xref: /openbmc/linux/drivers/scsi/sd.c (revision 22c9bb1ed13ea3b8e8ee320573fa9f4573db1d53)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 #include <scsi/scsi_common.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static void sd_shutdown(struct device *);
108 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
109 static void scsi_disk_release(struct device *cdev);
110 
111 static DEFINE_IDA(sd_index_ida);
112 
113 static mempool_t *sd_page_pool;
114 static struct lock_class_key sd_bio_compl_lkclass;
115 
116 static const char *sd_cache_types[] = {
117 	"write through", "none", "write back",
118 	"write back, no read (daft)"
119 };
120 
121 static void sd_set_flush_flag(struct scsi_disk *sdkp)
122 {
123 	bool wc = false, fua = false;
124 
125 	if (sdkp->WCE) {
126 		wc = true;
127 		if (sdkp->DPOFUA)
128 			fua = true;
129 	}
130 
131 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
132 }
133 
134 static ssize_t
135 cache_type_store(struct device *dev, struct device_attribute *attr,
136 		 const char *buf, size_t count)
137 {
138 	int ct, rcd, wce, sp;
139 	struct scsi_disk *sdkp = to_scsi_disk(dev);
140 	struct scsi_device *sdp = sdkp->device;
141 	char buffer[64];
142 	char *buffer_data;
143 	struct scsi_mode_data data;
144 	struct scsi_sense_hdr sshdr;
145 	static const char temp[] = "temporary ";
146 	int len;
147 
148 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
149 		/* no cache control on RBC devices; theoretically they
150 		 * can do it, but there's probably so many exceptions
151 		 * it's not worth the risk */
152 		return -EINVAL;
153 
154 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
155 		buf += sizeof(temp) - 1;
156 		sdkp->cache_override = 1;
157 	} else {
158 		sdkp->cache_override = 0;
159 	}
160 
161 	ct = sysfs_match_string(sd_cache_types, buf);
162 	if (ct < 0)
163 		return -EINVAL;
164 
165 	rcd = ct & 0x01 ? 1 : 0;
166 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
167 
168 	if (sdkp->cache_override) {
169 		sdkp->WCE = wce;
170 		sdkp->RCD = rcd;
171 		sd_set_flush_flag(sdkp);
172 		return count;
173 	}
174 
175 	if (scsi_mode_sense(sdp, 0x08, 8, 0, buffer, sizeof(buffer), SD_TIMEOUT,
176 			    sdkp->max_retries, &data, NULL))
177 		return -EINVAL;
178 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
179 		  data.block_descriptor_length);
180 	buffer_data = buffer + data.header_length +
181 		data.block_descriptor_length;
182 	buffer_data[2] &= ~0x05;
183 	buffer_data[2] |= wce << 2 | rcd;
184 	sp = buffer_data[0] & 0x80 ? 1 : 0;
185 	buffer_data[0] &= ~0x80;
186 
187 	/*
188 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
189 	 * received mode parameter buffer before doing MODE SELECT.
190 	 */
191 	data.device_specific = 0;
192 
193 	if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
194 			     sdkp->max_retries, &data, &sshdr)) {
195 		if (scsi_sense_valid(&sshdr))
196 			sd_print_sense_hdr(sdkp, &sshdr);
197 		return -EINVAL;
198 	}
199 	sd_revalidate_disk(sdkp->disk);
200 	return count;
201 }
202 
203 static ssize_t
204 manage_start_stop_show(struct device *dev,
205 		       struct device_attribute *attr, char *buf)
206 {
207 	struct scsi_disk *sdkp = to_scsi_disk(dev);
208 	struct scsi_device *sdp = sdkp->device;
209 
210 	return sysfs_emit(buf, "%u\n",
211 			  sdp->manage_system_start_stop &&
212 			  sdp->manage_runtime_start_stop &&
213 			  sdp->manage_shutdown);
214 }
215 static DEVICE_ATTR_RO(manage_start_stop);
216 
217 static ssize_t
218 manage_system_start_stop_show(struct device *dev,
219 			      struct device_attribute *attr, char *buf)
220 {
221 	struct scsi_disk *sdkp = to_scsi_disk(dev);
222 	struct scsi_device *sdp = sdkp->device;
223 
224 	return sysfs_emit(buf, "%u\n", sdp->manage_system_start_stop);
225 }
226 
227 static ssize_t
228 manage_system_start_stop_store(struct device *dev,
229 			       struct device_attribute *attr,
230 			       const char *buf, size_t count)
231 {
232 	struct scsi_disk *sdkp = to_scsi_disk(dev);
233 	struct scsi_device *sdp = sdkp->device;
234 	bool v;
235 
236 	if (!capable(CAP_SYS_ADMIN))
237 		return -EACCES;
238 
239 	if (kstrtobool(buf, &v))
240 		return -EINVAL;
241 
242 	sdp->manage_system_start_stop = v;
243 
244 	return count;
245 }
246 static DEVICE_ATTR_RW(manage_system_start_stop);
247 
248 static ssize_t
249 manage_runtime_start_stop_show(struct device *dev,
250 			       struct device_attribute *attr, char *buf)
251 {
252 	struct scsi_disk *sdkp = to_scsi_disk(dev);
253 	struct scsi_device *sdp = sdkp->device;
254 
255 	return sysfs_emit(buf, "%u\n", sdp->manage_runtime_start_stop);
256 }
257 
258 static ssize_t
259 manage_runtime_start_stop_store(struct device *dev,
260 				struct device_attribute *attr,
261 				const char *buf, size_t count)
262 {
263 	struct scsi_disk *sdkp = to_scsi_disk(dev);
264 	struct scsi_device *sdp = sdkp->device;
265 	bool v;
266 
267 	if (!capable(CAP_SYS_ADMIN))
268 		return -EACCES;
269 
270 	if (kstrtobool(buf, &v))
271 		return -EINVAL;
272 
273 	sdp->manage_runtime_start_stop = v;
274 
275 	return count;
276 }
277 static DEVICE_ATTR_RW(manage_runtime_start_stop);
278 
279 static ssize_t manage_shutdown_show(struct device *dev,
280 				    struct device_attribute *attr, char *buf)
281 {
282 	struct scsi_disk *sdkp = to_scsi_disk(dev);
283 	struct scsi_device *sdp = sdkp->device;
284 
285 	return sysfs_emit(buf, "%u\n", sdp->manage_shutdown);
286 }
287 
288 static ssize_t manage_shutdown_store(struct device *dev,
289 				     struct device_attribute *attr,
290 				     const char *buf, size_t count)
291 {
292 	struct scsi_disk *sdkp = to_scsi_disk(dev);
293 	struct scsi_device *sdp = sdkp->device;
294 	bool v;
295 
296 	if (!capable(CAP_SYS_ADMIN))
297 		return -EACCES;
298 
299 	if (kstrtobool(buf, &v))
300 		return -EINVAL;
301 
302 	sdp->manage_shutdown = v;
303 
304 	return count;
305 }
306 static DEVICE_ATTR_RW(manage_shutdown);
307 
308 static ssize_t
309 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
310 {
311 	struct scsi_disk *sdkp = to_scsi_disk(dev);
312 
313 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
314 }
315 
316 static ssize_t
317 allow_restart_store(struct device *dev, struct device_attribute *attr,
318 		    const char *buf, size_t count)
319 {
320 	bool v;
321 	struct scsi_disk *sdkp = to_scsi_disk(dev);
322 	struct scsi_device *sdp = sdkp->device;
323 
324 	if (!capable(CAP_SYS_ADMIN))
325 		return -EACCES;
326 
327 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
328 		return -EINVAL;
329 
330 	if (kstrtobool(buf, &v))
331 		return -EINVAL;
332 
333 	sdp->allow_restart = v;
334 
335 	return count;
336 }
337 static DEVICE_ATTR_RW(allow_restart);
338 
339 static ssize_t
340 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
341 {
342 	struct scsi_disk *sdkp = to_scsi_disk(dev);
343 	int ct = sdkp->RCD + 2*sdkp->WCE;
344 
345 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
346 }
347 static DEVICE_ATTR_RW(cache_type);
348 
349 static ssize_t
350 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
351 {
352 	struct scsi_disk *sdkp = to_scsi_disk(dev);
353 
354 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
355 }
356 static DEVICE_ATTR_RO(FUA);
357 
358 static ssize_t
359 protection_type_show(struct device *dev, struct device_attribute *attr,
360 		     char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->protection_type);
365 }
366 
367 static ssize_t
368 protection_type_store(struct device *dev, struct device_attribute *attr,
369 		      const char *buf, size_t count)
370 {
371 	struct scsi_disk *sdkp = to_scsi_disk(dev);
372 	unsigned int val;
373 	int err;
374 
375 	if (!capable(CAP_SYS_ADMIN))
376 		return -EACCES;
377 
378 	err = kstrtouint(buf, 10, &val);
379 
380 	if (err)
381 		return err;
382 
383 	if (val <= T10_PI_TYPE3_PROTECTION)
384 		sdkp->protection_type = val;
385 
386 	return count;
387 }
388 static DEVICE_ATTR_RW(protection_type);
389 
390 static ssize_t
391 protection_mode_show(struct device *dev, struct device_attribute *attr,
392 		     char *buf)
393 {
394 	struct scsi_disk *sdkp = to_scsi_disk(dev);
395 	struct scsi_device *sdp = sdkp->device;
396 	unsigned int dif, dix;
397 
398 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
399 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
400 
401 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
402 		dif = 0;
403 		dix = 1;
404 	}
405 
406 	if (!dif && !dix)
407 		return sprintf(buf, "none\n");
408 
409 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
410 }
411 static DEVICE_ATTR_RO(protection_mode);
412 
413 static ssize_t
414 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
415 {
416 	struct scsi_disk *sdkp = to_scsi_disk(dev);
417 
418 	return sprintf(buf, "%u\n", sdkp->ATO);
419 }
420 static DEVICE_ATTR_RO(app_tag_own);
421 
422 static ssize_t
423 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
424 		       char *buf)
425 {
426 	struct scsi_disk *sdkp = to_scsi_disk(dev);
427 
428 	return sprintf(buf, "%u\n", sdkp->lbpme);
429 }
430 static DEVICE_ATTR_RO(thin_provisioning);
431 
432 /* sysfs_match_string() requires dense arrays */
433 static const char *lbp_mode[] = {
434 	[SD_LBP_FULL]		= "full",
435 	[SD_LBP_UNMAP]		= "unmap",
436 	[SD_LBP_WS16]		= "writesame_16",
437 	[SD_LBP_WS10]		= "writesame_10",
438 	[SD_LBP_ZERO]		= "writesame_zero",
439 	[SD_LBP_DISABLE]	= "disabled",
440 };
441 
442 static ssize_t
443 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
444 		       char *buf)
445 {
446 	struct scsi_disk *sdkp = to_scsi_disk(dev);
447 
448 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
449 }
450 
451 static ssize_t
452 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
453 			const char *buf, size_t count)
454 {
455 	struct scsi_disk *sdkp = to_scsi_disk(dev);
456 	struct scsi_device *sdp = sdkp->device;
457 	int mode;
458 
459 	if (!capable(CAP_SYS_ADMIN))
460 		return -EACCES;
461 
462 	if (sd_is_zoned(sdkp)) {
463 		sd_config_discard(sdkp, SD_LBP_DISABLE);
464 		return count;
465 	}
466 
467 	if (sdp->type != TYPE_DISK)
468 		return -EINVAL;
469 
470 	mode = sysfs_match_string(lbp_mode, buf);
471 	if (mode < 0)
472 		return -EINVAL;
473 
474 	sd_config_discard(sdkp, mode);
475 
476 	return count;
477 }
478 static DEVICE_ATTR_RW(provisioning_mode);
479 
480 /* sysfs_match_string() requires dense arrays */
481 static const char *zeroing_mode[] = {
482 	[SD_ZERO_WRITE]		= "write",
483 	[SD_ZERO_WS]		= "writesame",
484 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
485 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
486 };
487 
488 static ssize_t
489 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
490 		  char *buf)
491 {
492 	struct scsi_disk *sdkp = to_scsi_disk(dev);
493 
494 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
495 }
496 
497 static ssize_t
498 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
499 		   const char *buf, size_t count)
500 {
501 	struct scsi_disk *sdkp = to_scsi_disk(dev);
502 	int mode;
503 
504 	if (!capable(CAP_SYS_ADMIN))
505 		return -EACCES;
506 
507 	mode = sysfs_match_string(zeroing_mode, buf);
508 	if (mode < 0)
509 		return -EINVAL;
510 
511 	sdkp->zeroing_mode = mode;
512 
513 	return count;
514 }
515 static DEVICE_ATTR_RW(zeroing_mode);
516 
517 static ssize_t
518 max_medium_access_timeouts_show(struct device *dev,
519 				struct device_attribute *attr, char *buf)
520 {
521 	struct scsi_disk *sdkp = to_scsi_disk(dev);
522 
523 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
524 }
525 
526 static ssize_t
527 max_medium_access_timeouts_store(struct device *dev,
528 				 struct device_attribute *attr, const char *buf,
529 				 size_t count)
530 {
531 	struct scsi_disk *sdkp = to_scsi_disk(dev);
532 	int err;
533 
534 	if (!capable(CAP_SYS_ADMIN))
535 		return -EACCES;
536 
537 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
538 
539 	return err ? err : count;
540 }
541 static DEVICE_ATTR_RW(max_medium_access_timeouts);
542 
543 static ssize_t
544 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
545 			   char *buf)
546 {
547 	struct scsi_disk *sdkp = to_scsi_disk(dev);
548 
549 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
550 }
551 
552 static ssize_t
553 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
554 			    const char *buf, size_t count)
555 {
556 	struct scsi_disk *sdkp = to_scsi_disk(dev);
557 	struct scsi_device *sdp = sdkp->device;
558 	unsigned long max;
559 	int err;
560 
561 	if (!capable(CAP_SYS_ADMIN))
562 		return -EACCES;
563 
564 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
565 		return -EINVAL;
566 
567 	err = kstrtoul(buf, 10, &max);
568 
569 	if (err)
570 		return err;
571 
572 	if (max == 0)
573 		sdp->no_write_same = 1;
574 	else if (max <= SD_MAX_WS16_BLOCKS) {
575 		sdp->no_write_same = 0;
576 		sdkp->max_ws_blocks = max;
577 	}
578 
579 	sd_config_write_same(sdkp);
580 
581 	return count;
582 }
583 static DEVICE_ATTR_RW(max_write_same_blocks);
584 
585 static ssize_t
586 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
587 {
588 	struct scsi_disk *sdkp = to_scsi_disk(dev);
589 
590 	if (sdkp->device->type == TYPE_ZBC)
591 		return sprintf(buf, "host-managed\n");
592 	if (sdkp->zoned == 1)
593 		return sprintf(buf, "host-aware\n");
594 	if (sdkp->zoned == 2)
595 		return sprintf(buf, "drive-managed\n");
596 	return sprintf(buf, "none\n");
597 }
598 static DEVICE_ATTR_RO(zoned_cap);
599 
600 static ssize_t
601 max_retries_store(struct device *dev, struct device_attribute *attr,
602 		  const char *buf, size_t count)
603 {
604 	struct scsi_disk *sdkp = to_scsi_disk(dev);
605 	struct scsi_device *sdev = sdkp->device;
606 	int retries, err;
607 
608 	err = kstrtoint(buf, 10, &retries);
609 	if (err)
610 		return err;
611 
612 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
613 		sdkp->max_retries = retries;
614 		return count;
615 	}
616 
617 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
618 		    SD_MAX_RETRIES);
619 	return -EINVAL;
620 }
621 
622 static ssize_t
623 max_retries_show(struct device *dev, struct device_attribute *attr,
624 		 char *buf)
625 {
626 	struct scsi_disk *sdkp = to_scsi_disk(dev);
627 
628 	return sprintf(buf, "%d\n", sdkp->max_retries);
629 }
630 
631 static DEVICE_ATTR_RW(max_retries);
632 
633 static struct attribute *sd_disk_attrs[] = {
634 	&dev_attr_cache_type.attr,
635 	&dev_attr_FUA.attr,
636 	&dev_attr_allow_restart.attr,
637 	&dev_attr_manage_start_stop.attr,
638 	&dev_attr_manage_system_start_stop.attr,
639 	&dev_attr_manage_runtime_start_stop.attr,
640 	&dev_attr_manage_shutdown.attr,
641 	&dev_attr_protection_type.attr,
642 	&dev_attr_protection_mode.attr,
643 	&dev_attr_app_tag_own.attr,
644 	&dev_attr_thin_provisioning.attr,
645 	&dev_attr_provisioning_mode.attr,
646 	&dev_attr_zeroing_mode.attr,
647 	&dev_attr_max_write_same_blocks.attr,
648 	&dev_attr_max_medium_access_timeouts.attr,
649 	&dev_attr_zoned_cap.attr,
650 	&dev_attr_max_retries.attr,
651 	NULL,
652 };
653 ATTRIBUTE_GROUPS(sd_disk);
654 
655 static struct class sd_disk_class = {
656 	.name		= "scsi_disk",
657 	.dev_release	= scsi_disk_release,
658 	.dev_groups	= sd_disk_groups,
659 };
660 
661 /*
662  * Don't request a new module, as that could deadlock in multipath
663  * environment.
664  */
665 static void sd_default_probe(dev_t devt)
666 {
667 }
668 
669 /*
670  * Device no to disk mapping:
671  *
672  *       major         disc2     disc  p1
673  *   |............|.............|....|....| <- dev_t
674  *    31        20 19          8 7  4 3  0
675  *
676  * Inside a major, we have 16k disks, however mapped non-
677  * contiguously. The first 16 disks are for major0, the next
678  * ones with major1, ... Disk 256 is for major0 again, disk 272
679  * for major1, ...
680  * As we stay compatible with our numbering scheme, we can reuse
681  * the well-know SCSI majors 8, 65--71, 136--143.
682  */
683 static int sd_major(int major_idx)
684 {
685 	switch (major_idx) {
686 	case 0:
687 		return SCSI_DISK0_MAJOR;
688 	case 1 ... 7:
689 		return SCSI_DISK1_MAJOR + major_idx - 1;
690 	case 8 ... 15:
691 		return SCSI_DISK8_MAJOR + major_idx - 8;
692 	default:
693 		BUG();
694 		return 0;	/* shut up gcc */
695 	}
696 }
697 
698 #ifdef CONFIG_BLK_SED_OPAL
699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 		size_t len, bool send)
701 {
702 	struct scsi_disk *sdkp = data;
703 	struct scsi_device *sdev = sdkp->device;
704 	u8 cdb[12] = { 0, };
705 	const struct scsi_exec_args exec_args = {
706 		.req_flags = BLK_MQ_REQ_PM,
707 	};
708 	int ret;
709 
710 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
711 	cdb[1] = secp;
712 	put_unaligned_be16(spsp, &cdb[2]);
713 	put_unaligned_be32(len, &cdb[6]);
714 
715 	ret = scsi_execute_cmd(sdev, cdb, send ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
716 			       buffer, len, SD_TIMEOUT, sdkp->max_retries,
717 			       &exec_args);
718 	return ret <= 0 ? ret : -EIO;
719 }
720 #endif /* CONFIG_BLK_SED_OPAL */
721 
722 /*
723  * Look up the DIX operation based on whether the command is read or
724  * write and whether dix and dif are enabled.
725  */
726 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
727 {
728 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
729 	static const unsigned int ops[] = {	/* wrt dix dif */
730 		SCSI_PROT_NORMAL,		/*  0	0   0  */
731 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
732 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
733 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
734 		SCSI_PROT_NORMAL,		/*  1	0   0  */
735 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
736 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
737 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
738 	};
739 
740 	return ops[write << 2 | dix << 1 | dif];
741 }
742 
743 /*
744  * Returns a mask of the protection flags that are valid for a given DIX
745  * operation.
746  */
747 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
748 {
749 	static const unsigned int flag_mask[] = {
750 		[SCSI_PROT_NORMAL]		= 0,
751 
752 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
753 						  SCSI_PROT_GUARD_CHECK |
754 						  SCSI_PROT_REF_CHECK |
755 						  SCSI_PROT_REF_INCREMENT,
756 
757 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
758 						  SCSI_PROT_IP_CHECKSUM,
759 
760 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
761 						  SCSI_PROT_GUARD_CHECK |
762 						  SCSI_PROT_REF_CHECK |
763 						  SCSI_PROT_REF_INCREMENT |
764 						  SCSI_PROT_IP_CHECKSUM,
765 
766 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
767 						  SCSI_PROT_REF_INCREMENT,
768 
769 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
770 						  SCSI_PROT_REF_CHECK |
771 						  SCSI_PROT_REF_INCREMENT |
772 						  SCSI_PROT_IP_CHECKSUM,
773 
774 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
775 						  SCSI_PROT_GUARD_CHECK |
776 						  SCSI_PROT_REF_CHECK |
777 						  SCSI_PROT_REF_INCREMENT |
778 						  SCSI_PROT_IP_CHECKSUM,
779 	};
780 
781 	return flag_mask[prot_op];
782 }
783 
784 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
785 					   unsigned int dix, unsigned int dif)
786 {
787 	struct request *rq = scsi_cmd_to_rq(scmd);
788 	struct bio *bio = rq->bio;
789 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
790 	unsigned int protect = 0;
791 
792 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
793 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
794 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
795 
796 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
797 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
798 	}
799 
800 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
801 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
802 
803 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
804 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
805 	}
806 
807 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
808 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
809 
810 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
811 			protect = 3 << 5;	/* Disable target PI checking */
812 		else
813 			protect = 1 << 5;	/* Enable target PI checking */
814 	}
815 
816 	scsi_set_prot_op(scmd, prot_op);
817 	scsi_set_prot_type(scmd, dif);
818 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
819 
820 	return protect;
821 }
822 
823 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
824 {
825 	struct request_queue *q = sdkp->disk->queue;
826 	unsigned int logical_block_size = sdkp->device->sector_size;
827 	unsigned int max_blocks = 0;
828 
829 	q->limits.discard_alignment =
830 		sdkp->unmap_alignment * logical_block_size;
831 	q->limits.discard_granularity =
832 		max(sdkp->physical_block_size,
833 		    sdkp->unmap_granularity * logical_block_size);
834 	sdkp->provisioning_mode = mode;
835 
836 	switch (mode) {
837 
838 	case SD_LBP_FULL:
839 	case SD_LBP_DISABLE:
840 		blk_queue_max_discard_sectors(q, 0);
841 		return;
842 
843 	case SD_LBP_UNMAP:
844 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
845 					  (u32)SD_MAX_WS16_BLOCKS);
846 		break;
847 
848 	case SD_LBP_WS16:
849 		if (sdkp->device->unmap_limit_for_ws)
850 			max_blocks = sdkp->max_unmap_blocks;
851 		else
852 			max_blocks = sdkp->max_ws_blocks;
853 
854 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
855 		break;
856 
857 	case SD_LBP_WS10:
858 		if (sdkp->device->unmap_limit_for_ws)
859 			max_blocks = sdkp->max_unmap_blocks;
860 		else
861 			max_blocks = sdkp->max_ws_blocks;
862 
863 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
864 		break;
865 
866 	case SD_LBP_ZERO:
867 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
868 					  (u32)SD_MAX_WS10_BLOCKS);
869 		break;
870 	}
871 
872 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
873 }
874 
875 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
876 {
877 	struct page *page;
878 
879 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
880 	if (!page)
881 		return NULL;
882 	clear_highpage(page);
883 	bvec_set_page(&rq->special_vec, page, data_len, 0);
884 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
885 	return bvec_virt(&rq->special_vec);
886 }
887 
888 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
889 {
890 	struct scsi_device *sdp = cmd->device;
891 	struct request *rq = scsi_cmd_to_rq(cmd);
892 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
893 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
894 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
895 	unsigned int data_len = 24;
896 	char *buf;
897 
898 	buf = sd_set_special_bvec(rq, data_len);
899 	if (!buf)
900 		return BLK_STS_RESOURCE;
901 
902 	cmd->cmd_len = 10;
903 	cmd->cmnd[0] = UNMAP;
904 	cmd->cmnd[8] = 24;
905 
906 	put_unaligned_be16(6 + 16, &buf[0]);
907 	put_unaligned_be16(16, &buf[2]);
908 	put_unaligned_be64(lba, &buf[8]);
909 	put_unaligned_be32(nr_blocks, &buf[16]);
910 
911 	cmd->allowed = sdkp->max_retries;
912 	cmd->transfersize = data_len;
913 	rq->timeout = SD_TIMEOUT;
914 
915 	return scsi_alloc_sgtables(cmd);
916 }
917 
918 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
919 		bool unmap)
920 {
921 	struct scsi_device *sdp = cmd->device;
922 	struct request *rq = scsi_cmd_to_rq(cmd);
923 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
924 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
925 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
926 	u32 data_len = sdp->sector_size;
927 
928 	if (!sd_set_special_bvec(rq, data_len))
929 		return BLK_STS_RESOURCE;
930 
931 	cmd->cmd_len = 16;
932 	cmd->cmnd[0] = WRITE_SAME_16;
933 	if (unmap)
934 		cmd->cmnd[1] = 0x8; /* UNMAP */
935 	put_unaligned_be64(lba, &cmd->cmnd[2]);
936 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
937 
938 	cmd->allowed = sdkp->max_retries;
939 	cmd->transfersize = data_len;
940 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
941 
942 	return scsi_alloc_sgtables(cmd);
943 }
944 
945 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
946 		bool unmap)
947 {
948 	struct scsi_device *sdp = cmd->device;
949 	struct request *rq = scsi_cmd_to_rq(cmd);
950 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
951 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
952 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
953 	u32 data_len = sdp->sector_size;
954 
955 	if (!sd_set_special_bvec(rq, data_len))
956 		return BLK_STS_RESOURCE;
957 
958 	cmd->cmd_len = 10;
959 	cmd->cmnd[0] = WRITE_SAME;
960 	if (unmap)
961 		cmd->cmnd[1] = 0x8; /* UNMAP */
962 	put_unaligned_be32(lba, &cmd->cmnd[2]);
963 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964 
965 	cmd->allowed = sdkp->max_retries;
966 	cmd->transfersize = data_len;
967 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968 
969 	return scsi_alloc_sgtables(cmd);
970 }
971 
972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 	struct request *rq = scsi_cmd_to_rq(cmd);
975 	struct scsi_device *sdp = cmd->device;
976 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
977 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979 
980 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 		switch (sdkp->zeroing_mode) {
982 		case SD_ZERO_WS16_UNMAP:
983 			return sd_setup_write_same16_cmnd(cmd, true);
984 		case SD_ZERO_WS10_UNMAP:
985 			return sd_setup_write_same10_cmnd(cmd, true);
986 		}
987 	}
988 
989 	if (sdp->no_write_same) {
990 		rq->rq_flags |= RQF_QUIET;
991 		return BLK_STS_TARGET;
992 	}
993 
994 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
995 		return sd_setup_write_same16_cmnd(cmd, false);
996 
997 	return sd_setup_write_same10_cmnd(cmd, false);
998 }
999 
1000 static void sd_config_write_same(struct scsi_disk *sdkp)
1001 {
1002 	struct request_queue *q = sdkp->disk->queue;
1003 	unsigned int logical_block_size = sdkp->device->sector_size;
1004 
1005 	if (sdkp->device->no_write_same) {
1006 		sdkp->max_ws_blocks = 0;
1007 		goto out;
1008 	}
1009 
1010 	/* Some devices can not handle block counts above 0xffff despite
1011 	 * supporting WRITE SAME(16). Consequently we default to 64k
1012 	 * blocks per I/O unless the device explicitly advertises a
1013 	 * bigger limit.
1014 	 */
1015 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1016 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1017 						   (u32)SD_MAX_WS16_BLOCKS);
1018 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1019 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1020 						   (u32)SD_MAX_WS10_BLOCKS);
1021 	else {
1022 		sdkp->device->no_write_same = 1;
1023 		sdkp->max_ws_blocks = 0;
1024 	}
1025 
1026 	if (sdkp->lbprz && sdkp->lbpws)
1027 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1028 	else if (sdkp->lbprz && sdkp->lbpws10)
1029 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1030 	else if (sdkp->max_ws_blocks)
1031 		sdkp->zeroing_mode = SD_ZERO_WS;
1032 	else
1033 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1034 
1035 	if (sdkp->max_ws_blocks &&
1036 	    sdkp->physical_block_size > logical_block_size) {
1037 		/*
1038 		 * Reporting a maximum number of blocks that is not aligned
1039 		 * on the device physical size would cause a large write same
1040 		 * request to be split into physically unaligned chunks by
1041 		 * __blkdev_issue_write_zeroes() even if the caller of this
1042 		 * functions took care to align the large request. So make sure
1043 		 * the maximum reported is aligned to the device physical block
1044 		 * size. This is only an optional optimization for regular
1045 		 * disks, but this is mandatory to avoid failure of large write
1046 		 * same requests directed at sequential write required zones of
1047 		 * host-managed ZBC disks.
1048 		 */
1049 		sdkp->max_ws_blocks =
1050 			round_down(sdkp->max_ws_blocks,
1051 				   bytes_to_logical(sdkp->device,
1052 						    sdkp->physical_block_size));
1053 	}
1054 
1055 out:
1056 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 					 (logical_block_size >> 9));
1058 }
1059 
1060 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1061 {
1062 	struct request *rq = scsi_cmd_to_rq(cmd);
1063 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1064 
1065 	/* flush requests don't perform I/O, zero the S/G table */
1066 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1067 
1068 	if (cmd->device->use_16_for_sync) {
1069 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1070 		cmd->cmd_len = 16;
1071 	} else {
1072 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1073 		cmd->cmd_len = 10;
1074 	}
1075 	cmd->transfersize = 0;
1076 	cmd->allowed = sdkp->max_retries;
1077 
1078 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1079 	return BLK_STS_OK;
1080 }
1081 
1082 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1083 				       sector_t lba, unsigned int nr_blocks,
1084 				       unsigned char flags, unsigned int dld)
1085 {
1086 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1088 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1089 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1090 	cmd->cmnd[10] = flags;
1091 	cmd->cmnd[11] = dld & 0x07;
1092 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1093 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1094 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1095 
1096 	return BLK_STS_OK;
1097 }
1098 
1099 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1100 				       sector_t lba, unsigned int nr_blocks,
1101 				       unsigned char flags, unsigned int dld)
1102 {
1103 	cmd->cmd_len  = 16;
1104 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1105 	cmd->cmnd[1]  = flags | ((dld >> 2) & 0x01);
1106 	cmd->cmnd[14] = (dld & 0x03) << 6;
1107 	cmd->cmnd[15] = 0;
1108 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1109 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1110 
1111 	return BLK_STS_OK;
1112 }
1113 
1114 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1115 				       sector_t lba, unsigned int nr_blocks,
1116 				       unsigned char flags)
1117 {
1118 	cmd->cmd_len = 10;
1119 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1120 	cmd->cmnd[1] = flags;
1121 	cmd->cmnd[6] = 0;
1122 	cmd->cmnd[9] = 0;
1123 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1124 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1125 
1126 	return BLK_STS_OK;
1127 }
1128 
1129 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1130 				      sector_t lba, unsigned int nr_blocks,
1131 				      unsigned char flags)
1132 {
1133 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1134 	if (WARN_ON_ONCE(nr_blocks == 0))
1135 		return BLK_STS_IOERR;
1136 
1137 	if (unlikely(flags & 0x8)) {
1138 		/*
1139 		 * This happens only if this drive failed 10byte rw
1140 		 * command with ILLEGAL_REQUEST during operation and
1141 		 * thus turned off use_10_for_rw.
1142 		 */
1143 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1144 		return BLK_STS_IOERR;
1145 	}
1146 
1147 	cmd->cmd_len = 6;
1148 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1149 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1150 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1151 	cmd->cmnd[3] = lba & 0xff;
1152 	cmd->cmnd[4] = nr_blocks;
1153 	cmd->cmnd[5] = 0;
1154 
1155 	return BLK_STS_OK;
1156 }
1157 
1158 /*
1159  * Check if a command has a duration limit set. If it does, and the target
1160  * device supports CDL and the feature is enabled, return the limit
1161  * descriptor index to use. Return 0 (no limit) otherwise.
1162  */
1163 static int sd_cdl_dld(struct scsi_disk *sdkp, struct scsi_cmnd *scmd)
1164 {
1165 	struct scsi_device *sdp = sdkp->device;
1166 	int hint;
1167 
1168 	if (!sdp->cdl_supported || !sdp->cdl_enable)
1169 		return 0;
1170 
1171 	/*
1172 	 * Use "no limit" if the request ioprio does not specify a duration
1173 	 * limit hint.
1174 	 */
1175 	hint = IOPRIO_PRIO_HINT(req_get_ioprio(scsi_cmd_to_rq(scmd)));
1176 	if (hint < IOPRIO_HINT_DEV_DURATION_LIMIT_1 ||
1177 	    hint > IOPRIO_HINT_DEV_DURATION_LIMIT_7)
1178 		return 0;
1179 
1180 	return (hint - IOPRIO_HINT_DEV_DURATION_LIMIT_1) + 1;
1181 }
1182 
1183 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1184 {
1185 	struct request *rq = scsi_cmd_to_rq(cmd);
1186 	struct scsi_device *sdp = cmd->device;
1187 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1188 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1189 	sector_t threshold;
1190 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1191 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1192 	bool write = rq_data_dir(rq) == WRITE;
1193 	unsigned char protect, fua;
1194 	unsigned int dld;
1195 	blk_status_t ret;
1196 	unsigned int dif;
1197 	bool dix;
1198 
1199 	ret = scsi_alloc_sgtables(cmd);
1200 	if (ret != BLK_STS_OK)
1201 		return ret;
1202 
1203 	ret = BLK_STS_IOERR;
1204 	if (!scsi_device_online(sdp) || sdp->changed) {
1205 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1206 		goto fail;
1207 	}
1208 
1209 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1210 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1211 		goto fail;
1212 	}
1213 
1214 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1215 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1216 		goto fail;
1217 	}
1218 
1219 	/*
1220 	 * Some SD card readers can't handle accesses which touch the
1221 	 * last one or two logical blocks. Split accesses as needed.
1222 	 */
1223 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1224 
1225 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1226 		if (lba < threshold) {
1227 			/* Access up to the threshold but not beyond */
1228 			nr_blocks = threshold - lba;
1229 		} else {
1230 			/* Access only a single logical block */
1231 			nr_blocks = 1;
1232 		}
1233 	}
1234 
1235 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1236 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1237 		if (ret)
1238 			goto fail;
1239 	}
1240 
1241 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1242 	dix = scsi_prot_sg_count(cmd);
1243 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1244 	dld = sd_cdl_dld(sdkp, cmd);
1245 
1246 	if (dif || dix)
1247 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1248 	else
1249 		protect = 0;
1250 
1251 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1252 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1253 					 protect | fua, dld);
1254 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1255 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1256 					 protect | fua, dld);
1257 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1258 		   sdp->use_10_for_rw || protect) {
1259 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1260 					 protect | fua);
1261 	} else {
1262 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1263 					protect | fua);
1264 	}
1265 
1266 	if (unlikely(ret != BLK_STS_OK))
1267 		goto fail;
1268 
1269 	/*
1270 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1271 	 * host adapter, it's safe to assume that we can at least transfer
1272 	 * this many bytes between each connect / disconnect.
1273 	 */
1274 	cmd->transfersize = sdp->sector_size;
1275 	cmd->underflow = nr_blocks << 9;
1276 	cmd->allowed = sdkp->max_retries;
1277 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1278 
1279 	SCSI_LOG_HLQUEUE(1,
1280 			 scmd_printk(KERN_INFO, cmd,
1281 				     "%s: block=%llu, count=%d\n", __func__,
1282 				     (unsigned long long)blk_rq_pos(rq),
1283 				     blk_rq_sectors(rq)));
1284 	SCSI_LOG_HLQUEUE(2,
1285 			 scmd_printk(KERN_INFO, cmd,
1286 				     "%s %d/%u 512 byte blocks.\n",
1287 				     write ? "writing" : "reading", nr_blocks,
1288 				     blk_rq_sectors(rq)));
1289 
1290 	/*
1291 	 * This indicates that the command is ready from our end to be queued.
1292 	 */
1293 	return BLK_STS_OK;
1294 fail:
1295 	scsi_free_sgtables(cmd);
1296 	return ret;
1297 }
1298 
1299 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1300 {
1301 	struct request *rq = scsi_cmd_to_rq(cmd);
1302 
1303 	switch (req_op(rq)) {
1304 	case REQ_OP_DISCARD:
1305 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1306 		case SD_LBP_UNMAP:
1307 			return sd_setup_unmap_cmnd(cmd);
1308 		case SD_LBP_WS16:
1309 			return sd_setup_write_same16_cmnd(cmd, true);
1310 		case SD_LBP_WS10:
1311 			return sd_setup_write_same10_cmnd(cmd, true);
1312 		case SD_LBP_ZERO:
1313 			return sd_setup_write_same10_cmnd(cmd, false);
1314 		default:
1315 			return BLK_STS_TARGET;
1316 		}
1317 	case REQ_OP_WRITE_ZEROES:
1318 		return sd_setup_write_zeroes_cmnd(cmd);
1319 	case REQ_OP_FLUSH:
1320 		return sd_setup_flush_cmnd(cmd);
1321 	case REQ_OP_READ:
1322 	case REQ_OP_WRITE:
1323 	case REQ_OP_ZONE_APPEND:
1324 		return sd_setup_read_write_cmnd(cmd);
1325 	case REQ_OP_ZONE_RESET:
1326 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1327 						   false);
1328 	case REQ_OP_ZONE_RESET_ALL:
1329 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1330 						   true);
1331 	case REQ_OP_ZONE_OPEN:
1332 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1333 	case REQ_OP_ZONE_CLOSE:
1334 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1335 	case REQ_OP_ZONE_FINISH:
1336 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1337 	default:
1338 		WARN_ON_ONCE(1);
1339 		return BLK_STS_NOTSUPP;
1340 	}
1341 }
1342 
1343 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1344 {
1345 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1346 
1347 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1348 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1349 }
1350 
1351 static bool sd_need_revalidate(struct gendisk *disk, struct scsi_disk *sdkp)
1352 {
1353 	if (sdkp->device->removable || sdkp->write_prot) {
1354 		if (disk_check_media_change(disk))
1355 			return true;
1356 	}
1357 
1358 	/*
1359 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1360 	 * nothing to do with partitions, BLKRRPART is used to force a full
1361 	 * revalidate after things like a format for historical reasons.
1362 	 */
1363 	return test_bit(GD_NEED_PART_SCAN, &disk->state);
1364 }
1365 
1366 /**
1367  *	sd_open - open a scsi disk device
1368  *	@disk: disk to open
1369  *	@mode: open mode
1370  *
1371  *	Returns 0 if successful. Returns a negated errno value in case
1372  *	of error.
1373  *
1374  *	Note: This can be called from a user context (e.g. fsck(1) )
1375  *	or from within the kernel (e.g. as a result of a mount(1) ).
1376  *	In the latter case @inode and @filp carry an abridged amount
1377  *	of information as noted above.
1378  *
1379  *	Locking: called with disk->open_mutex held.
1380  **/
1381 static int sd_open(struct gendisk *disk, blk_mode_t mode)
1382 {
1383 	struct scsi_disk *sdkp = scsi_disk(disk);
1384 	struct scsi_device *sdev = sdkp->device;
1385 	int retval;
1386 
1387 	if (scsi_device_get(sdev))
1388 		return -ENXIO;
1389 
1390 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1391 
1392 	/*
1393 	 * If the device is in error recovery, wait until it is done.
1394 	 * If the device is offline, then disallow any access to it.
1395 	 */
1396 	retval = -ENXIO;
1397 	if (!scsi_block_when_processing_errors(sdev))
1398 		goto error_out;
1399 
1400 	if (sd_need_revalidate(disk, sdkp))
1401 		sd_revalidate_disk(disk);
1402 
1403 	/*
1404 	 * If the drive is empty, just let the open fail.
1405 	 */
1406 	retval = -ENOMEDIUM;
1407 	if (sdev->removable && !sdkp->media_present &&
1408 	    !(mode & BLK_OPEN_NDELAY))
1409 		goto error_out;
1410 
1411 	/*
1412 	 * If the device has the write protect tab set, have the open fail
1413 	 * if the user expects to be able to write to the thing.
1414 	 */
1415 	retval = -EROFS;
1416 	if (sdkp->write_prot && (mode & BLK_OPEN_WRITE))
1417 		goto error_out;
1418 
1419 	/*
1420 	 * It is possible that the disk changing stuff resulted in
1421 	 * the device being taken offline.  If this is the case,
1422 	 * report this to the user, and don't pretend that the
1423 	 * open actually succeeded.
1424 	 */
1425 	retval = -ENXIO;
1426 	if (!scsi_device_online(sdev))
1427 		goto error_out;
1428 
1429 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1430 		if (scsi_block_when_processing_errors(sdev))
1431 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1432 	}
1433 
1434 	return 0;
1435 
1436 error_out:
1437 	scsi_device_put(sdev);
1438 	return retval;
1439 }
1440 
1441 /**
1442  *	sd_release - invoked when the (last) close(2) is called on this
1443  *	scsi disk.
1444  *	@disk: disk to release
1445  *
1446  *	Returns 0.
1447  *
1448  *	Note: may block (uninterruptible) if error recovery is underway
1449  *	on this disk.
1450  *
1451  *	Locking: called with disk->open_mutex held.
1452  **/
1453 static void sd_release(struct gendisk *disk)
1454 {
1455 	struct scsi_disk *sdkp = scsi_disk(disk);
1456 	struct scsi_device *sdev = sdkp->device;
1457 
1458 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1459 
1460 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1461 		if (scsi_block_when_processing_errors(sdev))
1462 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1463 	}
1464 
1465 	scsi_device_put(sdev);
1466 }
1467 
1468 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1469 {
1470 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1471 	struct scsi_device *sdp = sdkp->device;
1472 	struct Scsi_Host *host = sdp->host;
1473 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1474 	int diskinfo[4];
1475 
1476 	/* default to most commonly used values */
1477 	diskinfo[0] = 0x40;	/* 1 << 6 */
1478 	diskinfo[1] = 0x20;	/* 1 << 5 */
1479 	diskinfo[2] = capacity >> 11;
1480 
1481 	/* override with calculated, extended default, or driver values */
1482 	if (host->hostt->bios_param)
1483 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1484 	else
1485 		scsicam_bios_param(bdev, capacity, diskinfo);
1486 
1487 	geo->heads = diskinfo[0];
1488 	geo->sectors = diskinfo[1];
1489 	geo->cylinders = diskinfo[2];
1490 	return 0;
1491 }
1492 
1493 /**
1494  *	sd_ioctl - process an ioctl
1495  *	@bdev: target block device
1496  *	@mode: open mode
1497  *	@cmd: ioctl command number
1498  *	@arg: this is third argument given to ioctl(2) system call.
1499  *	Often contains a pointer.
1500  *
1501  *	Returns 0 if successful (some ioctls return positive numbers on
1502  *	success as well). Returns a negated errno value in case of error.
1503  *
1504  *	Note: most ioctls are forward onto the block subsystem or further
1505  *	down in the scsi subsystem.
1506  **/
1507 static int sd_ioctl(struct block_device *bdev, blk_mode_t mode,
1508 		    unsigned int cmd, unsigned long arg)
1509 {
1510 	struct gendisk *disk = bdev->bd_disk;
1511 	struct scsi_disk *sdkp = scsi_disk(disk);
1512 	struct scsi_device *sdp = sdkp->device;
1513 	void __user *p = (void __user *)arg;
1514 	int error;
1515 
1516 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1517 				    "cmd=0x%x\n", disk->disk_name, cmd));
1518 
1519 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1520 		return -ENOIOCTLCMD;
1521 
1522 	/*
1523 	 * If we are in the middle of error recovery, don't let anyone
1524 	 * else try and use this device.  Also, if error recovery fails, it
1525 	 * may try and take the device offline, in which case all further
1526 	 * access to the device is prohibited.
1527 	 */
1528 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1529 			(mode & BLK_OPEN_NDELAY));
1530 	if (error)
1531 		return error;
1532 
1533 	if (is_sed_ioctl(cmd))
1534 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1535 	return scsi_ioctl(sdp, mode & BLK_OPEN_WRITE, cmd, p);
1536 }
1537 
1538 static void set_media_not_present(struct scsi_disk *sdkp)
1539 {
1540 	if (sdkp->media_present)
1541 		sdkp->device->changed = 1;
1542 
1543 	if (sdkp->device->removable) {
1544 		sdkp->media_present = 0;
1545 		sdkp->capacity = 0;
1546 	}
1547 }
1548 
1549 static int media_not_present(struct scsi_disk *sdkp,
1550 			     struct scsi_sense_hdr *sshdr)
1551 {
1552 	if (!scsi_sense_valid(sshdr))
1553 		return 0;
1554 
1555 	/* not invoked for commands that could return deferred errors */
1556 	switch (sshdr->sense_key) {
1557 	case UNIT_ATTENTION:
1558 	case NOT_READY:
1559 		/* medium not present */
1560 		if (sshdr->asc == 0x3A) {
1561 			set_media_not_present(sdkp);
1562 			return 1;
1563 		}
1564 	}
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	sd_check_events - check media events
1570  *	@disk: kernel device descriptor
1571  *	@clearing: disk events currently being cleared
1572  *
1573  *	Returns mask of DISK_EVENT_*.
1574  *
1575  *	Note: this function is invoked from the block subsystem.
1576  **/
1577 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1578 {
1579 	struct scsi_disk *sdkp = disk->private_data;
1580 	struct scsi_device *sdp;
1581 	int retval;
1582 	bool disk_changed;
1583 
1584 	if (!sdkp)
1585 		return 0;
1586 
1587 	sdp = sdkp->device;
1588 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1589 
1590 	/*
1591 	 * If the device is offline, don't send any commands - just pretend as
1592 	 * if the command failed.  If the device ever comes back online, we
1593 	 * can deal with it then.  It is only because of unrecoverable errors
1594 	 * that we would ever take a device offline in the first place.
1595 	 */
1596 	if (!scsi_device_online(sdp)) {
1597 		set_media_not_present(sdkp);
1598 		goto out;
1599 	}
1600 
1601 	/*
1602 	 * Using TEST_UNIT_READY enables differentiation between drive with
1603 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1604 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1605 	 *
1606 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1607 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1608 	 * sd_revalidate() is called.
1609 	 */
1610 	if (scsi_block_when_processing_errors(sdp)) {
1611 		struct scsi_sense_hdr sshdr = { 0, };
1612 
1613 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1614 					      &sshdr);
1615 
1616 		/* failed to execute TUR, assume media not present */
1617 		if (retval < 0 || host_byte(retval)) {
1618 			set_media_not_present(sdkp);
1619 			goto out;
1620 		}
1621 
1622 		if (media_not_present(sdkp, &sshdr))
1623 			goto out;
1624 	}
1625 
1626 	/*
1627 	 * For removable scsi disk we have to recognise the presence
1628 	 * of a disk in the drive.
1629 	 */
1630 	if (!sdkp->media_present)
1631 		sdp->changed = 1;
1632 	sdkp->media_present = 1;
1633 out:
1634 	/*
1635 	 * sdp->changed is set under the following conditions:
1636 	 *
1637 	 *	Medium present state has changed in either direction.
1638 	 *	Device has indicated UNIT_ATTENTION.
1639 	 */
1640 	disk_changed = sdp->changed;
1641 	sdp->changed = 0;
1642 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1643 }
1644 
1645 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1646 {
1647 	int retries, res;
1648 	struct scsi_device *sdp = sdkp->device;
1649 	const int timeout = sdp->request_queue->rq_timeout
1650 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1651 	struct scsi_sense_hdr my_sshdr;
1652 	const struct scsi_exec_args exec_args = {
1653 		.req_flags = BLK_MQ_REQ_PM,
1654 		/* caller might not be interested in sense, but we need it */
1655 		.sshdr = sshdr ? : &my_sshdr,
1656 	};
1657 
1658 	if (!scsi_device_online(sdp))
1659 		return -ENODEV;
1660 
1661 	sshdr = exec_args.sshdr;
1662 
1663 	for (retries = 3; retries > 0; --retries) {
1664 		unsigned char cmd[16] = { 0 };
1665 
1666 		if (sdp->use_16_for_sync)
1667 			cmd[0] = SYNCHRONIZE_CACHE_16;
1668 		else
1669 			cmd[0] = SYNCHRONIZE_CACHE;
1670 		/*
1671 		 * Leave the rest of the command zero to indicate
1672 		 * flush everything.
1673 		 */
1674 		res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
1675 				       timeout, sdkp->max_retries, &exec_args);
1676 		if (res == 0)
1677 			break;
1678 	}
1679 
1680 	if (res) {
1681 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1682 
1683 		if (res < 0)
1684 			return res;
1685 
1686 		if (scsi_status_is_check_condition(res) &&
1687 		    scsi_sense_valid(sshdr)) {
1688 			sd_print_sense_hdr(sdkp, sshdr);
1689 
1690 			/* we need to evaluate the error return  */
1691 			if (sshdr->asc == 0x3a ||	/* medium not present */
1692 			    sshdr->asc == 0x20 ||	/* invalid command */
1693 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1694 				/* this is no error here */
1695 				return 0;
1696 		}
1697 
1698 		switch (host_byte(res)) {
1699 		/* ignore errors due to racing a disconnection */
1700 		case DID_BAD_TARGET:
1701 		case DID_NO_CONNECT:
1702 			return 0;
1703 		/* signal the upper layer it might try again */
1704 		case DID_BUS_BUSY:
1705 		case DID_IMM_RETRY:
1706 		case DID_REQUEUE:
1707 		case DID_SOFT_ERROR:
1708 			return -EBUSY;
1709 		default:
1710 			return -EIO;
1711 		}
1712 	}
1713 	return 0;
1714 }
1715 
1716 static void sd_rescan(struct device *dev)
1717 {
1718 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1719 
1720 	sd_revalidate_disk(sdkp->disk);
1721 }
1722 
1723 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1724 		enum blk_unique_id type)
1725 {
1726 	struct scsi_device *sdev = scsi_disk(disk)->device;
1727 	const struct scsi_vpd *vpd;
1728 	const unsigned char *d;
1729 	int ret = -ENXIO, len;
1730 
1731 	rcu_read_lock();
1732 	vpd = rcu_dereference(sdev->vpd_pg83);
1733 	if (!vpd)
1734 		goto out_unlock;
1735 
1736 	ret = -EINVAL;
1737 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1738 		/* we only care about designators with LU association */
1739 		if (((d[1] >> 4) & 0x3) != 0x00)
1740 			continue;
1741 		if ((d[1] & 0xf) != type)
1742 			continue;
1743 
1744 		/*
1745 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1746 		 * keep looking as one with more entropy might still show up.
1747 		 */
1748 		len = d[3];
1749 		if (len != 8 && len != 12 && len != 16)
1750 			continue;
1751 		ret = len;
1752 		memcpy(id, d + 4, len);
1753 		if (len == 16)
1754 			break;
1755 	}
1756 out_unlock:
1757 	rcu_read_unlock();
1758 	return ret;
1759 }
1760 
1761 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1762 {
1763 	switch (host_byte(result)) {
1764 	case DID_TRANSPORT_MARGINAL:
1765 	case DID_TRANSPORT_DISRUPTED:
1766 	case DID_BUS_BUSY:
1767 		return PR_STS_RETRY_PATH_FAILURE;
1768 	case DID_NO_CONNECT:
1769 		return PR_STS_PATH_FAILED;
1770 	case DID_TRANSPORT_FAILFAST:
1771 		return PR_STS_PATH_FAST_FAILED;
1772 	}
1773 
1774 	switch (status_byte(result)) {
1775 	case SAM_STAT_RESERVATION_CONFLICT:
1776 		return PR_STS_RESERVATION_CONFLICT;
1777 	case SAM_STAT_CHECK_CONDITION:
1778 		if (!scsi_sense_valid(sshdr))
1779 			return PR_STS_IOERR;
1780 
1781 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1782 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1783 			return -EINVAL;
1784 
1785 		fallthrough;
1786 	default:
1787 		return PR_STS_IOERR;
1788 	}
1789 }
1790 
1791 static int sd_pr_in_command(struct block_device *bdev, u8 sa,
1792 			    unsigned char *data, int data_len)
1793 {
1794 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1795 	struct scsi_device *sdev = sdkp->device;
1796 	struct scsi_sense_hdr sshdr;
1797 	u8 cmd[10] = { PERSISTENT_RESERVE_IN, sa };
1798 	const struct scsi_exec_args exec_args = {
1799 		.sshdr = &sshdr,
1800 	};
1801 	int result;
1802 
1803 	put_unaligned_be16(data_len, &cmd[7]);
1804 
1805 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, data, data_len,
1806 				  SD_TIMEOUT, sdkp->max_retries, &exec_args);
1807 	if (scsi_status_is_check_condition(result) &&
1808 	    scsi_sense_valid(&sshdr)) {
1809 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1810 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1811 	}
1812 
1813 	if (result <= 0)
1814 		return result;
1815 
1816 	return sd_scsi_to_pr_err(&sshdr, result);
1817 }
1818 
1819 static int sd_pr_read_keys(struct block_device *bdev, struct pr_keys *keys_info)
1820 {
1821 	int result, i, data_offset, num_copy_keys;
1822 	u32 num_keys = keys_info->num_keys;
1823 	int data_len = num_keys * 8 + 8;
1824 	u8 *data;
1825 
1826 	data = kzalloc(data_len, GFP_KERNEL);
1827 	if (!data)
1828 		return -ENOMEM;
1829 
1830 	result = sd_pr_in_command(bdev, READ_KEYS, data, data_len);
1831 	if (result)
1832 		goto free_data;
1833 
1834 	keys_info->generation = get_unaligned_be32(&data[0]);
1835 	keys_info->num_keys = get_unaligned_be32(&data[4]) / 8;
1836 
1837 	data_offset = 8;
1838 	num_copy_keys = min(num_keys, keys_info->num_keys);
1839 
1840 	for (i = 0; i < num_copy_keys; i++) {
1841 		keys_info->keys[i] = get_unaligned_be64(&data[data_offset]);
1842 		data_offset += 8;
1843 	}
1844 
1845 free_data:
1846 	kfree(data);
1847 	return result;
1848 }
1849 
1850 static int sd_pr_read_reservation(struct block_device *bdev,
1851 				  struct pr_held_reservation *rsv)
1852 {
1853 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1854 	struct scsi_device *sdev = sdkp->device;
1855 	u8 data[24] = { };
1856 	int result, len;
1857 
1858 	result = sd_pr_in_command(bdev, READ_RESERVATION, data, sizeof(data));
1859 	if (result)
1860 		return result;
1861 
1862 	len = get_unaligned_be32(&data[4]);
1863 	if (!len)
1864 		return 0;
1865 
1866 	/* Make sure we have at least the key and type */
1867 	if (len < 14) {
1868 		sdev_printk(KERN_INFO, sdev,
1869 			    "READ RESERVATION failed due to short return buffer of %d bytes\n",
1870 			    len);
1871 		return -EINVAL;
1872 	}
1873 
1874 	rsv->generation = get_unaligned_be32(&data[0]);
1875 	rsv->key = get_unaligned_be64(&data[8]);
1876 	rsv->type = scsi_pr_type_to_block(data[21] & 0x0f);
1877 	return 0;
1878 }
1879 
1880 static int sd_pr_out_command(struct block_device *bdev, u8 sa, u64 key,
1881 			     u64 sa_key, enum scsi_pr_type type, u8 flags)
1882 {
1883 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1884 	struct scsi_device *sdev = sdkp->device;
1885 	struct scsi_sense_hdr sshdr;
1886 	const struct scsi_exec_args exec_args = {
1887 		.sshdr = &sshdr,
1888 	};
1889 	int result;
1890 	u8 cmd[16] = { 0, };
1891 	u8 data[24] = { 0, };
1892 
1893 	cmd[0] = PERSISTENT_RESERVE_OUT;
1894 	cmd[1] = sa;
1895 	cmd[2] = type;
1896 	put_unaligned_be32(sizeof(data), &cmd[5]);
1897 
1898 	put_unaligned_be64(key, &data[0]);
1899 	put_unaligned_be64(sa_key, &data[8]);
1900 	data[20] = flags;
1901 
1902 	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, &data,
1903 				  sizeof(data), SD_TIMEOUT, sdkp->max_retries,
1904 				  &exec_args);
1905 
1906 	if (scsi_status_is_check_condition(result) &&
1907 	    scsi_sense_valid(&sshdr)) {
1908 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1909 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1910 	}
1911 
1912 	if (result <= 0)
1913 		return result;
1914 
1915 	return sd_scsi_to_pr_err(&sshdr, result);
1916 }
1917 
1918 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1919 		u32 flags)
1920 {
1921 	if (flags & ~PR_FL_IGNORE_KEY)
1922 		return -EOPNOTSUPP;
1923 	return sd_pr_out_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1924 			old_key, new_key, 0,
1925 			(1 << 0) /* APTPL */);
1926 }
1927 
1928 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1929 		u32 flags)
1930 {
1931 	if (flags)
1932 		return -EOPNOTSUPP;
1933 	return sd_pr_out_command(bdev, 0x01, key, 0,
1934 				 block_pr_type_to_scsi(type), 0);
1935 }
1936 
1937 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1938 {
1939 	return sd_pr_out_command(bdev, 0x02, key, 0,
1940 				 block_pr_type_to_scsi(type), 0);
1941 }
1942 
1943 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1944 		enum pr_type type, bool abort)
1945 {
1946 	return sd_pr_out_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1947 				 block_pr_type_to_scsi(type), 0);
1948 }
1949 
1950 static int sd_pr_clear(struct block_device *bdev, u64 key)
1951 {
1952 	return sd_pr_out_command(bdev, 0x03, key, 0, 0, 0);
1953 }
1954 
1955 static const struct pr_ops sd_pr_ops = {
1956 	.pr_register	= sd_pr_register,
1957 	.pr_reserve	= sd_pr_reserve,
1958 	.pr_release	= sd_pr_release,
1959 	.pr_preempt	= sd_pr_preempt,
1960 	.pr_clear	= sd_pr_clear,
1961 	.pr_read_keys	= sd_pr_read_keys,
1962 	.pr_read_reservation = sd_pr_read_reservation,
1963 };
1964 
1965 static void scsi_disk_free_disk(struct gendisk *disk)
1966 {
1967 	struct scsi_disk *sdkp = scsi_disk(disk);
1968 
1969 	put_device(&sdkp->disk_dev);
1970 }
1971 
1972 static const struct block_device_operations sd_fops = {
1973 	.owner			= THIS_MODULE,
1974 	.open			= sd_open,
1975 	.release		= sd_release,
1976 	.ioctl			= sd_ioctl,
1977 	.getgeo			= sd_getgeo,
1978 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1979 	.check_events		= sd_check_events,
1980 	.unlock_native_capacity	= sd_unlock_native_capacity,
1981 	.report_zones		= sd_zbc_report_zones,
1982 	.get_unique_id		= sd_get_unique_id,
1983 	.free_disk		= scsi_disk_free_disk,
1984 	.pr_ops			= &sd_pr_ops,
1985 };
1986 
1987 /**
1988  *	sd_eh_reset - reset error handling callback
1989  *	@scmd:		sd-issued command that has failed
1990  *
1991  *	This function is called by the SCSI midlayer before starting
1992  *	SCSI EH. When counting medium access failures we have to be
1993  *	careful to register it only only once per device and SCSI EH run;
1994  *	there might be several timed out commands which will cause the
1995  *	'max_medium_access_timeouts' counter to trigger after the first
1996  *	SCSI EH run already and set the device to offline.
1997  *	So this function resets the internal counter before starting SCSI EH.
1998  **/
1999 static void sd_eh_reset(struct scsi_cmnd *scmd)
2000 {
2001 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2002 
2003 	/* New SCSI EH run, reset gate variable */
2004 	sdkp->ignore_medium_access_errors = false;
2005 }
2006 
2007 /**
2008  *	sd_eh_action - error handling callback
2009  *	@scmd:		sd-issued command that has failed
2010  *	@eh_disp:	The recovery disposition suggested by the midlayer
2011  *
2012  *	This function is called by the SCSI midlayer upon completion of an
2013  *	error test command (currently TEST UNIT READY). The result of sending
2014  *	the eh command is passed in eh_disp.  We're looking for devices that
2015  *	fail medium access commands but are OK with non access commands like
2016  *	test unit ready (so wrongly see the device as having a successful
2017  *	recovery)
2018  **/
2019 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
2020 {
2021 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
2022 	struct scsi_device *sdev = scmd->device;
2023 
2024 	if (!scsi_device_online(sdev) ||
2025 	    !scsi_medium_access_command(scmd) ||
2026 	    host_byte(scmd->result) != DID_TIME_OUT ||
2027 	    eh_disp != SUCCESS)
2028 		return eh_disp;
2029 
2030 	/*
2031 	 * The device has timed out executing a medium access command.
2032 	 * However, the TEST UNIT READY command sent during error
2033 	 * handling completed successfully. Either the device is in the
2034 	 * process of recovering or has it suffered an internal failure
2035 	 * that prevents access to the storage medium.
2036 	 */
2037 	if (!sdkp->ignore_medium_access_errors) {
2038 		sdkp->medium_access_timed_out++;
2039 		sdkp->ignore_medium_access_errors = true;
2040 	}
2041 
2042 	/*
2043 	 * If the device keeps failing read/write commands but TEST UNIT
2044 	 * READY always completes successfully we assume that medium
2045 	 * access is no longer possible and take the device offline.
2046 	 */
2047 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
2048 		scmd_printk(KERN_ERR, scmd,
2049 			    "Medium access timeout failure. Offlining disk!\n");
2050 		mutex_lock(&sdev->state_mutex);
2051 		scsi_device_set_state(sdev, SDEV_OFFLINE);
2052 		mutex_unlock(&sdev->state_mutex);
2053 
2054 		return SUCCESS;
2055 	}
2056 
2057 	return eh_disp;
2058 }
2059 
2060 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
2061 {
2062 	struct request *req = scsi_cmd_to_rq(scmd);
2063 	struct scsi_device *sdev = scmd->device;
2064 	unsigned int transferred, good_bytes;
2065 	u64 start_lba, end_lba, bad_lba;
2066 
2067 	/*
2068 	 * Some commands have a payload smaller than the device logical
2069 	 * block size (e.g. INQUIRY on a 4K disk).
2070 	 */
2071 	if (scsi_bufflen(scmd) <= sdev->sector_size)
2072 		return 0;
2073 
2074 	/* Check if we have a 'bad_lba' information */
2075 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2076 				     SCSI_SENSE_BUFFERSIZE,
2077 				     &bad_lba))
2078 		return 0;
2079 
2080 	/*
2081 	 * If the bad lba was reported incorrectly, we have no idea where
2082 	 * the error is.
2083 	 */
2084 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2085 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2086 	if (bad_lba < start_lba || bad_lba >= end_lba)
2087 		return 0;
2088 
2089 	/*
2090 	 * resid is optional but mostly filled in.  When it's unused,
2091 	 * its value is zero, so we assume the whole buffer transferred
2092 	 */
2093 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2094 
2095 	/* This computation should always be done in terms of the
2096 	 * resolution of the device's medium.
2097 	 */
2098 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2099 
2100 	return min(good_bytes, transferred);
2101 }
2102 
2103 /**
2104  *	sd_done - bottom half handler: called when the lower level
2105  *	driver has completed (successfully or otherwise) a scsi command.
2106  *	@SCpnt: mid-level's per command structure.
2107  *
2108  *	Note: potentially run from within an ISR. Must not block.
2109  **/
2110 static int sd_done(struct scsi_cmnd *SCpnt)
2111 {
2112 	int result = SCpnt->result;
2113 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2114 	unsigned int sector_size = SCpnt->device->sector_size;
2115 	unsigned int resid;
2116 	struct scsi_sense_hdr sshdr;
2117 	struct request *req = scsi_cmd_to_rq(SCpnt);
2118 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
2119 	int sense_valid = 0;
2120 	int sense_deferred = 0;
2121 
2122 	switch (req_op(req)) {
2123 	case REQ_OP_DISCARD:
2124 	case REQ_OP_WRITE_ZEROES:
2125 	case REQ_OP_ZONE_RESET:
2126 	case REQ_OP_ZONE_RESET_ALL:
2127 	case REQ_OP_ZONE_OPEN:
2128 	case REQ_OP_ZONE_CLOSE:
2129 	case REQ_OP_ZONE_FINISH:
2130 		if (!result) {
2131 			good_bytes = blk_rq_bytes(req);
2132 			scsi_set_resid(SCpnt, 0);
2133 		} else {
2134 			good_bytes = 0;
2135 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2136 		}
2137 		break;
2138 	default:
2139 		/*
2140 		 * In case of bogus fw or device, we could end up having
2141 		 * an unaligned partial completion. Check this here and force
2142 		 * alignment.
2143 		 */
2144 		resid = scsi_get_resid(SCpnt);
2145 		if (resid & (sector_size - 1)) {
2146 			sd_printk(KERN_INFO, sdkp,
2147 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2148 				resid, sector_size);
2149 			scsi_print_command(SCpnt);
2150 			resid = min(scsi_bufflen(SCpnt),
2151 				    round_up(resid, sector_size));
2152 			scsi_set_resid(SCpnt, resid);
2153 		}
2154 	}
2155 
2156 	if (result) {
2157 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2158 		if (sense_valid)
2159 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2160 	}
2161 	sdkp->medium_access_timed_out = 0;
2162 
2163 	if (!scsi_status_is_check_condition(result) &&
2164 	    (!sense_valid || sense_deferred))
2165 		goto out;
2166 
2167 	switch (sshdr.sense_key) {
2168 	case HARDWARE_ERROR:
2169 	case MEDIUM_ERROR:
2170 		good_bytes = sd_completed_bytes(SCpnt);
2171 		break;
2172 	case RECOVERED_ERROR:
2173 		good_bytes = scsi_bufflen(SCpnt);
2174 		break;
2175 	case NO_SENSE:
2176 		/* This indicates a false check condition, so ignore it.  An
2177 		 * unknown amount of data was transferred so treat it as an
2178 		 * error.
2179 		 */
2180 		SCpnt->result = 0;
2181 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2182 		break;
2183 	case ABORTED_COMMAND:
2184 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2185 			good_bytes = sd_completed_bytes(SCpnt);
2186 		break;
2187 	case ILLEGAL_REQUEST:
2188 		switch (sshdr.asc) {
2189 		case 0x10:	/* DIX: Host detected corruption */
2190 			good_bytes = sd_completed_bytes(SCpnt);
2191 			break;
2192 		case 0x20:	/* INVALID COMMAND OPCODE */
2193 		case 0x24:	/* INVALID FIELD IN CDB */
2194 			switch (SCpnt->cmnd[0]) {
2195 			case UNMAP:
2196 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2197 				break;
2198 			case WRITE_SAME_16:
2199 			case WRITE_SAME:
2200 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2201 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2202 				} else {
2203 					sdkp->device->no_write_same = 1;
2204 					sd_config_write_same(sdkp);
2205 					req->rq_flags |= RQF_QUIET;
2206 				}
2207 				break;
2208 			}
2209 		}
2210 		break;
2211 	default:
2212 		break;
2213 	}
2214 
2215  out:
2216 	if (sd_is_zoned(sdkp))
2217 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2218 
2219 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2220 					   "sd_done: completed %d of %d bytes\n",
2221 					   good_bytes, scsi_bufflen(SCpnt)));
2222 
2223 	return good_bytes;
2224 }
2225 
2226 /*
2227  * spinup disk - called only in sd_revalidate_disk()
2228  */
2229 static void
2230 sd_spinup_disk(struct scsi_disk *sdkp)
2231 {
2232 	unsigned char cmd[10];
2233 	unsigned long spintime_expire = 0;
2234 	int retries, spintime;
2235 	unsigned int the_result;
2236 	struct scsi_sense_hdr sshdr;
2237 	const struct scsi_exec_args exec_args = {
2238 		.sshdr = &sshdr,
2239 	};
2240 	int sense_valid = 0;
2241 
2242 	spintime = 0;
2243 
2244 	/* Spin up drives, as required.  Only do this at boot time */
2245 	/* Spinup needs to be done for module loads too. */
2246 	do {
2247 		retries = 0;
2248 
2249 		do {
2250 			bool media_was_present = sdkp->media_present;
2251 
2252 			cmd[0] = TEST_UNIT_READY;
2253 			memset((void *) &cmd[1], 0, 9);
2254 
2255 			the_result = scsi_execute_cmd(sdkp->device, cmd,
2256 						      REQ_OP_DRV_IN, NULL, 0,
2257 						      SD_TIMEOUT,
2258 						      sdkp->max_retries,
2259 						      &exec_args);
2260 
2261 			/*
2262 			 * If the drive has indicated to us that it
2263 			 * doesn't have any media in it, don't bother
2264 			 * with any more polling.
2265 			 */
2266 			if (media_not_present(sdkp, &sshdr)) {
2267 				if (media_was_present)
2268 					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2269 				return;
2270 			}
2271 
2272 			if (the_result)
2273 				sense_valid = scsi_sense_valid(&sshdr);
2274 			retries++;
2275 		} while (retries < 3 &&
2276 			 (!scsi_status_is_good(the_result) ||
2277 			  (scsi_status_is_check_condition(the_result) &&
2278 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2279 
2280 		if (!scsi_status_is_check_condition(the_result)) {
2281 			/* no sense, TUR either succeeded or failed
2282 			 * with a status error */
2283 			if(!spintime && !scsi_status_is_good(the_result)) {
2284 				sd_print_result(sdkp, "Test Unit Ready failed",
2285 						the_result);
2286 			}
2287 			break;
2288 		}
2289 
2290 		/*
2291 		 * The device does not want the automatic start to be issued.
2292 		 */
2293 		if (sdkp->device->no_start_on_add)
2294 			break;
2295 
2296 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2297 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2298 				break;	/* manual intervention required */
2299 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2300 				break;	/* standby */
2301 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2302 				break;	/* unavailable */
2303 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2304 				break;	/* sanitize in progress */
2305 			/*
2306 			 * Issue command to spin up drive when not ready
2307 			 */
2308 			if (!spintime) {
2309 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2310 				cmd[0] = START_STOP;
2311 				cmd[1] = 1;	/* Return immediately */
2312 				memset((void *) &cmd[2], 0, 8);
2313 				cmd[4] = 1;	/* Start spin cycle */
2314 				if (sdkp->device->start_stop_pwr_cond)
2315 					cmd[4] |= 1 << 4;
2316 				scsi_execute_cmd(sdkp->device, cmd,
2317 						 REQ_OP_DRV_IN, NULL, 0,
2318 						 SD_TIMEOUT, sdkp->max_retries,
2319 						 &exec_args);
2320 				spintime_expire = jiffies + 100 * HZ;
2321 				spintime = 1;
2322 			}
2323 			/* Wait 1 second for next try */
2324 			msleep(1000);
2325 			printk(KERN_CONT ".");
2326 
2327 		/*
2328 		 * Wait for USB flash devices with slow firmware.
2329 		 * Yes, this sense key/ASC combination shouldn't
2330 		 * occur here.  It's characteristic of these devices.
2331 		 */
2332 		} else if (sense_valid &&
2333 				sshdr.sense_key == UNIT_ATTENTION &&
2334 				sshdr.asc == 0x28) {
2335 			if (!spintime) {
2336 				spintime_expire = jiffies + 5 * HZ;
2337 				spintime = 1;
2338 			}
2339 			/* Wait 1 second for next try */
2340 			msleep(1000);
2341 		} else {
2342 			/* we don't understand the sense code, so it's
2343 			 * probably pointless to loop */
2344 			if(!spintime) {
2345 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2346 				sd_print_sense_hdr(sdkp, &sshdr);
2347 			}
2348 			break;
2349 		}
2350 
2351 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2352 
2353 	if (spintime) {
2354 		if (scsi_status_is_good(the_result))
2355 			printk(KERN_CONT "ready\n");
2356 		else
2357 			printk(KERN_CONT "not responding...\n");
2358 	}
2359 }
2360 
2361 /*
2362  * Determine whether disk supports Data Integrity Field.
2363  */
2364 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2365 {
2366 	struct scsi_device *sdp = sdkp->device;
2367 	u8 type;
2368 
2369 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2370 		sdkp->protection_type = 0;
2371 		return 0;
2372 	}
2373 
2374 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2375 
2376 	if (type > T10_PI_TYPE3_PROTECTION) {
2377 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2378 			  " protection type %u. Disabling disk!\n",
2379 			  type);
2380 		sdkp->protection_type = 0;
2381 		return -ENODEV;
2382 	}
2383 
2384 	sdkp->protection_type = type;
2385 
2386 	return 0;
2387 }
2388 
2389 static void sd_config_protection(struct scsi_disk *sdkp)
2390 {
2391 	struct scsi_device *sdp = sdkp->device;
2392 
2393 	sd_dif_config_host(sdkp);
2394 
2395 	if (!sdkp->protection_type)
2396 		return;
2397 
2398 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2399 		sd_first_printk(KERN_NOTICE, sdkp,
2400 				"Disabling DIF Type %u protection\n",
2401 				sdkp->protection_type);
2402 		sdkp->protection_type = 0;
2403 	}
2404 
2405 	sd_first_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2406 			sdkp->protection_type);
2407 }
2408 
2409 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2410 			struct scsi_sense_hdr *sshdr, int sense_valid,
2411 			int the_result)
2412 {
2413 	if (sense_valid)
2414 		sd_print_sense_hdr(sdkp, sshdr);
2415 	else
2416 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2417 
2418 	/*
2419 	 * Set dirty bit for removable devices if not ready -
2420 	 * sometimes drives will not report this properly.
2421 	 */
2422 	if (sdp->removable &&
2423 	    sense_valid && sshdr->sense_key == NOT_READY)
2424 		set_media_not_present(sdkp);
2425 
2426 	/*
2427 	 * We used to set media_present to 0 here to indicate no media
2428 	 * in the drive, but some drives fail read capacity even with
2429 	 * media present, so we can't do that.
2430 	 */
2431 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2432 }
2433 
2434 #define RC16_LEN 32
2435 #if RC16_LEN > SD_BUF_SIZE
2436 #error RC16_LEN must not be more than SD_BUF_SIZE
2437 #endif
2438 
2439 #define READ_CAPACITY_RETRIES_ON_RESET	10
2440 
2441 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2442 						unsigned char *buffer)
2443 {
2444 	unsigned char cmd[16];
2445 	struct scsi_sense_hdr sshdr;
2446 	const struct scsi_exec_args exec_args = {
2447 		.sshdr = &sshdr,
2448 	};
2449 	int sense_valid = 0;
2450 	int the_result;
2451 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2452 	unsigned int alignment;
2453 	unsigned long long lba;
2454 	unsigned sector_size;
2455 
2456 	if (sdp->no_read_capacity_16)
2457 		return -EINVAL;
2458 
2459 	do {
2460 		memset(cmd, 0, 16);
2461 		cmd[0] = SERVICE_ACTION_IN_16;
2462 		cmd[1] = SAI_READ_CAPACITY_16;
2463 		cmd[13] = RC16_LEN;
2464 		memset(buffer, 0, RC16_LEN);
2465 
2466 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN,
2467 					      buffer, RC16_LEN, SD_TIMEOUT,
2468 					      sdkp->max_retries, &exec_args);
2469 
2470 		if (media_not_present(sdkp, &sshdr))
2471 			return -ENODEV;
2472 
2473 		if (the_result > 0) {
2474 			sense_valid = scsi_sense_valid(&sshdr);
2475 			if (sense_valid &&
2476 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2477 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2478 			    sshdr.ascq == 0x00)
2479 				/* Invalid Command Operation Code or
2480 				 * Invalid Field in CDB, just retry
2481 				 * silently with RC10 */
2482 				return -EINVAL;
2483 			if (sense_valid &&
2484 			    sshdr.sense_key == UNIT_ATTENTION &&
2485 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2486 				/* Device reset might occur several times,
2487 				 * give it one more chance */
2488 				if (--reset_retries > 0)
2489 					continue;
2490 		}
2491 		retries--;
2492 
2493 	} while (the_result && retries);
2494 
2495 	if (the_result) {
2496 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2497 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2498 		return -EINVAL;
2499 	}
2500 
2501 	sector_size = get_unaligned_be32(&buffer[8]);
2502 	lba = get_unaligned_be64(&buffer[0]);
2503 
2504 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2505 		sdkp->capacity = 0;
2506 		return -ENODEV;
2507 	}
2508 
2509 	/* Logical blocks per physical block exponent */
2510 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2511 
2512 	/* RC basis */
2513 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2514 
2515 	/* Lowest aligned logical block */
2516 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2517 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2518 	if (alignment && sdkp->first_scan)
2519 		sd_printk(KERN_NOTICE, sdkp,
2520 			  "physical block alignment offset: %u\n", alignment);
2521 
2522 	if (buffer[14] & 0x80) { /* LBPME */
2523 		sdkp->lbpme = 1;
2524 
2525 		if (buffer[14] & 0x40) /* LBPRZ */
2526 			sdkp->lbprz = 1;
2527 
2528 		sd_config_discard(sdkp, SD_LBP_WS16);
2529 	}
2530 
2531 	sdkp->capacity = lba + 1;
2532 	return sector_size;
2533 }
2534 
2535 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2536 						unsigned char *buffer)
2537 {
2538 	unsigned char cmd[16];
2539 	struct scsi_sense_hdr sshdr;
2540 	const struct scsi_exec_args exec_args = {
2541 		.sshdr = &sshdr,
2542 	};
2543 	int sense_valid = 0;
2544 	int the_result;
2545 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2546 	sector_t lba;
2547 	unsigned sector_size;
2548 
2549 	do {
2550 		cmd[0] = READ_CAPACITY;
2551 		memset(&cmd[1], 0, 9);
2552 		memset(buffer, 0, 8);
2553 
2554 		the_result = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, buffer,
2555 					      8, SD_TIMEOUT, sdkp->max_retries,
2556 					      &exec_args);
2557 
2558 		if (media_not_present(sdkp, &sshdr))
2559 			return -ENODEV;
2560 
2561 		if (the_result > 0) {
2562 			sense_valid = scsi_sense_valid(&sshdr);
2563 			if (sense_valid &&
2564 			    sshdr.sense_key == UNIT_ATTENTION &&
2565 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2566 				/* Device reset might occur several times,
2567 				 * give it one more chance */
2568 				if (--reset_retries > 0)
2569 					continue;
2570 		}
2571 		retries--;
2572 
2573 	} while (the_result && retries);
2574 
2575 	if (the_result) {
2576 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2577 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2578 		return -EINVAL;
2579 	}
2580 
2581 	sector_size = get_unaligned_be32(&buffer[4]);
2582 	lba = get_unaligned_be32(&buffer[0]);
2583 
2584 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2585 		/* Some buggy (usb cardreader) devices return an lba of
2586 		   0xffffffff when the want to report a size of 0 (with
2587 		   which they really mean no media is present) */
2588 		sdkp->capacity = 0;
2589 		sdkp->physical_block_size = sector_size;
2590 		return sector_size;
2591 	}
2592 
2593 	sdkp->capacity = lba + 1;
2594 	sdkp->physical_block_size = sector_size;
2595 	return sector_size;
2596 }
2597 
2598 static int sd_try_rc16_first(struct scsi_device *sdp)
2599 {
2600 	if (sdp->host->max_cmd_len < 16)
2601 		return 0;
2602 	if (sdp->try_rc_10_first)
2603 		return 0;
2604 	if (sdp->scsi_level > SCSI_SPC_2)
2605 		return 1;
2606 	if (scsi_device_protection(sdp))
2607 		return 1;
2608 	return 0;
2609 }
2610 
2611 /*
2612  * read disk capacity
2613  */
2614 static void
2615 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2616 {
2617 	int sector_size;
2618 	struct scsi_device *sdp = sdkp->device;
2619 
2620 	if (sd_try_rc16_first(sdp)) {
2621 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2622 		if (sector_size == -EOVERFLOW)
2623 			goto got_data;
2624 		if (sector_size == -ENODEV)
2625 			return;
2626 		if (sector_size < 0)
2627 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2628 		if (sector_size < 0)
2629 			return;
2630 	} else {
2631 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2632 		if (sector_size == -EOVERFLOW)
2633 			goto got_data;
2634 		if (sector_size < 0)
2635 			return;
2636 		if ((sizeof(sdkp->capacity) > 4) &&
2637 		    (sdkp->capacity > 0xffffffffULL)) {
2638 			int old_sector_size = sector_size;
2639 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2640 					"Trying to use READ CAPACITY(16).\n");
2641 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2642 			if (sector_size < 0) {
2643 				sd_printk(KERN_NOTICE, sdkp,
2644 					"Using 0xffffffff as device size\n");
2645 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2646 				sector_size = old_sector_size;
2647 				goto got_data;
2648 			}
2649 			/* Remember that READ CAPACITY(16) succeeded */
2650 			sdp->try_rc_10_first = 0;
2651 		}
2652 	}
2653 
2654 	/* Some devices are known to return the total number of blocks,
2655 	 * not the highest block number.  Some devices have versions
2656 	 * which do this and others which do not.  Some devices we might
2657 	 * suspect of doing this but we don't know for certain.
2658 	 *
2659 	 * If we know the reported capacity is wrong, decrement it.  If
2660 	 * we can only guess, then assume the number of blocks is even
2661 	 * (usually true but not always) and err on the side of lowering
2662 	 * the capacity.
2663 	 */
2664 	if (sdp->fix_capacity ||
2665 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2666 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2667 				"from its reported value: %llu\n",
2668 				(unsigned long long) sdkp->capacity);
2669 		--sdkp->capacity;
2670 	}
2671 
2672 got_data:
2673 	if (sector_size == 0) {
2674 		sector_size = 512;
2675 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2676 			  "assuming 512.\n");
2677 	}
2678 
2679 	if (sector_size != 512 &&
2680 	    sector_size != 1024 &&
2681 	    sector_size != 2048 &&
2682 	    sector_size != 4096) {
2683 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2684 			  sector_size);
2685 		/*
2686 		 * The user might want to re-format the drive with
2687 		 * a supported sectorsize.  Once this happens, it
2688 		 * would be relatively trivial to set the thing up.
2689 		 * For this reason, we leave the thing in the table.
2690 		 */
2691 		sdkp->capacity = 0;
2692 		/*
2693 		 * set a bogus sector size so the normal read/write
2694 		 * logic in the block layer will eventually refuse any
2695 		 * request on this device without tripping over power
2696 		 * of two sector size assumptions
2697 		 */
2698 		sector_size = 512;
2699 	}
2700 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2701 	blk_queue_physical_block_size(sdp->request_queue,
2702 				      sdkp->physical_block_size);
2703 	sdkp->device->sector_size = sector_size;
2704 
2705 	if (sdkp->capacity > 0xffffffff)
2706 		sdp->use_16_for_rw = 1;
2707 
2708 }
2709 
2710 /*
2711  * Print disk capacity
2712  */
2713 static void
2714 sd_print_capacity(struct scsi_disk *sdkp,
2715 		  sector_t old_capacity)
2716 {
2717 	int sector_size = sdkp->device->sector_size;
2718 	char cap_str_2[10], cap_str_10[10];
2719 
2720 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2721 		return;
2722 
2723 	string_get_size(sdkp->capacity, sector_size,
2724 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2725 	string_get_size(sdkp->capacity, sector_size,
2726 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2727 
2728 	sd_printk(KERN_NOTICE, sdkp,
2729 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2730 		  (unsigned long long)sdkp->capacity,
2731 		  sector_size, cap_str_10, cap_str_2);
2732 
2733 	if (sdkp->physical_block_size != sector_size)
2734 		sd_printk(KERN_NOTICE, sdkp,
2735 			  "%u-byte physical blocks\n",
2736 			  sdkp->physical_block_size);
2737 }
2738 
2739 /* called with buffer of length 512 */
2740 static inline int
2741 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2742 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2743 		 struct scsi_sense_hdr *sshdr)
2744 {
2745 	/*
2746 	 * If we must use MODE SENSE(10), make sure that the buffer length
2747 	 * is at least 8 bytes so that the mode sense header fits.
2748 	 */
2749 	if (sdkp->device->use_10_for_ms && len < 8)
2750 		len = 8;
2751 
2752 	return scsi_mode_sense(sdkp->device, dbd, modepage, 0, buffer, len,
2753 			       SD_TIMEOUT, sdkp->max_retries, data, sshdr);
2754 }
2755 
2756 /*
2757  * read write protect setting, if possible - called only in sd_revalidate_disk()
2758  * called with buffer of length SD_BUF_SIZE
2759  */
2760 static void
2761 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2762 {
2763 	int res;
2764 	struct scsi_device *sdp = sdkp->device;
2765 	struct scsi_mode_data data;
2766 	int old_wp = sdkp->write_prot;
2767 
2768 	set_disk_ro(sdkp->disk, 0);
2769 	if (sdp->skip_ms_page_3f) {
2770 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2771 		return;
2772 	}
2773 
2774 	if (sdp->use_192_bytes_for_3f) {
2775 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2776 	} else {
2777 		/*
2778 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2779 		 * We have to start carefully: some devices hang if we ask
2780 		 * for more than is available.
2781 		 */
2782 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2783 
2784 		/*
2785 		 * Second attempt: ask for page 0 When only page 0 is
2786 		 * implemented, a request for page 3F may return Sense Key
2787 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2788 		 * CDB.
2789 		 */
2790 		if (res < 0)
2791 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2792 
2793 		/*
2794 		 * Third attempt: ask 255 bytes, as we did earlier.
2795 		 */
2796 		if (res < 0)
2797 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2798 					       &data, NULL);
2799 	}
2800 
2801 	if (res < 0) {
2802 		sd_first_printk(KERN_WARNING, sdkp,
2803 			  "Test WP failed, assume Write Enabled\n");
2804 	} else {
2805 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2806 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2807 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2808 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2809 				  sdkp->write_prot ? "on" : "off");
2810 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2811 		}
2812 	}
2813 }
2814 
2815 /*
2816  * sd_read_cache_type - called only from sd_revalidate_disk()
2817  * called with buffer of length SD_BUF_SIZE
2818  */
2819 static void
2820 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2821 {
2822 	int len = 0, res;
2823 	struct scsi_device *sdp = sdkp->device;
2824 
2825 	int dbd;
2826 	int modepage;
2827 	int first_len;
2828 	struct scsi_mode_data data;
2829 	struct scsi_sense_hdr sshdr;
2830 	int old_wce = sdkp->WCE;
2831 	int old_rcd = sdkp->RCD;
2832 	int old_dpofua = sdkp->DPOFUA;
2833 
2834 
2835 	if (sdkp->cache_override)
2836 		return;
2837 
2838 	first_len = 4;
2839 	if (sdp->skip_ms_page_8) {
2840 		if (sdp->type == TYPE_RBC)
2841 			goto defaults;
2842 		else {
2843 			if (sdp->skip_ms_page_3f)
2844 				goto defaults;
2845 			modepage = 0x3F;
2846 			if (sdp->use_192_bytes_for_3f)
2847 				first_len = 192;
2848 			dbd = 0;
2849 		}
2850 	} else if (sdp->type == TYPE_RBC) {
2851 		modepage = 6;
2852 		dbd = 8;
2853 	} else {
2854 		modepage = 8;
2855 		dbd = 0;
2856 	}
2857 
2858 	/* cautiously ask */
2859 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2860 			&data, &sshdr);
2861 
2862 	if (res < 0)
2863 		goto bad_sense;
2864 
2865 	if (!data.header_length) {
2866 		modepage = 6;
2867 		first_len = 0;
2868 		sd_first_printk(KERN_ERR, sdkp,
2869 				"Missing header in MODE_SENSE response\n");
2870 	}
2871 
2872 	/* that went OK, now ask for the proper length */
2873 	len = data.length;
2874 
2875 	/*
2876 	 * We're only interested in the first three bytes, actually.
2877 	 * But the data cache page is defined for the first 20.
2878 	 */
2879 	if (len < 3)
2880 		goto bad_sense;
2881 	else if (len > SD_BUF_SIZE) {
2882 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2883 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2884 		len = SD_BUF_SIZE;
2885 	}
2886 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2887 		len = 192;
2888 
2889 	/* Get the data */
2890 	if (len > first_len)
2891 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2892 				&data, &sshdr);
2893 
2894 	if (!res) {
2895 		int offset = data.header_length + data.block_descriptor_length;
2896 
2897 		while (offset < len) {
2898 			u8 page_code = buffer[offset] & 0x3F;
2899 			u8 spf       = buffer[offset] & 0x40;
2900 
2901 			if (page_code == 8 || page_code == 6) {
2902 				/* We're interested only in the first 3 bytes.
2903 				 */
2904 				if (len - offset <= 2) {
2905 					sd_first_printk(KERN_ERR, sdkp,
2906 						"Incomplete mode parameter "
2907 							"data\n");
2908 					goto defaults;
2909 				} else {
2910 					modepage = page_code;
2911 					goto Page_found;
2912 				}
2913 			} else {
2914 				/* Go to the next page */
2915 				if (spf && len - offset > 3)
2916 					offset += 4 + (buffer[offset+2] << 8) +
2917 						buffer[offset+3];
2918 				else if (!spf && len - offset > 1)
2919 					offset += 2 + buffer[offset+1];
2920 				else {
2921 					sd_first_printk(KERN_ERR, sdkp,
2922 							"Incomplete mode "
2923 							"parameter data\n");
2924 					goto defaults;
2925 				}
2926 			}
2927 		}
2928 
2929 		sd_first_printk(KERN_WARNING, sdkp,
2930 				"No Caching mode page found\n");
2931 		goto defaults;
2932 
2933 	Page_found:
2934 		if (modepage == 8) {
2935 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2936 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2937 		} else {
2938 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2939 			sdkp->RCD = 0;
2940 		}
2941 
2942 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2943 		if (sdp->broken_fua) {
2944 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2945 			sdkp->DPOFUA = 0;
2946 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2947 			   !sdkp->device->use_16_for_rw) {
2948 			sd_first_printk(KERN_NOTICE, sdkp,
2949 				  "Uses READ/WRITE(6), disabling FUA\n");
2950 			sdkp->DPOFUA = 0;
2951 		}
2952 
2953 		/* No cache flush allowed for write protected devices */
2954 		if (sdkp->WCE && sdkp->write_prot)
2955 			sdkp->WCE = 0;
2956 
2957 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2958 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2959 			sd_printk(KERN_NOTICE, sdkp,
2960 				  "Write cache: %s, read cache: %s, %s\n",
2961 				  sdkp->WCE ? "enabled" : "disabled",
2962 				  sdkp->RCD ? "disabled" : "enabled",
2963 				  sdkp->DPOFUA ? "supports DPO and FUA"
2964 				  : "doesn't support DPO or FUA");
2965 
2966 		return;
2967 	}
2968 
2969 bad_sense:
2970 	if (scsi_sense_valid(&sshdr) &&
2971 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2972 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2973 		/* Invalid field in CDB */
2974 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2975 	else
2976 		sd_first_printk(KERN_ERR, sdkp,
2977 				"Asking for cache data failed\n");
2978 
2979 defaults:
2980 	if (sdp->wce_default_on) {
2981 		sd_first_printk(KERN_NOTICE, sdkp,
2982 				"Assuming drive cache: write back\n");
2983 		sdkp->WCE = 1;
2984 	} else {
2985 		sd_first_printk(KERN_WARNING, sdkp,
2986 				"Assuming drive cache: write through\n");
2987 		sdkp->WCE = 0;
2988 	}
2989 	sdkp->RCD = 0;
2990 	sdkp->DPOFUA = 0;
2991 }
2992 
2993 /*
2994  * The ATO bit indicates whether the DIF application tag is available
2995  * for use by the operating system.
2996  */
2997 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2998 {
2999 	int res, offset;
3000 	struct scsi_device *sdp = sdkp->device;
3001 	struct scsi_mode_data data;
3002 	struct scsi_sense_hdr sshdr;
3003 
3004 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
3005 		return;
3006 
3007 	if (sdkp->protection_type == 0)
3008 		return;
3009 
3010 	res = scsi_mode_sense(sdp, 1, 0x0a, 0, buffer, 36, SD_TIMEOUT,
3011 			      sdkp->max_retries, &data, &sshdr);
3012 
3013 	if (res < 0 || !data.header_length ||
3014 	    data.length < 6) {
3015 		sd_first_printk(KERN_WARNING, sdkp,
3016 			  "getting Control mode page failed, assume no ATO\n");
3017 
3018 		if (scsi_sense_valid(&sshdr))
3019 			sd_print_sense_hdr(sdkp, &sshdr);
3020 
3021 		return;
3022 	}
3023 
3024 	offset = data.header_length + data.block_descriptor_length;
3025 
3026 	if ((buffer[offset] & 0x3f) != 0x0a) {
3027 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
3028 		return;
3029 	}
3030 
3031 	if ((buffer[offset + 5] & 0x80) == 0)
3032 		return;
3033 
3034 	sdkp->ATO = 1;
3035 
3036 	return;
3037 }
3038 
3039 /**
3040  * sd_read_block_limits - Query disk device for preferred I/O sizes.
3041  * @sdkp: disk to query
3042  */
3043 static void sd_read_block_limits(struct scsi_disk *sdkp)
3044 {
3045 	struct scsi_vpd *vpd;
3046 
3047 	rcu_read_lock();
3048 
3049 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
3050 	if (!vpd || vpd->len < 16)
3051 		goto out;
3052 
3053 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
3054 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
3055 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
3056 
3057 	if (vpd->len >= 64) {
3058 		unsigned int lba_count, desc_count;
3059 
3060 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
3061 
3062 		if (!sdkp->lbpme)
3063 			goto out;
3064 
3065 		lba_count = get_unaligned_be32(&vpd->data[20]);
3066 		desc_count = get_unaligned_be32(&vpd->data[24]);
3067 
3068 		if (lba_count && desc_count)
3069 			sdkp->max_unmap_blocks = lba_count;
3070 
3071 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
3072 
3073 		if (vpd->data[32] & 0x80)
3074 			sdkp->unmap_alignment =
3075 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
3076 
3077 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
3078 
3079 			if (sdkp->max_unmap_blocks)
3080 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3081 			else
3082 				sd_config_discard(sdkp, SD_LBP_WS16);
3083 
3084 		} else {	/* LBP VPD page tells us what to use */
3085 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
3086 				sd_config_discard(sdkp, SD_LBP_UNMAP);
3087 			else if (sdkp->lbpws)
3088 				sd_config_discard(sdkp, SD_LBP_WS16);
3089 			else if (sdkp->lbpws10)
3090 				sd_config_discard(sdkp, SD_LBP_WS10);
3091 			else
3092 				sd_config_discard(sdkp, SD_LBP_DISABLE);
3093 		}
3094 	}
3095 
3096  out:
3097 	rcu_read_unlock();
3098 }
3099 
3100 /**
3101  * sd_read_block_characteristics - Query block dev. characteristics
3102  * @sdkp: disk to query
3103  */
3104 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3105 {
3106 	struct request_queue *q = sdkp->disk->queue;
3107 	struct scsi_vpd *vpd;
3108 	u16 rot;
3109 	u8 zoned;
3110 
3111 	rcu_read_lock();
3112 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
3113 
3114 	if (!vpd || vpd->len < 8) {
3115 		rcu_read_unlock();
3116 	        return;
3117 	}
3118 
3119 	rot = get_unaligned_be16(&vpd->data[4]);
3120 	zoned = (vpd->data[8] >> 4) & 3;
3121 	rcu_read_unlock();
3122 
3123 	if (rot == 1) {
3124 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3125 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3126 	}
3127 
3128 	if (sdkp->device->type == TYPE_ZBC) {
3129 		/*
3130 		 * Host-managed: Per ZBC and ZAC specifications, writes in
3131 		 * sequential write required zones of host-managed devices must
3132 		 * be aligned to the device physical block size.
3133 		 */
3134 		disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
3135 		blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
3136 	} else {
3137 		sdkp->zoned = zoned;
3138 		if (sdkp->zoned == 1) {
3139 			/* Host-aware */
3140 			disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
3141 		} else {
3142 			/* Regular disk or drive managed disk */
3143 			disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3144 		}
3145 	}
3146 
3147 	if (!sdkp->first_scan)
3148 		return;
3149 
3150 	if (blk_queue_is_zoned(q)) {
3151 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3152 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3153 	} else {
3154 		if (sdkp->zoned == 1)
3155 			sd_printk(KERN_NOTICE, sdkp,
3156 				  "Host-aware SMR disk used as regular disk\n");
3157 		else if (sdkp->zoned == 2)
3158 			sd_printk(KERN_NOTICE, sdkp,
3159 				  "Drive-managed SMR disk\n");
3160 	}
3161 }
3162 
3163 /**
3164  * sd_read_block_provisioning - Query provisioning VPD page
3165  * @sdkp: disk to query
3166  */
3167 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3168 {
3169 	struct scsi_vpd *vpd;
3170 
3171 	if (sdkp->lbpme == 0)
3172 		return;
3173 
3174 	rcu_read_lock();
3175 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3176 
3177 	if (!vpd || vpd->len < 8) {
3178 		rcu_read_unlock();
3179 		return;
3180 	}
3181 
3182 	sdkp->lbpvpd	= 1;
3183 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3184 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3185 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3186 	rcu_read_unlock();
3187 }
3188 
3189 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3190 {
3191 	struct scsi_device *sdev = sdkp->device;
3192 
3193 	if (sdev->host->no_write_same) {
3194 		sdev->no_write_same = 1;
3195 
3196 		return;
3197 	}
3198 
3199 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY, 0) < 0) {
3200 		struct scsi_vpd *vpd;
3201 
3202 		sdev->no_report_opcodes = 1;
3203 
3204 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3205 		 * CODES is unsupported and the device has an ATA
3206 		 * Information VPD page (SAT).
3207 		 */
3208 		rcu_read_lock();
3209 		vpd = rcu_dereference(sdev->vpd_pg89);
3210 		if (vpd)
3211 			sdev->no_write_same = 1;
3212 		rcu_read_unlock();
3213 	}
3214 
3215 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16, 0) == 1)
3216 		sdkp->ws16 = 1;
3217 
3218 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME, 0) == 1)
3219 		sdkp->ws10 = 1;
3220 }
3221 
3222 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3223 {
3224 	struct scsi_device *sdev = sdkp->device;
3225 
3226 	if (!sdev->security_supported)
3227 		return;
3228 
3229 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3230 			SECURITY_PROTOCOL_IN, 0) == 1 &&
3231 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3232 			SECURITY_PROTOCOL_OUT, 0) == 1)
3233 		sdkp->security = 1;
3234 }
3235 
3236 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3237 {
3238 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3239 }
3240 
3241 /**
3242  * sd_read_cpr - Query concurrent positioning ranges
3243  * @sdkp:	disk to query
3244  */
3245 static void sd_read_cpr(struct scsi_disk *sdkp)
3246 {
3247 	struct blk_independent_access_ranges *iars = NULL;
3248 	unsigned char *buffer = NULL;
3249 	unsigned int nr_cpr = 0;
3250 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3251 	u8 *desc;
3252 
3253 	/*
3254 	 * We need to have the capacity set first for the block layer to be
3255 	 * able to check the ranges.
3256 	 */
3257 	if (sdkp->first_scan)
3258 		return;
3259 
3260 	if (!sdkp->capacity)
3261 		goto out;
3262 
3263 	/*
3264 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3265 	 * leading to a maximum page size of 64 + 256*32 bytes.
3266 	 */
3267 	buf_len = 64 + 256*32;
3268 	buffer = kmalloc(buf_len, GFP_KERNEL);
3269 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3270 		goto out;
3271 
3272 	/* We must have at least a 64B header and one 32B range descriptor */
3273 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3274 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3275 		sd_printk(KERN_ERR, sdkp,
3276 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3277 		goto out;
3278 	}
3279 
3280 	nr_cpr = (vpd_len - 64) / 32;
3281 	if (nr_cpr == 1) {
3282 		nr_cpr = 0;
3283 		goto out;
3284 	}
3285 
3286 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3287 	if (!iars) {
3288 		nr_cpr = 0;
3289 		goto out;
3290 	}
3291 
3292 	desc = &buffer[64];
3293 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3294 		if (desc[0] != i) {
3295 			sd_printk(KERN_ERR, sdkp,
3296 				"Invalid Concurrent Positioning Range number\n");
3297 			nr_cpr = 0;
3298 			break;
3299 		}
3300 
3301 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3302 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3303 	}
3304 
3305 out:
3306 	disk_set_independent_access_ranges(sdkp->disk, iars);
3307 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3308 		sd_printk(KERN_NOTICE, sdkp,
3309 			  "%u concurrent positioning ranges\n", nr_cpr);
3310 		sdkp->nr_actuators = nr_cpr;
3311 	}
3312 
3313 	kfree(buffer);
3314 }
3315 
3316 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3317 {
3318 	struct scsi_device *sdp = sdkp->device;
3319 	unsigned int min_xfer_bytes =
3320 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3321 
3322 	if (sdkp->min_xfer_blocks == 0)
3323 		return false;
3324 
3325 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3326 		sd_first_printk(KERN_WARNING, sdkp,
3327 				"Preferred minimum I/O size %u bytes not a " \
3328 				"multiple of physical block size (%u bytes)\n",
3329 				min_xfer_bytes, sdkp->physical_block_size);
3330 		sdkp->min_xfer_blocks = 0;
3331 		return false;
3332 	}
3333 
3334 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3335 			min_xfer_bytes);
3336 	return true;
3337 }
3338 
3339 /*
3340  * Determine the device's preferred I/O size for reads and writes
3341  * unless the reported value is unreasonably small, large, not a
3342  * multiple of the physical block size, or simply garbage.
3343  */
3344 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3345 				      unsigned int dev_max)
3346 {
3347 	struct scsi_device *sdp = sdkp->device;
3348 	unsigned int opt_xfer_bytes =
3349 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3350 	unsigned int min_xfer_bytes =
3351 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3352 
3353 	if (sdkp->opt_xfer_blocks == 0)
3354 		return false;
3355 
3356 	if (sdkp->opt_xfer_blocks > dev_max) {
3357 		sd_first_printk(KERN_WARNING, sdkp,
3358 				"Optimal transfer size %u logical blocks " \
3359 				"> dev_max (%u logical blocks)\n",
3360 				sdkp->opt_xfer_blocks, dev_max);
3361 		return false;
3362 	}
3363 
3364 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3365 		sd_first_printk(KERN_WARNING, sdkp,
3366 				"Optimal transfer size %u logical blocks " \
3367 				"> sd driver limit (%u logical blocks)\n",
3368 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3369 		return false;
3370 	}
3371 
3372 	if (opt_xfer_bytes < PAGE_SIZE) {
3373 		sd_first_printk(KERN_WARNING, sdkp,
3374 				"Optimal transfer size %u bytes < " \
3375 				"PAGE_SIZE (%u bytes)\n",
3376 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3377 		return false;
3378 	}
3379 
3380 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3381 		sd_first_printk(KERN_WARNING, sdkp,
3382 				"Optimal transfer size %u bytes not a " \
3383 				"multiple of preferred minimum block " \
3384 				"size (%u bytes)\n",
3385 				opt_xfer_bytes, min_xfer_bytes);
3386 		return false;
3387 	}
3388 
3389 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3390 		sd_first_printk(KERN_WARNING, sdkp,
3391 				"Optimal transfer size %u bytes not a " \
3392 				"multiple of physical block size (%u bytes)\n",
3393 				opt_xfer_bytes, sdkp->physical_block_size);
3394 		return false;
3395 	}
3396 
3397 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3398 			opt_xfer_bytes);
3399 	return true;
3400 }
3401 
3402 /**
3403  *	sd_revalidate_disk - called the first time a new disk is seen,
3404  *	performs disk spin up, read_capacity, etc.
3405  *	@disk: struct gendisk we care about
3406  **/
3407 static int sd_revalidate_disk(struct gendisk *disk)
3408 {
3409 	struct scsi_disk *sdkp = scsi_disk(disk);
3410 	struct scsi_device *sdp = sdkp->device;
3411 	struct request_queue *q = sdkp->disk->queue;
3412 	sector_t old_capacity = sdkp->capacity;
3413 	unsigned char *buffer;
3414 	unsigned int dev_max, rw_max;
3415 
3416 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3417 				      "sd_revalidate_disk\n"));
3418 
3419 	/*
3420 	 * If the device is offline, don't try and read capacity or any
3421 	 * of the other niceties.
3422 	 */
3423 	if (!scsi_device_online(sdp))
3424 		goto out;
3425 
3426 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3427 	if (!buffer) {
3428 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3429 			  "allocation failure.\n");
3430 		goto out;
3431 	}
3432 
3433 	sd_spinup_disk(sdkp);
3434 
3435 	/*
3436 	 * Without media there is no reason to ask; moreover, some devices
3437 	 * react badly if we do.
3438 	 */
3439 	if (sdkp->media_present) {
3440 		sd_read_capacity(sdkp, buffer);
3441 
3442 		/*
3443 		 * set the default to rotational.  All non-rotational devices
3444 		 * support the block characteristics VPD page, which will
3445 		 * cause this to be updated correctly and any device which
3446 		 * doesn't support it should be treated as rotational.
3447 		 */
3448 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3449 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3450 
3451 		if (scsi_device_supports_vpd(sdp)) {
3452 			sd_read_block_provisioning(sdkp);
3453 			sd_read_block_limits(sdkp);
3454 			sd_read_block_characteristics(sdkp);
3455 			sd_zbc_read_zones(sdkp, buffer);
3456 			sd_read_cpr(sdkp);
3457 		}
3458 
3459 		sd_print_capacity(sdkp, old_capacity);
3460 
3461 		sd_read_write_protect_flag(sdkp, buffer);
3462 		sd_read_cache_type(sdkp, buffer);
3463 		sd_read_app_tag_own(sdkp, buffer);
3464 		sd_read_write_same(sdkp, buffer);
3465 		sd_read_security(sdkp, buffer);
3466 		sd_config_protection(sdkp);
3467 	}
3468 
3469 	/*
3470 	 * We now have all cache related info, determine how we deal
3471 	 * with flush requests.
3472 	 */
3473 	sd_set_flush_flag(sdkp);
3474 
3475 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3476 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3477 
3478 	/* Some devices report a maximum block count for READ/WRITE requests. */
3479 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3480 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3481 
3482 	if (sd_validate_min_xfer_size(sdkp))
3483 		blk_queue_io_min(sdkp->disk->queue,
3484 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3485 	else
3486 		blk_queue_io_min(sdkp->disk->queue, 0);
3487 
3488 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3489 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3490 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3491 	} else {
3492 		q->limits.io_opt = 0;
3493 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3494 				      (sector_t)BLK_DEF_MAX_SECTORS);
3495 	}
3496 
3497 	/*
3498 	 * Limit default to SCSI host optimal sector limit if set. There may be
3499 	 * an impact on performance for when the size of a request exceeds this
3500 	 * host limit.
3501 	 */
3502 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3503 
3504 	/* Do not exceed controller limit */
3505 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3506 
3507 	/*
3508 	 * Only update max_sectors if previously unset or if the current value
3509 	 * exceeds the capabilities of the hardware.
3510 	 */
3511 	if (sdkp->first_scan ||
3512 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3513 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3514 		q->limits.max_sectors = rw_max;
3515 
3516 	sdkp->first_scan = 0;
3517 
3518 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3519 	sd_config_write_same(sdkp);
3520 	kfree(buffer);
3521 
3522 	/*
3523 	 * For a zoned drive, revalidating the zones can be done only once
3524 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3525 	 * capacity to 0.
3526 	 */
3527 	if (sd_zbc_revalidate_zones(sdkp))
3528 		set_capacity_and_notify(disk, 0);
3529 
3530  out:
3531 	return 0;
3532 }
3533 
3534 /**
3535  *	sd_unlock_native_capacity - unlock native capacity
3536  *	@disk: struct gendisk to set capacity for
3537  *
3538  *	Block layer calls this function if it detects that partitions
3539  *	on @disk reach beyond the end of the device.  If the SCSI host
3540  *	implements ->unlock_native_capacity() method, it's invoked to
3541  *	give it a chance to adjust the device capacity.
3542  *
3543  *	CONTEXT:
3544  *	Defined by block layer.  Might sleep.
3545  */
3546 static void sd_unlock_native_capacity(struct gendisk *disk)
3547 {
3548 	struct scsi_device *sdev = scsi_disk(disk)->device;
3549 
3550 	if (sdev->host->hostt->unlock_native_capacity)
3551 		sdev->host->hostt->unlock_native_capacity(sdev);
3552 }
3553 
3554 /**
3555  *	sd_format_disk_name - format disk name
3556  *	@prefix: name prefix - ie. "sd" for SCSI disks
3557  *	@index: index of the disk to format name for
3558  *	@buf: output buffer
3559  *	@buflen: length of the output buffer
3560  *
3561  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3562  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3563  *	which is followed by sdaaa.
3564  *
3565  *	This is basically 26 base counting with one extra 'nil' entry
3566  *	at the beginning from the second digit on and can be
3567  *	determined using similar method as 26 base conversion with the
3568  *	index shifted -1 after each digit is computed.
3569  *
3570  *	CONTEXT:
3571  *	Don't care.
3572  *
3573  *	RETURNS:
3574  *	0 on success, -errno on failure.
3575  */
3576 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3577 {
3578 	const int base = 'z' - 'a' + 1;
3579 	char *begin = buf + strlen(prefix);
3580 	char *end = buf + buflen;
3581 	char *p;
3582 	int unit;
3583 
3584 	p = end - 1;
3585 	*p = '\0';
3586 	unit = base;
3587 	do {
3588 		if (p == begin)
3589 			return -EINVAL;
3590 		*--p = 'a' + (index % unit);
3591 		index = (index / unit) - 1;
3592 	} while (index >= 0);
3593 
3594 	memmove(begin, p, end - p);
3595 	memcpy(buf, prefix, strlen(prefix));
3596 
3597 	return 0;
3598 }
3599 
3600 /**
3601  *	sd_probe - called during driver initialization and whenever a
3602  *	new scsi device is attached to the system. It is called once
3603  *	for each scsi device (not just disks) present.
3604  *	@dev: pointer to device object
3605  *
3606  *	Returns 0 if successful (or not interested in this scsi device
3607  *	(e.g. scanner)); 1 when there is an error.
3608  *
3609  *	Note: this function is invoked from the scsi mid-level.
3610  *	This function sets up the mapping between a given
3611  *	<host,channel,id,lun> (found in sdp) and new device name
3612  *	(e.g. /dev/sda). More precisely it is the block device major
3613  *	and minor number that is chosen here.
3614  *
3615  *	Assume sd_probe is not re-entrant (for time being)
3616  *	Also think about sd_probe() and sd_remove() running coincidentally.
3617  **/
3618 static int sd_probe(struct device *dev)
3619 {
3620 	struct scsi_device *sdp = to_scsi_device(dev);
3621 	struct scsi_disk *sdkp;
3622 	struct gendisk *gd;
3623 	int index;
3624 	int error;
3625 
3626 	scsi_autopm_get_device(sdp);
3627 	error = -ENODEV;
3628 	if (sdp->type != TYPE_DISK &&
3629 	    sdp->type != TYPE_ZBC &&
3630 	    sdp->type != TYPE_MOD &&
3631 	    sdp->type != TYPE_RBC)
3632 		goto out;
3633 
3634 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3635 		sdev_printk(KERN_WARNING, sdp,
3636 			    "Unsupported ZBC host-managed device.\n");
3637 		goto out;
3638 	}
3639 
3640 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3641 					"sd_probe\n"));
3642 
3643 	error = -ENOMEM;
3644 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3645 	if (!sdkp)
3646 		goto out;
3647 
3648 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3649 					 &sd_bio_compl_lkclass);
3650 	if (!gd)
3651 		goto out_free;
3652 
3653 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3654 	if (index < 0) {
3655 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3656 		goto out_put;
3657 	}
3658 
3659 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3660 	if (error) {
3661 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3662 		goto out_free_index;
3663 	}
3664 
3665 	sdkp->device = sdp;
3666 	sdkp->disk = gd;
3667 	sdkp->index = index;
3668 	sdkp->max_retries = SD_MAX_RETRIES;
3669 	atomic_set(&sdkp->openers, 0);
3670 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3671 
3672 	if (!sdp->request_queue->rq_timeout) {
3673 		if (sdp->type != TYPE_MOD)
3674 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3675 		else
3676 			blk_queue_rq_timeout(sdp->request_queue,
3677 					     SD_MOD_TIMEOUT);
3678 	}
3679 
3680 	device_initialize(&sdkp->disk_dev);
3681 	sdkp->disk_dev.parent = get_device(dev);
3682 	sdkp->disk_dev.class = &sd_disk_class;
3683 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3684 
3685 	error = device_add(&sdkp->disk_dev);
3686 	if (error) {
3687 		put_device(&sdkp->disk_dev);
3688 		goto out;
3689 	}
3690 
3691 	dev_set_drvdata(dev, sdkp);
3692 
3693 	gd->major = sd_major((index & 0xf0) >> 4);
3694 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3695 	gd->minors = SD_MINORS;
3696 
3697 	gd->fops = &sd_fops;
3698 	gd->private_data = sdkp;
3699 
3700 	/* defaults, until the device tells us otherwise */
3701 	sdp->sector_size = 512;
3702 	sdkp->capacity = 0;
3703 	sdkp->media_present = 1;
3704 	sdkp->write_prot = 0;
3705 	sdkp->cache_override = 0;
3706 	sdkp->WCE = 0;
3707 	sdkp->RCD = 0;
3708 	sdkp->ATO = 0;
3709 	sdkp->first_scan = 1;
3710 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3711 
3712 	sd_revalidate_disk(gd);
3713 
3714 	if (sdp->removable) {
3715 		gd->flags |= GENHD_FL_REMOVABLE;
3716 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3717 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3718 	}
3719 
3720 	blk_pm_runtime_init(sdp->request_queue, dev);
3721 	if (sdp->rpm_autosuspend) {
3722 		pm_runtime_set_autosuspend_delay(dev,
3723 			sdp->host->hostt->rpm_autosuspend_delay);
3724 	}
3725 
3726 	error = device_add_disk(dev, gd, NULL);
3727 	if (error) {
3728 		put_device(&sdkp->disk_dev);
3729 		put_disk(gd);
3730 		goto out;
3731 	}
3732 
3733 	if (sdkp->security) {
3734 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3735 		if (sdkp->opal_dev)
3736 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3737 	}
3738 
3739 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3740 		  sdp->removable ? "removable " : "");
3741 	scsi_autopm_put_device(sdp);
3742 
3743 	return 0;
3744 
3745  out_free_index:
3746 	ida_free(&sd_index_ida, index);
3747  out_put:
3748 	put_disk(gd);
3749  out_free:
3750 	kfree(sdkp);
3751  out:
3752 	scsi_autopm_put_device(sdp);
3753 	return error;
3754 }
3755 
3756 /**
3757  *	sd_remove - called whenever a scsi disk (previously recognized by
3758  *	sd_probe) is detached from the system. It is called (potentially
3759  *	multiple times) during sd module unload.
3760  *	@dev: pointer to device object
3761  *
3762  *	Note: this function is invoked from the scsi mid-level.
3763  *	This function potentially frees up a device name (e.g. /dev/sdc)
3764  *	that could be re-used by a subsequent sd_probe().
3765  *	This function is not called when the built-in sd driver is "exit-ed".
3766  **/
3767 static int sd_remove(struct device *dev)
3768 {
3769 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3770 
3771 	scsi_autopm_get_device(sdkp->device);
3772 
3773 	device_del(&sdkp->disk_dev);
3774 	del_gendisk(sdkp->disk);
3775 	if (!sdkp->suspended)
3776 		sd_shutdown(dev);
3777 
3778 	put_disk(sdkp->disk);
3779 	return 0;
3780 }
3781 
3782 static void scsi_disk_release(struct device *dev)
3783 {
3784 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3785 
3786 	ida_free(&sd_index_ida, sdkp->index);
3787 	sd_zbc_free_zone_info(sdkp);
3788 	put_device(&sdkp->device->sdev_gendev);
3789 	free_opal_dev(sdkp->opal_dev);
3790 
3791 	kfree(sdkp);
3792 }
3793 
3794 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3795 {
3796 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3797 	struct scsi_sense_hdr sshdr;
3798 	const struct scsi_exec_args exec_args = {
3799 		.sshdr = &sshdr,
3800 		.req_flags = BLK_MQ_REQ_PM,
3801 	};
3802 	struct scsi_device *sdp = sdkp->device;
3803 	int res;
3804 
3805 	if (start)
3806 		cmd[4] |= 1;	/* START */
3807 
3808 	if (sdp->start_stop_pwr_cond)
3809 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3810 
3811 	if (!scsi_device_online(sdp))
3812 		return -ENODEV;
3813 
3814 	res = scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0, SD_TIMEOUT,
3815 			       sdkp->max_retries, &exec_args);
3816 	if (res) {
3817 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3818 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3819 			sd_print_sense_hdr(sdkp, &sshdr);
3820 			/* 0x3a is medium not present */
3821 			if (sshdr.asc == 0x3a)
3822 				res = 0;
3823 		}
3824 	}
3825 
3826 	/* SCSI error codes must not go to the generic layer */
3827 	if (res)
3828 		return -EIO;
3829 
3830 	return 0;
3831 }
3832 
3833 /*
3834  * Send a SYNCHRONIZE CACHE instruction down to the device through
3835  * the normal SCSI command structure.  Wait for the command to
3836  * complete.
3837  */
3838 static void sd_shutdown(struct device *dev)
3839 {
3840 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3841 
3842 	if (!sdkp)
3843 		return;         /* this can happen */
3844 
3845 	if (pm_runtime_suspended(dev))
3846 		return;
3847 
3848 	if (sdkp->WCE && sdkp->media_present) {
3849 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3850 		sd_sync_cache(sdkp, NULL);
3851 	}
3852 
3853 	if ((system_state != SYSTEM_RESTART &&
3854 	     sdkp->device->manage_system_start_stop) ||
3855 	    (system_state == SYSTEM_POWER_OFF &&
3856 	     sdkp->device->manage_shutdown)) {
3857 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3858 		sd_start_stop_device(sdkp, 0);
3859 	}
3860 }
3861 
3862 static inline bool sd_do_start_stop(struct scsi_device *sdev, bool runtime)
3863 {
3864 	return (sdev->manage_system_start_stop && !runtime) ||
3865 		(sdev->manage_runtime_start_stop && runtime);
3866 }
3867 
3868 static int sd_suspend_common(struct device *dev, bool runtime)
3869 {
3870 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3871 	struct scsi_sense_hdr sshdr;
3872 	int ret = 0;
3873 
3874 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3875 		return 0;
3876 
3877 	if (sdkp->WCE && sdkp->media_present) {
3878 		if (!sdkp->device->silence_suspend)
3879 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3880 		ret = sd_sync_cache(sdkp, &sshdr);
3881 
3882 		if (ret) {
3883 			/* ignore OFFLINE device */
3884 			if (ret == -ENODEV)
3885 				return 0;
3886 
3887 			if (!scsi_sense_valid(&sshdr) ||
3888 			    sshdr.sense_key != ILLEGAL_REQUEST)
3889 				return ret;
3890 
3891 			/*
3892 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3893 			 * doesn't support sync. There's not much to do and
3894 			 * suspend shouldn't fail.
3895 			 */
3896 			ret = 0;
3897 		}
3898 	}
3899 
3900 	if (sd_do_start_stop(sdkp->device, runtime)) {
3901 		if (!sdkp->device->silence_suspend)
3902 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3903 		/* an error is not worth aborting a system sleep */
3904 		ret = sd_start_stop_device(sdkp, 0);
3905 		if (!runtime)
3906 			ret = 0;
3907 	}
3908 
3909 	if (!ret)
3910 		sdkp->suspended = true;
3911 
3912 	return ret;
3913 }
3914 
3915 static int sd_suspend_system(struct device *dev)
3916 {
3917 	if (pm_runtime_suspended(dev))
3918 		return 0;
3919 
3920 	return sd_suspend_common(dev, false);
3921 }
3922 
3923 static int sd_suspend_runtime(struct device *dev)
3924 {
3925 	return sd_suspend_common(dev, true);
3926 }
3927 
3928 static int sd_resume(struct device *dev, bool runtime)
3929 {
3930 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3931 	int ret = 0;
3932 
3933 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3934 		return 0;
3935 
3936 	if (!sd_do_start_stop(sdkp->device, runtime)) {
3937 		sdkp->suspended = false;
3938 		return 0;
3939 	}
3940 
3941 	if (!sdkp->device->no_start_on_resume) {
3942 		sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3943 		ret = sd_start_stop_device(sdkp, 1);
3944 	}
3945 
3946 	if (!ret) {
3947 		opal_unlock_from_suspend(sdkp->opal_dev);
3948 		sdkp->suspended = false;
3949 	}
3950 
3951 	return ret;
3952 }
3953 
3954 static int sd_resume_system(struct device *dev)
3955 {
3956 	if (pm_runtime_suspended(dev))
3957 		return 0;
3958 
3959 	return sd_resume(dev, false);
3960 }
3961 
3962 static int sd_resume_runtime(struct device *dev)
3963 {
3964 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3965 	struct scsi_device *sdp;
3966 
3967 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3968 		return 0;
3969 
3970 	sdp = sdkp->device;
3971 
3972 	if (sdp->ignore_media_change) {
3973 		/* clear the device's sense data */
3974 		static const u8 cmd[10] = { REQUEST_SENSE };
3975 		const struct scsi_exec_args exec_args = {
3976 			.req_flags = BLK_MQ_REQ_PM,
3977 		};
3978 
3979 		if (scsi_execute_cmd(sdp, cmd, REQ_OP_DRV_IN, NULL, 0,
3980 				     sdp->request_queue->rq_timeout, 1,
3981 				     &exec_args))
3982 			sd_printk(KERN_NOTICE, sdkp,
3983 				  "Failed to clear sense data\n");
3984 	}
3985 
3986 	return sd_resume(dev, true);
3987 }
3988 
3989 static const struct dev_pm_ops sd_pm_ops = {
3990 	.suspend		= sd_suspend_system,
3991 	.resume			= sd_resume_system,
3992 	.poweroff		= sd_suspend_system,
3993 	.restore		= sd_resume_system,
3994 	.runtime_suspend	= sd_suspend_runtime,
3995 	.runtime_resume		= sd_resume_runtime,
3996 };
3997 
3998 static struct scsi_driver sd_template = {
3999 	.gendrv = {
4000 		.name		= "sd",
4001 		.owner		= THIS_MODULE,
4002 		.probe		= sd_probe,
4003 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
4004 		.remove		= sd_remove,
4005 		.shutdown	= sd_shutdown,
4006 		.pm		= &sd_pm_ops,
4007 	},
4008 	.rescan			= sd_rescan,
4009 	.init_command		= sd_init_command,
4010 	.uninit_command		= sd_uninit_command,
4011 	.done			= sd_done,
4012 	.eh_action		= sd_eh_action,
4013 	.eh_reset		= sd_eh_reset,
4014 };
4015 
4016 /**
4017  *	init_sd - entry point for this driver (both when built in or when
4018  *	a module).
4019  *
4020  *	Note: this function registers this driver with the scsi mid-level.
4021  **/
4022 static int __init init_sd(void)
4023 {
4024 	int majors = 0, i, err;
4025 
4026 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
4027 
4028 	for (i = 0; i < SD_MAJORS; i++) {
4029 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
4030 			continue;
4031 		majors++;
4032 	}
4033 
4034 	if (!majors)
4035 		return -ENODEV;
4036 
4037 	err = class_register(&sd_disk_class);
4038 	if (err)
4039 		goto err_out;
4040 
4041 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
4042 	if (!sd_page_pool) {
4043 		printk(KERN_ERR "sd: can't init discard page pool\n");
4044 		err = -ENOMEM;
4045 		goto err_out_class;
4046 	}
4047 
4048 	err = scsi_register_driver(&sd_template.gendrv);
4049 	if (err)
4050 		goto err_out_driver;
4051 
4052 	return 0;
4053 
4054 err_out_driver:
4055 	mempool_destroy(sd_page_pool);
4056 err_out_class:
4057 	class_unregister(&sd_disk_class);
4058 err_out:
4059 	for (i = 0; i < SD_MAJORS; i++)
4060 		unregister_blkdev(sd_major(i), "sd");
4061 	return err;
4062 }
4063 
4064 /**
4065  *	exit_sd - exit point for this driver (when it is a module).
4066  *
4067  *	Note: this function unregisters this driver from the scsi mid-level.
4068  **/
4069 static void __exit exit_sd(void)
4070 {
4071 	int i;
4072 
4073 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
4074 
4075 	scsi_unregister_driver(&sd_template.gendrv);
4076 	mempool_destroy(sd_page_pool);
4077 
4078 	class_unregister(&sd_disk_class);
4079 
4080 	for (i = 0; i < SD_MAJORS; i++)
4081 		unregister_blkdev(sd_major(i), "sd");
4082 }
4083 
4084 module_init(init_sd);
4085 module_exit(exit_sd);
4086 
4087 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
4088 {
4089 	scsi_print_sense_hdr(sdkp->device,
4090 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
4091 }
4092 
4093 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
4094 {
4095 	const char *hb_string = scsi_hostbyte_string(result);
4096 
4097 	if (hb_string)
4098 		sd_printk(KERN_INFO, sdkp,
4099 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
4100 			  hb_string ? hb_string : "invalid",
4101 			  "DRIVER_OK");
4102 	else
4103 		sd_printk(KERN_INFO, sdkp,
4104 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
4105 			  msg, host_byte(result), "DRIVER_OK");
4106 }
4107