1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static int sd_probe(struct device *); 107 static int sd_remove(struct device *); 108 static void sd_shutdown(struct device *); 109 static int sd_suspend_system(struct device *); 110 static int sd_suspend_runtime(struct device *); 111 static int sd_resume_system(struct device *); 112 static int sd_resume_runtime(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 static mempool_t *sd_page_pool; 125 static struct lock_class_key sd_bio_compl_lkclass; 126 127 static const char *sd_cache_types[] = { 128 "write through", "none", "write back", 129 "write back, no read (daft)" 130 }; 131 132 static void sd_set_flush_flag(struct scsi_disk *sdkp) 133 { 134 bool wc = false, fua = false; 135 136 if (sdkp->WCE) { 137 wc = true; 138 if (sdkp->DPOFUA) 139 fua = true; 140 } 141 142 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 143 } 144 145 static ssize_t 146 cache_type_store(struct device *dev, struct device_attribute *attr, 147 const char *buf, size_t count) 148 { 149 int ct, rcd, wce, sp; 150 struct scsi_disk *sdkp = to_scsi_disk(dev); 151 struct scsi_device *sdp = sdkp->device; 152 char buffer[64]; 153 char *buffer_data; 154 struct scsi_mode_data data; 155 struct scsi_sense_hdr sshdr; 156 static const char temp[] = "temporary "; 157 int len; 158 159 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 160 /* no cache control on RBC devices; theoretically they 161 * can do it, but there's probably so many exceptions 162 * it's not worth the risk */ 163 return -EINVAL; 164 165 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 166 buf += sizeof(temp) - 1; 167 sdkp->cache_override = 1; 168 } else { 169 sdkp->cache_override = 0; 170 } 171 172 ct = sysfs_match_string(sd_cache_types, buf); 173 if (ct < 0) 174 return -EINVAL; 175 176 rcd = ct & 0x01 ? 1 : 0; 177 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 178 179 if (sdkp->cache_override) { 180 sdkp->WCE = wce; 181 sdkp->RCD = rcd; 182 sd_set_flush_flag(sdkp); 183 return count; 184 } 185 186 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 187 sdkp->max_retries, &data, NULL)) 188 return -EINVAL; 189 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 190 data.block_descriptor_length); 191 buffer_data = buffer + data.header_length + 192 data.block_descriptor_length; 193 buffer_data[2] &= ~0x05; 194 buffer_data[2] |= wce << 2 | rcd; 195 sp = buffer_data[0] & 0x80 ? 1 : 0; 196 buffer_data[0] &= ~0x80; 197 198 /* 199 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 200 * received mode parameter buffer before doing MODE SELECT. 201 */ 202 data.device_specific = 0; 203 204 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 205 sdkp->max_retries, &data, &sshdr)) { 206 if (scsi_sense_valid(&sshdr)) 207 sd_print_sense_hdr(sdkp, &sshdr); 208 return -EINVAL; 209 } 210 sd_revalidate_disk(sdkp->disk); 211 return count; 212 } 213 214 static ssize_t 215 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 216 char *buf) 217 { 218 struct scsi_disk *sdkp = to_scsi_disk(dev); 219 struct scsi_device *sdp = sdkp->device; 220 221 return sprintf(buf, "%u\n", sdp->manage_start_stop); 222 } 223 224 static ssize_t 225 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 226 const char *buf, size_t count) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 bool v; 231 232 if (!capable(CAP_SYS_ADMIN)) 233 return -EACCES; 234 235 if (kstrtobool(buf, &v)) 236 return -EINVAL; 237 238 sdp->manage_start_stop = v; 239 240 return count; 241 } 242 static DEVICE_ATTR_RW(manage_start_stop); 243 244 static ssize_t 245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 246 { 247 struct scsi_disk *sdkp = to_scsi_disk(dev); 248 249 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 250 } 251 252 static ssize_t 253 allow_restart_store(struct device *dev, struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 bool v; 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 struct scsi_device *sdp = sdkp->device; 259 260 if (!capable(CAP_SYS_ADMIN)) 261 return -EACCES; 262 263 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 264 return -EINVAL; 265 266 if (kstrtobool(buf, &v)) 267 return -EINVAL; 268 269 sdp->allow_restart = v; 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return sprintf(buf, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return sprintf(buf, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return sprintf(buf, "none\n"); 344 345 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return sprintf(buf, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 /* sysfs_match_string() requires dense arrays */ 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 int mode; 394 395 if (!capable(CAP_SYS_ADMIN)) 396 return -EACCES; 397 398 if (sd_is_zoned(sdkp)) { 399 sd_config_discard(sdkp, SD_LBP_DISABLE); 400 return count; 401 } 402 403 if (sdp->type != TYPE_DISK) 404 return -EINVAL; 405 406 mode = sysfs_match_string(lbp_mode, buf); 407 if (mode < 0) 408 return -EINVAL; 409 410 sd_config_discard(sdkp, mode); 411 412 return count; 413 } 414 static DEVICE_ATTR_RW(provisioning_mode); 415 416 /* sysfs_match_string() requires dense arrays */ 417 static const char *zeroing_mode[] = { 418 [SD_ZERO_WRITE] = "write", 419 [SD_ZERO_WS] = "writesame", 420 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 421 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 422 }; 423 424 static ssize_t 425 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 426 char *buf) 427 { 428 struct scsi_disk *sdkp = to_scsi_disk(dev); 429 430 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 431 } 432 433 static ssize_t 434 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 435 const char *buf, size_t count) 436 { 437 struct scsi_disk *sdkp = to_scsi_disk(dev); 438 int mode; 439 440 if (!capable(CAP_SYS_ADMIN)) 441 return -EACCES; 442 443 mode = sysfs_match_string(zeroing_mode, buf); 444 if (mode < 0) 445 return -EINVAL; 446 447 sdkp->zeroing_mode = mode; 448 449 return count; 450 } 451 static DEVICE_ATTR_RW(zeroing_mode); 452 453 static ssize_t 454 max_medium_access_timeouts_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 struct scsi_disk *sdkp = to_scsi_disk(dev); 458 459 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 460 } 461 462 static ssize_t 463 max_medium_access_timeouts_store(struct device *dev, 464 struct device_attribute *attr, const char *buf, 465 size_t count) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 int err; 469 470 if (!capable(CAP_SYS_ADMIN)) 471 return -EACCES; 472 473 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 474 475 return err ? err : count; 476 } 477 static DEVICE_ATTR_RW(max_medium_access_timeouts); 478 479 static ssize_t 480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 481 char *buf) 482 { 483 struct scsi_disk *sdkp = to_scsi_disk(dev); 484 485 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 486 } 487 488 static ssize_t 489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 490 const char *buf, size_t count) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 struct scsi_device *sdp = sdkp->device; 494 unsigned long max; 495 int err; 496 497 if (!capable(CAP_SYS_ADMIN)) 498 return -EACCES; 499 500 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 501 return -EINVAL; 502 503 err = kstrtoul(buf, 10, &max); 504 505 if (err) 506 return err; 507 508 if (max == 0) 509 sdp->no_write_same = 1; 510 else if (max <= SD_MAX_WS16_BLOCKS) { 511 sdp->no_write_same = 0; 512 sdkp->max_ws_blocks = max; 513 } 514 515 sd_config_write_same(sdkp); 516 517 return count; 518 } 519 static DEVICE_ATTR_RW(max_write_same_blocks); 520 521 static ssize_t 522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 523 { 524 struct scsi_disk *sdkp = to_scsi_disk(dev); 525 526 if (sdkp->device->type == TYPE_ZBC) 527 return sprintf(buf, "host-managed\n"); 528 if (sdkp->zoned == 1) 529 return sprintf(buf, "host-aware\n"); 530 if (sdkp->zoned == 2) 531 return sprintf(buf, "drive-managed\n"); 532 return sprintf(buf, "none\n"); 533 } 534 static DEVICE_ATTR_RO(zoned_cap); 535 536 static ssize_t 537 max_retries_store(struct device *dev, struct device_attribute *attr, 538 const char *buf, size_t count) 539 { 540 struct scsi_disk *sdkp = to_scsi_disk(dev); 541 struct scsi_device *sdev = sdkp->device; 542 int retries, err; 543 544 err = kstrtoint(buf, 10, &retries); 545 if (err) 546 return err; 547 548 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 549 sdkp->max_retries = retries; 550 return count; 551 } 552 553 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 554 SD_MAX_RETRIES); 555 return -EINVAL; 556 } 557 558 static ssize_t 559 max_retries_show(struct device *dev, struct device_attribute *attr, 560 char *buf) 561 { 562 struct scsi_disk *sdkp = to_scsi_disk(dev); 563 564 return sprintf(buf, "%d\n", sdkp->max_retries); 565 } 566 567 static DEVICE_ATTR_RW(max_retries); 568 569 static struct attribute *sd_disk_attrs[] = { 570 &dev_attr_cache_type.attr, 571 &dev_attr_FUA.attr, 572 &dev_attr_allow_restart.attr, 573 &dev_attr_manage_start_stop.attr, 574 &dev_attr_protection_type.attr, 575 &dev_attr_protection_mode.attr, 576 &dev_attr_app_tag_own.attr, 577 &dev_attr_thin_provisioning.attr, 578 &dev_attr_provisioning_mode.attr, 579 &dev_attr_zeroing_mode.attr, 580 &dev_attr_max_write_same_blocks.attr, 581 &dev_attr_max_medium_access_timeouts.attr, 582 &dev_attr_zoned_cap.attr, 583 &dev_attr_max_retries.attr, 584 NULL, 585 }; 586 ATTRIBUTE_GROUPS(sd_disk); 587 588 static struct class sd_disk_class = { 589 .name = "scsi_disk", 590 .dev_release = scsi_disk_release, 591 .dev_groups = sd_disk_groups, 592 }; 593 594 static const struct dev_pm_ops sd_pm_ops = { 595 .suspend = sd_suspend_system, 596 .resume = sd_resume_system, 597 .poweroff = sd_suspend_system, 598 .restore = sd_resume_system, 599 .runtime_suspend = sd_suspend_runtime, 600 .runtime_resume = sd_resume_runtime, 601 }; 602 603 static struct scsi_driver sd_template = { 604 .gendrv = { 605 .name = "sd", 606 .owner = THIS_MODULE, 607 .probe = sd_probe, 608 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 609 .remove = sd_remove, 610 .shutdown = sd_shutdown, 611 .pm = &sd_pm_ops, 612 }, 613 .rescan = sd_rescan, 614 .init_command = sd_init_command, 615 .uninit_command = sd_uninit_command, 616 .done = sd_done, 617 .eh_action = sd_eh_action, 618 .eh_reset = sd_eh_reset, 619 }; 620 621 /* 622 * Don't request a new module, as that could deadlock in multipath 623 * environment. 624 */ 625 static void sd_default_probe(dev_t devt) 626 { 627 } 628 629 /* 630 * Device no to disk mapping: 631 * 632 * major disc2 disc p1 633 * |............|.............|....|....| <- dev_t 634 * 31 20 19 8 7 4 3 0 635 * 636 * Inside a major, we have 16k disks, however mapped non- 637 * contiguously. The first 16 disks are for major0, the next 638 * ones with major1, ... Disk 256 is for major0 again, disk 272 639 * for major1, ... 640 * As we stay compatible with our numbering scheme, we can reuse 641 * the well-know SCSI majors 8, 65--71, 136--143. 642 */ 643 static int sd_major(int major_idx) 644 { 645 switch (major_idx) { 646 case 0: 647 return SCSI_DISK0_MAJOR; 648 case 1 ... 7: 649 return SCSI_DISK1_MAJOR + major_idx - 1; 650 case 8 ... 15: 651 return SCSI_DISK8_MAJOR + major_idx - 8; 652 default: 653 BUG(); 654 return 0; /* shut up gcc */ 655 } 656 } 657 658 #ifdef CONFIG_BLK_SED_OPAL 659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 660 size_t len, bool send) 661 { 662 struct scsi_disk *sdkp = data; 663 struct scsi_device *sdev = sdkp->device; 664 u8 cdb[12] = { 0, }; 665 const struct scsi_exec_args exec_args = { 666 .req_flags = BLK_MQ_REQ_PM, 667 }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 676 buffer, len, SD_TIMEOUT, sdkp->max_retries, 677 &exec_args); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 } 834 835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len) 836 { 837 struct page *page; 838 839 page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 840 if (!page) 841 return NULL; 842 clear_highpage(page); 843 bvec_set_page(&rq->special_vec, page, data_len, 0); 844 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 845 return bvec_virt(&rq->special_vec); 846 } 847 848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 849 { 850 struct scsi_device *sdp = cmd->device; 851 struct request *rq = scsi_cmd_to_rq(cmd); 852 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 853 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 854 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 855 unsigned int data_len = 24; 856 char *buf; 857 858 buf = sd_set_special_bvec(rq, data_len); 859 if (!buf) 860 return BLK_STS_RESOURCE; 861 862 cmd->cmd_len = 10; 863 cmd->cmnd[0] = UNMAP; 864 cmd->cmnd[8] = 24; 865 866 put_unaligned_be16(6 + 16, &buf[0]); 867 put_unaligned_be16(16, &buf[2]); 868 put_unaligned_be64(lba, &buf[8]); 869 put_unaligned_be32(nr_blocks, &buf[16]); 870 871 cmd->allowed = sdkp->max_retries; 872 cmd->transfersize = data_len; 873 rq->timeout = SD_TIMEOUT; 874 875 return scsi_alloc_sgtables(cmd); 876 } 877 878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 879 bool unmap) 880 { 881 struct scsi_device *sdp = cmd->device; 882 struct request *rq = scsi_cmd_to_rq(cmd); 883 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 884 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 885 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 886 u32 data_len = sdp->sector_size; 887 888 if (!sd_set_special_bvec(rq, data_len)) 889 return BLK_STS_RESOURCE; 890 891 cmd->cmd_len = 16; 892 cmd->cmnd[0] = WRITE_SAME_16; 893 if (unmap) 894 cmd->cmnd[1] = 0x8; /* UNMAP */ 895 put_unaligned_be64(lba, &cmd->cmnd[2]); 896 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 897 898 cmd->allowed = sdkp->max_retries; 899 cmd->transfersize = data_len; 900 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 901 902 return scsi_alloc_sgtables(cmd); 903 } 904 905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 906 bool unmap) 907 { 908 struct scsi_device *sdp = cmd->device; 909 struct request *rq = scsi_cmd_to_rq(cmd); 910 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 911 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 912 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 913 u32 data_len = sdp->sector_size; 914 915 if (!sd_set_special_bvec(rq, data_len)) 916 return BLK_STS_RESOURCE; 917 918 cmd->cmd_len = 10; 919 cmd->cmnd[0] = WRITE_SAME; 920 if (unmap) 921 cmd->cmnd[1] = 0x8; /* UNMAP */ 922 put_unaligned_be32(lba, &cmd->cmnd[2]); 923 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 924 925 cmd->allowed = sdkp->max_retries; 926 cmd->transfersize = data_len; 927 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 928 929 return scsi_alloc_sgtables(cmd); 930 } 931 932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 933 { 934 struct request *rq = scsi_cmd_to_rq(cmd); 935 struct scsi_device *sdp = cmd->device; 936 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 937 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 938 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 939 940 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 941 switch (sdkp->zeroing_mode) { 942 case SD_ZERO_WS16_UNMAP: 943 return sd_setup_write_same16_cmnd(cmd, true); 944 case SD_ZERO_WS10_UNMAP: 945 return sd_setup_write_same10_cmnd(cmd, true); 946 } 947 } 948 949 if (sdp->no_write_same) { 950 rq->rq_flags |= RQF_QUIET; 951 return BLK_STS_TARGET; 952 } 953 954 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 955 return sd_setup_write_same16_cmnd(cmd, false); 956 957 return sd_setup_write_same10_cmnd(cmd, false); 958 } 959 960 static void sd_config_write_same(struct scsi_disk *sdkp) 961 { 962 struct request_queue *q = sdkp->disk->queue; 963 unsigned int logical_block_size = sdkp->device->sector_size; 964 965 if (sdkp->device->no_write_same) { 966 sdkp->max_ws_blocks = 0; 967 goto out; 968 } 969 970 /* Some devices can not handle block counts above 0xffff despite 971 * supporting WRITE SAME(16). Consequently we default to 64k 972 * blocks per I/O unless the device explicitly advertises a 973 * bigger limit. 974 */ 975 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 976 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 977 (u32)SD_MAX_WS16_BLOCKS); 978 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 979 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 980 (u32)SD_MAX_WS10_BLOCKS); 981 else { 982 sdkp->device->no_write_same = 1; 983 sdkp->max_ws_blocks = 0; 984 } 985 986 if (sdkp->lbprz && sdkp->lbpws) 987 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 988 else if (sdkp->lbprz && sdkp->lbpws10) 989 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 990 else if (sdkp->max_ws_blocks) 991 sdkp->zeroing_mode = SD_ZERO_WS; 992 else 993 sdkp->zeroing_mode = SD_ZERO_WRITE; 994 995 if (sdkp->max_ws_blocks && 996 sdkp->physical_block_size > logical_block_size) { 997 /* 998 * Reporting a maximum number of blocks that is not aligned 999 * on the device physical size would cause a large write same 1000 * request to be split into physically unaligned chunks by 1001 * __blkdev_issue_write_zeroes() even if the caller of this 1002 * functions took care to align the large request. So make sure 1003 * the maximum reported is aligned to the device physical block 1004 * size. This is only an optional optimization for regular 1005 * disks, but this is mandatory to avoid failure of large write 1006 * same requests directed at sequential write required zones of 1007 * host-managed ZBC disks. 1008 */ 1009 sdkp->max_ws_blocks = 1010 round_down(sdkp->max_ws_blocks, 1011 bytes_to_logical(sdkp->device, 1012 sdkp->physical_block_size)); 1013 } 1014 1015 out: 1016 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1017 (logical_block_size >> 9)); 1018 } 1019 1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1021 { 1022 struct request *rq = scsi_cmd_to_rq(cmd); 1023 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1024 1025 /* flush requests don't perform I/O, zero the S/G table */ 1026 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1027 1028 if (cmd->device->use_16_for_sync) { 1029 cmd->cmnd[0] = SYNCHRONIZE_CACHE_16; 1030 cmd->cmd_len = 16; 1031 } else { 1032 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1033 cmd->cmd_len = 10; 1034 } 1035 cmd->transfersize = 0; 1036 cmd->allowed = sdkp->max_retries; 1037 1038 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1039 return BLK_STS_OK; 1040 } 1041 1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1043 sector_t lba, unsigned int nr_blocks, 1044 unsigned char flags) 1045 { 1046 cmd->cmd_len = SD_EXT_CDB_SIZE; 1047 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1048 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1049 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1050 cmd->cmnd[10] = flags; 1051 put_unaligned_be64(lba, &cmd->cmnd[12]); 1052 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1053 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1054 1055 return BLK_STS_OK; 1056 } 1057 1058 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1059 sector_t lba, unsigned int nr_blocks, 1060 unsigned char flags) 1061 { 1062 cmd->cmd_len = 16; 1063 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1064 cmd->cmnd[1] = flags; 1065 cmd->cmnd[14] = 0; 1066 cmd->cmnd[15] = 0; 1067 put_unaligned_be64(lba, &cmd->cmnd[2]); 1068 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1069 1070 return BLK_STS_OK; 1071 } 1072 1073 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1074 sector_t lba, unsigned int nr_blocks, 1075 unsigned char flags) 1076 { 1077 cmd->cmd_len = 10; 1078 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1079 cmd->cmnd[1] = flags; 1080 cmd->cmnd[6] = 0; 1081 cmd->cmnd[9] = 0; 1082 put_unaligned_be32(lba, &cmd->cmnd[2]); 1083 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1084 1085 return BLK_STS_OK; 1086 } 1087 1088 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1089 sector_t lba, unsigned int nr_blocks, 1090 unsigned char flags) 1091 { 1092 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1093 if (WARN_ON_ONCE(nr_blocks == 0)) 1094 return BLK_STS_IOERR; 1095 1096 if (unlikely(flags & 0x8)) { 1097 /* 1098 * This happens only if this drive failed 10byte rw 1099 * command with ILLEGAL_REQUEST during operation and 1100 * thus turned off use_10_for_rw. 1101 */ 1102 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1103 return BLK_STS_IOERR; 1104 } 1105 1106 cmd->cmd_len = 6; 1107 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1108 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1109 cmd->cmnd[2] = (lba >> 8) & 0xff; 1110 cmd->cmnd[3] = lba & 0xff; 1111 cmd->cmnd[4] = nr_blocks; 1112 cmd->cmnd[5] = 0; 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1118 { 1119 struct request *rq = scsi_cmd_to_rq(cmd); 1120 struct scsi_device *sdp = cmd->device; 1121 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1122 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1123 sector_t threshold; 1124 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1125 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1126 bool write = rq_data_dir(rq) == WRITE; 1127 unsigned char protect, fua; 1128 blk_status_t ret; 1129 unsigned int dif; 1130 bool dix; 1131 1132 ret = scsi_alloc_sgtables(cmd); 1133 if (ret != BLK_STS_OK) 1134 return ret; 1135 1136 ret = BLK_STS_IOERR; 1137 if (!scsi_device_online(sdp) || sdp->changed) { 1138 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1139 goto fail; 1140 } 1141 1142 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1143 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1144 goto fail; 1145 } 1146 1147 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1148 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1149 goto fail; 1150 } 1151 1152 /* 1153 * Some SD card readers can't handle accesses which touch the 1154 * last one or two logical blocks. Split accesses as needed. 1155 */ 1156 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1157 1158 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1159 if (lba < threshold) { 1160 /* Access up to the threshold but not beyond */ 1161 nr_blocks = threshold - lba; 1162 } else { 1163 /* Access only a single logical block */ 1164 nr_blocks = 1; 1165 } 1166 } 1167 1168 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1169 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1170 if (ret) 1171 goto fail; 1172 } 1173 1174 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1175 dix = scsi_prot_sg_count(cmd); 1176 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1177 1178 if (dif || dix) 1179 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1180 else 1181 protect = 0; 1182 1183 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1184 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1185 protect | fua); 1186 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1187 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1188 protect | fua); 1189 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1190 sdp->use_10_for_rw || protect) { 1191 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1192 protect | fua); 1193 } else { 1194 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1195 protect | fua); 1196 } 1197 1198 if (unlikely(ret != BLK_STS_OK)) 1199 goto fail; 1200 1201 /* 1202 * We shouldn't disconnect in the middle of a sector, so with a dumb 1203 * host adapter, it's safe to assume that we can at least transfer 1204 * this many bytes between each connect / disconnect. 1205 */ 1206 cmd->transfersize = sdp->sector_size; 1207 cmd->underflow = nr_blocks << 9; 1208 cmd->allowed = sdkp->max_retries; 1209 cmd->sdb.length = nr_blocks * sdp->sector_size; 1210 1211 SCSI_LOG_HLQUEUE(1, 1212 scmd_printk(KERN_INFO, cmd, 1213 "%s: block=%llu, count=%d\n", __func__, 1214 (unsigned long long)blk_rq_pos(rq), 1215 blk_rq_sectors(rq))); 1216 SCSI_LOG_HLQUEUE(2, 1217 scmd_printk(KERN_INFO, cmd, 1218 "%s %d/%u 512 byte blocks.\n", 1219 write ? "writing" : "reading", nr_blocks, 1220 blk_rq_sectors(rq))); 1221 1222 /* 1223 * This indicates that the command is ready from our end to be queued. 1224 */ 1225 return BLK_STS_OK; 1226 fail: 1227 scsi_free_sgtables(cmd); 1228 return ret; 1229 } 1230 1231 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1232 { 1233 struct request *rq = scsi_cmd_to_rq(cmd); 1234 1235 switch (req_op(rq)) { 1236 case REQ_OP_DISCARD: 1237 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1238 case SD_LBP_UNMAP: 1239 return sd_setup_unmap_cmnd(cmd); 1240 case SD_LBP_WS16: 1241 return sd_setup_write_same16_cmnd(cmd, true); 1242 case SD_LBP_WS10: 1243 return sd_setup_write_same10_cmnd(cmd, true); 1244 case SD_LBP_ZERO: 1245 return sd_setup_write_same10_cmnd(cmd, false); 1246 default: 1247 return BLK_STS_TARGET; 1248 } 1249 case REQ_OP_WRITE_ZEROES: 1250 return sd_setup_write_zeroes_cmnd(cmd); 1251 case REQ_OP_FLUSH: 1252 return sd_setup_flush_cmnd(cmd); 1253 case REQ_OP_READ: 1254 case REQ_OP_WRITE: 1255 case REQ_OP_ZONE_APPEND: 1256 return sd_setup_read_write_cmnd(cmd); 1257 case REQ_OP_ZONE_RESET: 1258 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1259 false); 1260 case REQ_OP_ZONE_RESET_ALL: 1261 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1262 true); 1263 case REQ_OP_ZONE_OPEN: 1264 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1265 case REQ_OP_ZONE_CLOSE: 1266 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1267 case REQ_OP_ZONE_FINISH: 1268 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1269 default: 1270 WARN_ON_ONCE(1); 1271 return BLK_STS_NOTSUPP; 1272 } 1273 } 1274 1275 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1276 { 1277 struct request *rq = scsi_cmd_to_rq(SCpnt); 1278 1279 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1280 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1281 } 1282 1283 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp) 1284 { 1285 if (sdkp->device->removable || sdkp->write_prot) { 1286 if (disk_check_media_change(disk)) 1287 return true; 1288 } 1289 1290 /* 1291 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1292 * nothing to do with partitions, BLKRRPART is used to force a full 1293 * revalidate after things like a format for historical reasons. 1294 */ 1295 return test_bit(GD_NEED_PART_SCAN, &disk->state); 1296 } 1297 1298 /** 1299 * sd_open - open a scsi disk device 1300 * @disk: disk to open 1301 * @mode: FMODE_* mask 1302 * 1303 * Returns 0 if successful. Returns a negated errno value in case 1304 * of error. 1305 * 1306 * Note: This can be called from a user context (e.g. fsck(1) ) 1307 * or from within the kernel (e.g. as a result of a mount(1) ). 1308 * In the latter case @inode and @filp carry an abridged amount 1309 * of information as noted above. 1310 * 1311 * Locking: called with disk->open_mutex held. 1312 **/ 1313 static int sd_open(struct gendisk *disk, fmode_t mode) 1314 { 1315 struct scsi_disk *sdkp = scsi_disk(disk); 1316 struct scsi_device *sdev = sdkp->device; 1317 int retval; 1318 1319 if (scsi_device_get(sdev)) 1320 return -ENXIO; 1321 1322 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1323 1324 /* 1325 * If the device is in error recovery, wait until it is done. 1326 * If the device is offline, then disallow any access to it. 1327 */ 1328 retval = -ENXIO; 1329 if (!scsi_block_when_processing_errors(sdev)) 1330 goto error_out; 1331 1332 if (sd_need_revalidate(disk, sdkp)) 1333 sd_revalidate_disk(disk); 1334 1335 /* 1336 * If the drive is empty, just let the open fail. 1337 */ 1338 retval = -ENOMEDIUM; 1339 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1340 goto error_out; 1341 1342 /* 1343 * If the device has the write protect tab set, have the open fail 1344 * if the user expects to be able to write to the thing. 1345 */ 1346 retval = -EROFS; 1347 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1348 goto error_out; 1349 1350 /* 1351 * It is possible that the disk changing stuff resulted in 1352 * the device being taken offline. If this is the case, 1353 * report this to the user, and don't pretend that the 1354 * open actually succeeded. 1355 */ 1356 retval = -ENXIO; 1357 if (!scsi_device_online(sdev)) 1358 goto error_out; 1359 1360 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1361 if (scsi_block_when_processing_errors(sdev)) 1362 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1363 } 1364 1365 return 0; 1366 1367 error_out: 1368 scsi_device_put(sdev); 1369 return retval; 1370 } 1371 1372 /** 1373 * sd_release - invoked when the (last) close(2) is called on this 1374 * scsi disk. 1375 * @disk: disk to release 1376 * 1377 * Returns 0. 1378 * 1379 * Note: may block (uninterruptible) if error recovery is underway 1380 * on this disk. 1381 * 1382 * Locking: called with bdev->bd_disk->open_mutex held. 1383 **/ 1384 static void sd_release(struct gendisk *disk) 1385 { 1386 struct scsi_disk *sdkp = scsi_disk(disk); 1387 struct scsi_device *sdev = sdkp->device; 1388 1389 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1390 1391 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1392 if (scsi_block_when_processing_errors(sdev)) 1393 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1394 } 1395 1396 scsi_device_put(sdev); 1397 } 1398 1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1400 { 1401 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1402 struct scsi_device *sdp = sdkp->device; 1403 struct Scsi_Host *host = sdp->host; 1404 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1405 int diskinfo[4]; 1406 1407 /* default to most commonly used values */ 1408 diskinfo[0] = 0x40; /* 1 << 6 */ 1409 diskinfo[1] = 0x20; /* 1 << 5 */ 1410 diskinfo[2] = capacity >> 11; 1411 1412 /* override with calculated, extended default, or driver values */ 1413 if (host->hostt->bios_param) 1414 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1415 else 1416 scsicam_bios_param(bdev, capacity, diskinfo); 1417 1418 geo->heads = diskinfo[0]; 1419 geo->sectors = diskinfo[1]; 1420 geo->cylinders = diskinfo[2]; 1421 return 0; 1422 } 1423 1424 /** 1425 * sd_ioctl - process an ioctl 1426 * @bdev: target block device 1427 * @mode: FMODE_* mask 1428 * @cmd: ioctl command number 1429 * @arg: this is third argument given to ioctl(2) system call. 1430 * Often contains a pointer. 1431 * 1432 * Returns 0 if successful (some ioctls return positive numbers on 1433 * success as well). Returns a negated errno value in case of error. 1434 * 1435 * Note: most ioctls are forward onto the block subsystem or further 1436 * down in the scsi subsystem. 1437 **/ 1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1439 unsigned int cmd, unsigned long arg) 1440 { 1441 struct gendisk *disk = bdev->bd_disk; 1442 struct scsi_disk *sdkp = scsi_disk(disk); 1443 struct scsi_device *sdp = sdkp->device; 1444 void __user *p = (void __user *)arg; 1445 int error; 1446 1447 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1448 "cmd=0x%x\n", disk->disk_name, cmd)); 1449 1450 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1451 return -ENOIOCTLCMD; 1452 1453 /* 1454 * If we are in the middle of error recovery, don't let anyone 1455 * else try and use this device. Also, if error recovery fails, it 1456 * may try and take the device offline, in which case all further 1457 * access to the device is prohibited. 1458 */ 1459 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1460 (mode & FMODE_NDELAY) != 0); 1461 if (error) 1462 return error; 1463 1464 if (is_sed_ioctl(cmd)) 1465 return sed_ioctl(sdkp->opal_dev, cmd, p); 1466 return scsi_ioctl(sdp, mode & FMODE_WRITE, cmd, p); 1467 } 1468 1469 static void set_media_not_present(struct scsi_disk *sdkp) 1470 { 1471 if (sdkp->media_present) 1472 sdkp->device->changed = 1; 1473 1474 if (sdkp->device->removable) { 1475 sdkp->media_present = 0; 1476 sdkp->capacity = 0; 1477 } 1478 } 1479 1480 static int media_not_present(struct scsi_disk *sdkp, 1481 struct scsi_sense_hdr *sshdr) 1482 { 1483 if (!scsi_sense_valid(sshdr)) 1484 return 0; 1485 1486 /* not invoked for commands that could return deferred errors */ 1487 switch (sshdr->sense_key) { 1488 case UNIT_ATTENTION: 1489 case NOT_READY: 1490 /* medium not present */ 1491 if (sshdr->asc == 0x3A) { 1492 set_media_not_present(sdkp); 1493 return 1; 1494 } 1495 } 1496 return 0; 1497 } 1498 1499 /** 1500 * sd_check_events - check media events 1501 * @disk: kernel device descriptor 1502 * @clearing: disk events currently being cleared 1503 * 1504 * Returns mask of DISK_EVENT_*. 1505 * 1506 * Note: this function is invoked from the block subsystem. 1507 **/ 1508 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1509 { 1510 struct scsi_disk *sdkp = disk->private_data; 1511 struct scsi_device *sdp; 1512 int retval; 1513 bool disk_changed; 1514 1515 if (!sdkp) 1516 return 0; 1517 1518 sdp = sdkp->device; 1519 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1520 1521 /* 1522 * If the device is offline, don't send any commands - just pretend as 1523 * if the command failed. If the device ever comes back online, we 1524 * can deal with it then. It is only because of unrecoverable errors 1525 * that we would ever take a device offline in the first place. 1526 */ 1527 if (!scsi_device_online(sdp)) { 1528 set_media_not_present(sdkp); 1529 goto out; 1530 } 1531 1532 /* 1533 * Using TEST_UNIT_READY enables differentiation between drive with 1534 * no cartridge loaded - NOT READY, drive with changed cartridge - 1535 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1536 * 1537 * Drives that auto spin down. eg iomega jaz 1G, will be started 1538 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1539 * sd_revalidate() is called. 1540 */ 1541 if (scsi_block_when_processing_errors(sdp)) { 1542 struct scsi_sense_hdr sshdr = { 0, }; 1543 1544 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1545 &sshdr); 1546 1547 /* failed to execute TUR, assume media not present */ 1548 if (retval < 0 || host_byte(retval)) { 1549 set_media_not_present(sdkp); 1550 goto out; 1551 } 1552 1553 if (media_not_present(sdkp, &sshdr)) 1554 goto out; 1555 } 1556 1557 /* 1558 * For removable scsi disk we have to recognise the presence 1559 * of a disk in the drive. 1560 */ 1561 if (!sdkp->media_present) 1562 sdp->changed = 1; 1563 sdkp->media_present = 1; 1564 out: 1565 /* 1566 * sdp->changed is set under the following conditions: 1567 * 1568 * Medium present state has changed in either direction. 1569 * Device has indicated UNIT_ATTENTION. 1570 */ 1571 disk_changed = sdp->changed; 1572 sdp->changed = 0; 1573 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1574 } 1575 1576 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1577 { 1578 int retries, res; 1579 struct scsi_device *sdp = sdkp->device; 1580 const int timeout = sdp->request_queue->rq_timeout 1581 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1582 struct scsi_sense_hdr my_sshdr; 1583 const struct scsi_exec_args exec_args = { 1584 .req_flags = BLK_MQ_REQ_PM, 1585 /* caller might not be interested in sense, but we need it */ 1586 .sshdr = sshdr ? : &my_sshdr, 1587 }; 1588 1589 if (!scsi_device_online(sdp)) 1590 return -ENODEV; 1591 1592 sshdr = exec_args.sshdr; 1593 1594 for (retries = 3; retries > 0; --retries) { 1595 unsigned char cmd[16] = { 0 }; 1596 1597 if (sdp->use_16_for_sync) 1598 cmd[0] = SYNCHRONIZE_CACHE_16; 1599 else 1600 cmd[0] = SYNCHRONIZE_CACHE; 1601 /* 1602 * Leave the rest of the command zero to indicate 1603 * flush everything. 1604 */ 1605 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 1606 timeout, sdkp->max_retries, &exec_args); 1607 if (res == 0) 1608 break; 1609 } 1610 1611 if (res) { 1612 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1613 1614 if (res < 0) 1615 return res; 1616 1617 if (scsi_status_is_check_condition(res) && 1618 scsi_sense_valid(sshdr)) { 1619 sd_print_sense_hdr(sdkp, sshdr); 1620 1621 /* we need to evaluate the error return */ 1622 if (sshdr->asc == 0x3a || /* medium not present */ 1623 sshdr->asc == 0x20 || /* invalid command */ 1624 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1625 /* this is no error here */ 1626 return 0; 1627 } 1628 1629 switch (host_byte(res)) { 1630 /* ignore errors due to racing a disconnection */ 1631 case DID_BAD_TARGET: 1632 case DID_NO_CONNECT: 1633 return 0; 1634 /* signal the upper layer it might try again */ 1635 case DID_BUS_BUSY: 1636 case DID_IMM_RETRY: 1637 case DID_REQUEUE: 1638 case DID_SOFT_ERROR: 1639 return -EBUSY; 1640 default: 1641 return -EIO; 1642 } 1643 } 1644 return 0; 1645 } 1646 1647 static void sd_rescan(struct device *dev) 1648 { 1649 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1650 1651 sd_revalidate_disk(sdkp->disk); 1652 } 1653 1654 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1655 enum blk_unique_id type) 1656 { 1657 struct scsi_device *sdev = scsi_disk(disk)->device; 1658 const struct scsi_vpd *vpd; 1659 const unsigned char *d; 1660 int ret = -ENXIO, len; 1661 1662 rcu_read_lock(); 1663 vpd = rcu_dereference(sdev->vpd_pg83); 1664 if (!vpd) 1665 goto out_unlock; 1666 1667 ret = -EINVAL; 1668 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1669 /* we only care about designators with LU association */ 1670 if (((d[1] >> 4) & 0x3) != 0x00) 1671 continue; 1672 if ((d[1] & 0xf) != type) 1673 continue; 1674 1675 /* 1676 * Only exit early if a 16-byte descriptor was found. Otherwise 1677 * keep looking as one with more entropy might still show up. 1678 */ 1679 len = d[3]; 1680 if (len != 8 && len != 12 && len != 16) 1681 continue; 1682 ret = len; 1683 memcpy(id, d + 4, len); 1684 if (len == 16) 1685 break; 1686 } 1687 out_unlock: 1688 rcu_read_unlock(); 1689 return ret; 1690 } 1691 1692 static char sd_pr_type(enum pr_type type) 1693 { 1694 switch (type) { 1695 case PR_WRITE_EXCLUSIVE: 1696 return 0x01; 1697 case PR_EXCLUSIVE_ACCESS: 1698 return 0x03; 1699 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1700 return 0x05; 1701 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1702 return 0x06; 1703 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1704 return 0x07; 1705 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1706 return 0x08; 1707 default: 1708 return 0; 1709 } 1710 }; 1711 1712 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result) 1713 { 1714 switch (host_byte(result)) { 1715 case DID_TRANSPORT_MARGINAL: 1716 case DID_TRANSPORT_DISRUPTED: 1717 case DID_BUS_BUSY: 1718 return PR_STS_RETRY_PATH_FAILURE; 1719 case DID_NO_CONNECT: 1720 return PR_STS_PATH_FAILED; 1721 case DID_TRANSPORT_FAILFAST: 1722 return PR_STS_PATH_FAST_FAILED; 1723 } 1724 1725 switch (status_byte(result)) { 1726 case SAM_STAT_RESERVATION_CONFLICT: 1727 return PR_STS_RESERVATION_CONFLICT; 1728 case SAM_STAT_CHECK_CONDITION: 1729 if (!scsi_sense_valid(sshdr)) 1730 return PR_STS_IOERR; 1731 1732 if (sshdr->sense_key == ILLEGAL_REQUEST && 1733 (sshdr->asc == 0x26 || sshdr->asc == 0x24)) 1734 return -EINVAL; 1735 1736 fallthrough; 1737 default: 1738 return PR_STS_IOERR; 1739 } 1740 } 1741 1742 static int sd_pr_command(struct block_device *bdev, u8 sa, 1743 u64 key, u64 sa_key, u8 type, u8 flags) 1744 { 1745 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1746 struct scsi_device *sdev = sdkp->device; 1747 struct scsi_sense_hdr sshdr; 1748 const struct scsi_exec_args exec_args = { 1749 .sshdr = &sshdr, 1750 }; 1751 int result; 1752 u8 cmd[16] = { 0, }; 1753 u8 data[24] = { 0, }; 1754 1755 cmd[0] = PERSISTENT_RESERVE_OUT; 1756 cmd[1] = sa; 1757 cmd[2] = type; 1758 put_unaligned_be32(sizeof(data), &cmd[5]); 1759 1760 put_unaligned_be64(key, &data[0]); 1761 put_unaligned_be64(sa_key, &data[8]); 1762 data[20] = flags; 1763 1764 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data, 1765 sizeof(data), SD_TIMEOUT, sdkp->max_retries, 1766 &exec_args); 1767 1768 if (scsi_status_is_check_condition(result) && 1769 scsi_sense_valid(&sshdr)) { 1770 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1771 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1772 } 1773 1774 if (result <= 0) 1775 return result; 1776 1777 return sd_scsi_to_pr_err(&sshdr, result); 1778 } 1779 1780 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1781 u32 flags) 1782 { 1783 if (flags & ~PR_FL_IGNORE_KEY) 1784 return -EOPNOTSUPP; 1785 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1786 old_key, new_key, 0, 1787 (1 << 0) /* APTPL */); 1788 } 1789 1790 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1791 u32 flags) 1792 { 1793 if (flags) 1794 return -EOPNOTSUPP; 1795 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1796 } 1797 1798 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1799 { 1800 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1801 } 1802 1803 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1804 enum pr_type type, bool abort) 1805 { 1806 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1807 sd_pr_type(type), 0); 1808 } 1809 1810 static int sd_pr_clear(struct block_device *bdev, u64 key) 1811 { 1812 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1813 } 1814 1815 static const struct pr_ops sd_pr_ops = { 1816 .pr_register = sd_pr_register, 1817 .pr_reserve = sd_pr_reserve, 1818 .pr_release = sd_pr_release, 1819 .pr_preempt = sd_pr_preempt, 1820 .pr_clear = sd_pr_clear, 1821 }; 1822 1823 static void scsi_disk_free_disk(struct gendisk *disk) 1824 { 1825 struct scsi_disk *sdkp = scsi_disk(disk); 1826 1827 put_device(&sdkp->disk_dev); 1828 } 1829 1830 static const struct block_device_operations sd_fops = { 1831 .owner = THIS_MODULE, 1832 .open = sd_open, 1833 .release = sd_release, 1834 .ioctl = sd_ioctl, 1835 .getgeo = sd_getgeo, 1836 .compat_ioctl = blkdev_compat_ptr_ioctl, 1837 .check_events = sd_check_events, 1838 .unlock_native_capacity = sd_unlock_native_capacity, 1839 .report_zones = sd_zbc_report_zones, 1840 .get_unique_id = sd_get_unique_id, 1841 .free_disk = scsi_disk_free_disk, 1842 .pr_ops = &sd_pr_ops, 1843 }; 1844 1845 /** 1846 * sd_eh_reset - reset error handling callback 1847 * @scmd: sd-issued command that has failed 1848 * 1849 * This function is called by the SCSI midlayer before starting 1850 * SCSI EH. When counting medium access failures we have to be 1851 * careful to register it only only once per device and SCSI EH run; 1852 * there might be several timed out commands which will cause the 1853 * 'max_medium_access_timeouts' counter to trigger after the first 1854 * SCSI EH run already and set the device to offline. 1855 * So this function resets the internal counter before starting SCSI EH. 1856 **/ 1857 static void sd_eh_reset(struct scsi_cmnd *scmd) 1858 { 1859 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1860 1861 /* New SCSI EH run, reset gate variable */ 1862 sdkp->ignore_medium_access_errors = false; 1863 } 1864 1865 /** 1866 * sd_eh_action - error handling callback 1867 * @scmd: sd-issued command that has failed 1868 * @eh_disp: The recovery disposition suggested by the midlayer 1869 * 1870 * This function is called by the SCSI midlayer upon completion of an 1871 * error test command (currently TEST UNIT READY). The result of sending 1872 * the eh command is passed in eh_disp. We're looking for devices that 1873 * fail medium access commands but are OK with non access commands like 1874 * test unit ready (so wrongly see the device as having a successful 1875 * recovery) 1876 **/ 1877 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1878 { 1879 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1880 struct scsi_device *sdev = scmd->device; 1881 1882 if (!scsi_device_online(sdev) || 1883 !scsi_medium_access_command(scmd) || 1884 host_byte(scmd->result) != DID_TIME_OUT || 1885 eh_disp != SUCCESS) 1886 return eh_disp; 1887 1888 /* 1889 * The device has timed out executing a medium access command. 1890 * However, the TEST UNIT READY command sent during error 1891 * handling completed successfully. Either the device is in the 1892 * process of recovering or has it suffered an internal failure 1893 * that prevents access to the storage medium. 1894 */ 1895 if (!sdkp->ignore_medium_access_errors) { 1896 sdkp->medium_access_timed_out++; 1897 sdkp->ignore_medium_access_errors = true; 1898 } 1899 1900 /* 1901 * If the device keeps failing read/write commands but TEST UNIT 1902 * READY always completes successfully we assume that medium 1903 * access is no longer possible and take the device offline. 1904 */ 1905 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1906 scmd_printk(KERN_ERR, scmd, 1907 "Medium access timeout failure. Offlining disk!\n"); 1908 mutex_lock(&sdev->state_mutex); 1909 scsi_device_set_state(sdev, SDEV_OFFLINE); 1910 mutex_unlock(&sdev->state_mutex); 1911 1912 return SUCCESS; 1913 } 1914 1915 return eh_disp; 1916 } 1917 1918 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1919 { 1920 struct request *req = scsi_cmd_to_rq(scmd); 1921 struct scsi_device *sdev = scmd->device; 1922 unsigned int transferred, good_bytes; 1923 u64 start_lba, end_lba, bad_lba; 1924 1925 /* 1926 * Some commands have a payload smaller than the device logical 1927 * block size (e.g. INQUIRY on a 4K disk). 1928 */ 1929 if (scsi_bufflen(scmd) <= sdev->sector_size) 1930 return 0; 1931 1932 /* Check if we have a 'bad_lba' information */ 1933 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1934 SCSI_SENSE_BUFFERSIZE, 1935 &bad_lba)) 1936 return 0; 1937 1938 /* 1939 * If the bad lba was reported incorrectly, we have no idea where 1940 * the error is. 1941 */ 1942 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1943 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1944 if (bad_lba < start_lba || bad_lba >= end_lba) 1945 return 0; 1946 1947 /* 1948 * resid is optional but mostly filled in. When it's unused, 1949 * its value is zero, so we assume the whole buffer transferred 1950 */ 1951 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1952 1953 /* This computation should always be done in terms of the 1954 * resolution of the device's medium. 1955 */ 1956 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1957 1958 return min(good_bytes, transferred); 1959 } 1960 1961 /** 1962 * sd_done - bottom half handler: called when the lower level 1963 * driver has completed (successfully or otherwise) a scsi command. 1964 * @SCpnt: mid-level's per command structure. 1965 * 1966 * Note: potentially run from within an ISR. Must not block. 1967 **/ 1968 static int sd_done(struct scsi_cmnd *SCpnt) 1969 { 1970 int result = SCpnt->result; 1971 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1972 unsigned int sector_size = SCpnt->device->sector_size; 1973 unsigned int resid; 1974 struct scsi_sense_hdr sshdr; 1975 struct request *req = scsi_cmd_to_rq(SCpnt); 1976 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1977 int sense_valid = 0; 1978 int sense_deferred = 0; 1979 1980 switch (req_op(req)) { 1981 case REQ_OP_DISCARD: 1982 case REQ_OP_WRITE_ZEROES: 1983 case REQ_OP_ZONE_RESET: 1984 case REQ_OP_ZONE_RESET_ALL: 1985 case REQ_OP_ZONE_OPEN: 1986 case REQ_OP_ZONE_CLOSE: 1987 case REQ_OP_ZONE_FINISH: 1988 if (!result) { 1989 good_bytes = blk_rq_bytes(req); 1990 scsi_set_resid(SCpnt, 0); 1991 } else { 1992 good_bytes = 0; 1993 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1994 } 1995 break; 1996 default: 1997 /* 1998 * In case of bogus fw or device, we could end up having 1999 * an unaligned partial completion. Check this here and force 2000 * alignment. 2001 */ 2002 resid = scsi_get_resid(SCpnt); 2003 if (resid & (sector_size - 1)) { 2004 sd_printk(KERN_INFO, sdkp, 2005 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2006 resid, sector_size); 2007 scsi_print_command(SCpnt); 2008 resid = min(scsi_bufflen(SCpnt), 2009 round_up(resid, sector_size)); 2010 scsi_set_resid(SCpnt, resid); 2011 } 2012 } 2013 2014 if (result) { 2015 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2016 if (sense_valid) 2017 sense_deferred = scsi_sense_is_deferred(&sshdr); 2018 } 2019 sdkp->medium_access_timed_out = 0; 2020 2021 if (!scsi_status_is_check_condition(result) && 2022 (!sense_valid || sense_deferred)) 2023 goto out; 2024 2025 switch (sshdr.sense_key) { 2026 case HARDWARE_ERROR: 2027 case MEDIUM_ERROR: 2028 good_bytes = sd_completed_bytes(SCpnt); 2029 break; 2030 case RECOVERED_ERROR: 2031 good_bytes = scsi_bufflen(SCpnt); 2032 break; 2033 case NO_SENSE: 2034 /* This indicates a false check condition, so ignore it. An 2035 * unknown amount of data was transferred so treat it as an 2036 * error. 2037 */ 2038 SCpnt->result = 0; 2039 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2040 break; 2041 case ABORTED_COMMAND: 2042 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2043 good_bytes = sd_completed_bytes(SCpnt); 2044 break; 2045 case ILLEGAL_REQUEST: 2046 switch (sshdr.asc) { 2047 case 0x10: /* DIX: Host detected corruption */ 2048 good_bytes = sd_completed_bytes(SCpnt); 2049 break; 2050 case 0x20: /* INVALID COMMAND OPCODE */ 2051 case 0x24: /* INVALID FIELD IN CDB */ 2052 switch (SCpnt->cmnd[0]) { 2053 case UNMAP: 2054 sd_config_discard(sdkp, SD_LBP_DISABLE); 2055 break; 2056 case WRITE_SAME_16: 2057 case WRITE_SAME: 2058 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2059 sd_config_discard(sdkp, SD_LBP_DISABLE); 2060 } else { 2061 sdkp->device->no_write_same = 1; 2062 sd_config_write_same(sdkp); 2063 req->rq_flags |= RQF_QUIET; 2064 } 2065 break; 2066 } 2067 } 2068 break; 2069 default: 2070 break; 2071 } 2072 2073 out: 2074 if (sd_is_zoned(sdkp)) 2075 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2076 2077 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2078 "sd_done: completed %d of %d bytes\n", 2079 good_bytes, scsi_bufflen(SCpnt))); 2080 2081 return good_bytes; 2082 } 2083 2084 /* 2085 * spinup disk - called only in sd_revalidate_disk() 2086 */ 2087 static void 2088 sd_spinup_disk(struct scsi_disk *sdkp) 2089 { 2090 unsigned char cmd[10]; 2091 unsigned long spintime_expire = 0; 2092 int retries, spintime; 2093 unsigned int the_result; 2094 struct scsi_sense_hdr sshdr; 2095 const struct scsi_exec_args exec_args = { 2096 .sshdr = &sshdr, 2097 }; 2098 int sense_valid = 0; 2099 2100 spintime = 0; 2101 2102 /* Spin up drives, as required. Only do this at boot time */ 2103 /* Spinup needs to be done for module loads too. */ 2104 do { 2105 retries = 0; 2106 2107 do { 2108 bool media_was_present = sdkp->media_present; 2109 2110 cmd[0] = TEST_UNIT_READY; 2111 memset((void *) &cmd[1], 0, 9); 2112 2113 the_result = scsi_execute_cmd(sdkp->device, cmd, 2114 REQ_OP_DRV_IN, NULL, 0, 2115 SD_TIMEOUT, 2116 sdkp->max_retries, 2117 &exec_args); 2118 2119 /* 2120 * If the drive has indicated to us that it 2121 * doesn't have any media in it, don't bother 2122 * with any more polling. 2123 */ 2124 if (media_not_present(sdkp, &sshdr)) { 2125 if (media_was_present) 2126 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2127 return; 2128 } 2129 2130 if (the_result) 2131 sense_valid = scsi_sense_valid(&sshdr); 2132 retries++; 2133 } while (retries < 3 && 2134 (!scsi_status_is_good(the_result) || 2135 (scsi_status_is_check_condition(the_result) && 2136 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2137 2138 if (!scsi_status_is_check_condition(the_result)) { 2139 /* no sense, TUR either succeeded or failed 2140 * with a status error */ 2141 if(!spintime && !scsi_status_is_good(the_result)) { 2142 sd_print_result(sdkp, "Test Unit Ready failed", 2143 the_result); 2144 } 2145 break; 2146 } 2147 2148 /* 2149 * The device does not want the automatic start to be issued. 2150 */ 2151 if (sdkp->device->no_start_on_add) 2152 break; 2153 2154 if (sense_valid && sshdr.sense_key == NOT_READY) { 2155 if (sshdr.asc == 4 && sshdr.ascq == 3) 2156 break; /* manual intervention required */ 2157 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2158 break; /* standby */ 2159 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2160 break; /* unavailable */ 2161 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2162 break; /* sanitize in progress */ 2163 /* 2164 * Issue command to spin up drive when not ready 2165 */ 2166 if (!spintime) { 2167 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2168 cmd[0] = START_STOP; 2169 cmd[1] = 1; /* Return immediately */ 2170 memset((void *) &cmd[2], 0, 8); 2171 cmd[4] = 1; /* Start spin cycle */ 2172 if (sdkp->device->start_stop_pwr_cond) 2173 cmd[4] |= 1 << 4; 2174 scsi_execute_cmd(sdkp->device, cmd, 2175 REQ_OP_DRV_IN, NULL, 0, 2176 SD_TIMEOUT, sdkp->max_retries, 2177 &exec_args); 2178 spintime_expire = jiffies + 100 * HZ; 2179 spintime = 1; 2180 } 2181 /* Wait 1 second for next try */ 2182 msleep(1000); 2183 printk(KERN_CONT "."); 2184 2185 /* 2186 * Wait for USB flash devices with slow firmware. 2187 * Yes, this sense key/ASC combination shouldn't 2188 * occur here. It's characteristic of these devices. 2189 */ 2190 } else if (sense_valid && 2191 sshdr.sense_key == UNIT_ATTENTION && 2192 sshdr.asc == 0x28) { 2193 if (!spintime) { 2194 spintime_expire = jiffies + 5 * HZ; 2195 spintime = 1; 2196 } 2197 /* Wait 1 second for next try */ 2198 msleep(1000); 2199 } else { 2200 /* we don't understand the sense code, so it's 2201 * probably pointless to loop */ 2202 if(!spintime) { 2203 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2204 sd_print_sense_hdr(sdkp, &sshdr); 2205 } 2206 break; 2207 } 2208 2209 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2210 2211 if (spintime) { 2212 if (scsi_status_is_good(the_result)) 2213 printk(KERN_CONT "ready\n"); 2214 else 2215 printk(KERN_CONT "not responding...\n"); 2216 } 2217 } 2218 2219 /* 2220 * Determine whether disk supports Data Integrity Field. 2221 */ 2222 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2223 { 2224 struct scsi_device *sdp = sdkp->device; 2225 u8 type; 2226 2227 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2228 sdkp->protection_type = 0; 2229 return 0; 2230 } 2231 2232 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2233 2234 if (type > T10_PI_TYPE3_PROTECTION) { 2235 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2236 " protection type %u. Disabling disk!\n", 2237 type); 2238 sdkp->protection_type = 0; 2239 return -ENODEV; 2240 } 2241 2242 sdkp->protection_type = type; 2243 2244 return 0; 2245 } 2246 2247 static void sd_config_protection(struct scsi_disk *sdkp) 2248 { 2249 struct scsi_device *sdp = sdkp->device; 2250 2251 sd_dif_config_host(sdkp); 2252 2253 if (!sdkp->protection_type) 2254 return; 2255 2256 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2257 sd_first_printk(KERN_NOTICE, sdkp, 2258 "Disabling DIF Type %u protection\n", 2259 sdkp->protection_type); 2260 sdkp->protection_type = 0; 2261 } 2262 2263 sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2264 sdkp->protection_type); 2265 } 2266 2267 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2268 struct scsi_sense_hdr *sshdr, int sense_valid, 2269 int the_result) 2270 { 2271 if (sense_valid) 2272 sd_print_sense_hdr(sdkp, sshdr); 2273 else 2274 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2275 2276 /* 2277 * Set dirty bit for removable devices if not ready - 2278 * sometimes drives will not report this properly. 2279 */ 2280 if (sdp->removable && 2281 sense_valid && sshdr->sense_key == NOT_READY) 2282 set_media_not_present(sdkp); 2283 2284 /* 2285 * We used to set media_present to 0 here to indicate no media 2286 * in the drive, but some drives fail read capacity even with 2287 * media present, so we can't do that. 2288 */ 2289 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2290 } 2291 2292 #define RC16_LEN 32 2293 #if RC16_LEN > SD_BUF_SIZE 2294 #error RC16_LEN must not be more than SD_BUF_SIZE 2295 #endif 2296 2297 #define READ_CAPACITY_RETRIES_ON_RESET 10 2298 2299 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2300 unsigned char *buffer) 2301 { 2302 unsigned char cmd[16]; 2303 struct scsi_sense_hdr sshdr; 2304 const struct scsi_exec_args exec_args = { 2305 .sshdr = &sshdr, 2306 }; 2307 int sense_valid = 0; 2308 int the_result; 2309 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2310 unsigned int alignment; 2311 unsigned long long lba; 2312 unsigned sector_size; 2313 2314 if (sdp->no_read_capacity_16) 2315 return -EINVAL; 2316 2317 do { 2318 memset(cmd, 0, 16); 2319 cmd[0] = SERVICE_ACTION_IN_16; 2320 cmd[1] = SAI_READ_CAPACITY_16; 2321 cmd[13] = RC16_LEN; 2322 memset(buffer, 0, RC16_LEN); 2323 2324 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, 2325 buffer, RC16_LEN, SD_TIMEOUT, 2326 sdkp->max_retries, &exec_args); 2327 2328 if (media_not_present(sdkp, &sshdr)) 2329 return -ENODEV; 2330 2331 if (the_result > 0) { 2332 sense_valid = scsi_sense_valid(&sshdr); 2333 if (sense_valid && 2334 sshdr.sense_key == ILLEGAL_REQUEST && 2335 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2336 sshdr.ascq == 0x00) 2337 /* Invalid Command Operation Code or 2338 * Invalid Field in CDB, just retry 2339 * silently with RC10 */ 2340 return -EINVAL; 2341 if (sense_valid && 2342 sshdr.sense_key == UNIT_ATTENTION && 2343 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2344 /* Device reset might occur several times, 2345 * give it one more chance */ 2346 if (--reset_retries > 0) 2347 continue; 2348 } 2349 retries--; 2350 2351 } while (the_result && retries); 2352 2353 if (the_result) { 2354 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2355 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2356 return -EINVAL; 2357 } 2358 2359 sector_size = get_unaligned_be32(&buffer[8]); 2360 lba = get_unaligned_be64(&buffer[0]); 2361 2362 if (sd_read_protection_type(sdkp, buffer) < 0) { 2363 sdkp->capacity = 0; 2364 return -ENODEV; 2365 } 2366 2367 /* Logical blocks per physical block exponent */ 2368 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2369 2370 /* RC basis */ 2371 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2372 2373 /* Lowest aligned logical block */ 2374 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2375 blk_queue_alignment_offset(sdp->request_queue, alignment); 2376 if (alignment && sdkp->first_scan) 2377 sd_printk(KERN_NOTICE, sdkp, 2378 "physical block alignment offset: %u\n", alignment); 2379 2380 if (buffer[14] & 0x80) { /* LBPME */ 2381 sdkp->lbpme = 1; 2382 2383 if (buffer[14] & 0x40) /* LBPRZ */ 2384 sdkp->lbprz = 1; 2385 2386 sd_config_discard(sdkp, SD_LBP_WS16); 2387 } 2388 2389 sdkp->capacity = lba + 1; 2390 return sector_size; 2391 } 2392 2393 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2394 unsigned char *buffer) 2395 { 2396 unsigned char cmd[16]; 2397 struct scsi_sense_hdr sshdr; 2398 const struct scsi_exec_args exec_args = { 2399 .sshdr = &sshdr, 2400 }; 2401 int sense_valid = 0; 2402 int the_result; 2403 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2404 sector_t lba; 2405 unsigned sector_size; 2406 2407 do { 2408 cmd[0] = READ_CAPACITY; 2409 memset(&cmd[1], 0, 9); 2410 memset(buffer, 0, 8); 2411 2412 the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer, 2413 8, SD_TIMEOUT, sdkp->max_retries, 2414 &exec_args); 2415 2416 if (media_not_present(sdkp, &sshdr)) 2417 return -ENODEV; 2418 2419 if (the_result > 0) { 2420 sense_valid = scsi_sense_valid(&sshdr); 2421 if (sense_valid && 2422 sshdr.sense_key == UNIT_ATTENTION && 2423 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2424 /* Device reset might occur several times, 2425 * give it one more chance */ 2426 if (--reset_retries > 0) 2427 continue; 2428 } 2429 retries--; 2430 2431 } while (the_result && retries); 2432 2433 if (the_result) { 2434 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2435 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2436 return -EINVAL; 2437 } 2438 2439 sector_size = get_unaligned_be32(&buffer[4]); 2440 lba = get_unaligned_be32(&buffer[0]); 2441 2442 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2443 /* Some buggy (usb cardreader) devices return an lba of 2444 0xffffffff when the want to report a size of 0 (with 2445 which they really mean no media is present) */ 2446 sdkp->capacity = 0; 2447 sdkp->physical_block_size = sector_size; 2448 return sector_size; 2449 } 2450 2451 sdkp->capacity = lba + 1; 2452 sdkp->physical_block_size = sector_size; 2453 return sector_size; 2454 } 2455 2456 static int sd_try_rc16_first(struct scsi_device *sdp) 2457 { 2458 if (sdp->host->max_cmd_len < 16) 2459 return 0; 2460 if (sdp->try_rc_10_first) 2461 return 0; 2462 if (sdp->scsi_level > SCSI_SPC_2) 2463 return 1; 2464 if (scsi_device_protection(sdp)) 2465 return 1; 2466 return 0; 2467 } 2468 2469 /* 2470 * read disk capacity 2471 */ 2472 static void 2473 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2474 { 2475 int sector_size; 2476 struct scsi_device *sdp = sdkp->device; 2477 2478 if (sd_try_rc16_first(sdp)) { 2479 sector_size = read_capacity_16(sdkp, sdp, buffer); 2480 if (sector_size == -EOVERFLOW) 2481 goto got_data; 2482 if (sector_size == -ENODEV) 2483 return; 2484 if (sector_size < 0) 2485 sector_size = read_capacity_10(sdkp, sdp, buffer); 2486 if (sector_size < 0) 2487 return; 2488 } else { 2489 sector_size = read_capacity_10(sdkp, sdp, buffer); 2490 if (sector_size == -EOVERFLOW) 2491 goto got_data; 2492 if (sector_size < 0) 2493 return; 2494 if ((sizeof(sdkp->capacity) > 4) && 2495 (sdkp->capacity > 0xffffffffULL)) { 2496 int old_sector_size = sector_size; 2497 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2498 "Trying to use READ CAPACITY(16).\n"); 2499 sector_size = read_capacity_16(sdkp, sdp, buffer); 2500 if (sector_size < 0) { 2501 sd_printk(KERN_NOTICE, sdkp, 2502 "Using 0xffffffff as device size\n"); 2503 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2504 sector_size = old_sector_size; 2505 goto got_data; 2506 } 2507 /* Remember that READ CAPACITY(16) succeeded */ 2508 sdp->try_rc_10_first = 0; 2509 } 2510 } 2511 2512 /* Some devices are known to return the total number of blocks, 2513 * not the highest block number. Some devices have versions 2514 * which do this and others which do not. Some devices we might 2515 * suspect of doing this but we don't know for certain. 2516 * 2517 * If we know the reported capacity is wrong, decrement it. If 2518 * we can only guess, then assume the number of blocks is even 2519 * (usually true but not always) and err on the side of lowering 2520 * the capacity. 2521 */ 2522 if (sdp->fix_capacity || 2523 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2524 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2525 "from its reported value: %llu\n", 2526 (unsigned long long) sdkp->capacity); 2527 --sdkp->capacity; 2528 } 2529 2530 got_data: 2531 if (sector_size == 0) { 2532 sector_size = 512; 2533 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2534 "assuming 512.\n"); 2535 } 2536 2537 if (sector_size != 512 && 2538 sector_size != 1024 && 2539 sector_size != 2048 && 2540 sector_size != 4096) { 2541 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2542 sector_size); 2543 /* 2544 * The user might want to re-format the drive with 2545 * a supported sectorsize. Once this happens, it 2546 * would be relatively trivial to set the thing up. 2547 * For this reason, we leave the thing in the table. 2548 */ 2549 sdkp->capacity = 0; 2550 /* 2551 * set a bogus sector size so the normal read/write 2552 * logic in the block layer will eventually refuse any 2553 * request on this device without tripping over power 2554 * of two sector size assumptions 2555 */ 2556 sector_size = 512; 2557 } 2558 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2559 blk_queue_physical_block_size(sdp->request_queue, 2560 sdkp->physical_block_size); 2561 sdkp->device->sector_size = sector_size; 2562 2563 if (sdkp->capacity > 0xffffffff) 2564 sdp->use_16_for_rw = 1; 2565 2566 } 2567 2568 /* 2569 * Print disk capacity 2570 */ 2571 static void 2572 sd_print_capacity(struct scsi_disk *sdkp, 2573 sector_t old_capacity) 2574 { 2575 int sector_size = sdkp->device->sector_size; 2576 char cap_str_2[10], cap_str_10[10]; 2577 2578 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2579 return; 2580 2581 string_get_size(sdkp->capacity, sector_size, 2582 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2583 string_get_size(sdkp->capacity, sector_size, 2584 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2585 2586 sd_printk(KERN_NOTICE, sdkp, 2587 "%llu %d-byte logical blocks: (%s/%s)\n", 2588 (unsigned long long)sdkp->capacity, 2589 sector_size, cap_str_10, cap_str_2); 2590 2591 if (sdkp->physical_block_size != sector_size) 2592 sd_printk(KERN_NOTICE, sdkp, 2593 "%u-byte physical blocks\n", 2594 sdkp->physical_block_size); 2595 } 2596 2597 /* called with buffer of length 512 */ 2598 static inline int 2599 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2600 unsigned char *buffer, int len, struct scsi_mode_data *data, 2601 struct scsi_sense_hdr *sshdr) 2602 { 2603 /* 2604 * If we must use MODE SENSE(10), make sure that the buffer length 2605 * is at least 8 bytes so that the mode sense header fits. 2606 */ 2607 if (sdkp->device->use_10_for_ms && len < 8) 2608 len = 8; 2609 2610 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2611 SD_TIMEOUT, sdkp->max_retries, data, 2612 sshdr); 2613 } 2614 2615 /* 2616 * read write protect setting, if possible - called only in sd_revalidate_disk() 2617 * called with buffer of length SD_BUF_SIZE 2618 */ 2619 static void 2620 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2621 { 2622 int res; 2623 struct scsi_device *sdp = sdkp->device; 2624 struct scsi_mode_data data; 2625 int old_wp = sdkp->write_prot; 2626 2627 set_disk_ro(sdkp->disk, 0); 2628 if (sdp->skip_ms_page_3f) { 2629 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2630 return; 2631 } 2632 2633 if (sdp->use_192_bytes_for_3f) { 2634 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2635 } else { 2636 /* 2637 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2638 * We have to start carefully: some devices hang if we ask 2639 * for more than is available. 2640 */ 2641 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2642 2643 /* 2644 * Second attempt: ask for page 0 When only page 0 is 2645 * implemented, a request for page 3F may return Sense Key 2646 * 5: Illegal Request, Sense Code 24: Invalid field in 2647 * CDB. 2648 */ 2649 if (res < 0) 2650 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2651 2652 /* 2653 * Third attempt: ask 255 bytes, as we did earlier. 2654 */ 2655 if (res < 0) 2656 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2657 &data, NULL); 2658 } 2659 2660 if (res < 0) { 2661 sd_first_printk(KERN_WARNING, sdkp, 2662 "Test WP failed, assume Write Enabled\n"); 2663 } else { 2664 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2665 set_disk_ro(sdkp->disk, sdkp->write_prot); 2666 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2667 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2668 sdkp->write_prot ? "on" : "off"); 2669 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2670 } 2671 } 2672 } 2673 2674 /* 2675 * sd_read_cache_type - called only from sd_revalidate_disk() 2676 * called with buffer of length SD_BUF_SIZE 2677 */ 2678 static void 2679 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2680 { 2681 int len = 0, res; 2682 struct scsi_device *sdp = sdkp->device; 2683 2684 int dbd; 2685 int modepage; 2686 int first_len; 2687 struct scsi_mode_data data; 2688 struct scsi_sense_hdr sshdr; 2689 int old_wce = sdkp->WCE; 2690 int old_rcd = sdkp->RCD; 2691 int old_dpofua = sdkp->DPOFUA; 2692 2693 2694 if (sdkp->cache_override) 2695 return; 2696 2697 first_len = 4; 2698 if (sdp->skip_ms_page_8) { 2699 if (sdp->type == TYPE_RBC) 2700 goto defaults; 2701 else { 2702 if (sdp->skip_ms_page_3f) 2703 goto defaults; 2704 modepage = 0x3F; 2705 if (sdp->use_192_bytes_for_3f) 2706 first_len = 192; 2707 dbd = 0; 2708 } 2709 } else if (sdp->type == TYPE_RBC) { 2710 modepage = 6; 2711 dbd = 8; 2712 } else { 2713 modepage = 8; 2714 dbd = 0; 2715 } 2716 2717 /* cautiously ask */ 2718 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2719 &data, &sshdr); 2720 2721 if (res < 0) 2722 goto bad_sense; 2723 2724 if (!data.header_length) { 2725 modepage = 6; 2726 first_len = 0; 2727 sd_first_printk(KERN_ERR, sdkp, 2728 "Missing header in MODE_SENSE response\n"); 2729 } 2730 2731 /* that went OK, now ask for the proper length */ 2732 len = data.length; 2733 2734 /* 2735 * We're only interested in the first three bytes, actually. 2736 * But the data cache page is defined for the first 20. 2737 */ 2738 if (len < 3) 2739 goto bad_sense; 2740 else if (len > SD_BUF_SIZE) { 2741 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2742 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2743 len = SD_BUF_SIZE; 2744 } 2745 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2746 len = 192; 2747 2748 /* Get the data */ 2749 if (len > first_len) 2750 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2751 &data, &sshdr); 2752 2753 if (!res) { 2754 int offset = data.header_length + data.block_descriptor_length; 2755 2756 while (offset < len) { 2757 u8 page_code = buffer[offset] & 0x3F; 2758 u8 spf = buffer[offset] & 0x40; 2759 2760 if (page_code == 8 || page_code == 6) { 2761 /* We're interested only in the first 3 bytes. 2762 */ 2763 if (len - offset <= 2) { 2764 sd_first_printk(KERN_ERR, sdkp, 2765 "Incomplete mode parameter " 2766 "data\n"); 2767 goto defaults; 2768 } else { 2769 modepage = page_code; 2770 goto Page_found; 2771 } 2772 } else { 2773 /* Go to the next page */ 2774 if (spf && len - offset > 3) 2775 offset += 4 + (buffer[offset+2] << 8) + 2776 buffer[offset+3]; 2777 else if (!spf && len - offset > 1) 2778 offset += 2 + buffer[offset+1]; 2779 else { 2780 sd_first_printk(KERN_ERR, sdkp, 2781 "Incomplete mode " 2782 "parameter data\n"); 2783 goto defaults; 2784 } 2785 } 2786 } 2787 2788 sd_first_printk(KERN_WARNING, sdkp, 2789 "No Caching mode page found\n"); 2790 goto defaults; 2791 2792 Page_found: 2793 if (modepage == 8) { 2794 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2795 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2796 } else { 2797 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2798 sdkp->RCD = 0; 2799 } 2800 2801 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2802 if (sdp->broken_fua) { 2803 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2804 sdkp->DPOFUA = 0; 2805 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2806 !sdkp->device->use_16_for_rw) { 2807 sd_first_printk(KERN_NOTICE, sdkp, 2808 "Uses READ/WRITE(6), disabling FUA\n"); 2809 sdkp->DPOFUA = 0; 2810 } 2811 2812 /* No cache flush allowed for write protected devices */ 2813 if (sdkp->WCE && sdkp->write_prot) 2814 sdkp->WCE = 0; 2815 2816 if (sdkp->first_scan || old_wce != sdkp->WCE || 2817 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2818 sd_printk(KERN_NOTICE, sdkp, 2819 "Write cache: %s, read cache: %s, %s\n", 2820 sdkp->WCE ? "enabled" : "disabled", 2821 sdkp->RCD ? "disabled" : "enabled", 2822 sdkp->DPOFUA ? "supports DPO and FUA" 2823 : "doesn't support DPO or FUA"); 2824 2825 return; 2826 } 2827 2828 bad_sense: 2829 if (scsi_sense_valid(&sshdr) && 2830 sshdr.sense_key == ILLEGAL_REQUEST && 2831 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2832 /* Invalid field in CDB */ 2833 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2834 else 2835 sd_first_printk(KERN_ERR, sdkp, 2836 "Asking for cache data failed\n"); 2837 2838 defaults: 2839 if (sdp->wce_default_on) { 2840 sd_first_printk(KERN_NOTICE, sdkp, 2841 "Assuming drive cache: write back\n"); 2842 sdkp->WCE = 1; 2843 } else { 2844 sd_first_printk(KERN_WARNING, sdkp, 2845 "Assuming drive cache: write through\n"); 2846 sdkp->WCE = 0; 2847 } 2848 sdkp->RCD = 0; 2849 sdkp->DPOFUA = 0; 2850 } 2851 2852 /* 2853 * The ATO bit indicates whether the DIF application tag is available 2854 * for use by the operating system. 2855 */ 2856 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2857 { 2858 int res, offset; 2859 struct scsi_device *sdp = sdkp->device; 2860 struct scsi_mode_data data; 2861 struct scsi_sense_hdr sshdr; 2862 2863 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2864 return; 2865 2866 if (sdkp->protection_type == 0) 2867 return; 2868 2869 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2870 sdkp->max_retries, &data, &sshdr); 2871 2872 if (res < 0 || !data.header_length || 2873 data.length < 6) { 2874 sd_first_printk(KERN_WARNING, sdkp, 2875 "getting Control mode page failed, assume no ATO\n"); 2876 2877 if (scsi_sense_valid(&sshdr)) 2878 sd_print_sense_hdr(sdkp, &sshdr); 2879 2880 return; 2881 } 2882 2883 offset = data.header_length + data.block_descriptor_length; 2884 2885 if ((buffer[offset] & 0x3f) != 0x0a) { 2886 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2887 return; 2888 } 2889 2890 if ((buffer[offset + 5] & 0x80) == 0) 2891 return; 2892 2893 sdkp->ATO = 1; 2894 2895 return; 2896 } 2897 2898 /** 2899 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2900 * @sdkp: disk to query 2901 */ 2902 static void sd_read_block_limits(struct scsi_disk *sdkp) 2903 { 2904 struct scsi_vpd *vpd; 2905 2906 rcu_read_lock(); 2907 2908 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2909 if (!vpd || vpd->len < 16) 2910 goto out; 2911 2912 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2913 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2914 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2915 2916 if (vpd->len >= 64) { 2917 unsigned int lba_count, desc_count; 2918 2919 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2920 2921 if (!sdkp->lbpme) 2922 goto out; 2923 2924 lba_count = get_unaligned_be32(&vpd->data[20]); 2925 desc_count = get_unaligned_be32(&vpd->data[24]); 2926 2927 if (lba_count && desc_count) 2928 sdkp->max_unmap_blocks = lba_count; 2929 2930 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2931 2932 if (vpd->data[32] & 0x80) 2933 sdkp->unmap_alignment = 2934 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2935 2936 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2937 2938 if (sdkp->max_unmap_blocks) 2939 sd_config_discard(sdkp, SD_LBP_UNMAP); 2940 else 2941 sd_config_discard(sdkp, SD_LBP_WS16); 2942 2943 } else { /* LBP VPD page tells us what to use */ 2944 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2945 sd_config_discard(sdkp, SD_LBP_UNMAP); 2946 else if (sdkp->lbpws) 2947 sd_config_discard(sdkp, SD_LBP_WS16); 2948 else if (sdkp->lbpws10) 2949 sd_config_discard(sdkp, SD_LBP_WS10); 2950 else 2951 sd_config_discard(sdkp, SD_LBP_DISABLE); 2952 } 2953 } 2954 2955 out: 2956 rcu_read_unlock(); 2957 } 2958 2959 /** 2960 * sd_read_block_characteristics - Query block dev. characteristics 2961 * @sdkp: disk to query 2962 */ 2963 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2964 { 2965 struct request_queue *q = sdkp->disk->queue; 2966 struct scsi_vpd *vpd; 2967 u16 rot; 2968 u8 zoned; 2969 2970 rcu_read_lock(); 2971 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2972 2973 if (!vpd || vpd->len < 8) { 2974 rcu_read_unlock(); 2975 return; 2976 } 2977 2978 rot = get_unaligned_be16(&vpd->data[4]); 2979 zoned = (vpd->data[8] >> 4) & 3; 2980 rcu_read_unlock(); 2981 2982 if (rot == 1) { 2983 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2984 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2985 } 2986 2987 if (sdkp->device->type == TYPE_ZBC) { 2988 /* 2989 * Host-managed: Per ZBC and ZAC specifications, writes in 2990 * sequential write required zones of host-managed devices must 2991 * be aligned to the device physical block size. 2992 */ 2993 disk_set_zoned(sdkp->disk, BLK_ZONED_HM); 2994 blk_queue_zone_write_granularity(q, sdkp->physical_block_size); 2995 } else { 2996 sdkp->zoned = zoned; 2997 if (sdkp->zoned == 1) { 2998 /* Host-aware */ 2999 disk_set_zoned(sdkp->disk, BLK_ZONED_HA); 3000 } else { 3001 /* Regular disk or drive managed disk */ 3002 disk_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3003 } 3004 } 3005 3006 if (!sdkp->first_scan) 3007 return; 3008 3009 if (blk_queue_is_zoned(q)) { 3010 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3011 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3012 } else { 3013 if (sdkp->zoned == 1) 3014 sd_printk(KERN_NOTICE, sdkp, 3015 "Host-aware SMR disk used as regular disk\n"); 3016 else if (sdkp->zoned == 2) 3017 sd_printk(KERN_NOTICE, sdkp, 3018 "Drive-managed SMR disk\n"); 3019 } 3020 } 3021 3022 /** 3023 * sd_read_block_provisioning - Query provisioning VPD page 3024 * @sdkp: disk to query 3025 */ 3026 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3027 { 3028 struct scsi_vpd *vpd; 3029 3030 if (sdkp->lbpme == 0) 3031 return; 3032 3033 rcu_read_lock(); 3034 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 3035 3036 if (!vpd || vpd->len < 8) { 3037 rcu_read_unlock(); 3038 return; 3039 } 3040 3041 sdkp->lbpvpd = 1; 3042 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 3043 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 3044 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 3045 rcu_read_unlock(); 3046 } 3047 3048 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3049 { 3050 struct scsi_device *sdev = sdkp->device; 3051 3052 if (sdev->host->no_write_same) { 3053 sdev->no_write_same = 1; 3054 3055 return; 3056 } 3057 3058 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3059 struct scsi_vpd *vpd; 3060 3061 sdev->no_report_opcodes = 1; 3062 3063 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3064 * CODES is unsupported and the device has an ATA 3065 * Information VPD page (SAT). 3066 */ 3067 rcu_read_lock(); 3068 vpd = rcu_dereference(sdev->vpd_pg89); 3069 if (vpd) 3070 sdev->no_write_same = 1; 3071 rcu_read_unlock(); 3072 } 3073 3074 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3075 sdkp->ws16 = 1; 3076 3077 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3078 sdkp->ws10 = 1; 3079 } 3080 3081 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3082 { 3083 struct scsi_device *sdev = sdkp->device; 3084 3085 if (!sdev->security_supported) 3086 return; 3087 3088 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3089 SECURITY_PROTOCOL_IN) == 1 && 3090 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3091 SECURITY_PROTOCOL_OUT) == 1) 3092 sdkp->security = 1; 3093 } 3094 3095 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3096 { 3097 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3098 } 3099 3100 /** 3101 * sd_read_cpr - Query concurrent positioning ranges 3102 * @sdkp: disk to query 3103 */ 3104 static void sd_read_cpr(struct scsi_disk *sdkp) 3105 { 3106 struct blk_independent_access_ranges *iars = NULL; 3107 unsigned char *buffer = NULL; 3108 unsigned int nr_cpr = 0; 3109 int i, vpd_len, buf_len = SD_BUF_SIZE; 3110 u8 *desc; 3111 3112 /* 3113 * We need to have the capacity set first for the block layer to be 3114 * able to check the ranges. 3115 */ 3116 if (sdkp->first_scan) 3117 return; 3118 3119 if (!sdkp->capacity) 3120 goto out; 3121 3122 /* 3123 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3124 * leading to a maximum page size of 64 + 256*32 bytes. 3125 */ 3126 buf_len = 64 + 256*32; 3127 buffer = kmalloc(buf_len, GFP_KERNEL); 3128 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3129 goto out; 3130 3131 /* We must have at least a 64B header and one 32B range descriptor */ 3132 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3133 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3134 sd_printk(KERN_ERR, sdkp, 3135 "Invalid Concurrent Positioning Ranges VPD page\n"); 3136 goto out; 3137 } 3138 3139 nr_cpr = (vpd_len - 64) / 32; 3140 if (nr_cpr == 1) { 3141 nr_cpr = 0; 3142 goto out; 3143 } 3144 3145 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3146 if (!iars) { 3147 nr_cpr = 0; 3148 goto out; 3149 } 3150 3151 desc = &buffer[64]; 3152 for (i = 0; i < nr_cpr; i++, desc += 32) { 3153 if (desc[0] != i) { 3154 sd_printk(KERN_ERR, sdkp, 3155 "Invalid Concurrent Positioning Range number\n"); 3156 nr_cpr = 0; 3157 break; 3158 } 3159 3160 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3161 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3162 } 3163 3164 out: 3165 disk_set_independent_access_ranges(sdkp->disk, iars); 3166 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3167 sd_printk(KERN_NOTICE, sdkp, 3168 "%u concurrent positioning ranges\n", nr_cpr); 3169 sdkp->nr_actuators = nr_cpr; 3170 } 3171 3172 kfree(buffer); 3173 } 3174 3175 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3176 { 3177 struct scsi_device *sdp = sdkp->device; 3178 unsigned int min_xfer_bytes = 3179 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3180 3181 if (sdkp->min_xfer_blocks == 0) 3182 return false; 3183 3184 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3185 sd_first_printk(KERN_WARNING, sdkp, 3186 "Preferred minimum I/O size %u bytes not a " \ 3187 "multiple of physical block size (%u bytes)\n", 3188 min_xfer_bytes, sdkp->physical_block_size); 3189 sdkp->min_xfer_blocks = 0; 3190 return false; 3191 } 3192 3193 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3194 min_xfer_bytes); 3195 return true; 3196 } 3197 3198 /* 3199 * Determine the device's preferred I/O size for reads and writes 3200 * unless the reported value is unreasonably small, large, not a 3201 * multiple of the physical block size, or simply garbage. 3202 */ 3203 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3204 unsigned int dev_max) 3205 { 3206 struct scsi_device *sdp = sdkp->device; 3207 unsigned int opt_xfer_bytes = 3208 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3209 unsigned int min_xfer_bytes = 3210 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3211 3212 if (sdkp->opt_xfer_blocks == 0) 3213 return false; 3214 3215 if (sdkp->opt_xfer_blocks > dev_max) { 3216 sd_first_printk(KERN_WARNING, sdkp, 3217 "Optimal transfer size %u logical blocks " \ 3218 "> dev_max (%u logical blocks)\n", 3219 sdkp->opt_xfer_blocks, dev_max); 3220 return false; 3221 } 3222 3223 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3224 sd_first_printk(KERN_WARNING, sdkp, 3225 "Optimal transfer size %u logical blocks " \ 3226 "> sd driver limit (%u logical blocks)\n", 3227 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3228 return false; 3229 } 3230 3231 if (opt_xfer_bytes < PAGE_SIZE) { 3232 sd_first_printk(KERN_WARNING, sdkp, 3233 "Optimal transfer size %u bytes < " \ 3234 "PAGE_SIZE (%u bytes)\n", 3235 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3236 return false; 3237 } 3238 3239 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3240 sd_first_printk(KERN_WARNING, sdkp, 3241 "Optimal transfer size %u bytes not a " \ 3242 "multiple of preferred minimum block " \ 3243 "size (%u bytes)\n", 3244 opt_xfer_bytes, min_xfer_bytes); 3245 return false; 3246 } 3247 3248 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3249 sd_first_printk(KERN_WARNING, sdkp, 3250 "Optimal transfer size %u bytes not a " \ 3251 "multiple of physical block size (%u bytes)\n", 3252 opt_xfer_bytes, sdkp->physical_block_size); 3253 return false; 3254 } 3255 3256 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3257 opt_xfer_bytes); 3258 return true; 3259 } 3260 3261 /** 3262 * sd_revalidate_disk - called the first time a new disk is seen, 3263 * performs disk spin up, read_capacity, etc. 3264 * @disk: struct gendisk we care about 3265 **/ 3266 static int sd_revalidate_disk(struct gendisk *disk) 3267 { 3268 struct scsi_disk *sdkp = scsi_disk(disk); 3269 struct scsi_device *sdp = sdkp->device; 3270 struct request_queue *q = sdkp->disk->queue; 3271 sector_t old_capacity = sdkp->capacity; 3272 unsigned char *buffer; 3273 unsigned int dev_max, rw_max; 3274 3275 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3276 "sd_revalidate_disk\n")); 3277 3278 /* 3279 * If the device is offline, don't try and read capacity or any 3280 * of the other niceties. 3281 */ 3282 if (!scsi_device_online(sdp)) 3283 goto out; 3284 3285 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3286 if (!buffer) { 3287 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3288 "allocation failure.\n"); 3289 goto out; 3290 } 3291 3292 sd_spinup_disk(sdkp); 3293 3294 /* 3295 * Without media there is no reason to ask; moreover, some devices 3296 * react badly if we do. 3297 */ 3298 if (sdkp->media_present) { 3299 sd_read_capacity(sdkp, buffer); 3300 3301 /* 3302 * set the default to rotational. All non-rotational devices 3303 * support the block characteristics VPD page, which will 3304 * cause this to be updated correctly and any device which 3305 * doesn't support it should be treated as rotational. 3306 */ 3307 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3308 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3309 3310 if (scsi_device_supports_vpd(sdp)) { 3311 sd_read_block_provisioning(sdkp); 3312 sd_read_block_limits(sdkp); 3313 sd_read_block_characteristics(sdkp); 3314 sd_zbc_read_zones(sdkp, buffer); 3315 sd_read_cpr(sdkp); 3316 } 3317 3318 sd_print_capacity(sdkp, old_capacity); 3319 3320 sd_read_write_protect_flag(sdkp, buffer); 3321 sd_read_cache_type(sdkp, buffer); 3322 sd_read_app_tag_own(sdkp, buffer); 3323 sd_read_write_same(sdkp, buffer); 3324 sd_read_security(sdkp, buffer); 3325 sd_config_protection(sdkp); 3326 } 3327 3328 /* 3329 * We now have all cache related info, determine how we deal 3330 * with flush requests. 3331 */ 3332 sd_set_flush_flag(sdkp); 3333 3334 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3335 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3336 3337 /* Some devices report a maximum block count for READ/WRITE requests. */ 3338 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3339 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3340 3341 if (sd_validate_min_xfer_size(sdkp)) 3342 blk_queue_io_min(sdkp->disk->queue, 3343 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3344 else 3345 blk_queue_io_min(sdkp->disk->queue, 0); 3346 3347 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3348 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3349 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3350 } else { 3351 q->limits.io_opt = 0; 3352 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3353 (sector_t)BLK_DEF_MAX_SECTORS); 3354 } 3355 3356 /* 3357 * Limit default to SCSI host optimal sector limit if set. There may be 3358 * an impact on performance for when the size of a request exceeds this 3359 * host limit. 3360 */ 3361 rw_max = min_not_zero(rw_max, sdp->host->opt_sectors); 3362 3363 /* Do not exceed controller limit */ 3364 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3365 3366 /* 3367 * Only update max_sectors if previously unset or if the current value 3368 * exceeds the capabilities of the hardware. 3369 */ 3370 if (sdkp->first_scan || 3371 q->limits.max_sectors > q->limits.max_dev_sectors || 3372 q->limits.max_sectors > q->limits.max_hw_sectors) 3373 q->limits.max_sectors = rw_max; 3374 3375 sdkp->first_scan = 0; 3376 3377 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3378 sd_config_write_same(sdkp); 3379 kfree(buffer); 3380 3381 /* 3382 * For a zoned drive, revalidating the zones can be done only once 3383 * the gendisk capacity is set. So if this fails, set back the gendisk 3384 * capacity to 0. 3385 */ 3386 if (sd_zbc_revalidate_zones(sdkp)) 3387 set_capacity_and_notify(disk, 0); 3388 3389 out: 3390 return 0; 3391 } 3392 3393 /** 3394 * sd_unlock_native_capacity - unlock native capacity 3395 * @disk: struct gendisk to set capacity for 3396 * 3397 * Block layer calls this function if it detects that partitions 3398 * on @disk reach beyond the end of the device. If the SCSI host 3399 * implements ->unlock_native_capacity() method, it's invoked to 3400 * give it a chance to adjust the device capacity. 3401 * 3402 * CONTEXT: 3403 * Defined by block layer. Might sleep. 3404 */ 3405 static void sd_unlock_native_capacity(struct gendisk *disk) 3406 { 3407 struct scsi_device *sdev = scsi_disk(disk)->device; 3408 3409 if (sdev->host->hostt->unlock_native_capacity) 3410 sdev->host->hostt->unlock_native_capacity(sdev); 3411 } 3412 3413 /** 3414 * sd_format_disk_name - format disk name 3415 * @prefix: name prefix - ie. "sd" for SCSI disks 3416 * @index: index of the disk to format name for 3417 * @buf: output buffer 3418 * @buflen: length of the output buffer 3419 * 3420 * SCSI disk names starts at sda. The 26th device is sdz and the 3421 * 27th is sdaa. The last one for two lettered suffix is sdzz 3422 * which is followed by sdaaa. 3423 * 3424 * This is basically 26 base counting with one extra 'nil' entry 3425 * at the beginning from the second digit on and can be 3426 * determined using similar method as 26 base conversion with the 3427 * index shifted -1 after each digit is computed. 3428 * 3429 * CONTEXT: 3430 * Don't care. 3431 * 3432 * RETURNS: 3433 * 0 on success, -errno on failure. 3434 */ 3435 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3436 { 3437 const int base = 'z' - 'a' + 1; 3438 char *begin = buf + strlen(prefix); 3439 char *end = buf + buflen; 3440 char *p; 3441 int unit; 3442 3443 p = end - 1; 3444 *p = '\0'; 3445 unit = base; 3446 do { 3447 if (p == begin) 3448 return -EINVAL; 3449 *--p = 'a' + (index % unit); 3450 index = (index / unit) - 1; 3451 } while (index >= 0); 3452 3453 memmove(begin, p, end - p); 3454 memcpy(buf, prefix, strlen(prefix)); 3455 3456 return 0; 3457 } 3458 3459 /** 3460 * sd_probe - called during driver initialization and whenever a 3461 * new scsi device is attached to the system. It is called once 3462 * for each scsi device (not just disks) present. 3463 * @dev: pointer to device object 3464 * 3465 * Returns 0 if successful (or not interested in this scsi device 3466 * (e.g. scanner)); 1 when there is an error. 3467 * 3468 * Note: this function is invoked from the scsi mid-level. 3469 * This function sets up the mapping between a given 3470 * <host,channel,id,lun> (found in sdp) and new device name 3471 * (e.g. /dev/sda). More precisely it is the block device major 3472 * and minor number that is chosen here. 3473 * 3474 * Assume sd_probe is not re-entrant (for time being) 3475 * Also think about sd_probe() and sd_remove() running coincidentally. 3476 **/ 3477 static int sd_probe(struct device *dev) 3478 { 3479 struct scsi_device *sdp = to_scsi_device(dev); 3480 struct scsi_disk *sdkp; 3481 struct gendisk *gd; 3482 int index; 3483 int error; 3484 3485 scsi_autopm_get_device(sdp); 3486 error = -ENODEV; 3487 if (sdp->type != TYPE_DISK && 3488 sdp->type != TYPE_ZBC && 3489 sdp->type != TYPE_MOD && 3490 sdp->type != TYPE_RBC) 3491 goto out; 3492 3493 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3494 sdev_printk(KERN_WARNING, sdp, 3495 "Unsupported ZBC host-managed device.\n"); 3496 goto out; 3497 } 3498 3499 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3500 "sd_probe\n")); 3501 3502 error = -ENOMEM; 3503 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3504 if (!sdkp) 3505 goto out; 3506 3507 gd = blk_mq_alloc_disk_for_queue(sdp->request_queue, 3508 &sd_bio_compl_lkclass); 3509 if (!gd) 3510 goto out_free; 3511 3512 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3513 if (index < 0) { 3514 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3515 goto out_put; 3516 } 3517 3518 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3519 if (error) { 3520 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3521 goto out_free_index; 3522 } 3523 3524 sdkp->device = sdp; 3525 sdkp->disk = gd; 3526 sdkp->index = index; 3527 sdkp->max_retries = SD_MAX_RETRIES; 3528 atomic_set(&sdkp->openers, 0); 3529 atomic_set(&sdkp->device->ioerr_cnt, 0); 3530 3531 if (!sdp->request_queue->rq_timeout) { 3532 if (sdp->type != TYPE_MOD) 3533 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3534 else 3535 blk_queue_rq_timeout(sdp->request_queue, 3536 SD_MOD_TIMEOUT); 3537 } 3538 3539 device_initialize(&sdkp->disk_dev); 3540 sdkp->disk_dev.parent = get_device(dev); 3541 sdkp->disk_dev.class = &sd_disk_class; 3542 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3543 3544 error = device_add(&sdkp->disk_dev); 3545 if (error) { 3546 put_device(&sdkp->disk_dev); 3547 goto out; 3548 } 3549 3550 dev_set_drvdata(dev, sdkp); 3551 3552 gd->major = sd_major((index & 0xf0) >> 4); 3553 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3554 gd->minors = SD_MINORS; 3555 3556 gd->fops = &sd_fops; 3557 gd->private_data = sdkp; 3558 3559 /* defaults, until the device tells us otherwise */ 3560 sdp->sector_size = 512; 3561 sdkp->capacity = 0; 3562 sdkp->media_present = 1; 3563 sdkp->write_prot = 0; 3564 sdkp->cache_override = 0; 3565 sdkp->WCE = 0; 3566 sdkp->RCD = 0; 3567 sdkp->ATO = 0; 3568 sdkp->first_scan = 1; 3569 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3570 3571 sd_revalidate_disk(gd); 3572 3573 if (sdp->removable) { 3574 gd->flags |= GENHD_FL_REMOVABLE; 3575 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3576 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3577 } 3578 3579 blk_pm_runtime_init(sdp->request_queue, dev); 3580 if (sdp->rpm_autosuspend) { 3581 pm_runtime_set_autosuspend_delay(dev, 3582 sdp->host->hostt->rpm_autosuspend_delay); 3583 } 3584 3585 error = device_add_disk(dev, gd, NULL); 3586 if (error) { 3587 put_device(&sdkp->disk_dev); 3588 put_disk(gd); 3589 goto out; 3590 } 3591 3592 if (sdkp->security) { 3593 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3594 if (sdkp->opal_dev) 3595 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3596 } 3597 3598 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3599 sdp->removable ? "removable " : ""); 3600 scsi_autopm_put_device(sdp); 3601 3602 return 0; 3603 3604 out_free_index: 3605 ida_free(&sd_index_ida, index); 3606 out_put: 3607 put_disk(gd); 3608 out_free: 3609 kfree(sdkp); 3610 out: 3611 scsi_autopm_put_device(sdp); 3612 return error; 3613 } 3614 3615 /** 3616 * sd_remove - called whenever a scsi disk (previously recognized by 3617 * sd_probe) is detached from the system. It is called (potentially 3618 * multiple times) during sd module unload. 3619 * @dev: pointer to device object 3620 * 3621 * Note: this function is invoked from the scsi mid-level. 3622 * This function potentially frees up a device name (e.g. /dev/sdc) 3623 * that could be re-used by a subsequent sd_probe(). 3624 * This function is not called when the built-in sd driver is "exit-ed". 3625 **/ 3626 static int sd_remove(struct device *dev) 3627 { 3628 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3629 3630 scsi_autopm_get_device(sdkp->device); 3631 3632 device_del(&sdkp->disk_dev); 3633 del_gendisk(sdkp->disk); 3634 sd_shutdown(dev); 3635 3636 put_disk(sdkp->disk); 3637 return 0; 3638 } 3639 3640 static void scsi_disk_release(struct device *dev) 3641 { 3642 struct scsi_disk *sdkp = to_scsi_disk(dev); 3643 3644 ida_free(&sd_index_ida, sdkp->index); 3645 sd_zbc_free_zone_info(sdkp); 3646 put_device(&sdkp->device->sdev_gendev); 3647 free_opal_dev(sdkp->opal_dev); 3648 3649 kfree(sdkp); 3650 } 3651 3652 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3653 { 3654 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3655 struct scsi_sense_hdr sshdr; 3656 const struct scsi_exec_args exec_args = { 3657 .sshdr = &sshdr, 3658 .req_flags = BLK_MQ_REQ_PM, 3659 }; 3660 struct scsi_device *sdp = sdkp->device; 3661 int res; 3662 3663 if (start) 3664 cmd[4] |= 1; /* START */ 3665 3666 if (sdp->start_stop_pwr_cond) 3667 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3668 3669 if (!scsi_device_online(sdp)) 3670 return -ENODEV; 3671 3672 res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT, 3673 sdkp->max_retries, &exec_args); 3674 if (res) { 3675 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3676 if (res > 0 && scsi_sense_valid(&sshdr)) { 3677 sd_print_sense_hdr(sdkp, &sshdr); 3678 /* 0x3a is medium not present */ 3679 if (sshdr.asc == 0x3a) 3680 res = 0; 3681 } 3682 } 3683 3684 /* SCSI error codes must not go to the generic layer */ 3685 if (res) 3686 return -EIO; 3687 3688 return 0; 3689 } 3690 3691 /* 3692 * Send a SYNCHRONIZE CACHE instruction down to the device through 3693 * the normal SCSI command structure. Wait for the command to 3694 * complete. 3695 */ 3696 static void sd_shutdown(struct device *dev) 3697 { 3698 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3699 3700 if (!sdkp) 3701 return; /* this can happen */ 3702 3703 if (pm_runtime_suspended(dev)) 3704 return; 3705 3706 if (sdkp->WCE && sdkp->media_present) { 3707 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3708 sd_sync_cache(sdkp, NULL); 3709 } 3710 3711 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3712 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3713 sd_start_stop_device(sdkp, 0); 3714 } 3715 } 3716 3717 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3718 { 3719 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3720 struct scsi_sense_hdr sshdr; 3721 int ret = 0; 3722 3723 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3724 return 0; 3725 3726 if (sdkp->WCE && sdkp->media_present) { 3727 if (!sdkp->device->silence_suspend) 3728 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3729 ret = sd_sync_cache(sdkp, &sshdr); 3730 3731 if (ret) { 3732 /* ignore OFFLINE device */ 3733 if (ret == -ENODEV) 3734 return 0; 3735 3736 if (!scsi_sense_valid(&sshdr) || 3737 sshdr.sense_key != ILLEGAL_REQUEST) 3738 return ret; 3739 3740 /* 3741 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3742 * doesn't support sync. There's not much to do and 3743 * suspend shouldn't fail. 3744 */ 3745 ret = 0; 3746 } 3747 } 3748 3749 if (sdkp->device->manage_start_stop) { 3750 if (!sdkp->device->silence_suspend) 3751 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3752 /* an error is not worth aborting a system sleep */ 3753 ret = sd_start_stop_device(sdkp, 0); 3754 if (ignore_stop_errors) 3755 ret = 0; 3756 } 3757 3758 return ret; 3759 } 3760 3761 static int sd_suspend_system(struct device *dev) 3762 { 3763 if (pm_runtime_suspended(dev)) 3764 return 0; 3765 3766 return sd_suspend_common(dev, true); 3767 } 3768 3769 static int sd_suspend_runtime(struct device *dev) 3770 { 3771 return sd_suspend_common(dev, false); 3772 } 3773 3774 static int sd_resume(struct device *dev) 3775 { 3776 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3777 int ret; 3778 3779 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3780 return 0; 3781 3782 if (!sdkp->device->manage_start_stop) 3783 return 0; 3784 3785 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3786 ret = sd_start_stop_device(sdkp, 1); 3787 if (!ret) 3788 opal_unlock_from_suspend(sdkp->opal_dev); 3789 return ret; 3790 } 3791 3792 static int sd_resume_system(struct device *dev) 3793 { 3794 if (pm_runtime_suspended(dev)) 3795 return 0; 3796 3797 return sd_resume(dev); 3798 } 3799 3800 static int sd_resume_runtime(struct device *dev) 3801 { 3802 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3803 struct scsi_device *sdp; 3804 3805 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3806 return 0; 3807 3808 sdp = sdkp->device; 3809 3810 if (sdp->ignore_media_change) { 3811 /* clear the device's sense data */ 3812 static const u8 cmd[10] = { REQUEST_SENSE }; 3813 const struct scsi_exec_args exec_args = { 3814 .req_flags = BLK_MQ_REQ_PM, 3815 }; 3816 3817 if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, 3818 sdp->request_queue->rq_timeout, 1, 3819 &exec_args)) 3820 sd_printk(KERN_NOTICE, sdkp, 3821 "Failed to clear sense data\n"); 3822 } 3823 3824 return sd_resume(dev); 3825 } 3826 3827 /** 3828 * init_sd - entry point for this driver (both when built in or when 3829 * a module). 3830 * 3831 * Note: this function registers this driver with the scsi mid-level. 3832 **/ 3833 static int __init init_sd(void) 3834 { 3835 int majors = 0, i, err; 3836 3837 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3838 3839 for (i = 0; i < SD_MAJORS; i++) { 3840 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3841 continue; 3842 majors++; 3843 } 3844 3845 if (!majors) 3846 return -ENODEV; 3847 3848 err = class_register(&sd_disk_class); 3849 if (err) 3850 goto err_out; 3851 3852 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3853 if (!sd_page_pool) { 3854 printk(KERN_ERR "sd: can't init discard page pool\n"); 3855 err = -ENOMEM; 3856 goto err_out_class; 3857 } 3858 3859 err = scsi_register_driver(&sd_template.gendrv); 3860 if (err) 3861 goto err_out_driver; 3862 3863 return 0; 3864 3865 err_out_driver: 3866 mempool_destroy(sd_page_pool); 3867 err_out_class: 3868 class_unregister(&sd_disk_class); 3869 err_out: 3870 for (i = 0; i < SD_MAJORS; i++) 3871 unregister_blkdev(sd_major(i), "sd"); 3872 return err; 3873 } 3874 3875 /** 3876 * exit_sd - exit point for this driver (when it is a module). 3877 * 3878 * Note: this function unregisters this driver from the scsi mid-level. 3879 **/ 3880 static void __exit exit_sd(void) 3881 { 3882 int i; 3883 3884 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3885 3886 scsi_unregister_driver(&sd_template.gendrv); 3887 mempool_destroy(sd_page_pool); 3888 3889 class_unregister(&sd_disk_class); 3890 3891 for (i = 0; i < SD_MAJORS; i++) 3892 unregister_blkdev(sd_major(i), "sd"); 3893 } 3894 3895 module_init(init_sd); 3896 module_exit(exit_sd); 3897 3898 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3899 { 3900 scsi_print_sense_hdr(sdkp->device, 3901 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3902 } 3903 3904 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3905 { 3906 const char *hb_string = scsi_hostbyte_string(result); 3907 3908 if (hb_string) 3909 sd_printk(KERN_INFO, sdkp, 3910 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3911 hb_string ? hb_string : "invalid", 3912 "DRIVER_OK"); 3913 else 3914 sd_printk(KERN_INFO, sdkp, 3915 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3916 msg, host_byte(result), "DRIVER_OK"); 3917 } 3918