xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision b22364c8eec89e6b0c081a237f3b6348df87796f)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28 
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31 
32 
33 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE		32
35 
36 struct scsi_host_sg_pool {
37 	size_t		size;
38 	char		*name;
39 	struct kmem_cache	*slab;
40 	mempool_t	*pool;
41 };
42 
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46 
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 	SP(8),
50 	SP(16),
51 	SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 	SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 	SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 	SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66 
67 static void scsi_run_queue(struct request_queue *q);
68 
69 /*
70  * Function:	scsi_unprep_request()
71  *
72  * Purpose:	Remove all preparation done for a request, including its
73  *		associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:	req	- request to unprepare
76  *
77  * Lock status:	Assumed that no locks are held upon entry.
78  *
79  * Returns:	Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83 	struct scsi_cmnd *cmd = req->special;
84 
85 	req->cmd_flags &= ~REQ_DONTPREP;
86 	req->special = NULL;
87 
88 	scsi_put_command(cmd);
89 }
90 
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 	struct Scsi_Host *host = cmd->device->host;
113 	struct scsi_device *device = cmd->device;
114 	struct request_queue *q = device->request_queue;
115 	unsigned long flags;
116 
117 	SCSI_LOG_MLQUEUE(1,
118 		 printk("Inserting command %p into mlqueue\n", cmd));
119 
120 	/*
121 	 * Set the appropriate busy bit for the device/host.
122 	 *
123 	 * If the host/device isn't busy, assume that something actually
124 	 * completed, and that we should be able to queue a command now.
125 	 *
126 	 * Note that the prior mid-layer assumption that any host could
127 	 * always queue at least one command is now broken.  The mid-layer
128 	 * will implement a user specifiable stall (see
129 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 	 * if a command is requeued with no other commands outstanding
131 	 * either for the device or for the host.
132 	 */
133 	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 		host->host_blocked = host->max_host_blocked;
135 	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 		device->device_blocked = device->max_device_blocked;
137 
138 	/*
139 	 * Decrement the counters, since these commands are no longer
140 	 * active on the host/device.
141 	 */
142 	scsi_device_unbusy(device);
143 
144 	/*
145 	 * Requeue this command.  It will go before all other commands
146 	 * that are already in the queue.
147 	 *
148 	 * NOTE: there is magic here about the way the queue is plugged if
149 	 * we have no outstanding commands.
150 	 *
151 	 * Although we *don't* plug the queue, we call the request
152 	 * function.  The SCSI request function detects the blocked condition
153 	 * and plugs the queue appropriately.
154          */
155 	spin_lock_irqsave(q->queue_lock, flags);
156 	blk_requeue_request(q, cmd->request);
157 	spin_unlock_irqrestore(q->queue_lock, flags);
158 
159 	scsi_run_queue(q);
160 
161 	return 0;
162 }
163 
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:	scsi device
167  * @cmd:	scsi command
168  * @data_direction: data direction
169  * @buffer:	data buffer
170  * @bufflen:	len of buffer
171  * @sense:	optional sense buffer
172  * @timeout:	request timeout in seconds
173  * @retries:	number of times to retry request
174  * @flags:	or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 		 int data_direction, void *buffer, unsigned bufflen,
181 		 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 	struct request *req;
184 	int write = (data_direction == DMA_TO_DEVICE);
185 	int ret = DRIVER_ERROR << 24;
186 
187 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188 
189 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190 					buffer, bufflen, __GFP_WAIT))
191 		goto out;
192 
193 	req->cmd_len = COMMAND_SIZE(cmd[0]);
194 	memcpy(req->cmd, cmd, req->cmd_len);
195 	req->sense = sense;
196 	req->sense_len = 0;
197 	req->retries = retries;
198 	req->timeout = timeout;
199 	req->cmd_type = REQ_TYPE_BLOCK_PC;
200 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201 
202 	/*
203 	 * head injection *required* here otherwise quiesce won't work
204 	 */
205 	blk_execute_rq(req->q, NULL, req, 1);
206 
207 	ret = req->errors;
208  out:
209 	blk_put_request(req);
210 
211 	return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214 
215 
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 		     int data_direction, void *buffer, unsigned bufflen,
218 		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 	char *sense = NULL;
221 	int result;
222 
223 	if (sshdr) {
224 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 		if (!sense)
226 			return DRIVER_ERROR << 24;
227 	}
228 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 			      sense, timeout, retries, 0);
230 	if (sshdr)
231 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232 
233 	kfree(sense);
234 	return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237 
238 struct scsi_io_context {
239 	void *data;
240 	void (*done)(void *data, char *sense, int result, int resid);
241 	char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243 
244 static struct kmem_cache *scsi_io_context_cache;
245 
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 	struct scsi_io_context *sioc = req->end_io_data;
249 
250 	if (sioc->done)
251 		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252 
253 	kmem_cache_free(scsi_io_context_cache, sioc);
254 	__blk_put_request(req->q, req);
255 }
256 
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 	struct request_queue *q = rq->q;
260 
261 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 	if (rq_data_dir(rq) == WRITE)
263 		bio->bi_rw |= (1 << BIO_RW);
264 	blk_queue_bounce(q, &bio);
265 
266 	if (!rq->bio)
267 		blk_rq_bio_prep(q, rq, bio);
268 	else if (!ll_back_merge_fn(q, rq, bio))
269 		return -EINVAL;
270 	else {
271 		rq->biotail->bi_next = bio;
272 		rq->biotail = bio;
273 	}
274 
275 	return 0;
276 }
277 
278 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279 {
280 	if (bio->bi_size)
281 		return 1;
282 
283 	bio_put(bio);
284 	return 0;
285 }
286 
287 /**
288  * scsi_req_map_sg - map a scatterlist into a request
289  * @rq:		request to fill
290  * @sg:		scatterlist
291  * @nsegs:	number of elements
292  * @bufflen:	len of buffer
293  * @gfp:	memory allocation flags
294  *
295  * scsi_req_map_sg maps a scatterlist into a request so that the
296  * request can be sent to the block layer. We do not trust the scatterlist
297  * sent to use, as some ULDs use that struct to only organize the pages.
298  */
299 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300 			   int nsegs, unsigned bufflen, gfp_t gfp)
301 {
302 	struct request_queue *q = rq->q;
303 	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304 	unsigned int data_len = 0, len, bytes, off;
305 	struct page *page;
306 	struct bio *bio = NULL;
307 	int i, err, nr_vecs = 0;
308 
309 	for (i = 0; i < nsegs; i++) {
310 		page = sgl[i].page;
311 		off = sgl[i].offset;
312 		len = sgl[i].length;
313 		data_len += len;
314 
315 		while (len > 0) {
316 			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
317 
318 			if (!bio) {
319 				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
320 				nr_pages -= nr_vecs;
321 
322 				bio = bio_alloc(gfp, nr_vecs);
323 				if (!bio) {
324 					err = -ENOMEM;
325 					goto free_bios;
326 				}
327 				bio->bi_end_io = scsi_bi_endio;
328 			}
329 
330 			if (bio_add_pc_page(q, bio, page, bytes, off) !=
331 			    bytes) {
332 				bio_put(bio);
333 				err = -EINVAL;
334 				goto free_bios;
335 			}
336 
337 			if (bio->bi_vcnt >= nr_vecs) {
338 				err = scsi_merge_bio(rq, bio);
339 				if (err) {
340 					bio_endio(bio, bio->bi_size, 0);
341 					goto free_bios;
342 				}
343 				bio = NULL;
344 			}
345 
346 			page++;
347 			len -= bytes;
348 			off = 0;
349 		}
350 	}
351 
352 	rq->buffer = rq->data = NULL;
353 	rq->data_len = data_len;
354 	return 0;
355 
356 free_bios:
357 	while ((bio = rq->bio) != NULL) {
358 		rq->bio = bio->bi_next;
359 		/*
360 		 * call endio instead of bio_put incase it was bounced
361 		 */
362 		bio_endio(bio, bio->bi_size, 0);
363 	}
364 
365 	return err;
366 }
367 
368 /**
369  * scsi_execute_async - insert request
370  * @sdev:	scsi device
371  * @cmd:	scsi command
372  * @cmd_len:	length of scsi cdb
373  * @data_direction: data direction
374  * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
375  * @bufflen:	len of buffer
376  * @use_sg:	if buffer is a scatterlist this is the number of elements
377  * @timeout:	request timeout in seconds
378  * @retries:	number of times to retry request
379  * @flags:	or into request flags
380  **/
381 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382 		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383 		       int use_sg, int timeout, int retries, void *privdata,
384 		       void (*done)(void *, char *, int, int), gfp_t gfp)
385 {
386 	struct request *req;
387 	struct scsi_io_context *sioc;
388 	int err = 0;
389 	int write = (data_direction == DMA_TO_DEVICE);
390 
391 	sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
392 	if (!sioc)
393 		return DRIVER_ERROR << 24;
394 	memset(sioc, 0, sizeof(*sioc));
395 
396 	req = blk_get_request(sdev->request_queue, write, gfp);
397 	if (!req)
398 		goto free_sense;
399 	req->cmd_type = REQ_TYPE_BLOCK_PC;
400 	req->cmd_flags |= REQ_QUIET;
401 
402 	if (use_sg)
403 		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404 	else if (bufflen)
405 		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406 
407 	if (err)
408 		goto free_req;
409 
410 	req->cmd_len = cmd_len;
411 	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
412 	memcpy(req->cmd, cmd, req->cmd_len);
413 	req->sense = sioc->sense;
414 	req->sense_len = 0;
415 	req->timeout = timeout;
416 	req->retries = retries;
417 	req->end_io_data = sioc;
418 
419 	sioc->data = privdata;
420 	sioc->done = done;
421 
422 	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
423 	return 0;
424 
425 free_req:
426 	blk_put_request(req);
427 free_sense:
428 	kmem_cache_free(scsi_io_context_cache, sioc);
429 	return DRIVER_ERROR << 24;
430 }
431 EXPORT_SYMBOL_GPL(scsi_execute_async);
432 
433 /*
434  * Function:    scsi_init_cmd_errh()
435  *
436  * Purpose:     Initialize cmd fields related to error handling.
437  *
438  * Arguments:   cmd	- command that is ready to be queued.
439  *
440  * Notes:       This function has the job of initializing a number of
441  *              fields related to error handling.   Typically this will
442  *              be called once for each command, as required.
443  */
444 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
445 {
446 	cmd->serial_number = 0;
447 	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
448 	if (cmd->cmd_len == 0)
449 		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
450 }
451 
452 void scsi_device_unbusy(struct scsi_device *sdev)
453 {
454 	struct Scsi_Host *shost = sdev->host;
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(shost->host_lock, flags);
458 	shost->host_busy--;
459 	if (unlikely(scsi_host_in_recovery(shost) &&
460 		     (shost->host_failed || shost->host_eh_scheduled)))
461 		scsi_eh_wakeup(shost);
462 	spin_unlock(shost->host_lock);
463 	spin_lock(sdev->request_queue->queue_lock);
464 	sdev->device_busy--;
465 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
466 }
467 
468 /*
469  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
470  * and call blk_run_queue for all the scsi_devices on the target -
471  * including current_sdev first.
472  *
473  * Called with *no* scsi locks held.
474  */
475 static void scsi_single_lun_run(struct scsi_device *current_sdev)
476 {
477 	struct Scsi_Host *shost = current_sdev->host;
478 	struct scsi_device *sdev, *tmp;
479 	struct scsi_target *starget = scsi_target(current_sdev);
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(shost->host_lock, flags);
483 	starget->starget_sdev_user = NULL;
484 	spin_unlock_irqrestore(shost->host_lock, flags);
485 
486 	/*
487 	 * Call blk_run_queue for all LUNs on the target, starting with
488 	 * current_sdev. We race with others (to set starget_sdev_user),
489 	 * but in most cases, we will be first. Ideally, each LU on the
490 	 * target would get some limited time or requests on the target.
491 	 */
492 	blk_run_queue(current_sdev->request_queue);
493 
494 	spin_lock_irqsave(shost->host_lock, flags);
495 	if (starget->starget_sdev_user)
496 		goto out;
497 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
498 			same_target_siblings) {
499 		if (sdev == current_sdev)
500 			continue;
501 		if (scsi_device_get(sdev))
502 			continue;
503 
504 		spin_unlock_irqrestore(shost->host_lock, flags);
505 		blk_run_queue(sdev->request_queue);
506 		spin_lock_irqsave(shost->host_lock, flags);
507 
508 		scsi_device_put(sdev);
509 	}
510  out:
511 	spin_unlock_irqrestore(shost->host_lock, flags);
512 }
513 
514 /*
515  * Function:	scsi_run_queue()
516  *
517  * Purpose:	Select a proper request queue to serve next
518  *
519  * Arguments:	q	- last request's queue
520  *
521  * Returns:     Nothing
522  *
523  * Notes:	The previous command was completely finished, start
524  *		a new one if possible.
525  */
526 static void scsi_run_queue(struct request_queue *q)
527 {
528 	struct scsi_device *sdev = q->queuedata;
529 	struct Scsi_Host *shost = sdev->host;
530 	unsigned long flags;
531 
532 	if (sdev->single_lun)
533 		scsi_single_lun_run(sdev);
534 
535 	spin_lock_irqsave(shost->host_lock, flags);
536 	while (!list_empty(&shost->starved_list) &&
537 	       !shost->host_blocked && !shost->host_self_blocked &&
538 		!((shost->can_queue > 0) &&
539 		  (shost->host_busy >= shost->can_queue))) {
540 		/*
541 		 * As long as shost is accepting commands and we have
542 		 * starved queues, call blk_run_queue. scsi_request_fn
543 		 * drops the queue_lock and can add us back to the
544 		 * starved_list.
545 		 *
546 		 * host_lock protects the starved_list and starved_entry.
547 		 * scsi_request_fn must get the host_lock before checking
548 		 * or modifying starved_list or starved_entry.
549 		 */
550 		sdev = list_entry(shost->starved_list.next,
551 					  struct scsi_device, starved_entry);
552 		list_del_init(&sdev->starved_entry);
553 		spin_unlock_irqrestore(shost->host_lock, flags);
554 
555 
556 		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
557 		    !test_and_set_bit(QUEUE_FLAG_REENTER,
558 				      &sdev->request_queue->queue_flags)) {
559 			blk_run_queue(sdev->request_queue);
560 			clear_bit(QUEUE_FLAG_REENTER,
561 				  &sdev->request_queue->queue_flags);
562 		} else
563 			blk_run_queue(sdev->request_queue);
564 
565 		spin_lock_irqsave(shost->host_lock, flags);
566 		if (unlikely(!list_empty(&sdev->starved_entry)))
567 			/*
568 			 * sdev lost a race, and was put back on the
569 			 * starved list. This is unlikely but without this
570 			 * in theory we could loop forever.
571 			 */
572 			break;
573 	}
574 	spin_unlock_irqrestore(shost->host_lock, flags);
575 
576 	blk_run_queue(q);
577 }
578 
579 /*
580  * Function:	scsi_requeue_command()
581  *
582  * Purpose:	Handle post-processing of completed commands.
583  *
584  * Arguments:	q	- queue to operate on
585  *		cmd	- command that may need to be requeued.
586  *
587  * Returns:	Nothing
588  *
589  * Notes:	After command completion, there may be blocks left
590  *		over which weren't finished by the previous command
591  *		this can be for a number of reasons - the main one is
592  *		I/O errors in the middle of the request, in which case
593  *		we need to request the blocks that come after the bad
594  *		sector.
595  * Notes:	Upon return, cmd is a stale pointer.
596  */
597 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
598 {
599 	struct request *req = cmd->request;
600 	unsigned long flags;
601 
602 	scsi_unprep_request(req);
603 	spin_lock_irqsave(q->queue_lock, flags);
604 	blk_requeue_request(q, req);
605 	spin_unlock_irqrestore(q->queue_lock, flags);
606 
607 	scsi_run_queue(q);
608 }
609 
610 void scsi_next_command(struct scsi_cmnd *cmd)
611 {
612 	struct scsi_device *sdev = cmd->device;
613 	struct request_queue *q = sdev->request_queue;
614 
615 	/* need to hold a reference on the device before we let go of the cmd */
616 	get_device(&sdev->sdev_gendev);
617 
618 	scsi_put_command(cmd);
619 	scsi_run_queue(q);
620 
621 	/* ok to remove device now */
622 	put_device(&sdev->sdev_gendev);
623 }
624 
625 void scsi_run_host_queues(struct Scsi_Host *shost)
626 {
627 	struct scsi_device *sdev;
628 
629 	shost_for_each_device(sdev, shost)
630 		scsi_run_queue(sdev->request_queue);
631 }
632 
633 /*
634  * Function:    scsi_end_request()
635  *
636  * Purpose:     Post-processing of completed commands (usually invoked at end
637  *		of upper level post-processing and scsi_io_completion).
638  *
639  * Arguments:   cmd	 - command that is complete.
640  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
641  *              bytes    - number of bytes of completed I/O
642  *		requeue  - indicates whether we should requeue leftovers.
643  *
644  * Lock status: Assumed that lock is not held upon entry.
645  *
646  * Returns:     cmd if requeue required, NULL otherwise.
647  *
648  * Notes:       This is called for block device requests in order to
649  *              mark some number of sectors as complete.
650  *
651  *		We are guaranteeing that the request queue will be goosed
652  *		at some point during this call.
653  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
654  */
655 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
656 					  int bytes, int requeue)
657 {
658 	request_queue_t *q = cmd->device->request_queue;
659 	struct request *req = cmd->request;
660 	unsigned long flags;
661 
662 	/*
663 	 * If there are blocks left over at the end, set up the command
664 	 * to queue the remainder of them.
665 	 */
666 	if (end_that_request_chunk(req, uptodate, bytes)) {
667 		int leftover = (req->hard_nr_sectors << 9);
668 
669 		if (blk_pc_request(req))
670 			leftover = req->data_len;
671 
672 		/* kill remainder if no retrys */
673 		if (!uptodate && blk_noretry_request(req))
674 			end_that_request_chunk(req, 0, leftover);
675 		else {
676 			if (requeue) {
677 				/*
678 				 * Bleah.  Leftovers again.  Stick the
679 				 * leftovers in the front of the
680 				 * queue, and goose the queue again.
681 				 */
682 				scsi_requeue_command(q, cmd);
683 				cmd = NULL;
684 			}
685 			return cmd;
686 		}
687 	}
688 
689 	add_disk_randomness(req->rq_disk);
690 
691 	spin_lock_irqsave(q->queue_lock, flags);
692 	if (blk_rq_tagged(req))
693 		blk_queue_end_tag(q, req);
694 	end_that_request_last(req, uptodate);
695 	spin_unlock_irqrestore(q->queue_lock, flags);
696 
697 	/*
698 	 * This will goose the queue request function at the end, so we don't
699 	 * need to worry about launching another command.
700 	 */
701 	scsi_next_command(cmd);
702 	return NULL;
703 }
704 
705 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
706 {
707 	struct scsi_host_sg_pool *sgp;
708 	struct scatterlist *sgl;
709 
710 	BUG_ON(!cmd->use_sg);
711 
712 	switch (cmd->use_sg) {
713 	case 1 ... 8:
714 		cmd->sglist_len = 0;
715 		break;
716 	case 9 ... 16:
717 		cmd->sglist_len = 1;
718 		break;
719 	case 17 ... 32:
720 		cmd->sglist_len = 2;
721 		break;
722 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
723 	case 33 ... 64:
724 		cmd->sglist_len = 3;
725 		break;
726 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
727 	case 65 ... 128:
728 		cmd->sglist_len = 4;
729 		break;
730 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
731 	case 129 ... 256:
732 		cmd->sglist_len = 5;
733 		break;
734 #endif
735 #endif
736 #endif
737 	default:
738 		return NULL;
739 	}
740 
741 	sgp = scsi_sg_pools + cmd->sglist_len;
742 	sgl = mempool_alloc(sgp->pool, gfp_mask);
743 	return sgl;
744 }
745 
746 EXPORT_SYMBOL(scsi_alloc_sgtable);
747 
748 void scsi_free_sgtable(struct scatterlist *sgl, int index)
749 {
750 	struct scsi_host_sg_pool *sgp;
751 
752 	BUG_ON(index >= SG_MEMPOOL_NR);
753 
754 	sgp = scsi_sg_pools + index;
755 	mempool_free(sgl, sgp->pool);
756 }
757 
758 EXPORT_SYMBOL(scsi_free_sgtable);
759 
760 /*
761  * Function:    scsi_release_buffers()
762  *
763  * Purpose:     Completion processing for block device I/O requests.
764  *
765  * Arguments:   cmd	- command that we are bailing.
766  *
767  * Lock status: Assumed that no lock is held upon entry.
768  *
769  * Returns:     Nothing
770  *
771  * Notes:       In the event that an upper level driver rejects a
772  *		command, we must release resources allocated during
773  *		the __init_io() function.  Primarily this would involve
774  *		the scatter-gather table, and potentially any bounce
775  *		buffers.
776  */
777 static void scsi_release_buffers(struct scsi_cmnd *cmd)
778 {
779 	if (cmd->use_sg)
780 		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
781 
782 	/*
783 	 * Zero these out.  They now point to freed memory, and it is
784 	 * dangerous to hang onto the pointers.
785 	 */
786 	cmd->request_buffer = NULL;
787 	cmd->request_bufflen = 0;
788 }
789 
790 /*
791  * Function:    scsi_io_completion()
792  *
793  * Purpose:     Completion processing for block device I/O requests.
794  *
795  * Arguments:   cmd   - command that is finished.
796  *
797  * Lock status: Assumed that no lock is held upon entry.
798  *
799  * Returns:     Nothing
800  *
801  * Notes:       This function is matched in terms of capabilities to
802  *              the function that created the scatter-gather list.
803  *              In other words, if there are no bounce buffers
804  *              (the normal case for most drivers), we don't need
805  *              the logic to deal with cleaning up afterwards.
806  *
807  *		We must do one of several things here:
808  *
809  *		a) Call scsi_end_request.  This will finish off the
810  *		   specified number of sectors.  If we are done, the
811  *		   command block will be released, and the queue
812  *		   function will be goosed.  If we are not done, then
813  *		   scsi_end_request will directly goose the queue.
814  *
815  *		b) We can just use scsi_requeue_command() here.  This would
816  *		   be used if we just wanted to retry, for example.
817  */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 	int result = cmd->result;
821 	int this_count = cmd->request_bufflen;
822 	request_queue_t *q = cmd->device->request_queue;
823 	struct request *req = cmd->request;
824 	int clear_errors = 1;
825 	struct scsi_sense_hdr sshdr;
826 	int sense_valid = 0;
827 	int sense_deferred = 0;
828 
829 	scsi_release_buffers(cmd);
830 
831 	if (result) {
832 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 		if (sense_valid)
834 			sense_deferred = scsi_sense_is_deferred(&sshdr);
835 	}
836 
837 	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
838 		req->errors = result;
839 		if (result) {
840 			clear_errors = 0;
841 			if (sense_valid && req->sense) {
842 				/*
843 				 * SG_IO wants current and deferred errors
844 				 */
845 				int len = 8 + cmd->sense_buffer[7];
846 
847 				if (len > SCSI_SENSE_BUFFERSIZE)
848 					len = SCSI_SENSE_BUFFERSIZE;
849 				memcpy(req->sense, cmd->sense_buffer,  len);
850 				req->sense_len = len;
851 			}
852 		} else
853 			req->data_len = cmd->resid;
854 	}
855 
856 	/*
857 	 * Next deal with any sectors which we were able to correctly
858 	 * handle.
859 	 */
860 	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
861 				      "%d bytes done.\n",
862 				      req->nr_sectors, good_bytes));
863 	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
864 
865 	if (clear_errors)
866 		req->errors = 0;
867 
868 	/* A number of bytes were successfully read.  If there
869 	 * are leftovers and there is some kind of error
870 	 * (result != 0), retry the rest.
871 	 */
872 	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
873 		return;
874 
875 	/* good_bytes = 0, or (inclusive) there were leftovers and
876 	 * result = 0, so scsi_end_request couldn't retry.
877 	 */
878 	if (sense_valid && !sense_deferred) {
879 		switch (sshdr.sense_key) {
880 		case UNIT_ATTENTION:
881 			if (cmd->device->removable) {
882 				/* Detected disc change.  Set a bit
883 				 * and quietly refuse further access.
884 				 */
885 				cmd->device->changed = 1;
886 				scsi_end_request(cmd, 0, this_count, 1);
887 				return;
888 			} else {
889 				/* Must have been a power glitch, or a
890 				 * bus reset.  Could not have been a
891 				 * media change, so we just retry the
892 				 * request and see what happens.
893 				 */
894 				scsi_requeue_command(q, cmd);
895 				return;
896 			}
897 			break;
898 		case ILLEGAL_REQUEST:
899 			/* If we had an ILLEGAL REQUEST returned, then
900 			 * we may have performed an unsupported
901 			 * command.  The only thing this should be
902 			 * would be a ten byte read where only a six
903 			 * byte read was supported.  Also, on a system
904 			 * where READ CAPACITY failed, we may have
905 			 * read past the end of the disk.
906 			 */
907 			if ((cmd->device->use_10_for_rw &&
908 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
909 			    (cmd->cmnd[0] == READ_10 ||
910 			     cmd->cmnd[0] == WRITE_10)) {
911 				cmd->device->use_10_for_rw = 0;
912 				/* This will cause a retry with a
913 				 * 6-byte command.
914 				 */
915 				scsi_requeue_command(q, cmd);
916 				return;
917 			} else {
918 				scsi_end_request(cmd, 0, this_count, 1);
919 				return;
920 			}
921 			break;
922 		case NOT_READY:
923 			/* If the device is in the process of becoming
924 			 * ready, or has a temporary blockage, retry.
925 			 */
926 			if (sshdr.asc == 0x04) {
927 				switch (sshdr.ascq) {
928 				case 0x01: /* becoming ready */
929 				case 0x04: /* format in progress */
930 				case 0x05: /* rebuild in progress */
931 				case 0x06: /* recalculation in progress */
932 				case 0x07: /* operation in progress */
933 				case 0x08: /* Long write in progress */
934 				case 0x09: /* self test in progress */
935 					scsi_requeue_command(q, cmd);
936 					return;
937 				default:
938 					break;
939 				}
940 			}
941 			if (!(req->cmd_flags & REQ_QUIET)) {
942 				scmd_printk(KERN_INFO, cmd,
943 					    "Device not ready: ");
944 				scsi_print_sense_hdr("", &sshdr);
945 			}
946 			scsi_end_request(cmd, 0, this_count, 1);
947 			return;
948 		case VOLUME_OVERFLOW:
949 			if (!(req->cmd_flags & REQ_QUIET)) {
950 				scmd_printk(KERN_INFO, cmd,
951 					    "Volume overflow, CDB: ");
952 				__scsi_print_command(cmd->cmnd);
953 				scsi_print_sense("", cmd);
954 			}
955 			/* See SSC3rXX or current. */
956 			scsi_end_request(cmd, 0, this_count, 1);
957 			return;
958 		default:
959 			break;
960 		}
961 	}
962 	if (host_byte(result) == DID_RESET) {
963 		/* Third party bus reset or reset for error recovery
964 		 * reasons.  Just retry the request and see what
965 		 * happens.
966 		 */
967 		scsi_requeue_command(q, cmd);
968 		return;
969 	}
970 	if (result) {
971 		if (!(req->cmd_flags & REQ_QUIET)) {
972 			scmd_printk(KERN_INFO, cmd,
973 				    "SCSI error: return code = 0x%08x\n",
974 				    result);
975 			if (driver_byte(result) & DRIVER_SENSE)
976 				scsi_print_sense("", cmd);
977 		}
978 	}
979 	scsi_end_request(cmd, 0, this_count, !result);
980 }
981 EXPORT_SYMBOL(scsi_io_completion);
982 
983 /*
984  * Function:    scsi_init_io()
985  *
986  * Purpose:     SCSI I/O initialize function.
987  *
988  * Arguments:   cmd   - Command descriptor we wish to initialize
989  *
990  * Returns:     0 on success
991  *		BLKPREP_DEFER if the failure is retryable
992  *		BLKPREP_KILL if the failure is fatal
993  */
994 static int scsi_init_io(struct scsi_cmnd *cmd)
995 {
996 	struct request     *req = cmd->request;
997 	struct scatterlist *sgpnt;
998 	int		   count;
999 
1000 	/*
1001 	 * We used to not use scatter-gather for single segment request,
1002 	 * but now we do (it makes highmem I/O easier to support without
1003 	 * kmapping pages)
1004 	 */
1005 	cmd->use_sg = req->nr_phys_segments;
1006 
1007 	/*
1008 	 * If sg table allocation fails, requeue request later.
1009 	 */
1010 	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1011 	if (unlikely(!sgpnt)) {
1012 		scsi_unprep_request(req);
1013 		return BLKPREP_DEFER;
1014 	}
1015 
1016 	req->buffer = NULL;
1017 	cmd->request_buffer = (char *) sgpnt;
1018 	if (blk_pc_request(req))
1019 		cmd->request_bufflen = req->data_len;
1020 	else
1021 		cmd->request_bufflen = req->nr_sectors << 9;
1022 
1023 	/*
1024 	 * Next, walk the list, and fill in the addresses and sizes of
1025 	 * each segment.
1026 	 */
1027 	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1028 	if (likely(count <= cmd->use_sg)) {
1029 		cmd->use_sg = count;
1030 		return BLKPREP_OK;
1031 	}
1032 
1033 	printk(KERN_ERR "Incorrect number of segments after building list\n");
1034 	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1035 	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1036 			req->current_nr_sectors);
1037 
1038 	/* release the command and kill it */
1039 	scsi_release_buffers(cmd);
1040 	scsi_put_command(cmd);
1041 	return BLKPREP_KILL;
1042 }
1043 
1044 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1045 			       sector_t *error_sector)
1046 {
1047 	struct scsi_device *sdev = q->queuedata;
1048 	struct scsi_driver *drv;
1049 
1050 	if (sdev->sdev_state != SDEV_RUNNING)
1051 		return -ENXIO;
1052 
1053 	drv = *(struct scsi_driver **) disk->private_data;
1054 	if (drv->issue_flush)
1055 		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1056 
1057 	return -EOPNOTSUPP;
1058 }
1059 
1060 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1061 		struct request *req)
1062 {
1063 	struct scsi_cmnd *cmd;
1064 
1065 	if (!req->special) {
1066 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1067 		if (unlikely(!cmd))
1068 			return NULL;
1069 		req->special = cmd;
1070 	} else {
1071 		cmd = req->special;
1072 	}
1073 
1074 	/* pull a tag out of the request if we have one */
1075 	cmd->tag = req->tag;
1076 	cmd->request = req;
1077 
1078 	return cmd;
1079 }
1080 
1081 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1082 {
1083 	BUG_ON(!blk_pc_request(cmd->request));
1084 	/*
1085 	 * This will complete the whole command with uptodate=1 so
1086 	 * as far as the block layer is concerned the command completed
1087 	 * successfully. Since this is a REQ_BLOCK_PC command the
1088 	 * caller should check the request's errors value
1089 	 */
1090 	scsi_io_completion(cmd, cmd->request_bufflen);
1091 }
1092 
1093 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1094 {
1095 	struct scsi_cmnd *cmd;
1096 
1097 	cmd = scsi_get_cmd_from_req(sdev, req);
1098 	if (unlikely(!cmd))
1099 		return BLKPREP_DEFER;
1100 
1101 	/*
1102 	 * BLOCK_PC requests may transfer data, in which case they must
1103 	 * a bio attached to them.  Or they might contain a SCSI command
1104 	 * that does not transfer data, in which case they may optionally
1105 	 * submit a request without an attached bio.
1106 	 */
1107 	if (req->bio) {
1108 		int ret;
1109 
1110 		BUG_ON(!req->nr_phys_segments);
1111 
1112 		ret = scsi_init_io(cmd);
1113 		if (unlikely(ret))
1114 			return ret;
1115 	} else {
1116 		BUG_ON(req->data_len);
1117 		BUG_ON(req->data);
1118 
1119 		cmd->request_bufflen = 0;
1120 		cmd->request_buffer = NULL;
1121 		cmd->use_sg = 0;
1122 		req->buffer = NULL;
1123 	}
1124 
1125 	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1126 	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1127 	cmd->cmd_len = req->cmd_len;
1128 	if (!req->data_len)
1129 		cmd->sc_data_direction = DMA_NONE;
1130 	else if (rq_data_dir(req) == WRITE)
1131 		cmd->sc_data_direction = DMA_TO_DEVICE;
1132 	else
1133 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1134 
1135 	cmd->transfersize = req->data_len;
1136 	cmd->allowed = req->retries;
1137 	cmd->timeout_per_command = req->timeout;
1138 	cmd->done = scsi_blk_pc_done;
1139 	return BLKPREP_OK;
1140 }
1141 
1142 /*
1143  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1144  * from filesystems that still need to be translated to SCSI CDBs from
1145  * the ULD.
1146  */
1147 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1148 {
1149 	struct scsi_cmnd *cmd;
1150 	struct scsi_driver *drv;
1151 	int ret;
1152 
1153 	/*
1154 	 * Filesystem requests must transfer data.
1155 	 */
1156 	BUG_ON(!req->nr_phys_segments);
1157 
1158 	cmd = scsi_get_cmd_from_req(sdev, req);
1159 	if (unlikely(!cmd))
1160 		return BLKPREP_DEFER;
1161 
1162 	ret = scsi_init_io(cmd);
1163 	if (unlikely(ret))
1164 		return ret;
1165 
1166 	/*
1167 	 * Initialize the actual SCSI command for this request.
1168 	 */
1169 	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1170 	if (unlikely(!drv->init_command(cmd))) {
1171 		scsi_release_buffers(cmd);
1172 		scsi_put_command(cmd);
1173 		return BLKPREP_KILL;
1174 	}
1175 
1176 	return BLKPREP_OK;
1177 }
1178 
1179 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1180 {
1181 	struct scsi_device *sdev = q->queuedata;
1182 	int ret = BLKPREP_OK;
1183 
1184 	/*
1185 	 * If the device is not in running state we will reject some
1186 	 * or all commands.
1187 	 */
1188 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1189 		switch (sdev->sdev_state) {
1190 		case SDEV_OFFLINE:
1191 			/*
1192 			 * If the device is offline we refuse to process any
1193 			 * commands.  The device must be brought online
1194 			 * before trying any recovery commands.
1195 			 */
1196 			sdev_printk(KERN_ERR, sdev,
1197 				    "rejecting I/O to offline device\n");
1198 			ret = BLKPREP_KILL;
1199 			break;
1200 		case SDEV_DEL:
1201 			/*
1202 			 * If the device is fully deleted, we refuse to
1203 			 * process any commands as well.
1204 			 */
1205 			sdev_printk(KERN_ERR, sdev,
1206 				    "rejecting I/O to dead device\n");
1207 			ret = BLKPREP_KILL;
1208 			break;
1209 		case SDEV_QUIESCE:
1210 		case SDEV_BLOCK:
1211 			/*
1212 			 * If the devices is blocked we defer normal commands.
1213 			 */
1214 			if (!(req->cmd_flags & REQ_PREEMPT))
1215 				ret = BLKPREP_DEFER;
1216 			break;
1217 		default:
1218 			/*
1219 			 * For any other not fully online state we only allow
1220 			 * special commands.  In particular any user initiated
1221 			 * command is not allowed.
1222 			 */
1223 			if (!(req->cmd_flags & REQ_PREEMPT))
1224 				ret = BLKPREP_KILL;
1225 			break;
1226 		}
1227 
1228 		if (ret != BLKPREP_OK)
1229 			goto out;
1230 	}
1231 
1232 	switch (req->cmd_type) {
1233 	case REQ_TYPE_BLOCK_PC:
1234 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1235 		break;
1236 	case REQ_TYPE_FS:
1237 		ret = scsi_setup_fs_cmnd(sdev, req);
1238 		break;
1239 	default:
1240 		/*
1241 		 * All other command types are not supported.
1242 		 *
1243 		 * Note that these days the SCSI subsystem does not use
1244 		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1245 		 * (directly or via blk_insert_request) by non-SCSI drivers.
1246 		 */
1247 		blk_dump_rq_flags(req, "SCSI bad req");
1248 		ret = BLKPREP_KILL;
1249 		break;
1250 	}
1251 
1252  out:
1253 	switch (ret) {
1254 	case BLKPREP_KILL:
1255 		req->errors = DID_NO_CONNECT << 16;
1256 		break;
1257 	case BLKPREP_DEFER:
1258 		/*
1259 		 * If we defer, the elv_next_request() returns NULL, but the
1260 		 * queue must be restarted, so we plug here if no returning
1261 		 * command will automatically do that.
1262 		 */
1263 		if (sdev->device_busy == 0)
1264 			blk_plug_device(q);
1265 		break;
1266 	default:
1267 		req->cmd_flags |= REQ_DONTPREP;
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /*
1274  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1275  * return 0.
1276  *
1277  * Called with the queue_lock held.
1278  */
1279 static inline int scsi_dev_queue_ready(struct request_queue *q,
1280 				  struct scsi_device *sdev)
1281 {
1282 	if (sdev->device_busy >= sdev->queue_depth)
1283 		return 0;
1284 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1285 		/*
1286 		 * unblock after device_blocked iterates to zero
1287 		 */
1288 		if (--sdev->device_blocked == 0) {
1289 			SCSI_LOG_MLQUEUE(3,
1290 				   sdev_printk(KERN_INFO, sdev,
1291 				   "unblocking device at zero depth\n"));
1292 		} else {
1293 			blk_plug_device(q);
1294 			return 0;
1295 		}
1296 	}
1297 	if (sdev->device_blocked)
1298 		return 0;
1299 
1300 	return 1;
1301 }
1302 
1303 /*
1304  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1305  * return 0. We must end up running the queue again whenever 0 is
1306  * returned, else IO can hang.
1307  *
1308  * Called with host_lock held.
1309  */
1310 static inline int scsi_host_queue_ready(struct request_queue *q,
1311 				   struct Scsi_Host *shost,
1312 				   struct scsi_device *sdev)
1313 {
1314 	if (scsi_host_in_recovery(shost))
1315 		return 0;
1316 	if (shost->host_busy == 0 && shost->host_blocked) {
1317 		/*
1318 		 * unblock after host_blocked iterates to zero
1319 		 */
1320 		if (--shost->host_blocked == 0) {
1321 			SCSI_LOG_MLQUEUE(3,
1322 				printk("scsi%d unblocking host at zero depth\n",
1323 					shost->host_no));
1324 		} else {
1325 			blk_plug_device(q);
1326 			return 0;
1327 		}
1328 	}
1329 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1330 	    shost->host_blocked || shost->host_self_blocked) {
1331 		if (list_empty(&sdev->starved_entry))
1332 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1333 		return 0;
1334 	}
1335 
1336 	/* We're OK to process the command, so we can't be starved */
1337 	if (!list_empty(&sdev->starved_entry))
1338 		list_del_init(&sdev->starved_entry);
1339 
1340 	return 1;
1341 }
1342 
1343 /*
1344  * Kill a request for a dead device
1345  */
1346 static void scsi_kill_request(struct request *req, request_queue_t *q)
1347 {
1348 	struct scsi_cmnd *cmd = req->special;
1349 	struct scsi_device *sdev = cmd->device;
1350 	struct Scsi_Host *shost = sdev->host;
1351 
1352 	blkdev_dequeue_request(req);
1353 
1354 	if (unlikely(cmd == NULL)) {
1355 		printk(KERN_CRIT "impossible request in %s.\n",
1356 				 __FUNCTION__);
1357 		BUG();
1358 	}
1359 
1360 	scsi_init_cmd_errh(cmd);
1361 	cmd->result = DID_NO_CONNECT << 16;
1362 	atomic_inc(&cmd->device->iorequest_cnt);
1363 
1364 	/*
1365 	 * SCSI request completion path will do scsi_device_unbusy(),
1366 	 * bump busy counts.  To bump the counters, we need to dance
1367 	 * with the locks as normal issue path does.
1368 	 */
1369 	sdev->device_busy++;
1370 	spin_unlock(sdev->request_queue->queue_lock);
1371 	spin_lock(shost->host_lock);
1372 	shost->host_busy++;
1373 	spin_unlock(shost->host_lock);
1374 	spin_lock(sdev->request_queue->queue_lock);
1375 
1376 	__scsi_done(cmd);
1377 }
1378 
1379 static void scsi_softirq_done(struct request *rq)
1380 {
1381 	struct scsi_cmnd *cmd = rq->completion_data;
1382 	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1383 	int disposition;
1384 
1385 	INIT_LIST_HEAD(&cmd->eh_entry);
1386 
1387 	disposition = scsi_decide_disposition(cmd);
1388 	if (disposition != SUCCESS &&
1389 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1390 		sdev_printk(KERN_ERR, cmd->device,
1391 			    "timing out command, waited %lus\n",
1392 			    wait_for/HZ);
1393 		disposition = SUCCESS;
1394 	}
1395 
1396 	scsi_log_completion(cmd, disposition);
1397 
1398 	switch (disposition) {
1399 		case SUCCESS:
1400 			scsi_finish_command(cmd);
1401 			break;
1402 		case NEEDS_RETRY:
1403 			scsi_retry_command(cmd);
1404 			break;
1405 		case ADD_TO_MLQUEUE:
1406 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1407 			break;
1408 		default:
1409 			if (!scsi_eh_scmd_add(cmd, 0))
1410 				scsi_finish_command(cmd);
1411 	}
1412 }
1413 
1414 /*
1415  * Function:    scsi_request_fn()
1416  *
1417  * Purpose:     Main strategy routine for SCSI.
1418  *
1419  * Arguments:   q       - Pointer to actual queue.
1420  *
1421  * Returns:     Nothing
1422  *
1423  * Lock status: IO request lock assumed to be held when called.
1424  */
1425 static void scsi_request_fn(struct request_queue *q)
1426 {
1427 	struct scsi_device *sdev = q->queuedata;
1428 	struct Scsi_Host *shost;
1429 	struct scsi_cmnd *cmd;
1430 	struct request *req;
1431 
1432 	if (!sdev) {
1433 		printk("scsi: killing requests for dead queue\n");
1434 		while ((req = elv_next_request(q)) != NULL)
1435 			scsi_kill_request(req, q);
1436 		return;
1437 	}
1438 
1439 	if(!get_device(&sdev->sdev_gendev))
1440 		/* We must be tearing the block queue down already */
1441 		return;
1442 
1443 	/*
1444 	 * To start with, we keep looping until the queue is empty, or until
1445 	 * the host is no longer able to accept any more requests.
1446 	 */
1447 	shost = sdev->host;
1448 	while (!blk_queue_plugged(q)) {
1449 		int rtn;
1450 		/*
1451 		 * get next queueable request.  We do this early to make sure
1452 		 * that the request is fully prepared even if we cannot
1453 		 * accept it.
1454 		 */
1455 		req = elv_next_request(q);
1456 		if (!req || !scsi_dev_queue_ready(q, sdev))
1457 			break;
1458 
1459 		if (unlikely(!scsi_device_online(sdev))) {
1460 			sdev_printk(KERN_ERR, sdev,
1461 				    "rejecting I/O to offline device\n");
1462 			scsi_kill_request(req, q);
1463 			continue;
1464 		}
1465 
1466 
1467 		/*
1468 		 * Remove the request from the request list.
1469 		 */
1470 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1471 			blkdev_dequeue_request(req);
1472 		sdev->device_busy++;
1473 
1474 		spin_unlock(q->queue_lock);
1475 		cmd = req->special;
1476 		if (unlikely(cmd == NULL)) {
1477 			printk(KERN_CRIT "impossible request in %s.\n"
1478 					 "please mail a stack trace to "
1479 					 "linux-scsi@vger.kernel.org\n",
1480 					 __FUNCTION__);
1481 			blk_dump_rq_flags(req, "foo");
1482 			BUG();
1483 		}
1484 		spin_lock(shost->host_lock);
1485 
1486 		if (!scsi_host_queue_ready(q, shost, sdev))
1487 			goto not_ready;
1488 		if (sdev->single_lun) {
1489 			if (scsi_target(sdev)->starget_sdev_user &&
1490 			    scsi_target(sdev)->starget_sdev_user != sdev)
1491 				goto not_ready;
1492 			scsi_target(sdev)->starget_sdev_user = sdev;
1493 		}
1494 		shost->host_busy++;
1495 
1496 		/*
1497 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1498 		 *		take the lock again.
1499 		 */
1500 		spin_unlock_irq(shost->host_lock);
1501 
1502 		/*
1503 		 * Finally, initialize any error handling parameters, and set up
1504 		 * the timers for timeouts.
1505 		 */
1506 		scsi_init_cmd_errh(cmd);
1507 
1508 		/*
1509 		 * Dispatch the command to the low-level driver.
1510 		 */
1511 		rtn = scsi_dispatch_cmd(cmd);
1512 		spin_lock_irq(q->queue_lock);
1513 		if(rtn) {
1514 			/* we're refusing the command; because of
1515 			 * the way locks get dropped, we need to
1516 			 * check here if plugging is required */
1517 			if(sdev->device_busy == 0)
1518 				blk_plug_device(q);
1519 
1520 			break;
1521 		}
1522 	}
1523 
1524 	goto out;
1525 
1526  not_ready:
1527 	spin_unlock_irq(shost->host_lock);
1528 
1529 	/*
1530 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1531 	 * must return with queue_lock held.
1532 	 *
1533 	 * Decrementing device_busy without checking it is OK, as all such
1534 	 * cases (host limits or settings) should run the queue at some
1535 	 * later time.
1536 	 */
1537 	spin_lock_irq(q->queue_lock);
1538 	blk_requeue_request(q, req);
1539 	sdev->device_busy--;
1540 	if(sdev->device_busy == 0)
1541 		blk_plug_device(q);
1542  out:
1543 	/* must be careful here...if we trigger the ->remove() function
1544 	 * we cannot be holding the q lock */
1545 	spin_unlock_irq(q->queue_lock);
1546 	put_device(&sdev->sdev_gendev);
1547 	spin_lock_irq(q->queue_lock);
1548 }
1549 
1550 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1551 {
1552 	struct device *host_dev;
1553 	u64 bounce_limit = 0xffffffff;
1554 
1555 	if (shost->unchecked_isa_dma)
1556 		return BLK_BOUNCE_ISA;
1557 	/*
1558 	 * Platforms with virtual-DMA translation
1559 	 * hardware have no practical limit.
1560 	 */
1561 	if (!PCI_DMA_BUS_IS_PHYS)
1562 		return BLK_BOUNCE_ANY;
1563 
1564 	host_dev = scsi_get_device(shost);
1565 	if (host_dev && host_dev->dma_mask)
1566 		bounce_limit = *host_dev->dma_mask;
1567 
1568 	return bounce_limit;
1569 }
1570 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1571 
1572 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1573 					 request_fn_proc *request_fn)
1574 {
1575 	struct request_queue *q;
1576 
1577 	q = blk_init_queue(request_fn, NULL);
1578 	if (!q)
1579 		return NULL;
1580 
1581 	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1582 	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1583 	blk_queue_max_sectors(q, shost->max_sectors);
1584 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1585 	blk_queue_segment_boundary(q, shost->dma_boundary);
1586 
1587 	if (!shost->use_clustering)
1588 		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1589 	return q;
1590 }
1591 EXPORT_SYMBOL(__scsi_alloc_queue);
1592 
1593 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1594 {
1595 	struct request_queue *q;
1596 
1597 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1598 	if (!q)
1599 		return NULL;
1600 
1601 	blk_queue_prep_rq(q, scsi_prep_fn);
1602 	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1603 	blk_queue_softirq_done(q, scsi_softirq_done);
1604 	return q;
1605 }
1606 
1607 void scsi_free_queue(struct request_queue *q)
1608 {
1609 	blk_cleanup_queue(q);
1610 }
1611 
1612 /*
1613  * Function:    scsi_block_requests()
1614  *
1615  * Purpose:     Utility function used by low-level drivers to prevent further
1616  *		commands from being queued to the device.
1617  *
1618  * Arguments:   shost       - Host in question
1619  *
1620  * Returns:     Nothing
1621  *
1622  * Lock status: No locks are assumed held.
1623  *
1624  * Notes:       There is no timer nor any other means by which the requests
1625  *		get unblocked other than the low-level driver calling
1626  *		scsi_unblock_requests().
1627  */
1628 void scsi_block_requests(struct Scsi_Host *shost)
1629 {
1630 	shost->host_self_blocked = 1;
1631 }
1632 EXPORT_SYMBOL(scsi_block_requests);
1633 
1634 /*
1635  * Function:    scsi_unblock_requests()
1636  *
1637  * Purpose:     Utility function used by low-level drivers to allow further
1638  *		commands from being queued to the device.
1639  *
1640  * Arguments:   shost       - Host in question
1641  *
1642  * Returns:     Nothing
1643  *
1644  * Lock status: No locks are assumed held.
1645  *
1646  * Notes:       There is no timer nor any other means by which the requests
1647  *		get unblocked other than the low-level driver calling
1648  *		scsi_unblock_requests().
1649  *
1650  *		This is done as an API function so that changes to the
1651  *		internals of the scsi mid-layer won't require wholesale
1652  *		changes to drivers that use this feature.
1653  */
1654 void scsi_unblock_requests(struct Scsi_Host *shost)
1655 {
1656 	shost->host_self_blocked = 0;
1657 	scsi_run_host_queues(shost);
1658 }
1659 EXPORT_SYMBOL(scsi_unblock_requests);
1660 
1661 int __init scsi_init_queue(void)
1662 {
1663 	int i;
1664 
1665 	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1666 					sizeof(struct scsi_io_context),
1667 					0, 0, NULL, NULL);
1668 	if (!scsi_io_context_cache) {
1669 		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1670 		return -ENOMEM;
1671 	}
1672 
1673 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1674 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1675 		int size = sgp->size * sizeof(struct scatterlist);
1676 
1677 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1678 				SLAB_HWCACHE_ALIGN, NULL, NULL);
1679 		if (!sgp->slab) {
1680 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1681 					sgp->name);
1682 		}
1683 
1684 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1685 						     sgp->slab);
1686 		if (!sgp->pool) {
1687 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1688 					sgp->name);
1689 		}
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 void scsi_exit_queue(void)
1696 {
1697 	int i;
1698 
1699 	kmem_cache_destroy(scsi_io_context_cache);
1700 
1701 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1702 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1703 		mempool_destroy(sgp->pool);
1704 		kmem_cache_destroy(sgp->slab);
1705 	}
1706 }
1707 
1708 /**
1709  *	scsi_mode_select - issue a mode select
1710  *	@sdev:	SCSI device to be queried
1711  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1712  *	@sp:	Save page bit (0 == don't save, 1 == save)
1713  *	@modepage: mode page being requested
1714  *	@buffer: request buffer (may not be smaller than eight bytes)
1715  *	@len:	length of request buffer.
1716  *	@timeout: command timeout
1717  *	@retries: number of retries before failing
1718  *	@data: returns a structure abstracting the mode header data
1719  *	@sense: place to put sense data (or NULL if no sense to be collected).
1720  *		must be SCSI_SENSE_BUFFERSIZE big.
1721  *
1722  *	Returns zero if successful; negative error number or scsi
1723  *	status on error
1724  *
1725  */
1726 int
1727 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1728 		 unsigned char *buffer, int len, int timeout, int retries,
1729 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1730 {
1731 	unsigned char cmd[10];
1732 	unsigned char *real_buffer;
1733 	int ret;
1734 
1735 	memset(cmd, 0, sizeof(cmd));
1736 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1737 
1738 	if (sdev->use_10_for_ms) {
1739 		if (len > 65535)
1740 			return -EINVAL;
1741 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1742 		if (!real_buffer)
1743 			return -ENOMEM;
1744 		memcpy(real_buffer + 8, buffer, len);
1745 		len += 8;
1746 		real_buffer[0] = 0;
1747 		real_buffer[1] = 0;
1748 		real_buffer[2] = data->medium_type;
1749 		real_buffer[3] = data->device_specific;
1750 		real_buffer[4] = data->longlba ? 0x01 : 0;
1751 		real_buffer[5] = 0;
1752 		real_buffer[6] = data->block_descriptor_length >> 8;
1753 		real_buffer[7] = data->block_descriptor_length;
1754 
1755 		cmd[0] = MODE_SELECT_10;
1756 		cmd[7] = len >> 8;
1757 		cmd[8] = len;
1758 	} else {
1759 		if (len > 255 || data->block_descriptor_length > 255 ||
1760 		    data->longlba)
1761 			return -EINVAL;
1762 
1763 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1764 		if (!real_buffer)
1765 			return -ENOMEM;
1766 		memcpy(real_buffer + 4, buffer, len);
1767 		len += 4;
1768 		real_buffer[0] = 0;
1769 		real_buffer[1] = data->medium_type;
1770 		real_buffer[2] = data->device_specific;
1771 		real_buffer[3] = data->block_descriptor_length;
1772 
1773 
1774 		cmd[0] = MODE_SELECT;
1775 		cmd[4] = len;
1776 	}
1777 
1778 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1779 			       sshdr, timeout, retries);
1780 	kfree(real_buffer);
1781 	return ret;
1782 }
1783 EXPORT_SYMBOL_GPL(scsi_mode_select);
1784 
1785 /**
1786  *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1787  *		six bytes if necessary.
1788  *	@sdev:	SCSI device to be queried
1789  *	@dbd:	set if mode sense will allow block descriptors to be returned
1790  *	@modepage: mode page being requested
1791  *	@buffer: request buffer (may not be smaller than eight bytes)
1792  *	@len:	length of request buffer.
1793  *	@timeout: command timeout
1794  *	@retries: number of retries before failing
1795  *	@data: returns a structure abstracting the mode header data
1796  *	@sense: place to put sense data (or NULL if no sense to be collected).
1797  *		must be SCSI_SENSE_BUFFERSIZE big.
1798  *
1799  *	Returns zero if unsuccessful, or the header offset (either 4
1800  *	or 8 depending on whether a six or ten byte command was
1801  *	issued) if successful.
1802  **/
1803 int
1804 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1805 		  unsigned char *buffer, int len, int timeout, int retries,
1806 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1807 {
1808 	unsigned char cmd[12];
1809 	int use_10_for_ms;
1810 	int header_length;
1811 	int result;
1812 	struct scsi_sense_hdr my_sshdr;
1813 
1814 	memset(data, 0, sizeof(*data));
1815 	memset(&cmd[0], 0, 12);
1816 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1817 	cmd[2] = modepage;
1818 
1819 	/* caller might not be interested in sense, but we need it */
1820 	if (!sshdr)
1821 		sshdr = &my_sshdr;
1822 
1823  retry:
1824 	use_10_for_ms = sdev->use_10_for_ms;
1825 
1826 	if (use_10_for_ms) {
1827 		if (len < 8)
1828 			len = 8;
1829 
1830 		cmd[0] = MODE_SENSE_10;
1831 		cmd[8] = len;
1832 		header_length = 8;
1833 	} else {
1834 		if (len < 4)
1835 			len = 4;
1836 
1837 		cmd[0] = MODE_SENSE;
1838 		cmd[4] = len;
1839 		header_length = 4;
1840 	}
1841 
1842 	memset(buffer, 0, len);
1843 
1844 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1845 				  sshdr, timeout, retries);
1846 
1847 	/* This code looks awful: what it's doing is making sure an
1848 	 * ILLEGAL REQUEST sense return identifies the actual command
1849 	 * byte as the problem.  MODE_SENSE commands can return
1850 	 * ILLEGAL REQUEST if the code page isn't supported */
1851 
1852 	if (use_10_for_ms && !scsi_status_is_good(result) &&
1853 	    (driver_byte(result) & DRIVER_SENSE)) {
1854 		if (scsi_sense_valid(sshdr)) {
1855 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1856 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1857 				/*
1858 				 * Invalid command operation code
1859 				 */
1860 				sdev->use_10_for_ms = 0;
1861 				goto retry;
1862 			}
1863 		}
1864 	}
1865 
1866 	if(scsi_status_is_good(result)) {
1867 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1868 			     (modepage == 6 || modepage == 8))) {
1869 			/* Initio breakage? */
1870 			header_length = 0;
1871 			data->length = 13;
1872 			data->medium_type = 0;
1873 			data->device_specific = 0;
1874 			data->longlba = 0;
1875 			data->block_descriptor_length = 0;
1876 		} else if(use_10_for_ms) {
1877 			data->length = buffer[0]*256 + buffer[1] + 2;
1878 			data->medium_type = buffer[2];
1879 			data->device_specific = buffer[3];
1880 			data->longlba = buffer[4] & 0x01;
1881 			data->block_descriptor_length = buffer[6]*256
1882 				+ buffer[7];
1883 		} else {
1884 			data->length = buffer[0] + 1;
1885 			data->medium_type = buffer[1];
1886 			data->device_specific = buffer[2];
1887 			data->block_descriptor_length = buffer[3];
1888 		}
1889 		data->header_length = header_length;
1890 	}
1891 
1892 	return result;
1893 }
1894 EXPORT_SYMBOL(scsi_mode_sense);
1895 
1896 int
1897 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1898 {
1899 	char cmd[] = {
1900 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1901 	};
1902 	struct scsi_sense_hdr sshdr;
1903 	int result;
1904 
1905 	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1906 				  timeout, retries);
1907 
1908 	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1909 
1910 		if ((scsi_sense_valid(&sshdr)) &&
1911 		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1912 		     (sshdr.sense_key == NOT_READY))) {
1913 			sdev->changed = 1;
1914 			result = 0;
1915 		}
1916 	}
1917 	return result;
1918 }
1919 EXPORT_SYMBOL(scsi_test_unit_ready);
1920 
1921 /**
1922  *	scsi_device_set_state - Take the given device through the device
1923  *		state model.
1924  *	@sdev:	scsi device to change the state of.
1925  *	@state:	state to change to.
1926  *
1927  *	Returns zero if unsuccessful or an error if the requested
1928  *	transition is illegal.
1929  **/
1930 int
1931 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1932 {
1933 	enum scsi_device_state oldstate = sdev->sdev_state;
1934 
1935 	if (state == oldstate)
1936 		return 0;
1937 
1938 	switch (state) {
1939 	case SDEV_CREATED:
1940 		/* There are no legal states that come back to
1941 		 * created.  This is the manually initialised start
1942 		 * state */
1943 		goto illegal;
1944 
1945 	case SDEV_RUNNING:
1946 		switch (oldstate) {
1947 		case SDEV_CREATED:
1948 		case SDEV_OFFLINE:
1949 		case SDEV_QUIESCE:
1950 		case SDEV_BLOCK:
1951 			break;
1952 		default:
1953 			goto illegal;
1954 		}
1955 		break;
1956 
1957 	case SDEV_QUIESCE:
1958 		switch (oldstate) {
1959 		case SDEV_RUNNING:
1960 		case SDEV_OFFLINE:
1961 			break;
1962 		default:
1963 			goto illegal;
1964 		}
1965 		break;
1966 
1967 	case SDEV_OFFLINE:
1968 		switch (oldstate) {
1969 		case SDEV_CREATED:
1970 		case SDEV_RUNNING:
1971 		case SDEV_QUIESCE:
1972 		case SDEV_BLOCK:
1973 			break;
1974 		default:
1975 			goto illegal;
1976 		}
1977 		break;
1978 
1979 	case SDEV_BLOCK:
1980 		switch (oldstate) {
1981 		case SDEV_CREATED:
1982 		case SDEV_RUNNING:
1983 			break;
1984 		default:
1985 			goto illegal;
1986 		}
1987 		break;
1988 
1989 	case SDEV_CANCEL:
1990 		switch (oldstate) {
1991 		case SDEV_CREATED:
1992 		case SDEV_RUNNING:
1993 		case SDEV_QUIESCE:
1994 		case SDEV_OFFLINE:
1995 		case SDEV_BLOCK:
1996 			break;
1997 		default:
1998 			goto illegal;
1999 		}
2000 		break;
2001 
2002 	case SDEV_DEL:
2003 		switch (oldstate) {
2004 		case SDEV_CREATED:
2005 		case SDEV_RUNNING:
2006 		case SDEV_OFFLINE:
2007 		case SDEV_CANCEL:
2008 			break;
2009 		default:
2010 			goto illegal;
2011 		}
2012 		break;
2013 
2014 	}
2015 	sdev->sdev_state = state;
2016 	return 0;
2017 
2018  illegal:
2019 	SCSI_LOG_ERROR_RECOVERY(1,
2020 				sdev_printk(KERN_ERR, sdev,
2021 					    "Illegal state transition %s->%s\n",
2022 					    scsi_device_state_name(oldstate),
2023 					    scsi_device_state_name(state))
2024 				);
2025 	return -EINVAL;
2026 }
2027 EXPORT_SYMBOL(scsi_device_set_state);
2028 
2029 /**
2030  *	scsi_device_quiesce - Block user issued commands.
2031  *	@sdev:	scsi device to quiesce.
2032  *
2033  *	This works by trying to transition to the SDEV_QUIESCE state
2034  *	(which must be a legal transition).  When the device is in this
2035  *	state, only special requests will be accepted, all others will
2036  *	be deferred.  Since special requests may also be requeued requests,
2037  *	a successful return doesn't guarantee the device will be
2038  *	totally quiescent.
2039  *
2040  *	Must be called with user context, may sleep.
2041  *
2042  *	Returns zero if unsuccessful or an error if not.
2043  **/
2044 int
2045 scsi_device_quiesce(struct scsi_device *sdev)
2046 {
2047 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2048 	if (err)
2049 		return err;
2050 
2051 	scsi_run_queue(sdev->request_queue);
2052 	while (sdev->device_busy) {
2053 		msleep_interruptible(200);
2054 		scsi_run_queue(sdev->request_queue);
2055 	}
2056 	return 0;
2057 }
2058 EXPORT_SYMBOL(scsi_device_quiesce);
2059 
2060 /**
2061  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2062  *	@sdev:	scsi device to resume.
2063  *
2064  *	Moves the device from quiesced back to running and restarts the
2065  *	queues.
2066  *
2067  *	Must be called with user context, may sleep.
2068  **/
2069 void
2070 scsi_device_resume(struct scsi_device *sdev)
2071 {
2072 	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2073 		return;
2074 	scsi_run_queue(sdev->request_queue);
2075 }
2076 EXPORT_SYMBOL(scsi_device_resume);
2077 
2078 static void
2079 device_quiesce_fn(struct scsi_device *sdev, void *data)
2080 {
2081 	scsi_device_quiesce(sdev);
2082 }
2083 
2084 void
2085 scsi_target_quiesce(struct scsi_target *starget)
2086 {
2087 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2088 }
2089 EXPORT_SYMBOL(scsi_target_quiesce);
2090 
2091 static void
2092 device_resume_fn(struct scsi_device *sdev, void *data)
2093 {
2094 	scsi_device_resume(sdev);
2095 }
2096 
2097 void
2098 scsi_target_resume(struct scsi_target *starget)
2099 {
2100 	starget_for_each_device(starget, NULL, device_resume_fn);
2101 }
2102 EXPORT_SYMBOL(scsi_target_resume);
2103 
2104 /**
2105  * scsi_internal_device_block - internal function to put a device
2106  *				temporarily into the SDEV_BLOCK state
2107  * @sdev:	device to block
2108  *
2109  * Block request made by scsi lld's to temporarily stop all
2110  * scsi commands on the specified device.  Called from interrupt
2111  * or normal process context.
2112  *
2113  * Returns zero if successful or error if not
2114  *
2115  * Notes:
2116  *	This routine transitions the device to the SDEV_BLOCK state
2117  *	(which must be a legal transition).  When the device is in this
2118  *	state, all commands are deferred until the scsi lld reenables
2119  *	the device with scsi_device_unblock or device_block_tmo fires.
2120  *	This routine assumes the host_lock is held on entry.
2121  **/
2122 int
2123 scsi_internal_device_block(struct scsi_device *sdev)
2124 {
2125 	request_queue_t *q = sdev->request_queue;
2126 	unsigned long flags;
2127 	int err = 0;
2128 
2129 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2130 	if (err)
2131 		return err;
2132 
2133 	/*
2134 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2135 	 * block layer from calling the midlayer with this device's
2136 	 * request queue.
2137 	 */
2138 	spin_lock_irqsave(q->queue_lock, flags);
2139 	blk_stop_queue(q);
2140 	spin_unlock_irqrestore(q->queue_lock, flags);
2141 
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2145 
2146 /**
2147  * scsi_internal_device_unblock - resume a device after a block request
2148  * @sdev:	device to resume
2149  *
2150  * Called by scsi lld's or the midlayer to restart the device queue
2151  * for the previously suspended scsi device.  Called from interrupt or
2152  * normal process context.
2153  *
2154  * Returns zero if successful or error if not.
2155  *
2156  * Notes:
2157  *	This routine transitions the device to the SDEV_RUNNING state
2158  *	(which must be a legal transition) allowing the midlayer to
2159  *	goose the queue for this device.  This routine assumes the
2160  *	host_lock is held upon entry.
2161  **/
2162 int
2163 scsi_internal_device_unblock(struct scsi_device *sdev)
2164 {
2165 	request_queue_t *q = sdev->request_queue;
2166 	int err;
2167 	unsigned long flags;
2168 
2169 	/*
2170 	 * Try to transition the scsi device to SDEV_RUNNING
2171 	 * and goose the device queue if successful.
2172 	 */
2173 	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2174 	if (err)
2175 		return err;
2176 
2177 	spin_lock_irqsave(q->queue_lock, flags);
2178 	blk_start_queue(q);
2179 	spin_unlock_irqrestore(q->queue_lock, flags);
2180 
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2184 
2185 static void
2186 device_block(struct scsi_device *sdev, void *data)
2187 {
2188 	scsi_internal_device_block(sdev);
2189 }
2190 
2191 static int
2192 target_block(struct device *dev, void *data)
2193 {
2194 	if (scsi_is_target_device(dev))
2195 		starget_for_each_device(to_scsi_target(dev), NULL,
2196 					device_block);
2197 	return 0;
2198 }
2199 
2200 void
2201 scsi_target_block(struct device *dev)
2202 {
2203 	if (scsi_is_target_device(dev))
2204 		starget_for_each_device(to_scsi_target(dev), NULL,
2205 					device_block);
2206 	else
2207 		device_for_each_child(dev, NULL, target_block);
2208 }
2209 EXPORT_SYMBOL_GPL(scsi_target_block);
2210 
2211 static void
2212 device_unblock(struct scsi_device *sdev, void *data)
2213 {
2214 	scsi_internal_device_unblock(sdev);
2215 }
2216 
2217 static int
2218 target_unblock(struct device *dev, void *data)
2219 {
2220 	if (scsi_is_target_device(dev))
2221 		starget_for_each_device(to_scsi_target(dev), NULL,
2222 					device_unblock);
2223 	return 0;
2224 }
2225 
2226 void
2227 scsi_target_unblock(struct device *dev)
2228 {
2229 	if (scsi_is_target_device(dev))
2230 		starget_for_each_device(to_scsi_target(dev), NULL,
2231 					device_unblock);
2232 	else
2233 		device_for_each_child(dev, NULL, target_unblock);
2234 }
2235 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2236 
2237 /**
2238  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2239  * @sg:		scatter-gather list
2240  * @sg_count:	number of segments in sg
2241  * @offset:	offset in bytes into sg, on return offset into the mapped area
2242  * @len:	bytes to map, on return number of bytes mapped
2243  *
2244  * Returns virtual address of the start of the mapped page
2245  */
2246 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2247 			  size_t *offset, size_t *len)
2248 {
2249 	int i;
2250 	size_t sg_len = 0, len_complete = 0;
2251 	struct page *page;
2252 
2253 	for (i = 0; i < sg_count; i++) {
2254 		len_complete = sg_len; /* Complete sg-entries */
2255 		sg_len += sg[i].length;
2256 		if (sg_len > *offset)
2257 			break;
2258 	}
2259 
2260 	if (unlikely(i == sg_count)) {
2261 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2262 			"elements %d\n",
2263 		       __FUNCTION__, sg_len, *offset, sg_count);
2264 		WARN_ON(1);
2265 		return NULL;
2266 	}
2267 
2268 	/* Offset starting from the beginning of first page in this sg-entry */
2269 	*offset = *offset - len_complete + sg[i].offset;
2270 
2271 	/* Assumption: contiguous pages can be accessed as "page + i" */
2272 	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2273 	*offset &= ~PAGE_MASK;
2274 
2275 	/* Bytes in this sg-entry from *offset to the end of the page */
2276 	sg_len = PAGE_SIZE - *offset;
2277 	if (*len > sg_len)
2278 		*len = sg_len;
2279 
2280 	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2281 }
2282 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2283 
2284 /**
2285  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2286  *			   mapped with scsi_kmap_atomic_sg
2287  * @virt:	virtual address to be unmapped
2288  */
2289 void scsi_kunmap_atomic_sg(void *virt)
2290 {
2291 	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2292 }
2293 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2294