xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision fe45e630a1035aea94c29016f2598bbde149bbe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27 
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37 
38 #include <trace/events/scsi.h>
39 
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43 
44 /*
45  * Size of integrity metadata is usually small, 1 inline sg should
46  * cover normal cases.
47  */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define  SCSI_INLINE_PROT_SG_CNT  0
50 #define  SCSI_INLINE_SG_CNT  0
51 #else
52 #define  SCSI_INLINE_PROT_SG_CNT  1
53 #define  SCSI_INLINE_SG_CNT  2
54 #endif
55 
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58 
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60 
61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 	int ret = 0;
64 
65 	mutex_lock(&scsi_sense_cache_mutex);
66 	if (!scsi_sense_cache) {
67 		scsi_sense_cache =
68 			kmem_cache_create_usercopy("scsi_sense_cache",
69 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 				0, SCSI_SENSE_BUFFERSIZE, NULL);
71 		if (!scsi_sense_cache)
72 			ret = -ENOMEM;
73 	}
74 	mutex_unlock(&scsi_sense_cache_mutex);
75 	return ret;
76 }
77 
78 /*
79  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
80  * not change behaviour from the previous unplug mechanism, experimentation
81  * may prove this needs changing.
82  */
83 #define SCSI_QUEUE_DELAY	3
84 
85 static void
86 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
87 {
88 	struct Scsi_Host *host = cmd->device->host;
89 	struct scsi_device *device = cmd->device;
90 	struct scsi_target *starget = scsi_target(device);
91 
92 	/*
93 	 * Set the appropriate busy bit for the device/host.
94 	 *
95 	 * If the host/device isn't busy, assume that something actually
96 	 * completed, and that we should be able to queue a command now.
97 	 *
98 	 * Note that the prior mid-layer assumption that any host could
99 	 * always queue at least one command is now broken.  The mid-layer
100 	 * will implement a user specifiable stall (see
101 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
102 	 * if a command is requeued with no other commands outstanding
103 	 * either for the device or for the host.
104 	 */
105 	switch (reason) {
106 	case SCSI_MLQUEUE_HOST_BUSY:
107 		atomic_set(&host->host_blocked, host->max_host_blocked);
108 		break;
109 	case SCSI_MLQUEUE_DEVICE_BUSY:
110 	case SCSI_MLQUEUE_EH_RETRY:
111 		atomic_set(&device->device_blocked,
112 			   device->max_device_blocked);
113 		break;
114 	case SCSI_MLQUEUE_TARGET_BUSY:
115 		atomic_set(&starget->target_blocked,
116 			   starget->max_target_blocked);
117 		break;
118 	}
119 }
120 
121 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
122 {
123 	struct request *rq = scsi_cmd_to_rq(cmd);
124 
125 	if (rq->rq_flags & RQF_DONTPREP) {
126 		rq->rq_flags &= ~RQF_DONTPREP;
127 		scsi_mq_uninit_cmd(cmd);
128 	} else {
129 		WARN_ON_ONCE(true);
130 	}
131 	blk_mq_requeue_request(rq, true);
132 }
133 
134 /**
135  * __scsi_queue_insert - private queue insertion
136  * @cmd: The SCSI command being requeued
137  * @reason:  The reason for the requeue
138  * @unbusy: Whether the queue should be unbusied
139  *
140  * This is a private queue insertion.  The public interface
141  * scsi_queue_insert() always assumes the queue should be unbusied
142  * because it's always called before the completion.  This function is
143  * for a requeue after completion, which should only occur in this
144  * file.
145  */
146 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
147 {
148 	struct scsi_device *device = cmd->device;
149 
150 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
151 		"Inserting command %p into mlqueue\n", cmd));
152 
153 	scsi_set_blocked(cmd, reason);
154 
155 	/*
156 	 * Decrement the counters, since these commands are no longer
157 	 * active on the host/device.
158 	 */
159 	if (unbusy)
160 		scsi_device_unbusy(device, cmd);
161 
162 	/*
163 	 * Requeue this command.  It will go before all other commands
164 	 * that are already in the queue. Schedule requeue work under
165 	 * lock such that the kblockd_schedule_work() call happens
166 	 * before blk_cleanup_queue() finishes.
167 	 */
168 	cmd->result = 0;
169 
170 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
171 }
172 
173 /**
174  * scsi_queue_insert - Reinsert a command in the queue.
175  * @cmd:    command that we are adding to queue.
176  * @reason: why we are inserting command to queue.
177  *
178  * We do this for one of two cases. Either the host is busy and it cannot accept
179  * any more commands for the time being, or the device returned QUEUE_FULL and
180  * can accept no more commands.
181  *
182  * Context: This could be called either from an interrupt context or a normal
183  * process context.
184  */
185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 	__scsi_queue_insert(cmd, reason, true);
188 }
189 
190 
191 /**
192  * __scsi_execute - insert request and wait for the result
193  * @sdev:	scsi device
194  * @cmd:	scsi command
195  * @data_direction: data direction
196  * @buffer:	data buffer
197  * @bufflen:	len of buffer
198  * @sense:	optional sense buffer
199  * @sshdr:	optional decoded sense header
200  * @timeout:	request timeout in HZ
201  * @retries:	number of times to retry request
202  * @flags:	flags for ->cmd_flags
203  * @rq_flags:	flags for ->rq_flags
204  * @resid:	optional residual length
205  *
206  * Returns the scsi_cmnd result field if a command was executed, or a negative
207  * Linux error code if we didn't get that far.
208  */
209 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
210 		 int data_direction, void *buffer, unsigned bufflen,
211 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
212 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
213 		 int *resid)
214 {
215 	struct request *req;
216 	struct scsi_request *rq;
217 	int ret;
218 
219 	req = blk_get_request(sdev->request_queue,
220 			data_direction == DMA_TO_DEVICE ?
221 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
222 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
223 	if (IS_ERR(req))
224 		return PTR_ERR(req);
225 
226 	rq = scsi_req(req);
227 
228 	if (bufflen) {
229 		ret = blk_rq_map_kern(sdev->request_queue, req,
230 				      buffer, bufflen, GFP_NOIO);
231 		if (ret)
232 			goto out;
233 	}
234 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
235 	memcpy(rq->cmd, cmd, rq->cmd_len);
236 	rq->retries = retries;
237 	req->timeout = timeout;
238 	req->cmd_flags |= flags;
239 	req->rq_flags |= rq_flags | RQF_QUIET;
240 
241 	/*
242 	 * head injection *required* here otherwise quiesce won't work
243 	 */
244 	blk_execute_rq(NULL, req, 1);
245 
246 	/*
247 	 * Some devices (USB mass-storage in particular) may transfer
248 	 * garbage data together with a residue indicating that the data
249 	 * is invalid.  Prevent the garbage from being misinterpreted
250 	 * and prevent security leaks by zeroing out the excess data.
251 	 */
252 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
253 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
254 
255 	if (resid)
256 		*resid = rq->resid_len;
257 	if (sense && rq->sense_len)
258 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
259 	if (sshdr)
260 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
261 	ret = rq->result;
262  out:
263 	blk_put_request(req);
264 
265 	return ret;
266 }
267 EXPORT_SYMBOL(__scsi_execute);
268 
269 /*
270  * Wake up the error handler if necessary. Avoid as follows that the error
271  * handler is not woken up if host in-flight requests number ==
272  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
273  * with an RCU read lock in this function to ensure that this function in
274  * its entirety either finishes before scsi_eh_scmd_add() increases the
275  * host_failed counter or that it notices the shost state change made by
276  * scsi_eh_scmd_add().
277  */
278 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
279 {
280 	unsigned long flags;
281 
282 	rcu_read_lock();
283 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
284 	if (unlikely(scsi_host_in_recovery(shost))) {
285 		spin_lock_irqsave(shost->host_lock, flags);
286 		if (shost->host_failed || shost->host_eh_scheduled)
287 			scsi_eh_wakeup(shost);
288 		spin_unlock_irqrestore(shost->host_lock, flags);
289 	}
290 	rcu_read_unlock();
291 }
292 
293 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
294 {
295 	struct Scsi_Host *shost = sdev->host;
296 	struct scsi_target *starget = scsi_target(sdev);
297 
298 	scsi_dec_host_busy(shost, cmd);
299 
300 	if (starget->can_queue > 0)
301 		atomic_dec(&starget->target_busy);
302 
303 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
304 	cmd->budget_token = -1;
305 }
306 
307 static void scsi_kick_queue(struct request_queue *q)
308 {
309 	blk_mq_run_hw_queues(q, false);
310 }
311 
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321 	struct Scsi_Host *shost = current_sdev->host;
322 	struct scsi_device *sdev, *tmp;
323 	struct scsi_target *starget = scsi_target(current_sdev);
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(shost->host_lock, flags);
327 	starget->starget_sdev_user = NULL;
328 	spin_unlock_irqrestore(shost->host_lock, flags);
329 
330 	/*
331 	 * Call blk_run_queue for all LUNs on the target, starting with
332 	 * current_sdev. We race with others (to set starget_sdev_user),
333 	 * but in most cases, we will be first. Ideally, each LU on the
334 	 * target would get some limited time or requests on the target.
335 	 */
336 	scsi_kick_queue(current_sdev->request_queue);
337 
338 	spin_lock_irqsave(shost->host_lock, flags);
339 	if (starget->starget_sdev_user)
340 		goto out;
341 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
342 			same_target_siblings) {
343 		if (sdev == current_sdev)
344 			continue;
345 		if (scsi_device_get(sdev))
346 			continue;
347 
348 		spin_unlock_irqrestore(shost->host_lock, flags);
349 		scsi_kick_queue(sdev->request_queue);
350 		spin_lock_irqsave(shost->host_lock, flags);
351 
352 		scsi_device_put(sdev);
353 	}
354  out:
355 	spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357 
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
361 		return true;
362 	if (atomic_read(&sdev->device_blocked) > 0)
363 		return true;
364 	return false;
365 }
366 
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369 	if (starget->can_queue > 0) {
370 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
371 			return true;
372 		if (atomic_read(&starget->target_blocked) > 0)
373 			return true;
374 	}
375 	return false;
376 }
377 
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380 	if (atomic_read(&shost->host_blocked) > 0)
381 		return true;
382 	if (shost->host_self_blocked)
383 		return true;
384 	return false;
385 }
386 
387 static void scsi_starved_list_run(struct Scsi_Host *shost)
388 {
389 	LIST_HEAD(starved_list);
390 	struct scsi_device *sdev;
391 	unsigned long flags;
392 
393 	spin_lock_irqsave(shost->host_lock, flags);
394 	list_splice_init(&shost->starved_list, &starved_list);
395 
396 	while (!list_empty(&starved_list)) {
397 		struct request_queue *slq;
398 
399 		/*
400 		 * As long as shost is accepting commands and we have
401 		 * starved queues, call blk_run_queue. scsi_request_fn
402 		 * drops the queue_lock and can add us back to the
403 		 * starved_list.
404 		 *
405 		 * host_lock protects the starved_list and starved_entry.
406 		 * scsi_request_fn must get the host_lock before checking
407 		 * or modifying starved_list or starved_entry.
408 		 */
409 		if (scsi_host_is_busy(shost))
410 			break;
411 
412 		sdev = list_entry(starved_list.next,
413 				  struct scsi_device, starved_entry);
414 		list_del_init(&sdev->starved_entry);
415 		if (scsi_target_is_busy(scsi_target(sdev))) {
416 			list_move_tail(&sdev->starved_entry,
417 				       &shost->starved_list);
418 			continue;
419 		}
420 
421 		/*
422 		 * Once we drop the host lock, a racing scsi_remove_device()
423 		 * call may remove the sdev from the starved list and destroy
424 		 * it and the queue.  Mitigate by taking a reference to the
425 		 * queue and never touching the sdev again after we drop the
426 		 * host lock.  Note: if __scsi_remove_device() invokes
427 		 * blk_cleanup_queue() before the queue is run from this
428 		 * function then blk_run_queue() will return immediately since
429 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
430 		 */
431 		slq = sdev->request_queue;
432 		if (!blk_get_queue(slq))
433 			continue;
434 		spin_unlock_irqrestore(shost->host_lock, flags);
435 
436 		scsi_kick_queue(slq);
437 		blk_put_queue(slq);
438 
439 		spin_lock_irqsave(shost->host_lock, flags);
440 	}
441 	/* put any unprocessed entries back */
442 	list_splice(&starved_list, &shost->starved_list);
443 	spin_unlock_irqrestore(shost->host_lock, flags);
444 }
445 
446 /**
447  * scsi_run_queue - Select a proper request queue to serve next.
448  * @q:  last request's queue
449  *
450  * The previous command was completely finished, start a new one if possible.
451  */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	blk_mq_run_hw_queues(q, false);
462 }
463 
464 void scsi_requeue_run_queue(struct work_struct *work)
465 {
466 	struct scsi_device *sdev;
467 	struct request_queue *q;
468 
469 	sdev = container_of(work, struct scsi_device, requeue_work);
470 	q = sdev->request_queue;
471 	scsi_run_queue(q);
472 }
473 
474 void scsi_run_host_queues(struct Scsi_Host *shost)
475 {
476 	struct scsi_device *sdev;
477 
478 	shost_for_each_device(sdev, shost)
479 		scsi_run_queue(sdev->request_queue);
480 }
481 
482 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
483 {
484 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
485 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
486 
487 		if (drv->uninit_command)
488 			drv->uninit_command(cmd);
489 	}
490 }
491 
492 void scsi_free_sgtables(struct scsi_cmnd *cmd)
493 {
494 	if (cmd->sdb.table.nents)
495 		sg_free_table_chained(&cmd->sdb.table,
496 				SCSI_INLINE_SG_CNT);
497 	if (scsi_prot_sg_count(cmd))
498 		sg_free_table_chained(&cmd->prot_sdb->table,
499 				SCSI_INLINE_PROT_SG_CNT);
500 }
501 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
502 
503 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
504 {
505 	scsi_free_sgtables(cmd);
506 	scsi_uninit_cmd(cmd);
507 }
508 
509 static void scsi_run_queue_async(struct scsi_device *sdev)
510 {
511 	if (scsi_target(sdev)->single_lun ||
512 	    !list_empty(&sdev->host->starved_list)) {
513 		kblockd_schedule_work(&sdev->requeue_work);
514 	} else {
515 		/*
516 		 * smp_mb() present in sbitmap_queue_clear() or implied in
517 		 * .end_io is for ordering writing .device_busy in
518 		 * scsi_device_unbusy() and reading sdev->restarts.
519 		 */
520 		int old = atomic_read(&sdev->restarts);
521 
522 		/*
523 		 * ->restarts has to be kept as non-zero if new budget
524 		 *  contention occurs.
525 		 *
526 		 *  No need to run queue when either another re-run
527 		 *  queue wins in updating ->restarts or a new budget
528 		 *  contention occurs.
529 		 */
530 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
531 			blk_mq_run_hw_queues(sdev->request_queue, true);
532 	}
533 }
534 
535 /* Returns false when no more bytes to process, true if there are more */
536 static bool scsi_end_request(struct request *req, blk_status_t error,
537 		unsigned int bytes)
538 {
539 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
540 	struct scsi_device *sdev = cmd->device;
541 	struct request_queue *q = sdev->request_queue;
542 
543 	if (blk_update_request(req, error, bytes))
544 		return true;
545 
546 	if (blk_queue_add_random(q))
547 		add_disk_randomness(req->rq_disk);
548 
549 	if (!blk_rq_is_passthrough(req)) {
550 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
551 		cmd->flags &= ~SCMD_INITIALIZED;
552 	}
553 
554 	/*
555 	 * Calling rcu_barrier() is not necessary here because the
556 	 * SCSI error handler guarantees that the function called by
557 	 * call_rcu() has been called before scsi_end_request() is
558 	 * called.
559 	 */
560 	destroy_rcu_head(&cmd->rcu);
561 
562 	/*
563 	 * In the MQ case the command gets freed by __blk_mq_end_request,
564 	 * so we have to do all cleanup that depends on it earlier.
565 	 *
566 	 * We also can't kick the queues from irq context, so we
567 	 * will have to defer it to a workqueue.
568 	 */
569 	scsi_mq_uninit_cmd(cmd);
570 
571 	/*
572 	 * queue is still alive, so grab the ref for preventing it
573 	 * from being cleaned up during running queue.
574 	 */
575 	percpu_ref_get(&q->q_usage_counter);
576 
577 	__blk_mq_end_request(req, error);
578 
579 	scsi_run_queue_async(sdev);
580 
581 	percpu_ref_put(&q->q_usage_counter);
582 	return false;
583 }
584 
585 /**
586  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
587  * @cmd:	SCSI command
588  * @result:	scsi error code
589  *
590  * Translate a SCSI result code into a blk_status_t value. May reset the host
591  * byte of @cmd->result.
592  */
593 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
594 {
595 	switch (host_byte(result)) {
596 	case DID_OK:
597 		if (scsi_status_is_good(result))
598 			return BLK_STS_OK;
599 		return BLK_STS_IOERR;
600 	case DID_TRANSPORT_FAILFAST:
601 	case DID_TRANSPORT_MARGINAL:
602 		return BLK_STS_TRANSPORT;
603 	case DID_TARGET_FAILURE:
604 		set_host_byte(cmd, DID_OK);
605 		return BLK_STS_TARGET;
606 	case DID_NEXUS_FAILURE:
607 		set_host_byte(cmd, DID_OK);
608 		return BLK_STS_NEXUS;
609 	case DID_ALLOC_FAILURE:
610 		set_host_byte(cmd, DID_OK);
611 		return BLK_STS_NOSPC;
612 	case DID_MEDIUM_ERROR:
613 		set_host_byte(cmd, DID_OK);
614 		return BLK_STS_MEDIUM;
615 	default:
616 		return BLK_STS_IOERR;
617 	}
618 }
619 
620 /* Helper for scsi_io_completion() when "reprep" action required. */
621 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
622 				      struct request_queue *q)
623 {
624 	/* A new command will be prepared and issued. */
625 	scsi_mq_requeue_cmd(cmd);
626 }
627 
628 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
629 {
630 	struct request *req = scsi_cmd_to_rq(cmd);
631 	unsigned long wait_for;
632 
633 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
634 		return false;
635 
636 	wait_for = (cmd->allowed + 1) * req->timeout;
637 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
638 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
639 			    wait_for/HZ);
640 		return true;
641 	}
642 	return false;
643 }
644 
645 /* Helper for scsi_io_completion() when special action required. */
646 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
647 {
648 	struct request_queue *q = cmd->device->request_queue;
649 	struct request *req = scsi_cmd_to_rq(cmd);
650 	int level = 0;
651 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
652 	      ACTION_DELAYED_RETRY} action;
653 	struct scsi_sense_hdr sshdr;
654 	bool sense_valid;
655 	bool sense_current = true;      /* false implies "deferred sense" */
656 	blk_status_t blk_stat;
657 
658 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
659 	if (sense_valid)
660 		sense_current = !scsi_sense_is_deferred(&sshdr);
661 
662 	blk_stat = scsi_result_to_blk_status(cmd, result);
663 
664 	if (host_byte(result) == DID_RESET) {
665 		/* Third party bus reset or reset for error recovery
666 		 * reasons.  Just retry the command and see what
667 		 * happens.
668 		 */
669 		action = ACTION_RETRY;
670 	} else if (sense_valid && sense_current) {
671 		switch (sshdr.sense_key) {
672 		case UNIT_ATTENTION:
673 			if (cmd->device->removable) {
674 				/* Detected disc change.  Set a bit
675 				 * and quietly refuse further access.
676 				 */
677 				cmd->device->changed = 1;
678 				action = ACTION_FAIL;
679 			} else {
680 				/* Must have been a power glitch, or a
681 				 * bus reset.  Could not have been a
682 				 * media change, so we just retry the
683 				 * command and see what happens.
684 				 */
685 				action = ACTION_RETRY;
686 			}
687 			break;
688 		case ILLEGAL_REQUEST:
689 			/* If we had an ILLEGAL REQUEST returned, then
690 			 * we may have performed an unsupported
691 			 * command.  The only thing this should be
692 			 * would be a ten byte read where only a six
693 			 * byte read was supported.  Also, on a system
694 			 * where READ CAPACITY failed, we may have
695 			 * read past the end of the disk.
696 			 */
697 			if ((cmd->device->use_10_for_rw &&
698 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
699 			    (cmd->cmnd[0] == READ_10 ||
700 			     cmd->cmnd[0] == WRITE_10)) {
701 				/* This will issue a new 6-byte command. */
702 				cmd->device->use_10_for_rw = 0;
703 				action = ACTION_REPREP;
704 			} else if (sshdr.asc == 0x10) /* DIX */ {
705 				action = ACTION_FAIL;
706 				blk_stat = BLK_STS_PROTECTION;
707 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
708 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
709 				action = ACTION_FAIL;
710 				blk_stat = BLK_STS_TARGET;
711 			} else
712 				action = ACTION_FAIL;
713 			break;
714 		case ABORTED_COMMAND:
715 			action = ACTION_FAIL;
716 			if (sshdr.asc == 0x10) /* DIF */
717 				blk_stat = BLK_STS_PROTECTION;
718 			break;
719 		case NOT_READY:
720 			/* If the device is in the process of becoming
721 			 * ready, or has a temporary blockage, retry.
722 			 */
723 			if (sshdr.asc == 0x04) {
724 				switch (sshdr.ascq) {
725 				case 0x01: /* becoming ready */
726 				case 0x04: /* format in progress */
727 				case 0x05: /* rebuild in progress */
728 				case 0x06: /* recalculation in progress */
729 				case 0x07: /* operation in progress */
730 				case 0x08: /* Long write in progress */
731 				case 0x09: /* self test in progress */
732 				case 0x11: /* notify (enable spinup) required */
733 				case 0x14: /* space allocation in progress */
734 				case 0x1a: /* start stop unit in progress */
735 				case 0x1b: /* sanitize in progress */
736 				case 0x1d: /* configuration in progress */
737 				case 0x24: /* depopulation in progress */
738 					action = ACTION_DELAYED_RETRY;
739 					break;
740 				case 0x0a: /* ALUA state transition */
741 					blk_stat = BLK_STS_AGAIN;
742 					fallthrough;
743 				default:
744 					action = ACTION_FAIL;
745 					break;
746 				}
747 			} else
748 				action = ACTION_FAIL;
749 			break;
750 		case VOLUME_OVERFLOW:
751 			/* See SSC3rXX or current. */
752 			action = ACTION_FAIL;
753 			break;
754 		case DATA_PROTECT:
755 			action = ACTION_FAIL;
756 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
757 			    (sshdr.asc == 0x55 &&
758 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
759 				/* Insufficient zone resources */
760 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
761 			}
762 			break;
763 		default:
764 			action = ACTION_FAIL;
765 			break;
766 		}
767 	} else
768 		action = ACTION_FAIL;
769 
770 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
771 		action = ACTION_FAIL;
772 
773 	switch (action) {
774 	case ACTION_FAIL:
775 		/* Give up and fail the remainder of the request */
776 		if (!(req->rq_flags & RQF_QUIET)) {
777 			static DEFINE_RATELIMIT_STATE(_rs,
778 					DEFAULT_RATELIMIT_INTERVAL,
779 					DEFAULT_RATELIMIT_BURST);
780 
781 			if (unlikely(scsi_logging_level))
782 				level =
783 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
784 						    SCSI_LOG_MLCOMPLETE_BITS);
785 
786 			/*
787 			 * if logging is enabled the failure will be printed
788 			 * in scsi_log_completion(), so avoid duplicate messages
789 			 */
790 			if (!level && __ratelimit(&_rs)) {
791 				scsi_print_result(cmd, NULL, FAILED);
792 				if (sense_valid)
793 					scsi_print_sense(cmd);
794 				scsi_print_command(cmd);
795 			}
796 		}
797 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
798 			return;
799 		fallthrough;
800 	case ACTION_REPREP:
801 		scsi_io_completion_reprep(cmd, q);
802 		break;
803 	case ACTION_RETRY:
804 		/* Retry the same command immediately */
805 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
806 		break;
807 	case ACTION_DELAYED_RETRY:
808 		/* Retry the same command after a delay */
809 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
810 		break;
811 	}
812 }
813 
814 /*
815  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
816  * new result that may suppress further error checking. Also modifies
817  * *blk_statp in some cases.
818  */
819 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
820 					blk_status_t *blk_statp)
821 {
822 	bool sense_valid;
823 	bool sense_current = true;	/* false implies "deferred sense" */
824 	struct request *req = scsi_cmd_to_rq(cmd);
825 	struct scsi_sense_hdr sshdr;
826 
827 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
828 	if (sense_valid)
829 		sense_current = !scsi_sense_is_deferred(&sshdr);
830 
831 	if (blk_rq_is_passthrough(req)) {
832 		if (sense_valid) {
833 			/*
834 			 * SG_IO wants current and deferred errors
835 			 */
836 			scsi_req(req)->sense_len =
837 				min(8 + cmd->sense_buffer[7],
838 				    SCSI_SENSE_BUFFERSIZE);
839 		}
840 		if (sense_current)
841 			*blk_statp = scsi_result_to_blk_status(cmd, result);
842 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
843 		/*
844 		 * Flush commands do not transfers any data, and thus cannot use
845 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
846 		 * This sets *blk_statp explicitly for the problem case.
847 		 */
848 		*blk_statp = scsi_result_to_blk_status(cmd, result);
849 	}
850 	/*
851 	 * Recovered errors need reporting, but they're always treated as
852 	 * success, so fiddle the result code here.  For passthrough requests
853 	 * we already took a copy of the original into sreq->result which
854 	 * is what gets returned to the user
855 	 */
856 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
857 		bool do_print = true;
858 		/*
859 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
860 		 * skip print since caller wants ATA registers. Only occurs
861 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
862 		 */
863 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
864 			do_print = false;
865 		else if (req->rq_flags & RQF_QUIET)
866 			do_print = false;
867 		if (do_print)
868 			scsi_print_sense(cmd);
869 		result = 0;
870 		/* for passthrough, *blk_statp may be set */
871 		*blk_statp = BLK_STS_OK;
872 	}
873 	/*
874 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
875 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
876 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
877 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
878 	 * intermediate statuses (both obsolete in SAM-4) as good.
879 	 */
880 	if ((result & 0xff) && scsi_status_is_good(result)) {
881 		result = 0;
882 		*blk_statp = BLK_STS_OK;
883 	}
884 	return result;
885 }
886 
887 /**
888  * scsi_io_completion - Completion processing for SCSI commands.
889  * @cmd:	command that is finished.
890  * @good_bytes:	number of processed bytes.
891  *
892  * We will finish off the specified number of sectors. If we are done, the
893  * command block will be released and the queue function will be goosed. If we
894  * are not done then we have to figure out what to do next:
895  *
896  *   a) We can call scsi_io_completion_reprep().  The request will be
897  *	unprepared and put back on the queue.  Then a new command will
898  *	be created for it.  This should be used if we made forward
899  *	progress, or if we want to switch from READ(10) to READ(6) for
900  *	example.
901  *
902  *   b) We can call scsi_io_completion_action().  The request will be
903  *	put back on the queue and retried using the same command as
904  *	before, possibly after a delay.
905  *
906  *   c) We can call scsi_end_request() with blk_stat other than
907  *	BLK_STS_OK, to fail the remainder of the request.
908  */
909 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
910 {
911 	int result = cmd->result;
912 	struct request_queue *q = cmd->device->request_queue;
913 	struct request *req = scsi_cmd_to_rq(cmd);
914 	blk_status_t blk_stat = BLK_STS_OK;
915 
916 	if (unlikely(result))	/* a nz result may or may not be an error */
917 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
918 
919 	if (unlikely(blk_rq_is_passthrough(req))) {
920 		/*
921 		 * scsi_result_to_blk_status may have reset the host_byte
922 		 */
923 		scsi_req(req)->result = cmd->result;
924 	}
925 
926 	/*
927 	 * Next deal with any sectors which we were able to correctly
928 	 * handle.
929 	 */
930 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
931 		"%u sectors total, %d bytes done.\n",
932 		blk_rq_sectors(req), good_bytes));
933 
934 	/*
935 	 * Failed, zero length commands always need to drop down
936 	 * to retry code. Fast path should return in this block.
937 	 */
938 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
939 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
940 			return; /* no bytes remaining */
941 	}
942 
943 	/* Kill remainder if no retries. */
944 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
945 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
946 			WARN_ONCE(true,
947 			    "Bytes remaining after failed, no-retry command");
948 		return;
949 	}
950 
951 	/*
952 	 * If there had been no error, but we have leftover bytes in the
953 	 * requeues just queue the command up again.
954 	 */
955 	if (likely(result == 0))
956 		scsi_io_completion_reprep(cmd, q);
957 	else
958 		scsi_io_completion_action(cmd, result);
959 }
960 
961 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
962 		struct request *rq)
963 {
964 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
965 	       !op_is_write(req_op(rq)) &&
966 	       sdev->host->hostt->dma_need_drain(rq);
967 }
968 
969 /**
970  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
971  * @cmd: SCSI command data structure to initialize.
972  *
973  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
974  * for @cmd.
975  *
976  * Returns:
977  * * BLK_STS_OK       - on success
978  * * BLK_STS_RESOURCE - if the failure is retryable
979  * * BLK_STS_IOERR    - if the failure is fatal
980  */
981 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
982 {
983 	struct scsi_device *sdev = cmd->device;
984 	struct request *rq = scsi_cmd_to_rq(cmd);
985 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
986 	struct scatterlist *last_sg = NULL;
987 	blk_status_t ret;
988 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
989 	int count;
990 
991 	if (WARN_ON_ONCE(!nr_segs))
992 		return BLK_STS_IOERR;
993 
994 	/*
995 	 * Make sure there is space for the drain.  The driver must adjust
996 	 * max_hw_segments to be prepared for this.
997 	 */
998 	if (need_drain)
999 		nr_segs++;
1000 
1001 	/*
1002 	 * If sg table allocation fails, requeue request later.
1003 	 */
1004 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1005 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1006 		return BLK_STS_RESOURCE;
1007 
1008 	/*
1009 	 * Next, walk the list, and fill in the addresses and sizes of
1010 	 * each segment.
1011 	 */
1012 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1013 
1014 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1015 		unsigned int pad_len =
1016 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1017 
1018 		last_sg->length += pad_len;
1019 		cmd->extra_len += pad_len;
1020 	}
1021 
1022 	if (need_drain) {
1023 		sg_unmark_end(last_sg);
1024 		last_sg = sg_next(last_sg);
1025 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1026 		sg_mark_end(last_sg);
1027 
1028 		cmd->extra_len += sdev->dma_drain_len;
1029 		count++;
1030 	}
1031 
1032 	BUG_ON(count > cmd->sdb.table.nents);
1033 	cmd->sdb.table.nents = count;
1034 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1035 
1036 	if (blk_integrity_rq(rq)) {
1037 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1038 		int ivecs;
1039 
1040 		if (WARN_ON_ONCE(!prot_sdb)) {
1041 			/*
1042 			 * This can happen if someone (e.g. multipath)
1043 			 * queues a command to a device on an adapter
1044 			 * that does not support DIX.
1045 			 */
1046 			ret = BLK_STS_IOERR;
1047 			goto out_free_sgtables;
1048 		}
1049 
1050 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1051 
1052 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1053 				prot_sdb->table.sgl,
1054 				SCSI_INLINE_PROT_SG_CNT)) {
1055 			ret = BLK_STS_RESOURCE;
1056 			goto out_free_sgtables;
1057 		}
1058 
1059 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1060 						prot_sdb->table.sgl);
1061 		BUG_ON(count > ivecs);
1062 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1063 
1064 		cmd->prot_sdb = prot_sdb;
1065 		cmd->prot_sdb->table.nents = count;
1066 	}
1067 
1068 	return BLK_STS_OK;
1069 out_free_sgtables:
1070 	scsi_free_sgtables(cmd);
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL(scsi_alloc_sgtables);
1074 
1075 /**
1076  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1077  * @rq: Request associated with the SCSI command to be initialized.
1078  *
1079  * This function initializes the members of struct scsi_cmnd that must be
1080  * initialized before request processing starts and that won't be
1081  * reinitialized if a SCSI command is requeued.
1082  *
1083  * Called from inside blk_get_request() for pass-through requests and from
1084  * inside scsi_init_command() for filesystem requests.
1085  */
1086 static void scsi_initialize_rq(struct request *rq)
1087 {
1088 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1089 	struct scsi_request *req = &cmd->req;
1090 
1091 	memset(req->__cmd, 0, sizeof(req->__cmd));
1092 	req->cmd = req->__cmd;
1093 	req->cmd_len = BLK_MAX_CDB;
1094 	req->sense_len = 0;
1095 
1096 	init_rcu_head(&cmd->rcu);
1097 	cmd->jiffies_at_alloc = jiffies;
1098 	cmd->retries = 0;
1099 }
1100 
1101 /*
1102  * Only called when the request isn't completed by SCSI, and not freed by
1103  * SCSI
1104  */
1105 static void scsi_cleanup_rq(struct request *rq)
1106 {
1107 	if (rq->rq_flags & RQF_DONTPREP) {
1108 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1109 		rq->rq_flags &= ~RQF_DONTPREP;
1110 	}
1111 }
1112 
1113 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1114 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1115 {
1116 	void *buf = cmd->sense_buffer;
1117 	void *prot = cmd->prot_sdb;
1118 	struct request *rq = scsi_cmd_to_rq(cmd);
1119 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1120 	unsigned long jiffies_at_alloc;
1121 	int retries, to_clear;
1122 	bool in_flight;
1123 	int budget_token = cmd->budget_token;
1124 
1125 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1126 		flags |= SCMD_INITIALIZED;
1127 		scsi_initialize_rq(rq);
1128 	}
1129 
1130 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1131 	retries = cmd->retries;
1132 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1133 	/*
1134 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1135 	 * the driver-private command data if the LLD does not supply a
1136 	 * function to initialize that data.
1137 	 */
1138 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1139 	if (!dev->host->hostt->init_cmd_priv)
1140 		to_clear += dev->host->hostt->cmd_size;
1141 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1142 
1143 	cmd->device = dev;
1144 	cmd->sense_buffer = buf;
1145 	cmd->prot_sdb = prot;
1146 	cmd->flags = flags;
1147 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1148 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1149 	cmd->retries = retries;
1150 	if (in_flight)
1151 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1152 	cmd->budget_token = budget_token;
1153 
1154 }
1155 
1156 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1157 		struct request *req)
1158 {
1159 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1160 
1161 	/*
1162 	 * Passthrough requests may transfer data, in which case they must
1163 	 * a bio attached to them.  Or they might contain a SCSI command
1164 	 * that does not transfer data, in which case they may optionally
1165 	 * submit a request without an attached bio.
1166 	 */
1167 	if (req->bio) {
1168 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1169 		if (unlikely(ret != BLK_STS_OK))
1170 			return ret;
1171 	} else {
1172 		BUG_ON(blk_rq_bytes(req));
1173 
1174 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1175 	}
1176 
1177 	cmd->cmd_len = scsi_req(req)->cmd_len;
1178 	if (cmd->cmd_len == 0)
1179 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
1180 	cmd->cmnd = scsi_req(req)->cmd;
1181 	cmd->transfersize = blk_rq_bytes(req);
1182 	cmd->allowed = scsi_req(req)->retries;
1183 	return BLK_STS_OK;
1184 }
1185 
1186 static blk_status_t
1187 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1188 {
1189 	switch (sdev->sdev_state) {
1190 	case SDEV_CREATED:
1191 		return BLK_STS_OK;
1192 	case SDEV_OFFLINE:
1193 	case SDEV_TRANSPORT_OFFLINE:
1194 		/*
1195 		 * If the device is offline we refuse to process any
1196 		 * commands.  The device must be brought online
1197 		 * before trying any recovery commands.
1198 		 */
1199 		if (!sdev->offline_already) {
1200 			sdev->offline_already = true;
1201 			sdev_printk(KERN_ERR, sdev,
1202 				    "rejecting I/O to offline device\n");
1203 		}
1204 		return BLK_STS_IOERR;
1205 	case SDEV_DEL:
1206 		/*
1207 		 * If the device is fully deleted, we refuse to
1208 		 * process any commands as well.
1209 		 */
1210 		sdev_printk(KERN_ERR, sdev,
1211 			    "rejecting I/O to dead device\n");
1212 		return BLK_STS_IOERR;
1213 	case SDEV_BLOCK:
1214 	case SDEV_CREATED_BLOCK:
1215 		return BLK_STS_RESOURCE;
1216 	case SDEV_QUIESCE:
1217 		/*
1218 		 * If the device is blocked we only accept power management
1219 		 * commands.
1220 		 */
1221 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1222 			return BLK_STS_RESOURCE;
1223 		return BLK_STS_OK;
1224 	default:
1225 		/*
1226 		 * For any other not fully online state we only allow
1227 		 * power management commands.
1228 		 */
1229 		if (req && !(req->rq_flags & RQF_PM))
1230 			return BLK_STS_IOERR;
1231 		return BLK_STS_OK;
1232 	}
1233 }
1234 
1235 /*
1236  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1237  * and return the token else return -1.
1238  */
1239 static inline int scsi_dev_queue_ready(struct request_queue *q,
1240 				  struct scsi_device *sdev)
1241 {
1242 	int token;
1243 
1244 	token = sbitmap_get(&sdev->budget_map);
1245 	if (atomic_read(&sdev->device_blocked)) {
1246 		if (token < 0)
1247 			goto out;
1248 
1249 		if (scsi_device_busy(sdev) > 1)
1250 			goto out_dec;
1251 
1252 		/*
1253 		 * unblock after device_blocked iterates to zero
1254 		 */
1255 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1256 			goto out_dec;
1257 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1258 				   "unblocking device at zero depth\n"));
1259 	}
1260 
1261 	return token;
1262 out_dec:
1263 	if (token >= 0)
1264 		sbitmap_put(&sdev->budget_map, token);
1265 out:
1266 	return -1;
1267 }
1268 
1269 /*
1270  * scsi_target_queue_ready: checks if there we can send commands to target
1271  * @sdev: scsi device on starget to check.
1272  */
1273 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1274 					   struct scsi_device *sdev)
1275 {
1276 	struct scsi_target *starget = scsi_target(sdev);
1277 	unsigned int busy;
1278 
1279 	if (starget->single_lun) {
1280 		spin_lock_irq(shost->host_lock);
1281 		if (starget->starget_sdev_user &&
1282 		    starget->starget_sdev_user != sdev) {
1283 			spin_unlock_irq(shost->host_lock);
1284 			return 0;
1285 		}
1286 		starget->starget_sdev_user = sdev;
1287 		spin_unlock_irq(shost->host_lock);
1288 	}
1289 
1290 	if (starget->can_queue <= 0)
1291 		return 1;
1292 
1293 	busy = atomic_inc_return(&starget->target_busy) - 1;
1294 	if (atomic_read(&starget->target_blocked) > 0) {
1295 		if (busy)
1296 			goto starved;
1297 
1298 		/*
1299 		 * unblock after target_blocked iterates to zero
1300 		 */
1301 		if (atomic_dec_return(&starget->target_blocked) > 0)
1302 			goto out_dec;
1303 
1304 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1305 				 "unblocking target at zero depth\n"));
1306 	}
1307 
1308 	if (busy >= starget->can_queue)
1309 		goto starved;
1310 
1311 	return 1;
1312 
1313 starved:
1314 	spin_lock_irq(shost->host_lock);
1315 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1316 	spin_unlock_irq(shost->host_lock);
1317 out_dec:
1318 	if (starget->can_queue > 0)
1319 		atomic_dec(&starget->target_busy);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1325  * return 0. We must end up running the queue again whenever 0 is
1326  * returned, else IO can hang.
1327  */
1328 static inline int scsi_host_queue_ready(struct request_queue *q,
1329 				   struct Scsi_Host *shost,
1330 				   struct scsi_device *sdev,
1331 				   struct scsi_cmnd *cmd)
1332 {
1333 	if (scsi_host_in_recovery(shost))
1334 		return 0;
1335 
1336 	if (atomic_read(&shost->host_blocked) > 0) {
1337 		if (scsi_host_busy(shost) > 0)
1338 			goto starved;
1339 
1340 		/*
1341 		 * unblock after host_blocked iterates to zero
1342 		 */
1343 		if (atomic_dec_return(&shost->host_blocked) > 0)
1344 			goto out_dec;
1345 
1346 		SCSI_LOG_MLQUEUE(3,
1347 			shost_printk(KERN_INFO, shost,
1348 				     "unblocking host at zero depth\n"));
1349 	}
1350 
1351 	if (shost->host_self_blocked)
1352 		goto starved;
1353 
1354 	/* We're OK to process the command, so we can't be starved */
1355 	if (!list_empty(&sdev->starved_entry)) {
1356 		spin_lock_irq(shost->host_lock);
1357 		if (!list_empty(&sdev->starved_entry))
1358 			list_del_init(&sdev->starved_entry);
1359 		spin_unlock_irq(shost->host_lock);
1360 	}
1361 
1362 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1363 
1364 	return 1;
1365 
1366 starved:
1367 	spin_lock_irq(shost->host_lock);
1368 	if (list_empty(&sdev->starved_entry))
1369 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1370 	spin_unlock_irq(shost->host_lock);
1371 out_dec:
1372 	scsi_dec_host_busy(shost, cmd);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Busy state exporting function for request stacking drivers.
1378  *
1379  * For efficiency, no lock is taken to check the busy state of
1380  * shost/starget/sdev, since the returned value is not guaranteed and
1381  * may be changed after request stacking drivers call the function,
1382  * regardless of taking lock or not.
1383  *
1384  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1385  * needs to return 'not busy'. Otherwise, request stacking drivers
1386  * may hold requests forever.
1387  */
1388 static bool scsi_mq_lld_busy(struct request_queue *q)
1389 {
1390 	struct scsi_device *sdev = q->queuedata;
1391 	struct Scsi_Host *shost;
1392 
1393 	if (blk_queue_dying(q))
1394 		return false;
1395 
1396 	shost = sdev->host;
1397 
1398 	/*
1399 	 * Ignore host/starget busy state.
1400 	 * Since block layer does not have a concept of fairness across
1401 	 * multiple queues, congestion of host/starget needs to be handled
1402 	 * in SCSI layer.
1403 	 */
1404 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1405 		return true;
1406 
1407 	return false;
1408 }
1409 
1410 /*
1411  * Block layer request completion callback. May be called from interrupt
1412  * context.
1413  */
1414 static void scsi_complete(struct request *rq)
1415 {
1416 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1417 	enum scsi_disposition disposition;
1418 
1419 	INIT_LIST_HEAD(&cmd->eh_entry);
1420 
1421 	atomic_inc(&cmd->device->iodone_cnt);
1422 	if (cmd->result)
1423 		atomic_inc(&cmd->device->ioerr_cnt);
1424 
1425 	disposition = scsi_decide_disposition(cmd);
1426 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1427 		disposition = SUCCESS;
1428 
1429 	scsi_log_completion(cmd, disposition);
1430 
1431 	switch (disposition) {
1432 	case SUCCESS:
1433 		scsi_finish_command(cmd);
1434 		break;
1435 	case NEEDS_RETRY:
1436 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1437 		break;
1438 	case ADD_TO_MLQUEUE:
1439 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1440 		break;
1441 	default:
1442 		scsi_eh_scmd_add(cmd);
1443 		break;
1444 	}
1445 }
1446 
1447 /**
1448  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1449  * @cmd: command block we are dispatching.
1450  *
1451  * Return: nonzero return request was rejected and device's queue needs to be
1452  * plugged.
1453  */
1454 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1455 {
1456 	struct Scsi_Host *host = cmd->device->host;
1457 	int rtn = 0;
1458 
1459 	atomic_inc(&cmd->device->iorequest_cnt);
1460 
1461 	/* check if the device is still usable */
1462 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1463 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1464 		 * returns an immediate error upwards, and signals
1465 		 * that the device is no longer present */
1466 		cmd->result = DID_NO_CONNECT << 16;
1467 		goto done;
1468 	}
1469 
1470 	/* Check to see if the scsi lld made this device blocked. */
1471 	if (unlikely(scsi_device_blocked(cmd->device))) {
1472 		/*
1473 		 * in blocked state, the command is just put back on
1474 		 * the device queue.  The suspend state has already
1475 		 * blocked the queue so future requests should not
1476 		 * occur until the device transitions out of the
1477 		 * suspend state.
1478 		 */
1479 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1480 			"queuecommand : device blocked\n"));
1481 		return SCSI_MLQUEUE_DEVICE_BUSY;
1482 	}
1483 
1484 	/* Store the LUN value in cmnd, if needed. */
1485 	if (cmd->device->lun_in_cdb)
1486 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1487 			       (cmd->device->lun << 5 & 0xe0);
1488 
1489 	scsi_log_send(cmd);
1490 
1491 	/*
1492 	 * Before we queue this command, check if the command
1493 	 * length exceeds what the host adapter can handle.
1494 	 */
1495 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1496 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1497 			       "queuecommand : command too long. "
1498 			       "cdb_size=%d host->max_cmd_len=%d\n",
1499 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1500 		cmd->result = (DID_ABORT << 16);
1501 		goto done;
1502 	}
1503 
1504 	if (unlikely(host->shost_state == SHOST_DEL)) {
1505 		cmd->result = (DID_NO_CONNECT << 16);
1506 		goto done;
1507 
1508 	}
1509 
1510 	trace_scsi_dispatch_cmd_start(cmd);
1511 	rtn = host->hostt->queuecommand(host, cmd);
1512 	if (rtn) {
1513 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1514 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1515 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1516 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1517 
1518 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1519 			"queuecommand : request rejected\n"));
1520 	}
1521 
1522 	return rtn;
1523  done:
1524 	cmd->scsi_done(cmd);
1525 	return 0;
1526 }
1527 
1528 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1529 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1530 {
1531 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1532 		sizeof(struct scatterlist);
1533 }
1534 
1535 static blk_status_t scsi_prepare_cmd(struct request *req)
1536 {
1537 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1538 	struct scsi_device *sdev = req->q->queuedata;
1539 	struct Scsi_Host *shost = sdev->host;
1540 	struct scatterlist *sg;
1541 
1542 	scsi_init_command(sdev, cmd);
1543 
1544 	cmd->prot_op = SCSI_PROT_NORMAL;
1545 	if (blk_rq_bytes(req))
1546 		cmd->sc_data_direction = rq_dma_dir(req);
1547 	else
1548 		cmd->sc_data_direction = DMA_NONE;
1549 
1550 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1551 	cmd->sdb.table.sgl = sg;
1552 
1553 	if (scsi_host_get_prot(shost)) {
1554 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1555 
1556 		cmd->prot_sdb->table.sgl =
1557 			(struct scatterlist *)(cmd->prot_sdb + 1);
1558 	}
1559 
1560 	/*
1561 	 * Special handling for passthrough commands, which don't go to the ULP
1562 	 * at all:
1563 	 */
1564 	if (blk_rq_is_passthrough(req))
1565 		return scsi_setup_scsi_cmnd(sdev, req);
1566 
1567 	if (sdev->handler && sdev->handler->prep_fn) {
1568 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1569 
1570 		if (ret != BLK_STS_OK)
1571 			return ret;
1572 	}
1573 
1574 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1575 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1576 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1577 }
1578 
1579 static void scsi_mq_done(struct scsi_cmnd *cmd)
1580 {
1581 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1582 		return;
1583 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1584 		return;
1585 	trace_scsi_dispatch_cmd_done(cmd);
1586 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1587 }
1588 
1589 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1590 {
1591 	struct scsi_device *sdev = q->queuedata;
1592 
1593 	sbitmap_put(&sdev->budget_map, budget_token);
1594 }
1595 
1596 static int scsi_mq_get_budget(struct request_queue *q)
1597 {
1598 	struct scsi_device *sdev = q->queuedata;
1599 	int token = scsi_dev_queue_ready(q, sdev);
1600 
1601 	if (token >= 0)
1602 		return token;
1603 
1604 	atomic_inc(&sdev->restarts);
1605 
1606 	/*
1607 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1608 	 * .restarts must be incremented before .device_busy is read because the
1609 	 * code in scsi_run_queue_async() depends on the order of these operations.
1610 	 */
1611 	smp_mb__after_atomic();
1612 
1613 	/*
1614 	 * If all in-flight requests originated from this LUN are completed
1615 	 * before reading .device_busy, sdev->device_busy will be observed as
1616 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1617 	 * soon. Otherwise, completion of one of these requests will observe
1618 	 * the .restarts flag, and the request queue will be run for handling
1619 	 * this request, see scsi_end_request().
1620 	 */
1621 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1622 				!scsi_device_blocked(sdev)))
1623 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1624 	return -1;
1625 }
1626 
1627 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1628 {
1629 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1630 
1631 	cmd->budget_token = token;
1632 }
1633 
1634 static int scsi_mq_get_rq_budget_token(struct request *req)
1635 {
1636 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637 
1638 	return cmd->budget_token;
1639 }
1640 
1641 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1642 			 const struct blk_mq_queue_data *bd)
1643 {
1644 	struct request *req = bd->rq;
1645 	struct request_queue *q = req->q;
1646 	struct scsi_device *sdev = q->queuedata;
1647 	struct Scsi_Host *shost = sdev->host;
1648 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1649 	blk_status_t ret;
1650 	int reason;
1651 
1652 	WARN_ON_ONCE(cmd->budget_token < 0);
1653 
1654 	/*
1655 	 * If the device is not in running state we will reject some or all
1656 	 * commands.
1657 	 */
1658 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1659 		ret = scsi_device_state_check(sdev, req);
1660 		if (ret != BLK_STS_OK)
1661 			goto out_put_budget;
1662 	}
1663 
1664 	ret = BLK_STS_RESOURCE;
1665 	if (!scsi_target_queue_ready(shost, sdev))
1666 		goto out_put_budget;
1667 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1668 		goto out_dec_target_busy;
1669 
1670 	if (!(req->rq_flags & RQF_DONTPREP)) {
1671 		ret = scsi_prepare_cmd(req);
1672 		if (ret != BLK_STS_OK)
1673 			goto out_dec_host_busy;
1674 		req->rq_flags |= RQF_DONTPREP;
1675 	} else {
1676 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1677 	}
1678 
1679 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1680 	if (sdev->simple_tags)
1681 		cmd->flags |= SCMD_TAGGED;
1682 	if (bd->last)
1683 		cmd->flags |= SCMD_LAST;
1684 
1685 	scsi_set_resid(cmd, 0);
1686 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1687 	cmd->scsi_done = scsi_mq_done;
1688 
1689 	blk_mq_start_request(req);
1690 	reason = scsi_dispatch_cmd(cmd);
1691 	if (reason) {
1692 		scsi_set_blocked(cmd, reason);
1693 		ret = BLK_STS_RESOURCE;
1694 		goto out_dec_host_busy;
1695 	}
1696 
1697 	return BLK_STS_OK;
1698 
1699 out_dec_host_busy:
1700 	scsi_dec_host_busy(shost, cmd);
1701 out_dec_target_busy:
1702 	if (scsi_target(sdev)->can_queue > 0)
1703 		atomic_dec(&scsi_target(sdev)->target_busy);
1704 out_put_budget:
1705 	scsi_mq_put_budget(q, cmd->budget_token);
1706 	cmd->budget_token = -1;
1707 	switch (ret) {
1708 	case BLK_STS_OK:
1709 		break;
1710 	case BLK_STS_RESOURCE:
1711 	case BLK_STS_ZONE_RESOURCE:
1712 		if (scsi_device_blocked(sdev))
1713 			ret = BLK_STS_DEV_RESOURCE;
1714 		break;
1715 	case BLK_STS_AGAIN:
1716 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1717 		if (req->rq_flags & RQF_DONTPREP)
1718 			scsi_mq_uninit_cmd(cmd);
1719 		break;
1720 	default:
1721 		if (unlikely(!scsi_device_online(sdev)))
1722 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1723 		else
1724 			scsi_req(req)->result = DID_ERROR << 16;
1725 		/*
1726 		 * Make sure to release all allocated resources when
1727 		 * we hit an error, as we will never see this command
1728 		 * again.
1729 		 */
1730 		if (req->rq_flags & RQF_DONTPREP)
1731 			scsi_mq_uninit_cmd(cmd);
1732 		scsi_run_queue_async(sdev);
1733 		break;
1734 	}
1735 	return ret;
1736 }
1737 
1738 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1739 		bool reserved)
1740 {
1741 	if (reserved)
1742 		return BLK_EH_RESET_TIMER;
1743 	return scsi_times_out(req);
1744 }
1745 
1746 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1747 				unsigned int hctx_idx, unsigned int numa_node)
1748 {
1749 	struct Scsi_Host *shost = set->driver_data;
1750 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1751 	struct scatterlist *sg;
1752 	int ret = 0;
1753 
1754 	cmd->sense_buffer =
1755 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1756 	if (!cmd->sense_buffer)
1757 		return -ENOMEM;
1758 	cmd->req.sense = cmd->sense_buffer;
1759 
1760 	if (scsi_host_get_prot(shost)) {
1761 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1762 			shost->hostt->cmd_size;
1763 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1764 	}
1765 
1766 	if (shost->hostt->init_cmd_priv) {
1767 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1768 		if (ret < 0)
1769 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1776 				 unsigned int hctx_idx)
1777 {
1778 	struct Scsi_Host *shost = set->driver_data;
1779 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1780 
1781 	if (shost->hostt->exit_cmd_priv)
1782 		shost->hostt->exit_cmd_priv(shost, cmd);
1783 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1784 }
1785 
1786 
1787 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1788 {
1789 	struct Scsi_Host *shost = hctx->driver_data;
1790 
1791 	if (shost->hostt->mq_poll)
1792 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1793 
1794 	return 0;
1795 }
1796 
1797 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1798 			  unsigned int hctx_idx)
1799 {
1800 	struct Scsi_Host *shost = data;
1801 
1802 	hctx->driver_data = shost;
1803 	return 0;
1804 }
1805 
1806 static int scsi_map_queues(struct blk_mq_tag_set *set)
1807 {
1808 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1809 
1810 	if (shost->hostt->map_queues)
1811 		return shost->hostt->map_queues(shost);
1812 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1813 }
1814 
1815 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1816 {
1817 	struct device *dev = shost->dma_dev;
1818 
1819 	/*
1820 	 * this limit is imposed by hardware restrictions
1821 	 */
1822 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1823 					SG_MAX_SEGMENTS));
1824 
1825 	if (scsi_host_prot_dma(shost)) {
1826 		shost->sg_prot_tablesize =
1827 			min_not_zero(shost->sg_prot_tablesize,
1828 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1829 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1830 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1831 	}
1832 
1833 	if (dev->dma_mask) {
1834 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1835 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1836 	}
1837 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1838 	blk_queue_segment_boundary(q, shost->dma_boundary);
1839 	dma_set_seg_boundary(dev, shost->dma_boundary);
1840 
1841 	blk_queue_max_segment_size(q, shost->max_segment_size);
1842 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1843 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1844 
1845 	/*
1846 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1847 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1848 	 * which is set by the platform.
1849 	 *
1850 	 * Devices that require a bigger alignment can increase it later.
1851 	 */
1852 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1853 }
1854 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1855 
1856 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1857 	.get_budget	= scsi_mq_get_budget,
1858 	.put_budget	= scsi_mq_put_budget,
1859 	.queue_rq	= scsi_queue_rq,
1860 	.complete	= scsi_complete,
1861 	.timeout	= scsi_timeout,
1862 #ifdef CONFIG_BLK_DEBUG_FS
1863 	.show_rq	= scsi_show_rq,
1864 #endif
1865 	.init_request	= scsi_mq_init_request,
1866 	.exit_request	= scsi_mq_exit_request,
1867 	.initialize_rq_fn = scsi_initialize_rq,
1868 	.cleanup_rq	= scsi_cleanup_rq,
1869 	.busy		= scsi_mq_lld_busy,
1870 	.map_queues	= scsi_map_queues,
1871 	.init_hctx	= scsi_init_hctx,
1872 	.poll		= scsi_mq_poll,
1873 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1874 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1875 };
1876 
1877 
1878 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1879 {
1880 	struct Scsi_Host *shost = hctx->driver_data;
1881 
1882 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1883 }
1884 
1885 static const struct blk_mq_ops scsi_mq_ops = {
1886 	.get_budget	= scsi_mq_get_budget,
1887 	.put_budget	= scsi_mq_put_budget,
1888 	.queue_rq	= scsi_queue_rq,
1889 	.commit_rqs	= scsi_commit_rqs,
1890 	.complete	= scsi_complete,
1891 	.timeout	= scsi_timeout,
1892 #ifdef CONFIG_BLK_DEBUG_FS
1893 	.show_rq	= scsi_show_rq,
1894 #endif
1895 	.init_request	= scsi_mq_init_request,
1896 	.exit_request	= scsi_mq_exit_request,
1897 	.initialize_rq_fn = scsi_initialize_rq,
1898 	.cleanup_rq	= scsi_cleanup_rq,
1899 	.busy		= scsi_mq_lld_busy,
1900 	.map_queues	= scsi_map_queues,
1901 	.init_hctx	= scsi_init_hctx,
1902 	.poll		= scsi_mq_poll,
1903 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1904 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1905 };
1906 
1907 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1908 {
1909 	unsigned int cmd_size, sgl_size;
1910 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1911 
1912 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1913 				scsi_mq_inline_sgl_size(shost));
1914 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1915 	if (scsi_host_get_prot(shost))
1916 		cmd_size += sizeof(struct scsi_data_buffer) +
1917 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1918 
1919 	memset(tag_set, 0, sizeof(*tag_set));
1920 	if (shost->hostt->commit_rqs)
1921 		tag_set->ops = &scsi_mq_ops;
1922 	else
1923 		tag_set->ops = &scsi_mq_ops_no_commit;
1924 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1925 	tag_set->nr_maps = shost->nr_maps ? : 1;
1926 	tag_set->queue_depth = shost->can_queue;
1927 	tag_set->cmd_size = cmd_size;
1928 	tag_set->numa_node = NUMA_NO_NODE;
1929 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1930 	tag_set->flags |=
1931 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1932 	tag_set->driver_data = shost;
1933 	if (shost->host_tagset)
1934 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1935 
1936 	return blk_mq_alloc_tag_set(tag_set);
1937 }
1938 
1939 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1940 {
1941 	blk_mq_free_tag_set(&shost->tag_set);
1942 }
1943 
1944 /**
1945  * scsi_device_from_queue - return sdev associated with a request_queue
1946  * @q: The request queue to return the sdev from
1947  *
1948  * Return the sdev associated with a request queue or NULL if the
1949  * request_queue does not reference a SCSI device.
1950  */
1951 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1952 {
1953 	struct scsi_device *sdev = NULL;
1954 
1955 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1956 	    q->mq_ops == &scsi_mq_ops)
1957 		sdev = q->queuedata;
1958 	if (!sdev || !get_device(&sdev->sdev_gendev))
1959 		sdev = NULL;
1960 
1961 	return sdev;
1962 }
1963 
1964 /**
1965  * scsi_block_requests - Utility function used by low-level drivers to prevent
1966  * further commands from being queued to the device.
1967  * @shost:  host in question
1968  *
1969  * There is no timer nor any other means by which the requests get unblocked
1970  * other than the low-level driver calling scsi_unblock_requests().
1971  */
1972 void scsi_block_requests(struct Scsi_Host *shost)
1973 {
1974 	shost->host_self_blocked = 1;
1975 }
1976 EXPORT_SYMBOL(scsi_block_requests);
1977 
1978 /**
1979  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1980  * further commands to be queued to the device.
1981  * @shost:  host in question
1982  *
1983  * There is no timer nor any other means by which the requests get unblocked
1984  * other than the low-level driver calling scsi_unblock_requests(). This is done
1985  * as an API function so that changes to the internals of the scsi mid-layer
1986  * won't require wholesale changes to drivers that use this feature.
1987  */
1988 void scsi_unblock_requests(struct Scsi_Host *shost)
1989 {
1990 	shost->host_self_blocked = 0;
1991 	scsi_run_host_queues(shost);
1992 }
1993 EXPORT_SYMBOL(scsi_unblock_requests);
1994 
1995 void scsi_exit_queue(void)
1996 {
1997 	kmem_cache_destroy(scsi_sense_cache);
1998 }
1999 
2000 /**
2001  *	scsi_mode_select - issue a mode select
2002  *	@sdev:	SCSI device to be queried
2003  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2004  *	@sp:	Save page bit (0 == don't save, 1 == save)
2005  *	@modepage: mode page being requested
2006  *	@buffer: request buffer (may not be smaller than eight bytes)
2007  *	@len:	length of request buffer.
2008  *	@timeout: command timeout
2009  *	@retries: number of retries before failing
2010  *	@data: returns a structure abstracting the mode header data
2011  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2012  *		must be SCSI_SENSE_BUFFERSIZE big.
2013  *
2014  *	Returns zero if successful; negative error number or scsi
2015  *	status on error
2016  *
2017  */
2018 int
2019 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2020 		 unsigned char *buffer, int len, int timeout, int retries,
2021 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2022 {
2023 	unsigned char cmd[10];
2024 	unsigned char *real_buffer;
2025 	int ret;
2026 
2027 	memset(cmd, 0, sizeof(cmd));
2028 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2029 
2030 	if (sdev->use_10_for_ms) {
2031 		if (len > 65535)
2032 			return -EINVAL;
2033 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2034 		if (!real_buffer)
2035 			return -ENOMEM;
2036 		memcpy(real_buffer + 8, buffer, len);
2037 		len += 8;
2038 		real_buffer[0] = 0;
2039 		real_buffer[1] = 0;
2040 		real_buffer[2] = data->medium_type;
2041 		real_buffer[3] = data->device_specific;
2042 		real_buffer[4] = data->longlba ? 0x01 : 0;
2043 		real_buffer[5] = 0;
2044 		real_buffer[6] = data->block_descriptor_length >> 8;
2045 		real_buffer[7] = data->block_descriptor_length;
2046 
2047 		cmd[0] = MODE_SELECT_10;
2048 		cmd[7] = len >> 8;
2049 		cmd[8] = len;
2050 	} else {
2051 		if (len > 255 || data->block_descriptor_length > 255 ||
2052 		    data->longlba)
2053 			return -EINVAL;
2054 
2055 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2056 		if (!real_buffer)
2057 			return -ENOMEM;
2058 		memcpy(real_buffer + 4, buffer, len);
2059 		len += 4;
2060 		real_buffer[0] = 0;
2061 		real_buffer[1] = data->medium_type;
2062 		real_buffer[2] = data->device_specific;
2063 		real_buffer[3] = data->block_descriptor_length;
2064 
2065 		cmd[0] = MODE_SELECT;
2066 		cmd[4] = len;
2067 	}
2068 
2069 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2070 			       sshdr, timeout, retries, NULL);
2071 	kfree(real_buffer);
2072 	return ret;
2073 }
2074 EXPORT_SYMBOL_GPL(scsi_mode_select);
2075 
2076 /**
2077  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2078  *	@sdev:	SCSI device to be queried
2079  *	@dbd:	set if mode sense will allow block descriptors to be returned
2080  *	@modepage: mode page being requested
2081  *	@buffer: request buffer (may not be smaller than eight bytes)
2082  *	@len:	length of request buffer.
2083  *	@timeout: command timeout
2084  *	@retries: number of retries before failing
2085  *	@data: returns a structure abstracting the mode header data
2086  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2087  *		must be SCSI_SENSE_BUFFERSIZE big.
2088  *
2089  *	Returns zero if successful, or a negative error number on failure
2090  */
2091 int
2092 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2093 		  unsigned char *buffer, int len, int timeout, int retries,
2094 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2095 {
2096 	unsigned char cmd[12];
2097 	int use_10_for_ms;
2098 	int header_length;
2099 	int result, retry_count = retries;
2100 	struct scsi_sense_hdr my_sshdr;
2101 
2102 	memset(data, 0, sizeof(*data));
2103 	memset(&cmd[0], 0, 12);
2104 
2105 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2106 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2107 	cmd[2] = modepage;
2108 
2109 	/* caller might not be interested in sense, but we need it */
2110 	if (!sshdr)
2111 		sshdr = &my_sshdr;
2112 
2113  retry:
2114 	use_10_for_ms = sdev->use_10_for_ms;
2115 
2116 	if (use_10_for_ms) {
2117 		if (len < 8)
2118 			len = 8;
2119 
2120 		cmd[0] = MODE_SENSE_10;
2121 		cmd[8] = len;
2122 		header_length = 8;
2123 	} else {
2124 		if (len < 4)
2125 			len = 4;
2126 
2127 		cmd[0] = MODE_SENSE;
2128 		cmd[4] = len;
2129 		header_length = 4;
2130 	}
2131 
2132 	memset(buffer, 0, len);
2133 
2134 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2135 				  sshdr, timeout, retries, NULL);
2136 	if (result < 0)
2137 		return result;
2138 
2139 	/* This code looks awful: what it's doing is making sure an
2140 	 * ILLEGAL REQUEST sense return identifies the actual command
2141 	 * byte as the problem.  MODE_SENSE commands can return
2142 	 * ILLEGAL REQUEST if the code page isn't supported */
2143 
2144 	if (!scsi_status_is_good(result)) {
2145 		if (scsi_sense_valid(sshdr)) {
2146 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2147 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2148 				/*
2149 				 * Invalid command operation code
2150 				 */
2151 				if (use_10_for_ms) {
2152 					sdev->use_10_for_ms = 0;
2153 					goto retry;
2154 				}
2155 			}
2156 			if (scsi_status_is_check_condition(result) &&
2157 			    sshdr->sense_key == UNIT_ATTENTION &&
2158 			    retry_count) {
2159 				retry_count--;
2160 				goto retry;
2161 			}
2162 		}
2163 		return -EIO;
2164 	}
2165 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2166 		     (modepage == 6 || modepage == 8))) {
2167 		/* Initio breakage? */
2168 		header_length = 0;
2169 		data->length = 13;
2170 		data->medium_type = 0;
2171 		data->device_specific = 0;
2172 		data->longlba = 0;
2173 		data->block_descriptor_length = 0;
2174 	} else if (use_10_for_ms) {
2175 		data->length = buffer[0]*256 + buffer[1] + 2;
2176 		data->medium_type = buffer[2];
2177 		data->device_specific = buffer[3];
2178 		data->longlba = buffer[4] & 0x01;
2179 		data->block_descriptor_length = buffer[6]*256
2180 			+ buffer[7];
2181 	} else {
2182 		data->length = buffer[0] + 1;
2183 		data->medium_type = buffer[1];
2184 		data->device_specific = buffer[2];
2185 		data->block_descriptor_length = buffer[3];
2186 	}
2187 	data->header_length = header_length;
2188 
2189 	return 0;
2190 }
2191 EXPORT_SYMBOL(scsi_mode_sense);
2192 
2193 /**
2194  *	scsi_test_unit_ready - test if unit is ready
2195  *	@sdev:	scsi device to change the state of.
2196  *	@timeout: command timeout
2197  *	@retries: number of retries before failing
2198  *	@sshdr: outpout pointer for decoded sense information.
2199  *
2200  *	Returns zero if unsuccessful or an error if TUR failed.  For
2201  *	removable media, UNIT_ATTENTION sets ->changed flag.
2202  **/
2203 int
2204 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2205 		     struct scsi_sense_hdr *sshdr)
2206 {
2207 	char cmd[] = {
2208 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2209 	};
2210 	int result;
2211 
2212 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2213 	do {
2214 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2215 					  timeout, 1, NULL);
2216 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2217 		    sshdr->sense_key == UNIT_ATTENTION)
2218 			sdev->changed = 1;
2219 	} while (scsi_sense_valid(sshdr) &&
2220 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2221 
2222 	return result;
2223 }
2224 EXPORT_SYMBOL(scsi_test_unit_ready);
2225 
2226 /**
2227  *	scsi_device_set_state - Take the given device through the device state model.
2228  *	@sdev:	scsi device to change the state of.
2229  *	@state:	state to change to.
2230  *
2231  *	Returns zero if successful or an error if the requested
2232  *	transition is illegal.
2233  */
2234 int
2235 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2236 {
2237 	enum scsi_device_state oldstate = sdev->sdev_state;
2238 
2239 	if (state == oldstate)
2240 		return 0;
2241 
2242 	switch (state) {
2243 	case SDEV_CREATED:
2244 		switch (oldstate) {
2245 		case SDEV_CREATED_BLOCK:
2246 			break;
2247 		default:
2248 			goto illegal;
2249 		}
2250 		break;
2251 
2252 	case SDEV_RUNNING:
2253 		switch (oldstate) {
2254 		case SDEV_CREATED:
2255 		case SDEV_OFFLINE:
2256 		case SDEV_TRANSPORT_OFFLINE:
2257 		case SDEV_QUIESCE:
2258 		case SDEV_BLOCK:
2259 			break;
2260 		default:
2261 			goto illegal;
2262 		}
2263 		break;
2264 
2265 	case SDEV_QUIESCE:
2266 		switch (oldstate) {
2267 		case SDEV_RUNNING:
2268 		case SDEV_OFFLINE:
2269 		case SDEV_TRANSPORT_OFFLINE:
2270 			break;
2271 		default:
2272 			goto illegal;
2273 		}
2274 		break;
2275 
2276 	case SDEV_OFFLINE:
2277 	case SDEV_TRANSPORT_OFFLINE:
2278 		switch (oldstate) {
2279 		case SDEV_CREATED:
2280 		case SDEV_RUNNING:
2281 		case SDEV_QUIESCE:
2282 		case SDEV_BLOCK:
2283 			break;
2284 		default:
2285 			goto illegal;
2286 		}
2287 		break;
2288 
2289 	case SDEV_BLOCK:
2290 		switch (oldstate) {
2291 		case SDEV_RUNNING:
2292 		case SDEV_CREATED_BLOCK:
2293 		case SDEV_QUIESCE:
2294 		case SDEV_OFFLINE:
2295 			break;
2296 		default:
2297 			goto illegal;
2298 		}
2299 		break;
2300 
2301 	case SDEV_CREATED_BLOCK:
2302 		switch (oldstate) {
2303 		case SDEV_CREATED:
2304 			break;
2305 		default:
2306 			goto illegal;
2307 		}
2308 		break;
2309 
2310 	case SDEV_CANCEL:
2311 		switch (oldstate) {
2312 		case SDEV_CREATED:
2313 		case SDEV_RUNNING:
2314 		case SDEV_QUIESCE:
2315 		case SDEV_OFFLINE:
2316 		case SDEV_TRANSPORT_OFFLINE:
2317 			break;
2318 		default:
2319 			goto illegal;
2320 		}
2321 		break;
2322 
2323 	case SDEV_DEL:
2324 		switch (oldstate) {
2325 		case SDEV_CREATED:
2326 		case SDEV_RUNNING:
2327 		case SDEV_OFFLINE:
2328 		case SDEV_TRANSPORT_OFFLINE:
2329 		case SDEV_CANCEL:
2330 		case SDEV_BLOCK:
2331 		case SDEV_CREATED_BLOCK:
2332 			break;
2333 		default:
2334 			goto illegal;
2335 		}
2336 		break;
2337 
2338 	}
2339 	sdev->offline_already = false;
2340 	sdev->sdev_state = state;
2341 	return 0;
2342 
2343  illegal:
2344 	SCSI_LOG_ERROR_RECOVERY(1,
2345 				sdev_printk(KERN_ERR, sdev,
2346 					    "Illegal state transition %s->%s",
2347 					    scsi_device_state_name(oldstate),
2348 					    scsi_device_state_name(state))
2349 				);
2350 	return -EINVAL;
2351 }
2352 EXPORT_SYMBOL(scsi_device_set_state);
2353 
2354 /**
2355  *	scsi_evt_emit - emit a single SCSI device uevent
2356  *	@sdev: associated SCSI device
2357  *	@evt: event to emit
2358  *
2359  *	Send a single uevent (scsi_event) to the associated scsi_device.
2360  */
2361 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2362 {
2363 	int idx = 0;
2364 	char *envp[3];
2365 
2366 	switch (evt->evt_type) {
2367 	case SDEV_EVT_MEDIA_CHANGE:
2368 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2369 		break;
2370 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2371 		scsi_rescan_device(&sdev->sdev_gendev);
2372 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2373 		break;
2374 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2375 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2376 		break;
2377 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2378 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2379 		break;
2380 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2381 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2382 		break;
2383 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2384 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2385 		break;
2386 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2387 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2388 		break;
2389 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2390 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2391 		break;
2392 	default:
2393 		/* do nothing */
2394 		break;
2395 	}
2396 
2397 	envp[idx++] = NULL;
2398 
2399 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2400 }
2401 
2402 /**
2403  *	scsi_evt_thread - send a uevent for each scsi event
2404  *	@work: work struct for scsi_device
2405  *
2406  *	Dispatch queued events to their associated scsi_device kobjects
2407  *	as uevents.
2408  */
2409 void scsi_evt_thread(struct work_struct *work)
2410 {
2411 	struct scsi_device *sdev;
2412 	enum scsi_device_event evt_type;
2413 	LIST_HEAD(event_list);
2414 
2415 	sdev = container_of(work, struct scsi_device, event_work);
2416 
2417 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2418 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2419 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2420 
2421 	while (1) {
2422 		struct scsi_event *evt;
2423 		struct list_head *this, *tmp;
2424 		unsigned long flags;
2425 
2426 		spin_lock_irqsave(&sdev->list_lock, flags);
2427 		list_splice_init(&sdev->event_list, &event_list);
2428 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2429 
2430 		if (list_empty(&event_list))
2431 			break;
2432 
2433 		list_for_each_safe(this, tmp, &event_list) {
2434 			evt = list_entry(this, struct scsi_event, node);
2435 			list_del(&evt->node);
2436 			scsi_evt_emit(sdev, evt);
2437 			kfree(evt);
2438 		}
2439 	}
2440 }
2441 
2442 /**
2443  * 	sdev_evt_send - send asserted event to uevent thread
2444  *	@sdev: scsi_device event occurred on
2445  *	@evt: event to send
2446  *
2447  *	Assert scsi device event asynchronously.
2448  */
2449 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2450 {
2451 	unsigned long flags;
2452 
2453 #if 0
2454 	/* FIXME: currently this check eliminates all media change events
2455 	 * for polled devices.  Need to update to discriminate between AN
2456 	 * and polled events */
2457 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2458 		kfree(evt);
2459 		return;
2460 	}
2461 #endif
2462 
2463 	spin_lock_irqsave(&sdev->list_lock, flags);
2464 	list_add_tail(&evt->node, &sdev->event_list);
2465 	schedule_work(&sdev->event_work);
2466 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2467 }
2468 EXPORT_SYMBOL_GPL(sdev_evt_send);
2469 
2470 /**
2471  * 	sdev_evt_alloc - allocate a new scsi event
2472  *	@evt_type: type of event to allocate
2473  *	@gfpflags: GFP flags for allocation
2474  *
2475  *	Allocates and returns a new scsi_event.
2476  */
2477 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2478 				  gfp_t gfpflags)
2479 {
2480 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2481 	if (!evt)
2482 		return NULL;
2483 
2484 	evt->evt_type = evt_type;
2485 	INIT_LIST_HEAD(&evt->node);
2486 
2487 	/* evt_type-specific initialization, if any */
2488 	switch (evt_type) {
2489 	case SDEV_EVT_MEDIA_CHANGE:
2490 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2491 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2492 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2493 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2494 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2495 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2496 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2497 	default:
2498 		/* do nothing */
2499 		break;
2500 	}
2501 
2502 	return evt;
2503 }
2504 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2505 
2506 /**
2507  * 	sdev_evt_send_simple - send asserted event to uevent thread
2508  *	@sdev: scsi_device event occurred on
2509  *	@evt_type: type of event to send
2510  *	@gfpflags: GFP flags for allocation
2511  *
2512  *	Assert scsi device event asynchronously, given an event type.
2513  */
2514 void sdev_evt_send_simple(struct scsi_device *sdev,
2515 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2516 {
2517 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2518 	if (!evt) {
2519 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2520 			    evt_type);
2521 		return;
2522 	}
2523 
2524 	sdev_evt_send(sdev, evt);
2525 }
2526 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2527 
2528 /**
2529  *	scsi_device_quiesce - Block all commands except power management.
2530  *	@sdev:	scsi device to quiesce.
2531  *
2532  *	This works by trying to transition to the SDEV_QUIESCE state
2533  *	(which must be a legal transition).  When the device is in this
2534  *	state, only power management requests will be accepted, all others will
2535  *	be deferred.
2536  *
2537  *	Must be called with user context, may sleep.
2538  *
2539  *	Returns zero if unsuccessful or an error if not.
2540  */
2541 int
2542 scsi_device_quiesce(struct scsi_device *sdev)
2543 {
2544 	struct request_queue *q = sdev->request_queue;
2545 	int err;
2546 
2547 	/*
2548 	 * It is allowed to call scsi_device_quiesce() multiple times from
2549 	 * the same context but concurrent scsi_device_quiesce() calls are
2550 	 * not allowed.
2551 	 */
2552 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2553 
2554 	if (sdev->quiesced_by == current)
2555 		return 0;
2556 
2557 	blk_set_pm_only(q);
2558 
2559 	blk_mq_freeze_queue(q);
2560 	/*
2561 	 * Ensure that the effect of blk_set_pm_only() will be visible
2562 	 * for percpu_ref_tryget() callers that occur after the queue
2563 	 * unfreeze even if the queue was already frozen before this function
2564 	 * was called. See also https://lwn.net/Articles/573497/.
2565 	 */
2566 	synchronize_rcu();
2567 	blk_mq_unfreeze_queue(q);
2568 
2569 	mutex_lock(&sdev->state_mutex);
2570 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2571 	if (err == 0)
2572 		sdev->quiesced_by = current;
2573 	else
2574 		blk_clear_pm_only(q);
2575 	mutex_unlock(&sdev->state_mutex);
2576 
2577 	return err;
2578 }
2579 EXPORT_SYMBOL(scsi_device_quiesce);
2580 
2581 /**
2582  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2583  *	@sdev:	scsi device to resume.
2584  *
2585  *	Moves the device from quiesced back to running and restarts the
2586  *	queues.
2587  *
2588  *	Must be called with user context, may sleep.
2589  */
2590 void scsi_device_resume(struct scsi_device *sdev)
2591 {
2592 	/* check if the device state was mutated prior to resume, and if
2593 	 * so assume the state is being managed elsewhere (for example
2594 	 * device deleted during suspend)
2595 	 */
2596 	mutex_lock(&sdev->state_mutex);
2597 	if (sdev->sdev_state == SDEV_QUIESCE)
2598 		scsi_device_set_state(sdev, SDEV_RUNNING);
2599 	if (sdev->quiesced_by) {
2600 		sdev->quiesced_by = NULL;
2601 		blk_clear_pm_only(sdev->request_queue);
2602 	}
2603 	mutex_unlock(&sdev->state_mutex);
2604 }
2605 EXPORT_SYMBOL(scsi_device_resume);
2606 
2607 static void
2608 device_quiesce_fn(struct scsi_device *sdev, void *data)
2609 {
2610 	scsi_device_quiesce(sdev);
2611 }
2612 
2613 void
2614 scsi_target_quiesce(struct scsi_target *starget)
2615 {
2616 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2617 }
2618 EXPORT_SYMBOL(scsi_target_quiesce);
2619 
2620 static void
2621 device_resume_fn(struct scsi_device *sdev, void *data)
2622 {
2623 	scsi_device_resume(sdev);
2624 }
2625 
2626 void
2627 scsi_target_resume(struct scsi_target *starget)
2628 {
2629 	starget_for_each_device(starget, NULL, device_resume_fn);
2630 }
2631 EXPORT_SYMBOL(scsi_target_resume);
2632 
2633 /**
2634  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2635  * @sdev: device to block
2636  *
2637  * Pause SCSI command processing on the specified device. Does not sleep.
2638  *
2639  * Returns zero if successful or a negative error code upon failure.
2640  *
2641  * Notes:
2642  * This routine transitions the device to the SDEV_BLOCK state (which must be
2643  * a legal transition). When the device is in this state, command processing
2644  * is paused until the device leaves the SDEV_BLOCK state. See also
2645  * scsi_internal_device_unblock_nowait().
2646  */
2647 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2648 {
2649 	struct request_queue *q = sdev->request_queue;
2650 	int err = 0;
2651 
2652 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2653 	if (err) {
2654 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2655 
2656 		if (err)
2657 			return err;
2658 	}
2659 
2660 	/*
2661 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2662 	 * block layer from calling the midlayer with this device's
2663 	 * request queue.
2664 	 */
2665 	blk_mq_quiesce_queue_nowait(q);
2666 	return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2669 
2670 /**
2671  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2672  * @sdev: device to block
2673  *
2674  * Pause SCSI command processing on the specified device and wait until all
2675  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2676  *
2677  * Returns zero if successful or a negative error code upon failure.
2678  *
2679  * Note:
2680  * This routine transitions the device to the SDEV_BLOCK state (which must be
2681  * a legal transition). When the device is in this state, command processing
2682  * is paused until the device leaves the SDEV_BLOCK state. See also
2683  * scsi_internal_device_unblock().
2684  */
2685 static int scsi_internal_device_block(struct scsi_device *sdev)
2686 {
2687 	struct request_queue *q = sdev->request_queue;
2688 	int err;
2689 
2690 	mutex_lock(&sdev->state_mutex);
2691 	err = scsi_internal_device_block_nowait(sdev);
2692 	if (err == 0)
2693 		blk_mq_quiesce_queue(q);
2694 	mutex_unlock(&sdev->state_mutex);
2695 
2696 	return err;
2697 }
2698 
2699 void scsi_start_queue(struct scsi_device *sdev)
2700 {
2701 	struct request_queue *q = sdev->request_queue;
2702 
2703 	blk_mq_unquiesce_queue(q);
2704 }
2705 
2706 /**
2707  * scsi_internal_device_unblock_nowait - resume a device after a block request
2708  * @sdev:	device to resume
2709  * @new_state:	state to set the device to after unblocking
2710  *
2711  * Restart the device queue for a previously suspended SCSI device. Does not
2712  * sleep.
2713  *
2714  * Returns zero if successful or a negative error code upon failure.
2715  *
2716  * Notes:
2717  * This routine transitions the device to the SDEV_RUNNING state or to one of
2718  * the offline states (which must be a legal transition) allowing the midlayer
2719  * to goose the queue for this device.
2720  */
2721 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2722 					enum scsi_device_state new_state)
2723 {
2724 	switch (new_state) {
2725 	case SDEV_RUNNING:
2726 	case SDEV_TRANSPORT_OFFLINE:
2727 		break;
2728 	default:
2729 		return -EINVAL;
2730 	}
2731 
2732 	/*
2733 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2734 	 * offlined states and goose the device queue if successful.
2735 	 */
2736 	switch (sdev->sdev_state) {
2737 	case SDEV_BLOCK:
2738 	case SDEV_TRANSPORT_OFFLINE:
2739 		sdev->sdev_state = new_state;
2740 		break;
2741 	case SDEV_CREATED_BLOCK:
2742 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2743 		    new_state == SDEV_OFFLINE)
2744 			sdev->sdev_state = new_state;
2745 		else
2746 			sdev->sdev_state = SDEV_CREATED;
2747 		break;
2748 	case SDEV_CANCEL:
2749 	case SDEV_OFFLINE:
2750 		break;
2751 	default:
2752 		return -EINVAL;
2753 	}
2754 	scsi_start_queue(sdev);
2755 
2756 	return 0;
2757 }
2758 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2759 
2760 /**
2761  * scsi_internal_device_unblock - resume a device after a block request
2762  * @sdev:	device to resume
2763  * @new_state:	state to set the device to after unblocking
2764  *
2765  * Restart the device queue for a previously suspended SCSI device. May sleep.
2766  *
2767  * Returns zero if successful or a negative error code upon failure.
2768  *
2769  * Notes:
2770  * This routine transitions the device to the SDEV_RUNNING state or to one of
2771  * the offline states (which must be a legal transition) allowing the midlayer
2772  * to goose the queue for this device.
2773  */
2774 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2775 					enum scsi_device_state new_state)
2776 {
2777 	int ret;
2778 
2779 	mutex_lock(&sdev->state_mutex);
2780 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2781 	mutex_unlock(&sdev->state_mutex);
2782 
2783 	return ret;
2784 }
2785 
2786 static void
2787 device_block(struct scsi_device *sdev, void *data)
2788 {
2789 	int ret;
2790 
2791 	ret = scsi_internal_device_block(sdev);
2792 
2793 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2794 		  dev_name(&sdev->sdev_gendev), ret);
2795 }
2796 
2797 static int
2798 target_block(struct device *dev, void *data)
2799 {
2800 	if (scsi_is_target_device(dev))
2801 		starget_for_each_device(to_scsi_target(dev), NULL,
2802 					device_block);
2803 	return 0;
2804 }
2805 
2806 void
2807 scsi_target_block(struct device *dev)
2808 {
2809 	if (scsi_is_target_device(dev))
2810 		starget_for_each_device(to_scsi_target(dev), NULL,
2811 					device_block);
2812 	else
2813 		device_for_each_child(dev, NULL, target_block);
2814 }
2815 EXPORT_SYMBOL_GPL(scsi_target_block);
2816 
2817 static void
2818 device_unblock(struct scsi_device *sdev, void *data)
2819 {
2820 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2821 }
2822 
2823 static int
2824 target_unblock(struct device *dev, void *data)
2825 {
2826 	if (scsi_is_target_device(dev))
2827 		starget_for_each_device(to_scsi_target(dev), data,
2828 					device_unblock);
2829 	return 0;
2830 }
2831 
2832 void
2833 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2834 {
2835 	if (scsi_is_target_device(dev))
2836 		starget_for_each_device(to_scsi_target(dev), &new_state,
2837 					device_unblock);
2838 	else
2839 		device_for_each_child(dev, &new_state, target_unblock);
2840 }
2841 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2842 
2843 int
2844 scsi_host_block(struct Scsi_Host *shost)
2845 {
2846 	struct scsi_device *sdev;
2847 	int ret = 0;
2848 
2849 	/*
2850 	 * Call scsi_internal_device_block_nowait so we can avoid
2851 	 * calling synchronize_rcu() for each LUN.
2852 	 */
2853 	shost_for_each_device(sdev, shost) {
2854 		mutex_lock(&sdev->state_mutex);
2855 		ret = scsi_internal_device_block_nowait(sdev);
2856 		mutex_unlock(&sdev->state_mutex);
2857 		if (ret) {
2858 			scsi_device_put(sdev);
2859 			break;
2860 		}
2861 	}
2862 
2863 	/*
2864 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2865 	 * calling synchronize_rcu() once is enough.
2866 	 */
2867 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2868 
2869 	if (!ret)
2870 		synchronize_rcu();
2871 
2872 	return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(scsi_host_block);
2875 
2876 int
2877 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2878 {
2879 	struct scsi_device *sdev;
2880 	int ret = 0;
2881 
2882 	shost_for_each_device(sdev, shost) {
2883 		ret = scsi_internal_device_unblock(sdev, new_state);
2884 		if (ret) {
2885 			scsi_device_put(sdev);
2886 			break;
2887 		}
2888 	}
2889 	return ret;
2890 }
2891 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2892 
2893 /**
2894  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2895  * @sgl:	scatter-gather list
2896  * @sg_count:	number of segments in sg
2897  * @offset:	offset in bytes into sg, on return offset into the mapped area
2898  * @len:	bytes to map, on return number of bytes mapped
2899  *
2900  * Returns virtual address of the start of the mapped page
2901  */
2902 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2903 			  size_t *offset, size_t *len)
2904 {
2905 	int i;
2906 	size_t sg_len = 0, len_complete = 0;
2907 	struct scatterlist *sg;
2908 	struct page *page;
2909 
2910 	WARN_ON(!irqs_disabled());
2911 
2912 	for_each_sg(sgl, sg, sg_count, i) {
2913 		len_complete = sg_len; /* Complete sg-entries */
2914 		sg_len += sg->length;
2915 		if (sg_len > *offset)
2916 			break;
2917 	}
2918 
2919 	if (unlikely(i == sg_count)) {
2920 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2921 			"elements %d\n",
2922 		       __func__, sg_len, *offset, sg_count);
2923 		WARN_ON(1);
2924 		return NULL;
2925 	}
2926 
2927 	/* Offset starting from the beginning of first page in this sg-entry */
2928 	*offset = *offset - len_complete + sg->offset;
2929 
2930 	/* Assumption: contiguous pages can be accessed as "page + i" */
2931 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2932 	*offset &= ~PAGE_MASK;
2933 
2934 	/* Bytes in this sg-entry from *offset to the end of the page */
2935 	sg_len = PAGE_SIZE - *offset;
2936 	if (*len > sg_len)
2937 		*len = sg_len;
2938 
2939 	return kmap_atomic(page);
2940 }
2941 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2942 
2943 /**
2944  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2945  * @virt:	virtual address to be unmapped
2946  */
2947 void scsi_kunmap_atomic_sg(void *virt)
2948 {
2949 	kunmap_atomic(virt);
2950 }
2951 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2952 
2953 void sdev_disable_disk_events(struct scsi_device *sdev)
2954 {
2955 	atomic_inc(&sdev->disk_events_disable_depth);
2956 }
2957 EXPORT_SYMBOL(sdev_disable_disk_events);
2958 
2959 void sdev_enable_disk_events(struct scsi_device *sdev)
2960 {
2961 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2962 		return;
2963 	atomic_dec(&sdev->disk_events_disable_depth);
2964 }
2965 EXPORT_SYMBOL(sdev_enable_disk_events);
2966 
2967 static unsigned char designator_prio(const unsigned char *d)
2968 {
2969 	if (d[1] & 0x30)
2970 		/* not associated with LUN */
2971 		return 0;
2972 
2973 	if (d[3] == 0)
2974 		/* invalid length */
2975 		return 0;
2976 
2977 	/*
2978 	 * Order of preference for lun descriptor:
2979 	 * - SCSI name string
2980 	 * - NAA IEEE Registered Extended
2981 	 * - EUI-64 based 16-byte
2982 	 * - EUI-64 based 12-byte
2983 	 * - NAA IEEE Registered
2984 	 * - NAA IEEE Extended
2985 	 * - EUI-64 based 8-byte
2986 	 * - SCSI name string (truncated)
2987 	 * - T10 Vendor ID
2988 	 * as longer descriptors reduce the likelyhood
2989 	 * of identification clashes.
2990 	 */
2991 
2992 	switch (d[1] & 0xf) {
2993 	case 8:
2994 		/* SCSI name string, variable-length UTF-8 */
2995 		return 9;
2996 	case 3:
2997 		switch (d[4] >> 4) {
2998 		case 6:
2999 			/* NAA registered extended */
3000 			return 8;
3001 		case 5:
3002 			/* NAA registered */
3003 			return 5;
3004 		case 4:
3005 			/* NAA extended */
3006 			return 4;
3007 		case 3:
3008 			/* NAA locally assigned */
3009 			return 1;
3010 		default:
3011 			break;
3012 		}
3013 		break;
3014 	case 2:
3015 		switch (d[3]) {
3016 		case 16:
3017 			/* EUI64-based, 16 byte */
3018 			return 7;
3019 		case 12:
3020 			/* EUI64-based, 12 byte */
3021 			return 6;
3022 		case 8:
3023 			/* EUI64-based, 8 byte */
3024 			return 3;
3025 		default:
3026 			break;
3027 		}
3028 		break;
3029 	case 1:
3030 		/* T10 vendor ID */
3031 		return 1;
3032 	default:
3033 		break;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  * scsi_vpd_lun_id - return a unique device identification
3041  * @sdev: SCSI device
3042  * @id:   buffer for the identification
3043  * @id_len:  length of the buffer
3044  *
3045  * Copies a unique device identification into @id based
3046  * on the information in the VPD page 0x83 of the device.
3047  * The string will be formatted as a SCSI name string.
3048  *
3049  * Returns the length of the identification or error on failure.
3050  * If the identifier is longer than the supplied buffer the actual
3051  * identifier length is returned and the buffer is not zero-padded.
3052  */
3053 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3054 {
3055 	u8 cur_id_prio = 0;
3056 	u8 cur_id_size = 0;
3057 	const unsigned char *d, *cur_id_str;
3058 	const struct scsi_vpd *vpd_pg83;
3059 	int id_size = -EINVAL;
3060 
3061 	rcu_read_lock();
3062 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3063 	if (!vpd_pg83) {
3064 		rcu_read_unlock();
3065 		return -ENXIO;
3066 	}
3067 
3068 	/* The id string must be at least 20 bytes + terminating NULL byte */
3069 	if (id_len < 21) {
3070 		rcu_read_unlock();
3071 		return -EINVAL;
3072 	}
3073 
3074 	memset(id, 0, id_len);
3075 	for (d = vpd_pg83->data + 4;
3076 	     d < vpd_pg83->data + vpd_pg83->len;
3077 	     d += d[3] + 4) {
3078 		u8 prio = designator_prio(d);
3079 
3080 		if (prio == 0 || cur_id_prio > prio)
3081 			continue;
3082 
3083 		switch (d[1] & 0xf) {
3084 		case 0x1:
3085 			/* T10 Vendor ID */
3086 			if (cur_id_size > d[3])
3087 				break;
3088 			cur_id_prio = prio;
3089 			cur_id_size = d[3];
3090 			if (cur_id_size + 4 > id_len)
3091 				cur_id_size = id_len - 4;
3092 			cur_id_str = d + 4;
3093 			id_size = snprintf(id, id_len, "t10.%*pE",
3094 					   cur_id_size, cur_id_str);
3095 			break;
3096 		case 0x2:
3097 			/* EUI-64 */
3098 			cur_id_prio = prio;
3099 			cur_id_size = d[3];
3100 			cur_id_str = d + 4;
3101 			switch (cur_id_size) {
3102 			case 8:
3103 				id_size = snprintf(id, id_len,
3104 						   "eui.%8phN",
3105 						   cur_id_str);
3106 				break;
3107 			case 12:
3108 				id_size = snprintf(id, id_len,
3109 						   "eui.%12phN",
3110 						   cur_id_str);
3111 				break;
3112 			case 16:
3113 				id_size = snprintf(id, id_len,
3114 						   "eui.%16phN",
3115 						   cur_id_str);
3116 				break;
3117 			default:
3118 				break;
3119 			}
3120 			break;
3121 		case 0x3:
3122 			/* NAA */
3123 			cur_id_prio = prio;
3124 			cur_id_size = d[3];
3125 			cur_id_str = d + 4;
3126 			switch (cur_id_size) {
3127 			case 8:
3128 				id_size = snprintf(id, id_len,
3129 						   "naa.%8phN",
3130 						   cur_id_str);
3131 				break;
3132 			case 16:
3133 				id_size = snprintf(id, id_len,
3134 						   "naa.%16phN",
3135 						   cur_id_str);
3136 				break;
3137 			default:
3138 				break;
3139 			}
3140 			break;
3141 		case 0x8:
3142 			/* SCSI name string */
3143 			if (cur_id_size > d[3])
3144 				break;
3145 			/* Prefer others for truncated descriptor */
3146 			if (d[3] > id_len) {
3147 				prio = 2;
3148 				if (cur_id_prio > prio)
3149 					break;
3150 			}
3151 			cur_id_prio = prio;
3152 			cur_id_size = id_size = d[3];
3153 			cur_id_str = d + 4;
3154 			if (cur_id_size >= id_len)
3155 				cur_id_size = id_len - 1;
3156 			memcpy(id, cur_id_str, cur_id_size);
3157 			break;
3158 		default:
3159 			break;
3160 		}
3161 	}
3162 	rcu_read_unlock();
3163 
3164 	return id_size;
3165 }
3166 EXPORT_SYMBOL(scsi_vpd_lun_id);
3167 
3168 /*
3169  * scsi_vpd_tpg_id - return a target port group identifier
3170  * @sdev: SCSI device
3171  *
3172  * Returns the Target Port Group identifier from the information
3173  * froom VPD page 0x83 of the device.
3174  *
3175  * Returns the identifier or error on failure.
3176  */
3177 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3178 {
3179 	const unsigned char *d;
3180 	const struct scsi_vpd *vpd_pg83;
3181 	int group_id = -EAGAIN, rel_port = -1;
3182 
3183 	rcu_read_lock();
3184 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3185 	if (!vpd_pg83) {
3186 		rcu_read_unlock();
3187 		return -ENXIO;
3188 	}
3189 
3190 	d = vpd_pg83->data + 4;
3191 	while (d < vpd_pg83->data + vpd_pg83->len) {
3192 		switch (d[1] & 0xf) {
3193 		case 0x4:
3194 			/* Relative target port */
3195 			rel_port = get_unaligned_be16(&d[6]);
3196 			break;
3197 		case 0x5:
3198 			/* Target port group */
3199 			group_id = get_unaligned_be16(&d[6]);
3200 			break;
3201 		default:
3202 			break;
3203 		}
3204 		d += d[3] + 4;
3205 	}
3206 	rcu_read_unlock();
3207 
3208 	if (group_id >= 0 && rel_id && rel_port != -1)
3209 		*rel_id = rel_port;
3210 
3211 	return group_id;
3212 }
3213 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3214 
3215 /**
3216  * scsi_build_sense - build sense data for a command
3217  * @scmd:	scsi command for which the sense should be formatted
3218  * @desc:	Sense format (non-zero == descriptor format,
3219  *              0 == fixed format)
3220  * @key:	Sense key
3221  * @asc:	Additional sense code
3222  * @ascq:	Additional sense code qualifier
3223  *
3224  **/
3225 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3226 {
3227 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3228 	scmd->result = SAM_STAT_CHECK_CONDITION;
3229 }
3230 EXPORT_SYMBOL_GPL(scsi_build_sense);
3231