xref: /openbmc/linux/drivers/scsi/sd.c (revision 2e80089c18241699c41d0af0669cb93844ff0dc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #define SD_MINORS	16
101 
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 
122 static DEFINE_IDA(sd_index_ida);
123 
124 static mempool_t *sd_page_pool;
125 static struct lock_class_key sd_bio_compl_lkclass;
126 
127 static const char *sd_cache_types[] = {
128 	"write through", "none", "write back",
129 	"write back, no read (daft)"
130 };
131 
132 static void sd_set_flush_flag(struct scsi_disk *sdkp)
133 {
134 	bool wc = false, fua = false;
135 
136 	if (sdkp->WCE) {
137 		wc = true;
138 		if (sdkp->DPOFUA)
139 			fua = true;
140 	}
141 
142 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
143 }
144 
145 static ssize_t
146 cache_type_store(struct device *dev, struct device_attribute *attr,
147 		 const char *buf, size_t count)
148 {
149 	int ct, rcd, wce, sp;
150 	struct scsi_disk *sdkp = to_scsi_disk(dev);
151 	struct scsi_device *sdp = sdkp->device;
152 	char buffer[64];
153 	char *buffer_data;
154 	struct scsi_mode_data data;
155 	struct scsi_sense_hdr sshdr;
156 	static const char temp[] = "temporary ";
157 	int len;
158 
159 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
160 		/* no cache control on RBC devices; theoretically they
161 		 * can do it, but there's probably so many exceptions
162 		 * it's not worth the risk */
163 		return -EINVAL;
164 
165 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
166 		buf += sizeof(temp) - 1;
167 		sdkp->cache_override = 1;
168 	} else {
169 		sdkp->cache_override = 0;
170 	}
171 
172 	ct = sysfs_match_string(sd_cache_types, buf);
173 	if (ct < 0)
174 		return -EINVAL;
175 
176 	rcd = ct & 0x01 ? 1 : 0;
177 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
178 
179 	if (sdkp->cache_override) {
180 		sdkp->WCE = wce;
181 		sdkp->RCD = rcd;
182 		sd_set_flush_flag(sdkp);
183 		return count;
184 	}
185 
186 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
187 			    sdkp->max_retries, &data, NULL))
188 		return -EINVAL;
189 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
190 		  data.block_descriptor_length);
191 	buffer_data = buffer + data.header_length +
192 		data.block_descriptor_length;
193 	buffer_data[2] &= ~0x05;
194 	buffer_data[2] |= wce << 2 | rcd;
195 	sp = buffer_data[0] & 0x80 ? 1 : 0;
196 	buffer_data[0] &= ~0x80;
197 
198 	/*
199 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
200 	 * received mode parameter buffer before doing MODE SELECT.
201 	 */
202 	data.device_specific = 0;
203 
204 	if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
205 			     sdkp->max_retries, &data, &sshdr)) {
206 		if (scsi_sense_valid(&sshdr))
207 			sd_print_sense_hdr(sdkp, &sshdr);
208 		return -EINVAL;
209 	}
210 	sd_revalidate_disk(sdkp->disk);
211 	return count;
212 }
213 
214 static ssize_t
215 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
216 		       char *buf)
217 {
218 	struct scsi_disk *sdkp = to_scsi_disk(dev);
219 	struct scsi_device *sdp = sdkp->device;
220 
221 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
222 }
223 
224 static ssize_t
225 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
226 			const char *buf, size_t count)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 	bool v;
231 
232 	if (!capable(CAP_SYS_ADMIN))
233 		return -EACCES;
234 
235 	if (kstrtobool(buf, &v))
236 		return -EINVAL;
237 
238 	sdp->manage_start_stop = v;
239 
240 	return count;
241 }
242 static DEVICE_ATTR_RW(manage_start_stop);
243 
244 static ssize_t
245 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
246 {
247 	struct scsi_disk *sdkp = to_scsi_disk(dev);
248 
249 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
250 }
251 
252 static ssize_t
253 allow_restart_store(struct device *dev, struct device_attribute *attr,
254 		    const char *buf, size_t count)
255 {
256 	bool v;
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 	struct scsi_device *sdp = sdkp->device;
259 
260 	if (!capable(CAP_SYS_ADMIN))
261 		return -EACCES;
262 
263 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
264 		return -EINVAL;
265 
266 	if (kstrtobool(buf, &v))
267 		return -EINVAL;
268 
269 	sdp->allow_restart = v;
270 
271 	return count;
272 }
273 static DEVICE_ATTR_RW(allow_restart);
274 
275 static ssize_t
276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
277 {
278 	struct scsi_disk *sdkp = to_scsi_disk(dev);
279 	int ct = sdkp->RCD + 2*sdkp->WCE;
280 
281 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
282 }
283 static DEVICE_ATTR_RW(cache_type);
284 
285 static ssize_t
286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 
290 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
291 }
292 static DEVICE_ATTR_RO(FUA);
293 
294 static ssize_t
295 protection_type_show(struct device *dev, struct device_attribute *attr,
296 		     char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->protection_type);
301 }
302 
303 static ssize_t
304 protection_type_store(struct device *dev, struct device_attribute *attr,
305 		      const char *buf, size_t count)
306 {
307 	struct scsi_disk *sdkp = to_scsi_disk(dev);
308 	unsigned int val;
309 	int err;
310 
311 	if (!capable(CAP_SYS_ADMIN))
312 		return -EACCES;
313 
314 	err = kstrtouint(buf, 10, &val);
315 
316 	if (err)
317 		return err;
318 
319 	if (val <= T10_PI_TYPE3_PROTECTION)
320 		sdkp->protection_type = val;
321 
322 	return count;
323 }
324 static DEVICE_ATTR_RW(protection_type);
325 
326 static ssize_t
327 protection_mode_show(struct device *dev, struct device_attribute *attr,
328 		     char *buf)
329 {
330 	struct scsi_disk *sdkp = to_scsi_disk(dev);
331 	struct scsi_device *sdp = sdkp->device;
332 	unsigned int dif, dix;
333 
334 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
335 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
336 
337 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
338 		dif = 0;
339 		dix = 1;
340 	}
341 
342 	if (!dif && !dix)
343 		return sprintf(buf, "none\n");
344 
345 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
346 }
347 static DEVICE_ATTR_RO(protection_mode);
348 
349 static ssize_t
350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 	struct scsi_disk *sdkp = to_scsi_disk(dev);
353 
354 	return sprintf(buf, "%u\n", sdkp->ATO);
355 }
356 static DEVICE_ATTR_RO(app_tag_own);
357 
358 static ssize_t
359 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
360 		       char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->lbpme);
365 }
366 static DEVICE_ATTR_RO(thin_provisioning);
367 
368 /* sysfs_match_string() requires dense arrays */
369 static const char *lbp_mode[] = {
370 	[SD_LBP_FULL]		= "full",
371 	[SD_LBP_UNMAP]		= "unmap",
372 	[SD_LBP_WS16]		= "writesame_16",
373 	[SD_LBP_WS10]		= "writesame_10",
374 	[SD_LBP_ZERO]		= "writesame_zero",
375 	[SD_LBP_DISABLE]	= "disabled",
376 };
377 
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380 		       char *buf)
381 {
382 	struct scsi_disk *sdkp = to_scsi_disk(dev);
383 
384 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386 
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389 			const char *buf, size_t count)
390 {
391 	struct scsi_disk *sdkp = to_scsi_disk(dev);
392 	struct scsi_device *sdp = sdkp->device;
393 	int mode;
394 
395 	if (!capable(CAP_SYS_ADMIN))
396 		return -EACCES;
397 
398 	if (sd_is_zoned(sdkp)) {
399 		sd_config_discard(sdkp, SD_LBP_DISABLE);
400 		return count;
401 	}
402 
403 	if (sdp->type != TYPE_DISK)
404 		return -EINVAL;
405 
406 	mode = sysfs_match_string(lbp_mode, buf);
407 	if (mode < 0)
408 		return -EINVAL;
409 
410 	sd_config_discard(sdkp, mode);
411 
412 	return count;
413 }
414 static DEVICE_ATTR_RW(provisioning_mode);
415 
416 /* sysfs_match_string() requires dense arrays */
417 static const char *zeroing_mode[] = {
418 	[SD_ZERO_WRITE]		= "write",
419 	[SD_ZERO_WS]		= "writesame",
420 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
421 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
422 };
423 
424 static ssize_t
425 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
426 		  char *buf)
427 {
428 	struct scsi_disk *sdkp = to_scsi_disk(dev);
429 
430 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
431 }
432 
433 static ssize_t
434 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
435 		   const char *buf, size_t count)
436 {
437 	struct scsi_disk *sdkp = to_scsi_disk(dev);
438 	int mode;
439 
440 	if (!capable(CAP_SYS_ADMIN))
441 		return -EACCES;
442 
443 	mode = sysfs_match_string(zeroing_mode, buf);
444 	if (mode < 0)
445 		return -EINVAL;
446 
447 	sdkp->zeroing_mode = mode;
448 
449 	return count;
450 }
451 static DEVICE_ATTR_RW(zeroing_mode);
452 
453 static ssize_t
454 max_medium_access_timeouts_show(struct device *dev,
455 				struct device_attribute *attr, char *buf)
456 {
457 	struct scsi_disk *sdkp = to_scsi_disk(dev);
458 
459 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
460 }
461 
462 static ssize_t
463 max_medium_access_timeouts_store(struct device *dev,
464 				 struct device_attribute *attr, const char *buf,
465 				 size_t count)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 	int err;
469 
470 	if (!capable(CAP_SYS_ADMIN))
471 		return -EACCES;
472 
473 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
474 
475 	return err ? err : count;
476 }
477 static DEVICE_ATTR_RW(max_medium_access_timeouts);
478 
479 static ssize_t
480 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
481 			   char *buf)
482 {
483 	struct scsi_disk *sdkp = to_scsi_disk(dev);
484 
485 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
486 }
487 
488 static ssize_t
489 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
490 			    const char *buf, size_t count)
491 {
492 	struct scsi_disk *sdkp = to_scsi_disk(dev);
493 	struct scsi_device *sdp = sdkp->device;
494 	unsigned long max;
495 	int err;
496 
497 	if (!capable(CAP_SYS_ADMIN))
498 		return -EACCES;
499 
500 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
501 		return -EINVAL;
502 
503 	err = kstrtoul(buf, 10, &max);
504 
505 	if (err)
506 		return err;
507 
508 	if (max == 0)
509 		sdp->no_write_same = 1;
510 	else if (max <= SD_MAX_WS16_BLOCKS) {
511 		sdp->no_write_same = 0;
512 		sdkp->max_ws_blocks = max;
513 	}
514 
515 	sd_config_write_same(sdkp);
516 
517 	return count;
518 }
519 static DEVICE_ATTR_RW(max_write_same_blocks);
520 
521 static ssize_t
522 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
523 {
524 	struct scsi_disk *sdkp = to_scsi_disk(dev);
525 
526 	if (sdkp->device->type == TYPE_ZBC)
527 		return sprintf(buf, "host-managed\n");
528 	if (sdkp->zoned == 1)
529 		return sprintf(buf, "host-aware\n");
530 	if (sdkp->zoned == 2)
531 		return sprintf(buf, "drive-managed\n");
532 	return sprintf(buf, "none\n");
533 }
534 static DEVICE_ATTR_RO(zoned_cap);
535 
536 static ssize_t
537 max_retries_store(struct device *dev, struct device_attribute *attr,
538 		  const char *buf, size_t count)
539 {
540 	struct scsi_disk *sdkp = to_scsi_disk(dev);
541 	struct scsi_device *sdev = sdkp->device;
542 	int retries, err;
543 
544 	err = kstrtoint(buf, 10, &retries);
545 	if (err)
546 		return err;
547 
548 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
549 		sdkp->max_retries = retries;
550 		return count;
551 	}
552 
553 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
554 		    SD_MAX_RETRIES);
555 	return -EINVAL;
556 }
557 
558 static ssize_t
559 max_retries_show(struct device *dev, struct device_attribute *attr,
560 		 char *buf)
561 {
562 	struct scsi_disk *sdkp = to_scsi_disk(dev);
563 
564 	return sprintf(buf, "%d\n", sdkp->max_retries);
565 }
566 
567 static DEVICE_ATTR_RW(max_retries);
568 
569 static struct attribute *sd_disk_attrs[] = {
570 	&dev_attr_cache_type.attr,
571 	&dev_attr_FUA.attr,
572 	&dev_attr_allow_restart.attr,
573 	&dev_attr_manage_start_stop.attr,
574 	&dev_attr_protection_type.attr,
575 	&dev_attr_protection_mode.attr,
576 	&dev_attr_app_tag_own.attr,
577 	&dev_attr_thin_provisioning.attr,
578 	&dev_attr_provisioning_mode.attr,
579 	&dev_attr_zeroing_mode.attr,
580 	&dev_attr_max_write_same_blocks.attr,
581 	&dev_attr_max_medium_access_timeouts.attr,
582 	&dev_attr_zoned_cap.attr,
583 	&dev_attr_max_retries.attr,
584 	NULL,
585 };
586 ATTRIBUTE_GROUPS(sd_disk);
587 
588 static struct class sd_disk_class = {
589 	.name		= "scsi_disk",
590 	.dev_release	= scsi_disk_release,
591 	.dev_groups	= sd_disk_groups,
592 };
593 
594 static const struct dev_pm_ops sd_pm_ops = {
595 	.suspend		= sd_suspend_system,
596 	.resume			= sd_resume_system,
597 	.poweroff		= sd_suspend_system,
598 	.restore		= sd_resume_system,
599 	.runtime_suspend	= sd_suspend_runtime,
600 	.runtime_resume		= sd_resume_runtime,
601 };
602 
603 static struct scsi_driver sd_template = {
604 	.gendrv = {
605 		.name		= "sd",
606 		.owner		= THIS_MODULE,
607 		.probe		= sd_probe,
608 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
609 		.remove		= sd_remove,
610 		.shutdown	= sd_shutdown,
611 		.pm		= &sd_pm_ops,
612 	},
613 	.rescan			= sd_rescan,
614 	.init_command		= sd_init_command,
615 	.uninit_command		= sd_uninit_command,
616 	.done			= sd_done,
617 	.eh_action		= sd_eh_action,
618 	.eh_reset		= sd_eh_reset,
619 };
620 
621 /*
622  * Don't request a new module, as that could deadlock in multipath
623  * environment.
624  */
625 static void sd_default_probe(dev_t devt)
626 {
627 }
628 
629 /*
630  * Device no to disk mapping:
631  *
632  *       major         disc2     disc  p1
633  *   |............|.............|....|....| <- dev_t
634  *    31        20 19          8 7  4 3  0
635  *
636  * Inside a major, we have 16k disks, however mapped non-
637  * contiguously. The first 16 disks are for major0, the next
638  * ones with major1, ... Disk 256 is for major0 again, disk 272
639  * for major1, ...
640  * As we stay compatible with our numbering scheme, we can reuse
641  * the well-know SCSI majors 8, 65--71, 136--143.
642  */
643 static int sd_major(int major_idx)
644 {
645 	switch (major_idx) {
646 	case 0:
647 		return SCSI_DISK0_MAJOR;
648 	case 1 ... 7:
649 		return SCSI_DISK1_MAJOR + major_idx - 1;
650 	case 8 ... 15:
651 		return SCSI_DISK8_MAJOR + major_idx - 8;
652 	default:
653 		BUG();
654 		return 0;	/* shut up gcc */
655 	}
656 }
657 
658 #ifdef CONFIG_BLK_SED_OPAL
659 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
660 		size_t len, bool send)
661 {
662 	struct scsi_disk *sdkp = data;
663 	struct scsi_device *sdev = sdkp->device;
664 	u8 cdb[12] = { 0, };
665 	const struct scsi_exec_args exec_args = {
666 		.req_flags = BLK_MQ_REQ_PM,
667 	};
668 	int ret;
669 
670 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
671 	cdb[1] = secp;
672 	put_unaligned_be16(spsp, &cdb[2]);
673 	put_unaligned_be32(len, &cdb[6]);
674 
675 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
676 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
677 			       &exec_args);
678 	return ret <= 0 ? ret : -EIO;
679 }
680 #endif /* CONFIG_BLK_SED_OPAL */
681 
682 /*
683  * Look up the DIX operation based on whether the command is read or
684  * write and whether dix and dif are enabled.
685  */
686 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
687 {
688 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
689 	static const unsigned int ops[] = {	/* wrt dix dif */
690 		SCSI_PROT_NORMAL,		/*  0	0   0  */
691 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
692 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
693 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
694 		SCSI_PROT_NORMAL,		/*  1	0   0  */
695 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
696 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
697 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
698 	};
699 
700 	return ops[write << 2 | dix << 1 | dif];
701 }
702 
703 /*
704  * Returns a mask of the protection flags that are valid for a given DIX
705  * operation.
706  */
707 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
708 {
709 	static const unsigned int flag_mask[] = {
710 		[SCSI_PROT_NORMAL]		= 0,
711 
712 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
713 						  SCSI_PROT_GUARD_CHECK |
714 						  SCSI_PROT_REF_CHECK |
715 						  SCSI_PROT_REF_INCREMENT,
716 
717 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
718 						  SCSI_PROT_IP_CHECKSUM,
719 
720 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
721 						  SCSI_PROT_GUARD_CHECK |
722 						  SCSI_PROT_REF_CHECK |
723 						  SCSI_PROT_REF_INCREMENT |
724 						  SCSI_PROT_IP_CHECKSUM,
725 
726 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
727 						  SCSI_PROT_REF_INCREMENT,
728 
729 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
730 						  SCSI_PROT_REF_CHECK |
731 						  SCSI_PROT_REF_INCREMENT |
732 						  SCSI_PROT_IP_CHECKSUM,
733 
734 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
735 						  SCSI_PROT_GUARD_CHECK |
736 						  SCSI_PROT_REF_CHECK |
737 						  SCSI_PROT_REF_INCREMENT |
738 						  SCSI_PROT_IP_CHECKSUM,
739 	};
740 
741 	return flag_mask[prot_op];
742 }
743 
744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
745 					   unsigned int dix, unsigned int dif)
746 {
747 	struct request *rq = scsi_cmd_to_rq(scmd);
748 	struct bio *bio = rq->bio;
749 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
750 	unsigned int protect = 0;
751 
752 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
753 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
754 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
755 
756 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
757 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
758 	}
759 
760 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
761 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
762 
763 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
764 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
765 	}
766 
767 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
768 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
769 
770 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
771 			protect = 3 << 5;	/* Disable target PI checking */
772 		else
773 			protect = 1 << 5;	/* Enable target PI checking */
774 	}
775 
776 	scsi_set_prot_op(scmd, prot_op);
777 	scsi_set_prot_type(scmd, dif);
778 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
779 
780 	return protect;
781 }
782 
783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
784 {
785 	struct request_queue *q = sdkp->disk->queue;
786 	unsigned int logical_block_size = sdkp->device->sector_size;
787 	unsigned int max_blocks = 0;
788 
789 	q->limits.discard_alignment =
790 		sdkp->unmap_alignment * logical_block_size;
791 	q->limits.discard_granularity =
792 		max(sdkp->physical_block_size,
793 		    sdkp->unmap_granularity * logical_block_size);
794 	sdkp->provisioning_mode = mode;
795 
796 	switch (mode) {
797 
798 	case SD_LBP_FULL:
799 	case SD_LBP_DISABLE:
800 		blk_queue_max_discard_sectors(q, 0);
801 		return;
802 
803 	case SD_LBP_UNMAP:
804 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
805 					  (u32)SD_MAX_WS16_BLOCKS);
806 		break;
807 
808 	case SD_LBP_WS16:
809 		if (sdkp->device->unmap_limit_for_ws)
810 			max_blocks = sdkp->max_unmap_blocks;
811 		else
812 			max_blocks = sdkp->max_ws_blocks;
813 
814 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
815 		break;
816 
817 	case SD_LBP_WS10:
818 		if (sdkp->device->unmap_limit_for_ws)
819 			max_blocks = sdkp->max_unmap_blocks;
820 		else
821 			max_blocks = sdkp->max_ws_blocks;
822 
823 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
824 		break;
825 
826 	case SD_LBP_ZERO:
827 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
828 					  (u32)SD_MAX_WS10_BLOCKS);
829 		break;
830 	}
831 
832 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
833 }
834 
835 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
836 {
837 	struct page *page;
838 
839 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
840 	if (!page)
841 		return NULL;
842 	clear_highpage(page);
843 	bvec_set_page(&rq->special_vec, page, data_len, 0);
844 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
845 	return bvec_virt(&rq->special_vec);
846 }
847 
848 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
849 {
850 	struct scsi_device *sdp = cmd->device;
851 	struct request *rq = scsi_cmd_to_rq(cmd);
852 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
853 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
854 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
855 	unsigned int data_len = 24;
856 	char *buf;
857 
858 	buf = sd_set_special_bvec(rq, data_len);
859 	if (!buf)
860 		return BLK_STS_RESOURCE;
861 
862 	cmd->cmd_len = 10;
863 	cmd->cmnd[0] = UNMAP;
864 	cmd->cmnd[8] = 24;
865 
866 	put_unaligned_be16(6 + 16, &buf[0]);
867 	put_unaligned_be16(16, &buf[2]);
868 	put_unaligned_be64(lba, &buf[8]);
869 	put_unaligned_be32(nr_blocks, &buf[16]);
870 
871 	cmd->allowed = sdkp->max_retries;
872 	cmd->transfersize = data_len;
873 	rq->timeout = SD_TIMEOUT;
874 
875 	return scsi_alloc_sgtables(cmd);
876 }
877 
878 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
879 		bool unmap)
880 {
881 	struct scsi_device *sdp = cmd->device;
882 	struct request *rq = scsi_cmd_to_rq(cmd);
883 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
884 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
885 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
886 	u32 data_len = sdp->sector_size;
887 
888 	if (!sd_set_special_bvec(rq, data_len))
889 		return BLK_STS_RESOURCE;
890 
891 	cmd->cmd_len = 16;
892 	cmd->cmnd[0] = WRITE_SAME_16;
893 	if (unmap)
894 		cmd->cmnd[1] = 0x8; /* UNMAP */
895 	put_unaligned_be64(lba, &cmd->cmnd[2]);
896 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
897 
898 	cmd->allowed = sdkp->max_retries;
899 	cmd->transfersize = data_len;
900 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
901 
902 	return scsi_alloc_sgtables(cmd);
903 }
904 
905 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
906 		bool unmap)
907 {
908 	struct scsi_device *sdp = cmd->device;
909 	struct request *rq = scsi_cmd_to_rq(cmd);
910 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
911 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
912 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
913 	u32 data_len = sdp->sector_size;
914 
915 	if (!sd_set_special_bvec(rq, data_len))
916 		return BLK_STS_RESOURCE;
917 
918 	cmd->cmd_len = 10;
919 	cmd->cmnd[0] = WRITE_SAME;
920 	if (unmap)
921 		cmd->cmnd[1] = 0x8; /* UNMAP */
922 	put_unaligned_be32(lba, &cmd->cmnd[2]);
923 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
924 
925 	cmd->allowed = sdkp->max_retries;
926 	cmd->transfersize = data_len;
927 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
928 
929 	return scsi_alloc_sgtables(cmd);
930 }
931 
932 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
933 {
934 	struct request *rq = scsi_cmd_to_rq(cmd);
935 	struct scsi_device *sdp = cmd->device;
936 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
937 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
938 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
939 
940 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
941 		switch (sdkp->zeroing_mode) {
942 		case SD_ZERO_WS16_UNMAP:
943 			return sd_setup_write_same16_cmnd(cmd, true);
944 		case SD_ZERO_WS10_UNMAP:
945 			return sd_setup_write_same10_cmnd(cmd, true);
946 		}
947 	}
948 
949 	if (sdp->no_write_same) {
950 		rq->rq_flags |= RQF_QUIET;
951 		return BLK_STS_TARGET;
952 	}
953 
954 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
955 		return sd_setup_write_same16_cmnd(cmd, false);
956 
957 	return sd_setup_write_same10_cmnd(cmd, false);
958 }
959 
960 static void sd_config_write_same(struct scsi_disk *sdkp)
961 {
962 	struct request_queue *q = sdkp->disk->queue;
963 	unsigned int logical_block_size = sdkp->device->sector_size;
964 
965 	if (sdkp->device->no_write_same) {
966 		sdkp->max_ws_blocks = 0;
967 		goto out;
968 	}
969 
970 	/* Some devices can not handle block counts above 0xffff despite
971 	 * supporting WRITE SAME(16). Consequently we default to 64k
972 	 * blocks per I/O unless the device explicitly advertises a
973 	 * bigger limit.
974 	 */
975 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
976 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
977 						   (u32)SD_MAX_WS16_BLOCKS);
978 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
979 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
980 						   (u32)SD_MAX_WS10_BLOCKS);
981 	else {
982 		sdkp->device->no_write_same = 1;
983 		sdkp->max_ws_blocks = 0;
984 	}
985 
986 	if (sdkp->lbprz && sdkp->lbpws)
987 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
988 	else if (sdkp->lbprz && sdkp->lbpws10)
989 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
990 	else if (sdkp->max_ws_blocks)
991 		sdkp->zeroing_mode = SD_ZERO_WS;
992 	else
993 		sdkp->zeroing_mode = SD_ZERO_WRITE;
994 
995 	if (sdkp->max_ws_blocks &&
996 	    sdkp->physical_block_size > logical_block_size) {
997 		/*
998 		 * Reporting a maximum number of blocks that is not aligned
999 		 * on the device physical size would cause a large write same
1000 		 * request to be split into physically unaligned chunks by
1001 		 * __blkdev_issue_write_zeroes() even if the caller of this
1002 		 * functions took care to align the large request. So make sure
1003 		 * the maximum reported is aligned to the device physical block
1004 		 * size. This is only an optional optimization for regular
1005 		 * disks, but this is mandatory to avoid failure of large write
1006 		 * same requests directed at sequential write required zones of
1007 		 * host-managed ZBC disks.
1008 		 */
1009 		sdkp->max_ws_blocks =
1010 			round_down(sdkp->max_ws_blocks,
1011 				   bytes_to_logical(sdkp->device,
1012 						    sdkp->physical_block_size));
1013 	}
1014 
1015 out:
1016 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1017 					 (logical_block_size >> 9));
1018 }
1019 
1020 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1021 {
1022 	struct request *rq = scsi_cmd_to_rq(cmd);
1023 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1024 
1025 	/* flush requests don't perform I/O, zero the S/G table */
1026 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1027 
1028 	if (cmd->device->use_16_for_sync) {
1029 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1030 		cmd->cmd_len = 16;
1031 	} else {
1032 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1033 		cmd->cmd_len = 10;
1034 	}
1035 	cmd->transfersize = 0;
1036 	cmd->allowed = sdkp->max_retries;
1037 
1038 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1039 	return BLK_STS_OK;
1040 }
1041 
1042 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1043 				       sector_t lba, unsigned int nr_blocks,
1044 				       unsigned char flags)
1045 {
1046 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1047 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1048 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1049 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1050 	cmd->cmnd[10] = flags;
1051 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1052 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1053 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1054 
1055 	return BLK_STS_OK;
1056 }
1057 
1058 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1059 				       sector_t lba, unsigned int nr_blocks,
1060 				       unsigned char flags)
1061 {
1062 	cmd->cmd_len  = 16;
1063 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1064 	cmd->cmnd[1]  = flags;
1065 	cmd->cmnd[14] = 0;
1066 	cmd->cmnd[15] = 0;
1067 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1068 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1069 
1070 	return BLK_STS_OK;
1071 }
1072 
1073 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1074 				       sector_t lba, unsigned int nr_blocks,
1075 				       unsigned char flags)
1076 {
1077 	cmd->cmd_len = 10;
1078 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1079 	cmd->cmnd[1] = flags;
1080 	cmd->cmnd[6] = 0;
1081 	cmd->cmnd[9] = 0;
1082 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1083 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1084 
1085 	return BLK_STS_OK;
1086 }
1087 
1088 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1089 				      sector_t lba, unsigned int nr_blocks,
1090 				      unsigned char flags)
1091 {
1092 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1093 	if (WARN_ON_ONCE(nr_blocks == 0))
1094 		return BLK_STS_IOERR;
1095 
1096 	if (unlikely(flags & 0x8)) {
1097 		/*
1098 		 * This happens only if this drive failed 10byte rw
1099 		 * command with ILLEGAL_REQUEST during operation and
1100 		 * thus turned off use_10_for_rw.
1101 		 */
1102 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1103 		return BLK_STS_IOERR;
1104 	}
1105 
1106 	cmd->cmd_len = 6;
1107 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1108 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1109 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1110 	cmd->cmnd[3] = lba & 0xff;
1111 	cmd->cmnd[4] = nr_blocks;
1112 	cmd->cmnd[5] = 0;
1113 
1114 	return BLK_STS_OK;
1115 }
1116 
1117 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1118 {
1119 	struct request *rq = scsi_cmd_to_rq(cmd);
1120 	struct scsi_device *sdp = cmd->device;
1121 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1122 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1123 	sector_t threshold;
1124 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1125 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1126 	bool write = rq_data_dir(rq) == WRITE;
1127 	unsigned char protect, fua;
1128 	blk_status_t ret;
1129 	unsigned int dif;
1130 	bool dix;
1131 
1132 	ret = scsi_alloc_sgtables(cmd);
1133 	if (ret != BLK_STS_OK)
1134 		return ret;
1135 
1136 	ret = BLK_STS_IOERR;
1137 	if (!scsi_device_online(sdp) || sdp->changed) {
1138 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1139 		goto fail;
1140 	}
1141 
1142 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1143 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1144 		goto fail;
1145 	}
1146 
1147 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1148 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1149 		goto fail;
1150 	}
1151 
1152 	/*
1153 	 * Some SD card readers can't handle accesses which touch the
1154 	 * last one or two logical blocks. Split accesses as needed.
1155 	 */
1156 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1157 
1158 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1159 		if (lba < threshold) {
1160 			/* Access up to the threshold but not beyond */
1161 			nr_blocks = threshold - lba;
1162 		} else {
1163 			/* Access only a single logical block */
1164 			nr_blocks = 1;
1165 		}
1166 	}
1167 
1168 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1169 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1170 		if (ret)
1171 			goto fail;
1172 	}
1173 
1174 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1175 	dix = scsi_prot_sg_count(cmd);
1176 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1177 
1178 	if (dif || dix)
1179 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1180 	else
1181 		protect = 0;
1182 
1183 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1184 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1185 					 protect | fua);
1186 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1187 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1188 					 protect | fua);
1189 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1190 		   sdp->use_10_for_rw || protect) {
1191 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1192 					 protect | fua);
1193 	} else {
1194 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1195 					protect | fua);
1196 	}
1197 
1198 	if (unlikely(ret != BLK_STS_OK))
1199 		goto fail;
1200 
1201 	/*
1202 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1203 	 * host adapter, it's safe to assume that we can at least transfer
1204 	 * this many bytes between each connect / disconnect.
1205 	 */
1206 	cmd->transfersize = sdp->sector_size;
1207 	cmd->underflow = nr_blocks << 9;
1208 	cmd->allowed = sdkp->max_retries;
1209 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1210 
1211 	SCSI_LOG_HLQUEUE(1,
1212 			 scmd_printk(KERN_INFO, cmd,
1213 				     "%s: block=%llu, count=%d\n", __func__,
1214 				     (unsigned long long)blk_rq_pos(rq),
1215 				     blk_rq_sectors(rq)));
1216 	SCSI_LOG_HLQUEUE(2,
1217 			 scmd_printk(KERN_INFO, cmd,
1218 				     "%s %d/%u 512 byte blocks.\n",
1219 				     write ? "writing" : "reading", nr_blocks,
1220 				     blk_rq_sectors(rq)));
1221 
1222 	/*
1223 	 * This indicates that the command is ready from our end to be queued.
1224 	 */
1225 	return BLK_STS_OK;
1226 fail:
1227 	scsi_free_sgtables(cmd);
1228 	return ret;
1229 }
1230 
1231 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1232 {
1233 	struct request *rq = scsi_cmd_to_rq(cmd);
1234 
1235 	switch (req_op(rq)) {
1236 	case REQ_OP_DISCARD:
1237 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1238 		case SD_LBP_UNMAP:
1239 			return sd_setup_unmap_cmnd(cmd);
1240 		case SD_LBP_WS16:
1241 			return sd_setup_write_same16_cmnd(cmd, true);
1242 		case SD_LBP_WS10:
1243 			return sd_setup_write_same10_cmnd(cmd, true);
1244 		case SD_LBP_ZERO:
1245 			return sd_setup_write_same10_cmnd(cmd, false);
1246 		default:
1247 			return BLK_STS_TARGET;
1248 		}
1249 	case REQ_OP_WRITE_ZEROES:
1250 		return sd_setup_write_zeroes_cmnd(cmd);
1251 	case REQ_OP_FLUSH:
1252 		return sd_setup_flush_cmnd(cmd);
1253 	case REQ_OP_READ:
1254 	case REQ_OP_WRITE:
1255 	case REQ_OP_ZONE_APPEND:
1256 		return sd_setup_read_write_cmnd(cmd);
1257 	case REQ_OP_ZONE_RESET:
1258 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1259 						   false);
1260 	case REQ_OP_ZONE_RESET_ALL:
1261 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1262 						   true);
1263 	case REQ_OP_ZONE_OPEN:
1264 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1265 	case REQ_OP_ZONE_CLOSE:
1266 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1267 	case REQ_OP_ZONE_FINISH:
1268 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1269 	default:
1270 		WARN_ON_ONCE(1);
1271 		return BLK_STS_NOTSUPP;
1272 	}
1273 }
1274 
1275 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1276 {
1277 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1278 
1279 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1280 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1281 }
1282 
1283 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1284 {
1285 	if (sdkp->device->removable || sdkp->write_prot) {
1286 		if (disk_check_media_change(disk))
1287 			return true;
1288 	}
1289 
1290 	/*
1291 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1292 	 * nothing to do with partitions, BLKRRPART is used to force a full
1293 	 * revalidate after things like a format for historical reasons.
1294 	 */
1295 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1296 }
1297 
1298 /**
1299  *	sd_open - open a scsi disk device
1300  *	@disk: disk to open
1301  *	@mode: FMODE_* mask
1302  *
1303  *	Returns 0 if successful. Returns a negated errno value in case
1304  *	of error.
1305  *
1306  *	Note: This can be called from a user context (e.g. fsck(1) )
1307  *	or from within the kernel (e.g. as a result of a mount(1) ).
1308  *	In the latter case @inode and @filp carry an abridged amount
1309  *	of information as noted above.
1310  *
1311  *	Locking: called with disk->open_mutex held.
1312  **/
1313 static int sd_open(struct gendisk *disk, fmode_t mode)
1314 {
1315 	struct scsi_disk *sdkp = scsi_disk(disk);
1316 	struct scsi_device *sdev = sdkp->device;
1317 	int retval;
1318 
1319 	if (scsi_device_get(sdev))
1320 		return -ENXIO;
1321 
1322 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1323 
1324 	/*
1325 	 * If the device is in error recovery, wait until it is done.
1326 	 * If the device is offline, then disallow any access to it.
1327 	 */
1328 	retval = -ENXIO;
1329 	if (!scsi_block_when_processing_errors(sdev))
1330 		goto error_out;
1331 
1332 	if (sd_need_revalidate(disk, sdkp))
1333 		sd_revalidate_disk(disk);
1334 
1335 	/*
1336 	 * If the drive is empty, just let the open fail.
1337 	 */
1338 	retval = -ENOMEDIUM;
1339 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1340 		goto error_out;
1341 
1342 	/*
1343 	 * If the device has the write protect tab set, have the open fail
1344 	 * if the user expects to be able to write to the thing.
1345 	 */
1346 	retval = -EROFS;
1347 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1348 		goto error_out;
1349 
1350 	/*
1351 	 * It is possible that the disk changing stuff resulted in
1352 	 * the device being taken offline.  If this is the case,
1353 	 * report this to the user, and don't pretend that the
1354 	 * open actually succeeded.
1355 	 */
1356 	retval = -ENXIO;
1357 	if (!scsi_device_online(sdev))
1358 		goto error_out;
1359 
1360 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1361 		if (scsi_block_when_processing_errors(sdev))
1362 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1363 	}
1364 
1365 	return 0;
1366 
1367 error_out:
1368 	scsi_device_put(sdev);
1369 	return retval;
1370 }
1371 
1372 /**
1373  *	sd_release - invoked when the (last) close(2) is called on this
1374  *	scsi disk.
1375  *	@disk: disk to release
1376  *
1377  *	Returns 0.
1378  *
1379  *	Note: may block (uninterruptible) if error recovery is underway
1380  *	on this disk.
1381  *
1382  *	Locking: called with bdev->bd_disk->open_mutex held.
1383  **/
1384 static void sd_release(struct gendisk *disk)
1385 {
1386 	struct scsi_disk *sdkp = scsi_disk(disk);
1387 	struct scsi_device *sdev = sdkp->device;
1388 
1389 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1390 
1391 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1392 		if (scsi_block_when_processing_errors(sdev))
1393 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1394 	}
1395 
1396 	scsi_device_put(sdev);
1397 }
1398 
1399 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1400 {
1401 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1402 	struct scsi_device *sdp = sdkp->device;
1403 	struct Scsi_Host *host = sdp->host;
1404 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1405 	int diskinfo[4];
1406 
1407 	/* default to most commonly used values */
1408 	diskinfo[0] = 0x40;	/* 1 << 6 */
1409 	diskinfo[1] = 0x20;	/* 1 << 5 */
1410 	diskinfo[2] = capacity >> 11;
1411 
1412 	/* override with calculated, extended default, or driver values */
1413 	if (host->hostt->bios_param)
1414 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1415 	else
1416 		scsicam_bios_param(bdev, capacity, diskinfo);
1417 
1418 	geo->heads = diskinfo[0];
1419 	geo->sectors = diskinfo[1];
1420 	geo->cylinders = diskinfo[2];
1421 	return 0;
1422 }
1423 
1424 /**
1425  *	sd_ioctl - process an ioctl
1426  *	@bdev: target block device
1427  *	@mode: FMODE_* mask
1428  *	@cmd: ioctl command number
1429  *	@arg: this is third argument given to ioctl(2) system call.
1430  *	Often contains a pointer.
1431  *
1432  *	Returns 0 if successful (some ioctls return positive numbers on
1433  *	success as well). Returns a negated errno value in case of error.
1434  *
1435  *	Note: most ioctls are forward onto the block subsystem or further
1436  *	down in the scsi subsystem.
1437  **/
1438 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1439 		    unsigned int cmd, unsigned long arg)
1440 {
1441 	struct gendisk *disk = bdev->bd_disk;
1442 	struct scsi_disk *sdkp = scsi_disk(disk);
1443 	struct scsi_device *sdp = sdkp->device;
1444 	void __user *p = (void __user *)arg;
1445 	int error;
1446 
1447 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1448 				    "cmd=0x%x\n", disk->disk_name, cmd));
1449 
1450 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1451 		return -ENOIOCTLCMD;
1452 
1453 	/*
1454 	 * If we are in the middle of error recovery, don't let anyone
1455 	 * else try and use this device.  Also, if error recovery fails, it
1456 	 * may try and take the device offline, in which case all further
1457 	 * access to the device is prohibited.
1458 	 */
1459 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1460 			(mode & FMODE_NDELAY) != 0);
1461 	if (error)
1462 		return error;
1463 
1464 	if (is_sed_ioctl(cmd))
1465 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1466 	return scsi_ioctl(sdp, mode & FMODE_WRITE, cmd, p);
1467 }
1468 
1469 static void set_media_not_present(struct scsi_disk *sdkp)
1470 {
1471 	if (sdkp->media_present)
1472 		sdkp->device->changed = 1;
1473 
1474 	if (sdkp->device->removable) {
1475 		sdkp->media_present = 0;
1476 		sdkp->capacity = 0;
1477 	}
1478 }
1479 
1480 static int media_not_present(struct scsi_disk *sdkp,
1481 			     struct scsi_sense_hdr *sshdr)
1482 {
1483 	if (!scsi_sense_valid(sshdr))
1484 		return 0;
1485 
1486 	/* not invoked for commands that could return deferred errors */
1487 	switch (sshdr->sense_key) {
1488 	case UNIT_ATTENTION:
1489 	case NOT_READY:
1490 		/* medium not present */
1491 		if (sshdr->asc == 0x3A) {
1492 			set_media_not_present(sdkp);
1493 			return 1;
1494 		}
1495 	}
1496 	return 0;
1497 }
1498 
1499 /**
1500  *	sd_check_events - check media events
1501  *	@disk: kernel device descriptor
1502  *	@clearing: disk events currently being cleared
1503  *
1504  *	Returns mask of DISK_EVENT_*.
1505  *
1506  *	Note: this function is invoked from the block subsystem.
1507  **/
1508 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1509 {
1510 	struct scsi_disk *sdkp = disk->private_data;
1511 	struct scsi_device *sdp;
1512 	int retval;
1513 	bool disk_changed;
1514 
1515 	if (!sdkp)
1516 		return 0;
1517 
1518 	sdp = sdkp->device;
1519 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1520 
1521 	/*
1522 	 * If the device is offline, don't send any commands - just pretend as
1523 	 * if the command failed.  If the device ever comes back online, we
1524 	 * can deal with it then.  It is only because of unrecoverable errors
1525 	 * that we would ever take a device offline in the first place.
1526 	 */
1527 	if (!scsi_device_online(sdp)) {
1528 		set_media_not_present(sdkp);
1529 		goto out;
1530 	}
1531 
1532 	/*
1533 	 * Using TEST_UNIT_READY enables differentiation between drive with
1534 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1535 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1536 	 *
1537 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1538 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1539 	 * sd_revalidate() is called.
1540 	 */
1541 	if (scsi_block_when_processing_errors(sdp)) {
1542 		struct scsi_sense_hdr sshdr = { 0, };
1543 
1544 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1545 					      &sshdr);
1546 
1547 		/* failed to execute TUR, assume media not present */
1548 		if (retval < 0 || host_byte(retval)) {
1549 			set_media_not_present(sdkp);
1550 			goto out;
1551 		}
1552 
1553 		if (media_not_present(sdkp, &sshdr))
1554 			goto out;
1555 	}
1556 
1557 	/*
1558 	 * For removable scsi disk we have to recognise the presence
1559 	 * of a disk in the drive.
1560 	 */
1561 	if (!sdkp->media_present)
1562 		sdp->changed = 1;
1563 	sdkp->media_present = 1;
1564 out:
1565 	/*
1566 	 * sdp->changed is set under the following conditions:
1567 	 *
1568 	 *	Medium present state has changed in either direction.
1569 	 *	Device has indicated UNIT_ATTENTION.
1570 	 */
1571 	disk_changed = sdp->changed;
1572 	sdp->changed = 0;
1573 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1574 }
1575 
1576 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1577 {
1578 	int retries, res;
1579 	struct scsi_device *sdp = sdkp->device;
1580 	const int timeout = sdp->request_queue->rq_timeout
1581 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1582 	struct scsi_sense_hdr my_sshdr;
1583 	const struct scsi_exec_args exec_args = {
1584 		.req_flags = BLK_MQ_REQ_PM,
1585 		/* caller might not be interested in sense, but we need it */
1586 		.sshdr = sshdr ? : &my_sshdr,
1587 	};
1588 
1589 	if (!scsi_device_online(sdp))
1590 		return -ENODEV;
1591 
1592 	sshdr = exec_args.sshdr;
1593 
1594 	for (retries = 3; retries > 0; --retries) {
1595 		unsigned char cmd[16] = { 0 };
1596 
1597 		if (sdp->use_16_for_sync)
1598 			cmd[0] = SYNCHRONIZE_CACHE_16;
1599 		else
1600 			cmd[0] = SYNCHRONIZE_CACHE;
1601 		/*
1602 		 * Leave the rest of the command zero to indicate
1603 		 * flush everything.
1604 		 */
1605 		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1606 				       timeout, sdkp->max_retries, &exec_args);
1607 		if (res == 0)
1608 			break;
1609 	}
1610 
1611 	if (res) {
1612 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1613 
1614 		if (res < 0)
1615 			return res;
1616 
1617 		if (scsi_status_is_check_condition(res) &&
1618 		    scsi_sense_valid(sshdr)) {
1619 			sd_print_sense_hdr(sdkp, sshdr);
1620 
1621 			/* we need to evaluate the error return  */
1622 			if (sshdr->asc == 0x3a ||	/* medium not present */
1623 			    sshdr->asc == 0x20 ||	/* invalid command */
1624 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1625 				/* this is no error here */
1626 				return 0;
1627 		}
1628 
1629 		switch (host_byte(res)) {
1630 		/* ignore errors due to racing a disconnection */
1631 		case DID_BAD_TARGET:
1632 		case DID_NO_CONNECT:
1633 			return 0;
1634 		/* signal the upper layer it might try again */
1635 		case DID_BUS_BUSY:
1636 		case DID_IMM_RETRY:
1637 		case DID_REQUEUE:
1638 		case DID_SOFT_ERROR:
1639 			return -EBUSY;
1640 		default:
1641 			return -EIO;
1642 		}
1643 	}
1644 	return 0;
1645 }
1646 
1647 static void sd_rescan(struct device *dev)
1648 {
1649 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1650 
1651 	sd_revalidate_disk(sdkp->disk);
1652 }
1653 
1654 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1655 		enum blk_unique_id type)
1656 {
1657 	struct scsi_device *sdev = scsi_disk(disk)->device;
1658 	const struct scsi_vpd *vpd;
1659 	const unsigned char *d;
1660 	int ret = -ENXIO, len;
1661 
1662 	rcu_read_lock();
1663 	vpd = rcu_dereference(sdev->vpd_pg83);
1664 	if (!vpd)
1665 		goto out_unlock;
1666 
1667 	ret = -EINVAL;
1668 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1669 		/* we only care about designators with LU association */
1670 		if (((d[1] >> 4) & 0x3) != 0x00)
1671 			continue;
1672 		if ((d[1] & 0xf) != type)
1673 			continue;
1674 
1675 		/*
1676 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1677 		 * keep looking as one with more entropy might still show up.
1678 		 */
1679 		len = d[3];
1680 		if (len != 8 && len != 12 && len != 16)
1681 			continue;
1682 		ret = len;
1683 		memcpy(id, d + 4, len);
1684 		if (len == 16)
1685 			break;
1686 	}
1687 out_unlock:
1688 	rcu_read_unlock();
1689 	return ret;
1690 }
1691 
1692 static char sd_pr_type(enum pr_type type)
1693 {
1694 	switch (type) {
1695 	case PR_WRITE_EXCLUSIVE:
1696 		return 0x01;
1697 	case PR_EXCLUSIVE_ACCESS:
1698 		return 0x03;
1699 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1700 		return 0x05;
1701 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1702 		return 0x06;
1703 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1704 		return 0x07;
1705 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1706 		return 0x08;
1707 	default:
1708 		return 0;
1709 	}
1710 };
1711 
1712 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1713 {
1714 	switch (host_byte(result)) {
1715 	case DID_TRANSPORT_MARGINAL:
1716 	case DID_TRANSPORT_DISRUPTED:
1717 	case DID_BUS_BUSY:
1718 		return PR_STS_RETRY_PATH_FAILURE;
1719 	case DID_NO_CONNECT:
1720 		return PR_STS_PATH_FAILED;
1721 	case DID_TRANSPORT_FAILFAST:
1722 		return PR_STS_PATH_FAST_FAILED;
1723 	}
1724 
1725 	switch (status_byte(result)) {
1726 	case SAM_STAT_RESERVATION_CONFLICT:
1727 		return PR_STS_RESERVATION_CONFLICT;
1728 	case SAM_STAT_CHECK_CONDITION:
1729 		if (!scsi_sense_valid(sshdr))
1730 			return PR_STS_IOERR;
1731 
1732 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1733 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1734 			return -EINVAL;
1735 
1736 		fallthrough;
1737 	default:
1738 		return PR_STS_IOERR;
1739 	}
1740 }
1741 
1742 static int sd_pr_command(struct block_device *bdev, u8 sa,
1743 		u64 key, u64 sa_key, u8 type, u8 flags)
1744 {
1745 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1746 	struct scsi_device *sdev = sdkp->device;
1747 	struct scsi_sense_hdr sshdr;
1748 	const struct scsi_exec_args exec_args = {
1749 		.sshdr = &sshdr,
1750 	};
1751 	int result;
1752 	u8 cmd[16] = { 0, };
1753 	u8 data[24] = { 0, };
1754 
1755 	cmd[0] = PERSISTENT_RESERVE_OUT;
1756 	cmd[1] = sa;
1757 	cmd[2] = type;
1758 	put_unaligned_be32(sizeof(data), &cmd[5]);
1759 
1760 	put_unaligned_be64(key, &data[0]);
1761 	put_unaligned_be64(sa_key, &data[8]);
1762 	data[20] = flags;
1763 
1764 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1765 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1766 				  &exec_args);
1767 
1768 	if (scsi_status_is_check_condition(result) &&
1769 	    scsi_sense_valid(&sshdr)) {
1770 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1771 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1772 	}
1773 
1774 	if (result <= 0)
1775 		return result;
1776 
1777 	return sd_scsi_to_pr_err(&sshdr, result);
1778 }
1779 
1780 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1781 		u32 flags)
1782 {
1783 	if (flags & ~PR_FL_IGNORE_KEY)
1784 		return -EOPNOTSUPP;
1785 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1786 			old_key, new_key, 0,
1787 			(1 << 0) /* APTPL */);
1788 }
1789 
1790 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1791 		u32 flags)
1792 {
1793 	if (flags)
1794 		return -EOPNOTSUPP;
1795 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1796 }
1797 
1798 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1799 {
1800 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1801 }
1802 
1803 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1804 		enum pr_type type, bool abort)
1805 {
1806 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1807 			     sd_pr_type(type), 0);
1808 }
1809 
1810 static int sd_pr_clear(struct block_device *bdev, u64 key)
1811 {
1812 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1813 }
1814 
1815 static const struct pr_ops sd_pr_ops = {
1816 	.pr_register	= sd_pr_register,
1817 	.pr_reserve	= sd_pr_reserve,
1818 	.pr_release	= sd_pr_release,
1819 	.pr_preempt	= sd_pr_preempt,
1820 	.pr_clear	= sd_pr_clear,
1821 };
1822 
1823 static void scsi_disk_free_disk(struct gendisk *disk)
1824 {
1825 	struct scsi_disk *sdkp = scsi_disk(disk);
1826 
1827 	put_device(&sdkp->disk_dev);
1828 }
1829 
1830 static const struct block_device_operations sd_fops = {
1831 	.owner			= THIS_MODULE,
1832 	.open			= sd_open,
1833 	.release		= sd_release,
1834 	.ioctl			= sd_ioctl,
1835 	.getgeo			= sd_getgeo,
1836 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1837 	.check_events		= sd_check_events,
1838 	.unlock_native_capacity	= sd_unlock_native_capacity,
1839 	.report_zones		= sd_zbc_report_zones,
1840 	.get_unique_id		= sd_get_unique_id,
1841 	.free_disk		= scsi_disk_free_disk,
1842 	.pr_ops			= &sd_pr_ops,
1843 };
1844 
1845 /**
1846  *	sd_eh_reset - reset error handling callback
1847  *	@scmd:		sd-issued command that has failed
1848  *
1849  *	This function is called by the SCSI midlayer before starting
1850  *	SCSI EH. When counting medium access failures we have to be
1851  *	careful to register it only only once per device and SCSI EH run;
1852  *	there might be several timed out commands which will cause the
1853  *	'max_medium_access_timeouts' counter to trigger after the first
1854  *	SCSI EH run already and set the device to offline.
1855  *	So this function resets the internal counter before starting SCSI EH.
1856  **/
1857 static void sd_eh_reset(struct scsi_cmnd *scmd)
1858 {
1859 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1860 
1861 	/* New SCSI EH run, reset gate variable */
1862 	sdkp->ignore_medium_access_errors = false;
1863 }
1864 
1865 /**
1866  *	sd_eh_action - error handling callback
1867  *	@scmd:		sd-issued command that has failed
1868  *	@eh_disp:	The recovery disposition suggested by the midlayer
1869  *
1870  *	This function is called by the SCSI midlayer upon completion of an
1871  *	error test command (currently TEST UNIT READY). The result of sending
1872  *	the eh command is passed in eh_disp.  We're looking for devices that
1873  *	fail medium access commands but are OK with non access commands like
1874  *	test unit ready (so wrongly see the device as having a successful
1875  *	recovery)
1876  **/
1877 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1878 {
1879 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1880 	struct scsi_device *sdev = scmd->device;
1881 
1882 	if (!scsi_device_online(sdev) ||
1883 	    !scsi_medium_access_command(scmd) ||
1884 	    host_byte(scmd->result) != DID_TIME_OUT ||
1885 	    eh_disp != SUCCESS)
1886 		return eh_disp;
1887 
1888 	/*
1889 	 * The device has timed out executing a medium access command.
1890 	 * However, the TEST UNIT READY command sent during error
1891 	 * handling completed successfully. Either the device is in the
1892 	 * process of recovering or has it suffered an internal failure
1893 	 * that prevents access to the storage medium.
1894 	 */
1895 	if (!sdkp->ignore_medium_access_errors) {
1896 		sdkp->medium_access_timed_out++;
1897 		sdkp->ignore_medium_access_errors = true;
1898 	}
1899 
1900 	/*
1901 	 * If the device keeps failing read/write commands but TEST UNIT
1902 	 * READY always completes successfully we assume that medium
1903 	 * access is no longer possible and take the device offline.
1904 	 */
1905 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1906 		scmd_printk(KERN_ERR, scmd,
1907 			    "Medium access timeout failure. Offlining disk!\n");
1908 		mutex_lock(&sdev->state_mutex);
1909 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1910 		mutex_unlock(&sdev->state_mutex);
1911 
1912 		return SUCCESS;
1913 	}
1914 
1915 	return eh_disp;
1916 }
1917 
1918 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1919 {
1920 	struct request *req = scsi_cmd_to_rq(scmd);
1921 	struct scsi_device *sdev = scmd->device;
1922 	unsigned int transferred, good_bytes;
1923 	u64 start_lba, end_lba, bad_lba;
1924 
1925 	/*
1926 	 * Some commands have a payload smaller than the device logical
1927 	 * block size (e.g. INQUIRY on a 4K disk).
1928 	 */
1929 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1930 		return 0;
1931 
1932 	/* Check if we have a 'bad_lba' information */
1933 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1934 				     SCSI_SENSE_BUFFERSIZE,
1935 				     &bad_lba))
1936 		return 0;
1937 
1938 	/*
1939 	 * If the bad lba was reported incorrectly, we have no idea where
1940 	 * the error is.
1941 	 */
1942 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1943 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1944 	if (bad_lba < start_lba || bad_lba >= end_lba)
1945 		return 0;
1946 
1947 	/*
1948 	 * resid is optional but mostly filled in.  When it's unused,
1949 	 * its value is zero, so we assume the whole buffer transferred
1950 	 */
1951 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1952 
1953 	/* This computation should always be done in terms of the
1954 	 * resolution of the device's medium.
1955 	 */
1956 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1957 
1958 	return min(good_bytes, transferred);
1959 }
1960 
1961 /**
1962  *	sd_done - bottom half handler: called when the lower level
1963  *	driver has completed (successfully or otherwise) a scsi command.
1964  *	@SCpnt: mid-level's per command structure.
1965  *
1966  *	Note: potentially run from within an ISR. Must not block.
1967  **/
1968 static int sd_done(struct scsi_cmnd *SCpnt)
1969 {
1970 	int result = SCpnt->result;
1971 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1972 	unsigned int sector_size = SCpnt->device->sector_size;
1973 	unsigned int resid;
1974 	struct scsi_sense_hdr sshdr;
1975 	struct request *req = scsi_cmd_to_rq(SCpnt);
1976 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1977 	int sense_valid = 0;
1978 	int sense_deferred = 0;
1979 
1980 	switch (req_op(req)) {
1981 	case REQ_OP_DISCARD:
1982 	case REQ_OP_WRITE_ZEROES:
1983 	case REQ_OP_ZONE_RESET:
1984 	case REQ_OP_ZONE_RESET_ALL:
1985 	case REQ_OP_ZONE_OPEN:
1986 	case REQ_OP_ZONE_CLOSE:
1987 	case REQ_OP_ZONE_FINISH:
1988 		if (!result) {
1989 			good_bytes = blk_rq_bytes(req);
1990 			scsi_set_resid(SCpnt, 0);
1991 		} else {
1992 			good_bytes = 0;
1993 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1994 		}
1995 		break;
1996 	default:
1997 		/*
1998 		 * In case of bogus fw or device, we could end up having
1999 		 * an unaligned partial completion. Check this here and force
2000 		 * alignment.
2001 		 */
2002 		resid = scsi_get_resid(SCpnt);
2003 		if (resid & (sector_size - 1)) {
2004 			sd_printk(KERN_INFO, sdkp,
2005 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2006 				resid, sector_size);
2007 			scsi_print_command(SCpnt);
2008 			resid = min(scsi_bufflen(SCpnt),
2009 				    round_up(resid, sector_size));
2010 			scsi_set_resid(SCpnt, resid);
2011 		}
2012 	}
2013 
2014 	if (result) {
2015 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2016 		if (sense_valid)
2017 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2018 	}
2019 	sdkp->medium_access_timed_out = 0;
2020 
2021 	if (!scsi_status_is_check_condition(result) &&
2022 	    (!sense_valid || sense_deferred))
2023 		goto out;
2024 
2025 	switch (sshdr.sense_key) {
2026 	case HARDWARE_ERROR:
2027 	case MEDIUM_ERROR:
2028 		good_bytes = sd_completed_bytes(SCpnt);
2029 		break;
2030 	case RECOVERED_ERROR:
2031 		good_bytes = scsi_bufflen(SCpnt);
2032 		break;
2033 	case NO_SENSE:
2034 		/* This indicates a false check condition, so ignore it.  An
2035 		 * unknown amount of data was transferred so treat it as an
2036 		 * error.
2037 		 */
2038 		SCpnt->result = 0;
2039 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2040 		break;
2041 	case ABORTED_COMMAND:
2042 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2043 			good_bytes = sd_completed_bytes(SCpnt);
2044 		break;
2045 	case ILLEGAL_REQUEST:
2046 		switch (sshdr.asc) {
2047 		case 0x10:	/* DIX: Host detected corruption */
2048 			good_bytes = sd_completed_bytes(SCpnt);
2049 			break;
2050 		case 0x20:	/* INVALID COMMAND OPCODE */
2051 		case 0x24:	/* INVALID FIELD IN CDB */
2052 			switch (SCpnt->cmnd[0]) {
2053 			case UNMAP:
2054 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2055 				break;
2056 			case WRITE_SAME_16:
2057 			case WRITE_SAME:
2058 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2059 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2060 				} else {
2061 					sdkp->device->no_write_same = 1;
2062 					sd_config_write_same(sdkp);
2063 					req->rq_flags |= RQF_QUIET;
2064 				}
2065 				break;
2066 			}
2067 		}
2068 		break;
2069 	default:
2070 		break;
2071 	}
2072 
2073  out:
2074 	if (sd_is_zoned(sdkp))
2075 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2076 
2077 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2078 					   "sd_done: completed %d of %d bytes\n",
2079 					   good_bytes, scsi_bufflen(SCpnt)));
2080 
2081 	return good_bytes;
2082 }
2083 
2084 /*
2085  * spinup disk - called only in sd_revalidate_disk()
2086  */
2087 static void
2088 sd_spinup_disk(struct scsi_disk *sdkp)
2089 {
2090 	unsigned char cmd[10];
2091 	unsigned long spintime_expire = 0;
2092 	int retries, spintime;
2093 	unsigned int the_result;
2094 	struct scsi_sense_hdr sshdr;
2095 	const struct scsi_exec_args exec_args = {
2096 		.sshdr = &sshdr,
2097 	};
2098 	int sense_valid = 0;
2099 
2100 	spintime = 0;
2101 
2102 	/* Spin up drives, as required.  Only do this at boot time */
2103 	/* Spinup needs to be done for module loads too. */
2104 	do {
2105 		retries = 0;
2106 
2107 		do {
2108 			bool media_was_present = sdkp->media_present;
2109 
2110 			cmd[0] = TEST_UNIT_READY;
2111 			memset((void *) &cmd[1], 0, 9);
2112 
2113 			the_result = scsi_execute_cmd(sdkp->device, cmd,
2114 						      REQ_OP_DRV_IN, NULL, 0,
2115 						      SD_TIMEOUT,
2116 						      sdkp->max_retries,
2117 						      &exec_args);
2118 
2119 			/*
2120 			 * If the drive has indicated to us that it
2121 			 * doesn't have any media in it, don't bother
2122 			 * with any more polling.
2123 			 */
2124 			if (media_not_present(sdkp, &sshdr)) {
2125 				if (media_was_present)
2126 					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2127 				return;
2128 			}
2129 
2130 			if (the_result)
2131 				sense_valid = scsi_sense_valid(&sshdr);
2132 			retries++;
2133 		} while (retries < 3 &&
2134 			 (!scsi_status_is_good(the_result) ||
2135 			  (scsi_status_is_check_condition(the_result) &&
2136 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2137 
2138 		if (!scsi_status_is_check_condition(the_result)) {
2139 			/* no sense, TUR either succeeded or failed
2140 			 * with a status error */
2141 			if(!spintime && !scsi_status_is_good(the_result)) {
2142 				sd_print_result(sdkp, "Test Unit Ready failed",
2143 						the_result);
2144 			}
2145 			break;
2146 		}
2147 
2148 		/*
2149 		 * The device does not want the automatic start to be issued.
2150 		 */
2151 		if (sdkp->device->no_start_on_add)
2152 			break;
2153 
2154 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2155 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2156 				break;	/* manual intervention required */
2157 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2158 				break;	/* standby */
2159 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2160 				break;	/* unavailable */
2161 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2162 				break;	/* sanitize in progress */
2163 			/*
2164 			 * Issue command to spin up drive when not ready
2165 			 */
2166 			if (!spintime) {
2167 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2168 				cmd[0] = START_STOP;
2169 				cmd[1] = 1;	/* Return immediately */
2170 				memset((void *) &cmd[2], 0, 8);
2171 				cmd[4] = 1;	/* Start spin cycle */
2172 				if (sdkp->device->start_stop_pwr_cond)
2173 					cmd[4] |= 1 << 4;
2174 				scsi_execute_cmd(sdkp->device, cmd,
2175 						 REQ_OP_DRV_IN, NULL, 0,
2176 						 SD_TIMEOUT, sdkp->max_retries,
2177 						 &exec_args);
2178 				spintime_expire = jiffies + 100 * HZ;
2179 				spintime = 1;
2180 			}
2181 			/* Wait 1 second for next try */
2182 			msleep(1000);
2183 			printk(KERN_CONT ".");
2184 
2185 		/*
2186 		 * Wait for USB flash devices with slow firmware.
2187 		 * Yes, this sense key/ASC combination shouldn't
2188 		 * occur here.  It's characteristic of these devices.
2189 		 */
2190 		} else if (sense_valid &&
2191 				sshdr.sense_key == UNIT_ATTENTION &&
2192 				sshdr.asc == 0x28) {
2193 			if (!spintime) {
2194 				spintime_expire = jiffies + 5 * HZ;
2195 				spintime = 1;
2196 			}
2197 			/* Wait 1 second for next try */
2198 			msleep(1000);
2199 		} else {
2200 			/* we don't understand the sense code, so it's
2201 			 * probably pointless to loop */
2202 			if(!spintime) {
2203 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2204 				sd_print_sense_hdr(sdkp, &sshdr);
2205 			}
2206 			break;
2207 		}
2208 
2209 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2210 
2211 	if (spintime) {
2212 		if (scsi_status_is_good(the_result))
2213 			printk(KERN_CONT "ready\n");
2214 		else
2215 			printk(KERN_CONT "not responding...\n");
2216 	}
2217 }
2218 
2219 /*
2220  * Determine whether disk supports Data Integrity Field.
2221  */
2222 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2223 {
2224 	struct scsi_device *sdp = sdkp->device;
2225 	u8 type;
2226 
2227 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2228 		sdkp->protection_type = 0;
2229 		return 0;
2230 	}
2231 
2232 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2233 
2234 	if (type > T10_PI_TYPE3_PROTECTION) {
2235 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2236 			  " protection type %u. Disabling disk!\n",
2237 			  type);
2238 		sdkp->protection_type = 0;
2239 		return -ENODEV;
2240 	}
2241 
2242 	sdkp->protection_type = type;
2243 
2244 	return 0;
2245 }
2246 
2247 static void sd_config_protection(struct scsi_disk *sdkp)
2248 {
2249 	struct scsi_device *sdp = sdkp->device;
2250 
2251 	sd_dif_config_host(sdkp);
2252 
2253 	if (!sdkp->protection_type)
2254 		return;
2255 
2256 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2257 		sd_first_printk(KERN_NOTICE, sdkp,
2258 				"Disabling DIF Type %u protection\n",
2259 				sdkp->protection_type);
2260 		sdkp->protection_type = 0;
2261 	}
2262 
2263 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2264 			sdkp->protection_type);
2265 }
2266 
2267 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2268 			struct scsi_sense_hdr *sshdr, int sense_valid,
2269 			int the_result)
2270 {
2271 	if (sense_valid)
2272 		sd_print_sense_hdr(sdkp, sshdr);
2273 	else
2274 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2275 
2276 	/*
2277 	 * Set dirty bit for removable devices if not ready -
2278 	 * sometimes drives will not report this properly.
2279 	 */
2280 	if (sdp->removable &&
2281 	    sense_valid && sshdr->sense_key == NOT_READY)
2282 		set_media_not_present(sdkp);
2283 
2284 	/*
2285 	 * We used to set media_present to 0 here to indicate no media
2286 	 * in the drive, but some drives fail read capacity even with
2287 	 * media present, so we can't do that.
2288 	 */
2289 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2290 }
2291 
2292 #define RC16_LEN 32
2293 #if RC16_LEN > SD_BUF_SIZE
2294 #error RC16_LEN must not be more than SD_BUF_SIZE
2295 #endif
2296 
2297 #define READ_CAPACITY_RETRIES_ON_RESET	10
2298 
2299 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2300 						unsigned char *buffer)
2301 {
2302 	unsigned char cmd[16];
2303 	struct scsi_sense_hdr sshdr;
2304 	const struct scsi_exec_args exec_args = {
2305 		.sshdr = &sshdr,
2306 	};
2307 	int sense_valid = 0;
2308 	int the_result;
2309 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2310 	unsigned int alignment;
2311 	unsigned long long lba;
2312 	unsigned sector_size;
2313 
2314 	if (sdp->no_read_capacity_16)
2315 		return -EINVAL;
2316 
2317 	do {
2318 		memset(cmd, 0, 16);
2319 		cmd[0] = SERVICE_ACTION_IN_16;
2320 		cmd[1] = SAI_READ_CAPACITY_16;
2321 		cmd[13] = RC16_LEN;
2322 		memset(buffer, 0, RC16_LEN);
2323 
2324 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2325 					      buffer, RC16_LEN, SD_TIMEOUT,
2326 					      sdkp->max_retries, &exec_args);
2327 
2328 		if (media_not_present(sdkp, &sshdr))
2329 			return -ENODEV;
2330 
2331 		if (the_result > 0) {
2332 			sense_valid = scsi_sense_valid(&sshdr);
2333 			if (sense_valid &&
2334 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2335 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2336 			    sshdr.ascq == 0x00)
2337 				/* Invalid Command Operation Code or
2338 				 * Invalid Field in CDB, just retry
2339 				 * silently with RC10 */
2340 				return -EINVAL;
2341 			if (sense_valid &&
2342 			    sshdr.sense_key == UNIT_ATTENTION &&
2343 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2344 				/* Device reset might occur several times,
2345 				 * give it one more chance */
2346 				if (--reset_retries > 0)
2347 					continue;
2348 		}
2349 		retries--;
2350 
2351 	} while (the_result && retries);
2352 
2353 	if (the_result) {
2354 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2355 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2356 		return -EINVAL;
2357 	}
2358 
2359 	sector_size = get_unaligned_be32(&buffer[8]);
2360 	lba = get_unaligned_be64(&buffer[0]);
2361 
2362 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2363 		sdkp->capacity = 0;
2364 		return -ENODEV;
2365 	}
2366 
2367 	/* Logical blocks per physical block exponent */
2368 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2369 
2370 	/* RC basis */
2371 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2372 
2373 	/* Lowest aligned logical block */
2374 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2375 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2376 	if (alignment && sdkp->first_scan)
2377 		sd_printk(KERN_NOTICE, sdkp,
2378 			  "physical block alignment offset: %u\n", alignment);
2379 
2380 	if (buffer[14] & 0x80) { /* LBPME */
2381 		sdkp->lbpme = 1;
2382 
2383 		if (buffer[14] & 0x40) /* LBPRZ */
2384 			sdkp->lbprz = 1;
2385 
2386 		sd_config_discard(sdkp, SD_LBP_WS16);
2387 	}
2388 
2389 	sdkp->capacity = lba + 1;
2390 	return sector_size;
2391 }
2392 
2393 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2394 						unsigned char *buffer)
2395 {
2396 	unsigned char cmd[16];
2397 	struct scsi_sense_hdr sshdr;
2398 	const struct scsi_exec_args exec_args = {
2399 		.sshdr = &sshdr,
2400 	};
2401 	int sense_valid = 0;
2402 	int the_result;
2403 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2404 	sector_t lba;
2405 	unsigned sector_size;
2406 
2407 	do {
2408 		cmd[0] = READ_CAPACITY;
2409 		memset(&cmd[1], 0, 9);
2410 		memset(buffer, 0, 8);
2411 
2412 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2413 					      8, SD_TIMEOUT, sdkp->max_retries,
2414 					      &exec_args);
2415 
2416 		if (media_not_present(sdkp, &sshdr))
2417 			return -ENODEV;
2418 
2419 		if (the_result > 0) {
2420 			sense_valid = scsi_sense_valid(&sshdr);
2421 			if (sense_valid &&
2422 			    sshdr.sense_key == UNIT_ATTENTION &&
2423 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2424 				/* Device reset might occur several times,
2425 				 * give it one more chance */
2426 				if (--reset_retries > 0)
2427 					continue;
2428 		}
2429 		retries--;
2430 
2431 	} while (the_result && retries);
2432 
2433 	if (the_result) {
2434 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2435 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2436 		return -EINVAL;
2437 	}
2438 
2439 	sector_size = get_unaligned_be32(&buffer[4]);
2440 	lba = get_unaligned_be32(&buffer[0]);
2441 
2442 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2443 		/* Some buggy (usb cardreader) devices return an lba of
2444 		   0xffffffff when the want to report a size of 0 (with
2445 		   which they really mean no media is present) */
2446 		sdkp->capacity = 0;
2447 		sdkp->physical_block_size = sector_size;
2448 		return sector_size;
2449 	}
2450 
2451 	sdkp->capacity = lba + 1;
2452 	sdkp->physical_block_size = sector_size;
2453 	return sector_size;
2454 }
2455 
2456 static int sd_try_rc16_first(struct scsi_device *sdp)
2457 {
2458 	if (sdp->host->max_cmd_len < 16)
2459 		return 0;
2460 	if (sdp->try_rc_10_first)
2461 		return 0;
2462 	if (sdp->scsi_level > SCSI_SPC_2)
2463 		return 1;
2464 	if (scsi_device_protection(sdp))
2465 		return 1;
2466 	return 0;
2467 }
2468 
2469 /*
2470  * read disk capacity
2471  */
2472 static void
2473 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2474 {
2475 	int sector_size;
2476 	struct scsi_device *sdp = sdkp->device;
2477 
2478 	if (sd_try_rc16_first(sdp)) {
2479 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2480 		if (sector_size == -EOVERFLOW)
2481 			goto got_data;
2482 		if (sector_size == -ENODEV)
2483 			return;
2484 		if (sector_size < 0)
2485 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2486 		if (sector_size < 0)
2487 			return;
2488 	} else {
2489 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2490 		if (sector_size == -EOVERFLOW)
2491 			goto got_data;
2492 		if (sector_size < 0)
2493 			return;
2494 		if ((sizeof(sdkp->capacity) > 4) &&
2495 		    (sdkp->capacity > 0xffffffffULL)) {
2496 			int old_sector_size = sector_size;
2497 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2498 					"Trying to use READ CAPACITY(16).\n");
2499 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2500 			if (sector_size < 0) {
2501 				sd_printk(KERN_NOTICE, sdkp,
2502 					"Using 0xffffffff as device size\n");
2503 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2504 				sector_size = old_sector_size;
2505 				goto got_data;
2506 			}
2507 			/* Remember that READ CAPACITY(16) succeeded */
2508 			sdp->try_rc_10_first = 0;
2509 		}
2510 	}
2511 
2512 	/* Some devices are known to return the total number of blocks,
2513 	 * not the highest block number.  Some devices have versions
2514 	 * which do this and others which do not.  Some devices we might
2515 	 * suspect of doing this but we don't know for certain.
2516 	 *
2517 	 * If we know the reported capacity is wrong, decrement it.  If
2518 	 * we can only guess, then assume the number of blocks is even
2519 	 * (usually true but not always) and err on the side of lowering
2520 	 * the capacity.
2521 	 */
2522 	if (sdp->fix_capacity ||
2523 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2524 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2525 				"from its reported value: %llu\n",
2526 				(unsigned long long) sdkp->capacity);
2527 		--sdkp->capacity;
2528 	}
2529 
2530 got_data:
2531 	if (sector_size == 0) {
2532 		sector_size = 512;
2533 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2534 			  "assuming 512.\n");
2535 	}
2536 
2537 	if (sector_size != 512 &&
2538 	    sector_size != 1024 &&
2539 	    sector_size != 2048 &&
2540 	    sector_size != 4096) {
2541 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2542 			  sector_size);
2543 		/*
2544 		 * The user might want to re-format the drive with
2545 		 * a supported sectorsize.  Once this happens, it
2546 		 * would be relatively trivial to set the thing up.
2547 		 * For this reason, we leave the thing in the table.
2548 		 */
2549 		sdkp->capacity = 0;
2550 		/*
2551 		 * set a bogus sector size so the normal read/write
2552 		 * logic in the block layer will eventually refuse any
2553 		 * request on this device without tripping over power
2554 		 * of two sector size assumptions
2555 		 */
2556 		sector_size = 512;
2557 	}
2558 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2559 	blk_queue_physical_block_size(sdp->request_queue,
2560 				      sdkp->physical_block_size);
2561 	sdkp->device->sector_size = sector_size;
2562 
2563 	if (sdkp->capacity > 0xffffffff)
2564 		sdp->use_16_for_rw = 1;
2565 
2566 }
2567 
2568 /*
2569  * Print disk capacity
2570  */
2571 static void
2572 sd_print_capacity(struct scsi_disk *sdkp,
2573 		  sector_t old_capacity)
2574 {
2575 	int sector_size = sdkp->device->sector_size;
2576 	char cap_str_2[10], cap_str_10[10];
2577 
2578 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2579 		return;
2580 
2581 	string_get_size(sdkp->capacity, sector_size,
2582 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2583 	string_get_size(sdkp->capacity, sector_size,
2584 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2585 
2586 	sd_printk(KERN_NOTICE, sdkp,
2587 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2588 		  (unsigned long long)sdkp->capacity,
2589 		  sector_size, cap_str_10, cap_str_2);
2590 
2591 	if (sdkp->physical_block_size != sector_size)
2592 		sd_printk(KERN_NOTICE, sdkp,
2593 			  "%u-byte physical blocks\n",
2594 			  sdkp->physical_block_size);
2595 }
2596 
2597 /* called with buffer of length 512 */
2598 static inline int
2599 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2600 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2601 		 struct scsi_sense_hdr *sshdr)
2602 {
2603 	/*
2604 	 * If we must use MODE SENSE(10), make sure that the buffer length
2605 	 * is at least 8 bytes so that the mode sense header fits.
2606 	 */
2607 	if (sdkp->device->use_10_for_ms && len < 8)
2608 		len = 8;
2609 
2610 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2611 			       SD_TIMEOUT, sdkp->max_retries, data,
2612 			       sshdr);
2613 }
2614 
2615 /*
2616  * read write protect setting, if possible - called only in sd_revalidate_disk()
2617  * called with buffer of length SD_BUF_SIZE
2618  */
2619 static void
2620 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2621 {
2622 	int res;
2623 	struct scsi_device *sdp = sdkp->device;
2624 	struct scsi_mode_data data;
2625 	int old_wp = sdkp->write_prot;
2626 
2627 	set_disk_ro(sdkp->disk, 0);
2628 	if (sdp->skip_ms_page_3f) {
2629 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2630 		return;
2631 	}
2632 
2633 	if (sdp->use_192_bytes_for_3f) {
2634 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2635 	} else {
2636 		/*
2637 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2638 		 * We have to start carefully: some devices hang if we ask
2639 		 * for more than is available.
2640 		 */
2641 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2642 
2643 		/*
2644 		 * Second attempt: ask for page 0 When only page 0 is
2645 		 * implemented, a request for page 3F may return Sense Key
2646 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2647 		 * CDB.
2648 		 */
2649 		if (res < 0)
2650 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2651 
2652 		/*
2653 		 * Third attempt: ask 255 bytes, as we did earlier.
2654 		 */
2655 		if (res < 0)
2656 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2657 					       &data, NULL);
2658 	}
2659 
2660 	if (res < 0) {
2661 		sd_first_printk(KERN_WARNING, sdkp,
2662 			  "Test WP failed, assume Write Enabled\n");
2663 	} else {
2664 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2665 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2666 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2667 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2668 				  sdkp->write_prot ? "on" : "off");
2669 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2670 		}
2671 	}
2672 }
2673 
2674 /*
2675  * sd_read_cache_type - called only from sd_revalidate_disk()
2676  * called with buffer of length SD_BUF_SIZE
2677  */
2678 static void
2679 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2680 {
2681 	int len = 0, res;
2682 	struct scsi_device *sdp = sdkp->device;
2683 
2684 	int dbd;
2685 	int modepage;
2686 	int first_len;
2687 	struct scsi_mode_data data;
2688 	struct scsi_sense_hdr sshdr;
2689 	int old_wce = sdkp->WCE;
2690 	int old_rcd = sdkp->RCD;
2691 	int old_dpofua = sdkp->DPOFUA;
2692 
2693 
2694 	if (sdkp->cache_override)
2695 		return;
2696 
2697 	first_len = 4;
2698 	if (sdp->skip_ms_page_8) {
2699 		if (sdp->type == TYPE_RBC)
2700 			goto defaults;
2701 		else {
2702 			if (sdp->skip_ms_page_3f)
2703 				goto defaults;
2704 			modepage = 0x3F;
2705 			if (sdp->use_192_bytes_for_3f)
2706 				first_len = 192;
2707 			dbd = 0;
2708 		}
2709 	} else if (sdp->type == TYPE_RBC) {
2710 		modepage = 6;
2711 		dbd = 8;
2712 	} else {
2713 		modepage = 8;
2714 		dbd = 0;
2715 	}
2716 
2717 	/* cautiously ask */
2718 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2719 			&data, &sshdr);
2720 
2721 	if (res < 0)
2722 		goto bad_sense;
2723 
2724 	if (!data.header_length) {
2725 		modepage = 6;
2726 		first_len = 0;
2727 		sd_first_printk(KERN_ERR, sdkp,
2728 				"Missing header in MODE_SENSE response\n");
2729 	}
2730 
2731 	/* that went OK, now ask for the proper length */
2732 	len = data.length;
2733 
2734 	/*
2735 	 * We're only interested in the first three bytes, actually.
2736 	 * But the data cache page is defined for the first 20.
2737 	 */
2738 	if (len < 3)
2739 		goto bad_sense;
2740 	else if (len > SD_BUF_SIZE) {
2741 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2742 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2743 		len = SD_BUF_SIZE;
2744 	}
2745 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2746 		len = 192;
2747 
2748 	/* Get the data */
2749 	if (len > first_len)
2750 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2751 				&data, &sshdr);
2752 
2753 	if (!res) {
2754 		int offset = data.header_length + data.block_descriptor_length;
2755 
2756 		while (offset < len) {
2757 			u8 page_code = buffer[offset] & 0x3F;
2758 			u8 spf       = buffer[offset] & 0x40;
2759 
2760 			if (page_code == 8 || page_code == 6) {
2761 				/* We're interested only in the first 3 bytes.
2762 				 */
2763 				if (len - offset <= 2) {
2764 					sd_first_printk(KERN_ERR, sdkp,
2765 						"Incomplete mode parameter "
2766 							"data\n");
2767 					goto defaults;
2768 				} else {
2769 					modepage = page_code;
2770 					goto Page_found;
2771 				}
2772 			} else {
2773 				/* Go to the next page */
2774 				if (spf && len - offset > 3)
2775 					offset += 4 + (buffer[offset+2] << 8) +
2776 						buffer[offset+3];
2777 				else if (!spf && len - offset > 1)
2778 					offset += 2 + buffer[offset+1];
2779 				else {
2780 					sd_first_printk(KERN_ERR, sdkp,
2781 							"Incomplete mode "
2782 							"parameter data\n");
2783 					goto defaults;
2784 				}
2785 			}
2786 		}
2787 
2788 		sd_first_printk(KERN_WARNING, sdkp,
2789 				"No Caching mode page found\n");
2790 		goto defaults;
2791 
2792 	Page_found:
2793 		if (modepage == 8) {
2794 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2795 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2796 		} else {
2797 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2798 			sdkp->RCD = 0;
2799 		}
2800 
2801 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2802 		if (sdp->broken_fua) {
2803 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2804 			sdkp->DPOFUA = 0;
2805 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2806 			   !sdkp->device->use_16_for_rw) {
2807 			sd_first_printk(KERN_NOTICE, sdkp,
2808 				  "Uses READ/WRITE(6), disabling FUA\n");
2809 			sdkp->DPOFUA = 0;
2810 		}
2811 
2812 		/* No cache flush allowed for write protected devices */
2813 		if (sdkp->WCE && sdkp->write_prot)
2814 			sdkp->WCE = 0;
2815 
2816 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2817 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2818 			sd_printk(KERN_NOTICE, sdkp,
2819 				  "Write cache: %s, read cache: %s, %s\n",
2820 				  sdkp->WCE ? "enabled" : "disabled",
2821 				  sdkp->RCD ? "disabled" : "enabled",
2822 				  sdkp->DPOFUA ? "supports DPO and FUA"
2823 				  : "doesn't support DPO or FUA");
2824 
2825 		return;
2826 	}
2827 
2828 bad_sense:
2829 	if (scsi_sense_valid(&sshdr) &&
2830 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2831 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2832 		/* Invalid field in CDB */
2833 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2834 	else
2835 		sd_first_printk(KERN_ERR, sdkp,
2836 				"Asking for cache data failed\n");
2837 
2838 defaults:
2839 	if (sdp->wce_default_on) {
2840 		sd_first_printk(KERN_NOTICE, sdkp,
2841 				"Assuming drive cache: write back\n");
2842 		sdkp->WCE = 1;
2843 	} else {
2844 		sd_first_printk(KERN_WARNING, sdkp,
2845 				"Assuming drive cache: write through\n");
2846 		sdkp->WCE = 0;
2847 	}
2848 	sdkp->RCD = 0;
2849 	sdkp->DPOFUA = 0;
2850 }
2851 
2852 /*
2853  * The ATO bit indicates whether the DIF application tag is available
2854  * for use by the operating system.
2855  */
2856 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2857 {
2858 	int res, offset;
2859 	struct scsi_device *sdp = sdkp->device;
2860 	struct scsi_mode_data data;
2861 	struct scsi_sense_hdr sshdr;
2862 
2863 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2864 		return;
2865 
2866 	if (sdkp->protection_type == 0)
2867 		return;
2868 
2869 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2870 			      sdkp->max_retries, &data, &sshdr);
2871 
2872 	if (res < 0 || !data.header_length ||
2873 	    data.length < 6) {
2874 		sd_first_printk(KERN_WARNING, sdkp,
2875 			  "getting Control mode page failed, assume no ATO\n");
2876 
2877 		if (scsi_sense_valid(&sshdr))
2878 			sd_print_sense_hdr(sdkp, &sshdr);
2879 
2880 		return;
2881 	}
2882 
2883 	offset = data.header_length + data.block_descriptor_length;
2884 
2885 	if ((buffer[offset] & 0x3f) != 0x0a) {
2886 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2887 		return;
2888 	}
2889 
2890 	if ((buffer[offset + 5] & 0x80) == 0)
2891 		return;
2892 
2893 	sdkp->ATO = 1;
2894 
2895 	return;
2896 }
2897 
2898 /**
2899  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2900  * @sdkp: disk to query
2901  */
2902 static void sd_read_block_limits(struct scsi_disk *sdkp)
2903 {
2904 	struct scsi_vpd *vpd;
2905 
2906 	rcu_read_lock();
2907 
2908 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2909 	if (!vpd || vpd->len < 16)
2910 		goto out;
2911 
2912 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2913 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2914 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2915 
2916 	if (vpd->len >= 64) {
2917 		unsigned int lba_count, desc_count;
2918 
2919 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2920 
2921 		if (!sdkp->lbpme)
2922 			goto out;
2923 
2924 		lba_count = get_unaligned_be32(&vpd->data[20]);
2925 		desc_count = get_unaligned_be32(&vpd->data[24]);
2926 
2927 		if (lba_count && desc_count)
2928 			sdkp->max_unmap_blocks = lba_count;
2929 
2930 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2931 
2932 		if (vpd->data[32] & 0x80)
2933 			sdkp->unmap_alignment =
2934 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2935 
2936 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2937 
2938 			if (sdkp->max_unmap_blocks)
2939 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2940 			else
2941 				sd_config_discard(sdkp, SD_LBP_WS16);
2942 
2943 		} else {	/* LBP VPD page tells us what to use */
2944 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2945 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2946 			else if (sdkp->lbpws)
2947 				sd_config_discard(sdkp, SD_LBP_WS16);
2948 			else if (sdkp->lbpws10)
2949 				sd_config_discard(sdkp, SD_LBP_WS10);
2950 			else
2951 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2952 		}
2953 	}
2954 
2955  out:
2956 	rcu_read_unlock();
2957 }
2958 
2959 /**
2960  * sd_read_block_characteristics - Query block dev. characteristics
2961  * @sdkp: disk to query
2962  */
2963 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2964 {
2965 	struct request_queue *q = sdkp->disk->queue;
2966 	struct scsi_vpd *vpd;
2967 	u16 rot;
2968 	u8 zoned;
2969 
2970 	rcu_read_lock();
2971 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2972 
2973 	if (!vpd || vpd->len < 8) {
2974 		rcu_read_unlock();
2975 	        return;
2976 	}
2977 
2978 	rot = get_unaligned_be16(&vpd->data[4]);
2979 	zoned = (vpd->data[8] >> 4) & 3;
2980 	rcu_read_unlock();
2981 
2982 	if (rot == 1) {
2983 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2984 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2985 	}
2986 
2987 	if (sdkp->device->type == TYPE_ZBC) {
2988 		/*
2989 		 * Host-managed: Per ZBC and ZAC specifications, writes in
2990 		 * sequential write required zones of host-managed devices must
2991 		 * be aligned to the device physical block size.
2992 		 */
2993 		disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2994 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
2995 	} else {
2996 		sdkp->zoned = zoned;
2997 		if (sdkp->zoned == 1) {
2998 			/* Host-aware */
2999 			disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3000 		} else {
3001 			/* Regular disk or drive managed disk */
3002 			disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3003 		}
3004 	}
3005 
3006 	if (!sdkp->first_scan)
3007 		return;
3008 
3009 	if (blk_queue_is_zoned(q)) {
3010 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3011 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3012 	} else {
3013 		if (sdkp->zoned == 1)
3014 			sd_printk(KERN_NOTICE, sdkp,
3015 				  "Host-aware SMR disk used as regular disk\n");
3016 		else if (sdkp->zoned == 2)
3017 			sd_printk(KERN_NOTICE, sdkp,
3018 				  "Drive-managed SMR disk\n");
3019 	}
3020 }
3021 
3022 /**
3023  * sd_read_block_provisioning - Query provisioning VPD page
3024  * @sdkp: disk to query
3025  */
3026 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3027 {
3028 	struct scsi_vpd *vpd;
3029 
3030 	if (sdkp->lbpme == 0)
3031 		return;
3032 
3033 	rcu_read_lock();
3034 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3035 
3036 	if (!vpd || vpd->len < 8) {
3037 		rcu_read_unlock();
3038 		return;
3039 	}
3040 
3041 	sdkp->lbpvpd	= 1;
3042 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3043 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3044 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3045 	rcu_read_unlock();
3046 }
3047 
3048 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3049 {
3050 	struct scsi_device *sdev = sdkp->device;
3051 
3052 	if (sdev->host->no_write_same) {
3053 		sdev->no_write_same = 1;
3054 
3055 		return;
3056 	}
3057 
3058 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3059 		struct scsi_vpd *vpd;
3060 
3061 		sdev->no_report_opcodes = 1;
3062 
3063 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3064 		 * CODES is unsupported and the device has an ATA
3065 		 * Information VPD page (SAT).
3066 		 */
3067 		rcu_read_lock();
3068 		vpd = rcu_dereference(sdev->vpd_pg89);
3069 		if (vpd)
3070 			sdev->no_write_same = 1;
3071 		rcu_read_unlock();
3072 	}
3073 
3074 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3075 		sdkp->ws16 = 1;
3076 
3077 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3078 		sdkp->ws10 = 1;
3079 }
3080 
3081 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3082 {
3083 	struct scsi_device *sdev = sdkp->device;
3084 
3085 	if (!sdev->security_supported)
3086 		return;
3087 
3088 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3089 			SECURITY_PROTOCOL_IN) == 1 &&
3090 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3091 			SECURITY_PROTOCOL_OUT) == 1)
3092 		sdkp->security = 1;
3093 }
3094 
3095 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3096 {
3097 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3098 }
3099 
3100 /**
3101  * sd_read_cpr - Query concurrent positioning ranges
3102  * @sdkp:	disk to query
3103  */
3104 static void sd_read_cpr(struct scsi_disk *sdkp)
3105 {
3106 	struct blk_independent_access_ranges *iars = NULL;
3107 	unsigned char *buffer = NULL;
3108 	unsigned int nr_cpr = 0;
3109 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3110 	u8 *desc;
3111 
3112 	/*
3113 	 * We need to have the capacity set first for the block layer to be
3114 	 * able to check the ranges.
3115 	 */
3116 	if (sdkp->first_scan)
3117 		return;
3118 
3119 	if (!sdkp->capacity)
3120 		goto out;
3121 
3122 	/*
3123 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3124 	 * leading to a maximum page size of 64 + 256*32 bytes.
3125 	 */
3126 	buf_len = 64 + 256*32;
3127 	buffer = kmalloc(buf_len, GFP_KERNEL);
3128 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3129 		goto out;
3130 
3131 	/* We must have at least a 64B header and one 32B range descriptor */
3132 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3133 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3134 		sd_printk(KERN_ERR, sdkp,
3135 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3136 		goto out;
3137 	}
3138 
3139 	nr_cpr = (vpd_len - 64) / 32;
3140 	if (nr_cpr == 1) {
3141 		nr_cpr = 0;
3142 		goto out;
3143 	}
3144 
3145 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3146 	if (!iars) {
3147 		nr_cpr = 0;
3148 		goto out;
3149 	}
3150 
3151 	desc = &buffer[64];
3152 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3153 		if (desc[0] != i) {
3154 			sd_printk(KERN_ERR, sdkp,
3155 				"Invalid Concurrent Positioning Range number\n");
3156 			nr_cpr = 0;
3157 			break;
3158 		}
3159 
3160 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3161 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3162 	}
3163 
3164 out:
3165 	disk_set_independent_access_ranges(sdkp->disk, iars);
3166 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3167 		sd_printk(KERN_NOTICE, sdkp,
3168 			  "%u concurrent positioning ranges\n", nr_cpr);
3169 		sdkp->nr_actuators = nr_cpr;
3170 	}
3171 
3172 	kfree(buffer);
3173 }
3174 
3175 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3176 {
3177 	struct scsi_device *sdp = sdkp->device;
3178 	unsigned int min_xfer_bytes =
3179 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3180 
3181 	if (sdkp->min_xfer_blocks == 0)
3182 		return false;
3183 
3184 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3185 		sd_first_printk(KERN_WARNING, sdkp,
3186 				"Preferred minimum I/O size %u bytes not a " \
3187 				"multiple of physical block size (%u bytes)\n",
3188 				min_xfer_bytes, sdkp->physical_block_size);
3189 		sdkp->min_xfer_blocks = 0;
3190 		return false;
3191 	}
3192 
3193 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3194 			min_xfer_bytes);
3195 	return true;
3196 }
3197 
3198 /*
3199  * Determine the device's preferred I/O size for reads and writes
3200  * unless the reported value is unreasonably small, large, not a
3201  * multiple of the physical block size, or simply garbage.
3202  */
3203 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3204 				      unsigned int dev_max)
3205 {
3206 	struct scsi_device *sdp = sdkp->device;
3207 	unsigned int opt_xfer_bytes =
3208 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3209 	unsigned int min_xfer_bytes =
3210 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3211 
3212 	if (sdkp->opt_xfer_blocks == 0)
3213 		return false;
3214 
3215 	if (sdkp->opt_xfer_blocks > dev_max) {
3216 		sd_first_printk(KERN_WARNING, sdkp,
3217 				"Optimal transfer size %u logical blocks " \
3218 				"> dev_max (%u logical blocks)\n",
3219 				sdkp->opt_xfer_blocks, dev_max);
3220 		return false;
3221 	}
3222 
3223 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3224 		sd_first_printk(KERN_WARNING, sdkp,
3225 				"Optimal transfer size %u logical blocks " \
3226 				"> sd driver limit (%u logical blocks)\n",
3227 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3228 		return false;
3229 	}
3230 
3231 	if (opt_xfer_bytes < PAGE_SIZE) {
3232 		sd_first_printk(KERN_WARNING, sdkp,
3233 				"Optimal transfer size %u bytes < " \
3234 				"PAGE_SIZE (%u bytes)\n",
3235 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3236 		return false;
3237 	}
3238 
3239 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3240 		sd_first_printk(KERN_WARNING, sdkp,
3241 				"Optimal transfer size %u bytes not a " \
3242 				"multiple of preferred minimum block " \
3243 				"size (%u bytes)\n",
3244 				opt_xfer_bytes, min_xfer_bytes);
3245 		return false;
3246 	}
3247 
3248 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3249 		sd_first_printk(KERN_WARNING, sdkp,
3250 				"Optimal transfer size %u bytes not a " \
3251 				"multiple of physical block size (%u bytes)\n",
3252 				opt_xfer_bytes, sdkp->physical_block_size);
3253 		return false;
3254 	}
3255 
3256 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3257 			opt_xfer_bytes);
3258 	return true;
3259 }
3260 
3261 /**
3262  *	sd_revalidate_disk - called the first time a new disk is seen,
3263  *	performs disk spin up, read_capacity, etc.
3264  *	@disk: struct gendisk we care about
3265  **/
3266 static int sd_revalidate_disk(struct gendisk *disk)
3267 {
3268 	struct scsi_disk *sdkp = scsi_disk(disk);
3269 	struct scsi_device *sdp = sdkp->device;
3270 	struct request_queue *q = sdkp->disk->queue;
3271 	sector_t old_capacity = sdkp->capacity;
3272 	unsigned char *buffer;
3273 	unsigned int dev_max, rw_max;
3274 
3275 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3276 				      "sd_revalidate_disk\n"));
3277 
3278 	/*
3279 	 * If the device is offline, don't try and read capacity or any
3280 	 * of the other niceties.
3281 	 */
3282 	if (!scsi_device_online(sdp))
3283 		goto out;
3284 
3285 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3286 	if (!buffer) {
3287 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3288 			  "allocation failure.\n");
3289 		goto out;
3290 	}
3291 
3292 	sd_spinup_disk(sdkp);
3293 
3294 	/*
3295 	 * Without media there is no reason to ask; moreover, some devices
3296 	 * react badly if we do.
3297 	 */
3298 	if (sdkp->media_present) {
3299 		sd_read_capacity(sdkp, buffer);
3300 
3301 		/*
3302 		 * set the default to rotational.  All non-rotational devices
3303 		 * support the block characteristics VPD page, which will
3304 		 * cause this to be updated correctly and any device which
3305 		 * doesn't support it should be treated as rotational.
3306 		 */
3307 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3308 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3309 
3310 		if (scsi_device_supports_vpd(sdp)) {
3311 			sd_read_block_provisioning(sdkp);
3312 			sd_read_block_limits(sdkp);
3313 			sd_read_block_characteristics(sdkp);
3314 			sd_zbc_read_zones(sdkp, buffer);
3315 			sd_read_cpr(sdkp);
3316 		}
3317 
3318 		sd_print_capacity(sdkp, old_capacity);
3319 
3320 		sd_read_write_protect_flag(sdkp, buffer);
3321 		sd_read_cache_type(sdkp, buffer);
3322 		sd_read_app_tag_own(sdkp, buffer);
3323 		sd_read_write_same(sdkp, buffer);
3324 		sd_read_security(sdkp, buffer);
3325 		sd_config_protection(sdkp);
3326 	}
3327 
3328 	/*
3329 	 * We now have all cache related info, determine how we deal
3330 	 * with flush requests.
3331 	 */
3332 	sd_set_flush_flag(sdkp);
3333 
3334 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3335 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3336 
3337 	/* Some devices report a maximum block count for READ/WRITE requests. */
3338 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3339 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3340 
3341 	if (sd_validate_min_xfer_size(sdkp))
3342 		blk_queue_io_min(sdkp->disk->queue,
3343 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3344 	else
3345 		blk_queue_io_min(sdkp->disk->queue, 0);
3346 
3347 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3348 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3349 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3350 	} else {
3351 		q->limits.io_opt = 0;
3352 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3353 				      (sector_t)BLK_DEF_MAX_SECTORS);
3354 	}
3355 
3356 	/*
3357 	 * Limit default to SCSI host optimal sector limit if set. There may be
3358 	 * an impact on performance for when the size of a request exceeds this
3359 	 * host limit.
3360 	 */
3361 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3362 
3363 	/* Do not exceed controller limit */
3364 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3365 
3366 	/*
3367 	 * Only update max_sectors if previously unset or if the current value
3368 	 * exceeds the capabilities of the hardware.
3369 	 */
3370 	if (sdkp->first_scan ||
3371 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3372 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3373 		q->limits.max_sectors = rw_max;
3374 
3375 	sdkp->first_scan = 0;
3376 
3377 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3378 	sd_config_write_same(sdkp);
3379 	kfree(buffer);
3380 
3381 	/*
3382 	 * For a zoned drive, revalidating the zones can be done only once
3383 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3384 	 * capacity to 0.
3385 	 */
3386 	if (sd_zbc_revalidate_zones(sdkp))
3387 		set_capacity_and_notify(disk, 0);
3388 
3389  out:
3390 	return 0;
3391 }
3392 
3393 /**
3394  *	sd_unlock_native_capacity - unlock native capacity
3395  *	@disk: struct gendisk to set capacity for
3396  *
3397  *	Block layer calls this function if it detects that partitions
3398  *	on @disk reach beyond the end of the device.  If the SCSI host
3399  *	implements ->unlock_native_capacity() method, it's invoked to
3400  *	give it a chance to adjust the device capacity.
3401  *
3402  *	CONTEXT:
3403  *	Defined by block layer.  Might sleep.
3404  */
3405 static void sd_unlock_native_capacity(struct gendisk *disk)
3406 {
3407 	struct scsi_device *sdev = scsi_disk(disk)->device;
3408 
3409 	if (sdev->host->hostt->unlock_native_capacity)
3410 		sdev->host->hostt->unlock_native_capacity(sdev);
3411 }
3412 
3413 /**
3414  *	sd_format_disk_name - format disk name
3415  *	@prefix: name prefix - ie. "sd" for SCSI disks
3416  *	@index: index of the disk to format name for
3417  *	@buf: output buffer
3418  *	@buflen: length of the output buffer
3419  *
3420  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3421  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3422  *	which is followed by sdaaa.
3423  *
3424  *	This is basically 26 base counting with one extra 'nil' entry
3425  *	at the beginning from the second digit on and can be
3426  *	determined using similar method as 26 base conversion with the
3427  *	index shifted -1 after each digit is computed.
3428  *
3429  *	CONTEXT:
3430  *	Don't care.
3431  *
3432  *	RETURNS:
3433  *	0 on success, -errno on failure.
3434  */
3435 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3436 {
3437 	const int base = 'z' - 'a' + 1;
3438 	char *begin = buf + strlen(prefix);
3439 	char *end = buf + buflen;
3440 	char *p;
3441 	int unit;
3442 
3443 	p = end - 1;
3444 	*p = '\0';
3445 	unit = base;
3446 	do {
3447 		if (p == begin)
3448 			return -EINVAL;
3449 		*--p = 'a' + (index % unit);
3450 		index = (index / unit) - 1;
3451 	} while (index >= 0);
3452 
3453 	memmove(begin, p, end - p);
3454 	memcpy(buf, prefix, strlen(prefix));
3455 
3456 	return 0;
3457 }
3458 
3459 /**
3460  *	sd_probe - called during driver initialization and whenever a
3461  *	new scsi device is attached to the system. It is called once
3462  *	for each scsi device (not just disks) present.
3463  *	@dev: pointer to device object
3464  *
3465  *	Returns 0 if successful (or not interested in this scsi device
3466  *	(e.g. scanner)); 1 when there is an error.
3467  *
3468  *	Note: this function is invoked from the scsi mid-level.
3469  *	This function sets up the mapping between a given
3470  *	<host,channel,id,lun> (found in sdp) and new device name
3471  *	(e.g. /dev/sda). More precisely it is the block device major
3472  *	and minor number that is chosen here.
3473  *
3474  *	Assume sd_probe is not re-entrant (for time being)
3475  *	Also think about sd_probe() and sd_remove() running coincidentally.
3476  **/
3477 static int sd_probe(struct device *dev)
3478 {
3479 	struct scsi_device *sdp = to_scsi_device(dev);
3480 	struct scsi_disk *sdkp;
3481 	struct gendisk *gd;
3482 	int index;
3483 	int error;
3484 
3485 	scsi_autopm_get_device(sdp);
3486 	error = -ENODEV;
3487 	if (sdp->type != TYPE_DISK &&
3488 	    sdp->type != TYPE_ZBC &&
3489 	    sdp->type != TYPE_MOD &&
3490 	    sdp->type != TYPE_RBC)
3491 		goto out;
3492 
3493 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3494 		sdev_printk(KERN_WARNING, sdp,
3495 			    "Unsupported ZBC host-managed device.\n");
3496 		goto out;
3497 	}
3498 
3499 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3500 					"sd_probe\n"));
3501 
3502 	error = -ENOMEM;
3503 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3504 	if (!sdkp)
3505 		goto out;
3506 
3507 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3508 					 &sd_bio_compl_lkclass);
3509 	if (!gd)
3510 		goto out_free;
3511 
3512 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3513 	if (index < 0) {
3514 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3515 		goto out_put;
3516 	}
3517 
3518 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3519 	if (error) {
3520 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3521 		goto out_free_index;
3522 	}
3523 
3524 	sdkp->device = sdp;
3525 	sdkp->disk = gd;
3526 	sdkp->index = index;
3527 	sdkp->max_retries = SD_MAX_RETRIES;
3528 	atomic_set(&sdkp->openers, 0);
3529 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3530 
3531 	if (!sdp->request_queue->rq_timeout) {
3532 		if (sdp->type != TYPE_MOD)
3533 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3534 		else
3535 			blk_queue_rq_timeout(sdp->request_queue,
3536 					     SD_MOD_TIMEOUT);
3537 	}
3538 
3539 	device_initialize(&sdkp->disk_dev);
3540 	sdkp->disk_dev.parent = get_device(dev);
3541 	sdkp->disk_dev.class = &sd_disk_class;
3542 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3543 
3544 	error = device_add(&sdkp->disk_dev);
3545 	if (error) {
3546 		put_device(&sdkp->disk_dev);
3547 		goto out;
3548 	}
3549 
3550 	dev_set_drvdata(dev, sdkp);
3551 
3552 	gd->major = sd_major((index & 0xf0) >> 4);
3553 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3554 	gd->minors = SD_MINORS;
3555 
3556 	gd->fops = &sd_fops;
3557 	gd->private_data = sdkp;
3558 
3559 	/* defaults, until the device tells us otherwise */
3560 	sdp->sector_size = 512;
3561 	sdkp->capacity = 0;
3562 	sdkp->media_present = 1;
3563 	sdkp->write_prot = 0;
3564 	sdkp->cache_override = 0;
3565 	sdkp->WCE = 0;
3566 	sdkp->RCD = 0;
3567 	sdkp->ATO = 0;
3568 	sdkp->first_scan = 1;
3569 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3570 
3571 	sd_revalidate_disk(gd);
3572 
3573 	if (sdp->removable) {
3574 		gd->flags |= GENHD_FL_REMOVABLE;
3575 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3576 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3577 	}
3578 
3579 	blk_pm_runtime_init(sdp->request_queue, dev);
3580 	if (sdp->rpm_autosuspend) {
3581 		pm_runtime_set_autosuspend_delay(dev,
3582 			sdp->host->hostt->rpm_autosuspend_delay);
3583 	}
3584 
3585 	error = device_add_disk(dev, gd, NULL);
3586 	if (error) {
3587 		put_device(&sdkp->disk_dev);
3588 		put_disk(gd);
3589 		goto out;
3590 	}
3591 
3592 	if (sdkp->security) {
3593 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3594 		if (sdkp->opal_dev)
3595 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3596 	}
3597 
3598 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3599 		  sdp->removable ? "removable " : "");
3600 	scsi_autopm_put_device(sdp);
3601 
3602 	return 0;
3603 
3604  out_free_index:
3605 	ida_free(&sd_index_ida, index);
3606  out_put:
3607 	put_disk(gd);
3608  out_free:
3609 	kfree(sdkp);
3610  out:
3611 	scsi_autopm_put_device(sdp);
3612 	return error;
3613 }
3614 
3615 /**
3616  *	sd_remove - called whenever a scsi disk (previously recognized by
3617  *	sd_probe) is detached from the system. It is called (potentially
3618  *	multiple times) during sd module unload.
3619  *	@dev: pointer to device object
3620  *
3621  *	Note: this function is invoked from the scsi mid-level.
3622  *	This function potentially frees up a device name (e.g. /dev/sdc)
3623  *	that could be re-used by a subsequent sd_probe().
3624  *	This function is not called when the built-in sd driver is "exit-ed".
3625  **/
3626 static int sd_remove(struct device *dev)
3627 {
3628 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3629 
3630 	scsi_autopm_get_device(sdkp->device);
3631 
3632 	device_del(&sdkp->disk_dev);
3633 	del_gendisk(sdkp->disk);
3634 	sd_shutdown(dev);
3635 
3636 	put_disk(sdkp->disk);
3637 	return 0;
3638 }
3639 
3640 static void scsi_disk_release(struct device *dev)
3641 {
3642 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3643 
3644 	ida_free(&sd_index_ida, sdkp->index);
3645 	sd_zbc_free_zone_info(sdkp);
3646 	put_device(&sdkp->device->sdev_gendev);
3647 	free_opal_dev(sdkp->opal_dev);
3648 
3649 	kfree(sdkp);
3650 }
3651 
3652 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3653 {
3654 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3655 	struct scsi_sense_hdr sshdr;
3656 	const struct scsi_exec_args exec_args = {
3657 		.sshdr = &sshdr,
3658 		.req_flags = BLK_MQ_REQ_PM,
3659 	};
3660 	struct scsi_device *sdp = sdkp->device;
3661 	int res;
3662 
3663 	if (start)
3664 		cmd[4] |= 1;	/* START */
3665 
3666 	if (sdp->start_stop_pwr_cond)
3667 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3668 
3669 	if (!scsi_device_online(sdp))
3670 		return -ENODEV;
3671 
3672 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3673 			       sdkp->max_retries, &exec_args);
3674 	if (res) {
3675 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3676 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3677 			sd_print_sense_hdr(sdkp, &sshdr);
3678 			/* 0x3a is medium not present */
3679 			if (sshdr.asc == 0x3a)
3680 				res = 0;
3681 		}
3682 	}
3683 
3684 	/* SCSI error codes must not go to the generic layer */
3685 	if (res)
3686 		return -EIO;
3687 
3688 	return 0;
3689 }
3690 
3691 /*
3692  * Send a SYNCHRONIZE CACHE instruction down to the device through
3693  * the normal SCSI command structure.  Wait for the command to
3694  * complete.
3695  */
3696 static void sd_shutdown(struct device *dev)
3697 {
3698 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3699 
3700 	if (!sdkp)
3701 		return;         /* this can happen */
3702 
3703 	if (pm_runtime_suspended(dev))
3704 		return;
3705 
3706 	if (sdkp->WCE && sdkp->media_present) {
3707 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3708 		sd_sync_cache(sdkp, NULL);
3709 	}
3710 
3711 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3712 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3713 		sd_start_stop_device(sdkp, 0);
3714 	}
3715 }
3716 
3717 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3718 {
3719 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3720 	struct scsi_sense_hdr sshdr;
3721 	int ret = 0;
3722 
3723 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3724 		return 0;
3725 
3726 	if (sdkp->WCE && sdkp->media_present) {
3727 		if (!sdkp->device->silence_suspend)
3728 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3729 		ret = sd_sync_cache(sdkp, &sshdr);
3730 
3731 		if (ret) {
3732 			/* ignore OFFLINE device */
3733 			if (ret == -ENODEV)
3734 				return 0;
3735 
3736 			if (!scsi_sense_valid(&sshdr) ||
3737 			    sshdr.sense_key != ILLEGAL_REQUEST)
3738 				return ret;
3739 
3740 			/*
3741 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3742 			 * doesn't support sync. There's not much to do and
3743 			 * suspend shouldn't fail.
3744 			 */
3745 			ret = 0;
3746 		}
3747 	}
3748 
3749 	if (sdkp->device->manage_start_stop) {
3750 		if (!sdkp->device->silence_suspend)
3751 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3752 		/* an error is not worth aborting a system sleep */
3753 		ret = sd_start_stop_device(sdkp, 0);
3754 		if (ignore_stop_errors)
3755 			ret = 0;
3756 	}
3757 
3758 	return ret;
3759 }
3760 
3761 static int sd_suspend_system(struct device *dev)
3762 {
3763 	if (pm_runtime_suspended(dev))
3764 		return 0;
3765 
3766 	return sd_suspend_common(dev, true);
3767 }
3768 
3769 static int sd_suspend_runtime(struct device *dev)
3770 {
3771 	return sd_suspend_common(dev, false);
3772 }
3773 
3774 static int sd_resume(struct device *dev)
3775 {
3776 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3777 	int ret;
3778 
3779 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3780 		return 0;
3781 
3782 	if (!sdkp->device->manage_start_stop)
3783 		return 0;
3784 
3785 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3786 	ret = sd_start_stop_device(sdkp, 1);
3787 	if (!ret)
3788 		opal_unlock_from_suspend(sdkp->opal_dev);
3789 	return ret;
3790 }
3791 
3792 static int sd_resume_system(struct device *dev)
3793 {
3794 	if (pm_runtime_suspended(dev))
3795 		return 0;
3796 
3797 	return sd_resume(dev);
3798 }
3799 
3800 static int sd_resume_runtime(struct device *dev)
3801 {
3802 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3803 	struct scsi_device *sdp;
3804 
3805 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3806 		return 0;
3807 
3808 	sdp = sdkp->device;
3809 
3810 	if (sdp->ignore_media_change) {
3811 		/* clear the device's sense data */
3812 		static const u8 cmd[10] = { REQUEST_SENSE };
3813 		const struct scsi_exec_args exec_args = {
3814 			.req_flags = BLK_MQ_REQ_PM,
3815 		};
3816 
3817 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3818 				     sdp->request_queue->rq_timeout, 1,
3819 				     &exec_args))
3820 			sd_printk(KERN_NOTICE, sdkp,
3821 				  "Failed to clear sense data\n");
3822 	}
3823 
3824 	return sd_resume(dev);
3825 }
3826 
3827 /**
3828  *	init_sd - entry point for this driver (both when built in or when
3829  *	a module).
3830  *
3831  *	Note: this function registers this driver with the scsi mid-level.
3832  **/
3833 static int __init init_sd(void)
3834 {
3835 	int majors = 0, i, err;
3836 
3837 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3838 
3839 	for (i = 0; i < SD_MAJORS; i++) {
3840 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3841 			continue;
3842 		majors++;
3843 	}
3844 
3845 	if (!majors)
3846 		return -ENODEV;
3847 
3848 	err = class_register(&sd_disk_class);
3849 	if (err)
3850 		goto err_out;
3851 
3852 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3853 	if (!sd_page_pool) {
3854 		printk(KERN_ERR "sd: can't init discard page pool\n");
3855 		err = -ENOMEM;
3856 		goto err_out_class;
3857 	}
3858 
3859 	err = scsi_register_driver(&sd_template.gendrv);
3860 	if (err)
3861 		goto err_out_driver;
3862 
3863 	return 0;
3864 
3865 err_out_driver:
3866 	mempool_destroy(sd_page_pool);
3867 err_out_class:
3868 	class_unregister(&sd_disk_class);
3869 err_out:
3870 	for (i = 0; i < SD_MAJORS; i++)
3871 		unregister_blkdev(sd_major(i), "sd");
3872 	return err;
3873 }
3874 
3875 /**
3876  *	exit_sd - exit point for this driver (when it is a module).
3877  *
3878  *	Note: this function unregisters this driver from the scsi mid-level.
3879  **/
3880 static void __exit exit_sd(void)
3881 {
3882 	int i;
3883 
3884 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3885 
3886 	scsi_unregister_driver(&sd_template.gendrv);
3887 	mempool_destroy(sd_page_pool);
3888 
3889 	class_unregister(&sd_disk_class);
3890 
3891 	for (i = 0; i < SD_MAJORS; i++)
3892 		unregister_blkdev(sd_major(i), "sd");
3893 }
3894 
3895 module_init(init_sd);
3896 module_exit(exit_sd);
3897 
3898 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3899 {
3900 	scsi_print_sense_hdr(sdkp->device,
3901 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3902 }
3903 
3904 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3905 {
3906 	const char *hb_string = scsi_hostbyte_string(result);
3907 
3908 	if (hb_string)
3909 		sd_printk(KERN_INFO, sdkp,
3910 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3911 			  hb_string ? hb_string : "invalid",
3912 			  "DRIVER_OK");
3913 	else
3914 		sd_printk(KERN_INFO, sdkp,
3915 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3916 			  msg, host_byte(result), "DRIVER_OK");
3917 }
3918