1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 #include <scsi/scsi_common.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static void sd_shutdown(struct device *); 108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 109 static void scsi_disk_release(struct device *cdev); 110 111 static DEFINE_IDA(sd_index_ida); 112 113 static mempool_t *sd_page_pool; 114 static struct lock_class_key sd_bio_compl_lkclass; 115 116 static const char *sd_cache_types[] = { 117 "write through", "none", "write back", 118 "write back, no read (daft)" 119 }; 120 121 static void sd_set_flush_flag(struct scsi_disk *sdkp) 122 { 123 bool wc = false, fua = false; 124 125 if (sdkp->WCE) { 126 wc = true; 127 if (sdkp->DPOFUA) 128 fua = true; 129 } 130 131 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 132 } 133 134 static ssize_t 135 cache_type_store(struct device *dev, struct device_attribute *attr, 136 const char *buf, size_t count) 137 { 138 int ct, rcd, wce, sp; 139 struct scsi_disk *sdkp = to_scsi_disk(dev); 140 struct scsi_device *sdp = sdkp->device; 141 char buffer[64]; 142 char *buffer_data; 143 struct scsi_mode_data data; 144 struct scsi_sense_hdr sshdr; 145 static const char temp[] = "temporary "; 146 int len; 147 148 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 149 /* no cache control on RBC devices; theoretically they 150 * can do it, but there's probably so many exceptions 151 * it's not worth the risk */ 152 return -EINVAL; 153 154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 155 buf += sizeof(temp) - 1; 156 sdkp->cache_override = 1; 157 } else { 158 sdkp->cache_override = 0; 159 } 160 161 ct = sysfs_match_string(sd_cache_types, buf); 162 if (ct < 0) 163 return -EINVAL; 164 165 rcd = ct & 0x01 ? 1 : 0; 166 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 167 168 if (sdkp->cache_override) { 169 sdkp->WCE = wce; 170 sdkp->RCD = rcd; 171 sd_set_flush_flag(sdkp); 172 return count; 173 } 174 175 if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT, 176 sdkp->max_retries, &data, NULL)) 177 return -EINVAL; 178 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 179 data.block_descriptor_length); 180 buffer_data = buffer + data.header_length + 181 data.block_descriptor_length; 182 buffer_data[2] &= ~0x05; 183 buffer_data[2] |= wce << 2 | rcd; 184 sp = buffer_data[0] & 0x80 ? 1 : 0; 185 buffer_data[0] &= ~0x80; 186 187 /* 188 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 189 * received mode parameter buffer before doing MODE SELECT. 190 */ 191 data.device_specific = 0; 192 193 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 194 sdkp->max_retries, &data, &sshdr)) { 195 if (scsi_sense_valid(&sshdr)) 196 sd_print_sense_hdr(sdkp, &sshdr); 197 return -EINVAL; 198 } 199 sd_revalidate_disk(sdkp->disk); 200 return count; 201 } 202 203 static ssize_t 204 manage_start_stop_show(struct device *dev, 205 struct device_attribute *attr, char *buf) 206 { 207 struct scsi_disk *sdkp = to_scsi_disk(dev); 208 struct scsi_device *sdp = sdkp->device; 209 210 return sysfs_emit(buf, "%u\n", 211 sdp->manage_system_start_stop && 212 sdp->manage_runtime_start_stop); 213 } 214 static DEVICE_ATTR_RO(manage_start_stop); 215 216 static ssize_t 217 manage_system_start_stop_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop); 224 } 225 226 static ssize_t 227 manage_system_start_stop_store(struct device *dev, 228 struct device_attribute *attr, 229 const char *buf, size_t count) 230 { 231 struct scsi_disk *sdkp = to_scsi_disk(dev); 232 struct scsi_device *sdp = sdkp->device; 233 bool v; 234 235 if (!capable(CAP_SYS_ADMIN)) 236 return -EACCES; 237 238 if (kstrtobool(buf, &v)) 239 return -EINVAL; 240 241 sdp->manage_system_start_stop = v; 242 243 return count; 244 } 245 static DEVICE_ATTR_RW(manage_system_start_stop); 246 247 static ssize_t 248 manage_runtime_start_stop_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 struct scsi_device *sdp = sdkp->device; 253 254 return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop); 255 } 256 257 static ssize_t 258 manage_runtime_start_stop_store(struct device *dev, 259 struct device_attribute *attr, 260 const char *buf, size_t count) 261 { 262 struct scsi_disk *sdkp = to_scsi_disk(dev); 263 struct scsi_device *sdp = sdkp->device; 264 bool v; 265 266 if (!capable(CAP_SYS_ADMIN)) 267 return -EACCES; 268 269 if (kstrtobool(buf, &v)) 270 return -EINVAL; 271 272 sdp->manage_runtime_start_stop = v; 273 274 return count; 275 } 276 static DEVICE_ATTR_RW(manage_runtime_start_stop); 277 278 static ssize_t 279 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 280 { 281 struct scsi_disk *sdkp = to_scsi_disk(dev); 282 283 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 284 } 285 286 static ssize_t 287 allow_restart_store(struct device *dev, struct device_attribute *attr, 288 const char *buf, size_t count) 289 { 290 bool v; 291 struct scsi_disk *sdkp = to_scsi_disk(dev); 292 struct scsi_device *sdp = sdkp->device; 293 294 if (!capable(CAP_SYS_ADMIN)) 295 return -EACCES; 296 297 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 298 return -EINVAL; 299 300 if (kstrtobool(buf, &v)) 301 return -EINVAL; 302 303 sdp->allow_restart = v; 304 305 return count; 306 } 307 static DEVICE_ATTR_RW(allow_restart); 308 309 static ssize_t 310 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 311 { 312 struct scsi_disk *sdkp = to_scsi_disk(dev); 313 int ct = sdkp->RCD + 2*sdkp->WCE; 314 315 return sprintf(buf, "%s\n", sd_cache_types[ct]); 316 } 317 static DEVICE_ATTR_RW(cache_type); 318 319 static ssize_t 320 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 321 { 322 struct scsi_disk *sdkp = to_scsi_disk(dev); 323 324 return sprintf(buf, "%u\n", sdkp->DPOFUA); 325 } 326 static DEVICE_ATTR_RO(FUA); 327 328 static ssize_t 329 protection_type_show(struct device *dev, struct device_attribute *attr, 330 char *buf) 331 { 332 struct scsi_disk *sdkp = to_scsi_disk(dev); 333 334 return sprintf(buf, "%u\n", sdkp->protection_type); 335 } 336 337 static ssize_t 338 protection_type_store(struct device *dev, struct device_attribute *attr, 339 const char *buf, size_t count) 340 { 341 struct scsi_disk *sdkp = to_scsi_disk(dev); 342 unsigned int val; 343 int err; 344 345 if (!capable(CAP_SYS_ADMIN)) 346 return -EACCES; 347 348 err = kstrtouint(buf, 10, &val); 349 350 if (err) 351 return err; 352 353 if (val <= T10_PI_TYPE3_PROTECTION) 354 sdkp->protection_type = val; 355 356 return count; 357 } 358 static DEVICE_ATTR_RW(protection_type); 359 360 static ssize_t 361 protection_mode_show(struct device *dev, struct device_attribute *attr, 362 char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 struct scsi_device *sdp = sdkp->device; 366 unsigned int dif, dix; 367 368 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 369 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 370 371 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 372 dif = 0; 373 dix = 1; 374 } 375 376 if (!dif && !dix) 377 return sprintf(buf, "none\n"); 378 379 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 380 } 381 static DEVICE_ATTR_RO(protection_mode); 382 383 static ssize_t 384 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 385 { 386 struct scsi_disk *sdkp = to_scsi_disk(dev); 387 388 return sprintf(buf, "%u\n", sdkp->ATO); 389 } 390 static DEVICE_ATTR_RO(app_tag_own); 391 392 static ssize_t 393 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 394 char *buf) 395 { 396 struct scsi_disk *sdkp = to_scsi_disk(dev); 397 398 return sprintf(buf, "%u\n", sdkp->lbpme); 399 } 400 static DEVICE_ATTR_RO(thin_provisioning); 401 402 /* sysfs_match_string() requires dense arrays */ 403 static const char *lbp_mode[] = { 404 [SD_LBP_FULL] = "full", 405 [SD_LBP_UNMAP] = "unmap", 406 [SD_LBP_WS16] = "writesame_16", 407 [SD_LBP_WS10] = "writesame_10", 408 [SD_LBP_ZERO] = "writesame_zero", 409 [SD_LBP_DISABLE] = "disabled", 410 }; 411 412 static ssize_t 413 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 414 char *buf) 415 { 416 struct scsi_disk *sdkp = to_scsi_disk(dev); 417 418 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 419 } 420 421 static ssize_t 422 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 423 const char *buf, size_t count) 424 { 425 struct scsi_disk *sdkp = to_scsi_disk(dev); 426 struct scsi_device *sdp = sdkp->device; 427 int mode; 428 429 if (!capable(CAP_SYS_ADMIN)) 430 return -EACCES; 431 432 if (sd_is_zoned(sdkp)) { 433 sd_config_discard(sdkp, SD_LBP_DISABLE); 434 return count; 435 } 436 437 if (sdp->type != TYPE_DISK) 438 return -EINVAL; 439 440 mode = sysfs_match_string(lbp_mode, buf); 441 if (mode < 0) 442 return -EINVAL; 443 444 sd_config_discard(sdkp, mode); 445 446 return count; 447 } 448 static DEVICE_ATTR_RW(provisioning_mode); 449 450 /* sysfs_match_string() requires dense arrays */ 451 static const char *zeroing_mode[] = { 452 [SD_ZERO_WRITE] = "write", 453 [SD_ZERO_WS] = "writesame", 454 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 455 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 456 }; 457 458 static ssize_t 459 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 460 char *buf) 461 { 462 struct scsi_disk *sdkp = to_scsi_disk(dev); 463 464 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 465 } 466 467 static ssize_t 468 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 469 const char *buf, size_t count) 470 { 471 struct scsi_disk *sdkp = to_scsi_disk(dev); 472 int mode; 473 474 if (!capable(CAP_SYS_ADMIN)) 475 return -EACCES; 476 477 mode = sysfs_match_string(zeroing_mode, buf); 478 if (mode < 0) 479 return -EINVAL; 480 481 sdkp->zeroing_mode = mode; 482 483 return count; 484 } 485 static DEVICE_ATTR_RW(zeroing_mode); 486 487 static ssize_t 488 max_medium_access_timeouts_show(struct device *dev, 489 struct device_attribute *attr, char *buf) 490 { 491 struct scsi_disk *sdkp = to_scsi_disk(dev); 492 493 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 494 } 495 496 static ssize_t 497 max_medium_access_timeouts_store(struct device *dev, 498 struct device_attribute *attr, const char *buf, 499 size_t count) 500 { 501 struct scsi_disk *sdkp = to_scsi_disk(dev); 502 int err; 503 504 if (!capable(CAP_SYS_ADMIN)) 505 return -EACCES; 506 507 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 508 509 return err ? err : count; 510 } 511 static DEVICE_ATTR_RW(max_medium_access_timeouts); 512 513 static ssize_t 514 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 515 char *buf) 516 { 517 struct scsi_disk *sdkp = to_scsi_disk(dev); 518 519 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 520 } 521 522 static ssize_t 523 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 524 const char *buf, size_t count) 525 { 526 struct scsi_disk *sdkp = to_scsi_disk(dev); 527 struct scsi_device *sdp = sdkp->device; 528 unsigned long max; 529 int err; 530 531 if (!capable(CAP_SYS_ADMIN)) 532 return -EACCES; 533 534 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 535 return -EINVAL; 536 537 err = kstrtoul(buf, 10, &max); 538 539 if (err) 540 return err; 541 542 if (max == 0) 543 sdp->no_write_same = 1; 544 else if (max <= SD_MAX_WS16_BLOCKS) { 545 sdp->no_write_same = 0; 546 sdkp->max_ws_blocks = max; 547 } 548 549 sd_config_write_same(sdkp); 550 551 return count; 552 } 553 static DEVICE_ATTR_RW(max_write_same_blocks); 554 555 static ssize_t 556 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 557 { 558 struct scsi_disk *sdkp = to_scsi_disk(dev); 559 560 if (sdkp->device->type == TYPE_ZBC) 561 return sprintf(buf, "host-managed\n"); 562 if (sdkp->zoned == 1) 563 return sprintf(buf, "host-aware\n"); 564 if (sdkp->zoned == 2) 565 return sprintf(buf, "drive-managed\n"); 566 return sprintf(buf, "none\n"); 567 } 568 static DEVICE_ATTR_RO(zoned_cap); 569 570 static ssize_t 571 max_retries_store(struct device *dev, struct device_attribute *attr, 572 const char *buf, size_t count) 573 { 574 struct scsi_disk *sdkp = to_scsi_disk(dev); 575 struct scsi_device *sdev = sdkp->device; 576 int retries, err; 577 578 err = kstrtoint(buf, 10, &retries); 579 if (err) 580 return err; 581 582 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 583 sdkp->max_retries = retries; 584 return count; 585 } 586 587 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 588 SD_MAX_RETRIES); 589 return -EINVAL; 590 } 591 592 static ssize_t 593 max_retries_show(struct device *dev, struct device_attribute *attr, 594 char *buf) 595 { 596 struct scsi_disk *sdkp = to_scsi_disk(dev); 597 598 return sprintf(buf, "%d\n", sdkp->max_retries); 599 } 600 601 static DEVICE_ATTR_RW(max_retries); 602 603 static struct attribute *sd_disk_attrs[] = { 604 &dev_attr_cache_type.attr, 605 &dev_attr_FUA.attr, 606 &dev_attr_allow_restart.attr, 607 &dev_attr_manage_start_stop.attr, 608 &dev_attr_manage_system_start_stop.attr, 609 &dev_attr_manage_runtime_start_stop.attr, 610 &dev_attr_protection_type.attr, 611 &dev_attr_protection_mode.attr, 612 &dev_attr_app_tag_own.attr, 613 &dev_attr_thin_provisioning.attr, 614 &dev_attr_provisioning_mode.attr, 615 &dev_attr_zeroing_mode.attr, 616 &dev_attr_max_write_same_blocks.attr, 617 &dev_attr_max_medium_access_timeouts.attr, 618 &dev_attr_zoned_cap.attr, 619 &dev_attr_max_retries.attr, 620 NULL, 621 }; 622 ATTRIBUTE_GROUPS(sd_disk); 623 624 static struct class sd_disk_class = { 625 .name = "scsi_disk", 626 .dev_release = scsi_disk_release, 627 .dev_groups = sd_disk_groups, 628 }; 629 630 /* 631 * Don't request a new module, as that could deadlock in multipath 632 * environment. 633 */ 634 static void sd_default_probe(dev_t devt) 635 { 636 } 637 638 /* 639 * Device no to disk mapping: 640 * 641 * major disc2 disc p1 642 * |............|.............|....|....| <- dev_t 643 * 31 20 19 8 7 4 3 0 644 * 645 * Inside a major, we have 16k disks, however mapped non- 646 * contiguously. The first 16 disks are for major0, the next 647 * ones with major1, ... Disk 256 is for major0 again, disk 272 648 * for major1, ... 649 * As we stay compatible with our numbering scheme, we can reuse 650 * the well-know SCSI majors 8, 65--71, 136--143. 651 */ 652 static int sd_major(int major_idx) 653 { 654 switch (major_idx) { 655 case 0: 656 return SCSI_DISK0_MAJOR; 657 case 1 ... 7: 658 return SCSI_DISK1_MAJOR + major_idx - 1; 659 case 8 ... 15: 660 return SCSI_DISK8_MAJOR + major_idx - 8; 661 default: 662 BUG(); 663 return 0; /* shut up gcc */ 664 } 665 } 666 667 #ifdef CONFIG_BLK_SED_OPAL 668 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 669 size_t len, bool send) 670 { 671 struct scsi_disk *sdkp = data; 672 struct scsi_device *sdev = sdkp->device; 673 u8 cdb[12] = { 0, }; 674 const struct scsi_exec_args exec_args = { 675 .req_flags = BLK_MQ_REQ_PM, 676 }; 677 int ret; 678 679 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 680 cdb[1] = secp; 681 put_unaligned_be16(spsp, &cdb[2]); 682 put_unaligned_be32(len, &cdb[6]); 683 684 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 685 buffer, len, SD_TIMEOUT, sdkp->max_retries, 686 &exec_args); 687 return ret <= 0 ? ret : -EIO; 688 } 689 #endif /* CONFIG_BLK_SED_OPAL */ 690 691 /* 692 * Look up the DIX operation based on whether the command is read or 693 * write and whether dix and dif are enabled. 694 */ 695 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 696 { 697 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 698 static const unsigned int ops[] = { /* wrt dix dif */ 699 SCSI_PROT_NORMAL, /* 0 0 0 */ 700 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 701 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 702 SCSI_PROT_READ_PASS, /* 0 1 1 */ 703 SCSI_PROT_NORMAL, /* 1 0 0 */ 704 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 705 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 706 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 707 }; 708 709 return ops[write << 2 | dix << 1 | dif]; 710 } 711 712 /* 713 * Returns a mask of the protection flags that are valid for a given DIX 714 * operation. 715 */ 716 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 717 { 718 static const unsigned int flag_mask[] = { 719 [SCSI_PROT_NORMAL] = 0, 720 721 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 722 SCSI_PROT_GUARD_CHECK | 723 SCSI_PROT_REF_CHECK | 724 SCSI_PROT_REF_INCREMENT, 725 726 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 727 SCSI_PROT_IP_CHECKSUM, 728 729 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 730 SCSI_PROT_GUARD_CHECK | 731 SCSI_PROT_REF_CHECK | 732 SCSI_PROT_REF_INCREMENT | 733 SCSI_PROT_IP_CHECKSUM, 734 735 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 736 SCSI_PROT_REF_INCREMENT, 737 738 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 739 SCSI_PROT_REF_CHECK | 740 SCSI_PROT_REF_INCREMENT | 741 SCSI_PROT_IP_CHECKSUM, 742 743 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 744 SCSI_PROT_GUARD_CHECK | 745 SCSI_PROT_REF_CHECK | 746 SCSI_PROT_REF_INCREMENT | 747 SCSI_PROT_IP_CHECKSUM, 748 }; 749 750 return flag_mask[prot_op]; 751 } 752 753 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 754 unsigned int dix, unsigned int dif) 755 { 756 struct request *rq = scsi_cmd_to_rq(scmd); 757 struct bio *bio = rq->bio; 758 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 759 unsigned int protect = 0; 760 761 if (dix) { /* DIX Type 0, 1, 2, 3 */ 762 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 763 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 764 765 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 766 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 767 } 768 769 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 770 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 771 772 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 773 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 774 } 775 776 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 777 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 778 779 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 780 protect = 3 << 5; /* Disable target PI checking */ 781 else 782 protect = 1 << 5; /* Enable target PI checking */ 783 } 784 785 scsi_set_prot_op(scmd, prot_op); 786 scsi_set_prot_type(scmd, dif); 787 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 788 789 return protect; 790 } 791 792 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 793 { 794 struct request_queue *q = sdkp->disk->queue; 795 unsigned int logical_block_size = sdkp->device->sector_size; 796 unsigned int max_blocks = 0; 797 798 q->limits.discard_alignment = 799 sdkp->unmap_alignment * logical_block_size; 800 q->limits.discard_granularity = 801 max(sdkp->physical_block_size, 802 sdkp->unmap_granularity * logical_block_size); 803 sdkp->provisioning_mode = mode; 804 805 switch (mode) { 806 807 case SD_LBP_FULL: 808 case SD_LBP_DISABLE: 809 blk_queue_max_discard_sectors(q, 0); 810 return; 811 812 case SD_LBP_UNMAP: 813 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 814 (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS16: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 824 break; 825 826 case SD_LBP_WS10: 827 if (sdkp->device->unmap_limit_for_ws) 828 max_blocks = sdkp->max_unmap_blocks; 829 else 830 max_blocks = sdkp->max_ws_blocks; 831 832 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 833 break; 834 835 case SD_LBP_ZERO: 836 max_blocks = min_not_zero(sdkp->max_ws_blocks, 837 (u32)SD_MAX_WS10_BLOCKS); 838 break; 839 } 840 841 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 842 } 843 844 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 845 { 846 struct page *page; 847 848 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 849 if (!page) 850 return NULL; 851 clear_highpage(page); 852 bvec_set_page(&rq->special_vec, page, data_len, 0); 853 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 854 return bvec_virt(&rq->special_vec); 855 } 856 857 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 858 { 859 struct scsi_device *sdp = cmd->device; 860 struct request *rq = scsi_cmd_to_rq(cmd); 861 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 862 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 863 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 864 unsigned int data_len = 24; 865 char *buf; 866 867 buf = sd_set_special_bvec(rq, data_len); 868 if (!buf) 869 return BLK_STS_RESOURCE; 870 871 cmd->cmd_len = 10; 872 cmd->cmnd[0] = UNMAP; 873 cmd->cmnd[8] = 24; 874 875 put_unaligned_be16(6 + 16, &buf[0]); 876 put_unaligned_be16(16, &buf[2]); 877 put_unaligned_be64(lba, &buf[8]); 878 put_unaligned_be32(nr_blocks, &buf[16]); 879 880 cmd->allowed = sdkp->max_retries; 881 cmd->transfersize = data_len; 882 rq->timeout = SD_TIMEOUT; 883 884 return scsi_alloc_sgtables(cmd); 885 } 886 887 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 888 bool unmap) 889 { 890 struct scsi_device *sdp = cmd->device; 891 struct request *rq = scsi_cmd_to_rq(cmd); 892 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 893 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 894 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 895 u32 data_len = sdp->sector_size; 896 897 if (!sd_set_special_bvec(rq, data_len)) 898 return BLK_STS_RESOURCE; 899 900 cmd->cmd_len = 16; 901 cmd->cmnd[0] = WRITE_SAME_16; 902 if (unmap) 903 cmd->cmnd[1] = 0x8; /* UNMAP */ 904 put_unaligned_be64(lba, &cmd->cmnd[2]); 905 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 906 907 cmd->allowed = sdkp->max_retries; 908 cmd->transfersize = data_len; 909 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 910 911 return scsi_alloc_sgtables(cmd); 912 } 913 914 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 915 bool unmap) 916 { 917 struct scsi_device *sdp = cmd->device; 918 struct request *rq = scsi_cmd_to_rq(cmd); 919 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 920 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 921 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 922 u32 data_len = sdp->sector_size; 923 924 if (!sd_set_special_bvec(rq, data_len)) 925 return BLK_STS_RESOURCE; 926 927 cmd->cmd_len = 10; 928 cmd->cmnd[0] = WRITE_SAME; 929 if (unmap) 930 cmd->cmnd[1] = 0x8; /* UNMAP */ 931 put_unaligned_be32(lba, &cmd->cmnd[2]); 932 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 933 934 cmd->allowed = sdkp->max_retries; 935 cmd->transfersize = data_len; 936 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 937 938 return scsi_alloc_sgtables(cmd); 939 } 940 941 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 942 { 943 struct request *rq = scsi_cmd_to_rq(cmd); 944 struct scsi_device *sdp = cmd->device; 945 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 948 949 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 950 switch (sdkp->zeroing_mode) { 951 case SD_ZERO_WS16_UNMAP: 952 return sd_setup_write_same16_cmnd(cmd, true); 953 case SD_ZERO_WS10_UNMAP: 954 return sd_setup_write_same10_cmnd(cmd, true); 955 } 956 } 957 958 if (sdp->no_write_same) { 959 rq->rq_flags |= RQF_QUIET; 960 return BLK_STS_TARGET; 961 } 962 963 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 964 return sd_setup_write_same16_cmnd(cmd, false); 965 966 return sd_setup_write_same10_cmnd(cmd, false); 967 } 968 969 static void sd_config_write_same(struct scsi_disk *sdkp) 970 { 971 struct request_queue *q = sdkp->disk->queue; 972 unsigned int logical_block_size = sdkp->device->sector_size; 973 974 if (sdkp->device->no_write_same) { 975 sdkp->max_ws_blocks = 0; 976 goto out; 977 } 978 979 /* Some devices can not handle block counts above 0xffff despite 980 * supporting WRITE SAME(16). Consequently we default to 64k 981 * blocks per I/O unless the device explicitly advertises a 982 * bigger limit. 983 */ 984 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 985 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 986 (u32)SD_MAX_WS16_BLOCKS); 987 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 988 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 989 (u32)SD_MAX_WS10_BLOCKS); 990 else { 991 sdkp->device->no_write_same = 1; 992 sdkp->max_ws_blocks = 0; 993 } 994 995 if (sdkp->lbprz && sdkp->lbpws) 996 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 997 else if (sdkp->lbprz && sdkp->lbpws10) 998 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 999 else if (sdkp->max_ws_blocks) 1000 sdkp->zeroing_mode = SD_ZERO_WS; 1001 else 1002 sdkp->zeroing_mode = SD_ZERO_WRITE; 1003 1004 if (sdkp->max_ws_blocks && 1005 sdkp->physical_block_size > logical_block_size) { 1006 /* 1007 * Reporting a maximum number of blocks that is not aligned 1008 * on the device physical size would cause a large write same 1009 * request to be split into physically unaligned chunks by 1010 * __blkdev_issue_write_zeroes() even if the caller of this 1011 * functions took care to align the large request. So make sure 1012 * the maximum reported is aligned to the device physical block 1013 * size. This is only an optional optimization for regular 1014 * disks, but this is mandatory to avoid failure of large write 1015 * same requests directed at sequential write required zones of 1016 * host-managed ZBC disks. 1017 */ 1018 sdkp->max_ws_blocks = 1019 round_down(sdkp->max_ws_blocks, 1020 bytes_to_logical(sdkp->device, 1021 sdkp->physical_block_size)); 1022 } 1023 1024 out: 1025 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1026 (logical_block_size >> 9)); 1027 } 1028 1029 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1030 { 1031 struct request *rq = scsi_cmd_to_rq(cmd); 1032 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1033 1034 /* flush requests don't perform I/O, zero the S/G table */ 1035 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1036 1037 if (cmd->device->use_16_for_sync) { 1038 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1039 cmd->cmd_len = 16; 1040 } else { 1041 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1042 cmd->cmd_len = 10; 1043 } 1044 cmd->transfersize = 0; 1045 cmd->allowed = sdkp->max_retries; 1046 1047 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1048 return BLK_STS_OK; 1049 } 1050 1051 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1052 sector_t lba, unsigned int nr_blocks, 1053 unsigned char flags, unsigned int dld) 1054 { 1055 cmd->cmd_len = SD_EXT_CDB_SIZE; 1056 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1057 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1058 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1059 cmd->cmnd[10] = flags; 1060 cmd->cmnd[11] = dld & 0x07; 1061 put_unaligned_be64(lba, &cmd->cmnd[12]); 1062 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1063 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1064 1065 return BLK_STS_OK; 1066 } 1067 1068 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1069 sector_t lba, unsigned int nr_blocks, 1070 unsigned char flags, unsigned int dld) 1071 { 1072 cmd->cmd_len = 16; 1073 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1074 cmd->cmnd[1] = flags | ((dld >> 2) & 0x01); 1075 cmd->cmnd[14] = (dld & 0x03) << 6; 1076 cmd->cmnd[15] = 0; 1077 put_unaligned_be64(lba, &cmd->cmnd[2]); 1078 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1079 1080 return BLK_STS_OK; 1081 } 1082 1083 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1084 sector_t lba, unsigned int nr_blocks, 1085 unsigned char flags) 1086 { 1087 cmd->cmd_len = 10; 1088 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1089 cmd->cmnd[1] = flags; 1090 cmd->cmnd[6] = 0; 1091 cmd->cmnd[9] = 0; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 1095 return BLK_STS_OK; 1096 } 1097 1098 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1099 sector_t lba, unsigned int nr_blocks, 1100 unsigned char flags) 1101 { 1102 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1103 if (WARN_ON_ONCE(nr_blocks == 0)) 1104 return BLK_STS_IOERR; 1105 1106 if (unlikely(flags & 0x8)) { 1107 /* 1108 * This happens only if this drive failed 10byte rw 1109 * command with ILLEGAL_REQUEST during operation and 1110 * thus turned off use_10_for_rw. 1111 */ 1112 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1113 return BLK_STS_IOERR; 1114 } 1115 1116 cmd->cmd_len = 6; 1117 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1118 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1119 cmd->cmnd[2] = (lba >> 8) & 0xff; 1120 cmd->cmnd[3] = lba & 0xff; 1121 cmd->cmnd[4] = nr_blocks; 1122 cmd->cmnd[5] = 0; 1123 1124 return BLK_STS_OK; 1125 } 1126 1127 /* 1128 * Check if a command has a duration limit set. If it does, and the target 1129 * device supports CDL and the feature is enabled, return the limit 1130 * descriptor index to use. Return 0 (no limit) otherwise. 1131 */ 1132 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd) 1133 { 1134 struct scsi_device *sdp = sdkp->device; 1135 int hint; 1136 1137 if (!sdp->cdl_supported || !sdp->cdl_enable) 1138 return 0; 1139 1140 /* 1141 * Use "no limit" if the request ioprio does not specify a duration 1142 * limit hint. 1143 */ 1144 hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd))); 1145 if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 || 1146 hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7) 1147 return 0; 1148 1149 return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1; 1150 } 1151 1152 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1153 { 1154 struct request *rq = scsi_cmd_to_rq(cmd); 1155 struct scsi_device *sdp = cmd->device; 1156 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1157 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1158 sector_t threshold; 1159 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1160 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1161 bool write = rq_data_dir(rq) == WRITE; 1162 unsigned char protect, fua; 1163 unsigned int dld; 1164 blk_status_t ret; 1165 unsigned int dif; 1166 bool dix; 1167 1168 ret = scsi_alloc_sgtables(cmd); 1169 if (ret != BLK_STS_OK) 1170 return ret; 1171 1172 ret = BLK_STS_IOERR; 1173 if (!scsi_device_online(sdp) || sdp->changed) { 1174 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1175 goto fail; 1176 } 1177 1178 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1179 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1180 goto fail; 1181 } 1182 1183 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1184 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1185 goto fail; 1186 } 1187 1188 /* 1189 * Some SD card readers can't handle accesses which touch the 1190 * last one or two logical blocks. Split accesses as needed. 1191 */ 1192 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1193 1194 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1195 if (lba < threshold) { 1196 /* Access up to the threshold but not beyond */ 1197 nr_blocks = threshold - lba; 1198 } else { 1199 /* Access only a single logical block */ 1200 nr_blocks = 1; 1201 } 1202 } 1203 1204 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1205 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1206 if (ret) 1207 goto fail; 1208 } 1209 1210 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1211 dix = scsi_prot_sg_count(cmd); 1212 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1213 dld = sd_cdl_dld(sdkp, cmd); 1214 1215 if (dif || dix) 1216 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1217 else 1218 protect = 0; 1219 1220 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1221 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1222 protect | fua, dld); 1223 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1224 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1225 protect | fua, dld); 1226 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1227 sdp->use_10_for_rw || protect) { 1228 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1229 protect | fua); 1230 } else { 1231 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1232 protect | fua); 1233 } 1234 1235 if (unlikely(ret != BLK_STS_OK)) 1236 goto fail; 1237 1238 /* 1239 * We shouldn't disconnect in the middle of a sector, so with a dumb 1240 * host adapter, it's safe to assume that we can at least transfer 1241 * this many bytes between each connect / disconnect. 1242 */ 1243 cmd->transfersize = sdp->sector_size; 1244 cmd->underflow = nr_blocks << 9; 1245 cmd->allowed = sdkp->max_retries; 1246 cmd->sdb.length = nr_blocks * sdp->sector_size; 1247 1248 SCSI_LOG_HLQUEUE(1, 1249 scmd_printk(KERN_INFO, cmd, 1250 "%s: block=%llu, count=%d\n", __func__, 1251 (unsigned long long)blk_rq_pos(rq), 1252 blk_rq_sectors(rq))); 1253 SCSI_LOG_HLQUEUE(2, 1254 scmd_printk(KERN_INFO, cmd, 1255 "%s %d/%u 512 byte blocks.\n", 1256 write ? "writing" : "reading", nr_blocks, 1257 blk_rq_sectors(rq))); 1258 1259 /* 1260 * This indicates that the command is ready from our end to be queued. 1261 */ 1262 return BLK_STS_OK; 1263 fail: 1264 scsi_free_sgtables(cmd); 1265 return ret; 1266 } 1267 1268 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1269 { 1270 struct request *rq = scsi_cmd_to_rq(cmd); 1271 1272 switch (req_op(rq)) { 1273 case REQ_OP_DISCARD: 1274 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1275 case SD_LBP_UNMAP: 1276 return sd_setup_unmap_cmnd(cmd); 1277 case SD_LBP_WS16: 1278 return sd_setup_write_same16_cmnd(cmd, true); 1279 case SD_LBP_WS10: 1280 return sd_setup_write_same10_cmnd(cmd, true); 1281 case SD_LBP_ZERO: 1282 return sd_setup_write_same10_cmnd(cmd, false); 1283 default: 1284 return BLK_STS_TARGET; 1285 } 1286 case REQ_OP_WRITE_ZEROES: 1287 return sd_setup_write_zeroes_cmnd(cmd); 1288 case REQ_OP_FLUSH: 1289 return sd_setup_flush_cmnd(cmd); 1290 case REQ_OP_READ: 1291 case REQ_OP_WRITE: 1292 case REQ_OP_ZONE_APPEND: 1293 return sd_setup_read_write_cmnd(cmd); 1294 case REQ_OP_ZONE_RESET: 1295 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1296 false); 1297 case REQ_OP_ZONE_RESET_ALL: 1298 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1299 true); 1300 case REQ_OP_ZONE_OPEN: 1301 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1302 case REQ_OP_ZONE_CLOSE: 1303 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1304 case REQ_OP_ZONE_FINISH: 1305 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1306 default: 1307 WARN_ON_ONCE(1); 1308 return BLK_STS_NOTSUPP; 1309 } 1310 } 1311 1312 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1313 { 1314 struct request *rq = scsi_cmd_to_rq(SCpnt); 1315 1316 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1317 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1318 } 1319 1320 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1321 { 1322 if (sdkp->device->removable || sdkp->write_prot) { 1323 if (disk_check_media_change(disk)) 1324 return true; 1325 } 1326 1327 /* 1328 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1329 * nothing to do with partitions, BLKRRPART is used to force a full 1330 * revalidate after things like a format for historical reasons. 1331 */ 1332 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1333 } 1334 1335 /** 1336 * sd_open - open a scsi disk device 1337 * @disk: disk to open 1338 * @mode: open mode 1339 * 1340 * Returns 0 if successful. Returns a negated errno value in case 1341 * of error. 1342 * 1343 * Note: This can be called from a user context (e.g. fsck(1) ) 1344 * or from within the kernel (e.g. as a result of a mount(1) ). 1345 * In the latter case @inode and @filp carry an abridged amount 1346 * of information as noted above. 1347 * 1348 * Locking: called with disk->open_mutex held. 1349 **/ 1350 static int sd_open(struct gendisk *disk, blk_mode_t mode) 1351 { 1352 struct scsi_disk *sdkp = scsi_disk(disk); 1353 struct scsi_device *sdev = sdkp->device; 1354 int retval; 1355 1356 if (scsi_device_get(sdev)) 1357 return -ENXIO; 1358 1359 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1360 1361 /* 1362 * If the device is in error recovery, wait until it is done. 1363 * If the device is offline, then disallow any access to it. 1364 */ 1365 retval = -ENXIO; 1366 if (!scsi_block_when_processing_errors(sdev)) 1367 goto error_out; 1368 1369 if (sd_need_revalidate(disk, sdkp)) 1370 sd_revalidate_disk(disk); 1371 1372 /* 1373 * If the drive is empty, just let the open fail. 1374 */ 1375 retval = -ENOMEDIUM; 1376 if (sdev->removable && !sdkp->media_present && 1377 !(mode & BLK_OPEN_NDELAY)) 1378 goto error_out; 1379 1380 /* 1381 * If the device has the write protect tab set, have the open fail 1382 * if the user expects to be able to write to the thing. 1383 */ 1384 retval = -EROFS; 1385 if (sdkp->write_prot && (mode & BLK_OPEN_WRITE)) 1386 goto error_out; 1387 1388 /* 1389 * It is possible that the disk changing stuff resulted in 1390 * the device being taken offline. If this is the case, 1391 * report this to the user, and don't pretend that the 1392 * open actually succeeded. 1393 */ 1394 retval = -ENXIO; 1395 if (!scsi_device_online(sdev)) 1396 goto error_out; 1397 1398 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1399 if (scsi_block_when_processing_errors(sdev)) 1400 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1401 } 1402 1403 return 0; 1404 1405 error_out: 1406 scsi_device_put(sdev); 1407 return retval; 1408 } 1409 1410 /** 1411 * sd_release - invoked when the (last) close(2) is called on this 1412 * scsi disk. 1413 * @disk: disk to release 1414 * 1415 * Returns 0. 1416 * 1417 * Note: may block (uninterruptible) if error recovery is underway 1418 * on this disk. 1419 * 1420 * Locking: called with disk->open_mutex held. 1421 **/ 1422 static void sd_release(struct gendisk *disk) 1423 { 1424 struct scsi_disk *sdkp = scsi_disk(disk); 1425 struct scsi_device *sdev = sdkp->device; 1426 1427 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1428 1429 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1430 if (scsi_block_when_processing_errors(sdev)) 1431 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1432 } 1433 1434 scsi_device_put(sdev); 1435 } 1436 1437 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1438 { 1439 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1440 struct scsi_device *sdp = sdkp->device; 1441 struct Scsi_Host *host = sdp->host; 1442 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1443 int diskinfo[4]; 1444 1445 /* default to most commonly used values */ 1446 diskinfo[0] = 0x40; /* 1 << 6 */ 1447 diskinfo[1] = 0x20; /* 1 << 5 */ 1448 diskinfo[2] = capacity >> 11; 1449 1450 /* override with calculated, extended default, or driver values */ 1451 if (host->hostt->bios_param) 1452 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1453 else 1454 scsicam_bios_param(bdev, capacity, diskinfo); 1455 1456 geo->heads = diskinfo[0]; 1457 geo->sectors = diskinfo[1]; 1458 geo->cylinders = diskinfo[2]; 1459 return 0; 1460 } 1461 1462 /** 1463 * sd_ioctl - process an ioctl 1464 * @bdev: target block device 1465 * @mode: open mode 1466 * @cmd: ioctl command number 1467 * @arg: this is third argument given to ioctl(2) system call. 1468 * Often contains a pointer. 1469 * 1470 * Returns 0 if successful (some ioctls return positive numbers on 1471 * success as well). Returns a negated errno value in case of error. 1472 * 1473 * Note: most ioctls are forward onto the block subsystem or further 1474 * down in the scsi subsystem. 1475 **/ 1476 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode, 1477 unsigned int cmd, unsigned long arg) 1478 { 1479 struct gendisk *disk = bdev->bd_disk; 1480 struct scsi_disk *sdkp = scsi_disk(disk); 1481 struct scsi_device *sdp = sdkp->device; 1482 void __user *p = (void __user *)arg; 1483 int error; 1484 1485 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1486 "cmd=0x%x\n", disk->disk_name, cmd)); 1487 1488 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1489 return -ENOIOCTLCMD; 1490 1491 /* 1492 * If we are in the middle of error recovery, don't let anyone 1493 * else try and use this device. Also, if error recovery fails, it 1494 * may try and take the device offline, in which case all further 1495 * access to the device is prohibited. 1496 */ 1497 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1498 (mode & BLK_OPEN_NDELAY)); 1499 if (error) 1500 return error; 1501 1502 if (is_sed_ioctl(cmd)) 1503 return sed_ioctl(sdkp->opal_dev, cmd, p); 1504 return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p); 1505 } 1506 1507 static void set_media_not_present(struct scsi_disk *sdkp) 1508 { 1509 if (sdkp->media_present) 1510 sdkp->device->changed = 1; 1511 1512 if (sdkp->device->removable) { 1513 sdkp->media_present = 0; 1514 sdkp->capacity = 0; 1515 } 1516 } 1517 1518 static int media_not_present(struct scsi_disk *sdkp, 1519 struct scsi_sense_hdr *sshdr) 1520 { 1521 if (!scsi_sense_valid(sshdr)) 1522 return 0; 1523 1524 /* not invoked for commands that could return deferred errors */ 1525 switch (sshdr->sense_key) { 1526 case UNIT_ATTENTION: 1527 case NOT_READY: 1528 /* medium not present */ 1529 if (sshdr->asc == 0x3A) { 1530 set_media_not_present(sdkp); 1531 return 1; 1532 } 1533 } 1534 return 0; 1535 } 1536 1537 /** 1538 * sd_check_events - check media events 1539 * @disk: kernel device descriptor 1540 * @clearing: disk events currently being cleared 1541 * 1542 * Returns mask of DISK_EVENT_*. 1543 * 1544 * Note: this function is invoked from the block subsystem. 1545 **/ 1546 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1547 { 1548 struct scsi_disk *sdkp = disk->private_data; 1549 struct scsi_device *sdp; 1550 int retval; 1551 bool disk_changed; 1552 1553 if (!sdkp) 1554 return 0; 1555 1556 sdp = sdkp->device; 1557 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1558 1559 /* 1560 * If the device is offline, don't send any commands - just pretend as 1561 * if the command failed. If the device ever comes back online, we 1562 * can deal with it then. It is only because of unrecoverable errors 1563 * that we would ever take a device offline in the first place. 1564 */ 1565 if (!scsi_device_online(sdp)) { 1566 set_media_not_present(sdkp); 1567 goto out; 1568 } 1569 1570 /* 1571 * Using TEST_UNIT_READY enables differentiation between drive with 1572 * no cartridge loaded - NOT READY, drive with changed cartridge - 1573 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1574 * 1575 * Drives that auto spin down. eg iomega jaz 1G, will be started 1576 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1577 * sd_revalidate() is called. 1578 */ 1579 if (scsi_block_when_processing_errors(sdp)) { 1580 struct scsi_sense_hdr sshdr = { 0, }; 1581 1582 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1583 &sshdr); 1584 1585 /* failed to execute TUR, assume media not present */ 1586 if (retval < 0 || host_byte(retval)) { 1587 set_media_not_present(sdkp); 1588 goto out; 1589 } 1590 1591 if (media_not_present(sdkp, &sshdr)) 1592 goto out; 1593 } 1594 1595 /* 1596 * For removable scsi disk we have to recognise the presence 1597 * of a disk in the drive. 1598 */ 1599 if (!sdkp->media_present) 1600 sdp->changed = 1; 1601 sdkp->media_present = 1; 1602 out: 1603 /* 1604 * sdp->changed is set under the following conditions: 1605 * 1606 * Medium present state has changed in either direction. 1607 * Device has indicated UNIT_ATTENTION. 1608 */ 1609 disk_changed = sdp->changed; 1610 sdp->changed = 0; 1611 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1612 } 1613 1614 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1615 { 1616 int retries, res; 1617 struct scsi_device *sdp = sdkp->device; 1618 const int timeout = sdp->request_queue->rq_timeout 1619 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1620 struct scsi_sense_hdr my_sshdr; 1621 const struct scsi_exec_args exec_args = { 1622 .req_flags = BLK_MQ_REQ_PM, 1623 /* caller might not be interested in sense, but we need it */ 1624 .sshdr = sshdr ? : &my_sshdr, 1625 }; 1626 1627 if (!scsi_device_online(sdp)) 1628 return -ENODEV; 1629 1630 sshdr = exec_args.sshdr; 1631 1632 for (retries = 3; retries > 0; --retries) { 1633 unsigned char cmd[16] = { 0 }; 1634 1635 if (sdp->use_16_for_sync) 1636 cmd[0] = SYNCHRONIZE_CACHE_16; 1637 else 1638 cmd[0] = SYNCHRONIZE_CACHE; 1639 /* 1640 * Leave the rest of the command zero to indicate 1641 * flush everything. 1642 */ 1643 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1644 timeout, sdkp->max_retries, &exec_args); 1645 if (res == 0) 1646 break; 1647 } 1648 1649 if (res) { 1650 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1651 1652 if (res < 0) 1653 return res; 1654 1655 if (scsi_status_is_check_condition(res) && 1656 scsi_sense_valid(sshdr)) { 1657 sd_print_sense_hdr(sdkp, sshdr); 1658 1659 /* we need to evaluate the error return */ 1660 if (sshdr->asc == 0x3a || /* medium not present */ 1661 sshdr->asc == 0x20 || /* invalid command */ 1662 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1663 /* this is no error here */ 1664 return 0; 1665 } 1666 1667 switch (host_byte(res)) { 1668 /* ignore errors due to racing a disconnection */ 1669 case DID_BAD_TARGET: 1670 case DID_NO_CONNECT: 1671 return 0; 1672 /* signal the upper layer it might try again */ 1673 case DID_BUS_BUSY: 1674 case DID_IMM_RETRY: 1675 case DID_REQUEUE: 1676 case DID_SOFT_ERROR: 1677 return -EBUSY; 1678 default: 1679 return -EIO; 1680 } 1681 } 1682 return 0; 1683 } 1684 1685 static void sd_rescan(struct device *dev) 1686 { 1687 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1688 1689 sd_revalidate_disk(sdkp->disk); 1690 } 1691 1692 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1693 enum blk_unique_id type) 1694 { 1695 struct scsi_device *sdev = scsi_disk(disk)->device; 1696 const struct scsi_vpd *vpd; 1697 const unsigned char *d; 1698 int ret = -ENXIO, len; 1699 1700 rcu_read_lock(); 1701 vpd = rcu_dereference(sdev->vpd_pg83); 1702 if (!vpd) 1703 goto out_unlock; 1704 1705 ret = -EINVAL; 1706 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1707 /* we only care about designators with LU association */ 1708 if (((d[1] >> 4) & 0x3) != 0x00) 1709 continue; 1710 if ((d[1] & 0xf) != type) 1711 continue; 1712 1713 /* 1714 * Only exit early if a 16-byte descriptor was found. Otherwise 1715 * keep looking as one with more entropy might still show up. 1716 */ 1717 len = d[3]; 1718 if (len != 8 && len != 12 && len != 16) 1719 continue; 1720 ret = len; 1721 memcpy(id, d + 4, len); 1722 if (len == 16) 1723 break; 1724 } 1725 out_unlock: 1726 rcu_read_unlock(); 1727 return ret; 1728 } 1729 1730 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1731 { 1732 switch (host_byte(result)) { 1733 case DID_TRANSPORT_MARGINAL: 1734 case DID_TRANSPORT_DISRUPTED: 1735 case DID_BUS_BUSY: 1736 return PR_STS_RETRY_PATH_FAILURE; 1737 case DID_NO_CONNECT: 1738 return PR_STS_PATH_FAILED; 1739 case DID_TRANSPORT_FAILFAST: 1740 return PR_STS_PATH_FAST_FAILED; 1741 } 1742 1743 switch (status_byte(result)) { 1744 case SAM_STAT_RESERVATION_CONFLICT: 1745 return PR_STS_RESERVATION_CONFLICT; 1746 case SAM_STAT_CHECK_CONDITION: 1747 if (!scsi_sense_valid(sshdr)) 1748 return PR_STS_IOERR; 1749 1750 if (sshdr->sense_key == ILLEGAL_REQUEST && 1751 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1752 return -EINVAL; 1753 1754 fallthrough; 1755 default: 1756 return PR_STS_IOERR; 1757 } 1758 } 1759 1760 static int sd_pr_in_command(struct block_device *bdev, u8 sa, 1761 unsigned char *data, int data_len) 1762 { 1763 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1764 struct scsi_device *sdev = sdkp->device; 1765 struct scsi_sense_hdr sshdr; 1766 u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa }; 1767 const struct scsi_exec_args exec_args = { 1768 .sshdr = &sshdr, 1769 }; 1770 int result; 1771 1772 put_unaligned_be16(data_len, &cmd[7]); 1773 1774 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len, 1775 SD_TIMEOUT, sdkp->max_retries, &exec_args); 1776 if (scsi_status_is_check_condition(result) && 1777 scsi_sense_valid(&sshdr)) { 1778 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1779 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1780 } 1781 1782 if (result <= 0) 1783 return result; 1784 1785 return sd_scsi_to_pr_err(&sshdr, result); 1786 } 1787 1788 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info) 1789 { 1790 int result, i, data_offset, num_copy_keys; 1791 u32 num_keys = keys_info->num_keys; 1792 int data_len = num_keys * 8 + 8; 1793 u8 *data; 1794 1795 data = kzalloc(data_len, GFP_KERNEL); 1796 if (!data) 1797 return -ENOMEM; 1798 1799 result = sd_pr_in_command(bdev, READ_KEYS, data, data_len); 1800 if (result) 1801 goto free_data; 1802 1803 keys_info->generation = get_unaligned_be32(&data[0]); 1804 keys_info->num_keys = get_unaligned_be32(&data[4]) / 8; 1805 1806 data_offset = 8; 1807 num_copy_keys = min(num_keys, keys_info->num_keys); 1808 1809 for (i = 0; i < num_copy_keys; i++) { 1810 keys_info->keys[i] = get_unaligned_be64(&data[data_offset]); 1811 data_offset += 8; 1812 } 1813 1814 free_data: 1815 kfree(data); 1816 return result; 1817 } 1818 1819 static int sd_pr_read_reservation(struct block_device *bdev, 1820 struct pr_held_reservation *rsv) 1821 { 1822 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1823 struct scsi_device *sdev = sdkp->device; 1824 u8 data[24] = { }; 1825 int result, len; 1826 1827 result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data)); 1828 if (result) 1829 return result; 1830 1831 len = get_unaligned_be32(&data[4]); 1832 if (!len) 1833 return 0; 1834 1835 /* Make sure we have at least the key and type */ 1836 if (len < 14) { 1837 sdev_printk(KERN_INFO, sdev, 1838 "READ RESERVATION failed due to short return buffer of %d bytes\n", 1839 len); 1840 return -EINVAL; 1841 } 1842 1843 rsv->generation = get_unaligned_be32(&data[0]); 1844 rsv->key = get_unaligned_be64(&data[8]); 1845 rsv->type = scsi_pr_type_to_block(data[21] & 0x0f); 1846 return 0; 1847 } 1848 1849 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key, 1850 u64 sa_key, enum scsi_pr_type type, u8 flags) 1851 { 1852 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1853 struct scsi_device *sdev = sdkp->device; 1854 struct scsi_sense_hdr sshdr; 1855 const struct scsi_exec_args exec_args = { 1856 .sshdr = &sshdr, 1857 }; 1858 int result; 1859 u8 cmd[16] = { 0, }; 1860 u8 data[24] = { 0, }; 1861 1862 cmd[0] = PERSISTENT_RESERVE_OUT; 1863 cmd[1] = sa; 1864 cmd[2] = type; 1865 put_unaligned_be32(sizeof(data), &cmd[5]); 1866 1867 put_unaligned_be64(key, &data[0]); 1868 put_unaligned_be64(sa_key, &data[8]); 1869 data[20] = flags; 1870 1871 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1872 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1873 &exec_args); 1874 1875 if (scsi_status_is_check_condition(result) && 1876 scsi_sense_valid(&sshdr)) { 1877 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1878 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1879 } 1880 1881 if (result <= 0) 1882 return result; 1883 1884 return sd_scsi_to_pr_err(&sshdr, result); 1885 } 1886 1887 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1888 u32 flags) 1889 { 1890 if (flags & ~PR_FL_IGNORE_KEY) 1891 return -EOPNOTSUPP; 1892 return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1893 old_key, new_key, 0, 1894 (1 << 0) /* APTPL */); 1895 } 1896 1897 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1898 u32 flags) 1899 { 1900 if (flags) 1901 return -EOPNOTSUPP; 1902 return sd_pr_out_command(bdev, 0x01, key, 0, 1903 block_pr_type_to_scsi(type), 0); 1904 } 1905 1906 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1907 { 1908 return sd_pr_out_command(bdev, 0x02, key, 0, 1909 block_pr_type_to_scsi(type), 0); 1910 } 1911 1912 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1913 enum pr_type type, bool abort) 1914 { 1915 return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1916 block_pr_type_to_scsi(type), 0); 1917 } 1918 1919 static int sd_pr_clear(struct block_device *bdev, u64 key) 1920 { 1921 return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0); 1922 } 1923 1924 static const struct pr_ops sd_pr_ops = { 1925 .pr_register = sd_pr_register, 1926 .pr_reserve = sd_pr_reserve, 1927 .pr_release = sd_pr_release, 1928 .pr_preempt = sd_pr_preempt, 1929 .pr_clear = sd_pr_clear, 1930 .pr_read_keys = sd_pr_read_keys, 1931 .pr_read_reservation = sd_pr_read_reservation, 1932 }; 1933 1934 static void scsi_disk_free_disk(struct gendisk *disk) 1935 { 1936 struct scsi_disk *sdkp = scsi_disk(disk); 1937 1938 put_device(&sdkp->disk_dev); 1939 } 1940 1941 static const struct block_device_operations sd_fops = { 1942 .owner = THIS_MODULE, 1943 .open = sd_open, 1944 .release = sd_release, 1945 .ioctl = sd_ioctl, 1946 .getgeo = sd_getgeo, 1947 .compat_ioctl = blkdev_compat_ptr_ioctl, 1948 .check_events = sd_check_events, 1949 .unlock_native_capacity = sd_unlock_native_capacity, 1950 .report_zones = sd_zbc_report_zones, 1951 .get_unique_id = sd_get_unique_id, 1952 .free_disk = scsi_disk_free_disk, 1953 .pr_ops = &sd_pr_ops, 1954 }; 1955 1956 /** 1957 * sd_eh_reset - reset error handling callback 1958 * @scmd: sd-issued command that has failed 1959 * 1960 * This function is called by the SCSI midlayer before starting 1961 * SCSI EH. When counting medium access failures we have to be 1962 * careful to register it only only once per device and SCSI EH run; 1963 * there might be several timed out commands which will cause the 1964 * 'max_medium_access_timeouts' counter to trigger after the first 1965 * SCSI EH run already and set the device to offline. 1966 * So this function resets the internal counter before starting SCSI EH. 1967 **/ 1968 static void sd_eh_reset(struct scsi_cmnd *scmd) 1969 { 1970 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1971 1972 /* New SCSI EH run, reset gate variable */ 1973 sdkp->ignore_medium_access_errors = false; 1974 } 1975 1976 /** 1977 * sd_eh_action - error handling callback 1978 * @scmd: sd-issued command that has failed 1979 * @eh_disp: The recovery disposition suggested by the midlayer 1980 * 1981 * This function is called by the SCSI midlayer upon completion of an 1982 * error test command (currently TEST UNIT READY). The result of sending 1983 * the eh command is passed in eh_disp. We're looking for devices that 1984 * fail medium access commands but are OK with non access commands like 1985 * test unit ready (so wrongly see the device as having a successful 1986 * recovery) 1987 **/ 1988 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1989 { 1990 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1991 struct scsi_device *sdev = scmd->device; 1992 1993 if (!scsi_device_online(sdev) || 1994 !scsi_medium_access_command(scmd) || 1995 host_byte(scmd->result) != DID_TIME_OUT || 1996 eh_disp != SUCCESS) 1997 return eh_disp; 1998 1999 /* 2000 * The device has timed out executing a medium access command. 2001 * However, the TEST UNIT READY command sent during error 2002 * handling completed successfully. Either the device is in the 2003 * process of recovering or has it suffered an internal failure 2004 * that prevents access to the storage medium. 2005 */ 2006 if (!sdkp->ignore_medium_access_errors) { 2007 sdkp->medium_access_timed_out++; 2008 sdkp->ignore_medium_access_errors = true; 2009 } 2010 2011 /* 2012 * If the device keeps failing read/write commands but TEST UNIT 2013 * READY always completes successfully we assume that medium 2014 * access is no longer possible and take the device offline. 2015 */ 2016 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 2017 scmd_printk(KERN_ERR, scmd, 2018 "Medium access timeout failure. Offlining disk!\n"); 2019 mutex_lock(&sdev->state_mutex); 2020 scsi_device_set_state(sdev, SDEV_OFFLINE); 2021 mutex_unlock(&sdev->state_mutex); 2022 2023 return SUCCESS; 2024 } 2025 2026 return eh_disp; 2027 } 2028 2029 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 2030 { 2031 struct request *req = scsi_cmd_to_rq(scmd); 2032 struct scsi_device *sdev = scmd->device; 2033 unsigned int transferred, good_bytes; 2034 u64 start_lba, end_lba, bad_lba; 2035 2036 /* 2037 * Some commands have a payload smaller than the device logical 2038 * block size (e.g. INQUIRY on a 4K disk). 2039 */ 2040 if (scsi_bufflen(scmd) <= sdev->sector_size) 2041 return 0; 2042 2043 /* Check if we have a 'bad_lba' information */ 2044 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2045 SCSI_SENSE_BUFFERSIZE, 2046 &bad_lba)) 2047 return 0; 2048 2049 /* 2050 * If the bad lba was reported incorrectly, we have no idea where 2051 * the error is. 2052 */ 2053 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2054 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2055 if (bad_lba < start_lba || bad_lba >= end_lba) 2056 return 0; 2057 2058 /* 2059 * resid is optional but mostly filled in. When it's unused, 2060 * its value is zero, so we assume the whole buffer transferred 2061 */ 2062 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2063 2064 /* This computation should always be done in terms of the 2065 * resolution of the device's medium. 2066 */ 2067 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2068 2069 return min(good_bytes, transferred); 2070 } 2071 2072 /** 2073 * sd_done - bottom half handler: called when the lower level 2074 * driver has completed (successfully or otherwise) a scsi command. 2075 * @SCpnt: mid-level's per command structure. 2076 * 2077 * Note: potentially run from within an ISR. Must not block. 2078 **/ 2079 static int sd_done(struct scsi_cmnd *SCpnt) 2080 { 2081 int result = SCpnt->result; 2082 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2083 unsigned int sector_size = SCpnt->device->sector_size; 2084 unsigned int resid; 2085 struct scsi_sense_hdr sshdr; 2086 struct request *req = scsi_cmd_to_rq(SCpnt); 2087 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 2088 int sense_valid = 0; 2089 int sense_deferred = 0; 2090 2091 switch (req_op(req)) { 2092 case REQ_OP_DISCARD: 2093 case REQ_OP_WRITE_ZEROES: 2094 case REQ_OP_ZONE_RESET: 2095 case REQ_OP_ZONE_RESET_ALL: 2096 case REQ_OP_ZONE_OPEN: 2097 case REQ_OP_ZONE_CLOSE: 2098 case REQ_OP_ZONE_FINISH: 2099 if (!result) { 2100 good_bytes = blk_rq_bytes(req); 2101 scsi_set_resid(SCpnt, 0); 2102 } else { 2103 good_bytes = 0; 2104 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2105 } 2106 break; 2107 default: 2108 /* 2109 * In case of bogus fw or device, we could end up having 2110 * an unaligned partial completion. Check this here and force 2111 * alignment. 2112 */ 2113 resid = scsi_get_resid(SCpnt); 2114 if (resid & (sector_size - 1)) { 2115 sd_printk(KERN_INFO, sdkp, 2116 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2117 resid, sector_size); 2118 scsi_print_command(SCpnt); 2119 resid = min(scsi_bufflen(SCpnt), 2120 round_up(resid, sector_size)); 2121 scsi_set_resid(SCpnt, resid); 2122 } 2123 } 2124 2125 if (result) { 2126 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2127 if (sense_valid) 2128 sense_deferred = scsi_sense_is_deferred(&sshdr); 2129 } 2130 sdkp->medium_access_timed_out = 0; 2131 2132 if (!scsi_status_is_check_condition(result) && 2133 (!sense_valid || sense_deferred)) 2134 goto out; 2135 2136 switch (sshdr.sense_key) { 2137 case HARDWARE_ERROR: 2138 case MEDIUM_ERROR: 2139 good_bytes = sd_completed_bytes(SCpnt); 2140 break; 2141 case RECOVERED_ERROR: 2142 good_bytes = scsi_bufflen(SCpnt); 2143 break; 2144 case NO_SENSE: 2145 /* This indicates a false check condition, so ignore it. An 2146 * unknown amount of data was transferred so treat it as an 2147 * error. 2148 */ 2149 SCpnt->result = 0; 2150 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2151 break; 2152 case ABORTED_COMMAND: 2153 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2154 good_bytes = sd_completed_bytes(SCpnt); 2155 break; 2156 case ILLEGAL_REQUEST: 2157 switch (sshdr.asc) { 2158 case 0x10: /* DIX: Host detected corruption */ 2159 good_bytes = sd_completed_bytes(SCpnt); 2160 break; 2161 case 0x20: /* INVALID COMMAND OPCODE */ 2162 case 0x24: /* INVALID FIELD IN CDB */ 2163 switch (SCpnt->cmnd[0]) { 2164 case UNMAP: 2165 sd_config_discard(sdkp, SD_LBP_DISABLE); 2166 break; 2167 case WRITE_SAME_16: 2168 case WRITE_SAME: 2169 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2170 sd_config_discard(sdkp, SD_LBP_DISABLE); 2171 } else { 2172 sdkp->device->no_write_same = 1; 2173 sd_config_write_same(sdkp); 2174 req->rq_flags |= RQF_QUIET; 2175 } 2176 break; 2177 } 2178 } 2179 break; 2180 default: 2181 break; 2182 } 2183 2184 out: 2185 if (sd_is_zoned(sdkp)) 2186 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2187 2188 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2189 "sd_done: completed %d of %d bytes\n", 2190 good_bytes, scsi_bufflen(SCpnt))); 2191 2192 return good_bytes; 2193 } 2194 2195 /* 2196 * spinup disk - called only in sd_revalidate_disk() 2197 */ 2198 static void 2199 sd_spinup_disk(struct scsi_disk *sdkp) 2200 { 2201 unsigned char cmd[10]; 2202 unsigned long spintime_expire = 0; 2203 int retries, spintime; 2204 unsigned int the_result; 2205 struct scsi_sense_hdr sshdr; 2206 const struct scsi_exec_args exec_args = { 2207 .sshdr = &sshdr, 2208 }; 2209 int sense_valid = 0; 2210 2211 spintime = 0; 2212 2213 /* Spin up drives, as required. Only do this at boot time */ 2214 /* Spinup needs to be done for module loads too. */ 2215 do { 2216 retries = 0; 2217 2218 do { 2219 bool media_was_present = sdkp->media_present; 2220 2221 cmd[0] = TEST_UNIT_READY; 2222 memset((void *) &cmd[1], 0, 9); 2223 2224 the_result = scsi_execute_cmd(sdkp->device, cmd, 2225 REQ_OP_DRV_IN, NULL, 0, 2226 SD_TIMEOUT, 2227 sdkp->max_retries, 2228 &exec_args); 2229 2230 /* 2231 * If the drive has indicated to us that it 2232 * doesn't have any media in it, don't bother 2233 * with any more polling. 2234 */ 2235 if (media_not_present(sdkp, &sshdr)) { 2236 if (media_was_present) 2237 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2238 return; 2239 } 2240 2241 if (the_result) 2242 sense_valid = scsi_sense_valid(&sshdr); 2243 retries++; 2244 } while (retries < 3 && 2245 (!scsi_status_is_good(the_result) || 2246 (scsi_status_is_check_condition(the_result) && 2247 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2248 2249 if (!scsi_status_is_check_condition(the_result)) { 2250 /* no sense, TUR either succeeded or failed 2251 * with a status error */ 2252 if(!spintime && !scsi_status_is_good(the_result)) { 2253 sd_print_result(sdkp, "Test Unit Ready failed", 2254 the_result); 2255 } 2256 break; 2257 } 2258 2259 /* 2260 * The device does not want the automatic start to be issued. 2261 */ 2262 if (sdkp->device->no_start_on_add) 2263 break; 2264 2265 if (sense_valid && sshdr.sense_key == NOT_READY) { 2266 if (sshdr.asc == 4 && sshdr.ascq == 3) 2267 break; /* manual intervention required */ 2268 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2269 break; /* standby */ 2270 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2271 break; /* unavailable */ 2272 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2273 break; /* sanitize in progress */ 2274 /* 2275 * Issue command to spin up drive when not ready 2276 */ 2277 if (!spintime) { 2278 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2279 cmd[0] = START_STOP; 2280 cmd[1] = 1; /* Return immediately */ 2281 memset((void *) &cmd[2], 0, 8); 2282 cmd[4] = 1; /* Start spin cycle */ 2283 if (sdkp->device->start_stop_pwr_cond) 2284 cmd[4] |= 1 << 4; 2285 scsi_execute_cmd(sdkp->device, cmd, 2286 REQ_OP_DRV_IN, NULL, 0, 2287 SD_TIMEOUT, sdkp->max_retries, 2288 &exec_args); 2289 spintime_expire = jiffies + 100 * HZ; 2290 spintime = 1; 2291 } 2292 /* Wait 1 second for next try */ 2293 msleep(1000); 2294 printk(KERN_CONT "."); 2295 2296 /* 2297 * Wait for USB flash devices with slow firmware. 2298 * Yes, this sense key/ASC combination shouldn't 2299 * occur here. It's characteristic of these devices. 2300 */ 2301 } else if (sense_valid && 2302 sshdr.sense_key == UNIT_ATTENTION && 2303 sshdr.asc == 0x28) { 2304 if (!spintime) { 2305 spintime_expire = jiffies + 5 * HZ; 2306 spintime = 1; 2307 } 2308 /* Wait 1 second for next try */ 2309 msleep(1000); 2310 } else { 2311 /* we don't understand the sense code, so it's 2312 * probably pointless to loop */ 2313 if(!spintime) { 2314 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2315 sd_print_sense_hdr(sdkp, &sshdr); 2316 } 2317 break; 2318 } 2319 2320 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2321 2322 if (spintime) { 2323 if (scsi_status_is_good(the_result)) 2324 printk(KERN_CONT "ready\n"); 2325 else 2326 printk(KERN_CONT "not responding...\n"); 2327 } 2328 } 2329 2330 /* 2331 * Determine whether disk supports Data Integrity Field. 2332 */ 2333 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2334 { 2335 struct scsi_device *sdp = sdkp->device; 2336 u8 type; 2337 2338 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2339 sdkp->protection_type = 0; 2340 return 0; 2341 } 2342 2343 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2344 2345 if (type > T10_PI_TYPE3_PROTECTION) { 2346 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2347 " protection type %u. Disabling disk!\n", 2348 type); 2349 sdkp->protection_type = 0; 2350 return -ENODEV; 2351 } 2352 2353 sdkp->protection_type = type; 2354 2355 return 0; 2356 } 2357 2358 static void sd_config_protection(struct scsi_disk *sdkp) 2359 { 2360 struct scsi_device *sdp = sdkp->device; 2361 2362 sd_dif_config_host(sdkp); 2363 2364 if (!sdkp->protection_type) 2365 return; 2366 2367 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2368 sd_first_printk(KERN_NOTICE, sdkp, 2369 "Disabling DIF Type %u protection\n", 2370 sdkp->protection_type); 2371 sdkp->protection_type = 0; 2372 } 2373 2374 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2375 sdkp->protection_type); 2376 } 2377 2378 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2379 struct scsi_sense_hdr *sshdr, int sense_valid, 2380 int the_result) 2381 { 2382 if (sense_valid) 2383 sd_print_sense_hdr(sdkp, sshdr); 2384 else 2385 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2386 2387 /* 2388 * Set dirty bit for removable devices if not ready - 2389 * sometimes drives will not report this properly. 2390 */ 2391 if (sdp->removable && 2392 sense_valid && sshdr->sense_key == NOT_READY) 2393 set_media_not_present(sdkp); 2394 2395 /* 2396 * We used to set media_present to 0 here to indicate no media 2397 * in the drive, but some drives fail read capacity even with 2398 * media present, so we can't do that. 2399 */ 2400 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2401 } 2402 2403 #define RC16_LEN 32 2404 #if RC16_LEN > SD_BUF_SIZE 2405 #error RC16_LEN must not be more than SD_BUF_SIZE 2406 #endif 2407 2408 #define READ_CAPACITY_RETRIES_ON_RESET 10 2409 2410 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2411 unsigned char *buffer) 2412 { 2413 unsigned char cmd[16]; 2414 struct scsi_sense_hdr sshdr; 2415 const struct scsi_exec_args exec_args = { 2416 .sshdr = &sshdr, 2417 }; 2418 int sense_valid = 0; 2419 int the_result; 2420 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2421 unsigned int alignment; 2422 unsigned long long lba; 2423 unsigned sector_size; 2424 2425 if (sdp->no_read_capacity_16) 2426 return -EINVAL; 2427 2428 do { 2429 memset(cmd, 0, 16); 2430 cmd[0] = SERVICE_ACTION_IN_16; 2431 cmd[1] = SAI_READ_CAPACITY_16; 2432 cmd[13] = RC16_LEN; 2433 memset(buffer, 0, RC16_LEN); 2434 2435 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2436 buffer, RC16_LEN, SD_TIMEOUT, 2437 sdkp->max_retries, &exec_args); 2438 2439 if (media_not_present(sdkp, &sshdr)) 2440 return -ENODEV; 2441 2442 if (the_result > 0) { 2443 sense_valid = scsi_sense_valid(&sshdr); 2444 if (sense_valid && 2445 sshdr.sense_key == ILLEGAL_REQUEST && 2446 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2447 sshdr.ascq == 0x00) 2448 /* Invalid Command Operation Code or 2449 * Invalid Field in CDB, just retry 2450 * silently with RC10 */ 2451 return -EINVAL; 2452 if (sense_valid && 2453 sshdr.sense_key == UNIT_ATTENTION && 2454 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2455 /* Device reset might occur several times, 2456 * give it one more chance */ 2457 if (--reset_retries > 0) 2458 continue; 2459 } 2460 retries--; 2461 2462 } while (the_result && retries); 2463 2464 if (the_result) { 2465 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2466 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2467 return -EINVAL; 2468 } 2469 2470 sector_size = get_unaligned_be32(&buffer[8]); 2471 lba = get_unaligned_be64(&buffer[0]); 2472 2473 if (sd_read_protection_type(sdkp, buffer) < 0) { 2474 sdkp->capacity = 0; 2475 return -ENODEV; 2476 } 2477 2478 /* Logical blocks per physical block exponent */ 2479 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2480 2481 /* RC basis */ 2482 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2483 2484 /* Lowest aligned logical block */ 2485 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2486 blk_queue_alignment_offset(sdp->request_queue, alignment); 2487 if (alignment && sdkp->first_scan) 2488 sd_printk(KERN_NOTICE, sdkp, 2489 "physical block alignment offset: %u\n", alignment); 2490 2491 if (buffer[14] & 0x80) { /* LBPME */ 2492 sdkp->lbpme = 1; 2493 2494 if (buffer[14] & 0x40) /* LBPRZ */ 2495 sdkp->lbprz = 1; 2496 2497 sd_config_discard(sdkp, SD_LBP_WS16); 2498 } 2499 2500 sdkp->capacity = lba + 1; 2501 return sector_size; 2502 } 2503 2504 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2505 unsigned char *buffer) 2506 { 2507 unsigned char cmd[16]; 2508 struct scsi_sense_hdr sshdr; 2509 const struct scsi_exec_args exec_args = { 2510 .sshdr = &sshdr, 2511 }; 2512 int sense_valid = 0; 2513 int the_result; 2514 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2515 sector_t lba; 2516 unsigned sector_size; 2517 2518 do { 2519 cmd[0] = READ_CAPACITY; 2520 memset(&cmd[1], 0, 9); 2521 memset(buffer, 0, 8); 2522 2523 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2524 8, SD_TIMEOUT, sdkp->max_retries, 2525 &exec_args); 2526 2527 if (media_not_present(sdkp, &sshdr)) 2528 return -ENODEV; 2529 2530 if (the_result > 0) { 2531 sense_valid = scsi_sense_valid(&sshdr); 2532 if (sense_valid && 2533 sshdr.sense_key == UNIT_ATTENTION && 2534 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2535 /* Device reset might occur several times, 2536 * give it one more chance */ 2537 if (--reset_retries > 0) 2538 continue; 2539 } 2540 retries--; 2541 2542 } while (the_result && retries); 2543 2544 if (the_result) { 2545 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2546 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2547 return -EINVAL; 2548 } 2549 2550 sector_size = get_unaligned_be32(&buffer[4]); 2551 lba = get_unaligned_be32(&buffer[0]); 2552 2553 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2554 /* Some buggy (usb cardreader) devices return an lba of 2555 0xffffffff when the want to report a size of 0 (with 2556 which they really mean no media is present) */ 2557 sdkp->capacity = 0; 2558 sdkp->physical_block_size = sector_size; 2559 return sector_size; 2560 } 2561 2562 sdkp->capacity = lba + 1; 2563 sdkp->physical_block_size = sector_size; 2564 return sector_size; 2565 } 2566 2567 static int sd_try_rc16_first(struct scsi_device *sdp) 2568 { 2569 if (sdp->host->max_cmd_len < 16) 2570 return 0; 2571 if (sdp->try_rc_10_first) 2572 return 0; 2573 if (sdp->scsi_level > SCSI_SPC_2) 2574 return 1; 2575 if (scsi_device_protection(sdp)) 2576 return 1; 2577 return 0; 2578 } 2579 2580 /* 2581 * read disk capacity 2582 */ 2583 static void 2584 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2585 { 2586 int sector_size; 2587 struct scsi_device *sdp = sdkp->device; 2588 2589 if (sd_try_rc16_first(sdp)) { 2590 sector_size = read_capacity_16(sdkp, sdp, buffer); 2591 if (sector_size == -EOVERFLOW) 2592 goto got_data; 2593 if (sector_size == -ENODEV) 2594 return; 2595 if (sector_size < 0) 2596 sector_size = read_capacity_10(sdkp, sdp, buffer); 2597 if (sector_size < 0) 2598 return; 2599 } else { 2600 sector_size = read_capacity_10(sdkp, sdp, buffer); 2601 if (sector_size == -EOVERFLOW) 2602 goto got_data; 2603 if (sector_size < 0) 2604 return; 2605 if ((sizeof(sdkp->capacity) > 4) && 2606 (sdkp->capacity > 0xffffffffULL)) { 2607 int old_sector_size = sector_size; 2608 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2609 "Trying to use READ CAPACITY(16).\n"); 2610 sector_size = read_capacity_16(sdkp, sdp, buffer); 2611 if (sector_size < 0) { 2612 sd_printk(KERN_NOTICE, sdkp, 2613 "Using 0xffffffff as device size\n"); 2614 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2615 sector_size = old_sector_size; 2616 goto got_data; 2617 } 2618 /* Remember that READ CAPACITY(16) succeeded */ 2619 sdp->try_rc_10_first = 0; 2620 } 2621 } 2622 2623 /* Some devices are known to return the total number of blocks, 2624 * not the highest block number. Some devices have versions 2625 * which do this and others which do not. Some devices we might 2626 * suspect of doing this but we don't know for certain. 2627 * 2628 * If we know the reported capacity is wrong, decrement it. If 2629 * we can only guess, then assume the number of blocks is even 2630 * (usually true but not always) and err on the side of lowering 2631 * the capacity. 2632 */ 2633 if (sdp->fix_capacity || 2634 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2635 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2636 "from its reported value: %llu\n", 2637 (unsigned long long) sdkp->capacity); 2638 --sdkp->capacity; 2639 } 2640 2641 got_data: 2642 if (sector_size == 0) { 2643 sector_size = 512; 2644 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2645 "assuming 512.\n"); 2646 } 2647 2648 if (sector_size != 512 && 2649 sector_size != 1024 && 2650 sector_size != 2048 && 2651 sector_size != 4096) { 2652 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2653 sector_size); 2654 /* 2655 * The user might want to re-format the drive with 2656 * a supported sectorsize. Once this happens, it 2657 * would be relatively trivial to set the thing up. 2658 * For this reason, we leave the thing in the table. 2659 */ 2660 sdkp->capacity = 0; 2661 /* 2662 * set a bogus sector size so the normal read/write 2663 * logic in the block layer will eventually refuse any 2664 * request on this device without tripping over power 2665 * of two sector size assumptions 2666 */ 2667 sector_size = 512; 2668 } 2669 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2670 blk_queue_physical_block_size(sdp->request_queue, 2671 sdkp->physical_block_size); 2672 sdkp->device->sector_size = sector_size; 2673 2674 if (sdkp->capacity > 0xffffffff) 2675 sdp->use_16_for_rw = 1; 2676 2677 } 2678 2679 /* 2680 * Print disk capacity 2681 */ 2682 static void 2683 sd_print_capacity(struct scsi_disk *sdkp, 2684 sector_t old_capacity) 2685 { 2686 int sector_size = sdkp->device->sector_size; 2687 char cap_str_2[10], cap_str_10[10]; 2688 2689 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2690 return; 2691 2692 string_get_size(sdkp->capacity, sector_size, 2693 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2694 string_get_size(sdkp->capacity, sector_size, 2695 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2696 2697 sd_printk(KERN_NOTICE, sdkp, 2698 "%llu %d-byte logical blocks: (%s/%s)\n", 2699 (unsigned long long)sdkp->capacity, 2700 sector_size, cap_str_10, cap_str_2); 2701 2702 if (sdkp->physical_block_size != sector_size) 2703 sd_printk(KERN_NOTICE, sdkp, 2704 "%u-byte physical blocks\n", 2705 sdkp->physical_block_size); 2706 } 2707 2708 /* called with buffer of length 512 */ 2709 static inline int 2710 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2711 unsigned char *buffer, int len, struct scsi_mode_data *data, 2712 struct scsi_sense_hdr *sshdr) 2713 { 2714 /* 2715 * If we must use MODE SENSE(10), make sure that the buffer length 2716 * is at least 8 bytes so that the mode sense header fits. 2717 */ 2718 if (sdkp->device->use_10_for_ms && len < 8) 2719 len = 8; 2720 2721 return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len, 2722 SD_TIMEOUT, sdkp->max_retries, data, sshdr); 2723 } 2724 2725 /* 2726 * read write protect setting, if possible - called only in sd_revalidate_disk() 2727 * called with buffer of length SD_BUF_SIZE 2728 */ 2729 static void 2730 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2731 { 2732 int res; 2733 struct scsi_device *sdp = sdkp->device; 2734 struct scsi_mode_data data; 2735 int old_wp = sdkp->write_prot; 2736 2737 set_disk_ro(sdkp->disk, 0); 2738 if (sdp->skip_ms_page_3f) { 2739 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2740 return; 2741 } 2742 2743 if (sdp->use_192_bytes_for_3f) { 2744 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2745 } else { 2746 /* 2747 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2748 * We have to start carefully: some devices hang if we ask 2749 * for more than is available. 2750 */ 2751 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2752 2753 /* 2754 * Second attempt: ask for page 0 When only page 0 is 2755 * implemented, a request for page 3F may return Sense Key 2756 * 5: Illegal Request, Sense Code 24: Invalid field in 2757 * CDB. 2758 */ 2759 if (res < 0) 2760 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2761 2762 /* 2763 * Third attempt: ask 255 bytes, as we did earlier. 2764 */ 2765 if (res < 0) 2766 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2767 &data, NULL); 2768 } 2769 2770 if (res < 0) { 2771 sd_first_printk(KERN_WARNING, sdkp, 2772 "Test WP failed, assume Write Enabled\n"); 2773 } else { 2774 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2775 set_disk_ro(sdkp->disk, sdkp->write_prot); 2776 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2777 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2778 sdkp->write_prot ? "on" : "off"); 2779 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2780 } 2781 } 2782 } 2783 2784 /* 2785 * sd_read_cache_type - called only from sd_revalidate_disk() 2786 * called with buffer of length SD_BUF_SIZE 2787 */ 2788 static void 2789 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2790 { 2791 int len = 0, res; 2792 struct scsi_device *sdp = sdkp->device; 2793 2794 int dbd; 2795 int modepage; 2796 int first_len; 2797 struct scsi_mode_data data; 2798 struct scsi_sense_hdr sshdr; 2799 int old_wce = sdkp->WCE; 2800 int old_rcd = sdkp->RCD; 2801 int old_dpofua = sdkp->DPOFUA; 2802 2803 2804 if (sdkp->cache_override) 2805 return; 2806 2807 first_len = 4; 2808 if (sdp->skip_ms_page_8) { 2809 if (sdp->type == TYPE_RBC) 2810 goto defaults; 2811 else { 2812 if (sdp->skip_ms_page_3f) 2813 goto defaults; 2814 modepage = 0x3F; 2815 if (sdp->use_192_bytes_for_3f) 2816 first_len = 192; 2817 dbd = 0; 2818 } 2819 } else if (sdp->type == TYPE_RBC) { 2820 modepage = 6; 2821 dbd = 8; 2822 } else { 2823 modepage = 8; 2824 dbd = 0; 2825 } 2826 2827 /* cautiously ask */ 2828 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2829 &data, &sshdr); 2830 2831 if (res < 0) 2832 goto bad_sense; 2833 2834 if (!data.header_length) { 2835 modepage = 6; 2836 first_len = 0; 2837 sd_first_printk(KERN_ERR, sdkp, 2838 "Missing header in MODE_SENSE response\n"); 2839 } 2840 2841 /* that went OK, now ask for the proper length */ 2842 len = data.length; 2843 2844 /* 2845 * We're only interested in the first three bytes, actually. 2846 * But the data cache page is defined for the first 20. 2847 */ 2848 if (len < 3) 2849 goto bad_sense; 2850 else if (len > SD_BUF_SIZE) { 2851 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2852 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2853 len = SD_BUF_SIZE; 2854 } 2855 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2856 len = 192; 2857 2858 /* Get the data */ 2859 if (len > first_len) 2860 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2861 &data, &sshdr); 2862 2863 if (!res) { 2864 int offset = data.header_length + data.block_descriptor_length; 2865 2866 while (offset < len) { 2867 u8 page_code = buffer[offset] & 0x3F; 2868 u8 spf = buffer[offset] & 0x40; 2869 2870 if (page_code == 8 || page_code == 6) { 2871 /* We're interested only in the first 3 bytes. 2872 */ 2873 if (len - offset <= 2) { 2874 sd_first_printk(KERN_ERR, sdkp, 2875 "Incomplete mode parameter " 2876 "data\n"); 2877 goto defaults; 2878 } else { 2879 modepage = page_code; 2880 goto Page_found; 2881 } 2882 } else { 2883 /* Go to the next page */ 2884 if (spf && len - offset > 3) 2885 offset += 4 + (buffer[offset+2] << 8) + 2886 buffer[offset+3]; 2887 else if (!spf && len - offset > 1) 2888 offset += 2 + buffer[offset+1]; 2889 else { 2890 sd_first_printk(KERN_ERR, sdkp, 2891 "Incomplete mode " 2892 "parameter data\n"); 2893 goto defaults; 2894 } 2895 } 2896 } 2897 2898 sd_first_printk(KERN_WARNING, sdkp, 2899 "No Caching mode page found\n"); 2900 goto defaults; 2901 2902 Page_found: 2903 if (modepage == 8) { 2904 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2905 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2906 } else { 2907 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2908 sdkp->RCD = 0; 2909 } 2910 2911 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2912 if (sdp->broken_fua) { 2913 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2914 sdkp->DPOFUA = 0; 2915 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2916 !sdkp->device->use_16_for_rw) { 2917 sd_first_printk(KERN_NOTICE, sdkp, 2918 "Uses READ/WRITE(6), disabling FUA\n"); 2919 sdkp->DPOFUA = 0; 2920 } 2921 2922 /* No cache flush allowed for write protected devices */ 2923 if (sdkp->WCE && sdkp->write_prot) 2924 sdkp->WCE = 0; 2925 2926 if (sdkp->first_scan || old_wce != sdkp->WCE || 2927 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2928 sd_printk(KERN_NOTICE, sdkp, 2929 "Write cache: %s, read cache: %s, %s\n", 2930 sdkp->WCE ? "enabled" : "disabled", 2931 sdkp->RCD ? "disabled" : "enabled", 2932 sdkp->DPOFUA ? "supports DPO and FUA" 2933 : "doesn't support DPO or FUA"); 2934 2935 return; 2936 } 2937 2938 bad_sense: 2939 if (scsi_sense_valid(&sshdr) && 2940 sshdr.sense_key == ILLEGAL_REQUEST && 2941 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2942 /* Invalid field in CDB */ 2943 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2944 else 2945 sd_first_printk(KERN_ERR, sdkp, 2946 "Asking for cache data failed\n"); 2947 2948 defaults: 2949 if (sdp->wce_default_on) { 2950 sd_first_printk(KERN_NOTICE, sdkp, 2951 "Assuming drive cache: write back\n"); 2952 sdkp->WCE = 1; 2953 } else { 2954 sd_first_printk(KERN_WARNING, sdkp, 2955 "Assuming drive cache: write through\n"); 2956 sdkp->WCE = 0; 2957 } 2958 sdkp->RCD = 0; 2959 sdkp->DPOFUA = 0; 2960 } 2961 2962 /* 2963 * The ATO bit indicates whether the DIF application tag is available 2964 * for use by the operating system. 2965 */ 2966 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2967 { 2968 int res, offset; 2969 struct scsi_device *sdp = sdkp->device; 2970 struct scsi_mode_data data; 2971 struct scsi_sense_hdr sshdr; 2972 2973 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2974 return; 2975 2976 if (sdkp->protection_type == 0) 2977 return; 2978 2979 res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT, 2980 sdkp->max_retries, &data, &sshdr); 2981 2982 if (res < 0 || !data.header_length || 2983 data.length < 6) { 2984 sd_first_printk(KERN_WARNING, sdkp, 2985 "getting Control mode page failed, assume no ATO\n"); 2986 2987 if (scsi_sense_valid(&sshdr)) 2988 sd_print_sense_hdr(sdkp, &sshdr); 2989 2990 return; 2991 } 2992 2993 offset = data.header_length + data.block_descriptor_length; 2994 2995 if ((buffer[offset] & 0x3f) != 0x0a) { 2996 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2997 return; 2998 } 2999 3000 if ((buffer[offset + 5] & 0x80) == 0) 3001 return; 3002 3003 sdkp->ATO = 1; 3004 3005 return; 3006 } 3007 3008 /** 3009 * sd_read_block_limits - Query disk device for preferred I/O sizes. 3010 * @sdkp: disk to query 3011 */ 3012 static void sd_read_block_limits(struct scsi_disk *sdkp) 3013 { 3014 struct scsi_vpd *vpd; 3015 3016 rcu_read_lock(); 3017 3018 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 3019 if (!vpd || vpd->len < 16) 3020 goto out; 3021 3022 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 3023 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 3024 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 3025 3026 if (vpd->len >= 64) { 3027 unsigned int lba_count, desc_count; 3028 3029 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 3030 3031 if (!sdkp->lbpme) 3032 goto out; 3033 3034 lba_count = get_unaligned_be32(&vpd->data[20]); 3035 desc_count = get_unaligned_be32(&vpd->data[24]); 3036 3037 if (lba_count && desc_count) 3038 sdkp->max_unmap_blocks = lba_count; 3039 3040 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 3041 3042 if (vpd->data[32] & 0x80) 3043 sdkp->unmap_alignment = 3044 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 3045 3046 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 3047 3048 if (sdkp->max_unmap_blocks) 3049 sd_config_discard(sdkp, SD_LBP_UNMAP); 3050 else 3051 sd_config_discard(sdkp, SD_LBP_WS16); 3052 3053 } else { /* LBP VPD page tells us what to use */ 3054 if (sdkp->lbpu && sdkp->max_unmap_blocks) 3055 sd_config_discard(sdkp, SD_LBP_UNMAP); 3056 else if (sdkp->lbpws) 3057 sd_config_discard(sdkp, SD_LBP_WS16); 3058 else if (sdkp->lbpws10) 3059 sd_config_discard(sdkp, SD_LBP_WS10); 3060 else 3061 sd_config_discard(sdkp, SD_LBP_DISABLE); 3062 } 3063 } 3064 3065 out: 3066 rcu_read_unlock(); 3067 } 3068 3069 /** 3070 * sd_read_block_characteristics - Query block dev. characteristics 3071 * @sdkp: disk to query 3072 */ 3073 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3074 { 3075 struct request_queue *q = sdkp->disk->queue; 3076 struct scsi_vpd *vpd; 3077 u16 rot; 3078 u8 zoned; 3079 3080 rcu_read_lock(); 3081 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 3082 3083 if (!vpd || vpd->len < 8) { 3084 rcu_read_unlock(); 3085 return; 3086 } 3087 3088 rot = get_unaligned_be16(&vpd->data[4]); 3089 zoned = (vpd->data[8] >> 4) & 3; 3090 rcu_read_unlock(); 3091 3092 if (rot == 1) { 3093 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3094 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3095 } 3096 3097 if (sdkp->device->type == TYPE_ZBC) { 3098 /* 3099 * Host-managed: Per ZBC and ZAC specifications, writes in 3100 * sequential write required zones of host-managed devices must 3101 * be aligned to the device physical block size. 3102 */ 3103 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 3104 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 3105 } else { 3106 sdkp->zoned = zoned; 3107 if (sdkp->zoned == 1) { 3108 /* Host-aware */ 3109 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3110 } else { 3111 /* Regular disk or drive managed disk */ 3112 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3113 } 3114 } 3115 3116 if (!sdkp->first_scan) 3117 return; 3118 3119 if (blk_queue_is_zoned(q)) { 3120 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3121 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3122 } else { 3123 if (sdkp->zoned == 1) 3124 sd_printk(KERN_NOTICE, sdkp, 3125 "Host-aware SMR disk used as regular disk\n"); 3126 else if (sdkp->zoned == 2) 3127 sd_printk(KERN_NOTICE, sdkp, 3128 "Drive-managed SMR disk\n"); 3129 } 3130 } 3131 3132 /** 3133 * sd_read_block_provisioning - Query provisioning VPD page 3134 * @sdkp: disk to query 3135 */ 3136 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3137 { 3138 struct scsi_vpd *vpd; 3139 3140 if (sdkp->lbpme == 0) 3141 return; 3142 3143 rcu_read_lock(); 3144 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3145 3146 if (!vpd || vpd->len < 8) { 3147 rcu_read_unlock(); 3148 return; 3149 } 3150 3151 sdkp->lbpvpd = 1; 3152 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3153 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3154 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3155 rcu_read_unlock(); 3156 } 3157 3158 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3159 { 3160 struct scsi_device *sdev = sdkp->device; 3161 3162 if (sdev->host->no_write_same) { 3163 sdev->no_write_same = 1; 3164 3165 return; 3166 } 3167 3168 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) { 3169 struct scsi_vpd *vpd; 3170 3171 sdev->no_report_opcodes = 1; 3172 3173 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3174 * CODES is unsupported and the device has an ATA 3175 * Information VPD page (SAT). 3176 */ 3177 rcu_read_lock(); 3178 vpd = rcu_dereference(sdev->vpd_pg89); 3179 if (vpd) 3180 sdev->no_write_same = 1; 3181 rcu_read_unlock(); 3182 } 3183 3184 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1) 3185 sdkp->ws16 = 1; 3186 3187 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1) 3188 sdkp->ws10 = 1; 3189 } 3190 3191 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3192 { 3193 struct scsi_device *sdev = sdkp->device; 3194 3195 if (!sdev->security_supported) 3196 return; 3197 3198 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3199 SECURITY_PROTOCOL_IN, 0) == 1 && 3200 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3201 SECURITY_PROTOCOL_OUT, 0) == 1) 3202 sdkp->security = 1; 3203 } 3204 3205 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3206 { 3207 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3208 } 3209 3210 /** 3211 * sd_read_cpr - Query concurrent positioning ranges 3212 * @sdkp: disk to query 3213 */ 3214 static void sd_read_cpr(struct scsi_disk *sdkp) 3215 { 3216 struct blk_independent_access_ranges *iars = NULL; 3217 unsigned char *buffer = NULL; 3218 unsigned int nr_cpr = 0; 3219 int i, vpd_len, buf_len = SD_BUF_SIZE; 3220 u8 *desc; 3221 3222 /* 3223 * We need to have the capacity set first for the block layer to be 3224 * able to check the ranges. 3225 */ 3226 if (sdkp->first_scan) 3227 return; 3228 3229 if (!sdkp->capacity) 3230 goto out; 3231 3232 /* 3233 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3234 * leading to a maximum page size of 64 + 256*32 bytes. 3235 */ 3236 buf_len = 64 + 256*32; 3237 buffer = kmalloc(buf_len, GFP_KERNEL); 3238 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3239 goto out; 3240 3241 /* We must have at least a 64B header and one 32B range descriptor */ 3242 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3243 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3244 sd_printk(KERN_ERR, sdkp, 3245 "Invalid Concurrent Positioning Ranges VPD page\n"); 3246 goto out; 3247 } 3248 3249 nr_cpr = (vpd_len - 64) / 32; 3250 if (nr_cpr == 1) { 3251 nr_cpr = 0; 3252 goto out; 3253 } 3254 3255 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3256 if (!iars) { 3257 nr_cpr = 0; 3258 goto out; 3259 } 3260 3261 desc = &buffer[64]; 3262 for (i = 0; i < nr_cpr; i++, desc += 32) { 3263 if (desc[0] != i) { 3264 sd_printk(KERN_ERR, sdkp, 3265 "Invalid Concurrent Positioning Range number\n"); 3266 nr_cpr = 0; 3267 break; 3268 } 3269 3270 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3271 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3272 } 3273 3274 out: 3275 disk_set_independent_access_ranges(sdkp->disk, iars); 3276 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3277 sd_printk(KERN_NOTICE, sdkp, 3278 "%u concurrent positioning ranges\n", nr_cpr); 3279 sdkp->nr_actuators = nr_cpr; 3280 } 3281 3282 kfree(buffer); 3283 } 3284 3285 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3286 { 3287 struct scsi_device *sdp = sdkp->device; 3288 unsigned int min_xfer_bytes = 3289 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3290 3291 if (sdkp->min_xfer_blocks == 0) 3292 return false; 3293 3294 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3295 sd_first_printk(KERN_WARNING, sdkp, 3296 "Preferred minimum I/O size %u bytes not a " \ 3297 "multiple of physical block size (%u bytes)\n", 3298 min_xfer_bytes, sdkp->physical_block_size); 3299 sdkp->min_xfer_blocks = 0; 3300 return false; 3301 } 3302 3303 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3304 min_xfer_bytes); 3305 return true; 3306 } 3307 3308 /* 3309 * Determine the device's preferred I/O size for reads and writes 3310 * unless the reported value is unreasonably small, large, not a 3311 * multiple of the physical block size, or simply garbage. 3312 */ 3313 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3314 unsigned int dev_max) 3315 { 3316 struct scsi_device *sdp = sdkp->device; 3317 unsigned int opt_xfer_bytes = 3318 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3319 unsigned int min_xfer_bytes = 3320 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3321 3322 if (sdkp->opt_xfer_blocks == 0) 3323 return false; 3324 3325 if (sdkp->opt_xfer_blocks > dev_max) { 3326 sd_first_printk(KERN_WARNING, sdkp, 3327 "Optimal transfer size %u logical blocks " \ 3328 "> dev_max (%u logical blocks)\n", 3329 sdkp->opt_xfer_blocks, dev_max); 3330 return false; 3331 } 3332 3333 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3334 sd_first_printk(KERN_WARNING, sdkp, 3335 "Optimal transfer size %u logical blocks " \ 3336 "> sd driver limit (%u logical blocks)\n", 3337 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3338 return false; 3339 } 3340 3341 if (opt_xfer_bytes < PAGE_SIZE) { 3342 sd_first_printk(KERN_WARNING, sdkp, 3343 "Optimal transfer size %u bytes < " \ 3344 "PAGE_SIZE (%u bytes)\n", 3345 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3346 return false; 3347 } 3348 3349 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3350 sd_first_printk(KERN_WARNING, sdkp, 3351 "Optimal transfer size %u bytes not a " \ 3352 "multiple of preferred minimum block " \ 3353 "size (%u bytes)\n", 3354 opt_xfer_bytes, min_xfer_bytes); 3355 return false; 3356 } 3357 3358 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3359 sd_first_printk(KERN_WARNING, sdkp, 3360 "Optimal transfer size %u bytes not a " \ 3361 "multiple of physical block size (%u bytes)\n", 3362 opt_xfer_bytes, sdkp->physical_block_size); 3363 return false; 3364 } 3365 3366 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3367 opt_xfer_bytes); 3368 return true; 3369 } 3370 3371 /** 3372 * sd_revalidate_disk - called the first time a new disk is seen, 3373 * performs disk spin up, read_capacity, etc. 3374 * @disk: struct gendisk we care about 3375 **/ 3376 static int sd_revalidate_disk(struct gendisk *disk) 3377 { 3378 struct scsi_disk *sdkp = scsi_disk(disk); 3379 struct scsi_device *sdp = sdkp->device; 3380 struct request_queue *q = sdkp->disk->queue; 3381 sector_t old_capacity = sdkp->capacity; 3382 unsigned char *buffer; 3383 unsigned int dev_max, rw_max; 3384 3385 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3386 "sd_revalidate_disk\n")); 3387 3388 /* 3389 * If the device is offline, don't try and read capacity or any 3390 * of the other niceties. 3391 */ 3392 if (!scsi_device_online(sdp)) 3393 goto out; 3394 3395 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3396 if (!buffer) { 3397 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3398 "allocation failure.\n"); 3399 goto out; 3400 } 3401 3402 sd_spinup_disk(sdkp); 3403 3404 /* 3405 * Without media there is no reason to ask; moreover, some devices 3406 * react badly if we do. 3407 */ 3408 if (sdkp->media_present) { 3409 sd_read_capacity(sdkp, buffer); 3410 3411 /* 3412 * set the default to rotational. All non-rotational devices 3413 * support the block characteristics VPD page, which will 3414 * cause this to be updated correctly and any device which 3415 * doesn't support it should be treated as rotational. 3416 */ 3417 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3418 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3419 3420 if (scsi_device_supports_vpd(sdp)) { 3421 sd_read_block_provisioning(sdkp); 3422 sd_read_block_limits(sdkp); 3423 sd_read_block_characteristics(sdkp); 3424 sd_zbc_read_zones(sdkp, buffer); 3425 sd_read_cpr(sdkp); 3426 } 3427 3428 sd_print_capacity(sdkp, old_capacity); 3429 3430 sd_read_write_protect_flag(sdkp, buffer); 3431 sd_read_cache_type(sdkp, buffer); 3432 sd_read_app_tag_own(sdkp, buffer); 3433 sd_read_write_same(sdkp, buffer); 3434 sd_read_security(sdkp, buffer); 3435 sd_config_protection(sdkp); 3436 } 3437 3438 /* 3439 * We now have all cache related info, determine how we deal 3440 * with flush requests. 3441 */ 3442 sd_set_flush_flag(sdkp); 3443 3444 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3445 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3446 3447 /* Some devices report a maximum block count for READ/WRITE requests. */ 3448 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3449 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3450 3451 if (sd_validate_min_xfer_size(sdkp)) 3452 blk_queue_io_min(sdkp->disk->queue, 3453 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3454 else 3455 blk_queue_io_min(sdkp->disk->queue, 0); 3456 3457 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3458 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3459 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3460 } else { 3461 q->limits.io_opt = 0; 3462 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3463 (sector_t)BLK_DEF_MAX_SECTORS); 3464 } 3465 3466 /* 3467 * Limit default to SCSI host optimal sector limit if set. There may be 3468 * an impact on performance for when the size of a request exceeds this 3469 * host limit. 3470 */ 3471 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3472 3473 /* Do not exceed controller limit */ 3474 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3475 3476 /* 3477 * Only update max_sectors if previously unset or if the current value 3478 * exceeds the capabilities of the hardware. 3479 */ 3480 if (sdkp->first_scan || 3481 q->limits.max_sectors > q->limits.max_dev_sectors || 3482 q->limits.max_sectors > q->limits.max_hw_sectors) 3483 q->limits.max_sectors = rw_max; 3484 3485 sdkp->first_scan = 0; 3486 3487 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3488 sd_config_write_same(sdkp); 3489 kfree(buffer); 3490 3491 /* 3492 * For a zoned drive, revalidating the zones can be done only once 3493 * the gendisk capacity is set. So if this fails, set back the gendisk 3494 * capacity to 0. 3495 */ 3496 if (sd_zbc_revalidate_zones(sdkp)) 3497 set_capacity_and_notify(disk, 0); 3498 3499 out: 3500 return 0; 3501 } 3502 3503 /** 3504 * sd_unlock_native_capacity - unlock native capacity 3505 * @disk: struct gendisk to set capacity for 3506 * 3507 * Block layer calls this function if it detects that partitions 3508 * on @disk reach beyond the end of the device. If the SCSI host 3509 * implements ->unlock_native_capacity() method, it's invoked to 3510 * give it a chance to adjust the device capacity. 3511 * 3512 * CONTEXT: 3513 * Defined by block layer. Might sleep. 3514 */ 3515 static void sd_unlock_native_capacity(struct gendisk *disk) 3516 { 3517 struct scsi_device *sdev = scsi_disk(disk)->device; 3518 3519 if (sdev->host->hostt->unlock_native_capacity) 3520 sdev->host->hostt->unlock_native_capacity(sdev); 3521 } 3522 3523 /** 3524 * sd_format_disk_name - format disk name 3525 * @prefix: name prefix - ie. "sd" for SCSI disks 3526 * @index: index of the disk to format name for 3527 * @buf: output buffer 3528 * @buflen: length of the output buffer 3529 * 3530 * SCSI disk names starts at sda. The 26th device is sdz and the 3531 * 27th is sdaa. The last one for two lettered suffix is sdzz 3532 * which is followed by sdaaa. 3533 * 3534 * This is basically 26 base counting with one extra 'nil' entry 3535 * at the beginning from the second digit on and can be 3536 * determined using similar method as 26 base conversion with the 3537 * index shifted -1 after each digit is computed. 3538 * 3539 * CONTEXT: 3540 * Don't care. 3541 * 3542 * RETURNS: 3543 * 0 on success, -errno on failure. 3544 */ 3545 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3546 { 3547 const int base = 'z' - 'a' + 1; 3548 char *begin = buf + strlen(prefix); 3549 char *end = buf + buflen; 3550 char *p; 3551 int unit; 3552 3553 p = end - 1; 3554 *p = '\0'; 3555 unit = base; 3556 do { 3557 if (p == begin) 3558 return -EINVAL; 3559 *--p = 'a' + (index % unit); 3560 index = (index / unit) - 1; 3561 } while (index >= 0); 3562 3563 memmove(begin, p, end - p); 3564 memcpy(buf, prefix, strlen(prefix)); 3565 3566 return 0; 3567 } 3568 3569 /** 3570 * sd_probe - called during driver initialization and whenever a 3571 * new scsi device is attached to the system. It is called once 3572 * for each scsi device (not just disks) present. 3573 * @dev: pointer to device object 3574 * 3575 * Returns 0 if successful (or not interested in this scsi device 3576 * (e.g. scanner)); 1 when there is an error. 3577 * 3578 * Note: this function is invoked from the scsi mid-level. 3579 * This function sets up the mapping between a given 3580 * <host,channel,id,lun> (found in sdp) and new device name 3581 * (e.g. /dev/sda). More precisely it is the block device major 3582 * and minor number that is chosen here. 3583 * 3584 * Assume sd_probe is not re-entrant (for time being) 3585 * Also think about sd_probe() and sd_remove() running coincidentally. 3586 **/ 3587 static int sd_probe(struct device *dev) 3588 { 3589 struct scsi_device *sdp = to_scsi_device(dev); 3590 struct scsi_disk *sdkp; 3591 struct gendisk *gd; 3592 int index; 3593 int error; 3594 3595 scsi_autopm_get_device(sdp); 3596 error = -ENODEV; 3597 if (sdp->type != TYPE_DISK && 3598 sdp->type != TYPE_ZBC && 3599 sdp->type != TYPE_MOD && 3600 sdp->type != TYPE_RBC) 3601 goto out; 3602 3603 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3604 sdev_printk(KERN_WARNING, sdp, 3605 "Unsupported ZBC host-managed device.\n"); 3606 goto out; 3607 } 3608 3609 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3610 "sd_probe\n")); 3611 3612 error = -ENOMEM; 3613 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3614 if (!sdkp) 3615 goto out; 3616 3617 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3618 &sd_bio_compl_lkclass); 3619 if (!gd) 3620 goto out_free; 3621 3622 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3623 if (index < 0) { 3624 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3625 goto out_put; 3626 } 3627 3628 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3629 if (error) { 3630 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3631 goto out_free_index; 3632 } 3633 3634 sdkp->device = sdp; 3635 sdkp->disk = gd; 3636 sdkp->index = index; 3637 sdkp->max_retries = SD_MAX_RETRIES; 3638 atomic_set(&sdkp->openers, 0); 3639 atomic_set(&sdkp->device->ioerr_cnt, 0); 3640 3641 if (!sdp->request_queue->rq_timeout) { 3642 if (sdp->type != TYPE_MOD) 3643 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3644 else 3645 blk_queue_rq_timeout(sdp->request_queue, 3646 SD_MOD_TIMEOUT); 3647 } 3648 3649 device_initialize(&sdkp->disk_dev); 3650 sdkp->disk_dev.parent = get_device(dev); 3651 sdkp->disk_dev.class = &sd_disk_class; 3652 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3653 3654 error = device_add(&sdkp->disk_dev); 3655 if (error) { 3656 put_device(&sdkp->disk_dev); 3657 goto out; 3658 } 3659 3660 dev_set_drvdata(dev, sdkp); 3661 3662 gd->major = sd_major((index & 0xf0) >> 4); 3663 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3664 gd->minors = SD_MINORS; 3665 3666 gd->fops = &sd_fops; 3667 gd->private_data = sdkp; 3668 3669 /* defaults, until the device tells us otherwise */ 3670 sdp->sector_size = 512; 3671 sdkp->capacity = 0; 3672 sdkp->media_present = 1; 3673 sdkp->write_prot = 0; 3674 sdkp->cache_override = 0; 3675 sdkp->WCE = 0; 3676 sdkp->RCD = 0; 3677 sdkp->ATO = 0; 3678 sdkp->first_scan = 1; 3679 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3680 3681 sd_revalidate_disk(gd); 3682 3683 if (sdp->removable) { 3684 gd->flags |= GENHD_FL_REMOVABLE; 3685 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3686 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3687 } 3688 3689 blk_pm_runtime_init(sdp->request_queue, dev); 3690 if (sdp->rpm_autosuspend) { 3691 pm_runtime_set_autosuspend_delay(dev, 3692 sdp->host->hostt->rpm_autosuspend_delay); 3693 } 3694 3695 error = device_add_disk(dev, gd, NULL); 3696 if (error) { 3697 put_device(&sdkp->disk_dev); 3698 put_disk(gd); 3699 goto out; 3700 } 3701 3702 if (sdkp->security) { 3703 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3704 if (sdkp->opal_dev) 3705 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3706 } 3707 3708 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3709 sdp->removable ? "removable " : ""); 3710 scsi_autopm_put_device(sdp); 3711 3712 return 0; 3713 3714 out_free_index: 3715 ida_free(&sd_index_ida, index); 3716 out_put: 3717 put_disk(gd); 3718 out_free: 3719 kfree(sdkp); 3720 out: 3721 scsi_autopm_put_device(sdp); 3722 return error; 3723 } 3724 3725 /** 3726 * sd_remove - called whenever a scsi disk (previously recognized by 3727 * sd_probe) is detached from the system. It is called (potentially 3728 * multiple times) during sd module unload. 3729 * @dev: pointer to device object 3730 * 3731 * Note: this function is invoked from the scsi mid-level. 3732 * This function potentially frees up a device name (e.g. /dev/sdc) 3733 * that could be re-used by a subsequent sd_probe(). 3734 * This function is not called when the built-in sd driver is "exit-ed". 3735 **/ 3736 static int sd_remove(struct device *dev) 3737 { 3738 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3739 3740 scsi_autopm_get_device(sdkp->device); 3741 3742 device_del(&sdkp->disk_dev); 3743 del_gendisk(sdkp->disk); 3744 if (!sdkp->suspended) 3745 sd_shutdown(dev); 3746 3747 put_disk(sdkp->disk); 3748 return 0; 3749 } 3750 3751 static void scsi_disk_release(struct device *dev) 3752 { 3753 struct scsi_disk *sdkp = to_scsi_disk(dev); 3754 3755 ida_free(&sd_index_ida, sdkp->index); 3756 sd_zbc_free_zone_info(sdkp); 3757 put_device(&sdkp->device->sdev_gendev); 3758 free_opal_dev(sdkp->opal_dev); 3759 3760 kfree(sdkp); 3761 } 3762 3763 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3764 { 3765 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3766 struct scsi_sense_hdr sshdr; 3767 const struct scsi_exec_args exec_args = { 3768 .sshdr = &sshdr, 3769 .req_flags = BLK_MQ_REQ_PM, 3770 }; 3771 struct scsi_device *sdp = sdkp->device; 3772 int res; 3773 3774 if (start) 3775 cmd[4] |= 1; /* START */ 3776 3777 if (sdp->start_stop_pwr_cond) 3778 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3779 3780 if (!scsi_device_online(sdp)) 3781 return -ENODEV; 3782 3783 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3784 sdkp->max_retries, &exec_args); 3785 if (res) { 3786 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3787 if (res > 0 && scsi_sense_valid(&sshdr)) { 3788 sd_print_sense_hdr(sdkp, &sshdr); 3789 /* 0x3a is medium not present */ 3790 if (sshdr.asc == 0x3a) 3791 res = 0; 3792 } 3793 } 3794 3795 /* SCSI error codes must not go to the generic layer */ 3796 if (res) 3797 return -EIO; 3798 3799 return 0; 3800 } 3801 3802 /* 3803 * Send a SYNCHRONIZE CACHE instruction down to the device through 3804 * the normal SCSI command structure. Wait for the command to 3805 * complete. 3806 */ 3807 static void sd_shutdown(struct device *dev) 3808 { 3809 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3810 3811 if (!sdkp) 3812 return; /* this can happen */ 3813 3814 if (pm_runtime_suspended(dev)) 3815 return; 3816 3817 if (sdkp->WCE && sdkp->media_present) { 3818 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3819 sd_sync_cache(sdkp, NULL); 3820 } 3821 3822 if (system_state != SYSTEM_RESTART && 3823 sdkp->device->manage_system_start_stop) { 3824 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3825 sd_start_stop_device(sdkp, 0); 3826 } 3827 } 3828 3829 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime) 3830 { 3831 return (sdev->manage_system_start_stop && !runtime) || 3832 (sdev->manage_runtime_start_stop && runtime); 3833 } 3834 3835 static int sd_suspend_common(struct device *dev, bool runtime) 3836 { 3837 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3838 struct scsi_sense_hdr sshdr; 3839 int ret = 0; 3840 3841 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3842 return 0; 3843 3844 if (sdkp->WCE && sdkp->media_present) { 3845 if (!sdkp->device->silence_suspend) 3846 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3847 ret = sd_sync_cache(sdkp, &sshdr); 3848 3849 if (ret) { 3850 /* ignore OFFLINE device */ 3851 if (ret == -ENODEV) 3852 return 0; 3853 3854 if (!scsi_sense_valid(&sshdr) || 3855 sshdr.sense_key != ILLEGAL_REQUEST) 3856 return ret; 3857 3858 /* 3859 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3860 * doesn't support sync. There's not much to do and 3861 * suspend shouldn't fail. 3862 */ 3863 ret = 0; 3864 } 3865 } 3866 3867 if (sd_do_start_stop(sdkp->device, runtime)) { 3868 if (!sdkp->device->silence_suspend) 3869 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3870 /* an error is not worth aborting a system sleep */ 3871 ret = sd_start_stop_device(sdkp, 0); 3872 if (!runtime) 3873 ret = 0; 3874 } 3875 3876 if (!ret) 3877 sdkp->suspended = true; 3878 3879 return ret; 3880 } 3881 3882 static int sd_suspend_system(struct device *dev) 3883 { 3884 if (pm_runtime_suspended(dev)) 3885 return 0; 3886 3887 return sd_suspend_common(dev, false); 3888 } 3889 3890 static int sd_suspend_runtime(struct device *dev) 3891 { 3892 return sd_suspend_common(dev, true); 3893 } 3894 3895 static int sd_resume(struct device *dev, bool runtime) 3896 { 3897 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3898 int ret = 0; 3899 3900 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3901 return 0; 3902 3903 if (!sd_do_start_stop(sdkp->device, runtime)) { 3904 sdkp->suspended = false; 3905 return 0; 3906 } 3907 3908 if (!sdkp->device->no_start_on_resume) { 3909 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3910 ret = sd_start_stop_device(sdkp, 1); 3911 } 3912 3913 if (!ret) { 3914 opal_unlock_from_suspend(sdkp->opal_dev); 3915 sdkp->suspended = false; 3916 } 3917 3918 return ret; 3919 } 3920 3921 static int sd_resume_system(struct device *dev) 3922 { 3923 if (pm_runtime_suspended(dev)) 3924 return 0; 3925 3926 return sd_resume(dev, false); 3927 } 3928 3929 static int sd_resume_runtime(struct device *dev) 3930 { 3931 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3932 struct scsi_device *sdp; 3933 3934 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3935 return 0; 3936 3937 sdp = sdkp->device; 3938 3939 if (sdp->ignore_media_change) { 3940 /* clear the device's sense data */ 3941 static const u8 cmd[10] = { REQUEST_SENSE }; 3942 const struct scsi_exec_args exec_args = { 3943 .req_flags = BLK_MQ_REQ_PM, 3944 }; 3945 3946 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3947 sdp->request_queue->rq_timeout, 1, 3948 &exec_args)) 3949 sd_printk(KERN_NOTICE, sdkp, 3950 "Failed to clear sense data\n"); 3951 } 3952 3953 return sd_resume(dev, true); 3954 } 3955 3956 static const struct dev_pm_ops sd_pm_ops = { 3957 .suspend = sd_suspend_system, 3958 .resume = sd_resume_system, 3959 .poweroff = sd_suspend_system, 3960 .restore = sd_resume_system, 3961 .runtime_suspend = sd_suspend_runtime, 3962 .runtime_resume = sd_resume_runtime, 3963 }; 3964 3965 static struct scsi_driver sd_template = { 3966 .gendrv = { 3967 .name = "sd", 3968 .owner = THIS_MODULE, 3969 .probe = sd_probe, 3970 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 3971 .remove = sd_remove, 3972 .shutdown = sd_shutdown, 3973 .pm = &sd_pm_ops, 3974 }, 3975 .rescan = sd_rescan, 3976 .init_command = sd_init_command, 3977 .uninit_command = sd_uninit_command, 3978 .done = sd_done, 3979 .eh_action = sd_eh_action, 3980 .eh_reset = sd_eh_reset, 3981 }; 3982 3983 /** 3984 * init_sd - entry point for this driver (both when built in or when 3985 * a module). 3986 * 3987 * Note: this function registers this driver with the scsi mid-level. 3988 **/ 3989 static int __init init_sd(void) 3990 { 3991 int majors = 0, i, err; 3992 3993 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3994 3995 for (i = 0; i < SD_MAJORS; i++) { 3996 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3997 continue; 3998 majors++; 3999 } 4000 4001 if (!majors) 4002 return -ENODEV; 4003 4004 err = class_register(&sd_disk_class); 4005 if (err) 4006 goto err_out; 4007 4008 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 4009 if (!sd_page_pool) { 4010 printk(KERN_ERR "sd: can't init discard page pool\n"); 4011 err = -ENOMEM; 4012 goto err_out_class; 4013 } 4014 4015 err = scsi_register_driver(&sd_template.gendrv); 4016 if (err) 4017 goto err_out_driver; 4018 4019 return 0; 4020 4021 err_out_driver: 4022 mempool_destroy(sd_page_pool); 4023 err_out_class: 4024 class_unregister(&sd_disk_class); 4025 err_out: 4026 for (i = 0; i < SD_MAJORS; i++) 4027 unregister_blkdev(sd_major(i), "sd"); 4028 return err; 4029 } 4030 4031 /** 4032 * exit_sd - exit point for this driver (when it is a module). 4033 * 4034 * Note: this function unregisters this driver from the scsi mid-level. 4035 **/ 4036 static void __exit exit_sd(void) 4037 { 4038 int i; 4039 4040 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 4041 4042 scsi_unregister_driver(&sd_template.gendrv); 4043 mempool_destroy(sd_page_pool); 4044 4045 class_unregister(&sd_disk_class); 4046 4047 for (i = 0; i < SD_MAJORS; i++) 4048 unregister_blkdev(sd_major(i), "sd"); 4049 } 4050 4051 module_init(init_sd); 4052 module_exit(exit_sd); 4053 4054 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 4055 { 4056 scsi_print_sense_hdr(sdkp->device, 4057 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 4058 } 4059 4060 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 4061 { 4062 const char *hb_string = scsi_hostbyte_string(result); 4063 4064 if (hb_string) 4065 sd_printk(KERN_INFO, sdkp, 4066 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 4067 hb_string ? hb_string : "invalid", 4068 "DRIVER_OK"); 4069 else 4070 sd_printk(KERN_INFO, sdkp, 4071 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 4072 msg, host_byte(result), "DRIVER_OK"); 4073 } 4074