVERED_ERROR: 2061 good_bytes = scsi_bufflen(SCpnt); 2062 break; 2063 case NO_SENSE: 2064 /* This indicates a false check condition, so ignore it. An 2065 * unknown amount of data was transferred so treat it as an 2066 * error. 2067 */ 2068 SCpnt->result = 0; 2069 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2070 break; 2071 case ABORTED_COMMAND: 2072 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2073 good_bytes = sd_completed_bytes(SCpnt); 2074 break; 2075 case ILLEGAL_REQUEST: 2076 switch (sshdr.asc) { 2077 case 0x10: /* DIX: Host detected corruption */ 2078 good_bytes = sd_completed_bytes(SCpnt); 2079 break; 2080 case 0x20: /* INVALID COMMAND OPCODE */ 2081 case 0x24: /* INVALID FIELD IN CDB */ 2082 switch (SCpnt->cmnd[0]) { 2083 case UNMAP: 2084 sd_config_discard(sdkp, SD_LBP_DISABLE); 2085 break; 2086 case WRITE_SAME_16: 2087 case WRITE_SAME: 2088 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2089 sd_config_discard(sdkp, SD_LBP_DISABLE); 2090 } else { 2091 sdkp->device->no_write_same = 1; 2092 sd_config_write_same(sdkp); 2093 req->rq_flags |= RQF_QUIET; 2094 } 2095 break; 2096 } 2097 } 2098 break; 2099 default: 2100 break; 2101 } 2102 2103 out: 2104 if (sd_is_zoned(sdkp)) 2105 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2106 2107 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2108 "sd_done: completed %d of %d bytes\n", 2109 good_bytes, scsi_bufflen(SCpnt))); 2110 2111 return good_bytes; 2112 } 2113 2114 /* 2115 * spinup disk - called only in sd_revalidate_disk() 2116 */ 2117 static void 2118 sd_spinup_disk(struct scsi_disk *sdkp) 2119 { 2120 unsigned char cmd[10]; 2121 unsigned long spintime_expire = 0; 2122 int retries, spintime; 2123 unsigned int the_result; 2124 struct scsi_sense_hdr sshdr; 2125 const struct scsi_exec_args exec_args = { 2126 .sshdr = &sshdr, 2127 }; 2128 int sense_valid = 0; 2129 2130 spintime = 0; 2131 2132 /* Spin up drives, as required. Only do this at boot time */ 2133 /* Spinup needs to be done for module loads too. */ 2134 do { 2135 retries = 0; 2136 2137 do { 2138 bool media_was_present = sdkp->media_present; 2139 2140 cmd[0] = TEST_UNIT_READY; 2141 memset((void *) &cmd[1], 0, 9); 2142 2143 the_result = scsi_execute_cmd(sdkp->device, cmd, 2144 REQ_OP_DRV_IN, NULL, 0, 2145 SD_TIMEOUT, 2146 sdkp->max_retries, 2147 &exec_args); 2148 2149 /* 2150 * If the drive has indicated to us that it 2151 * doesn't have any media in it, don't bother 2152 * with any more polling. 2153 */ 2154 if (media_not_present(sdkp, &sshdr)) { 2155 if (media_was_present) 2156 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2157 return; 2158 } 2159 2160 if (the_result) 2161 sense_valid = scsi_sense_valid(&sshdr); 2162 retries++; 2163 } while (retries < 3 && 2164 (!scsi_status_is_good(the_result) || 2165 (scsi_status_is_check_condition(the_result) && 2166 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2167 2168 if (!scsi_status_is_check_condition(the_result)) { 2169 /* no sense, TUR either succeeded or failed 2170 * with a status error */ 2171 if(!spintime && !scsi_status_is_good(the_result)) { 2172 sd_print_result(sdkp, "Test Unit Ready failed", 2173 the_result); 2174 } 2175 break; 2176 } 2177 2178 /* 2179 * The device does not want the automatic start to be issued. 2180 */ 2181 if (sdkp->device->no_start_on_add) 2182 break; 2183 2184 if (sense_valid && sshdr.sense_key == NOT_READY) { 2185 if (sshdr.asc == 4 && sshdr.ascq == 3) 2186 break; /* manual intervention required */ 2187 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2188 break; /* standby */ 2189 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2190 break; /* unavailable */ 2191 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2192 break; /* sanitize in progress */ 2193 /* 2194 * Issue command to spin up drive when not ready 2195 */ 2196 if (!spintime) { 2197 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2198 cmd[0] = START_STOP; 2199 cmd[1] = 1; /* Return immediately */ 2200 memset((void *) &cmd[2], 0, 8); 2201 cmd[4] = 1; /* Start spin cycle */ 2202 if (sdkp->device->start_stop_pwr_cond) 2203 cmd[4] |= 1 << 4; 2204 scsi_execute_cmd(sdkp->device, cmd, 2205 REQ_OP_DRV_IN, NULL, 0, 2206 SD_TIMEOUT, sdkp->max_retries, 2207 &exec_args); 2208 spintime_expire = jiffies + 100 * HZ; 2209 spintime = 1; 2210 } 2211 /* Wait 1 second for next try */ 2212 msleep(1000); 2213 printk(KERN_CONT "."); 2214 2215 /* 2216 * Wait for USB flash devices with slow firmware. 2217 * Yes, this sense key/ASC combination shouldn't 2218 * occur here. It's characteristic of these devices. 2219 */ 2220 } else if (sense_valid && 2221 sshdr.sense_key == UNIT_ATTENTION && 2222 sshdr.asc == 0x28) { 2223 if (!spintime) { 2224 spintime_expire = jiffies + 5 * HZ; 2225 spintime = 1; 2226 } 2227 /* Wait 1 second for next try */ 2228 msleep(1000); 2229 } else { 2230 /* we don't understand the sense code, so it's 2231 * probably pointless to loop */ 2232 if(!spintime) { 2233 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2234 sd_print_sense_hdr(sdkp, &sshdr); 2235 } 2236 break; 2237 } 2238 2239 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2240 2241 if (spintime) { 2242 if (scsi_status_is_good(the_result)) 2243 printk(KERN_CONT "ready\n"); 2244 else 2245 printk(KERN_CONT "not responding...\n"); 2246 } 2247 } 2248 2249 /* 2250 * Determine whether disk supports Data Integrity Field. 2251 */ 2252 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2253 { 2254 struct scsi_device *sdp = sdkp->device; 2255 u8 type; 2256 2257 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2258 sdkp->protection_type = 0; 2259 return 0; 2260 } 2261 2262 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2263 2264 if (type > T10_PI_TYPE3_PROTECTION) { 2265 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2266 " protection type %u. Disabling disk!\n", 2267 type); 2268 sdkp->protection_type = 0; 2269 return -ENODEV; 2270 } 2271 2272 sdkp->protection_type = type; 2273 2274 return 0; 2275 } 2276 2277 static void sd_config_protection(struct scsi_disk *sdkp) 2278 { 2279 struct scsi_device *sdp = sdkp->device; 2280 2281 sd_dif_config_host(sdkp); 2282 2283 if (!sdkp->protection_type) 2284 return; 2285 2286 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2287 sd_first_printk(KERN_NOTICE, sdkp, 2288 "Disabling DIF Type %u protection\n", 2289 sdkp->protection_type); 2290 sdkp->protection_type = 0; 2291 } 2292 2293 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2294 sdkp->protection_type); 2295 } 2296 2297 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2298 struct scsi_sense_hdr *sshdr, int sense_valid, 2299 int the_result) 2300 { 2301 if (sense_valid) 2302 sd_print_sense_hdr(sdkp, sshdr); 2303 else 2304 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2305 2306 /* 2307 * Set dirty bit for removable devices if not ready - 2308 * sometimes drives will not report this properly. 2309 */ 2310 if (sdp->removable && 2311 sense_valid && sshdr->sense_key == NOT_READY) 2312 set_media_not_present(sdkp); 2313 2314 /* 2315 * We used to set media_present to 0 here to indicate no media 2316 * in the drive, but some drives fail read capacity even with 2317 * media present, so we can't do that. 2318 */ 2319 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2320 } 2321 2322 #define RC16_LEN 32 2323 #if RC16_LEN > SD_BUF_SIZE 2324 #error RC16_LEN must not be more than SD_BUF_SIZE 2325 #endif 2326 2327 #define READ_CAPACITY_RETRIES_ON_RESET 10 2328 2329 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2330 unsigned char *buffer) 2331 { 2332 unsigned char cmd[16]; 2333 struct scsi_sense_hdr sshdr; 2334 const struct scsi_exec_args exec_args = { 2335 .sshdr = &sshdr, 2336 }; 2337 int sense_valid = 0; 2338 int the_result; 2339 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2340 unsigned int alignment; 2341 unsigned long long lba; 2342 unsigned sector_size; 2343 2344 if (sdp->no_read_capacity_16) 2345 return -EINVAL; 2346 2347 do { 2348 memset(cmd, 0, 16); 2349 cmd[0] = SERVICE_ACTION_IN_16; 2350 cmd[1] = SAI_READ_CAPACITY_16; 2351 cmd[13] = RC16_LEN; 2352 memset(buffer, 0, RC16_LEN); 2353 2354 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2355 buffer, RC16_LEN, SD_TIMEOUT, 2356 sdkp->max_retries, &exec_args); 2357 2358 if (media_not_present(sdkp, &sshdr)) 2359 return -ENODEV; 2360 2361 if (the_result > 0) { 2362 sense_valid = scsi_sense_valid(&sshdr); 2363 if (sense_valid && 2364 sshdr.sense_key == ILLEGAL_REQUEST && 2365 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2366 sshdr.ascq == 0x00) 2367 /* Invalid Command Operation Code or 2368 * Invalid Field in CDB, just retry 2369 * silently with RC10 */ 2370 return -EINVAL; 2371 if (sense_valid && 2372 sshdr.sense_key == UNIT_ATTENTION && 2373 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2374 /* Device reset might occur several times, 2375 * give it one more chance */ 2376 if (--reset_retries > 0) 2377 continue; 2378 } 2379 retries--; 2380 2381 } while (the_result && retries); 2382 2383 if (the_result) { 2384 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2385 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2386 return -EINVAL; 2387 } 2388 2389 sector_size = get_unaligned_be32(&buffer[8]); 2390 lba = get_unaligned_be64(&buffer[0]); 2391 2392 if (sd_read_protection_type(sdkp, buffer) < 0) { 2393 sdkp->capacity = 0; 2394 return -ENODEV; 2395 } 2396 2397 /* Logical blocks per physical block exponent */ 2398 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2399 2400 /* RC basis */ 2401 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2402 2403 /* Lowest aligned logical block */ 2404 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2405 blk_queue_alignment_offset(sdp->request_queue, alignment); 2406 if (alignment && sdkp->first_scan) 2407 sd_printk(KERN_NOTICE, sdkp, 2408 "physical block alignment offset: %u\n", alignment); 2409 2410 if (buffer[14] & 0x80) { /* LBPME */ 2411 sdkp->lbpme = 1; 2412 2413 if (buffer[14] & 0x40) /* LBPRZ */ 2414 sdkp->lbprz = 1; 2415 2416 sd_config_discard(sdkp, SD_LBP_WS16); 2417 } 2418 2419 sdkp->capacity = lba + 1; 2420 return sector_size; 2421 } 2422 2423 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2424 unsigned char *buffer) 2425 { 2426 unsigned char cmd[16]; 2427 struct scsi_sense_hdr sshdr; 2428 const struct scsi_exec_args exec_args = { 2429 .sshdr = &sshdr, 2430 }; 2431 int sense_valid = 0; 2432 int the_result; 2433 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2434 sector_t lba; 2435 unsigned sector_size; 2436 2437 do { 2438 cmd[0] = READ_CAPACITY; 2439 memset(&cmd[1], 0, 9); 2440 memset(buffer, 0, 8); 2441 2442 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2443 8, SD_TIMEOUT, sdkp->max_retries, 2444 &exec_args); 2445 2446 if (media_not_present(sdkp, &sshdr)) 2447 return -ENODEV; 2448 2449 if (the_result > 0) { 2450 sense_valid = scsi_sense_valid(&sshdr); 2451 if (sense_valid && 2452 sshdr.sense_key == UNIT_ATTENTION && 2453 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2454 /* Device reset might occur several times, 2455 * give it one more chance */ 2456 if (--reset_retries > 0) 2457 continue; 2458 } 2459 retries--; 2460 2461 } while (the_result && retries); 2462 2463 if (the_result) { 2464 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2465 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2466 return -EINVAL; 2467 } 2468 2469 sector_size = get_unaligned_be32(&buffer[4]); 2470 lba = get_unaligned_be32(&buffer[0]); 2471 2472 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2473 /* Some buggy (usb cardreader) devices return an lba of 2474 0xffffffff when the want to report a size of 0 (with 2475 which they really mean no media is present) */ 2476 sdkp->capacity = 0; 2477 sdkp->physical_block_size = sector_size; 2478 return sector_size; 2479 } 2480 2481 sdkp->capacity = lba + 1; 2482 sdkp->physical_block_size = sector_size; 2483 return sector_size; 2484 } 2485 2486 static int sd_try_rc16_first(struct scsi_device *sdp) 2487 { 2488 if (sdp->host->max_cmd_len < 16) 2489 return 0; 2490 if (sdp->try_rc_10_first) 2491 return 0; 2492 if (sdp->scsi_level > SCSI_SPC_2) 2493 return 1; 2494 if (scsi_device_protection(sdp)) 2495 return 1; 2496 return 0; 2497 } 2498 2499 /* 2500 * read disk capacity 2501 */ 2502 static void 2503 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2504 { 2505 int sector_size; 2506 struct scsi_device *sdp = sdkp->device; 2507 2508 if (sd_try_rc16_first(sdp)) { 2509 sector_size = read_capacity_16(sdkp, sdp, buffer); 2510 if (sector_size == -EOVERFLOW) 2511 goto got_data; 2512 if (sector_size == -ENODEV) 2513 return; 2514 if (sector_size < 0) 2515 sector_size = read_capacity_10(sdkp, sdp, buffer); 2516 if (sector_size < 0) 2517 return; 2518 } else { 2519 sector_size = read_capacity_10(sdkp, sdp, buffer); 2520 if (sector_size == -EOVERFLOW) 2521 goto got_data; 2522 if (sector_size < 0) 2523 return; 2524 if ((sizeof(sdkp->capacity) > 4) && 2525 (sdkp->capacity > 0xffffffffULL)) { 2526 int old_sector_size = sector_size; 2527 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2528 "Trying to use READ CAPACITY(16).\n"); 2529 sector_size = read_capacity_16(sdkp, sdp, buffer); 2530 if (sector_size < 0) { 2531 sd_printk(KERN_NOTICE, sdkp, 2532 "Using 0xffffffff as device size\n"); 2533 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2534 sector_size = old_sector_size; 2535 goto got_data; 2536 } 2537 /* Remember that READ CAPACITY(16) succeeded */ 2538 sdp->try_rc_10_first = 0; 2539 } 2540 } 2541 2542 /* Some devices are known to return the total number of blocks, 2543 * not the highest block number. Some devices have versions 2544 * which do this and others which do not. Some devices we might 2545 * suspect of doing this but we don't know for certain. 2546 * 2547 * If we know the reported capacity is wrong, decrement it. If 2548 * we can only guess, then assume the number of blocks is even 2549 * (usually true but not always) and err on the side of lowering 2550 * the capacity. 2551 */ 2552 if (sdp->fix_capacity || 2553 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2554 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2555 "from its reported value: %llu\n", 2556 (unsigned long long) sdkp->capacity); 2557 --sdkp->capacity; 2558 } 2559 2560 got_data: 2561 if (sector_size == 0) { 2562 sector_size = 512; 2563 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2564 "assuming 512.\n"); 2565 } 2566 2567 if (sector_size != 512 && 2568 sector_size != 1024 && 2569 sector_size != 2048 && 2570 sector_size != 4096) { 2571 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2572 sector_size); 2573 /* 2574 * The user might want to re-format the drive with 2575 * a supported sectorsize. Once this happens, it 2576 * would be relatively trivial to set the thing up. 2577 * For this reason, we leave the thing in the table. 2578 */ 2579 sdkp->capacity = 0; 2580 /* 2581 * set a bogus sector size so the normal read/write 2582 * logic in the block layer will eventually refuse any 2583 * request on this device without tripping over power 2584 * of two sector size assumptions 2585 */ 2586 sector_size = 512; 2587 } 2588 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2589 blk_queue_physical_block_size(sdp->request_queue, 2590 sdkp->physical_block_size); 2591 sdkp->device->sector_size = sector_size; 2592 2593 if (sdkp->capacity > 0xffffffff) 2594 sdp->use_16_for_rw = 1; 2595 2596 } 2597 2598 /* 2599 * Print disk capacity 2600 */ 2601 static void 2602 sd_print_capacity(struct scsi_disk *sdkp, 2603 sector_t old_capacity) 2604 { 2605 int sector_size = sdkp->device->sector_size; 2606 char cap_str_2[10], cap_str_10[10]; 2607 2608 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2609 return; 2610 2611 string_get_size(sdkp->capacity, sector_size, 2612 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2613 string_get_size(sdkp->capacity, sector_size, 2614 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2615 2616 sd_printk(KERN_NOTICE, sdkp, 2617 "%llu %d-byte logical blocks: (%s/%s)\n", 2618 (unsigned long long)sdkp->capacity, 2619 sector_size, cap_str_10, cap_str_2); 2620 2621 if (sdkp->physical_block_size != sector_size) 2622 sd_printk(KERN_NOTICE, sdkp, 2623 "%u-byte physical blocks\n", 2624 sdkp->physical_block_size); 2625 } 2626 2627 /* called with buffer of length 512 */ 2628 static inline int 2629 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2630 unsigned char *buffer, int len, struct scsi_mode_data *data, 2631 struct scsi_sense_hdr *sshdr) 2632 { 2633 /* 2634 * If we must use MODE SENSE(10), make sure that the buffer length 2635 * is at least 8 bytes so that the mode sense header fits. 2636 */ 2637 if (sdkp->device->use_10_for_ms && len < 8) 2638 len = 8; 2639 2640 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2641 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2642 } 2643 2644 /* 2645 * read write protect setting, if possible - called only in sd_revalidate_disk() 2646 * called with buffer of length SD_BUF_SIZE 2647 */ 2648 static void 2649 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2650 { 2651 int res; 2652 struct scsi_device *sdp = sdkp->device; 2653 struct scsi_mode_data data; 2654 int old_wp = sdkp->write_prot; 2655 2656 set_disk_ro(sdkp->disk, 0); 2657 if (sdp->skip_ms_page_3f) { 2658 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2659 return; 2660 } 2661 2662 if (sdp->use_192_bytes_for_3f) { 2663 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2664 } else { 2665 /* 2666 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2667 * We have to start carefully: some devices hang if we ask 2668 * for more than is available. 2669 */ 2670 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2671 2672 /* 2673 * Second attempt: ask for page 0 When only page 0 is 2674 * implemented, a request for page 3F may return Sense Key 2675 * 5: Illegal Request, Sense Code 24: Invalid field in 2676 * CDB. 2677 */ 2678 if (res < 0) 2679 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2680 2681 /* 2682 * Third attempt: ask 255 bytes, as we did earlier. 2683 */ 2684 if (res < 0) 2685 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2686 &data, NULL); 2687 } 2688 2689 if (res < 0) { 2690 sd_first_printk(KERN_WARNING, sdkp, 2691 "Test WP failed, assume Write Enabled\n"); 2692 } else { 2693 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2694 set_disk_ro(sdkp->disk, sdkp->write_prot); 2695 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2696 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2697 sdkp->write_prot ? "on" : "off"); 2698 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2699 } 2700 } 2701 } 2702 2703 /* 2704 * sd_read_cache_type - called only from sd_revalidate_disk() 2705 * called with buffer of length SD_BUF_SIZE 2706 */ 2707 static void 2708 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2709 { 2710 int len = 0, res; 2711 struct scsi_device *sdp = sdkp->device; 2712 2713 int dbd; 2714 int modepage; 2715 int first_len; 2716 struct scsi_mode_data data; 2717 struct scsi_sense_hdr sshdr; 2718 int old_wce = sdkp->WCE; 2719 int old_rcd = sdkp->RCD; 2720 int old_dpofua = sdkp->DPOFUA; 2721 2722 2723 if (sdkp->cache_override) 2724 return; 2725 2726 first_len = 4; 2727 if (sdp->skip_ms_page_8) { 2728 if (sdp->type == TYPE_RBC) 2729 goto defaults; 2730 else { 2731 if (sdp->skip_ms_page_3f) 2732 goto defaults; 2733 modepage = 0x3F; 2734 if (sdp->use_192_bytes_for_3f) 2735 first_len = 192; 2736 dbd = 0; 2737 } 2738 } else if (sdp->type == TYPE_RBC) { 2739 modepage = 6; 2740 dbd = 8; 2741 } else { 2742 modepage = 8; 2743 dbd = 0; 2744 } 2745 2746 /* cautiously ask */ 2747 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2748 &data, &sshdr); 2749 2750 if (res < 0) 2751 goto bad_sense; 2752 2753 if (!data.header_length) { 2754 modepage = 6; 2755 first_len = 0; 2756 sd_first_printk(KERN_ERR, sdkp, 2757 "Missing header in MODE_SENSE response\n"); 2758 } 2759 2760 /* that went OK, now ask for the proper length */ 2761 len = data.length; 2762 2763 /* 2764 * We're only interested in the first three bytes, actually. 2765 * But the data cache page is defined for the first 20. 2766 */ 2767 if (len < 3) 2768 goto bad_sense; 2769 else if (len > SD_BUF_SIZE) { 2770 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2771 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2772 len = SD_BUF_SIZE; 2773 } 2774 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2775 len = 192; 2776 2777 /* Get the data */ 2778 if (len > first_len) 2779 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2780 &data, &sshdr); 2781 2782 if (!res) { 2783 int offset = data.header_length + data.block_descriptor_length; 2784 2785 while (offset < len) { 2786 u8 page_code = buffer[offset] & 0x3F; 2787 u8 spf = buffer[offset] & 0x40; 2788 2789 if (page_code == 8 || page_code == 6) { 2790 /* We're interested only in the first 3 bytes. 2791 */ 2792 if (len - offset <= 2) { 2793 sd_first_printk(KERN_ERR, sdkp, 2794 "Incomplete mode parameter " 2795 "data\n"); 2796 goto defaults; 2797 } else { 2798 modepage = page_code; 2799 goto Page_found; 2800 } 2801 } else { 2802 /* Go to the next page */ 2803 if (spf && len - offset > 3) 2804 offset += 4 + (buffer[offset+2] << 8) + 2805 buffer[offset+3]; 2806 else if (!spf && len - offset > 1) 2807 offset += 2 + buffer[offset+1]; 2808 else { 2809 sd_first_printk(KERN_ERR, sdkp, 2810 "Incomplete mode " 2811 "parameter data\n"); 2812 goto defaults; 2813 } 2814 } 2815 } 2816 2817 sd_first_printk(KERN_WARNING, sdkp, 2818 "No Caching mode page found\n"); 2819 goto defaults; 2820 2821 Page_found: 2822 if (modepage == 8) { 2823 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2824 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2825 } else { 2826 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2827 sdkp->RCD = 0; 2828 } 2829 2830 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2831 if (sdp->broken_fua) { 2832 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2833 sdkp->DPOFUA = 0; 2834 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2835 !sdkp->device->use_16_for_rw) { 2836 sd_first_printk(KERN_NOTICE, sdkp, 2837 "Uses READ/WRITE(6), disabling FUA\n"); 2838 sdkp->DPOFUA = 0; 2839 } 2840 2841 /* No cache flush allowed for write protected devices */ 2842 if (sdkp->WCE && sdkp->write_prot) 2843 sdkp->WCE = 0; 2844 2845 if (sdkp->first_scan || old_wce != sdkp->WCE || 2846 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2847 sd_printk(KERN_NOTICE, sdkp, 2848 "Write cache: %s, read cache: %s, %s\n", 2849 sdkp->WCE ? "enabled" : "disabled", 2850 sdkp->RCD ? "disabled" : "enabled", 2851 sdkp->DPOFUA ? "supports DPO and FUA" 2852 : "doesn't support DPO or FUA"); 2853 2854 return; 2855 } 2856 2857 bad_sense: 2858 if (scsi_sense_valid(&sshdr) && 2859 sshdr.sense_key == ILLEGAL_REQUEST && 2860 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2861 /* Invalid field in CDB */ 2862 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2863 else 2864 sd_first_printk(KERN_ERR, sdkp, 2865 "Asking for cache data failed\n"); 2866 2867 defaults: 2868 if (sdp->wce_default_on) { 2869 sd_first_printk(KERN_NOTICE, sdkp, 2870 "Assuming drive cache: write back\n"); 2871 sdkp->WCE = 1; 2872 } else { 2873 sd_first_printk(KERN_WARNING, sdkp, 2874 "Assuming drive cache: write through\n"); 2875 sdkp->WCE = 0; 2876 } 2877 sdkp->RCD = 0; 2878 sdkp->DPOFUA = 0; 2879 } 2880 2881 /* 2882 * The ATO bit indicates whether the DIF application tag is available 2883 * for use by the operating system. 2884 */ 2885 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2886 { 2887 int res, offset; 2888 struct scsi_device *sdp = sdkp->device; 2889 struct scsi_mode_data data; 2890 struct scsi_sense_hdr sshdr; 2891 2892 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2893 return; 2894 2895 if (sdkp->protection_type == 0) 2896 return; 2897 2898 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 2899 sdkp->max_retries, &data, &sshdr); 2900 2901 if (res < 0 || !data.header_length || 2902 data.length < 6) { 2903 sd_first_printk(KERN_WARNING, sdkp, 2904 "getting Control mode page failed, assume no ATO\n"); 2905 2906 if (scsi_sense_valid(&sshdr)) 2907 sd_print_sense_hdr(sdkp, &sshdr); 2908 2909 return; 2910 } 2911 2912 offset = data.header_length + data.block_descriptor_length; 2913 2914 if ((buffer[offset] & 0x3f) != 0x0a) { 2915 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2916 return; 2917 } 2918 2919 if ((buffer[offset + 5] & 0x80) == 0) 2920 return; 2921 2922 sdkp->ATO = 1; 2923 2924 return; 2925 } 2926 2927 /** 2928 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2929 * @sdkp: disk to query 2930 */ 2931 static void sd_read_block_limits(struct scsi_disk *sdkp) 2932 { 2933 struct scsi_vpd *vpd; 2934 2935 rcu_read_lock(); 2936 2937 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2938 if (!vpd || vpd->len < 16) 2939 goto out; 2940 2941 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2942 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2943 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2944 2945 if (vpd->len >= 64) { 2946 unsigned int lba_count, desc_count; 2947 2948 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2949 2950 if (!sdkp->lbpme) 2951 goto out; 2952 2953 lba_count = get_unaligned_be32(&vpd->data[20]); 2954 desc_count = get_unaligned_be32(&vpd->data[24]); 2955 2956 if (lba_count && desc_count) 2957 sdkp->max_unmap_blocks = lba_count; 2958 2959 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2960 2961 if (vpd->data[32] & 0x80) 2962 sdkp->unmap_alignment = 2963 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2964 2965 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2966 2967 if (sdkp->max_unmap_blocks) 2968 sd_config_discard(sdkp, SD_LBP_UNMAP); 2969 else 2970 sd_config_discard(sdkp, SD_LBP_WS16); 2971 2972 } else { /* LBP VPD page tells us what to use */ 2973 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2974 sd_config_discard(sdkp, SD_LBP_UNMAP); 2975 else if (sdkp->lbpws) 2976 sd_config_discard(sdkp, SD_LBP_WS16); 2977 else if (sdkp->lbpws10) 2978 sd_config_discard(sdkp, SD_LBP_WS10); 2979 else 2980 sd_config_discard(sdkp, SD_LBP_DISABLE); 2981 } 2982 } 2983 2984 out: 2985 rcu_read_unlock(); 2986 } 2987 2988 /** 2989 * sd_read_block_characteristics - Query block dev. characteristics 2990 * @sdkp: disk to query 2991 */ 2992 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2993 { 2994 struct request_queue *q = sdkp->disk->queue; 2995 struct scsi_vpd *vpd; 2996 u16 rot; 2997 u8 zoned; 2998 2999 rcu_read_lock(); 3000 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3001 3002 if (!vpd || vpd->len < 8) { 3003 rcu_read_unlock(); 3004 return; 3005 } 3006 3007 rot = get_unaligned_be16(&vpd->data[4]); 3008 zoned = (vpd->data[8] >> 4) & 3; 3009 rcu_read_unlock(); 3010 3011 if (rot == 1) { 3012 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3013 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3014 } 3015 3016 if (sdkp->device->type == TYPE_ZBC) { 3017 /* 3018 * Host-managed: Per ZBC and ZAC specifications, writes in 3019 * sequential write required zones of host-managed devices must 3020 * be aligned to the device physical block size. 3021 */ 3022 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 3023 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3024 } else { 3025 sdkp->zoned = zoned; 3026 if (sdkp->zoned == 1) { 3027 /* Host-aware */ 3028 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3029 } else { 3030 /* Regular disk or drive managed disk */ 3031 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3032 } 3033 } 3034 3035 if (!sdkp->first_scan) 3036 return; 3037 3038 if (blk_queue_is_zoned(q)) { 3039 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3040 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3041 } else { 3042 if (sdkp->zoned == 1) 3043 sd_printk(KERN_NOTICE, sdkp, 3044 "Host-aware SMR disk used as regular disk\n"); 3045 else if (sdkp->zoned == 2) 3046 sd_printk(KERN_NOTICE, sdkp, 3047 "Drive-managed SMR disk\n"); 3048 } 3049 } 3050 3051 /** 3052 * sd_read_block_provisioning - Query provisioning VPD page 3053 * @sdkp: disk to query 3054 */ 3055 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3056 { 3057 struct scsi_vpd *vpd; 3058 3059 if (sdkp->lbpme == 0) 3060 return; 3061 3062 rcu_read_lock(); 3063 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3064 3065 if (!vpd || vpd->len < 8) { 3066 rcu_read_unlock(); 3067 return; 3068 } 3069 3070 sdkp->lbpvpd = 1; 3071 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3072 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3073 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3074 rcu_read_unlock(); 3075 } 3076 3077 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3078 { 3079 struct scsi_device *sdev = sdkp->device; 3080 3081 if (sdev->host->no_write_same) { 3082 sdev->no_write_same = 1; 3083 3084 return; 3085 } 3086 3087 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3088 struct scsi_vpd *vpd; 3089 3090 sdev->no_report_opcodes = 1; 3091 3092 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3093 * CODES is unsupported and the device has an ATA 3094 * Information VPD page (SAT). 3095 */ 3096 rcu_read_lock(); 3097 vpd = rcu_dereference(sdev->vpd_pg89); 3098 if (vpd) 3099 sdev->no_write_same = 1; 3100 rcu_read_unlock(); 3101 } 3102 3103 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3104 sdkp->ws16 = 1; 3105 3106 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3107 sdkp->ws10 = 1; 3108 } 3109 3110 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3111 { 3112 struct scsi_device *sdev = sdkp->device; 3113 3114 if (!sdev->security_supported) 3115 return; 3116 3117 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3118 SECURITY_PROTOCOL_IN, 0) == 1 && 3119 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3120 SECURITY_PROTOCOL_OUT, 0) == 1) 3121 sdkp->security = 1; 3122 } 3123 3124 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3125 { 3126 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3127 } 3128 3129 /** 3130 * sd_read_cpr - Query concurrent positioning ranges 3131 * @sdkp: disk to query 3132 */ 3133 static void sd_read_cpr(struct scsi_disk *sdkp) 3134 { 3135 struct blk_independent_access_ranges *iars = NULL; 3136 unsigned char *buffer = NULL; 3137 unsigned int nr_cpr = 0; 3138 int i, vpd_len, buf_len = SD_BUF_SIZE; 3139 u8 *desc; 3140 3141 /* 3142 * We need to have the capacity set first for the block layer to be 3143 * able to check the ranges. 3144 */ 3145 if (sdkp->first_scan) 3146 return; 3147 3148 if (!sdkp->capacity) 3149 goto out; 3150 3151 /* 3152 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3153 * leading to a maximum page size of 64 + 256*32 bytes. 3154 */ 3155 buf_len = 64 + 256*32; 3156 buffer = kmalloc(buf_len, GFP_KERNEL); 3157 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3158 goto out; 3159 3160 /* We must have at least a 64B header and one 32B range descriptor */ 3161 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3162 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3163 sd_printk(KERN_ERR, sdkp, 3164 "Invalid Concurrent Positioning Ranges VPD page\n"); 3165 goto out; 3166 } 3167 3168 nr_cpr = (vpd_len - 64) / 32; 3169 if (nr_cpr == 1) { 3170 nr_cpr = 0; 3171 goto out; 3172 } 3173 3174 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3175 if (!iars) { 3176 nr_cpr = 0; 3177 goto out; 3178 } 3179 3180 desc = &buffer[64]; 3181 for (i = 0; i < nr_cpr; i++, desc += 32) { 3182 if (desc[0] != i) { 3183 sd_printk(KERN_ERR, sdkp, 3184 "Invalid Concurrent Positioning Range number\n"); 3185 nr_cpr = 0; 3186 break; 3187 } 3188 3189 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3190 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3191 } 3192 3193 out: 3194 disk_set_independent_access_ranges(sdkp->disk, iars); 3195 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3196 sd_printk(KERN_NOTICE, sdkp, 3197 "%u concurrent positioning ranges\n", nr_cpr); 3198 sdkp->nr_actuators = nr_cpr; 3199 } 3200 3201 kfree(buffer); 3202 } 3203 3204 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3205 { 3206 struct scsi_device *sdp = sdkp->device; 3207 unsigned int min_xfer_bytes = 3208 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3209 3210 if (sdkp->min_xfer_blocks == 0) 3211 return false; 3212 3213 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3214 sd_first_printk(KERN_WARNING, sdkp, 3215 "Preferred minimum I/O size %u bytes not a " \ 3216 "multiple of physical block size (%u bytes)\n", 3217 min_xfer_bytes, sdkp->physical_block_size); 3218 sdkp->min_xfer_blocks = 0; 3219 return false; 3220 } 3221 3222 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3223 min_xfer_bytes); 3224 return true; 3225 } 3226 3227 /* 3228 * Determine the device's preferred I/O size for reads and writes 3229 * unless the reported value is unreasonably small, large, not a 3230 * multiple of the physical block size, or simply garbage. 3231 */ 3232 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3233 unsigned int dev_max) 3234 { 3235 struct scsi_device *sdp = sdkp->device; 3236 unsigned int opt_xfer_bytes = 3237 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3238 unsigned int min_xfer_bytes = 3239 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3240 3241 if (sdkp->opt_xfer_blocks == 0) 3242 return false; 3243 3244 if (sdkp->opt_xfer_blocks > dev_max) { 3245 sd_first_printk(KERN_WARNING, sdkp, 3246 "Optimal transfer size %u logical blocks " \ 3247 "> dev_max (%u logical blocks)\n", 3248 sdkp->opt_xfer_blocks, dev_max); 3249 return false; 3250 } 3251 3252 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3253 sd_first_printk(KERN_WARNING, sdkp, 3254 "Optimal transfer size %u logical blocks " \ 3255 "> sd driver limit (%u logical blocks)\n", 3256 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3257 return false; 3258 } 3259 3260 if (opt_xfer_bytes < PAGE_SIZE) { 3261 sd_first_printk(KERN_WARNING, sdkp, 3262 "Optimal transfer size %u bytes < " \ 3263 "PAGE_SIZE (%u bytes)\n", 3264 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3265 return false; 3266 } 3267 3268 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3269 sd_first_printk(KERN_WARNING, sdkp, 3270 "Optimal transfer size %u bytes not a " \ 3271 "multiple of preferred minimum block " \ 3272 "size (%u bytes)\n", 3273 opt_xfer_bytes, min_xfer_bytes); 3274 return false; 3275 } 3276 3277 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3278 sd_first_printk(KERN_WARNING, sdkp, 3279 "Optimal transfer size %u bytes not a " \ 3280 "multiple of physical block size (%u bytes)\n", 3281 opt_xfer_bytes, sdkp->physical_block_size); 3282 return false; 3283 } 3284 3285 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3286 opt_xfer_bytes); 3287 return true; 3288 } 3289 3290 /** 3291 * sd_revalidate_disk - called the first time a new disk is seen, 3292 * performs disk spin up, read_capacity, etc. 3293 * @disk: struct gendisk we care about 3294 **/ 3295 static int sd_revalidate_disk(struct gendisk *disk) 3296 { 3297 struct scsi_disk *sdkp = scsi_disk(disk); 3298 struct scsi_device *sdp = sdkp->device; 3299 struct request_queue *q = sdkp->disk->queue; 3300 sector_t old_capacity = sdkp->capacity; 3301 unsigned char *buffer; 3302 unsigned int dev_max, rw_max; 3303 3304 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3305 "sd_revalidate_disk\n")); 3306 3307 /* 3308 * If the device is offline, don't try and read capacity or any 3309 * of the other niceties. 3310 */ 3311 if (!scsi_device_online(sdp)) 3312 goto out; 3313 3314 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3315 if (!buffer) { 3316 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3317 "allocation failure.\n"); 3318 goto out; 3319 } 3320 3321 sd_spinup_disk(sdkp); 3322 3323 /* 3324 * Without media there is no reason to ask; moreover, some devices 3325 * react badly if we do. 3326 */ 3327 if (sdkp->media_present) { 3328 sd_read_capacity(sdkp, buffer); 3329 3330 /* 3331 * set the default to rotational. All non-rotational devices 3332 * support the block characteristics VPD page, which will 3333 * cause this to be updated correctly and any device which 3334 * doesn't support it should be treated as rotational. 3335 */ 3336 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3337 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3338 3339 if (scsi_device_supports_vpd(sdp)) { 3340 sd_read_block_provisioning(sdkp); 3341 sd_read_block_limits(sdkp); 3342 sd_read_block_characteristics(sdkp); 3343 sd_zbc_read_zones(sdkp, buffer); 3344 sd_read_cpr(sdkp); 3345 } 3346 3347 sd_print_capacity(sdkp, old_capacity); 3348 3349 sd_read_write_protect_flag(sdkp, buffer); 3350 sd_read_cache_type(sdkp, buffer); 3351 sd_read_app_tag_own(sdkp, buffer); 3352 sd_read_write_same(sdkp, buffer); 3353 sd_read_security(sdkp, buffer); 3354 sd_config_protection(sdkp); 3355 } 3356 3357 /* 3358 * We now have all cache related info, determine how we deal 3359 * with flush requests. 3360 */ 3361 sd_set_flush_flag(sdkp); 3362 3363 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3364 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3365 3366 /* Some devices report a maximum block count for READ/WRITE requests. */ 3367 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3368 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3369 3370 if (sd_validate_min_xfer_size(sdkp)) 3371 blk_queue_io_min(sdkp->disk->queue, 3372 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3373 else 3374 blk_queue_io_min(sdkp->disk->queue, 0); 3375 3376 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3377 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3378 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3379 } else { 3380 q->limits.io_opt = 0; 3381 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3382 (sector_t)BLK_DEF_MAX_SECTORS); 3383 } 3384 3385 /* 3386 * Limit default to SCSI host optimal sector limit if set. There may be 3387 * an impact on performance for when the size of a request exceeds this 3388 * host limit. 3389 */ 3390 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3391 3392 /* Do not exceed controller limit */ 3393 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3394 3395 /* 3396 * Only update max_sectors if previously unset or if the current value 3397 * exceeds the capabilities of the hardware. 3398 */ 3399 if (sdkp->first_scan || 3400 q->limits.max_sectors > q->limits.max_dev_sectors || 3401 q->limits.max_sectors > q->limits.max_hw_sectors) 3402 q->limits.max_sectors = rw_max; 3403 3404 sdkp->first_scan = 0; 3405 3406 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3407 sd_config_write_same(sdkp); 3408 kfree(buffer); 3409 3410 /* 3411 * For a zoned drive, revalidating the zones can be done only once 3412 * the gendisk capacity is set. So if this fails, set back the gendisk 3413 * capacity to 0. 3414 */ 3415 if (sd_zbc_revalidate_zones(sdkp)) 3416 set_capacity_and_notify(disk, 0); 3417 3418 out: 3419 return 0; 3420 } 3421 3422 /** 3423 * sd_unlock_native_capacity - unlock native capacity 3424 * @disk: struct gendisk to set capacity for 3425 * 3426 * Block layer calls this function if it detects that partitions 3427 * on @disk reach beyond the end of the device. If the SCSI host 3428 * implements ->unlock_native_capacity() method, it's invoked to 3429 * give it a chance to adjust the device capacity. 3430 * 3431 * CONTEXT: 3432 * Defined by block layer. Might sleep. 3433 */ 3434 static void sd_unlock_native_capacity(struct gendisk *disk) 3435 { 3436 struct scsi_device *sdev = scsi_disk(disk)->device; 3437 3438 if (sdev->host->hostt->unlock_native_capacity) 3439 sdev->host->hostt->unlock_native_capacity(sdev); 3440 } 3441 3442 /** 3443 * sd_format_disk_name - format disk name 3444 * @prefix: name prefix - ie. "sd" for SCSI disks 3445 * @index: index of the disk to format name for 3446 * @buf: output buffer 3447 * @buflen: length of the output buffer 3448 * 3449 * SCSI disk names starts at sda. The 26th device is sdz and the 3450 * 27th is sdaa. The last one for two lettered suffix is sdzz 3451 * which is followed by sdaaa. 3452 * 3453 * This is basically 26 base counting with one extra 'nil' entry 3454 * at the beginning from the second digit on and can be 3455 * determined using similar method as 26 base conversion with the 3456 * index shifted -1 after each digit is computed. 3457 * 3458 * CONTEXT: 3459 * Don't care. 3460 * 3461 * RETURNS: 3462 * 0 on success, -errno on failure. 3463 */ 3464 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3465 { 3466 const int base = 'z' - 'a' + 1; 3467 char *begin = buf + strlen(prefix); 3468 char *end = buf + buflen; 3469 char *p; 3470 int unit; 3471 3472 p = end - 1; 3473 *p = '\0'; 3474 unit = base; 3475 do { 3476 if (p == begin) 3477 return -EINVAL; 3478 *--p = 'a' + (index % unit); 3479 index = (index / unit) - 1; 3480 } while (index >= 0); 3481 3482 memmove(begin, p, end - p); 3483 memcpy(buf, prefix, strlen(prefix)); 3484 3485 return 0; 3486 } 3487 3488 /** 3489 * sd_probe - called during driver initialization and whenever a 3490 * new scsi device is attached to the system. It is called once 3491 * for each scsi device (not just disks) present. 3492 * @dev: pointer to device object 3493 * 3494 * Returns 0 if successful (or not interested in this scsi device 3495 * (e.g. scanner)); 1 when there is an error. 3496 * 3497 * Note: this function is invoked from the scsi mid-level. 3498 * This function sets up the mapping between a given 3499 * <host,channel,id,lun> (found in sdp) and new device name 3500 * (e.g. /dev/sda). More precisely it is the block device major 3501 * and minor number that is chosen here. 3502 * 3503 * Assume sd_probe is not re-entrant (for time being) 3504 * Also think about sd_probe() and sd_remove() running coincidentally. 3505 **/ 3506 static int sd_probe(struct device *dev) 3507 { 3508 struct scsi_device *sdp = to_scsi_device(dev); 3509 struct scsi_disk *sdkp; 3510 struct gendisk *gd; 3511 int index; 3512 int error; 3513 3514 scsi_autopm_get_device(sdp); 3515 error = -ENODEV; 3516 if (sdp->type != TYPE_DISK && 3517 sdp->type != TYPE_ZBC && 3518 sdp->type != TYPE_MOD && 3519 sdp->type != TYPE_RBC) 3520 goto out; 3521 3522 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3523 sdev_printk(KERN_WARNING, sdp, 3524 "Unsupported ZBC host-managed device.\n"); 3525 goto out; 3526 } 3527 3528 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3529 "sd_probe\n")); 3530 3531 error = -ENOMEM; 3532 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3533 if (!sdkp) 3534 goto out; 3535 3536 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3537 &sd_bio_compl_lkclass); 3538 if (!gd) 3539 goto out_free; 3540 3541 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3542 if (index < 0) { 3543 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3544 goto out_put; 3545 } 3546 3547 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3548 if (error) { 3549 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3550 goto out_free_index; 3551 } 3552 3553 sdkp->device = sdp; 3554 sdkp->disk = gd; 3555 sdkp->index = index; 3556 sdkp->max_retries = SD_MAX_RETRIES; 3557 atomic_set(&sdkp->openers, 0); 3558 atomic_set(&sdkp->device->ioerr_cnt, 0); 3559 3560 if (!sdp->request_queue->rq_timeout) { 3561 if (sdp->type != TYPE_MOD) 3562 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3563 else 3564 blk_queue_rq_timeout(sdp->request_queue, 3565 SD_MOD_TIMEOUT); 3566 } 3567 3568 device_initialize(&sdkp->disk_dev); 3569 sdkp->disk_dev.parent = get_device(dev); 3570 sdkp->disk_dev.class = &sd_disk_class; 3571 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3572 3573 error = device_add(&sdkp->disk_dev); 3574 if (error) { 3575 put_device(&sdkp->disk_dev); 3576 goto out; 3577 } 3578 3579 dev_set_drvdata(dev, sdkp); 3580 3581 gd->major = sd_major((index & 0xf0) >> 4); 3582 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3583 gd->minors = SD_MINORS; 3584 3585 gd->fops = &sd_fops; 3586 gd->private_data = sdkp; 3587 3588 /* defaults, until the device tells us otherwise */ 3589 sdp->sector_size = 512; 3590 sdkp->capacity = 0; 3591 sdkp->media_present = 1; 3592 sdkp->write_prot = 0; 3593 sdkp->cache_override = 0; 3594 sdkp->WCE = 0; 3595 sdkp->RCD = 0; 3596 sdkp->ATO = 0; 3597 sdkp->first_scan = 1; 3598 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3599 3600 sd_revalidate_disk(gd); 3601 3602 if (sdp->removable) { 3603 gd->flags |= GENHD_FL_REMOVABLE; 3604 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3605 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3606 } 3607 3608 blk_pm_runtime_init(sdp->request_queue, dev); 3609 if (sdp->rpm_autosuspend) { 3610 pm_runtime_set_autosuspend_delay(dev, 3611 sdp->host->hostt->rpm_autosuspend_delay); 3612 } 3613 3614 error = device_add_disk(dev, gd, NULL); 3615 if (error) { 3616 put_device(&sdkp->disk_dev); 3617 put_disk(gd); 3618 goto out; 3619 } 3620 3621 if (sdkp->security) { 3622 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3623 if (sdkp->opal_dev) 3624 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3625 } 3626 3627 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3628 sdp->removable ? "removable " : ""); 3629 scsi_autopm_put_device(sdp); 3630 3631 return 0; 3632 3633 out_free_index: 3634 ida_free(&sd_index_ida, index); 3635 out_put: 3636 put_disk(gd); 3637 out_free: 3638 kfree(sdkp); 3639 out: 3640 scsi_autopm_put_device(sdp); 3641 return error; 3642 } 3643 3644 /** 3645 * sd_remove - called whenever a scsi disk (previously recognized by 3646 * sd_probe) is detached from the system. It is called (potentially 3647 * multiple times) during sd module unload. 3648 * @dev: pointer to device object 3649 * 3650 * Note: this function is invoked from the scsi mid-level. 3651 * This function potentially frees up a device name (e.g. /dev/sdc) 3652 * that could be re-used by a subsequent sd_probe(). 3653 * This function is not called when the built-in sd driver is "exit-ed". 3654 **/ 3655 static int sd_remove(struct device *dev) 3656 { 3657 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3658 3659 scsi_autopm_get_device(sdkp->device); 3660 3661 device_del(&sdkp->disk_dev); 3662 del_gendisk(sdkp->disk); 3663 sd_shutdown(dev); 3664 3665 put_disk(sdkp->disk); 3666 return 0; 3667 } 3668 3669 static void scsi_disk_release(struct device *dev) 3670 { 3671 struct scsi_disk *sdkp = to_scsi_disk(dev); 3672 3673 ida_free(&sd_index_ida, sdkp->index); 3674 sd_zbc_free_zone_info(sdkp); 3675 put_device(&sdkp->device->sdev_gendev); 3676 free_opal_dev(sdkp->opal_dev); 3677 3678 kfree(sdkp); 3679 } 3680 3681 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3682 { 3683 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3684 struct scsi_sense_hdr sshdr; 3685 const struct scsi_exec_args exec_args = { 3686 .sshdr = &sshdr, 3687 .req_flags = BLK_MQ_REQ_PM, 3688 }; 3689 struct scsi_device *sdp = sdkp->device; 3690 int res; 3691 3692 if (start) 3693 cmd[4] |= 1; /* START */ 3694 3695 if (sdp->start_stop_pwr_cond) 3696 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3697 3698 if (!scsi_device_online(sdp)) 3699 return -ENODEV; 3700 3701 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3702 sdkp->max_retries, &exec_args); 3703 if (res) { 3704 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3705 if (res > 0 && scsi_sense_valid(&sshdr)) { 3706 sd_print_sense_hdr(sdkp, &sshdr); 3707 /* 0x3a is medium not present */ 3708 if (sshdr.asc == 0x3a) 3709 res = 0; 3710 } 3711 } 3712 3713 /* SCSI error codes must not go to the generic layer */ 3714 if (res) 3715 return -EIO; 3716 3717 return 0; 3718 } 3719 3720 /* 3721 * Send a SYNCHRONIZE CACHE instruction down to the device through 3722 * the normal SCSI command structure. Wait for the command to 3723 * complete. 3724 */ 3725 static void sd_shutdown(struct device *dev) 3726 { 3727 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3728 3729 if (!sdkp) 3730 return; /* this can happen */ 3731 3732 if (pm_runtime_suspended(dev)) 3733 return; 3734 3735 if (sdkp->WCE && sdkp->media_present) { 3736 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3737 sd_sync_cache(sdkp, NULL); 3738 } 3739 3740 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3741 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3742 sd_start_stop_device(sdkp, 0); 3743 } 3744 } 3745 3746 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3747 { 3748 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3749 struct scsi_sense_hdr sshdr; 3750 int ret = 0; 3751 3752 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3753 return 0; 3754 3755 if (sdkp->WCE && sdkp->media_present) { 3756 if (!sdkp->device->silence_suspend) 3757 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3758 ret = sd_sync_cache(sdkp, &sshdr); 3759 3760 if (ret) { 3761 /* ignore OFFLINE device */ 3762 if (ret == -ENODEV) 3763 return 0; 3764 3765 if (!scsi_sense_valid(&sshdr) || 3766 sshdr.sense_key != ILLEGAL_REQUEST) 3767 return ret; 3768 3769 /* 3770 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3771 * doesn't support sync. There's not much to do and 3772 * suspend shouldn't fail. 3773 */ 3774 ret = 0; 3775 } 3776 } 3777 3778 if (sdkp->device->manage_start_stop) { 3779 if (!sdkp->device->silence_suspend) 3780 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3781 /* an error is not worth aborting a system sleep */ 3782 ret = sd_start_stop_device(sdkp, 0); 3783 if (ignore_stop_errors) 3784 ret = 0; 3785 } 3786 3787 return ret; 3788 } 3789 3790 static int sd_suspend_system(struct device *dev) 3791 { 3792 if (pm_runtime_suspended(dev)) 3793 return 0; 3794 3795 return sd_suspend_common(dev, true); 3796 } 3797 3798 static int sd_suspend_runtime(struct device *dev) 3799 { 3800 return sd_suspend_common(dev, false); 3801 } 3802 3803 static int sd_resume(struct device *dev) 3804 { 3805 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3806 int ret; 3807 3808 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3809 return 0; 3810 3811 if (!sdkp->device->manage_start_stop) 3812 return 0; 3813 3814 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3815 ret = sd_start_stop_device(sdkp, 1); 3816 if (!ret) 3817 opal_unlock_from_suspend(sdkp->opal_dev); 3818 return ret; 3819 } 3820 3821 static int sd_resume_system(struct device *dev) 3822 { 3823 if (pm_runtime_suspended(dev)) 3824 return 0; 3825 3826 return sd_resume(dev); 3827 } 3828 3829 static int sd_resume_runtime(struct device *dev) 3830 { 3831 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3832 struct scsi_device *sdp; 3833 3834 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3835 return 0; 3836 3837 sdp = sdkp->device; 3838 3839 if (sdp->ignore_media_change) { 3840 /* clear the device's sense data */ 3841 static const u8 cmd[10] = { REQUEST_SENSE }; 3842 const struct scsi_exec_args exec_args = { 3843 .req_flags = BLK_MQ_REQ_PM, 3844 }; 3845 3846 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3847 sdp->request_queue->rq_timeout, 1, 3848 &exec_args)) 3849 sd_printk(KERN_NOTICE, sdkp, 3850 "Failed to clear sense data\n"); 3851 } 3852 3853 return sd_resume(dev); 3854 } 3855 3856 /** 3857 * init_sd - entry point for this driver (both when built in or when 3858 * a module). 3859 * 3860 * Note: this function registers this driver with the scsi mid-level. 3861 **/ 3862 static int __init init_sd(void) 3863 { 3864 int majors = 0, i, err; 3865 3866 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3867 3868 for (i = 0; i < SD_MAJORS; i++) { 3869 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3870 continue; 3871 majors++; 3872 } 3873 3874 if (!majors) 3875 return -ENODEV; 3876 3877 err = class_register(&sd_disk_class); 3878 if (err) 3879 goto err_out; 3880 3881 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3882 if (!sd_page_pool) { 3883 printk(KERN_ERR "sd: can't init discard page pool\n"); 3884 err = -ENOMEM; 3885 goto err_out_class; 3886 } 3887 3888 err = scsi_register_driver(&sd_template.gendrv); 3889 if (err) 3890 goto err_out_driver; 3891 3892 return 0; 3893 3894 err_out_driver: 3895 mempool_destroy(sd_page_pool); 3896 err_out_class: 3897 class_unregister(&sd_disk_class); 3898 err_out: 3899 for (i = 0; i < SD_MAJORS; i++) 3900 unregister_blkdev(sd_major(i), "sd"); 3901 return err; 3902 } 3903 3904 /** 3905 * exit_sd - exit point for this driver (when it is a module). 3906 * 3907 * Note: this function unregisters this driver from the scsi mid-level. 3908 **/ 3909 static void __exit exit_sd(void) 3910 { 3911 int i; 3912 3913 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3914 3915 scsi_unregister_driver(&sd_template.gendrv); 3916 mempool_destroy(sd_page_pool); 3917 3918 class_unregister(&sd_disk_class); 3919 3920 for (i = 0; i < SD_MAJORS; i++) 3921 unregister_blkdev(sd_major(i), "sd"); 3922 } 3923 3924 module_init(init_sd); 3925 module_exit(exit_sd); 3926 3927 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3928 { 3929 scsi_print_sense_hdr(sdkp->device, 3930 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3931 } 3932 3933 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3934 { 3935 const char *hb_string = scsi_hostbyte_string(result); 3936 3937 if (hb_string) 3938 sd_printk(KERN_INFO, sdkp, 3939 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3940 hb_string ? hb_string : "invalid", 3941 "DRIVER_OK"); 3942 else 3943 sd_printk(KERN_INFO, sdkp, 3944 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3945 msg, host_byte(result), "DRIVER_OK"); 3946 } 3947