1 /* 2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale 3 * 4 * SCSI queueing library. 5 * Initial versions: Eric Youngdale (eric@andante.org). 6 * Based upon conversations with large numbers 7 * of people at Linux Expo. 8 */ 9 10 #include <linux/bio.h> 11 #include <linux/bitops.h> 12 #include <linux/blkdev.h> 13 #include <linux/completion.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/mempool.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/pci.h> 20 #include <linux/delay.h> 21 #include <linux/hardirq.h> 22 #include <linux/scatterlist.h> 23 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_host.h> 31 32 #include "scsi_priv.h" 33 #include "scsi_logging.h" 34 35 36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools) 37 #define SG_MEMPOOL_SIZE 2 38 39 struct scsi_host_sg_pool { 40 size_t size; 41 char *name; 42 struct kmem_cache *slab; 43 mempool_t *pool; 44 }; 45 46 #define SP(x) { x, "sgpool-" __stringify(x) } 47 #if (SCSI_MAX_SG_SEGMENTS < 32) 48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater) 49 #endif 50 static struct scsi_host_sg_pool scsi_sg_pools[] = { 51 SP(8), 52 SP(16), 53 #if (SCSI_MAX_SG_SEGMENTS > 32) 54 SP(32), 55 #if (SCSI_MAX_SG_SEGMENTS > 64) 56 SP(64), 57 #if (SCSI_MAX_SG_SEGMENTS > 128) 58 SP(128), 59 #if (SCSI_MAX_SG_SEGMENTS > 256) 60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX) 61 #endif 62 #endif 63 #endif 64 #endif 65 SP(SCSI_MAX_SG_SEGMENTS) 66 }; 67 #undef SP 68 69 struct kmem_cache *scsi_sdb_cache; 70 71 #ifdef CONFIG_ACPI 72 #include <acpi/acpi_bus.h> 73 74 static bool acpi_scsi_bus_match(struct device *dev) 75 { 76 return dev->bus == &scsi_bus_type; 77 } 78 79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus) 80 { 81 bus->match = acpi_scsi_bus_match; 82 return register_acpi_bus_type(bus); 83 } 84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type); 85 86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus) 87 { 88 unregister_acpi_bus_type(bus); 89 } 90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type); 91 #endif 92 93 /* 94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 95 * not change behaviour from the previous unplug mechanism, experimentation 96 * may prove this needs changing. 97 */ 98 #define SCSI_QUEUE_DELAY 3 99 100 /* 101 * Function: scsi_unprep_request() 102 * 103 * Purpose: Remove all preparation done for a request, including its 104 * associated scsi_cmnd, so that it can be requeued. 105 * 106 * Arguments: req - request to unprepare 107 * 108 * Lock status: Assumed that no locks are held upon entry. 109 * 110 * Returns: Nothing. 111 */ 112 static void scsi_unprep_request(struct request *req) 113 { 114 struct scsi_cmnd *cmd = req->special; 115 116 blk_unprep_request(req); 117 req->special = NULL; 118 119 scsi_put_command(cmd); 120 } 121 122 /** 123 * __scsi_queue_insert - private queue insertion 124 * @cmd: The SCSI command being requeued 125 * @reason: The reason for the requeue 126 * @unbusy: Whether the queue should be unbusied 127 * 128 * This is a private queue insertion. The public interface 129 * scsi_queue_insert() always assumes the queue should be unbusied 130 * because it's always called before the completion. This function is 131 * for a requeue after completion, which should only occur in this 132 * file. 133 */ 134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 135 { 136 struct Scsi_Host *host = cmd->device->host; 137 struct scsi_device *device = cmd->device; 138 struct scsi_target *starget = scsi_target(device); 139 struct request_queue *q = device->request_queue; 140 unsigned long flags; 141 142 SCSI_LOG_MLQUEUE(1, 143 printk("Inserting command %p into mlqueue\n", cmd)); 144 145 /* 146 * Set the appropriate busy bit for the device/host. 147 * 148 * If the host/device isn't busy, assume that something actually 149 * completed, and that we should be able to queue a command now. 150 * 151 * Note that the prior mid-layer assumption that any host could 152 * always queue at least one command is now broken. The mid-layer 153 * will implement a user specifiable stall (see 154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 155 * if a command is requeued with no other commands outstanding 156 * either for the device or for the host. 157 */ 158 switch (reason) { 159 case SCSI_MLQUEUE_HOST_BUSY: 160 host->host_blocked = host->max_host_blocked; 161 break; 162 case SCSI_MLQUEUE_DEVICE_BUSY: 163 case SCSI_MLQUEUE_EH_RETRY: 164 device->device_blocked = device->max_device_blocked; 165 break; 166 case SCSI_MLQUEUE_TARGET_BUSY: 167 starget->target_blocked = starget->max_target_blocked; 168 break; 169 } 170 171 /* 172 * Decrement the counters, since these commands are no longer 173 * active on the host/device. 174 */ 175 if (unbusy) 176 scsi_device_unbusy(device); 177 178 /* 179 * Requeue this command. It will go before all other commands 180 * that are already in the queue. Schedule requeue work under 181 * lock such that the kblockd_schedule_work() call happens 182 * before blk_cleanup_queue() finishes. 183 */ 184 spin_lock_irqsave(q->queue_lock, flags); 185 blk_requeue_request(q, cmd->request); 186 kblockd_schedule_work(q, &device->requeue_work); 187 spin_unlock_irqrestore(q->queue_lock, flags); 188 } 189 190 /* 191 * Function: scsi_queue_insert() 192 * 193 * Purpose: Insert a command in the midlevel queue. 194 * 195 * Arguments: cmd - command that we are adding to queue. 196 * reason - why we are inserting command to queue. 197 * 198 * Lock status: Assumed that lock is not held upon entry. 199 * 200 * Returns: Nothing. 201 * 202 * Notes: We do this for one of two cases. Either the host is busy 203 * and it cannot accept any more commands for the time being, 204 * or the device returned QUEUE_FULL and can accept no more 205 * commands. 206 * Notes: This could be called either from an interrupt context or a 207 * normal process context. 208 */ 209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 210 { 211 __scsi_queue_insert(cmd, reason, 1); 212 } 213 /** 214 * scsi_execute - insert request and wait for the result 215 * @sdev: scsi device 216 * @cmd: scsi command 217 * @data_direction: data direction 218 * @buffer: data buffer 219 * @bufflen: len of buffer 220 * @sense: optional sense buffer 221 * @timeout: request timeout in seconds 222 * @retries: number of times to retry request 223 * @flags: or into request flags; 224 * @resid: optional residual length 225 * 226 * returns the req->errors value which is the scsi_cmnd result 227 * field. 228 */ 229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 230 int data_direction, void *buffer, unsigned bufflen, 231 unsigned char *sense, int timeout, int retries, int flags, 232 int *resid) 233 { 234 struct request *req; 235 int write = (data_direction == DMA_TO_DEVICE); 236 int ret = DRIVER_ERROR << 24; 237 238 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT); 239 if (!req) 240 return ret; 241 242 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 243 buffer, bufflen, __GFP_WAIT)) 244 goto out; 245 246 req->cmd_len = COMMAND_SIZE(cmd[0]); 247 memcpy(req->cmd, cmd, req->cmd_len); 248 req->sense = sense; 249 req->sense_len = 0; 250 req->retries = retries; 251 req->timeout = timeout; 252 req->cmd_type = REQ_TYPE_BLOCK_PC; 253 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT; 254 255 /* 256 * head injection *required* here otherwise quiesce won't work 257 */ 258 blk_execute_rq(req->q, NULL, req, 1); 259 260 /* 261 * Some devices (USB mass-storage in particular) may transfer 262 * garbage data together with a residue indicating that the data 263 * is invalid. Prevent the garbage from being misinterpreted 264 * and prevent security leaks by zeroing out the excess data. 265 */ 266 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen)) 267 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len); 268 269 if (resid) 270 *resid = req->resid_len; 271 ret = req->errors; 272 out: 273 blk_put_request(req); 274 275 return ret; 276 } 277 EXPORT_SYMBOL(scsi_execute); 278 279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd, 280 int data_direction, void *buffer, unsigned bufflen, 281 struct scsi_sense_hdr *sshdr, int timeout, int retries, 282 int *resid, int flags) 283 { 284 char *sense = NULL; 285 int result; 286 287 if (sshdr) { 288 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO); 289 if (!sense) 290 return DRIVER_ERROR << 24; 291 } 292 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen, 293 sense, timeout, retries, flags, resid); 294 if (sshdr) 295 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr); 296 297 kfree(sense); 298 return result; 299 } 300 EXPORT_SYMBOL(scsi_execute_req_flags); 301 302 /* 303 * Function: scsi_init_cmd_errh() 304 * 305 * Purpose: Initialize cmd fields related to error handling. 306 * 307 * Arguments: cmd - command that is ready to be queued. 308 * 309 * Notes: This function has the job of initializing a number of 310 * fields related to error handling. Typically this will 311 * be called once for each command, as required. 312 */ 313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 314 { 315 cmd->serial_number = 0; 316 scsi_set_resid(cmd, 0); 317 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 318 if (cmd->cmd_len == 0) 319 cmd->cmd_len = scsi_command_size(cmd->cmnd); 320 } 321 322 void scsi_device_unbusy(struct scsi_device *sdev) 323 { 324 struct Scsi_Host *shost = sdev->host; 325 struct scsi_target *starget = scsi_target(sdev); 326 unsigned long flags; 327 328 spin_lock_irqsave(shost->host_lock, flags); 329 shost->host_busy--; 330 starget->target_busy--; 331 if (unlikely(scsi_host_in_recovery(shost) && 332 (shost->host_failed || shost->host_eh_scheduled))) 333 scsi_eh_wakeup(shost); 334 spin_unlock(shost->host_lock); 335 spin_lock(sdev->request_queue->queue_lock); 336 sdev->device_busy--; 337 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags); 338 } 339 340 /* 341 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 342 * and call blk_run_queue for all the scsi_devices on the target - 343 * including current_sdev first. 344 * 345 * Called with *no* scsi locks held. 346 */ 347 static void scsi_single_lun_run(struct scsi_device *current_sdev) 348 { 349 struct Scsi_Host *shost = current_sdev->host; 350 struct scsi_device *sdev, *tmp; 351 struct scsi_target *starget = scsi_target(current_sdev); 352 unsigned long flags; 353 354 spin_lock_irqsave(shost->host_lock, flags); 355 starget->starget_sdev_user = NULL; 356 spin_unlock_irqrestore(shost->host_lock, flags); 357 358 /* 359 * Call blk_run_queue for all LUNs on the target, starting with 360 * current_sdev. We race with others (to set starget_sdev_user), 361 * but in most cases, we will be first. Ideally, each LU on the 362 * target would get some limited time or requests on the target. 363 */ 364 blk_run_queue(current_sdev->request_queue); 365 366 spin_lock_irqsave(shost->host_lock, flags); 367 if (starget->starget_sdev_user) 368 goto out; 369 list_for_each_entry_safe(sdev, tmp, &starget->devices, 370 same_target_siblings) { 371 if (sdev == current_sdev) 372 continue; 373 if (scsi_device_get(sdev)) 374 continue; 375 376 spin_unlock_irqrestore(shost->host_lock, flags); 377 blk_run_queue(sdev->request_queue); 378 spin_lock_irqsave(shost->host_lock, flags); 379 380 scsi_device_put(sdev); 381 } 382 out: 383 spin_unlock_irqrestore(shost->host_lock, flags); 384 } 385 386 static inline int scsi_device_is_busy(struct scsi_device *sdev) 387 { 388 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked) 389 return 1; 390 391 return 0; 392 } 393 394 static inline int scsi_target_is_busy(struct scsi_target *starget) 395 { 396 return ((starget->can_queue > 0 && 397 starget->target_busy >= starget->can_queue) || 398 starget->target_blocked); 399 } 400 401 static inline int scsi_host_is_busy(struct Scsi_Host *shost) 402 { 403 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) || 404 shost->host_blocked || shost->host_self_blocked) 405 return 1; 406 407 return 0; 408 } 409 410 /* 411 * Function: scsi_run_queue() 412 * 413 * Purpose: Select a proper request queue to serve next 414 * 415 * Arguments: q - last request's queue 416 * 417 * Returns: Nothing 418 * 419 * Notes: The previous command was completely finished, start 420 * a new one if possible. 421 */ 422 static void scsi_run_queue(struct request_queue *q) 423 { 424 struct scsi_device *sdev = q->queuedata; 425 struct Scsi_Host *shost; 426 LIST_HEAD(starved_list); 427 unsigned long flags; 428 429 shost = sdev->host; 430 if (scsi_target(sdev)->single_lun) 431 scsi_single_lun_run(sdev); 432 433 spin_lock_irqsave(shost->host_lock, flags); 434 list_splice_init(&shost->starved_list, &starved_list); 435 436 while (!list_empty(&starved_list)) { 437 struct request_queue *slq; 438 439 /* 440 * As long as shost is accepting commands and we have 441 * starved queues, call blk_run_queue. scsi_request_fn 442 * drops the queue_lock and can add us back to the 443 * starved_list. 444 * 445 * host_lock protects the starved_list and starved_entry. 446 * scsi_request_fn must get the host_lock before checking 447 * or modifying starved_list or starved_entry. 448 */ 449 if (scsi_host_is_busy(shost)) 450 break; 451 452 sdev = list_entry(starved_list.next, 453 struct scsi_device, starved_entry); 454 list_del_init(&sdev->starved_entry); 455 if (scsi_target_is_busy(scsi_target(sdev))) { 456 list_move_tail(&sdev->starved_entry, 457 &shost->starved_list); 458 continue; 459 } 460 461 /* 462 * Once we drop the host lock, a racing scsi_remove_device() 463 * call may remove the sdev from the starved list and destroy 464 * it and the queue. Mitigate by taking a reference to the 465 * queue and never touching the sdev again after we drop the 466 * host lock. Note: if __scsi_remove_device() invokes 467 * blk_cleanup_queue() before the queue is run from this 468 * function then blk_run_queue() will return immediately since 469 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 470 */ 471 slq = sdev->request_queue; 472 if (!blk_get_queue(slq)) 473 continue; 474 spin_unlock_irqrestore(shost->host_lock, flags); 475 476 blk_run_queue(slq); 477 blk_put_queue(slq); 478 479 spin_lock_irqsave(shost->host_lock, flags); 480 } 481 /* put any unprocessed entries back */ 482 list_splice(&starved_list, &shost->starved_list); 483 spin_unlock_irqrestore(shost->host_lock, flags); 484 485 blk_run_queue(q); 486 } 487 488 void scsi_requeue_run_queue(struct work_struct *work) 489 { 490 struct scsi_device *sdev; 491 struct request_queue *q; 492 493 sdev = container_of(work, struct scsi_device, requeue_work); 494 q = sdev->request_queue; 495 scsi_run_queue(q); 496 } 497 498 /* 499 * Function: scsi_requeue_command() 500 * 501 * Purpose: Handle post-processing of completed commands. 502 * 503 * Arguments: q - queue to operate on 504 * cmd - command that may need to be requeued. 505 * 506 * Returns: Nothing 507 * 508 * Notes: After command completion, there may be blocks left 509 * over which weren't finished by the previous command 510 * this can be for a number of reasons - the main one is 511 * I/O errors in the middle of the request, in which case 512 * we need to request the blocks that come after the bad 513 * sector. 514 * Notes: Upon return, cmd is a stale pointer. 515 */ 516 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 517 { 518 struct scsi_device *sdev = cmd->device; 519 struct request *req = cmd->request; 520 unsigned long flags; 521 522 /* 523 * We need to hold a reference on the device to avoid the queue being 524 * killed after the unlock and before scsi_run_queue is invoked which 525 * may happen because scsi_unprep_request() puts the command which 526 * releases its reference on the device. 527 */ 528 get_device(&sdev->sdev_gendev); 529 530 spin_lock_irqsave(q->queue_lock, flags); 531 scsi_unprep_request(req); 532 blk_requeue_request(q, req); 533 spin_unlock_irqrestore(q->queue_lock, flags); 534 535 scsi_run_queue(q); 536 537 put_device(&sdev->sdev_gendev); 538 } 539 540 void scsi_next_command(struct scsi_cmnd *cmd) 541 { 542 struct scsi_device *sdev = cmd->device; 543 struct request_queue *q = sdev->request_queue; 544 545 /* need to hold a reference on the device before we let go of the cmd */ 546 get_device(&sdev->sdev_gendev); 547 548 scsi_put_command(cmd); 549 scsi_run_queue(q); 550 551 /* ok to remove device now */ 552 put_device(&sdev->sdev_gendev); 553 } 554 555 void scsi_run_host_queues(struct Scsi_Host *shost) 556 { 557 struct scsi_device *sdev; 558 559 shost_for_each_device(sdev, shost) 560 scsi_run_queue(sdev->request_queue); 561 } 562 563 static void __scsi_release_buffers(struct scsi_cmnd *, int); 564 565 /* 566 * Function: scsi_end_request() 567 * 568 * Purpose: Post-processing of completed commands (usually invoked at end 569 * of upper level post-processing and scsi_io_completion). 570 * 571 * Arguments: cmd - command that is complete. 572 * error - 0 if I/O indicates success, < 0 for I/O error. 573 * bytes - number of bytes of completed I/O 574 * requeue - indicates whether we should requeue leftovers. 575 * 576 * Lock status: Assumed that lock is not held upon entry. 577 * 578 * Returns: cmd if requeue required, NULL otherwise. 579 * 580 * Notes: This is called for block device requests in order to 581 * mark some number of sectors as complete. 582 * 583 * We are guaranteeing that the request queue will be goosed 584 * at some point during this call. 585 * Notes: If cmd was requeued, upon return it will be a stale pointer. 586 */ 587 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error, 588 int bytes, int requeue) 589 { 590 struct request_queue *q = cmd->device->request_queue; 591 struct request *req = cmd->request; 592 593 /* 594 * If there are blocks left over at the end, set up the command 595 * to queue the remainder of them. 596 */ 597 if (blk_end_request(req, error, bytes)) { 598 /* kill remainder if no retrys */ 599 if (error && scsi_noretry_cmd(cmd)) 600 blk_end_request_all(req, error); 601 else { 602 if (requeue) { 603 /* 604 * Bleah. Leftovers again. Stick the 605 * leftovers in the front of the 606 * queue, and goose the queue again. 607 */ 608 scsi_release_buffers(cmd); 609 scsi_requeue_command(q, cmd); 610 cmd = NULL; 611 } 612 return cmd; 613 } 614 } 615 616 /* 617 * This will goose the queue request function at the end, so we don't 618 * need to worry about launching another command. 619 */ 620 __scsi_release_buffers(cmd, 0); 621 scsi_next_command(cmd); 622 return NULL; 623 } 624 625 static inline unsigned int scsi_sgtable_index(unsigned short nents) 626 { 627 unsigned int index; 628 629 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS); 630 631 if (nents <= 8) 632 index = 0; 633 else 634 index = get_count_order(nents) - 3; 635 636 return index; 637 } 638 639 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents) 640 { 641 struct scsi_host_sg_pool *sgp; 642 643 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 644 mempool_free(sgl, sgp->pool); 645 } 646 647 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask) 648 { 649 struct scsi_host_sg_pool *sgp; 650 651 sgp = scsi_sg_pools + scsi_sgtable_index(nents); 652 return mempool_alloc(sgp->pool, gfp_mask); 653 } 654 655 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, 656 gfp_t gfp_mask) 657 { 658 int ret; 659 660 BUG_ON(!nents); 661 662 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS, 663 gfp_mask, scsi_sg_alloc); 664 if (unlikely(ret)) 665 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, 666 scsi_sg_free); 667 668 return ret; 669 } 670 671 static void scsi_free_sgtable(struct scsi_data_buffer *sdb) 672 { 673 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free); 674 } 675 676 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check) 677 { 678 679 if (cmd->sdb.table.nents) 680 scsi_free_sgtable(&cmd->sdb); 681 682 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 683 684 if (do_bidi_check && scsi_bidi_cmnd(cmd)) { 685 struct scsi_data_buffer *bidi_sdb = 686 cmd->request->next_rq->special; 687 scsi_free_sgtable(bidi_sdb); 688 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 689 cmd->request->next_rq->special = NULL; 690 } 691 692 if (scsi_prot_sg_count(cmd)) 693 scsi_free_sgtable(cmd->prot_sdb); 694 } 695 696 /* 697 * Function: scsi_release_buffers() 698 * 699 * Purpose: Completion processing for block device I/O requests. 700 * 701 * Arguments: cmd - command that we are bailing. 702 * 703 * Lock status: Assumed that no lock is held upon entry. 704 * 705 * Returns: Nothing 706 * 707 * Notes: In the event that an upper level driver rejects a 708 * command, we must release resources allocated during 709 * the __init_io() function. Primarily this would involve 710 * the scatter-gather table, and potentially any bounce 711 * buffers. 712 */ 713 void scsi_release_buffers(struct scsi_cmnd *cmd) 714 { 715 __scsi_release_buffers(cmd, 1); 716 } 717 EXPORT_SYMBOL(scsi_release_buffers); 718 719 /** 720 * __scsi_error_from_host_byte - translate SCSI error code into errno 721 * @cmd: SCSI command (unused) 722 * @result: scsi error code 723 * 724 * Translate SCSI error code into standard UNIX errno. 725 * Return values: 726 * -ENOLINK temporary transport failure 727 * -EREMOTEIO permanent target failure, do not retry 728 * -EBADE permanent nexus failure, retry on other path 729 * -ENOSPC No write space available 730 * -EIO unspecified I/O error 731 */ 732 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result) 733 { 734 int error = 0; 735 736 switch(host_byte(result)) { 737 case DID_TRANSPORT_FAILFAST: 738 error = -ENOLINK; 739 break; 740 case DID_TARGET_FAILURE: 741 set_host_byte(cmd, DID_OK); 742 error = -EREMOTEIO; 743 break; 744 case DID_NEXUS_FAILURE: 745 set_host_byte(cmd, DID_OK); 746 error = -EBADE; 747 break; 748 case DID_ALLOC_FAILURE: 749 set_host_byte(cmd, DID_OK); 750 error = -ENOSPC; 751 break; 752 default: 753 error = -EIO; 754 break; 755 } 756 757 return error; 758 } 759 760 /* 761 * Function: scsi_io_completion() 762 * 763 * Purpose: Completion processing for block device I/O requests. 764 * 765 * Arguments: cmd - command that is finished. 766 * 767 * Lock status: Assumed that no lock is held upon entry. 768 * 769 * Returns: Nothing 770 * 771 * Notes: This function is matched in terms of capabilities to 772 * the function that created the scatter-gather list. 773 * In other words, if there are no bounce buffers 774 * (the normal case for most drivers), we don't need 775 * the logic to deal with cleaning up afterwards. 776 * 777 * We must call scsi_end_request(). This will finish off 778 * the specified number of sectors. If we are done, the 779 * command block will be released and the queue function 780 * will be goosed. If we are not done then we have to 781 * figure out what to do next: 782 * 783 * a) We can call scsi_requeue_command(). The request 784 * will be unprepared and put back on the queue. Then 785 * a new command will be created for it. This should 786 * be used if we made forward progress, or if we want 787 * to switch from READ(10) to READ(6) for example. 788 * 789 * b) We can call scsi_queue_insert(). The request will 790 * be put back on the queue and retried using the same 791 * command as before, possibly after a delay. 792 * 793 * c) We can call blk_end_request() with -EIO to fail 794 * the remainder of the request. 795 */ 796 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 797 { 798 int result = cmd->result; 799 struct request_queue *q = cmd->device->request_queue; 800 struct request *req = cmd->request; 801 int error = 0; 802 struct scsi_sense_hdr sshdr; 803 int sense_valid = 0; 804 int sense_deferred = 0; 805 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 806 ACTION_DELAYED_RETRY} action; 807 char *description = NULL; 808 809 if (result) { 810 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 811 if (sense_valid) 812 sense_deferred = scsi_sense_is_deferred(&sshdr); 813 } 814 815 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */ 816 if (result) { 817 if (sense_valid && req->sense) { 818 /* 819 * SG_IO wants current and deferred errors 820 */ 821 int len = 8 + cmd->sense_buffer[7]; 822 823 if (len > SCSI_SENSE_BUFFERSIZE) 824 len = SCSI_SENSE_BUFFERSIZE; 825 memcpy(req->sense, cmd->sense_buffer, len); 826 req->sense_len = len; 827 } 828 if (!sense_deferred) 829 error = __scsi_error_from_host_byte(cmd, result); 830 } 831 /* 832 * __scsi_error_from_host_byte may have reset the host_byte 833 */ 834 req->errors = cmd->result; 835 836 req->resid_len = scsi_get_resid(cmd); 837 838 if (scsi_bidi_cmnd(cmd)) { 839 /* 840 * Bidi commands Must be complete as a whole, 841 * both sides at once. 842 */ 843 req->next_rq->resid_len = scsi_in(cmd)->resid; 844 845 scsi_release_buffers(cmd); 846 blk_end_request_all(req, 0); 847 848 scsi_next_command(cmd); 849 return; 850 } 851 } 852 853 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */ 854 BUG_ON(blk_bidi_rq(req)); 855 856 /* 857 * Next deal with any sectors which we were able to correctly 858 * handle. 859 */ 860 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, " 861 "%d bytes done.\n", 862 blk_rq_sectors(req), good_bytes)); 863 864 /* 865 * Recovered errors need reporting, but they're always treated 866 * as success, so fiddle the result code here. For BLOCK_PC 867 * we already took a copy of the original into rq->errors which 868 * is what gets returned to the user 869 */ 870 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 871 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 872 * print since caller wants ATA registers. Only occurs on 873 * SCSI ATA PASS_THROUGH commands when CK_COND=1 874 */ 875 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 876 ; 877 else if (!(req->cmd_flags & REQ_QUIET)) 878 scsi_print_sense("", cmd); 879 result = 0; 880 /* BLOCK_PC may have set error */ 881 error = 0; 882 } 883 884 /* 885 * A number of bytes were successfully read. If there 886 * are leftovers and there is some kind of error 887 * (result != 0), retry the rest. 888 */ 889 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL) 890 return; 891 892 error = __scsi_error_from_host_byte(cmd, result); 893 894 if (host_byte(result) == DID_RESET) { 895 /* Third party bus reset or reset for error recovery 896 * reasons. Just retry the command and see what 897 * happens. 898 */ 899 action = ACTION_RETRY; 900 } else if (sense_valid && !sense_deferred) { 901 switch (sshdr.sense_key) { 902 case UNIT_ATTENTION: 903 if (cmd->device->removable) { 904 /* Detected disc change. Set a bit 905 * and quietly refuse further access. 906 */ 907 cmd->device->changed = 1; 908 description = "Media Changed"; 909 action = ACTION_FAIL; 910 } else { 911 /* Must have been a power glitch, or a 912 * bus reset. Could not have been a 913 * media change, so we just retry the 914 * command and see what happens. 915 */ 916 action = ACTION_RETRY; 917 } 918 break; 919 case ILLEGAL_REQUEST: 920 /* If we had an ILLEGAL REQUEST returned, then 921 * we may have performed an unsupported 922 * command. The only thing this should be 923 * would be a ten byte read where only a six 924 * byte read was supported. Also, on a system 925 * where READ CAPACITY failed, we may have 926 * read past the end of the disk. 927 */ 928 if ((cmd->device->use_10_for_rw && 929 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 930 (cmd->cmnd[0] == READ_10 || 931 cmd->cmnd[0] == WRITE_10)) { 932 /* This will issue a new 6-byte command. */ 933 cmd->device->use_10_for_rw = 0; 934 action = ACTION_REPREP; 935 } else if (sshdr.asc == 0x10) /* DIX */ { 936 description = "Host Data Integrity Failure"; 937 action = ACTION_FAIL; 938 error = -EILSEQ; 939 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 940 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 941 switch (cmd->cmnd[0]) { 942 case UNMAP: 943 description = "Discard failure"; 944 break; 945 case WRITE_SAME: 946 case WRITE_SAME_16: 947 if (cmd->cmnd[1] & 0x8) 948 description = "Discard failure"; 949 else 950 description = 951 "Write same failure"; 952 break; 953 default: 954 description = "Invalid command failure"; 955 break; 956 } 957 action = ACTION_FAIL; 958 error = -EREMOTEIO; 959 } else 960 action = ACTION_FAIL; 961 break; 962 case ABORTED_COMMAND: 963 action = ACTION_FAIL; 964 if (sshdr.asc == 0x10) { /* DIF */ 965 description = "Target Data Integrity Failure"; 966 error = -EILSEQ; 967 } 968 break; 969 case NOT_READY: 970 /* If the device is in the process of becoming 971 * ready, or has a temporary blockage, retry. 972 */ 973 if (sshdr.asc == 0x04) { 974 switch (sshdr.ascq) { 975 case 0x01: /* becoming ready */ 976 case 0x04: /* format in progress */ 977 case 0x05: /* rebuild in progress */ 978 case 0x06: /* recalculation in progress */ 979 case 0x07: /* operation in progress */ 980 case 0x08: /* Long write in progress */ 981 case 0x09: /* self test in progress */ 982 case 0x14: /* space allocation in progress */ 983 action = ACTION_DELAYED_RETRY; 984 break; 985 default: 986 description = "Device not ready"; 987 action = ACTION_FAIL; 988 break; 989 } 990 } else { 991 description = "Device not ready"; 992 action = ACTION_FAIL; 993 } 994 break; 995 case VOLUME_OVERFLOW: 996 /* See SSC3rXX or current. */ 997 action = ACTION_FAIL; 998 break; 999 default: 1000 description = "Unhandled sense code"; 1001 action = ACTION_FAIL; 1002 break; 1003 } 1004 } else { 1005 description = "Unhandled error code"; 1006 action = ACTION_FAIL; 1007 } 1008 1009 switch (action) { 1010 case ACTION_FAIL: 1011 /* Give up and fail the remainder of the request */ 1012 scsi_release_buffers(cmd); 1013 if (!(req->cmd_flags & REQ_QUIET)) { 1014 if (description) 1015 scmd_printk(KERN_INFO, cmd, "%s\n", 1016 description); 1017 scsi_print_result(cmd); 1018 if (driver_byte(result) & DRIVER_SENSE) 1019 scsi_print_sense("", cmd); 1020 scsi_print_command(cmd); 1021 } 1022 if (blk_end_request_err(req, error)) 1023 scsi_requeue_command(q, cmd); 1024 else 1025 scsi_next_command(cmd); 1026 break; 1027 case ACTION_REPREP: 1028 /* Unprep the request and put it back at the head of the queue. 1029 * A new command will be prepared and issued. 1030 */ 1031 scsi_release_buffers(cmd); 1032 scsi_requeue_command(q, cmd); 1033 break; 1034 case ACTION_RETRY: 1035 /* Retry the same command immediately */ 1036 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 1037 break; 1038 case ACTION_DELAYED_RETRY: 1039 /* Retry the same command after a delay */ 1040 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 1041 break; 1042 } 1043 } 1044 1045 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb, 1046 gfp_t gfp_mask) 1047 { 1048 int count; 1049 1050 /* 1051 * If sg table allocation fails, requeue request later. 1052 */ 1053 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments, 1054 gfp_mask))) { 1055 return BLKPREP_DEFER; 1056 } 1057 1058 req->buffer = NULL; 1059 1060 /* 1061 * Next, walk the list, and fill in the addresses and sizes of 1062 * each segment. 1063 */ 1064 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1065 BUG_ON(count > sdb->table.nents); 1066 sdb->table.nents = count; 1067 sdb->length = blk_rq_bytes(req); 1068 return BLKPREP_OK; 1069 } 1070 1071 /* 1072 * Function: scsi_init_io() 1073 * 1074 * Purpose: SCSI I/O initialize function. 1075 * 1076 * Arguments: cmd - Command descriptor we wish to initialize 1077 * 1078 * Returns: 0 on success 1079 * BLKPREP_DEFER if the failure is retryable 1080 * BLKPREP_KILL if the failure is fatal 1081 */ 1082 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask) 1083 { 1084 struct request *rq = cmd->request; 1085 1086 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask); 1087 if (error) 1088 goto err_exit; 1089 1090 if (blk_bidi_rq(rq)) { 1091 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc( 1092 scsi_sdb_cache, GFP_ATOMIC); 1093 if (!bidi_sdb) { 1094 error = BLKPREP_DEFER; 1095 goto err_exit; 1096 } 1097 1098 rq->next_rq->special = bidi_sdb; 1099 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC); 1100 if (error) 1101 goto err_exit; 1102 } 1103 1104 if (blk_integrity_rq(rq)) { 1105 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1106 int ivecs, count; 1107 1108 BUG_ON(prot_sdb == NULL); 1109 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1110 1111 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) { 1112 error = BLKPREP_DEFER; 1113 goto err_exit; 1114 } 1115 1116 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1117 prot_sdb->table.sgl); 1118 BUG_ON(unlikely(count > ivecs)); 1119 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1120 1121 cmd->prot_sdb = prot_sdb; 1122 cmd->prot_sdb->table.nents = count; 1123 } 1124 1125 return BLKPREP_OK ; 1126 1127 err_exit: 1128 scsi_release_buffers(cmd); 1129 cmd->request->special = NULL; 1130 scsi_put_command(cmd); 1131 return error; 1132 } 1133 EXPORT_SYMBOL(scsi_init_io); 1134 1135 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev, 1136 struct request *req) 1137 { 1138 struct scsi_cmnd *cmd; 1139 1140 if (!req->special) { 1141 cmd = scsi_get_command(sdev, GFP_ATOMIC); 1142 if (unlikely(!cmd)) 1143 return NULL; 1144 req->special = cmd; 1145 } else { 1146 cmd = req->special; 1147 } 1148 1149 /* pull a tag out of the request if we have one */ 1150 cmd->tag = req->tag; 1151 cmd->request = req; 1152 1153 cmd->cmnd = req->cmd; 1154 cmd->prot_op = SCSI_PROT_NORMAL; 1155 1156 return cmd; 1157 } 1158 1159 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req) 1160 { 1161 struct scsi_cmnd *cmd; 1162 int ret = scsi_prep_state_check(sdev, req); 1163 1164 if (ret != BLKPREP_OK) 1165 return ret; 1166 1167 cmd = scsi_get_cmd_from_req(sdev, req); 1168 if (unlikely(!cmd)) 1169 return BLKPREP_DEFER; 1170 1171 /* 1172 * BLOCK_PC requests may transfer data, in which case they must 1173 * a bio attached to them. Or they might contain a SCSI command 1174 * that does not transfer data, in which case they may optionally 1175 * submit a request without an attached bio. 1176 */ 1177 if (req->bio) { 1178 int ret; 1179 1180 BUG_ON(!req->nr_phys_segments); 1181 1182 ret = scsi_init_io(cmd, GFP_ATOMIC); 1183 if (unlikely(ret)) 1184 return ret; 1185 } else { 1186 BUG_ON(blk_rq_bytes(req)); 1187 1188 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1189 req->buffer = NULL; 1190 } 1191 1192 cmd->cmd_len = req->cmd_len; 1193 if (!blk_rq_bytes(req)) 1194 cmd->sc_data_direction = DMA_NONE; 1195 else if (rq_data_dir(req) == WRITE) 1196 cmd->sc_data_direction = DMA_TO_DEVICE; 1197 else 1198 cmd->sc_data_direction = DMA_FROM_DEVICE; 1199 1200 cmd->transfersize = blk_rq_bytes(req); 1201 cmd->allowed = req->retries; 1202 return BLKPREP_OK; 1203 } 1204 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd); 1205 1206 /* 1207 * Setup a REQ_TYPE_FS command. These are simple read/write request 1208 * from filesystems that still need to be translated to SCSI CDBs from 1209 * the ULD. 1210 */ 1211 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1212 { 1213 struct scsi_cmnd *cmd; 1214 int ret = scsi_prep_state_check(sdev, req); 1215 1216 if (ret != BLKPREP_OK) 1217 return ret; 1218 1219 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh 1220 && sdev->scsi_dh_data->scsi_dh->prep_fn)) { 1221 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req); 1222 if (ret != BLKPREP_OK) 1223 return ret; 1224 } 1225 1226 /* 1227 * Filesystem requests must transfer data. 1228 */ 1229 BUG_ON(!req->nr_phys_segments); 1230 1231 cmd = scsi_get_cmd_from_req(sdev, req); 1232 if (unlikely(!cmd)) 1233 return BLKPREP_DEFER; 1234 1235 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1236 return scsi_init_io(cmd, GFP_ATOMIC); 1237 } 1238 EXPORT_SYMBOL(scsi_setup_fs_cmnd); 1239 1240 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1241 { 1242 int ret = BLKPREP_OK; 1243 1244 /* 1245 * If the device is not in running state we will reject some 1246 * or all commands. 1247 */ 1248 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1249 switch (sdev->sdev_state) { 1250 case SDEV_OFFLINE: 1251 case SDEV_TRANSPORT_OFFLINE: 1252 /* 1253 * If the device is offline we refuse to process any 1254 * commands. The device must be brought online 1255 * before trying any recovery commands. 1256 */ 1257 sdev_printk(KERN_ERR, sdev, 1258 "rejecting I/O to offline device\n"); 1259 ret = BLKPREP_KILL; 1260 break; 1261 case SDEV_DEL: 1262 /* 1263 * If the device is fully deleted, we refuse to 1264 * process any commands as well. 1265 */ 1266 sdev_printk(KERN_ERR, sdev, 1267 "rejecting I/O to dead device\n"); 1268 ret = BLKPREP_KILL; 1269 break; 1270 case SDEV_QUIESCE: 1271 case SDEV_BLOCK: 1272 case SDEV_CREATED_BLOCK: 1273 /* 1274 * If the devices is blocked we defer normal commands. 1275 */ 1276 if (!(req->cmd_flags & REQ_PREEMPT)) 1277 ret = BLKPREP_DEFER; 1278 break; 1279 default: 1280 /* 1281 * For any other not fully online state we only allow 1282 * special commands. In particular any user initiated 1283 * command is not allowed. 1284 */ 1285 if (!(req->cmd_flags & REQ_PREEMPT)) 1286 ret = BLKPREP_KILL; 1287 break; 1288 } 1289 } 1290 return ret; 1291 } 1292 EXPORT_SYMBOL(scsi_prep_state_check); 1293 1294 int scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1295 { 1296 struct scsi_device *sdev = q->queuedata; 1297 1298 switch (ret) { 1299 case BLKPREP_KILL: 1300 req->errors = DID_NO_CONNECT << 16; 1301 /* release the command and kill it */ 1302 if (req->special) { 1303 struct scsi_cmnd *cmd = req->special; 1304 scsi_release_buffers(cmd); 1305 scsi_put_command(cmd); 1306 req->special = NULL; 1307 } 1308 break; 1309 case BLKPREP_DEFER: 1310 /* 1311 * If we defer, the blk_peek_request() returns NULL, but the 1312 * queue must be restarted, so we schedule a callback to happen 1313 * shortly. 1314 */ 1315 if (sdev->device_busy == 0) 1316 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1317 break; 1318 default: 1319 req->cmd_flags |= REQ_DONTPREP; 1320 } 1321 1322 return ret; 1323 } 1324 EXPORT_SYMBOL(scsi_prep_return); 1325 1326 int scsi_prep_fn(struct request_queue *q, struct request *req) 1327 { 1328 struct scsi_device *sdev = q->queuedata; 1329 int ret = BLKPREP_KILL; 1330 1331 if (req->cmd_type == REQ_TYPE_BLOCK_PC) 1332 ret = scsi_setup_blk_pc_cmnd(sdev, req); 1333 return scsi_prep_return(q, req, ret); 1334 } 1335 EXPORT_SYMBOL(scsi_prep_fn); 1336 1337 /* 1338 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1339 * return 0. 1340 * 1341 * Called with the queue_lock held. 1342 */ 1343 static inline int scsi_dev_queue_ready(struct request_queue *q, 1344 struct scsi_device *sdev) 1345 { 1346 if (sdev->device_busy == 0 && sdev->device_blocked) { 1347 /* 1348 * unblock after device_blocked iterates to zero 1349 */ 1350 if (--sdev->device_blocked == 0) { 1351 SCSI_LOG_MLQUEUE(3, 1352 sdev_printk(KERN_INFO, sdev, 1353 "unblocking device at zero depth\n")); 1354 } else { 1355 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1356 return 0; 1357 } 1358 } 1359 if (scsi_device_is_busy(sdev)) 1360 return 0; 1361 1362 return 1; 1363 } 1364 1365 1366 /* 1367 * scsi_target_queue_ready: checks if there we can send commands to target 1368 * @sdev: scsi device on starget to check. 1369 * 1370 * Called with the host lock held. 1371 */ 1372 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1373 struct scsi_device *sdev) 1374 { 1375 struct scsi_target *starget = scsi_target(sdev); 1376 1377 if (starget->single_lun) { 1378 if (starget->starget_sdev_user && 1379 starget->starget_sdev_user != sdev) 1380 return 0; 1381 starget->starget_sdev_user = sdev; 1382 } 1383 1384 if (starget->target_busy == 0 && starget->target_blocked) { 1385 /* 1386 * unblock after target_blocked iterates to zero 1387 */ 1388 if (--starget->target_blocked == 0) { 1389 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1390 "unblocking target at zero depth\n")); 1391 } else 1392 return 0; 1393 } 1394 1395 if (scsi_target_is_busy(starget)) { 1396 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1397 return 0; 1398 } 1399 1400 return 1; 1401 } 1402 1403 /* 1404 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1405 * return 0. We must end up running the queue again whenever 0 is 1406 * returned, else IO can hang. 1407 * 1408 * Called with host_lock held. 1409 */ 1410 static inline int scsi_host_queue_ready(struct request_queue *q, 1411 struct Scsi_Host *shost, 1412 struct scsi_device *sdev) 1413 { 1414 if (scsi_host_in_recovery(shost)) 1415 return 0; 1416 if (shost->host_busy == 0 && shost->host_blocked) { 1417 /* 1418 * unblock after host_blocked iterates to zero 1419 */ 1420 if (--shost->host_blocked == 0) { 1421 SCSI_LOG_MLQUEUE(3, 1422 printk("scsi%d unblocking host at zero depth\n", 1423 shost->host_no)); 1424 } else { 1425 return 0; 1426 } 1427 } 1428 if (scsi_host_is_busy(shost)) { 1429 if (list_empty(&sdev->starved_entry)) 1430 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1431 return 0; 1432 } 1433 1434 /* We're OK to process the command, so we can't be starved */ 1435 if (!list_empty(&sdev->starved_entry)) 1436 list_del_init(&sdev->starved_entry); 1437 1438 return 1; 1439 } 1440 1441 /* 1442 * Busy state exporting function for request stacking drivers. 1443 * 1444 * For efficiency, no lock is taken to check the busy state of 1445 * shost/starget/sdev, since the returned value is not guaranteed and 1446 * may be changed after request stacking drivers call the function, 1447 * regardless of taking lock or not. 1448 * 1449 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1450 * needs to return 'not busy'. Otherwise, request stacking drivers 1451 * may hold requests forever. 1452 */ 1453 static int scsi_lld_busy(struct request_queue *q) 1454 { 1455 struct scsi_device *sdev = q->queuedata; 1456 struct Scsi_Host *shost; 1457 1458 if (blk_queue_dying(q)) 1459 return 0; 1460 1461 shost = sdev->host; 1462 1463 /* 1464 * Ignore host/starget busy state. 1465 * Since block layer does not have a concept of fairness across 1466 * multiple queues, congestion of host/starget needs to be handled 1467 * in SCSI layer. 1468 */ 1469 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1470 return 1; 1471 1472 return 0; 1473 } 1474 1475 /* 1476 * Kill a request for a dead device 1477 */ 1478 static void scsi_kill_request(struct request *req, struct request_queue *q) 1479 { 1480 struct scsi_cmnd *cmd = req->special; 1481 struct scsi_device *sdev; 1482 struct scsi_target *starget; 1483 struct Scsi_Host *shost; 1484 1485 blk_start_request(req); 1486 1487 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1488 1489 sdev = cmd->device; 1490 starget = scsi_target(sdev); 1491 shost = sdev->host; 1492 scsi_init_cmd_errh(cmd); 1493 cmd->result = DID_NO_CONNECT << 16; 1494 atomic_inc(&cmd->device->iorequest_cnt); 1495 1496 /* 1497 * SCSI request completion path will do scsi_device_unbusy(), 1498 * bump busy counts. To bump the counters, we need to dance 1499 * with the locks as normal issue path does. 1500 */ 1501 sdev->device_busy++; 1502 spin_unlock(sdev->request_queue->queue_lock); 1503 spin_lock(shost->host_lock); 1504 shost->host_busy++; 1505 starget->target_busy++; 1506 spin_unlock(shost->host_lock); 1507 spin_lock(sdev->request_queue->queue_lock); 1508 1509 blk_complete_request(req); 1510 } 1511 1512 static void scsi_softirq_done(struct request *rq) 1513 { 1514 struct scsi_cmnd *cmd = rq->special; 1515 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1516 int disposition; 1517 1518 INIT_LIST_HEAD(&cmd->eh_entry); 1519 1520 atomic_inc(&cmd->device->iodone_cnt); 1521 if (cmd->result) 1522 atomic_inc(&cmd->device->ioerr_cnt); 1523 1524 disposition = scsi_decide_disposition(cmd); 1525 if (disposition != SUCCESS && 1526 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1527 sdev_printk(KERN_ERR, cmd->device, 1528 "timing out command, waited %lus\n", 1529 wait_for/HZ); 1530 disposition = SUCCESS; 1531 } 1532 1533 scsi_log_completion(cmd, disposition); 1534 1535 switch (disposition) { 1536 case SUCCESS: 1537 scsi_finish_command(cmd); 1538 break; 1539 case NEEDS_RETRY: 1540 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1541 break; 1542 case ADD_TO_MLQUEUE: 1543 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1544 break; 1545 default: 1546 if (!scsi_eh_scmd_add(cmd, 0)) 1547 scsi_finish_command(cmd); 1548 } 1549 } 1550 1551 /* 1552 * Function: scsi_request_fn() 1553 * 1554 * Purpose: Main strategy routine for SCSI. 1555 * 1556 * Arguments: q - Pointer to actual queue. 1557 * 1558 * Returns: Nothing 1559 * 1560 * Lock status: IO request lock assumed to be held when called. 1561 */ 1562 static void scsi_request_fn(struct request_queue *q) 1563 { 1564 struct scsi_device *sdev = q->queuedata; 1565 struct Scsi_Host *shost; 1566 struct scsi_cmnd *cmd; 1567 struct request *req; 1568 1569 if(!get_device(&sdev->sdev_gendev)) 1570 /* We must be tearing the block queue down already */ 1571 return; 1572 1573 /* 1574 * To start with, we keep looping until the queue is empty, or until 1575 * the host is no longer able to accept any more requests. 1576 */ 1577 shost = sdev->host; 1578 for (;;) { 1579 int rtn; 1580 /* 1581 * get next queueable request. We do this early to make sure 1582 * that the request is fully prepared even if we cannot 1583 * accept it. 1584 */ 1585 req = blk_peek_request(q); 1586 if (!req || !scsi_dev_queue_ready(q, sdev)) 1587 break; 1588 1589 if (unlikely(!scsi_device_online(sdev))) { 1590 sdev_printk(KERN_ERR, sdev, 1591 "rejecting I/O to offline device\n"); 1592 scsi_kill_request(req, q); 1593 continue; 1594 } 1595 1596 1597 /* 1598 * Remove the request from the request list. 1599 */ 1600 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1601 blk_start_request(req); 1602 sdev->device_busy++; 1603 1604 spin_unlock(q->queue_lock); 1605 cmd = req->special; 1606 if (unlikely(cmd == NULL)) { 1607 printk(KERN_CRIT "impossible request in %s.\n" 1608 "please mail a stack trace to " 1609 "linux-scsi@vger.kernel.org\n", 1610 __func__); 1611 blk_dump_rq_flags(req, "foo"); 1612 BUG(); 1613 } 1614 spin_lock(shost->host_lock); 1615 1616 /* 1617 * We hit this when the driver is using a host wide 1618 * tag map. For device level tag maps the queue_depth check 1619 * in the device ready fn would prevent us from trying 1620 * to allocate a tag. Since the map is a shared host resource 1621 * we add the dev to the starved list so it eventually gets 1622 * a run when a tag is freed. 1623 */ 1624 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) { 1625 if (list_empty(&sdev->starved_entry)) 1626 list_add_tail(&sdev->starved_entry, 1627 &shost->starved_list); 1628 goto not_ready; 1629 } 1630 1631 if (!scsi_target_queue_ready(shost, sdev)) 1632 goto not_ready; 1633 1634 if (!scsi_host_queue_ready(q, shost, sdev)) 1635 goto not_ready; 1636 1637 scsi_target(sdev)->target_busy++; 1638 shost->host_busy++; 1639 1640 /* 1641 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will 1642 * take the lock again. 1643 */ 1644 spin_unlock_irq(shost->host_lock); 1645 1646 /* 1647 * Finally, initialize any error handling parameters, and set up 1648 * the timers for timeouts. 1649 */ 1650 scsi_init_cmd_errh(cmd); 1651 1652 /* 1653 * Dispatch the command to the low-level driver. 1654 */ 1655 rtn = scsi_dispatch_cmd(cmd); 1656 spin_lock_irq(q->queue_lock); 1657 if (rtn) 1658 goto out_delay; 1659 } 1660 1661 goto out; 1662 1663 not_ready: 1664 spin_unlock_irq(shost->host_lock); 1665 1666 /* 1667 * lock q, handle tag, requeue req, and decrement device_busy. We 1668 * must return with queue_lock held. 1669 * 1670 * Decrementing device_busy without checking it is OK, as all such 1671 * cases (host limits or settings) should run the queue at some 1672 * later time. 1673 */ 1674 spin_lock_irq(q->queue_lock); 1675 blk_requeue_request(q, req); 1676 sdev->device_busy--; 1677 out_delay: 1678 if (sdev->device_busy == 0) 1679 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1680 out: 1681 /* must be careful here...if we trigger the ->remove() function 1682 * we cannot be holding the q lock */ 1683 spin_unlock_irq(q->queue_lock); 1684 put_device(&sdev->sdev_gendev); 1685 spin_lock_irq(q->queue_lock); 1686 } 1687 1688 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 1689 { 1690 struct device *host_dev; 1691 u64 bounce_limit = 0xffffffff; 1692 1693 if (shost->unchecked_isa_dma) 1694 return BLK_BOUNCE_ISA; 1695 /* 1696 * Platforms with virtual-DMA translation 1697 * hardware have no practical limit. 1698 */ 1699 if (!PCI_DMA_BUS_IS_PHYS) 1700 return BLK_BOUNCE_ANY; 1701 1702 host_dev = scsi_get_device(shost); 1703 if (host_dev && host_dev->dma_mask) 1704 bounce_limit = *host_dev->dma_mask; 1705 1706 return bounce_limit; 1707 } 1708 EXPORT_SYMBOL(scsi_calculate_bounce_limit); 1709 1710 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost, 1711 request_fn_proc *request_fn) 1712 { 1713 struct request_queue *q; 1714 struct device *dev = shost->dma_dev; 1715 1716 q = blk_init_queue(request_fn, NULL); 1717 if (!q) 1718 return NULL; 1719 1720 /* 1721 * this limit is imposed by hardware restrictions 1722 */ 1723 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 1724 SCSI_MAX_SG_CHAIN_SEGMENTS)); 1725 1726 if (scsi_host_prot_dma(shost)) { 1727 shost->sg_prot_tablesize = 1728 min_not_zero(shost->sg_prot_tablesize, 1729 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 1730 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 1731 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 1732 } 1733 1734 blk_queue_max_hw_sectors(q, shost->max_sectors); 1735 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 1736 blk_queue_segment_boundary(q, shost->dma_boundary); 1737 dma_set_seg_boundary(dev, shost->dma_boundary); 1738 1739 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 1740 1741 if (!shost->use_clustering) 1742 q->limits.cluster = 0; 1743 1744 /* 1745 * set a reasonable default alignment on word boundaries: the 1746 * host and device may alter it using 1747 * blk_queue_update_dma_alignment() later. 1748 */ 1749 blk_queue_dma_alignment(q, 0x03); 1750 1751 return q; 1752 } 1753 EXPORT_SYMBOL(__scsi_alloc_queue); 1754 1755 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev) 1756 { 1757 struct request_queue *q; 1758 1759 q = __scsi_alloc_queue(sdev->host, scsi_request_fn); 1760 if (!q) 1761 return NULL; 1762 1763 blk_queue_prep_rq(q, scsi_prep_fn); 1764 blk_queue_softirq_done(q, scsi_softirq_done); 1765 blk_queue_rq_timed_out(q, scsi_times_out); 1766 blk_queue_lld_busy(q, scsi_lld_busy); 1767 return q; 1768 } 1769 1770 /* 1771 * Function: scsi_block_requests() 1772 * 1773 * Purpose: Utility function used by low-level drivers to prevent further 1774 * commands from being queued to the device. 1775 * 1776 * Arguments: shost - Host in question 1777 * 1778 * Returns: Nothing 1779 * 1780 * Lock status: No locks are assumed held. 1781 * 1782 * Notes: There is no timer nor any other means by which the requests 1783 * get unblocked other than the low-level driver calling 1784 * scsi_unblock_requests(). 1785 */ 1786 void scsi_block_requests(struct Scsi_Host *shost) 1787 { 1788 shost->host_self_blocked = 1; 1789 } 1790 EXPORT_SYMBOL(scsi_block_requests); 1791 1792 /* 1793 * Function: scsi_unblock_requests() 1794 * 1795 * Purpose: Utility function used by low-level drivers to allow further 1796 * commands from being queued to the device. 1797 * 1798 * Arguments: shost - Host in question 1799 * 1800 * Returns: Nothing 1801 * 1802 * Lock status: No locks are assumed held. 1803 * 1804 * Notes: There is no timer nor any other means by which the requests 1805 * get unblocked other than the low-level driver calling 1806 * scsi_unblock_requests(). 1807 * 1808 * This is done as an API function so that changes to the 1809 * internals of the scsi mid-layer won't require wholesale 1810 * changes to drivers that use this feature. 1811 */ 1812 void scsi_unblock_requests(struct Scsi_Host *shost) 1813 { 1814 shost->host_self_blocked = 0; 1815 scsi_run_host_queues(shost); 1816 } 1817 EXPORT_SYMBOL(scsi_unblock_requests); 1818 1819 int __init scsi_init_queue(void) 1820 { 1821 int i; 1822 1823 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 1824 sizeof(struct scsi_data_buffer), 1825 0, 0, NULL); 1826 if (!scsi_sdb_cache) { 1827 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 1828 return -ENOMEM; 1829 } 1830 1831 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1832 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1833 int size = sgp->size * sizeof(struct scatterlist); 1834 1835 sgp->slab = kmem_cache_create(sgp->name, size, 0, 1836 SLAB_HWCACHE_ALIGN, NULL); 1837 if (!sgp->slab) { 1838 printk(KERN_ERR "SCSI: can't init sg slab %s\n", 1839 sgp->name); 1840 goto cleanup_sdb; 1841 } 1842 1843 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE, 1844 sgp->slab); 1845 if (!sgp->pool) { 1846 printk(KERN_ERR "SCSI: can't init sg mempool %s\n", 1847 sgp->name); 1848 goto cleanup_sdb; 1849 } 1850 } 1851 1852 return 0; 1853 1854 cleanup_sdb: 1855 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1856 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1857 if (sgp->pool) 1858 mempool_destroy(sgp->pool); 1859 if (sgp->slab) 1860 kmem_cache_destroy(sgp->slab); 1861 } 1862 kmem_cache_destroy(scsi_sdb_cache); 1863 1864 return -ENOMEM; 1865 } 1866 1867 void scsi_exit_queue(void) 1868 { 1869 int i; 1870 1871 kmem_cache_destroy(scsi_sdb_cache); 1872 1873 for (i = 0; i < SG_MEMPOOL_NR; i++) { 1874 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i; 1875 mempool_destroy(sgp->pool); 1876 kmem_cache_destroy(sgp->slab); 1877 } 1878 } 1879 1880 /** 1881 * scsi_mode_select - issue a mode select 1882 * @sdev: SCSI device to be queried 1883 * @pf: Page format bit (1 == standard, 0 == vendor specific) 1884 * @sp: Save page bit (0 == don't save, 1 == save) 1885 * @modepage: mode page being requested 1886 * @buffer: request buffer (may not be smaller than eight bytes) 1887 * @len: length of request buffer. 1888 * @timeout: command timeout 1889 * @retries: number of retries before failing 1890 * @data: returns a structure abstracting the mode header data 1891 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1892 * must be SCSI_SENSE_BUFFERSIZE big. 1893 * 1894 * Returns zero if successful; negative error number or scsi 1895 * status on error 1896 * 1897 */ 1898 int 1899 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 1900 unsigned char *buffer, int len, int timeout, int retries, 1901 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1902 { 1903 unsigned char cmd[10]; 1904 unsigned char *real_buffer; 1905 int ret; 1906 1907 memset(cmd, 0, sizeof(cmd)); 1908 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 1909 1910 if (sdev->use_10_for_ms) { 1911 if (len > 65535) 1912 return -EINVAL; 1913 real_buffer = kmalloc(8 + len, GFP_KERNEL); 1914 if (!real_buffer) 1915 return -ENOMEM; 1916 memcpy(real_buffer + 8, buffer, len); 1917 len += 8; 1918 real_buffer[0] = 0; 1919 real_buffer[1] = 0; 1920 real_buffer[2] = data->medium_type; 1921 real_buffer[3] = data->device_specific; 1922 real_buffer[4] = data->longlba ? 0x01 : 0; 1923 real_buffer[5] = 0; 1924 real_buffer[6] = data->block_descriptor_length >> 8; 1925 real_buffer[7] = data->block_descriptor_length; 1926 1927 cmd[0] = MODE_SELECT_10; 1928 cmd[7] = len >> 8; 1929 cmd[8] = len; 1930 } else { 1931 if (len > 255 || data->block_descriptor_length > 255 || 1932 data->longlba) 1933 return -EINVAL; 1934 1935 real_buffer = kmalloc(4 + len, GFP_KERNEL); 1936 if (!real_buffer) 1937 return -ENOMEM; 1938 memcpy(real_buffer + 4, buffer, len); 1939 len += 4; 1940 real_buffer[0] = 0; 1941 real_buffer[1] = data->medium_type; 1942 real_buffer[2] = data->device_specific; 1943 real_buffer[3] = data->block_descriptor_length; 1944 1945 1946 cmd[0] = MODE_SELECT; 1947 cmd[4] = len; 1948 } 1949 1950 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 1951 sshdr, timeout, retries, NULL); 1952 kfree(real_buffer); 1953 return ret; 1954 } 1955 EXPORT_SYMBOL_GPL(scsi_mode_select); 1956 1957 /** 1958 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 1959 * @sdev: SCSI device to be queried 1960 * @dbd: set if mode sense will allow block descriptors to be returned 1961 * @modepage: mode page being requested 1962 * @buffer: request buffer (may not be smaller than eight bytes) 1963 * @len: length of request buffer. 1964 * @timeout: command timeout 1965 * @retries: number of retries before failing 1966 * @data: returns a structure abstracting the mode header data 1967 * @sshdr: place to put sense data (or NULL if no sense to be collected). 1968 * must be SCSI_SENSE_BUFFERSIZE big. 1969 * 1970 * Returns zero if unsuccessful, or the header offset (either 4 1971 * or 8 depending on whether a six or ten byte command was 1972 * issued) if successful. 1973 */ 1974 int 1975 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 1976 unsigned char *buffer, int len, int timeout, int retries, 1977 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 1978 { 1979 unsigned char cmd[12]; 1980 int use_10_for_ms; 1981 int header_length; 1982 int result; 1983 struct scsi_sense_hdr my_sshdr; 1984 1985 memset(data, 0, sizeof(*data)); 1986 memset(&cmd[0], 0, 12); 1987 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 1988 cmd[2] = modepage; 1989 1990 /* caller might not be interested in sense, but we need it */ 1991 if (!sshdr) 1992 sshdr = &my_sshdr; 1993 1994 retry: 1995 use_10_for_ms = sdev->use_10_for_ms; 1996 1997 if (use_10_for_ms) { 1998 if (len < 8) 1999 len = 8; 2000 2001 cmd[0] = MODE_SENSE_10; 2002 cmd[8] = len; 2003 header_length = 8; 2004 } else { 2005 if (len < 4) 2006 len = 4; 2007 2008 cmd[0] = MODE_SENSE; 2009 cmd[4] = len; 2010 header_length = 4; 2011 } 2012 2013 memset(buffer, 0, len); 2014 2015 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2016 sshdr, timeout, retries, NULL); 2017 2018 /* This code looks awful: what it's doing is making sure an 2019 * ILLEGAL REQUEST sense return identifies the actual command 2020 * byte as the problem. MODE_SENSE commands can return 2021 * ILLEGAL REQUEST if the code page isn't supported */ 2022 2023 if (use_10_for_ms && !scsi_status_is_good(result) && 2024 (driver_byte(result) & DRIVER_SENSE)) { 2025 if (scsi_sense_valid(sshdr)) { 2026 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2027 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2028 /* 2029 * Invalid command operation code 2030 */ 2031 sdev->use_10_for_ms = 0; 2032 goto retry; 2033 } 2034 } 2035 } 2036 2037 if(scsi_status_is_good(result)) { 2038 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2039 (modepage == 6 || modepage == 8))) { 2040 /* Initio breakage? */ 2041 header_length = 0; 2042 data->length = 13; 2043 data->medium_type = 0; 2044 data->device_specific = 0; 2045 data->longlba = 0; 2046 data->block_descriptor_length = 0; 2047 } else if(use_10_for_ms) { 2048 data->length = buffer[0]*256 + buffer[1] + 2; 2049 data->medium_type = buffer[2]; 2050 data->device_specific = buffer[3]; 2051 data->longlba = buffer[4] & 0x01; 2052 data->block_descriptor_length = buffer[6]*256 2053 + buffer[7]; 2054 } else { 2055 data->length = buffer[0] + 1; 2056 data->medium_type = buffer[1]; 2057 data->device_specific = buffer[2]; 2058 data->block_descriptor_length = buffer[3]; 2059 } 2060 data->header_length = header_length; 2061 } 2062 2063 return result; 2064 } 2065 EXPORT_SYMBOL(scsi_mode_sense); 2066 2067 /** 2068 * scsi_test_unit_ready - test if unit is ready 2069 * @sdev: scsi device to change the state of. 2070 * @timeout: command timeout 2071 * @retries: number of retries before failing 2072 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for 2073 * returning sense. Make sure that this is cleared before passing 2074 * in. 2075 * 2076 * Returns zero if unsuccessful or an error if TUR failed. For 2077 * removable media, UNIT_ATTENTION sets ->changed flag. 2078 **/ 2079 int 2080 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2081 struct scsi_sense_hdr *sshdr_external) 2082 { 2083 char cmd[] = { 2084 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2085 }; 2086 struct scsi_sense_hdr *sshdr; 2087 int result; 2088 2089 if (!sshdr_external) 2090 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 2091 else 2092 sshdr = sshdr_external; 2093 2094 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2095 do { 2096 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2097 timeout, retries, NULL); 2098 if (sdev->removable && scsi_sense_valid(sshdr) && 2099 sshdr->sense_key == UNIT_ATTENTION) 2100 sdev->changed = 1; 2101 } while (scsi_sense_valid(sshdr) && 2102 sshdr->sense_key == UNIT_ATTENTION && --retries); 2103 2104 if (!sshdr_external) 2105 kfree(sshdr); 2106 return result; 2107 } 2108 EXPORT_SYMBOL(scsi_test_unit_ready); 2109 2110 /** 2111 * scsi_device_set_state - Take the given device through the device state model. 2112 * @sdev: scsi device to change the state of. 2113 * @state: state to change to. 2114 * 2115 * Returns zero if unsuccessful or an error if the requested 2116 * transition is illegal. 2117 */ 2118 int 2119 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2120 { 2121 enum scsi_device_state oldstate = sdev->sdev_state; 2122 2123 if (state == oldstate) 2124 return 0; 2125 2126 switch (state) { 2127 case SDEV_CREATED: 2128 switch (oldstate) { 2129 case SDEV_CREATED_BLOCK: 2130 break; 2131 default: 2132 goto illegal; 2133 } 2134 break; 2135 2136 case SDEV_RUNNING: 2137 switch (oldstate) { 2138 case SDEV_CREATED: 2139 case SDEV_OFFLINE: 2140 case SDEV_TRANSPORT_OFFLINE: 2141 case SDEV_QUIESCE: 2142 case SDEV_BLOCK: 2143 break; 2144 default: 2145 goto illegal; 2146 } 2147 break; 2148 2149 case SDEV_QUIESCE: 2150 switch (oldstate) { 2151 case SDEV_RUNNING: 2152 case SDEV_OFFLINE: 2153 case SDEV_TRANSPORT_OFFLINE: 2154 break; 2155 default: 2156 goto illegal; 2157 } 2158 break; 2159 2160 case SDEV_OFFLINE: 2161 case SDEV_TRANSPORT_OFFLINE: 2162 switch (oldstate) { 2163 case SDEV_CREATED: 2164 case SDEV_RUNNING: 2165 case SDEV_QUIESCE: 2166 case SDEV_BLOCK: 2167 break; 2168 default: 2169 goto illegal; 2170 } 2171 break; 2172 2173 case SDEV_BLOCK: 2174 switch (oldstate) { 2175 case SDEV_RUNNING: 2176 case SDEV_CREATED_BLOCK: 2177 break; 2178 default: 2179 goto illegal; 2180 } 2181 break; 2182 2183 case SDEV_CREATED_BLOCK: 2184 switch (oldstate) { 2185 case SDEV_CREATED: 2186 break; 2187 default: 2188 goto illegal; 2189 } 2190 break; 2191 2192 case SDEV_CANCEL: 2193 switch (oldstate) { 2194 case SDEV_CREATED: 2195 case SDEV_RUNNING: 2196 case SDEV_QUIESCE: 2197 case SDEV_OFFLINE: 2198 case SDEV_TRANSPORT_OFFLINE: 2199 case SDEV_BLOCK: 2200 break; 2201 default: 2202 goto illegal; 2203 } 2204 break; 2205 2206 case SDEV_DEL: 2207 switch (oldstate) { 2208 case SDEV_CREATED: 2209 case SDEV_RUNNING: 2210 case SDEV_OFFLINE: 2211 case SDEV_TRANSPORT_OFFLINE: 2212 case SDEV_CANCEL: 2213 case SDEV_CREATED_BLOCK: 2214 break; 2215 default: 2216 goto illegal; 2217 } 2218 break; 2219 2220 } 2221 sdev->sdev_state = state; 2222 return 0; 2223 2224 illegal: 2225 SCSI_LOG_ERROR_RECOVERY(1, 2226 sdev_printk(KERN_ERR, sdev, 2227 "Illegal state transition %s->%s\n", 2228 scsi_device_state_name(oldstate), 2229 scsi_device_state_name(state)) 2230 ); 2231 return -EINVAL; 2232 } 2233 EXPORT_SYMBOL(scsi_device_set_state); 2234 2235 /** 2236 * sdev_evt_emit - emit a single SCSI device uevent 2237 * @sdev: associated SCSI device 2238 * @evt: event to emit 2239 * 2240 * Send a single uevent (scsi_event) to the associated scsi_device. 2241 */ 2242 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2243 { 2244 int idx = 0; 2245 char *envp[3]; 2246 2247 switch (evt->evt_type) { 2248 case SDEV_EVT_MEDIA_CHANGE: 2249 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2250 break; 2251 2252 default: 2253 /* do nothing */ 2254 break; 2255 } 2256 2257 envp[idx++] = NULL; 2258 2259 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2260 } 2261 2262 /** 2263 * sdev_evt_thread - send a uevent for each scsi event 2264 * @work: work struct for scsi_device 2265 * 2266 * Dispatch queued events to their associated scsi_device kobjects 2267 * as uevents. 2268 */ 2269 void scsi_evt_thread(struct work_struct *work) 2270 { 2271 struct scsi_device *sdev; 2272 LIST_HEAD(event_list); 2273 2274 sdev = container_of(work, struct scsi_device, event_work); 2275 2276 while (1) { 2277 struct scsi_event *evt; 2278 struct list_head *this, *tmp; 2279 unsigned long flags; 2280 2281 spin_lock_irqsave(&sdev->list_lock, flags); 2282 list_splice_init(&sdev->event_list, &event_list); 2283 spin_unlock_irqrestore(&sdev->list_lock, flags); 2284 2285 if (list_empty(&event_list)) 2286 break; 2287 2288 list_for_each_safe(this, tmp, &event_list) { 2289 evt = list_entry(this, struct scsi_event, node); 2290 list_del(&evt->node); 2291 scsi_evt_emit(sdev, evt); 2292 kfree(evt); 2293 } 2294 } 2295 } 2296 2297 /** 2298 * sdev_evt_send - send asserted event to uevent thread 2299 * @sdev: scsi_device event occurred on 2300 * @evt: event to send 2301 * 2302 * Assert scsi device event asynchronously. 2303 */ 2304 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2305 { 2306 unsigned long flags; 2307 2308 #if 0 2309 /* FIXME: currently this check eliminates all media change events 2310 * for polled devices. Need to update to discriminate between AN 2311 * and polled events */ 2312 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2313 kfree(evt); 2314 return; 2315 } 2316 #endif 2317 2318 spin_lock_irqsave(&sdev->list_lock, flags); 2319 list_add_tail(&evt->node, &sdev->event_list); 2320 schedule_work(&sdev->event_work); 2321 spin_unlock_irqrestore(&sdev->list_lock, flags); 2322 } 2323 EXPORT_SYMBOL_GPL(sdev_evt_send); 2324 2325 /** 2326 * sdev_evt_alloc - allocate a new scsi event 2327 * @evt_type: type of event to allocate 2328 * @gfpflags: GFP flags for allocation 2329 * 2330 * Allocates and returns a new scsi_event. 2331 */ 2332 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2333 gfp_t gfpflags) 2334 { 2335 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2336 if (!evt) 2337 return NULL; 2338 2339 evt->evt_type = evt_type; 2340 INIT_LIST_HEAD(&evt->node); 2341 2342 /* evt_type-specific initialization, if any */ 2343 switch (evt_type) { 2344 case SDEV_EVT_MEDIA_CHANGE: 2345 default: 2346 /* do nothing */ 2347 break; 2348 } 2349 2350 return evt; 2351 } 2352 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2353 2354 /** 2355 * sdev_evt_send_simple - send asserted event to uevent thread 2356 * @sdev: scsi_device event occurred on 2357 * @evt_type: type of event to send 2358 * @gfpflags: GFP flags for allocation 2359 * 2360 * Assert scsi device event asynchronously, given an event type. 2361 */ 2362 void sdev_evt_send_simple(struct scsi_device *sdev, 2363 enum scsi_device_event evt_type, gfp_t gfpflags) 2364 { 2365 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2366 if (!evt) { 2367 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2368 evt_type); 2369 return; 2370 } 2371 2372 sdev_evt_send(sdev, evt); 2373 } 2374 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2375 2376 /** 2377 * scsi_device_quiesce - Block user issued commands. 2378 * @sdev: scsi device to quiesce. 2379 * 2380 * This works by trying to transition to the SDEV_QUIESCE state 2381 * (which must be a legal transition). When the device is in this 2382 * state, only special requests will be accepted, all others will 2383 * be deferred. Since special requests may also be requeued requests, 2384 * a successful return doesn't guarantee the device will be 2385 * totally quiescent. 2386 * 2387 * Must be called with user context, may sleep. 2388 * 2389 * Returns zero if unsuccessful or an error if not. 2390 */ 2391 int 2392 scsi_device_quiesce(struct scsi_device *sdev) 2393 { 2394 int err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2395 if (err) 2396 return err; 2397 2398 scsi_run_queue(sdev->request_queue); 2399 while (sdev->device_busy) { 2400 msleep_interruptible(200); 2401 scsi_run_queue(sdev->request_queue); 2402 } 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(scsi_device_quiesce); 2406 2407 /** 2408 * scsi_device_resume - Restart user issued commands to a quiesced device. 2409 * @sdev: scsi device to resume. 2410 * 2411 * Moves the device from quiesced back to running and restarts the 2412 * queues. 2413 * 2414 * Must be called with user context, may sleep. 2415 */ 2416 void scsi_device_resume(struct scsi_device *sdev) 2417 { 2418 /* check if the device state was mutated prior to resume, and if 2419 * so assume the state is being managed elsewhere (for example 2420 * device deleted during suspend) 2421 */ 2422 if (sdev->sdev_state != SDEV_QUIESCE || 2423 scsi_device_set_state(sdev, SDEV_RUNNING)) 2424 return; 2425 scsi_run_queue(sdev->request_queue); 2426 } 2427 EXPORT_SYMBOL(scsi_device_resume); 2428 2429 static void 2430 device_quiesce_fn(struct scsi_device *sdev, void *data) 2431 { 2432 scsi_device_quiesce(sdev); 2433 } 2434 2435 void 2436 scsi_target_quiesce(struct scsi_target *starget) 2437 { 2438 starget_for_each_device(starget, NULL, device_quiesce_fn); 2439 } 2440 EXPORT_SYMBOL(scsi_target_quiesce); 2441 2442 static void 2443 device_resume_fn(struct scsi_device *sdev, void *data) 2444 { 2445 scsi_device_resume(sdev); 2446 } 2447 2448 void 2449 scsi_target_resume(struct scsi_target *starget) 2450 { 2451 starget_for_each_device(starget, NULL, device_resume_fn); 2452 } 2453 EXPORT_SYMBOL(scsi_target_resume); 2454 2455 /** 2456 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state 2457 * @sdev: device to block 2458 * 2459 * Block request made by scsi lld's to temporarily stop all 2460 * scsi commands on the specified device. Called from interrupt 2461 * or normal process context. 2462 * 2463 * Returns zero if successful or error if not 2464 * 2465 * Notes: 2466 * This routine transitions the device to the SDEV_BLOCK state 2467 * (which must be a legal transition). When the device is in this 2468 * state, all commands are deferred until the scsi lld reenables 2469 * the device with scsi_device_unblock or device_block_tmo fires. 2470 */ 2471 int 2472 scsi_internal_device_block(struct scsi_device *sdev) 2473 { 2474 struct request_queue *q = sdev->request_queue; 2475 unsigned long flags; 2476 int err = 0; 2477 2478 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2479 if (err) { 2480 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2481 2482 if (err) 2483 return err; 2484 } 2485 2486 /* 2487 * The device has transitioned to SDEV_BLOCK. Stop the 2488 * block layer from calling the midlayer with this device's 2489 * request queue. 2490 */ 2491 spin_lock_irqsave(q->queue_lock, flags); 2492 blk_stop_queue(q); 2493 spin_unlock_irqrestore(q->queue_lock, flags); 2494 2495 return 0; 2496 } 2497 EXPORT_SYMBOL_GPL(scsi_internal_device_block); 2498 2499 /** 2500 * scsi_internal_device_unblock - resume a device after a block request 2501 * @sdev: device to resume 2502 * @new_state: state to set devices to after unblocking 2503 * 2504 * Called by scsi lld's or the midlayer to restart the device queue 2505 * for the previously suspended scsi device. Called from interrupt or 2506 * normal process context. 2507 * 2508 * Returns zero if successful or error if not. 2509 * 2510 * Notes: 2511 * This routine transitions the device to the SDEV_RUNNING state 2512 * or to one of the offline states (which must be a legal transition) 2513 * allowing the midlayer to goose the queue for this device. 2514 */ 2515 int 2516 scsi_internal_device_unblock(struct scsi_device *sdev, 2517 enum scsi_device_state new_state) 2518 { 2519 struct request_queue *q = sdev->request_queue; 2520 unsigned long flags; 2521 2522 /* 2523 * Try to transition the scsi device to SDEV_RUNNING or one of the 2524 * offlined states and goose the device queue if successful. 2525 */ 2526 if ((sdev->sdev_state == SDEV_BLOCK) || 2527 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE)) 2528 sdev->sdev_state = new_state; 2529 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) { 2530 if (new_state == SDEV_TRANSPORT_OFFLINE || 2531 new_state == SDEV_OFFLINE) 2532 sdev->sdev_state = new_state; 2533 else 2534 sdev->sdev_state = SDEV_CREATED; 2535 } else if (sdev->sdev_state != SDEV_CANCEL && 2536 sdev->sdev_state != SDEV_OFFLINE) 2537 return -EINVAL; 2538 2539 spin_lock_irqsave(q->queue_lock, flags); 2540 blk_start_queue(q); 2541 spin_unlock_irqrestore(q->queue_lock, flags); 2542 2543 return 0; 2544 } 2545 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock); 2546 2547 static void 2548 device_block(struct scsi_device *sdev, void *data) 2549 { 2550 scsi_internal_device_block(sdev); 2551 } 2552 2553 static int 2554 target_block(struct device *dev, void *data) 2555 { 2556 if (scsi_is_target_device(dev)) 2557 starget_for_each_device(to_scsi_target(dev), NULL, 2558 device_block); 2559 return 0; 2560 } 2561 2562 void 2563 scsi_target_block(struct device *dev) 2564 { 2565 if (scsi_is_target_device(dev)) 2566 starget_for_each_device(to_scsi_target(dev), NULL, 2567 device_block); 2568 else 2569 device_for_each_child(dev, NULL, target_block); 2570 } 2571 EXPORT_SYMBOL_GPL(scsi_target_block); 2572 2573 static void 2574 device_unblock(struct scsi_device *sdev, void *data) 2575 { 2576 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 2577 } 2578 2579 static int 2580 target_unblock(struct device *dev, void *data) 2581 { 2582 if (scsi_is_target_device(dev)) 2583 starget_for_each_device(to_scsi_target(dev), data, 2584 device_unblock); 2585 return 0; 2586 } 2587 2588 void 2589 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 2590 { 2591 if (scsi_is_target_device(dev)) 2592 starget_for_each_device(to_scsi_target(dev), &new_state, 2593 device_unblock); 2594 else 2595 device_for_each_child(dev, &new_state, target_unblock); 2596 } 2597 EXPORT_SYMBOL_GPL(scsi_target_unblock); 2598 2599 /** 2600 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 2601 * @sgl: scatter-gather list 2602 * @sg_count: number of segments in sg 2603 * @offset: offset in bytes into sg, on return offset into the mapped area 2604 * @len: bytes to map, on return number of bytes mapped 2605 * 2606 * Returns virtual address of the start of the mapped page 2607 */ 2608 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 2609 size_t *offset, size_t *len) 2610 { 2611 int i; 2612 size_t sg_len = 0, len_complete = 0; 2613 struct scatterlist *sg; 2614 struct page *page; 2615 2616 WARN_ON(!irqs_disabled()); 2617 2618 for_each_sg(sgl, sg, sg_count, i) { 2619 len_complete = sg_len; /* Complete sg-entries */ 2620 sg_len += sg->length; 2621 if (sg_len > *offset) 2622 break; 2623 } 2624 2625 if (unlikely(i == sg_count)) { 2626 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 2627 "elements %d\n", 2628 __func__, sg_len, *offset, sg_count); 2629 WARN_ON(1); 2630 return NULL; 2631 } 2632 2633 /* Offset starting from the beginning of first page in this sg-entry */ 2634 *offset = *offset - len_complete + sg->offset; 2635 2636 /* Assumption: contiguous pages can be accessed as "page + i" */ 2637 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 2638 *offset &= ~PAGE_MASK; 2639 2640 /* Bytes in this sg-entry from *offset to the end of the page */ 2641 sg_len = PAGE_SIZE - *offset; 2642 if (*len > sg_len) 2643 *len = sg_len; 2644 2645 return kmap_atomic(page); 2646 } 2647 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 2648 2649 /** 2650 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 2651 * @virt: virtual address to be unmapped 2652 */ 2653 void scsi_kunmap_atomic_sg(void *virt) 2654 { 2655 kunmap_atomic(virt); 2656 } 2657 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 2658 2659 void sdev_disable_disk_events(struct scsi_device *sdev) 2660 { 2661 atomic_inc(&sdev->disk_events_disable_depth); 2662 } 2663 EXPORT_SYMBOL(sdev_disable_disk_events); 2664 2665 void sdev_enable_disk_events(struct scsi_device *sdev) 2666 { 2667 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 2668 return; 2669 atomic_dec(&sdev->disk_events_disable_depth); 2670 } 2671 EXPORT_SYMBOL(sdev_enable_disk_events); 2672