xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision a9d6ceb838755c24dde8a0ca02c3378926fc63db)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 	return dev->bus == &scsi_bus_type;
77 }
78 
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85 
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 	unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92 
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY	3
99 
100 /*
101  * Function:	scsi_unprep_request()
102  *
103  * Purpose:	Remove all preparation done for a request, including its
104  *		associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:	req	- request to unprepare
107  *
108  * Lock status:	Assumed that no locks are held upon entry.
109  *
110  * Returns:	Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114 	struct scsi_cmnd *cmd = req->special;
115 
116 	blk_unprep_request(req);
117 	req->special = NULL;
118 
119 	scsi_put_command(cmd);
120 }
121 
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 	struct Scsi_Host *host = cmd->device->host;
137 	struct scsi_device *device = cmd->device;
138 	struct scsi_target *starget = scsi_target(device);
139 	struct request_queue *q = device->request_queue;
140 	unsigned long flags;
141 
142 	SCSI_LOG_MLQUEUE(1,
143 		 printk("Inserting command %p into mlqueue\n", cmd));
144 
145 	/*
146 	 * Set the appropriate busy bit for the device/host.
147 	 *
148 	 * If the host/device isn't busy, assume that something actually
149 	 * completed, and that we should be able to queue a command now.
150 	 *
151 	 * Note that the prior mid-layer assumption that any host could
152 	 * always queue at least one command is now broken.  The mid-layer
153 	 * will implement a user specifiable stall (see
154 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 	 * if a command is requeued with no other commands outstanding
156 	 * either for the device or for the host.
157 	 */
158 	switch (reason) {
159 	case SCSI_MLQUEUE_HOST_BUSY:
160 		host->host_blocked = host->max_host_blocked;
161 		break;
162 	case SCSI_MLQUEUE_DEVICE_BUSY:
163 	case SCSI_MLQUEUE_EH_RETRY:
164 		device->device_blocked = device->max_device_blocked;
165 		break;
166 	case SCSI_MLQUEUE_TARGET_BUSY:
167 		starget->target_blocked = starget->max_target_blocked;
168 		break;
169 	}
170 
171 	/*
172 	 * Decrement the counters, since these commands are no longer
173 	 * active on the host/device.
174 	 */
175 	if (unbusy)
176 		scsi_device_unbusy(device);
177 
178 	/*
179 	 * Requeue this command.  It will go before all other commands
180 	 * that are already in the queue. Schedule requeue work under
181 	 * lock such that the kblockd_schedule_work() call happens
182 	 * before blk_cleanup_queue() finishes.
183 	 */
184 	spin_lock_irqsave(q->queue_lock, flags);
185 	blk_requeue_request(q, cmd->request);
186 	kblockd_schedule_work(q, &device->requeue_work);
187 	spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189 
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 	__scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:	scsi device
216  * @cmd:	scsi command
217  * @data_direction: data direction
218  * @buffer:	data buffer
219  * @bufflen:	len of buffer
220  * @sense:	optional sense buffer
221  * @timeout:	request timeout in seconds
222  * @retries:	number of times to retry request
223  * @flags:	or into request flags;
224  * @resid:	optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 		 int data_direction, void *buffer, unsigned bufflen,
231 		 unsigned char *sense, int timeout, int retries, int flags,
232 		 int *resid)
233 {
234 	struct request *req;
235 	int write = (data_direction == DMA_TO_DEVICE);
236 	int ret = DRIVER_ERROR << 24;
237 
238 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 	if (!req)
240 		return ret;
241 
242 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
243 					buffer, bufflen, __GFP_WAIT))
244 		goto out;
245 
246 	req->cmd_len = COMMAND_SIZE(cmd[0]);
247 	memcpy(req->cmd, cmd, req->cmd_len);
248 	req->sense = sense;
249 	req->sense_len = 0;
250 	req->retries = retries;
251 	req->timeout = timeout;
252 	req->cmd_type = REQ_TYPE_BLOCK_PC;
253 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254 
255 	/*
256 	 * head injection *required* here otherwise quiesce won't work
257 	 */
258 	blk_execute_rq(req->q, NULL, req, 1);
259 
260 	/*
261 	 * Some devices (USB mass-storage in particular) may transfer
262 	 * garbage data together with a residue indicating that the data
263 	 * is invalid.  Prevent the garbage from being misinterpreted
264 	 * and prevent security leaks by zeroing out the excess data.
265 	 */
266 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268 
269 	if (resid)
270 		*resid = req->resid_len;
271 	ret = req->errors;
272  out:
273 	blk_put_request(req);
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278 
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280 		     int data_direction, void *buffer, unsigned bufflen,
281 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
282 		     int *resid, int flags)
283 {
284 	char *sense = NULL;
285 	int result;
286 
287 	if (sshdr) {
288 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 		if (!sense)
290 			return DRIVER_ERROR << 24;
291 	}
292 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293 			      sense, timeout, retries, flags, resid);
294 	if (sshdr)
295 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296 
297 	kfree(sense);
298 	return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301 
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd	- command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 	cmd->serial_number = 0;
316 	scsi_set_resid(cmd, 0);
317 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 	if (cmd->cmd_len == 0)
319 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321 
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324 	struct Scsi_Host *shost = sdev->host;
325 	struct scsi_target *starget = scsi_target(sdev);
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(shost->host_lock, flags);
329 	shost->host_busy--;
330 	starget->target_busy--;
331 	if (unlikely(scsi_host_in_recovery(shost) &&
332 		     (shost->host_failed || shost->host_eh_scheduled)))
333 		scsi_eh_wakeup(shost);
334 	spin_unlock(shost->host_lock);
335 	spin_lock(sdev->request_queue->queue_lock);
336 	sdev->device_busy--;
337 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339 
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349 	struct Scsi_Host *shost = current_sdev->host;
350 	struct scsi_device *sdev, *tmp;
351 	struct scsi_target *starget = scsi_target(current_sdev);
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(shost->host_lock, flags);
355 	starget->starget_sdev_user = NULL;
356 	spin_unlock_irqrestore(shost->host_lock, flags);
357 
358 	/*
359 	 * Call blk_run_queue for all LUNs on the target, starting with
360 	 * current_sdev. We race with others (to set starget_sdev_user),
361 	 * but in most cases, we will be first. Ideally, each LU on the
362 	 * target would get some limited time or requests on the target.
363 	 */
364 	blk_run_queue(current_sdev->request_queue);
365 
366 	spin_lock_irqsave(shost->host_lock, flags);
367 	if (starget->starget_sdev_user)
368 		goto out;
369 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
370 			same_target_siblings) {
371 		if (sdev == current_sdev)
372 			continue;
373 		if (scsi_device_get(sdev))
374 			continue;
375 
376 		spin_unlock_irqrestore(shost->host_lock, flags);
377 		blk_run_queue(sdev->request_queue);
378 		spin_lock_irqsave(shost->host_lock, flags);
379 
380 		scsi_device_put(sdev);
381 	}
382  out:
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385 
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389 		return 1;
390 
391 	return 0;
392 }
393 
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	return ((starget->can_queue > 0 &&
397 		 starget->target_busy >= starget->can_queue) ||
398 		 starget->target_blocked);
399 }
400 
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404 	    shost->host_blocked || shost->host_self_blocked)
405 		return 1;
406 
407 	return 0;
408 }
409 
410 /*
411  * Function:	scsi_run_queue()
412  *
413  * Purpose:	Select a proper request queue to serve next
414  *
415  * Arguments:	q	- last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:	The previous command was completely finished, start
420  *		a new one if possible.
421  */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424 	struct scsi_device *sdev = q->queuedata;
425 	struct Scsi_Host *shost;
426 	LIST_HEAD(starved_list);
427 	unsigned long flags;
428 
429 	shost = sdev->host;
430 	if (scsi_target(sdev)->single_lun)
431 		scsi_single_lun_run(sdev);
432 
433 	spin_lock_irqsave(shost->host_lock, flags);
434 	list_splice_init(&shost->starved_list, &starved_list);
435 
436 	while (!list_empty(&starved_list)) {
437 		struct request_queue *slq;
438 
439 		/*
440 		 * As long as shost is accepting commands and we have
441 		 * starved queues, call blk_run_queue. scsi_request_fn
442 		 * drops the queue_lock and can add us back to the
443 		 * starved_list.
444 		 *
445 		 * host_lock protects the starved_list and starved_entry.
446 		 * scsi_request_fn must get the host_lock before checking
447 		 * or modifying starved_list or starved_entry.
448 		 */
449 		if (scsi_host_is_busy(shost))
450 			break;
451 
452 		sdev = list_entry(starved_list.next,
453 				  struct scsi_device, starved_entry);
454 		list_del_init(&sdev->starved_entry);
455 		if (scsi_target_is_busy(scsi_target(sdev))) {
456 			list_move_tail(&sdev->starved_entry,
457 				       &shost->starved_list);
458 			continue;
459 		}
460 
461 		/*
462 		 * Once we drop the host lock, a racing scsi_remove_device()
463 		 * call may remove the sdev from the starved list and destroy
464 		 * it and the queue.  Mitigate by taking a reference to the
465 		 * queue and never touching the sdev again after we drop the
466 		 * host lock.  Note: if __scsi_remove_device() invokes
467 		 * blk_cleanup_queue() before the queue is run from this
468 		 * function then blk_run_queue() will return immediately since
469 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 		 */
471 		slq = sdev->request_queue;
472 		if (!blk_get_queue(slq))
473 			continue;
474 		spin_unlock_irqrestore(shost->host_lock, flags);
475 
476 		blk_run_queue(slq);
477 		blk_put_queue(slq);
478 
479 		spin_lock_irqsave(shost->host_lock, flags);
480 	}
481 	/* put any unprocessed entries back */
482 	list_splice(&starved_list, &shost->starved_list);
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 
485 	blk_run_queue(q);
486 }
487 
488 void scsi_requeue_run_queue(struct work_struct *work)
489 {
490 	struct scsi_device *sdev;
491 	struct request_queue *q;
492 
493 	sdev = container_of(work, struct scsi_device, requeue_work);
494 	q = sdev->request_queue;
495 	scsi_run_queue(q);
496 }
497 
498 /*
499  * Function:	scsi_requeue_command()
500  *
501  * Purpose:	Handle post-processing of completed commands.
502  *
503  * Arguments:	q	- queue to operate on
504  *		cmd	- command that may need to be requeued.
505  *
506  * Returns:	Nothing
507  *
508  * Notes:	After command completion, there may be blocks left
509  *		over which weren't finished by the previous command
510  *		this can be for a number of reasons - the main one is
511  *		I/O errors in the middle of the request, in which case
512  *		we need to request the blocks that come after the bad
513  *		sector.
514  * Notes:	Upon return, cmd is a stale pointer.
515  */
516 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
517 {
518 	struct scsi_device *sdev = cmd->device;
519 	struct request *req = cmd->request;
520 	unsigned long flags;
521 
522 	/*
523 	 * We need to hold a reference on the device to avoid the queue being
524 	 * killed after the unlock and before scsi_run_queue is invoked which
525 	 * may happen because scsi_unprep_request() puts the command which
526 	 * releases its reference on the device.
527 	 */
528 	get_device(&sdev->sdev_gendev);
529 
530 	spin_lock_irqsave(q->queue_lock, flags);
531 	scsi_unprep_request(req);
532 	blk_requeue_request(q, req);
533 	spin_unlock_irqrestore(q->queue_lock, flags);
534 
535 	scsi_run_queue(q);
536 
537 	put_device(&sdev->sdev_gendev);
538 }
539 
540 void scsi_next_command(struct scsi_cmnd *cmd)
541 {
542 	struct scsi_device *sdev = cmd->device;
543 	struct request_queue *q = sdev->request_queue;
544 
545 	/* need to hold a reference on the device before we let go of the cmd */
546 	get_device(&sdev->sdev_gendev);
547 
548 	scsi_put_command(cmd);
549 	scsi_run_queue(q);
550 
551 	/* ok to remove device now */
552 	put_device(&sdev->sdev_gendev);
553 }
554 
555 void scsi_run_host_queues(struct Scsi_Host *shost)
556 {
557 	struct scsi_device *sdev;
558 
559 	shost_for_each_device(sdev, shost)
560 		scsi_run_queue(sdev->request_queue);
561 }
562 
563 static void __scsi_release_buffers(struct scsi_cmnd *, int);
564 
565 /*
566  * Function:    scsi_end_request()
567  *
568  * Purpose:     Post-processing of completed commands (usually invoked at end
569  *		of upper level post-processing and scsi_io_completion).
570  *
571  * Arguments:   cmd	 - command that is complete.
572  *              error    - 0 if I/O indicates success, < 0 for I/O error.
573  *              bytes    - number of bytes of completed I/O
574  *		requeue  - indicates whether we should requeue leftovers.
575  *
576  * Lock status: Assumed that lock is not held upon entry.
577  *
578  * Returns:     cmd if requeue required, NULL otherwise.
579  *
580  * Notes:       This is called for block device requests in order to
581  *              mark some number of sectors as complete.
582  *
583  *		We are guaranteeing that the request queue will be goosed
584  *		at some point during this call.
585  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
586  */
587 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
588 					  int bytes, int requeue)
589 {
590 	struct request_queue *q = cmd->device->request_queue;
591 	struct request *req = cmd->request;
592 
593 	/*
594 	 * If there are blocks left over at the end, set up the command
595 	 * to queue the remainder of them.
596 	 */
597 	if (blk_end_request(req, error, bytes)) {
598 		/* kill remainder if no retrys */
599 		if (error && scsi_noretry_cmd(cmd))
600 			blk_end_request_all(req, error);
601 		else {
602 			if (requeue) {
603 				/*
604 				 * Bleah.  Leftovers again.  Stick the
605 				 * leftovers in the front of the
606 				 * queue, and goose the queue again.
607 				 */
608 				scsi_release_buffers(cmd);
609 				scsi_requeue_command(q, cmd);
610 				cmd = NULL;
611 			}
612 			return cmd;
613 		}
614 	}
615 
616 	/*
617 	 * This will goose the queue request function at the end, so we don't
618 	 * need to worry about launching another command.
619 	 */
620 	__scsi_release_buffers(cmd, 0);
621 	scsi_next_command(cmd);
622 	return NULL;
623 }
624 
625 static inline unsigned int scsi_sgtable_index(unsigned short nents)
626 {
627 	unsigned int index;
628 
629 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
630 
631 	if (nents <= 8)
632 		index = 0;
633 	else
634 		index = get_count_order(nents) - 3;
635 
636 	return index;
637 }
638 
639 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
640 {
641 	struct scsi_host_sg_pool *sgp;
642 
643 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
644 	mempool_free(sgl, sgp->pool);
645 }
646 
647 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
648 {
649 	struct scsi_host_sg_pool *sgp;
650 
651 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
652 	return mempool_alloc(sgp->pool, gfp_mask);
653 }
654 
655 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
656 			      gfp_t gfp_mask)
657 {
658 	int ret;
659 
660 	BUG_ON(!nents);
661 
662 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
663 			       gfp_mask, scsi_sg_alloc);
664 	if (unlikely(ret))
665 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
666 				scsi_sg_free);
667 
668 	return ret;
669 }
670 
671 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
672 {
673 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
674 }
675 
676 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
677 {
678 
679 	if (cmd->sdb.table.nents)
680 		scsi_free_sgtable(&cmd->sdb);
681 
682 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
683 
684 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
685 		struct scsi_data_buffer *bidi_sdb =
686 			cmd->request->next_rq->special;
687 		scsi_free_sgtable(bidi_sdb);
688 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
689 		cmd->request->next_rq->special = NULL;
690 	}
691 
692 	if (scsi_prot_sg_count(cmd))
693 		scsi_free_sgtable(cmd->prot_sdb);
694 }
695 
696 /*
697  * Function:    scsi_release_buffers()
698  *
699  * Purpose:     Completion processing for block device I/O requests.
700  *
701  * Arguments:   cmd	- command that we are bailing.
702  *
703  * Lock status: Assumed that no lock is held upon entry.
704  *
705  * Returns:     Nothing
706  *
707  * Notes:       In the event that an upper level driver rejects a
708  *		command, we must release resources allocated during
709  *		the __init_io() function.  Primarily this would involve
710  *		the scatter-gather table, and potentially any bounce
711  *		buffers.
712  */
713 void scsi_release_buffers(struct scsi_cmnd *cmd)
714 {
715 	__scsi_release_buffers(cmd, 1);
716 }
717 EXPORT_SYMBOL(scsi_release_buffers);
718 
719 /**
720  * __scsi_error_from_host_byte - translate SCSI error code into errno
721  * @cmd:	SCSI command (unused)
722  * @result:	scsi error code
723  *
724  * Translate SCSI error code into standard UNIX errno.
725  * Return values:
726  * -ENOLINK	temporary transport failure
727  * -EREMOTEIO	permanent target failure, do not retry
728  * -EBADE	permanent nexus failure, retry on other path
729  * -ENOSPC	No write space available
730  * -EIO		unspecified I/O error
731  */
732 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
733 {
734 	int error = 0;
735 
736 	switch(host_byte(result)) {
737 	case DID_TRANSPORT_FAILFAST:
738 		error = -ENOLINK;
739 		break;
740 	case DID_TARGET_FAILURE:
741 		set_host_byte(cmd, DID_OK);
742 		error = -EREMOTEIO;
743 		break;
744 	case DID_NEXUS_FAILURE:
745 		set_host_byte(cmd, DID_OK);
746 		error = -EBADE;
747 		break;
748 	case DID_ALLOC_FAILURE:
749 		set_host_byte(cmd, DID_OK);
750 		error = -ENOSPC;
751 		break;
752 	default:
753 		error = -EIO;
754 		break;
755 	}
756 
757 	return error;
758 }
759 
760 /*
761  * Function:    scsi_io_completion()
762  *
763  * Purpose:     Completion processing for block device I/O requests.
764  *
765  * Arguments:   cmd   - command that is finished.
766  *
767  * Lock status: Assumed that no lock is held upon entry.
768  *
769  * Returns:     Nothing
770  *
771  * Notes:       This function is matched in terms of capabilities to
772  *              the function that created the scatter-gather list.
773  *              In other words, if there are no bounce buffers
774  *              (the normal case for most drivers), we don't need
775  *              the logic to deal with cleaning up afterwards.
776  *
777  *		We must call scsi_end_request().  This will finish off
778  *		the specified number of sectors.  If we are done, the
779  *		command block will be released and the queue function
780  *		will be goosed.  If we are not done then we have to
781  *		figure out what to do next:
782  *
783  *		a) We can call scsi_requeue_command().  The request
784  *		   will be unprepared and put back on the queue.  Then
785  *		   a new command will be created for it.  This should
786  *		   be used if we made forward progress, or if we want
787  *		   to switch from READ(10) to READ(6) for example.
788  *
789  *		b) We can call scsi_queue_insert().  The request will
790  *		   be put back on the queue and retried using the same
791  *		   command as before, possibly after a delay.
792  *
793  *		c) We can call blk_end_request() with -EIO to fail
794  *		   the remainder of the request.
795  */
796 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
797 {
798 	int result = cmd->result;
799 	struct request_queue *q = cmd->device->request_queue;
800 	struct request *req = cmd->request;
801 	int error = 0;
802 	struct scsi_sense_hdr sshdr;
803 	int sense_valid = 0;
804 	int sense_deferred = 0;
805 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
806 	      ACTION_DELAYED_RETRY} action;
807 	char *description = NULL;
808 
809 	if (result) {
810 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
811 		if (sense_valid)
812 			sense_deferred = scsi_sense_is_deferred(&sshdr);
813 	}
814 
815 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
816 		if (result) {
817 			if (sense_valid && req->sense) {
818 				/*
819 				 * SG_IO wants current and deferred errors
820 				 */
821 				int len = 8 + cmd->sense_buffer[7];
822 
823 				if (len > SCSI_SENSE_BUFFERSIZE)
824 					len = SCSI_SENSE_BUFFERSIZE;
825 				memcpy(req->sense, cmd->sense_buffer,  len);
826 				req->sense_len = len;
827 			}
828 			if (!sense_deferred)
829 				error = __scsi_error_from_host_byte(cmd, result);
830 		}
831 		/*
832 		 * __scsi_error_from_host_byte may have reset the host_byte
833 		 */
834 		req->errors = cmd->result;
835 
836 		req->resid_len = scsi_get_resid(cmd);
837 
838 		if (scsi_bidi_cmnd(cmd)) {
839 			/*
840 			 * Bidi commands Must be complete as a whole,
841 			 * both sides at once.
842 			 */
843 			req->next_rq->resid_len = scsi_in(cmd)->resid;
844 
845 			scsi_release_buffers(cmd);
846 			blk_end_request_all(req, 0);
847 
848 			scsi_next_command(cmd);
849 			return;
850 		}
851 	}
852 
853 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
854 	BUG_ON(blk_bidi_rq(req));
855 
856 	/*
857 	 * Next deal with any sectors which we were able to correctly
858 	 * handle.
859 	 */
860 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
861 				      "%d bytes done.\n",
862 				      blk_rq_sectors(req), good_bytes));
863 
864 	/*
865 	 * Recovered errors need reporting, but they're always treated
866 	 * as success, so fiddle the result code here.  For BLOCK_PC
867 	 * we already took a copy of the original into rq->errors which
868 	 * is what gets returned to the user
869 	 */
870 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
871 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
872 		 * print since caller wants ATA registers. Only occurs on
873 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
874 		 */
875 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
876 			;
877 		else if (!(req->cmd_flags & REQ_QUIET))
878 			scsi_print_sense("", cmd);
879 		result = 0;
880 		/* BLOCK_PC may have set error */
881 		error = 0;
882 	}
883 
884 	/*
885 	 * A number of bytes were successfully read.  If there
886 	 * are leftovers and there is some kind of error
887 	 * (result != 0), retry the rest.
888 	 */
889 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
890 		return;
891 
892 	error = __scsi_error_from_host_byte(cmd, result);
893 
894 	if (host_byte(result) == DID_RESET) {
895 		/* Third party bus reset or reset for error recovery
896 		 * reasons.  Just retry the command and see what
897 		 * happens.
898 		 */
899 		action = ACTION_RETRY;
900 	} else if (sense_valid && !sense_deferred) {
901 		switch (sshdr.sense_key) {
902 		case UNIT_ATTENTION:
903 			if (cmd->device->removable) {
904 				/* Detected disc change.  Set a bit
905 				 * and quietly refuse further access.
906 				 */
907 				cmd->device->changed = 1;
908 				description = "Media Changed";
909 				action = ACTION_FAIL;
910 			} else {
911 				/* Must have been a power glitch, or a
912 				 * bus reset.  Could not have been a
913 				 * media change, so we just retry the
914 				 * command and see what happens.
915 				 */
916 				action = ACTION_RETRY;
917 			}
918 			break;
919 		case ILLEGAL_REQUEST:
920 			/* If we had an ILLEGAL REQUEST returned, then
921 			 * we may have performed an unsupported
922 			 * command.  The only thing this should be
923 			 * would be a ten byte read where only a six
924 			 * byte read was supported.  Also, on a system
925 			 * where READ CAPACITY failed, we may have
926 			 * read past the end of the disk.
927 			 */
928 			if ((cmd->device->use_10_for_rw &&
929 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
930 			    (cmd->cmnd[0] == READ_10 ||
931 			     cmd->cmnd[0] == WRITE_10)) {
932 				/* This will issue a new 6-byte command. */
933 				cmd->device->use_10_for_rw = 0;
934 				action = ACTION_REPREP;
935 			} else if (sshdr.asc == 0x10) /* DIX */ {
936 				description = "Host Data Integrity Failure";
937 				action = ACTION_FAIL;
938 				error = -EILSEQ;
939 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
940 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
941 				switch (cmd->cmnd[0]) {
942 				case UNMAP:
943 					description = "Discard failure";
944 					break;
945 				case WRITE_SAME:
946 				case WRITE_SAME_16:
947 					if (cmd->cmnd[1] & 0x8)
948 						description = "Discard failure";
949 					else
950 						description =
951 							"Write same failure";
952 					break;
953 				default:
954 					description = "Invalid command failure";
955 					break;
956 				}
957 				action = ACTION_FAIL;
958 				error = -EREMOTEIO;
959 			} else
960 				action = ACTION_FAIL;
961 			break;
962 		case ABORTED_COMMAND:
963 			action = ACTION_FAIL;
964 			if (sshdr.asc == 0x10) { /* DIF */
965 				description = "Target Data Integrity Failure";
966 				error = -EILSEQ;
967 			}
968 			break;
969 		case NOT_READY:
970 			/* If the device is in the process of becoming
971 			 * ready, or has a temporary blockage, retry.
972 			 */
973 			if (sshdr.asc == 0x04) {
974 				switch (sshdr.ascq) {
975 				case 0x01: /* becoming ready */
976 				case 0x04: /* format in progress */
977 				case 0x05: /* rebuild in progress */
978 				case 0x06: /* recalculation in progress */
979 				case 0x07: /* operation in progress */
980 				case 0x08: /* Long write in progress */
981 				case 0x09: /* self test in progress */
982 				case 0x14: /* space allocation in progress */
983 					action = ACTION_DELAYED_RETRY;
984 					break;
985 				default:
986 					description = "Device not ready";
987 					action = ACTION_FAIL;
988 					break;
989 				}
990 			} else {
991 				description = "Device not ready";
992 				action = ACTION_FAIL;
993 			}
994 			break;
995 		case VOLUME_OVERFLOW:
996 			/* See SSC3rXX or current. */
997 			action = ACTION_FAIL;
998 			break;
999 		default:
1000 			description = "Unhandled sense code";
1001 			action = ACTION_FAIL;
1002 			break;
1003 		}
1004 	} else {
1005 		description = "Unhandled error code";
1006 		action = ACTION_FAIL;
1007 	}
1008 
1009 	switch (action) {
1010 	case ACTION_FAIL:
1011 		/* Give up and fail the remainder of the request */
1012 		scsi_release_buffers(cmd);
1013 		if (!(req->cmd_flags & REQ_QUIET)) {
1014 			if (description)
1015 				scmd_printk(KERN_INFO, cmd, "%s\n",
1016 					    description);
1017 			scsi_print_result(cmd);
1018 			if (driver_byte(result) & DRIVER_SENSE)
1019 				scsi_print_sense("", cmd);
1020 			scsi_print_command(cmd);
1021 		}
1022 		if (blk_end_request_err(req, error))
1023 			scsi_requeue_command(q, cmd);
1024 		else
1025 			scsi_next_command(cmd);
1026 		break;
1027 	case ACTION_REPREP:
1028 		/* Unprep the request and put it back at the head of the queue.
1029 		 * A new command will be prepared and issued.
1030 		 */
1031 		scsi_release_buffers(cmd);
1032 		scsi_requeue_command(q, cmd);
1033 		break;
1034 	case ACTION_RETRY:
1035 		/* Retry the same command immediately */
1036 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1037 		break;
1038 	case ACTION_DELAYED_RETRY:
1039 		/* Retry the same command after a delay */
1040 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1041 		break;
1042 	}
1043 }
1044 
1045 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1046 			     gfp_t gfp_mask)
1047 {
1048 	int count;
1049 
1050 	/*
1051 	 * If sg table allocation fails, requeue request later.
1052 	 */
1053 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1054 					gfp_mask))) {
1055 		return BLKPREP_DEFER;
1056 	}
1057 
1058 	req->buffer = NULL;
1059 
1060 	/*
1061 	 * Next, walk the list, and fill in the addresses and sizes of
1062 	 * each segment.
1063 	 */
1064 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1065 	BUG_ON(count > sdb->table.nents);
1066 	sdb->table.nents = count;
1067 	sdb->length = blk_rq_bytes(req);
1068 	return BLKPREP_OK;
1069 }
1070 
1071 /*
1072  * Function:    scsi_init_io()
1073  *
1074  * Purpose:     SCSI I/O initialize function.
1075  *
1076  * Arguments:   cmd   - Command descriptor we wish to initialize
1077  *
1078  * Returns:     0 on success
1079  *		BLKPREP_DEFER if the failure is retryable
1080  *		BLKPREP_KILL if the failure is fatal
1081  */
1082 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1083 {
1084 	struct request *rq = cmd->request;
1085 
1086 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1087 	if (error)
1088 		goto err_exit;
1089 
1090 	if (blk_bidi_rq(rq)) {
1091 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1092 			scsi_sdb_cache, GFP_ATOMIC);
1093 		if (!bidi_sdb) {
1094 			error = BLKPREP_DEFER;
1095 			goto err_exit;
1096 		}
1097 
1098 		rq->next_rq->special = bidi_sdb;
1099 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1100 		if (error)
1101 			goto err_exit;
1102 	}
1103 
1104 	if (blk_integrity_rq(rq)) {
1105 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1106 		int ivecs, count;
1107 
1108 		BUG_ON(prot_sdb == NULL);
1109 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1110 
1111 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1112 			error = BLKPREP_DEFER;
1113 			goto err_exit;
1114 		}
1115 
1116 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1117 						prot_sdb->table.sgl);
1118 		BUG_ON(unlikely(count > ivecs));
1119 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1120 
1121 		cmd->prot_sdb = prot_sdb;
1122 		cmd->prot_sdb->table.nents = count;
1123 	}
1124 
1125 	return BLKPREP_OK ;
1126 
1127 err_exit:
1128 	scsi_release_buffers(cmd);
1129 	cmd->request->special = NULL;
1130 	scsi_put_command(cmd);
1131 	return error;
1132 }
1133 EXPORT_SYMBOL(scsi_init_io);
1134 
1135 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1136 		struct request *req)
1137 {
1138 	struct scsi_cmnd *cmd;
1139 
1140 	if (!req->special) {
1141 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1142 		if (unlikely(!cmd))
1143 			return NULL;
1144 		req->special = cmd;
1145 	} else {
1146 		cmd = req->special;
1147 	}
1148 
1149 	/* pull a tag out of the request if we have one */
1150 	cmd->tag = req->tag;
1151 	cmd->request = req;
1152 
1153 	cmd->cmnd = req->cmd;
1154 	cmd->prot_op = SCSI_PROT_NORMAL;
1155 
1156 	return cmd;
1157 }
1158 
1159 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1160 {
1161 	struct scsi_cmnd *cmd;
1162 	int ret = scsi_prep_state_check(sdev, req);
1163 
1164 	if (ret != BLKPREP_OK)
1165 		return ret;
1166 
1167 	cmd = scsi_get_cmd_from_req(sdev, req);
1168 	if (unlikely(!cmd))
1169 		return BLKPREP_DEFER;
1170 
1171 	/*
1172 	 * BLOCK_PC requests may transfer data, in which case they must
1173 	 * a bio attached to them.  Or they might contain a SCSI command
1174 	 * that does not transfer data, in which case they may optionally
1175 	 * submit a request without an attached bio.
1176 	 */
1177 	if (req->bio) {
1178 		int ret;
1179 
1180 		BUG_ON(!req->nr_phys_segments);
1181 
1182 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1183 		if (unlikely(ret))
1184 			return ret;
1185 	} else {
1186 		BUG_ON(blk_rq_bytes(req));
1187 
1188 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1189 		req->buffer = NULL;
1190 	}
1191 
1192 	cmd->cmd_len = req->cmd_len;
1193 	if (!blk_rq_bytes(req))
1194 		cmd->sc_data_direction = DMA_NONE;
1195 	else if (rq_data_dir(req) == WRITE)
1196 		cmd->sc_data_direction = DMA_TO_DEVICE;
1197 	else
1198 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1199 
1200 	cmd->transfersize = blk_rq_bytes(req);
1201 	cmd->allowed = req->retries;
1202 	return BLKPREP_OK;
1203 }
1204 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1205 
1206 /*
1207  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1208  * from filesystems that still need to be translated to SCSI CDBs from
1209  * the ULD.
1210  */
1211 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1212 {
1213 	struct scsi_cmnd *cmd;
1214 	int ret = scsi_prep_state_check(sdev, req);
1215 
1216 	if (ret != BLKPREP_OK)
1217 		return ret;
1218 
1219 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1220 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1221 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1222 		if (ret != BLKPREP_OK)
1223 			return ret;
1224 	}
1225 
1226 	/*
1227 	 * Filesystem requests must transfer data.
1228 	 */
1229 	BUG_ON(!req->nr_phys_segments);
1230 
1231 	cmd = scsi_get_cmd_from_req(sdev, req);
1232 	if (unlikely(!cmd))
1233 		return BLKPREP_DEFER;
1234 
1235 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1236 	return scsi_init_io(cmd, GFP_ATOMIC);
1237 }
1238 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1239 
1240 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1241 {
1242 	int ret = BLKPREP_OK;
1243 
1244 	/*
1245 	 * If the device is not in running state we will reject some
1246 	 * or all commands.
1247 	 */
1248 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1249 		switch (sdev->sdev_state) {
1250 		case SDEV_OFFLINE:
1251 		case SDEV_TRANSPORT_OFFLINE:
1252 			/*
1253 			 * If the device is offline we refuse to process any
1254 			 * commands.  The device must be brought online
1255 			 * before trying any recovery commands.
1256 			 */
1257 			sdev_printk(KERN_ERR, sdev,
1258 				    "rejecting I/O to offline device\n");
1259 			ret = BLKPREP_KILL;
1260 			break;
1261 		case SDEV_DEL:
1262 			/*
1263 			 * If the device is fully deleted, we refuse to
1264 			 * process any commands as well.
1265 			 */
1266 			sdev_printk(KERN_ERR, sdev,
1267 				    "rejecting I/O to dead device\n");
1268 			ret = BLKPREP_KILL;
1269 			break;
1270 		case SDEV_QUIESCE:
1271 		case SDEV_BLOCK:
1272 		case SDEV_CREATED_BLOCK:
1273 			/*
1274 			 * If the devices is blocked we defer normal commands.
1275 			 */
1276 			if (!(req->cmd_flags & REQ_PREEMPT))
1277 				ret = BLKPREP_DEFER;
1278 			break;
1279 		default:
1280 			/*
1281 			 * For any other not fully online state we only allow
1282 			 * special commands.  In particular any user initiated
1283 			 * command is not allowed.
1284 			 */
1285 			if (!(req->cmd_flags & REQ_PREEMPT))
1286 				ret = BLKPREP_KILL;
1287 			break;
1288 		}
1289 	}
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_state_check);
1293 
1294 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1295 {
1296 	struct scsi_device *sdev = q->queuedata;
1297 
1298 	switch (ret) {
1299 	case BLKPREP_KILL:
1300 		req->errors = DID_NO_CONNECT << 16;
1301 		/* release the command and kill it */
1302 		if (req->special) {
1303 			struct scsi_cmnd *cmd = req->special;
1304 			scsi_release_buffers(cmd);
1305 			scsi_put_command(cmd);
1306 			req->special = NULL;
1307 		}
1308 		break;
1309 	case BLKPREP_DEFER:
1310 		/*
1311 		 * If we defer, the blk_peek_request() returns NULL, but the
1312 		 * queue must be restarted, so we schedule a callback to happen
1313 		 * shortly.
1314 		 */
1315 		if (sdev->device_busy == 0)
1316 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1317 		break;
1318 	default:
1319 		req->cmd_flags |= REQ_DONTPREP;
1320 	}
1321 
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(scsi_prep_return);
1325 
1326 int scsi_prep_fn(struct request_queue *q, struct request *req)
1327 {
1328 	struct scsi_device *sdev = q->queuedata;
1329 	int ret = BLKPREP_KILL;
1330 
1331 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1332 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1333 	return scsi_prep_return(q, req, ret);
1334 }
1335 EXPORT_SYMBOL(scsi_prep_fn);
1336 
1337 /*
1338  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1339  * return 0.
1340  *
1341  * Called with the queue_lock held.
1342  */
1343 static inline int scsi_dev_queue_ready(struct request_queue *q,
1344 				  struct scsi_device *sdev)
1345 {
1346 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1347 		/*
1348 		 * unblock after device_blocked iterates to zero
1349 		 */
1350 		if (--sdev->device_blocked == 0) {
1351 			SCSI_LOG_MLQUEUE(3,
1352 				   sdev_printk(KERN_INFO, sdev,
1353 				   "unblocking device at zero depth\n"));
1354 		} else {
1355 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1356 			return 0;
1357 		}
1358 	}
1359 	if (scsi_device_is_busy(sdev))
1360 		return 0;
1361 
1362 	return 1;
1363 }
1364 
1365 
1366 /*
1367  * scsi_target_queue_ready: checks if there we can send commands to target
1368  * @sdev: scsi device on starget to check.
1369  *
1370  * Called with the host lock held.
1371  */
1372 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1373 					   struct scsi_device *sdev)
1374 {
1375 	struct scsi_target *starget = scsi_target(sdev);
1376 
1377 	if (starget->single_lun) {
1378 		if (starget->starget_sdev_user &&
1379 		    starget->starget_sdev_user != sdev)
1380 			return 0;
1381 		starget->starget_sdev_user = sdev;
1382 	}
1383 
1384 	if (starget->target_busy == 0 && starget->target_blocked) {
1385 		/*
1386 		 * unblock after target_blocked iterates to zero
1387 		 */
1388 		if (--starget->target_blocked == 0) {
1389 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1390 					 "unblocking target at zero depth\n"));
1391 		} else
1392 			return 0;
1393 	}
1394 
1395 	if (scsi_target_is_busy(starget)) {
1396 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1397 		return 0;
1398 	}
1399 
1400 	return 1;
1401 }
1402 
1403 /*
1404  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1405  * return 0. We must end up running the queue again whenever 0 is
1406  * returned, else IO can hang.
1407  *
1408  * Called with host_lock held.
1409  */
1410 static inline int scsi_host_queue_ready(struct request_queue *q,
1411 				   struct Scsi_Host *shost,
1412 				   struct scsi_device *sdev)
1413 {
1414 	if (scsi_host_in_recovery(shost))
1415 		return 0;
1416 	if (shost->host_busy == 0 && shost->host_blocked) {
1417 		/*
1418 		 * unblock after host_blocked iterates to zero
1419 		 */
1420 		if (--shost->host_blocked == 0) {
1421 			SCSI_LOG_MLQUEUE(3,
1422 				printk("scsi%d unblocking host at zero depth\n",
1423 					shost->host_no));
1424 		} else {
1425 			return 0;
1426 		}
1427 	}
1428 	if (scsi_host_is_busy(shost)) {
1429 		if (list_empty(&sdev->starved_entry))
1430 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1431 		return 0;
1432 	}
1433 
1434 	/* We're OK to process the command, so we can't be starved */
1435 	if (!list_empty(&sdev->starved_entry))
1436 		list_del_init(&sdev->starved_entry);
1437 
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Busy state exporting function for request stacking drivers.
1443  *
1444  * For efficiency, no lock is taken to check the busy state of
1445  * shost/starget/sdev, since the returned value is not guaranteed and
1446  * may be changed after request stacking drivers call the function,
1447  * regardless of taking lock or not.
1448  *
1449  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1450  * needs to return 'not busy'. Otherwise, request stacking drivers
1451  * may hold requests forever.
1452  */
1453 static int scsi_lld_busy(struct request_queue *q)
1454 {
1455 	struct scsi_device *sdev = q->queuedata;
1456 	struct Scsi_Host *shost;
1457 
1458 	if (blk_queue_dying(q))
1459 		return 0;
1460 
1461 	shost = sdev->host;
1462 
1463 	/*
1464 	 * Ignore host/starget busy state.
1465 	 * Since block layer does not have a concept of fairness across
1466 	 * multiple queues, congestion of host/starget needs to be handled
1467 	 * in SCSI layer.
1468 	 */
1469 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1470 		return 1;
1471 
1472 	return 0;
1473 }
1474 
1475 /*
1476  * Kill a request for a dead device
1477  */
1478 static void scsi_kill_request(struct request *req, struct request_queue *q)
1479 {
1480 	struct scsi_cmnd *cmd = req->special;
1481 	struct scsi_device *sdev;
1482 	struct scsi_target *starget;
1483 	struct Scsi_Host *shost;
1484 
1485 	blk_start_request(req);
1486 
1487 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1488 
1489 	sdev = cmd->device;
1490 	starget = scsi_target(sdev);
1491 	shost = sdev->host;
1492 	scsi_init_cmd_errh(cmd);
1493 	cmd->result = DID_NO_CONNECT << 16;
1494 	atomic_inc(&cmd->device->iorequest_cnt);
1495 
1496 	/*
1497 	 * SCSI request completion path will do scsi_device_unbusy(),
1498 	 * bump busy counts.  To bump the counters, we need to dance
1499 	 * with the locks as normal issue path does.
1500 	 */
1501 	sdev->device_busy++;
1502 	spin_unlock(sdev->request_queue->queue_lock);
1503 	spin_lock(shost->host_lock);
1504 	shost->host_busy++;
1505 	starget->target_busy++;
1506 	spin_unlock(shost->host_lock);
1507 	spin_lock(sdev->request_queue->queue_lock);
1508 
1509 	blk_complete_request(req);
1510 }
1511 
1512 static void scsi_softirq_done(struct request *rq)
1513 {
1514 	struct scsi_cmnd *cmd = rq->special;
1515 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1516 	int disposition;
1517 
1518 	INIT_LIST_HEAD(&cmd->eh_entry);
1519 
1520 	atomic_inc(&cmd->device->iodone_cnt);
1521 	if (cmd->result)
1522 		atomic_inc(&cmd->device->ioerr_cnt);
1523 
1524 	disposition = scsi_decide_disposition(cmd);
1525 	if (disposition != SUCCESS &&
1526 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1527 		sdev_printk(KERN_ERR, cmd->device,
1528 			    "timing out command, waited %lus\n",
1529 			    wait_for/HZ);
1530 		disposition = SUCCESS;
1531 	}
1532 
1533 	scsi_log_completion(cmd, disposition);
1534 
1535 	switch (disposition) {
1536 		case SUCCESS:
1537 			scsi_finish_command(cmd);
1538 			break;
1539 		case NEEDS_RETRY:
1540 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1541 			break;
1542 		case ADD_TO_MLQUEUE:
1543 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1544 			break;
1545 		default:
1546 			if (!scsi_eh_scmd_add(cmd, 0))
1547 				scsi_finish_command(cmd);
1548 	}
1549 }
1550 
1551 /*
1552  * Function:    scsi_request_fn()
1553  *
1554  * Purpose:     Main strategy routine for SCSI.
1555  *
1556  * Arguments:   q       - Pointer to actual queue.
1557  *
1558  * Returns:     Nothing
1559  *
1560  * Lock status: IO request lock assumed to be held when called.
1561  */
1562 static void scsi_request_fn(struct request_queue *q)
1563 {
1564 	struct scsi_device *sdev = q->queuedata;
1565 	struct Scsi_Host *shost;
1566 	struct scsi_cmnd *cmd;
1567 	struct request *req;
1568 
1569 	if(!get_device(&sdev->sdev_gendev))
1570 		/* We must be tearing the block queue down already */
1571 		return;
1572 
1573 	/*
1574 	 * To start with, we keep looping until the queue is empty, or until
1575 	 * the host is no longer able to accept any more requests.
1576 	 */
1577 	shost = sdev->host;
1578 	for (;;) {
1579 		int rtn;
1580 		/*
1581 		 * get next queueable request.  We do this early to make sure
1582 		 * that the request is fully prepared even if we cannot
1583 		 * accept it.
1584 		 */
1585 		req = blk_peek_request(q);
1586 		if (!req || !scsi_dev_queue_ready(q, sdev))
1587 			break;
1588 
1589 		if (unlikely(!scsi_device_online(sdev))) {
1590 			sdev_printk(KERN_ERR, sdev,
1591 				    "rejecting I/O to offline device\n");
1592 			scsi_kill_request(req, q);
1593 			continue;
1594 		}
1595 
1596 
1597 		/*
1598 		 * Remove the request from the request list.
1599 		 */
1600 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1601 			blk_start_request(req);
1602 		sdev->device_busy++;
1603 
1604 		spin_unlock(q->queue_lock);
1605 		cmd = req->special;
1606 		if (unlikely(cmd == NULL)) {
1607 			printk(KERN_CRIT "impossible request in %s.\n"
1608 					 "please mail a stack trace to "
1609 					 "linux-scsi@vger.kernel.org\n",
1610 					 __func__);
1611 			blk_dump_rq_flags(req, "foo");
1612 			BUG();
1613 		}
1614 		spin_lock(shost->host_lock);
1615 
1616 		/*
1617 		 * We hit this when the driver is using a host wide
1618 		 * tag map. For device level tag maps the queue_depth check
1619 		 * in the device ready fn would prevent us from trying
1620 		 * to allocate a tag. Since the map is a shared host resource
1621 		 * we add the dev to the starved list so it eventually gets
1622 		 * a run when a tag is freed.
1623 		 */
1624 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1625 			if (list_empty(&sdev->starved_entry))
1626 				list_add_tail(&sdev->starved_entry,
1627 					      &shost->starved_list);
1628 			goto not_ready;
1629 		}
1630 
1631 		if (!scsi_target_queue_ready(shost, sdev))
1632 			goto not_ready;
1633 
1634 		if (!scsi_host_queue_ready(q, shost, sdev))
1635 			goto not_ready;
1636 
1637 		scsi_target(sdev)->target_busy++;
1638 		shost->host_busy++;
1639 
1640 		/*
1641 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1642 		 *		take the lock again.
1643 		 */
1644 		spin_unlock_irq(shost->host_lock);
1645 
1646 		/*
1647 		 * Finally, initialize any error handling parameters, and set up
1648 		 * the timers for timeouts.
1649 		 */
1650 		scsi_init_cmd_errh(cmd);
1651 
1652 		/*
1653 		 * Dispatch the command to the low-level driver.
1654 		 */
1655 		rtn = scsi_dispatch_cmd(cmd);
1656 		spin_lock_irq(q->queue_lock);
1657 		if (rtn)
1658 			goto out_delay;
1659 	}
1660 
1661 	goto out;
1662 
1663  not_ready:
1664 	spin_unlock_irq(shost->host_lock);
1665 
1666 	/*
1667 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1668 	 * must return with queue_lock held.
1669 	 *
1670 	 * Decrementing device_busy without checking it is OK, as all such
1671 	 * cases (host limits or settings) should run the queue at some
1672 	 * later time.
1673 	 */
1674 	spin_lock_irq(q->queue_lock);
1675 	blk_requeue_request(q, req);
1676 	sdev->device_busy--;
1677 out_delay:
1678 	if (sdev->device_busy == 0)
1679 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1680 out:
1681 	/* must be careful here...if we trigger the ->remove() function
1682 	 * we cannot be holding the q lock */
1683 	spin_unlock_irq(q->queue_lock);
1684 	put_device(&sdev->sdev_gendev);
1685 	spin_lock_irq(q->queue_lock);
1686 }
1687 
1688 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1689 {
1690 	struct device *host_dev;
1691 	u64 bounce_limit = 0xffffffff;
1692 
1693 	if (shost->unchecked_isa_dma)
1694 		return BLK_BOUNCE_ISA;
1695 	/*
1696 	 * Platforms with virtual-DMA translation
1697 	 * hardware have no practical limit.
1698 	 */
1699 	if (!PCI_DMA_BUS_IS_PHYS)
1700 		return BLK_BOUNCE_ANY;
1701 
1702 	host_dev = scsi_get_device(shost);
1703 	if (host_dev && host_dev->dma_mask)
1704 		bounce_limit = *host_dev->dma_mask;
1705 
1706 	return bounce_limit;
1707 }
1708 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1709 
1710 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1711 					 request_fn_proc *request_fn)
1712 {
1713 	struct request_queue *q;
1714 	struct device *dev = shost->dma_dev;
1715 
1716 	q = blk_init_queue(request_fn, NULL);
1717 	if (!q)
1718 		return NULL;
1719 
1720 	/*
1721 	 * this limit is imposed by hardware restrictions
1722 	 */
1723 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1724 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1725 
1726 	if (scsi_host_prot_dma(shost)) {
1727 		shost->sg_prot_tablesize =
1728 			min_not_zero(shost->sg_prot_tablesize,
1729 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1730 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1731 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1732 	}
1733 
1734 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1735 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1736 	blk_queue_segment_boundary(q, shost->dma_boundary);
1737 	dma_set_seg_boundary(dev, shost->dma_boundary);
1738 
1739 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1740 
1741 	if (!shost->use_clustering)
1742 		q->limits.cluster = 0;
1743 
1744 	/*
1745 	 * set a reasonable default alignment on word boundaries: the
1746 	 * host and device may alter it using
1747 	 * blk_queue_update_dma_alignment() later.
1748 	 */
1749 	blk_queue_dma_alignment(q, 0x03);
1750 
1751 	return q;
1752 }
1753 EXPORT_SYMBOL(__scsi_alloc_queue);
1754 
1755 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1756 {
1757 	struct request_queue *q;
1758 
1759 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1760 	if (!q)
1761 		return NULL;
1762 
1763 	blk_queue_prep_rq(q, scsi_prep_fn);
1764 	blk_queue_softirq_done(q, scsi_softirq_done);
1765 	blk_queue_rq_timed_out(q, scsi_times_out);
1766 	blk_queue_lld_busy(q, scsi_lld_busy);
1767 	return q;
1768 }
1769 
1770 /*
1771  * Function:    scsi_block_requests()
1772  *
1773  * Purpose:     Utility function used by low-level drivers to prevent further
1774  *		commands from being queued to the device.
1775  *
1776  * Arguments:   shost       - Host in question
1777  *
1778  * Returns:     Nothing
1779  *
1780  * Lock status: No locks are assumed held.
1781  *
1782  * Notes:       There is no timer nor any other means by which the requests
1783  *		get unblocked other than the low-level driver calling
1784  *		scsi_unblock_requests().
1785  */
1786 void scsi_block_requests(struct Scsi_Host *shost)
1787 {
1788 	shost->host_self_blocked = 1;
1789 }
1790 EXPORT_SYMBOL(scsi_block_requests);
1791 
1792 /*
1793  * Function:    scsi_unblock_requests()
1794  *
1795  * Purpose:     Utility function used by low-level drivers to allow further
1796  *		commands from being queued to the device.
1797  *
1798  * Arguments:   shost       - Host in question
1799  *
1800  * Returns:     Nothing
1801  *
1802  * Lock status: No locks are assumed held.
1803  *
1804  * Notes:       There is no timer nor any other means by which the requests
1805  *		get unblocked other than the low-level driver calling
1806  *		scsi_unblock_requests().
1807  *
1808  *		This is done as an API function so that changes to the
1809  *		internals of the scsi mid-layer won't require wholesale
1810  *		changes to drivers that use this feature.
1811  */
1812 void scsi_unblock_requests(struct Scsi_Host *shost)
1813 {
1814 	shost->host_self_blocked = 0;
1815 	scsi_run_host_queues(shost);
1816 }
1817 EXPORT_SYMBOL(scsi_unblock_requests);
1818 
1819 int __init scsi_init_queue(void)
1820 {
1821 	int i;
1822 
1823 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1824 					   sizeof(struct scsi_data_buffer),
1825 					   0, 0, NULL);
1826 	if (!scsi_sdb_cache) {
1827 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1828 		return -ENOMEM;
1829 	}
1830 
1831 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1832 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1833 		int size = sgp->size * sizeof(struct scatterlist);
1834 
1835 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1836 				SLAB_HWCACHE_ALIGN, NULL);
1837 		if (!sgp->slab) {
1838 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1839 					sgp->name);
1840 			goto cleanup_sdb;
1841 		}
1842 
1843 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1844 						     sgp->slab);
1845 		if (!sgp->pool) {
1846 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1847 					sgp->name);
1848 			goto cleanup_sdb;
1849 		}
1850 	}
1851 
1852 	return 0;
1853 
1854 cleanup_sdb:
1855 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1856 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1857 		if (sgp->pool)
1858 			mempool_destroy(sgp->pool);
1859 		if (sgp->slab)
1860 			kmem_cache_destroy(sgp->slab);
1861 	}
1862 	kmem_cache_destroy(scsi_sdb_cache);
1863 
1864 	return -ENOMEM;
1865 }
1866 
1867 void scsi_exit_queue(void)
1868 {
1869 	int i;
1870 
1871 	kmem_cache_destroy(scsi_sdb_cache);
1872 
1873 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1874 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1875 		mempool_destroy(sgp->pool);
1876 		kmem_cache_destroy(sgp->slab);
1877 	}
1878 }
1879 
1880 /**
1881  *	scsi_mode_select - issue a mode select
1882  *	@sdev:	SCSI device to be queried
1883  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1884  *	@sp:	Save page bit (0 == don't save, 1 == save)
1885  *	@modepage: mode page being requested
1886  *	@buffer: request buffer (may not be smaller than eight bytes)
1887  *	@len:	length of request buffer.
1888  *	@timeout: command timeout
1889  *	@retries: number of retries before failing
1890  *	@data: returns a structure abstracting the mode header data
1891  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1892  *		must be SCSI_SENSE_BUFFERSIZE big.
1893  *
1894  *	Returns zero if successful; negative error number or scsi
1895  *	status on error
1896  *
1897  */
1898 int
1899 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1900 		 unsigned char *buffer, int len, int timeout, int retries,
1901 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1902 {
1903 	unsigned char cmd[10];
1904 	unsigned char *real_buffer;
1905 	int ret;
1906 
1907 	memset(cmd, 0, sizeof(cmd));
1908 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1909 
1910 	if (sdev->use_10_for_ms) {
1911 		if (len > 65535)
1912 			return -EINVAL;
1913 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1914 		if (!real_buffer)
1915 			return -ENOMEM;
1916 		memcpy(real_buffer + 8, buffer, len);
1917 		len += 8;
1918 		real_buffer[0] = 0;
1919 		real_buffer[1] = 0;
1920 		real_buffer[2] = data->medium_type;
1921 		real_buffer[3] = data->device_specific;
1922 		real_buffer[4] = data->longlba ? 0x01 : 0;
1923 		real_buffer[5] = 0;
1924 		real_buffer[6] = data->block_descriptor_length >> 8;
1925 		real_buffer[7] = data->block_descriptor_length;
1926 
1927 		cmd[0] = MODE_SELECT_10;
1928 		cmd[7] = len >> 8;
1929 		cmd[8] = len;
1930 	} else {
1931 		if (len > 255 || data->block_descriptor_length > 255 ||
1932 		    data->longlba)
1933 			return -EINVAL;
1934 
1935 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1936 		if (!real_buffer)
1937 			return -ENOMEM;
1938 		memcpy(real_buffer + 4, buffer, len);
1939 		len += 4;
1940 		real_buffer[0] = 0;
1941 		real_buffer[1] = data->medium_type;
1942 		real_buffer[2] = data->device_specific;
1943 		real_buffer[3] = data->block_descriptor_length;
1944 
1945 
1946 		cmd[0] = MODE_SELECT;
1947 		cmd[4] = len;
1948 	}
1949 
1950 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1951 			       sshdr, timeout, retries, NULL);
1952 	kfree(real_buffer);
1953 	return ret;
1954 }
1955 EXPORT_SYMBOL_GPL(scsi_mode_select);
1956 
1957 /**
1958  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1959  *	@sdev:	SCSI device to be queried
1960  *	@dbd:	set if mode sense will allow block descriptors to be returned
1961  *	@modepage: mode page being requested
1962  *	@buffer: request buffer (may not be smaller than eight bytes)
1963  *	@len:	length of request buffer.
1964  *	@timeout: command timeout
1965  *	@retries: number of retries before failing
1966  *	@data: returns a structure abstracting the mode header data
1967  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1968  *		must be SCSI_SENSE_BUFFERSIZE big.
1969  *
1970  *	Returns zero if unsuccessful, or the header offset (either 4
1971  *	or 8 depending on whether a six or ten byte command was
1972  *	issued) if successful.
1973  */
1974 int
1975 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1976 		  unsigned char *buffer, int len, int timeout, int retries,
1977 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1978 {
1979 	unsigned char cmd[12];
1980 	int use_10_for_ms;
1981 	int header_length;
1982 	int result;
1983 	struct scsi_sense_hdr my_sshdr;
1984 
1985 	memset(data, 0, sizeof(*data));
1986 	memset(&cmd[0], 0, 12);
1987 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1988 	cmd[2] = modepage;
1989 
1990 	/* caller might not be interested in sense, but we need it */
1991 	if (!sshdr)
1992 		sshdr = &my_sshdr;
1993 
1994  retry:
1995 	use_10_for_ms = sdev->use_10_for_ms;
1996 
1997 	if (use_10_for_ms) {
1998 		if (len < 8)
1999 			len = 8;
2000 
2001 		cmd[0] = MODE_SENSE_10;
2002 		cmd[8] = len;
2003 		header_length = 8;
2004 	} else {
2005 		if (len < 4)
2006 			len = 4;
2007 
2008 		cmd[0] = MODE_SENSE;
2009 		cmd[4] = len;
2010 		header_length = 4;
2011 	}
2012 
2013 	memset(buffer, 0, len);
2014 
2015 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2016 				  sshdr, timeout, retries, NULL);
2017 
2018 	/* This code looks awful: what it's doing is making sure an
2019 	 * ILLEGAL REQUEST sense return identifies the actual command
2020 	 * byte as the problem.  MODE_SENSE commands can return
2021 	 * ILLEGAL REQUEST if the code page isn't supported */
2022 
2023 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2024 	    (driver_byte(result) & DRIVER_SENSE)) {
2025 		if (scsi_sense_valid(sshdr)) {
2026 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2027 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2028 				/*
2029 				 * Invalid command operation code
2030 				 */
2031 				sdev->use_10_for_ms = 0;
2032 				goto retry;
2033 			}
2034 		}
2035 	}
2036 
2037 	if(scsi_status_is_good(result)) {
2038 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2039 			     (modepage == 6 || modepage == 8))) {
2040 			/* Initio breakage? */
2041 			header_length = 0;
2042 			data->length = 13;
2043 			data->medium_type = 0;
2044 			data->device_specific = 0;
2045 			data->longlba = 0;
2046 			data->block_descriptor_length = 0;
2047 		} else if(use_10_for_ms) {
2048 			data->length = buffer[0]*256 + buffer[1] + 2;
2049 			data->medium_type = buffer[2];
2050 			data->device_specific = buffer[3];
2051 			data->longlba = buffer[4] & 0x01;
2052 			data->block_descriptor_length = buffer[6]*256
2053 				+ buffer[7];
2054 		} else {
2055 			data->length = buffer[0] + 1;
2056 			data->medium_type = buffer[1];
2057 			data->device_specific = buffer[2];
2058 			data->block_descriptor_length = buffer[3];
2059 		}
2060 		data->header_length = header_length;
2061 	}
2062 
2063 	return result;
2064 }
2065 EXPORT_SYMBOL(scsi_mode_sense);
2066 
2067 /**
2068  *	scsi_test_unit_ready - test if unit is ready
2069  *	@sdev:	scsi device to change the state of.
2070  *	@timeout: command timeout
2071  *	@retries: number of retries before failing
2072  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2073  *		returning sense. Make sure that this is cleared before passing
2074  *		in.
2075  *
2076  *	Returns zero if unsuccessful or an error if TUR failed.  For
2077  *	removable media, UNIT_ATTENTION sets ->changed flag.
2078  **/
2079 int
2080 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2081 		     struct scsi_sense_hdr *sshdr_external)
2082 {
2083 	char cmd[] = {
2084 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2085 	};
2086 	struct scsi_sense_hdr *sshdr;
2087 	int result;
2088 
2089 	if (!sshdr_external)
2090 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2091 	else
2092 		sshdr = sshdr_external;
2093 
2094 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2095 	do {
2096 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2097 					  timeout, retries, NULL);
2098 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2099 		    sshdr->sense_key == UNIT_ATTENTION)
2100 			sdev->changed = 1;
2101 	} while (scsi_sense_valid(sshdr) &&
2102 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2103 
2104 	if (!sshdr_external)
2105 		kfree(sshdr);
2106 	return result;
2107 }
2108 EXPORT_SYMBOL(scsi_test_unit_ready);
2109 
2110 /**
2111  *	scsi_device_set_state - Take the given device through the device state model.
2112  *	@sdev:	scsi device to change the state of.
2113  *	@state:	state to change to.
2114  *
2115  *	Returns zero if unsuccessful or an error if the requested
2116  *	transition is illegal.
2117  */
2118 int
2119 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2120 {
2121 	enum scsi_device_state oldstate = sdev->sdev_state;
2122 
2123 	if (state == oldstate)
2124 		return 0;
2125 
2126 	switch (state) {
2127 	case SDEV_CREATED:
2128 		switch (oldstate) {
2129 		case SDEV_CREATED_BLOCK:
2130 			break;
2131 		default:
2132 			goto illegal;
2133 		}
2134 		break;
2135 
2136 	case SDEV_RUNNING:
2137 		switch (oldstate) {
2138 		case SDEV_CREATED:
2139 		case SDEV_OFFLINE:
2140 		case SDEV_TRANSPORT_OFFLINE:
2141 		case SDEV_QUIESCE:
2142 		case SDEV_BLOCK:
2143 			break;
2144 		default:
2145 			goto illegal;
2146 		}
2147 		break;
2148 
2149 	case SDEV_QUIESCE:
2150 		switch (oldstate) {
2151 		case SDEV_RUNNING:
2152 		case SDEV_OFFLINE:
2153 		case SDEV_TRANSPORT_OFFLINE:
2154 			break;
2155 		default:
2156 			goto illegal;
2157 		}
2158 		break;
2159 
2160 	case SDEV_OFFLINE:
2161 	case SDEV_TRANSPORT_OFFLINE:
2162 		switch (oldstate) {
2163 		case SDEV_CREATED:
2164 		case SDEV_RUNNING:
2165 		case SDEV_QUIESCE:
2166 		case SDEV_BLOCK:
2167 			break;
2168 		default:
2169 			goto illegal;
2170 		}
2171 		break;
2172 
2173 	case SDEV_BLOCK:
2174 		switch (oldstate) {
2175 		case SDEV_RUNNING:
2176 		case SDEV_CREATED_BLOCK:
2177 			break;
2178 		default:
2179 			goto illegal;
2180 		}
2181 		break;
2182 
2183 	case SDEV_CREATED_BLOCK:
2184 		switch (oldstate) {
2185 		case SDEV_CREATED:
2186 			break;
2187 		default:
2188 			goto illegal;
2189 		}
2190 		break;
2191 
2192 	case SDEV_CANCEL:
2193 		switch (oldstate) {
2194 		case SDEV_CREATED:
2195 		case SDEV_RUNNING:
2196 		case SDEV_QUIESCE:
2197 		case SDEV_OFFLINE:
2198 		case SDEV_TRANSPORT_OFFLINE:
2199 		case SDEV_BLOCK:
2200 			break;
2201 		default:
2202 			goto illegal;
2203 		}
2204 		break;
2205 
2206 	case SDEV_DEL:
2207 		switch (oldstate) {
2208 		case SDEV_CREATED:
2209 		case SDEV_RUNNING:
2210 		case SDEV_OFFLINE:
2211 		case SDEV_TRANSPORT_OFFLINE:
2212 		case SDEV_CANCEL:
2213 		case SDEV_CREATED_BLOCK:
2214 			break;
2215 		default:
2216 			goto illegal;
2217 		}
2218 		break;
2219 
2220 	}
2221 	sdev->sdev_state = state;
2222 	return 0;
2223 
2224  illegal:
2225 	SCSI_LOG_ERROR_RECOVERY(1,
2226 				sdev_printk(KERN_ERR, sdev,
2227 					    "Illegal state transition %s->%s\n",
2228 					    scsi_device_state_name(oldstate),
2229 					    scsi_device_state_name(state))
2230 				);
2231 	return -EINVAL;
2232 }
2233 EXPORT_SYMBOL(scsi_device_set_state);
2234 
2235 /**
2236  * 	sdev_evt_emit - emit a single SCSI device uevent
2237  *	@sdev: associated SCSI device
2238  *	@evt: event to emit
2239  *
2240  *	Send a single uevent (scsi_event) to the associated scsi_device.
2241  */
2242 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2243 {
2244 	int idx = 0;
2245 	char *envp[3];
2246 
2247 	switch (evt->evt_type) {
2248 	case SDEV_EVT_MEDIA_CHANGE:
2249 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2250 		break;
2251 
2252 	default:
2253 		/* do nothing */
2254 		break;
2255 	}
2256 
2257 	envp[idx++] = NULL;
2258 
2259 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2260 }
2261 
2262 /**
2263  * 	sdev_evt_thread - send a uevent for each scsi event
2264  *	@work: work struct for scsi_device
2265  *
2266  *	Dispatch queued events to their associated scsi_device kobjects
2267  *	as uevents.
2268  */
2269 void scsi_evt_thread(struct work_struct *work)
2270 {
2271 	struct scsi_device *sdev;
2272 	LIST_HEAD(event_list);
2273 
2274 	sdev = container_of(work, struct scsi_device, event_work);
2275 
2276 	while (1) {
2277 		struct scsi_event *evt;
2278 		struct list_head *this, *tmp;
2279 		unsigned long flags;
2280 
2281 		spin_lock_irqsave(&sdev->list_lock, flags);
2282 		list_splice_init(&sdev->event_list, &event_list);
2283 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2284 
2285 		if (list_empty(&event_list))
2286 			break;
2287 
2288 		list_for_each_safe(this, tmp, &event_list) {
2289 			evt = list_entry(this, struct scsi_event, node);
2290 			list_del(&evt->node);
2291 			scsi_evt_emit(sdev, evt);
2292 			kfree(evt);
2293 		}
2294 	}
2295 }
2296 
2297 /**
2298  * 	sdev_evt_send - send asserted event to uevent thread
2299  *	@sdev: scsi_device event occurred on
2300  *	@evt: event to send
2301  *
2302  *	Assert scsi device event asynchronously.
2303  */
2304 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2305 {
2306 	unsigned long flags;
2307 
2308 #if 0
2309 	/* FIXME: currently this check eliminates all media change events
2310 	 * for polled devices.  Need to update to discriminate between AN
2311 	 * and polled events */
2312 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2313 		kfree(evt);
2314 		return;
2315 	}
2316 #endif
2317 
2318 	spin_lock_irqsave(&sdev->list_lock, flags);
2319 	list_add_tail(&evt->node, &sdev->event_list);
2320 	schedule_work(&sdev->event_work);
2321 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2322 }
2323 EXPORT_SYMBOL_GPL(sdev_evt_send);
2324 
2325 /**
2326  * 	sdev_evt_alloc - allocate a new scsi event
2327  *	@evt_type: type of event to allocate
2328  *	@gfpflags: GFP flags for allocation
2329  *
2330  *	Allocates and returns a new scsi_event.
2331  */
2332 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2333 				  gfp_t gfpflags)
2334 {
2335 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2336 	if (!evt)
2337 		return NULL;
2338 
2339 	evt->evt_type = evt_type;
2340 	INIT_LIST_HEAD(&evt->node);
2341 
2342 	/* evt_type-specific initialization, if any */
2343 	switch (evt_type) {
2344 	case SDEV_EVT_MEDIA_CHANGE:
2345 	default:
2346 		/* do nothing */
2347 		break;
2348 	}
2349 
2350 	return evt;
2351 }
2352 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2353 
2354 /**
2355  * 	sdev_evt_send_simple - send asserted event to uevent thread
2356  *	@sdev: scsi_device event occurred on
2357  *	@evt_type: type of event to send
2358  *	@gfpflags: GFP flags for allocation
2359  *
2360  *	Assert scsi device event asynchronously, given an event type.
2361  */
2362 void sdev_evt_send_simple(struct scsi_device *sdev,
2363 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2364 {
2365 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2366 	if (!evt) {
2367 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2368 			    evt_type);
2369 		return;
2370 	}
2371 
2372 	sdev_evt_send(sdev, evt);
2373 }
2374 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2375 
2376 /**
2377  *	scsi_device_quiesce - Block user issued commands.
2378  *	@sdev:	scsi device to quiesce.
2379  *
2380  *	This works by trying to transition to the SDEV_QUIESCE state
2381  *	(which must be a legal transition).  When the device is in this
2382  *	state, only special requests will be accepted, all others will
2383  *	be deferred.  Since special requests may also be requeued requests,
2384  *	a successful return doesn't guarantee the device will be
2385  *	totally quiescent.
2386  *
2387  *	Must be called with user context, may sleep.
2388  *
2389  *	Returns zero if unsuccessful or an error if not.
2390  */
2391 int
2392 scsi_device_quiesce(struct scsi_device *sdev)
2393 {
2394 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2395 	if (err)
2396 		return err;
2397 
2398 	scsi_run_queue(sdev->request_queue);
2399 	while (sdev->device_busy) {
2400 		msleep_interruptible(200);
2401 		scsi_run_queue(sdev->request_queue);
2402 	}
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(scsi_device_quiesce);
2406 
2407 /**
2408  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2409  *	@sdev:	scsi device to resume.
2410  *
2411  *	Moves the device from quiesced back to running and restarts the
2412  *	queues.
2413  *
2414  *	Must be called with user context, may sleep.
2415  */
2416 void scsi_device_resume(struct scsi_device *sdev)
2417 {
2418 	/* check if the device state was mutated prior to resume, and if
2419 	 * so assume the state is being managed elsewhere (for example
2420 	 * device deleted during suspend)
2421 	 */
2422 	if (sdev->sdev_state != SDEV_QUIESCE ||
2423 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2424 		return;
2425 	scsi_run_queue(sdev->request_queue);
2426 }
2427 EXPORT_SYMBOL(scsi_device_resume);
2428 
2429 static void
2430 device_quiesce_fn(struct scsi_device *sdev, void *data)
2431 {
2432 	scsi_device_quiesce(sdev);
2433 }
2434 
2435 void
2436 scsi_target_quiesce(struct scsi_target *starget)
2437 {
2438 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2439 }
2440 EXPORT_SYMBOL(scsi_target_quiesce);
2441 
2442 static void
2443 device_resume_fn(struct scsi_device *sdev, void *data)
2444 {
2445 	scsi_device_resume(sdev);
2446 }
2447 
2448 void
2449 scsi_target_resume(struct scsi_target *starget)
2450 {
2451 	starget_for_each_device(starget, NULL, device_resume_fn);
2452 }
2453 EXPORT_SYMBOL(scsi_target_resume);
2454 
2455 /**
2456  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2457  * @sdev:	device to block
2458  *
2459  * Block request made by scsi lld's to temporarily stop all
2460  * scsi commands on the specified device.  Called from interrupt
2461  * or normal process context.
2462  *
2463  * Returns zero if successful or error if not
2464  *
2465  * Notes:
2466  *	This routine transitions the device to the SDEV_BLOCK state
2467  *	(which must be a legal transition).  When the device is in this
2468  *	state, all commands are deferred until the scsi lld reenables
2469  *	the device with scsi_device_unblock or device_block_tmo fires.
2470  */
2471 int
2472 scsi_internal_device_block(struct scsi_device *sdev)
2473 {
2474 	struct request_queue *q = sdev->request_queue;
2475 	unsigned long flags;
2476 	int err = 0;
2477 
2478 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2479 	if (err) {
2480 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2481 
2482 		if (err)
2483 			return err;
2484 	}
2485 
2486 	/*
2487 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2488 	 * block layer from calling the midlayer with this device's
2489 	 * request queue.
2490 	 */
2491 	spin_lock_irqsave(q->queue_lock, flags);
2492 	blk_stop_queue(q);
2493 	spin_unlock_irqrestore(q->queue_lock, flags);
2494 
2495 	return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2498 
2499 /**
2500  * scsi_internal_device_unblock - resume a device after a block request
2501  * @sdev:	device to resume
2502  * @new_state:	state to set devices to after unblocking
2503  *
2504  * Called by scsi lld's or the midlayer to restart the device queue
2505  * for the previously suspended scsi device.  Called from interrupt or
2506  * normal process context.
2507  *
2508  * Returns zero if successful or error if not.
2509  *
2510  * Notes:
2511  *	This routine transitions the device to the SDEV_RUNNING state
2512  *	or to one of the offline states (which must be a legal transition)
2513  *	allowing the midlayer to goose the queue for this device.
2514  */
2515 int
2516 scsi_internal_device_unblock(struct scsi_device *sdev,
2517 			     enum scsi_device_state new_state)
2518 {
2519 	struct request_queue *q = sdev->request_queue;
2520 	unsigned long flags;
2521 
2522 	/*
2523 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2524 	 * offlined states and goose the device queue if successful.
2525 	 */
2526 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2527 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2528 		sdev->sdev_state = new_state;
2529 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2530 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2531 		    new_state == SDEV_OFFLINE)
2532 			sdev->sdev_state = new_state;
2533 		else
2534 			sdev->sdev_state = SDEV_CREATED;
2535 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2536 		 sdev->sdev_state != SDEV_OFFLINE)
2537 		return -EINVAL;
2538 
2539 	spin_lock_irqsave(q->queue_lock, flags);
2540 	blk_start_queue(q);
2541 	spin_unlock_irqrestore(q->queue_lock, flags);
2542 
2543 	return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2546 
2547 static void
2548 device_block(struct scsi_device *sdev, void *data)
2549 {
2550 	scsi_internal_device_block(sdev);
2551 }
2552 
2553 static int
2554 target_block(struct device *dev, void *data)
2555 {
2556 	if (scsi_is_target_device(dev))
2557 		starget_for_each_device(to_scsi_target(dev), NULL,
2558 					device_block);
2559 	return 0;
2560 }
2561 
2562 void
2563 scsi_target_block(struct device *dev)
2564 {
2565 	if (scsi_is_target_device(dev))
2566 		starget_for_each_device(to_scsi_target(dev), NULL,
2567 					device_block);
2568 	else
2569 		device_for_each_child(dev, NULL, target_block);
2570 }
2571 EXPORT_SYMBOL_GPL(scsi_target_block);
2572 
2573 static void
2574 device_unblock(struct scsi_device *sdev, void *data)
2575 {
2576 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2577 }
2578 
2579 static int
2580 target_unblock(struct device *dev, void *data)
2581 {
2582 	if (scsi_is_target_device(dev))
2583 		starget_for_each_device(to_scsi_target(dev), data,
2584 					device_unblock);
2585 	return 0;
2586 }
2587 
2588 void
2589 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2590 {
2591 	if (scsi_is_target_device(dev))
2592 		starget_for_each_device(to_scsi_target(dev), &new_state,
2593 					device_unblock);
2594 	else
2595 		device_for_each_child(dev, &new_state, target_unblock);
2596 }
2597 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2598 
2599 /**
2600  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2601  * @sgl:	scatter-gather list
2602  * @sg_count:	number of segments in sg
2603  * @offset:	offset in bytes into sg, on return offset into the mapped area
2604  * @len:	bytes to map, on return number of bytes mapped
2605  *
2606  * Returns virtual address of the start of the mapped page
2607  */
2608 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2609 			  size_t *offset, size_t *len)
2610 {
2611 	int i;
2612 	size_t sg_len = 0, len_complete = 0;
2613 	struct scatterlist *sg;
2614 	struct page *page;
2615 
2616 	WARN_ON(!irqs_disabled());
2617 
2618 	for_each_sg(sgl, sg, sg_count, i) {
2619 		len_complete = sg_len; /* Complete sg-entries */
2620 		sg_len += sg->length;
2621 		if (sg_len > *offset)
2622 			break;
2623 	}
2624 
2625 	if (unlikely(i == sg_count)) {
2626 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2627 			"elements %d\n",
2628 		       __func__, sg_len, *offset, sg_count);
2629 		WARN_ON(1);
2630 		return NULL;
2631 	}
2632 
2633 	/* Offset starting from the beginning of first page in this sg-entry */
2634 	*offset = *offset - len_complete + sg->offset;
2635 
2636 	/* Assumption: contiguous pages can be accessed as "page + i" */
2637 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2638 	*offset &= ~PAGE_MASK;
2639 
2640 	/* Bytes in this sg-entry from *offset to the end of the page */
2641 	sg_len = PAGE_SIZE - *offset;
2642 	if (*len > sg_len)
2643 		*len = sg_len;
2644 
2645 	return kmap_atomic(page);
2646 }
2647 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2648 
2649 /**
2650  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2651  * @virt:	virtual address to be unmapped
2652  */
2653 void scsi_kunmap_atomic_sg(void *virt)
2654 {
2655 	kunmap_atomic(virt);
2656 }
2657 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2658 
2659 void sdev_disable_disk_events(struct scsi_device *sdev)
2660 {
2661 	atomic_inc(&sdev->disk_events_disable_depth);
2662 }
2663 EXPORT_SYMBOL(sdev_disable_disk_events);
2664 
2665 void sdev_enable_disk_events(struct scsi_device *sdev)
2666 {
2667 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2668 		return;
2669 	atomic_dec(&sdev->disk_events_disable_depth);
2670 }
2671 EXPORT_SYMBOL(sdev_enable_disk_events);
2672