xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 7e782af57649f8a8e943d80104c946a5cd7af7cc)
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9 
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34 
35 
36 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE		2
38 
39 struct scsi_host_sg_pool {
40 	size_t		size;
41 	char		*name;
42 	struct kmem_cache	*slab;
43 	mempool_t	*pool;
44 };
45 
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 	SP(8),
52 	SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 	SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 	SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 	SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 	SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68 
69 struct kmem_cache *scsi_sdb_cache;
70 
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73 
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 	return dev->bus == &scsi_bus_type;
77 }
78 
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81         bus->match = acpi_scsi_bus_match;
82         return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85 
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 	unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92 
93 /*
94  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95  * not change behaviour from the previous unplug mechanism, experimentation
96  * may prove this needs changing.
97  */
98 #define SCSI_QUEUE_DELAY	3
99 
100 /*
101  * Function:	scsi_unprep_request()
102  *
103  * Purpose:	Remove all preparation done for a request, including its
104  *		associated scsi_cmnd, so that it can be requeued.
105  *
106  * Arguments:	req	- request to unprepare
107  *
108  * Lock status:	Assumed that no locks are held upon entry.
109  *
110  * Returns:	Nothing.
111  */
112 static void scsi_unprep_request(struct request *req)
113 {
114 	struct scsi_cmnd *cmd = req->special;
115 
116 	blk_unprep_request(req);
117 	req->special = NULL;
118 
119 	scsi_put_command(cmd);
120 }
121 
122 /**
123  * __scsi_queue_insert - private queue insertion
124  * @cmd: The SCSI command being requeued
125  * @reason:  The reason for the requeue
126  * @unbusy: Whether the queue should be unbusied
127  *
128  * This is a private queue insertion.  The public interface
129  * scsi_queue_insert() always assumes the queue should be unbusied
130  * because it's always called before the completion.  This function is
131  * for a requeue after completion, which should only occur in this
132  * file.
133  */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 	struct Scsi_Host *host = cmd->device->host;
137 	struct scsi_device *device = cmd->device;
138 	struct scsi_target *starget = scsi_target(device);
139 	struct request_queue *q = device->request_queue;
140 	unsigned long flags;
141 
142 	SCSI_LOG_MLQUEUE(1,
143 		 printk("Inserting command %p into mlqueue\n", cmd));
144 
145 	/*
146 	 * Set the appropriate busy bit for the device/host.
147 	 *
148 	 * If the host/device isn't busy, assume that something actually
149 	 * completed, and that we should be able to queue a command now.
150 	 *
151 	 * Note that the prior mid-layer assumption that any host could
152 	 * always queue at least one command is now broken.  The mid-layer
153 	 * will implement a user specifiable stall (see
154 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 	 * if a command is requeued with no other commands outstanding
156 	 * either for the device or for the host.
157 	 */
158 	switch (reason) {
159 	case SCSI_MLQUEUE_HOST_BUSY:
160 		host->host_blocked = host->max_host_blocked;
161 		break;
162 	case SCSI_MLQUEUE_DEVICE_BUSY:
163 	case SCSI_MLQUEUE_EH_RETRY:
164 		device->device_blocked = device->max_device_blocked;
165 		break;
166 	case SCSI_MLQUEUE_TARGET_BUSY:
167 		starget->target_blocked = starget->max_target_blocked;
168 		break;
169 	}
170 
171 	/*
172 	 * Decrement the counters, since these commands are no longer
173 	 * active on the host/device.
174 	 */
175 	if (unbusy)
176 		scsi_device_unbusy(device);
177 
178 	/*
179 	 * Requeue this command.  It will go before all other commands
180 	 * that are already in the queue. Schedule requeue work under
181 	 * lock such that the kblockd_schedule_work() call happens
182 	 * before blk_cleanup_queue() finishes.
183 	 */
184 	spin_lock_irqsave(q->queue_lock, flags);
185 	blk_requeue_request(q, cmd->request);
186 	kblockd_schedule_work(q, &device->requeue_work);
187 	spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189 
190 /*
191  * Function:    scsi_queue_insert()
192  *
193  * Purpose:     Insert a command in the midlevel queue.
194  *
195  * Arguments:   cmd    - command that we are adding to queue.
196  *              reason - why we are inserting command to queue.
197  *
198  * Lock status: Assumed that lock is not held upon entry.
199  *
200  * Returns:     Nothing.
201  *
202  * Notes:       We do this for one of two cases.  Either the host is busy
203  *              and it cannot accept any more commands for the time being,
204  *              or the device returned QUEUE_FULL and can accept no more
205  *              commands.
206  * Notes:       This could be called either from an interrupt context or a
207  *              normal process context.
208  */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 	__scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214  * scsi_execute - insert request and wait for the result
215  * @sdev:	scsi device
216  * @cmd:	scsi command
217  * @data_direction: data direction
218  * @buffer:	data buffer
219  * @bufflen:	len of buffer
220  * @sense:	optional sense buffer
221  * @timeout:	request timeout in seconds
222  * @retries:	number of times to retry request
223  * @flags:	or into request flags;
224  * @resid:	optional residual length
225  *
226  * returns the req->errors value which is the scsi_cmnd result
227  * field.
228  */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 		 int data_direction, void *buffer, unsigned bufflen,
231 		 unsigned char *sense, int timeout, int retries, int flags,
232 		 int *resid)
233 {
234 	struct request *req;
235 	int write = (data_direction == DMA_TO_DEVICE);
236 	int ret = DRIVER_ERROR << 24;
237 
238 	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 	if (!req)
240 		return ret;
241 
242 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
243 					buffer, bufflen, __GFP_WAIT))
244 		goto out;
245 
246 	req->cmd_len = COMMAND_SIZE(cmd[0]);
247 	memcpy(req->cmd, cmd, req->cmd_len);
248 	req->sense = sense;
249 	req->sense_len = 0;
250 	req->retries = retries;
251 	req->timeout = timeout;
252 	req->cmd_type = REQ_TYPE_BLOCK_PC;
253 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254 
255 	/*
256 	 * head injection *required* here otherwise quiesce won't work
257 	 */
258 	blk_execute_rq(req->q, NULL, req, 1);
259 
260 	/*
261 	 * Some devices (USB mass-storage in particular) may transfer
262 	 * garbage data together with a residue indicating that the data
263 	 * is invalid.  Prevent the garbage from being misinterpreted
264 	 * and prevent security leaks by zeroing out the excess data.
265 	 */
266 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268 
269 	if (resid)
270 		*resid = req->resid_len;
271 	ret = req->errors;
272  out:
273 	blk_put_request(req);
274 
275 	return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278 
279 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
280 		     int data_direction, void *buffer, unsigned bufflen,
281 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
282 		     int *resid, int flags)
283 {
284 	char *sense = NULL;
285 	int result;
286 
287 	if (sshdr) {
288 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 		if (!sense)
290 			return DRIVER_ERROR << 24;
291 	}
292 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
293 			      sense, timeout, retries, flags, resid);
294 	if (sshdr)
295 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
296 
297 	kfree(sense);
298 	return result;
299 }
300 EXPORT_SYMBOL(scsi_execute_req_flags);
301 
302 /*
303  * Function:    scsi_init_cmd_errh()
304  *
305  * Purpose:     Initialize cmd fields related to error handling.
306  *
307  * Arguments:   cmd	- command that is ready to be queued.
308  *
309  * Notes:       This function has the job of initializing a number of
310  *              fields related to error handling.   Typically this will
311  *              be called once for each command, as required.
312  */
313 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 {
315 	cmd->serial_number = 0;
316 	scsi_set_resid(cmd, 0);
317 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
318 	if (cmd->cmd_len == 0)
319 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
320 }
321 
322 void scsi_device_unbusy(struct scsi_device *sdev)
323 {
324 	struct Scsi_Host *shost = sdev->host;
325 	struct scsi_target *starget = scsi_target(sdev);
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(shost->host_lock, flags);
329 	shost->host_busy--;
330 	starget->target_busy--;
331 	if (unlikely(scsi_host_in_recovery(shost) &&
332 		     (shost->host_failed || shost->host_eh_scheduled)))
333 		scsi_eh_wakeup(shost);
334 	spin_unlock(shost->host_lock);
335 	spin_lock(sdev->request_queue->queue_lock);
336 	sdev->device_busy--;
337 	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
338 }
339 
340 /*
341  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
342  * and call blk_run_queue for all the scsi_devices on the target -
343  * including current_sdev first.
344  *
345  * Called with *no* scsi locks held.
346  */
347 static void scsi_single_lun_run(struct scsi_device *current_sdev)
348 {
349 	struct Scsi_Host *shost = current_sdev->host;
350 	struct scsi_device *sdev, *tmp;
351 	struct scsi_target *starget = scsi_target(current_sdev);
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(shost->host_lock, flags);
355 	starget->starget_sdev_user = NULL;
356 	spin_unlock_irqrestore(shost->host_lock, flags);
357 
358 	/*
359 	 * Call blk_run_queue for all LUNs on the target, starting with
360 	 * current_sdev. We race with others (to set starget_sdev_user),
361 	 * but in most cases, we will be first. Ideally, each LU on the
362 	 * target would get some limited time or requests on the target.
363 	 */
364 	blk_run_queue(current_sdev->request_queue);
365 
366 	spin_lock_irqsave(shost->host_lock, flags);
367 	if (starget->starget_sdev_user)
368 		goto out;
369 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
370 			same_target_siblings) {
371 		if (sdev == current_sdev)
372 			continue;
373 		if (scsi_device_get(sdev))
374 			continue;
375 
376 		spin_unlock_irqrestore(shost->host_lock, flags);
377 		blk_run_queue(sdev->request_queue);
378 		spin_lock_irqsave(shost->host_lock, flags);
379 
380 		scsi_device_put(sdev);
381 	}
382  out:
383 	spin_unlock_irqrestore(shost->host_lock, flags);
384 }
385 
386 static inline int scsi_device_is_busy(struct scsi_device *sdev)
387 {
388 	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
389 		return 1;
390 
391 	return 0;
392 }
393 
394 static inline int scsi_target_is_busy(struct scsi_target *starget)
395 {
396 	return ((starget->can_queue > 0 &&
397 		 starget->target_busy >= starget->can_queue) ||
398 		 starget->target_blocked);
399 }
400 
401 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
404 	    shost->host_blocked || shost->host_self_blocked)
405 		return 1;
406 
407 	return 0;
408 }
409 
410 /*
411  * Function:	scsi_run_queue()
412  *
413  * Purpose:	Select a proper request queue to serve next
414  *
415  * Arguments:	q	- last request's queue
416  *
417  * Returns:     Nothing
418  *
419  * Notes:	The previous command was completely finished, start
420  *		a new one if possible.
421  */
422 static void scsi_run_queue(struct request_queue *q)
423 {
424 	struct scsi_device *sdev = q->queuedata;
425 	struct Scsi_Host *shost;
426 	LIST_HEAD(starved_list);
427 	unsigned long flags;
428 
429 	shost = sdev->host;
430 	if (scsi_target(sdev)->single_lun)
431 		scsi_single_lun_run(sdev);
432 
433 	spin_lock_irqsave(shost->host_lock, flags);
434 	list_splice_init(&shost->starved_list, &starved_list);
435 
436 	while (!list_empty(&starved_list)) {
437 		struct request_queue *slq;
438 
439 		/*
440 		 * As long as shost is accepting commands and we have
441 		 * starved queues, call blk_run_queue. scsi_request_fn
442 		 * drops the queue_lock and can add us back to the
443 		 * starved_list.
444 		 *
445 		 * host_lock protects the starved_list and starved_entry.
446 		 * scsi_request_fn must get the host_lock before checking
447 		 * or modifying starved_list or starved_entry.
448 		 */
449 		if (scsi_host_is_busy(shost))
450 			break;
451 
452 		sdev = list_entry(starved_list.next,
453 				  struct scsi_device, starved_entry);
454 		list_del_init(&sdev->starved_entry);
455 		if (scsi_target_is_busy(scsi_target(sdev))) {
456 			list_move_tail(&sdev->starved_entry,
457 				       &shost->starved_list);
458 			continue;
459 		}
460 
461 		/*
462 		 * Once we drop the host lock, a racing scsi_remove_device()
463 		 * call may remove the sdev from the starved list and destroy
464 		 * it and the queue.  Mitigate by taking a reference to the
465 		 * queue and never touching the sdev again after we drop the
466 		 * host lock.  Note: if __scsi_remove_device() invokes
467 		 * blk_cleanup_queue() before the queue is run from this
468 		 * function then blk_run_queue() will return immediately since
469 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
470 		 */
471 		slq = sdev->request_queue;
472 		if (!blk_get_queue(slq))
473 			continue;
474 		spin_unlock_irqrestore(shost->host_lock, flags);
475 
476 		blk_run_queue(slq);
477 		blk_put_queue(slq);
478 
479 		spin_lock_irqsave(shost->host_lock, flags);
480 	}
481 	/* put any unprocessed entries back */
482 	list_splice(&starved_list, &shost->starved_list);
483 	spin_unlock_irqrestore(shost->host_lock, flags);
484 
485 	blk_run_queue(q);
486 }
487 
488 void scsi_requeue_run_queue(struct work_struct *work)
489 {
490 	struct scsi_device *sdev;
491 	struct request_queue *q;
492 
493 	sdev = container_of(work, struct scsi_device, requeue_work);
494 	q = sdev->request_queue;
495 	scsi_run_queue(q);
496 }
497 
498 /*
499  * Function:	scsi_requeue_command()
500  *
501  * Purpose:	Handle post-processing of completed commands.
502  *
503  * Arguments:	q	- queue to operate on
504  *		cmd	- command that may need to be requeued.
505  *
506  * Returns:	Nothing
507  *
508  * Notes:	After command completion, there may be blocks left
509  *		over which weren't finished by the previous command
510  *		this can be for a number of reasons - the main one is
511  *		I/O errors in the middle of the request, in which case
512  *		we need to request the blocks that come after the bad
513  *		sector.
514  * Notes:	Upon return, cmd is a stale pointer.
515  */
516 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
517 {
518 	struct scsi_device *sdev = cmd->device;
519 	struct request *req = cmd->request;
520 	unsigned long flags;
521 
522 	/*
523 	 * We need to hold a reference on the device to avoid the queue being
524 	 * killed after the unlock and before scsi_run_queue is invoked which
525 	 * may happen because scsi_unprep_request() puts the command which
526 	 * releases its reference on the device.
527 	 */
528 	get_device(&sdev->sdev_gendev);
529 
530 	spin_lock_irqsave(q->queue_lock, flags);
531 	scsi_unprep_request(req);
532 	blk_requeue_request(q, req);
533 	spin_unlock_irqrestore(q->queue_lock, flags);
534 
535 	scsi_run_queue(q);
536 
537 	put_device(&sdev->sdev_gendev);
538 }
539 
540 void scsi_next_command(struct scsi_cmnd *cmd)
541 {
542 	struct scsi_device *sdev = cmd->device;
543 	struct request_queue *q = sdev->request_queue;
544 
545 	/* need to hold a reference on the device before we let go of the cmd */
546 	get_device(&sdev->sdev_gendev);
547 
548 	scsi_put_command(cmd);
549 	scsi_run_queue(q);
550 
551 	/* ok to remove device now */
552 	put_device(&sdev->sdev_gendev);
553 }
554 
555 void scsi_run_host_queues(struct Scsi_Host *shost)
556 {
557 	struct scsi_device *sdev;
558 
559 	shost_for_each_device(sdev, shost)
560 		scsi_run_queue(sdev->request_queue);
561 }
562 
563 static void __scsi_release_buffers(struct scsi_cmnd *, int);
564 
565 /*
566  * Function:    scsi_end_request()
567  *
568  * Purpose:     Post-processing of completed commands (usually invoked at end
569  *		of upper level post-processing and scsi_io_completion).
570  *
571  * Arguments:   cmd	 - command that is complete.
572  *              error    - 0 if I/O indicates success, < 0 for I/O error.
573  *              bytes    - number of bytes of completed I/O
574  *		requeue  - indicates whether we should requeue leftovers.
575  *
576  * Lock status: Assumed that lock is not held upon entry.
577  *
578  * Returns:     cmd if requeue required, NULL otherwise.
579  *
580  * Notes:       This is called for block device requests in order to
581  *              mark some number of sectors as complete.
582  *
583  *		We are guaranteeing that the request queue will be goosed
584  *		at some point during this call.
585  * Notes:	If cmd was requeued, upon return it will be a stale pointer.
586  */
587 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
588 					  int bytes, int requeue)
589 {
590 	struct request_queue *q = cmd->device->request_queue;
591 	struct request *req = cmd->request;
592 
593 	/*
594 	 * If there are blocks left over at the end, set up the command
595 	 * to queue the remainder of them.
596 	 */
597 	if (blk_end_request(req, error, bytes)) {
598 		/* kill remainder if no retrys */
599 		if (error && scsi_noretry_cmd(cmd))
600 			blk_end_request_all(req, error);
601 		else {
602 			if (requeue) {
603 				/*
604 				 * Bleah.  Leftovers again.  Stick the
605 				 * leftovers in the front of the
606 				 * queue, and goose the queue again.
607 				 */
608 				scsi_release_buffers(cmd);
609 				scsi_requeue_command(q, cmd);
610 				cmd = NULL;
611 			}
612 			return cmd;
613 		}
614 	}
615 
616 	/*
617 	 * This will goose the queue request function at the end, so we don't
618 	 * need to worry about launching another command.
619 	 */
620 	__scsi_release_buffers(cmd, 0);
621 	scsi_next_command(cmd);
622 	return NULL;
623 }
624 
625 static inline unsigned int scsi_sgtable_index(unsigned short nents)
626 {
627 	unsigned int index;
628 
629 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
630 
631 	if (nents <= 8)
632 		index = 0;
633 	else
634 		index = get_count_order(nents) - 3;
635 
636 	return index;
637 }
638 
639 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
640 {
641 	struct scsi_host_sg_pool *sgp;
642 
643 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
644 	mempool_free(sgl, sgp->pool);
645 }
646 
647 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
648 {
649 	struct scsi_host_sg_pool *sgp;
650 
651 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
652 	return mempool_alloc(sgp->pool, gfp_mask);
653 }
654 
655 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
656 			      gfp_t gfp_mask)
657 {
658 	int ret;
659 
660 	BUG_ON(!nents);
661 
662 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
663 			       gfp_mask, scsi_sg_alloc);
664 	if (unlikely(ret))
665 		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
666 				scsi_sg_free);
667 
668 	return ret;
669 }
670 
671 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
672 {
673 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
674 }
675 
676 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
677 {
678 
679 	if (cmd->sdb.table.nents)
680 		scsi_free_sgtable(&cmd->sdb);
681 
682 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
683 
684 	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
685 		struct scsi_data_buffer *bidi_sdb =
686 			cmd->request->next_rq->special;
687 		scsi_free_sgtable(bidi_sdb);
688 		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
689 		cmd->request->next_rq->special = NULL;
690 	}
691 
692 	if (scsi_prot_sg_count(cmd))
693 		scsi_free_sgtable(cmd->prot_sdb);
694 }
695 
696 /*
697  * Function:    scsi_release_buffers()
698  *
699  * Purpose:     Completion processing for block device I/O requests.
700  *
701  * Arguments:   cmd	- command that we are bailing.
702  *
703  * Lock status: Assumed that no lock is held upon entry.
704  *
705  * Returns:     Nothing
706  *
707  * Notes:       In the event that an upper level driver rejects a
708  *		command, we must release resources allocated during
709  *		the __init_io() function.  Primarily this would involve
710  *		the scatter-gather table, and potentially any bounce
711  *		buffers.
712  */
713 void scsi_release_buffers(struct scsi_cmnd *cmd)
714 {
715 	__scsi_release_buffers(cmd, 1);
716 }
717 EXPORT_SYMBOL(scsi_release_buffers);
718 
719 /**
720  * __scsi_error_from_host_byte - translate SCSI error code into errno
721  * @cmd:	SCSI command (unused)
722  * @result:	scsi error code
723  *
724  * Translate SCSI error code into standard UNIX errno.
725  * Return values:
726  * -ENOLINK	temporary transport failure
727  * -EREMOTEIO	permanent target failure, do not retry
728  * -EBADE	permanent nexus failure, retry on other path
729  * -ENOSPC	No write space available
730  * -ENODATA	Medium error
731  * -EIO		unspecified I/O error
732  */
733 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
734 {
735 	int error = 0;
736 
737 	switch(host_byte(result)) {
738 	case DID_TRANSPORT_FAILFAST:
739 		error = -ENOLINK;
740 		break;
741 	case DID_TARGET_FAILURE:
742 		set_host_byte(cmd, DID_OK);
743 		error = -EREMOTEIO;
744 		break;
745 	case DID_NEXUS_FAILURE:
746 		set_host_byte(cmd, DID_OK);
747 		error = -EBADE;
748 		break;
749 	case DID_ALLOC_FAILURE:
750 		set_host_byte(cmd, DID_OK);
751 		error = -ENOSPC;
752 		break;
753 	case DID_MEDIUM_ERROR:
754 		set_host_byte(cmd, DID_OK);
755 		error = -ENODATA;
756 		break;
757 	default:
758 		error = -EIO;
759 		break;
760 	}
761 
762 	return error;
763 }
764 
765 /*
766  * Function:    scsi_io_completion()
767  *
768  * Purpose:     Completion processing for block device I/O requests.
769  *
770  * Arguments:   cmd   - command that is finished.
771  *
772  * Lock status: Assumed that no lock is held upon entry.
773  *
774  * Returns:     Nothing
775  *
776  * Notes:       This function is matched in terms of capabilities to
777  *              the function that created the scatter-gather list.
778  *              In other words, if there are no bounce buffers
779  *              (the normal case for most drivers), we don't need
780  *              the logic to deal with cleaning up afterwards.
781  *
782  *		We must call scsi_end_request().  This will finish off
783  *		the specified number of sectors.  If we are done, the
784  *		command block will be released and the queue function
785  *		will be goosed.  If we are not done then we have to
786  *		figure out what to do next:
787  *
788  *		a) We can call scsi_requeue_command().  The request
789  *		   will be unprepared and put back on the queue.  Then
790  *		   a new command will be created for it.  This should
791  *		   be used if we made forward progress, or if we want
792  *		   to switch from READ(10) to READ(6) for example.
793  *
794  *		b) We can call scsi_queue_insert().  The request will
795  *		   be put back on the queue and retried using the same
796  *		   command as before, possibly after a delay.
797  *
798  *		c) We can call blk_end_request() with -EIO to fail
799  *		   the remainder of the request.
800  */
801 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
802 {
803 	int result = cmd->result;
804 	struct request_queue *q = cmd->device->request_queue;
805 	struct request *req = cmd->request;
806 	int error = 0;
807 	struct scsi_sense_hdr sshdr;
808 	int sense_valid = 0;
809 	int sense_deferred = 0;
810 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
811 	      ACTION_DELAYED_RETRY} action;
812 	char *description = NULL;
813 
814 	if (result) {
815 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
816 		if (sense_valid)
817 			sense_deferred = scsi_sense_is_deferred(&sshdr);
818 	}
819 
820 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
821 		if (result) {
822 			if (sense_valid && req->sense) {
823 				/*
824 				 * SG_IO wants current and deferred errors
825 				 */
826 				int len = 8 + cmd->sense_buffer[7];
827 
828 				if (len > SCSI_SENSE_BUFFERSIZE)
829 					len = SCSI_SENSE_BUFFERSIZE;
830 				memcpy(req->sense, cmd->sense_buffer,  len);
831 				req->sense_len = len;
832 			}
833 			if (!sense_deferred)
834 				error = __scsi_error_from_host_byte(cmd, result);
835 		}
836 		/*
837 		 * __scsi_error_from_host_byte may have reset the host_byte
838 		 */
839 		req->errors = cmd->result;
840 
841 		req->resid_len = scsi_get_resid(cmd);
842 
843 		if (scsi_bidi_cmnd(cmd)) {
844 			/*
845 			 * Bidi commands Must be complete as a whole,
846 			 * both sides at once.
847 			 */
848 			req->next_rq->resid_len = scsi_in(cmd)->resid;
849 
850 			scsi_release_buffers(cmd);
851 			blk_end_request_all(req, 0);
852 
853 			scsi_next_command(cmd);
854 			return;
855 		}
856 	}
857 
858 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
859 	BUG_ON(blk_bidi_rq(req));
860 
861 	/*
862 	 * Next deal with any sectors which we were able to correctly
863 	 * handle.
864 	 */
865 	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
866 				      "%d bytes done.\n",
867 				      blk_rq_sectors(req), good_bytes));
868 
869 	/*
870 	 * Recovered errors need reporting, but they're always treated
871 	 * as success, so fiddle the result code here.  For BLOCK_PC
872 	 * we already took a copy of the original into rq->errors which
873 	 * is what gets returned to the user
874 	 */
875 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
876 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
877 		 * print since caller wants ATA registers. Only occurs on
878 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
879 		 */
880 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
881 			;
882 		else if (!(req->cmd_flags & REQ_QUIET))
883 			scsi_print_sense("", cmd);
884 		result = 0;
885 		/* BLOCK_PC may have set error */
886 		error = 0;
887 	}
888 
889 	/*
890 	 * A number of bytes were successfully read.  If there
891 	 * are leftovers and there is some kind of error
892 	 * (result != 0), retry the rest.
893 	 */
894 	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
895 		return;
896 
897 	error = __scsi_error_from_host_byte(cmd, result);
898 
899 	if (host_byte(result) == DID_RESET) {
900 		/* Third party bus reset or reset for error recovery
901 		 * reasons.  Just retry the command and see what
902 		 * happens.
903 		 */
904 		action = ACTION_RETRY;
905 	} else if (sense_valid && !sense_deferred) {
906 		switch (sshdr.sense_key) {
907 		case UNIT_ATTENTION:
908 			if (cmd->device->removable) {
909 				/* Detected disc change.  Set a bit
910 				 * and quietly refuse further access.
911 				 */
912 				cmd->device->changed = 1;
913 				description = "Media Changed";
914 				action = ACTION_FAIL;
915 			} else {
916 				/* Must have been a power glitch, or a
917 				 * bus reset.  Could not have been a
918 				 * media change, so we just retry the
919 				 * command and see what happens.
920 				 */
921 				action = ACTION_RETRY;
922 			}
923 			break;
924 		case ILLEGAL_REQUEST:
925 			/* If we had an ILLEGAL REQUEST returned, then
926 			 * we may have performed an unsupported
927 			 * command.  The only thing this should be
928 			 * would be a ten byte read where only a six
929 			 * byte read was supported.  Also, on a system
930 			 * where READ CAPACITY failed, we may have
931 			 * read past the end of the disk.
932 			 */
933 			if ((cmd->device->use_10_for_rw &&
934 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
935 			    (cmd->cmnd[0] == READ_10 ||
936 			     cmd->cmnd[0] == WRITE_10)) {
937 				/* This will issue a new 6-byte command. */
938 				cmd->device->use_10_for_rw = 0;
939 				action = ACTION_REPREP;
940 			} else if (sshdr.asc == 0x10) /* DIX */ {
941 				description = "Host Data Integrity Failure";
942 				action = ACTION_FAIL;
943 				error = -EILSEQ;
944 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
945 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
946 				switch (cmd->cmnd[0]) {
947 				case UNMAP:
948 					description = "Discard failure";
949 					break;
950 				case WRITE_SAME:
951 				case WRITE_SAME_16:
952 					if (cmd->cmnd[1] & 0x8)
953 						description = "Discard failure";
954 					else
955 						description =
956 							"Write same failure";
957 					break;
958 				default:
959 					description = "Invalid command failure";
960 					break;
961 				}
962 				action = ACTION_FAIL;
963 				error = -EREMOTEIO;
964 			} else
965 				action = ACTION_FAIL;
966 			break;
967 		case ABORTED_COMMAND:
968 			action = ACTION_FAIL;
969 			if (sshdr.asc == 0x10) { /* DIF */
970 				description = "Target Data Integrity Failure";
971 				error = -EILSEQ;
972 			}
973 			break;
974 		case NOT_READY:
975 			/* If the device is in the process of becoming
976 			 * ready, or has a temporary blockage, retry.
977 			 */
978 			if (sshdr.asc == 0x04) {
979 				switch (sshdr.ascq) {
980 				case 0x01: /* becoming ready */
981 				case 0x04: /* format in progress */
982 				case 0x05: /* rebuild in progress */
983 				case 0x06: /* recalculation in progress */
984 				case 0x07: /* operation in progress */
985 				case 0x08: /* Long write in progress */
986 				case 0x09: /* self test in progress */
987 				case 0x14: /* space allocation in progress */
988 					action = ACTION_DELAYED_RETRY;
989 					break;
990 				default:
991 					description = "Device not ready";
992 					action = ACTION_FAIL;
993 					break;
994 				}
995 			} else {
996 				description = "Device not ready";
997 				action = ACTION_FAIL;
998 			}
999 			break;
1000 		case VOLUME_OVERFLOW:
1001 			/* See SSC3rXX or current. */
1002 			action = ACTION_FAIL;
1003 			break;
1004 		default:
1005 			description = "Unhandled sense code";
1006 			action = ACTION_FAIL;
1007 			break;
1008 		}
1009 	} else {
1010 		description = "Unhandled error code";
1011 		action = ACTION_FAIL;
1012 	}
1013 
1014 	switch (action) {
1015 	case ACTION_FAIL:
1016 		/* Give up and fail the remainder of the request */
1017 		scsi_release_buffers(cmd);
1018 		if (!(req->cmd_flags & REQ_QUIET)) {
1019 			if (description)
1020 				scmd_printk(KERN_INFO, cmd, "%s\n",
1021 					    description);
1022 			scsi_print_result(cmd);
1023 			if (driver_byte(result) & DRIVER_SENSE)
1024 				scsi_print_sense("", cmd);
1025 			scsi_print_command(cmd);
1026 		}
1027 		if (blk_end_request_err(req, error))
1028 			scsi_requeue_command(q, cmd);
1029 		else
1030 			scsi_next_command(cmd);
1031 		break;
1032 	case ACTION_REPREP:
1033 		/* Unprep the request and put it back at the head of the queue.
1034 		 * A new command will be prepared and issued.
1035 		 */
1036 		scsi_release_buffers(cmd);
1037 		scsi_requeue_command(q, cmd);
1038 		break;
1039 	case ACTION_RETRY:
1040 		/* Retry the same command immediately */
1041 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1042 		break;
1043 	case ACTION_DELAYED_RETRY:
1044 		/* Retry the same command after a delay */
1045 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1046 		break;
1047 	}
1048 }
1049 
1050 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1051 			     gfp_t gfp_mask)
1052 {
1053 	int count;
1054 
1055 	/*
1056 	 * If sg table allocation fails, requeue request later.
1057 	 */
1058 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1059 					gfp_mask))) {
1060 		return BLKPREP_DEFER;
1061 	}
1062 
1063 	req->buffer = NULL;
1064 
1065 	/*
1066 	 * Next, walk the list, and fill in the addresses and sizes of
1067 	 * each segment.
1068 	 */
1069 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1070 	BUG_ON(count > sdb->table.nents);
1071 	sdb->table.nents = count;
1072 	sdb->length = blk_rq_bytes(req);
1073 	return BLKPREP_OK;
1074 }
1075 
1076 /*
1077  * Function:    scsi_init_io()
1078  *
1079  * Purpose:     SCSI I/O initialize function.
1080  *
1081  * Arguments:   cmd   - Command descriptor we wish to initialize
1082  *
1083  * Returns:     0 on success
1084  *		BLKPREP_DEFER if the failure is retryable
1085  *		BLKPREP_KILL if the failure is fatal
1086  */
1087 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1088 {
1089 	struct request *rq = cmd->request;
1090 
1091 	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1092 	if (error)
1093 		goto err_exit;
1094 
1095 	if (blk_bidi_rq(rq)) {
1096 		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1097 			scsi_sdb_cache, GFP_ATOMIC);
1098 		if (!bidi_sdb) {
1099 			error = BLKPREP_DEFER;
1100 			goto err_exit;
1101 		}
1102 
1103 		rq->next_rq->special = bidi_sdb;
1104 		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1105 		if (error)
1106 			goto err_exit;
1107 	}
1108 
1109 	if (blk_integrity_rq(rq)) {
1110 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1111 		int ivecs, count;
1112 
1113 		BUG_ON(prot_sdb == NULL);
1114 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1115 
1116 		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1117 			error = BLKPREP_DEFER;
1118 			goto err_exit;
1119 		}
1120 
1121 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1122 						prot_sdb->table.sgl);
1123 		BUG_ON(unlikely(count > ivecs));
1124 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1125 
1126 		cmd->prot_sdb = prot_sdb;
1127 		cmd->prot_sdb->table.nents = count;
1128 	}
1129 
1130 	return BLKPREP_OK ;
1131 
1132 err_exit:
1133 	scsi_release_buffers(cmd);
1134 	cmd->request->special = NULL;
1135 	scsi_put_command(cmd);
1136 	return error;
1137 }
1138 EXPORT_SYMBOL(scsi_init_io);
1139 
1140 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1141 		struct request *req)
1142 {
1143 	struct scsi_cmnd *cmd;
1144 
1145 	if (!req->special) {
1146 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1147 		if (unlikely(!cmd))
1148 			return NULL;
1149 		req->special = cmd;
1150 	} else {
1151 		cmd = req->special;
1152 	}
1153 
1154 	/* pull a tag out of the request if we have one */
1155 	cmd->tag = req->tag;
1156 	cmd->request = req;
1157 
1158 	cmd->cmnd = req->cmd;
1159 	cmd->prot_op = SCSI_PROT_NORMAL;
1160 
1161 	return cmd;
1162 }
1163 
1164 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166 	struct scsi_cmnd *cmd;
1167 	int ret = scsi_prep_state_check(sdev, req);
1168 
1169 	if (ret != BLKPREP_OK)
1170 		return ret;
1171 
1172 	cmd = scsi_get_cmd_from_req(sdev, req);
1173 	if (unlikely(!cmd))
1174 		return BLKPREP_DEFER;
1175 
1176 	/*
1177 	 * BLOCK_PC requests may transfer data, in which case they must
1178 	 * a bio attached to them.  Or they might contain a SCSI command
1179 	 * that does not transfer data, in which case they may optionally
1180 	 * submit a request without an attached bio.
1181 	 */
1182 	if (req->bio) {
1183 		int ret;
1184 
1185 		BUG_ON(!req->nr_phys_segments);
1186 
1187 		ret = scsi_init_io(cmd, GFP_ATOMIC);
1188 		if (unlikely(ret))
1189 			return ret;
1190 	} else {
1191 		BUG_ON(blk_rq_bytes(req));
1192 
1193 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1194 		req->buffer = NULL;
1195 	}
1196 
1197 	cmd->cmd_len = req->cmd_len;
1198 	if (!blk_rq_bytes(req))
1199 		cmd->sc_data_direction = DMA_NONE;
1200 	else if (rq_data_dir(req) == WRITE)
1201 		cmd->sc_data_direction = DMA_TO_DEVICE;
1202 	else
1203 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1204 
1205 	cmd->transfersize = blk_rq_bytes(req);
1206 	cmd->allowed = req->retries;
1207 	return BLKPREP_OK;
1208 }
1209 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1210 
1211 /*
1212  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1213  * from filesystems that still need to be translated to SCSI CDBs from
1214  * the ULD.
1215  */
1216 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1217 {
1218 	struct scsi_cmnd *cmd;
1219 	int ret = scsi_prep_state_check(sdev, req);
1220 
1221 	if (ret != BLKPREP_OK)
1222 		return ret;
1223 
1224 	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1225 			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1226 		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1227 		if (ret != BLKPREP_OK)
1228 			return ret;
1229 	}
1230 
1231 	/*
1232 	 * Filesystem requests must transfer data.
1233 	 */
1234 	BUG_ON(!req->nr_phys_segments);
1235 
1236 	cmd = scsi_get_cmd_from_req(sdev, req);
1237 	if (unlikely(!cmd))
1238 		return BLKPREP_DEFER;
1239 
1240 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1241 	return scsi_init_io(cmd, GFP_ATOMIC);
1242 }
1243 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1244 
1245 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1246 {
1247 	int ret = BLKPREP_OK;
1248 
1249 	/*
1250 	 * If the device is not in running state we will reject some
1251 	 * or all commands.
1252 	 */
1253 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1254 		switch (sdev->sdev_state) {
1255 		case SDEV_OFFLINE:
1256 		case SDEV_TRANSPORT_OFFLINE:
1257 			/*
1258 			 * If the device is offline we refuse to process any
1259 			 * commands.  The device must be brought online
1260 			 * before trying any recovery commands.
1261 			 */
1262 			sdev_printk(KERN_ERR, sdev,
1263 				    "rejecting I/O to offline device\n");
1264 			ret = BLKPREP_KILL;
1265 			break;
1266 		case SDEV_DEL:
1267 			/*
1268 			 * If the device is fully deleted, we refuse to
1269 			 * process any commands as well.
1270 			 */
1271 			sdev_printk(KERN_ERR, sdev,
1272 				    "rejecting I/O to dead device\n");
1273 			ret = BLKPREP_KILL;
1274 			break;
1275 		case SDEV_QUIESCE:
1276 		case SDEV_BLOCK:
1277 		case SDEV_CREATED_BLOCK:
1278 			/*
1279 			 * If the devices is blocked we defer normal commands.
1280 			 */
1281 			if (!(req->cmd_flags & REQ_PREEMPT))
1282 				ret = BLKPREP_DEFER;
1283 			break;
1284 		default:
1285 			/*
1286 			 * For any other not fully online state we only allow
1287 			 * special commands.  In particular any user initiated
1288 			 * command is not allowed.
1289 			 */
1290 			if (!(req->cmd_flags & REQ_PREEMPT))
1291 				ret = BLKPREP_KILL;
1292 			break;
1293 		}
1294 	}
1295 	return ret;
1296 }
1297 EXPORT_SYMBOL(scsi_prep_state_check);
1298 
1299 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1300 {
1301 	struct scsi_device *sdev = q->queuedata;
1302 
1303 	switch (ret) {
1304 	case BLKPREP_KILL:
1305 		req->errors = DID_NO_CONNECT << 16;
1306 		/* release the command and kill it */
1307 		if (req->special) {
1308 			struct scsi_cmnd *cmd = req->special;
1309 			scsi_release_buffers(cmd);
1310 			scsi_put_command(cmd);
1311 			req->special = NULL;
1312 		}
1313 		break;
1314 	case BLKPREP_DEFER:
1315 		/*
1316 		 * If we defer, the blk_peek_request() returns NULL, but the
1317 		 * queue must be restarted, so we schedule a callback to happen
1318 		 * shortly.
1319 		 */
1320 		if (sdev->device_busy == 0)
1321 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1322 		break;
1323 	default:
1324 		req->cmd_flags |= REQ_DONTPREP;
1325 	}
1326 
1327 	return ret;
1328 }
1329 EXPORT_SYMBOL(scsi_prep_return);
1330 
1331 int scsi_prep_fn(struct request_queue *q, struct request *req)
1332 {
1333 	struct scsi_device *sdev = q->queuedata;
1334 	int ret = BLKPREP_KILL;
1335 
1336 	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1337 		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1338 	return scsi_prep_return(q, req, ret);
1339 }
1340 EXPORT_SYMBOL(scsi_prep_fn);
1341 
1342 /*
1343  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1344  * return 0.
1345  *
1346  * Called with the queue_lock held.
1347  */
1348 static inline int scsi_dev_queue_ready(struct request_queue *q,
1349 				  struct scsi_device *sdev)
1350 {
1351 	if (sdev->device_busy == 0 && sdev->device_blocked) {
1352 		/*
1353 		 * unblock after device_blocked iterates to zero
1354 		 */
1355 		if (--sdev->device_blocked == 0) {
1356 			SCSI_LOG_MLQUEUE(3,
1357 				   sdev_printk(KERN_INFO, sdev,
1358 				   "unblocking device at zero depth\n"));
1359 		} else {
1360 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1361 			return 0;
1362 		}
1363 	}
1364 	if (scsi_device_is_busy(sdev))
1365 		return 0;
1366 
1367 	return 1;
1368 }
1369 
1370 
1371 /*
1372  * scsi_target_queue_ready: checks if there we can send commands to target
1373  * @sdev: scsi device on starget to check.
1374  *
1375  * Called with the host lock held.
1376  */
1377 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1378 					   struct scsi_device *sdev)
1379 {
1380 	struct scsi_target *starget = scsi_target(sdev);
1381 
1382 	if (starget->single_lun) {
1383 		if (starget->starget_sdev_user &&
1384 		    starget->starget_sdev_user != sdev)
1385 			return 0;
1386 		starget->starget_sdev_user = sdev;
1387 	}
1388 
1389 	if (starget->target_busy == 0 && starget->target_blocked) {
1390 		/*
1391 		 * unblock after target_blocked iterates to zero
1392 		 */
1393 		if (--starget->target_blocked == 0) {
1394 			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1395 					 "unblocking target at zero depth\n"));
1396 		} else
1397 			return 0;
1398 	}
1399 
1400 	if (scsi_target_is_busy(starget)) {
1401 		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1402 		return 0;
1403 	}
1404 
1405 	return 1;
1406 }
1407 
1408 /*
1409  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1410  * return 0. We must end up running the queue again whenever 0 is
1411  * returned, else IO can hang.
1412  *
1413  * Called with host_lock held.
1414  */
1415 static inline int scsi_host_queue_ready(struct request_queue *q,
1416 				   struct Scsi_Host *shost,
1417 				   struct scsi_device *sdev)
1418 {
1419 	if (scsi_host_in_recovery(shost))
1420 		return 0;
1421 	if (shost->host_busy == 0 && shost->host_blocked) {
1422 		/*
1423 		 * unblock after host_blocked iterates to zero
1424 		 */
1425 		if (--shost->host_blocked == 0) {
1426 			SCSI_LOG_MLQUEUE(3,
1427 				printk("scsi%d unblocking host at zero depth\n",
1428 					shost->host_no));
1429 		} else {
1430 			return 0;
1431 		}
1432 	}
1433 	if (scsi_host_is_busy(shost)) {
1434 		if (list_empty(&sdev->starved_entry))
1435 			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1436 		return 0;
1437 	}
1438 
1439 	/* We're OK to process the command, so we can't be starved */
1440 	if (!list_empty(&sdev->starved_entry))
1441 		list_del_init(&sdev->starved_entry);
1442 
1443 	return 1;
1444 }
1445 
1446 /*
1447  * Busy state exporting function for request stacking drivers.
1448  *
1449  * For efficiency, no lock is taken to check the busy state of
1450  * shost/starget/sdev, since the returned value is not guaranteed and
1451  * may be changed after request stacking drivers call the function,
1452  * regardless of taking lock or not.
1453  *
1454  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1455  * needs to return 'not busy'. Otherwise, request stacking drivers
1456  * may hold requests forever.
1457  */
1458 static int scsi_lld_busy(struct request_queue *q)
1459 {
1460 	struct scsi_device *sdev = q->queuedata;
1461 	struct Scsi_Host *shost;
1462 
1463 	if (blk_queue_dying(q))
1464 		return 0;
1465 
1466 	shost = sdev->host;
1467 
1468 	/*
1469 	 * Ignore host/starget busy state.
1470 	 * Since block layer does not have a concept of fairness across
1471 	 * multiple queues, congestion of host/starget needs to be handled
1472 	 * in SCSI layer.
1473 	 */
1474 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1475 		return 1;
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Kill a request for a dead device
1482  */
1483 static void scsi_kill_request(struct request *req, struct request_queue *q)
1484 {
1485 	struct scsi_cmnd *cmd = req->special;
1486 	struct scsi_device *sdev;
1487 	struct scsi_target *starget;
1488 	struct Scsi_Host *shost;
1489 
1490 	blk_start_request(req);
1491 
1492 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1493 
1494 	sdev = cmd->device;
1495 	starget = scsi_target(sdev);
1496 	shost = sdev->host;
1497 	scsi_init_cmd_errh(cmd);
1498 	cmd->result = DID_NO_CONNECT << 16;
1499 	atomic_inc(&cmd->device->iorequest_cnt);
1500 
1501 	/*
1502 	 * SCSI request completion path will do scsi_device_unbusy(),
1503 	 * bump busy counts.  To bump the counters, we need to dance
1504 	 * with the locks as normal issue path does.
1505 	 */
1506 	sdev->device_busy++;
1507 	spin_unlock(sdev->request_queue->queue_lock);
1508 	spin_lock(shost->host_lock);
1509 	shost->host_busy++;
1510 	starget->target_busy++;
1511 	spin_unlock(shost->host_lock);
1512 	spin_lock(sdev->request_queue->queue_lock);
1513 
1514 	blk_complete_request(req);
1515 }
1516 
1517 static void scsi_softirq_done(struct request *rq)
1518 {
1519 	struct scsi_cmnd *cmd = rq->special;
1520 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1521 	int disposition;
1522 
1523 	INIT_LIST_HEAD(&cmd->eh_entry);
1524 
1525 	atomic_inc(&cmd->device->iodone_cnt);
1526 	if (cmd->result)
1527 		atomic_inc(&cmd->device->ioerr_cnt);
1528 
1529 	disposition = scsi_decide_disposition(cmd);
1530 	if (disposition != SUCCESS &&
1531 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1532 		sdev_printk(KERN_ERR, cmd->device,
1533 			    "timing out command, waited %lus\n",
1534 			    wait_for/HZ);
1535 		disposition = SUCCESS;
1536 	}
1537 
1538 	scsi_log_completion(cmd, disposition);
1539 
1540 	switch (disposition) {
1541 		case SUCCESS:
1542 			scsi_finish_command(cmd);
1543 			break;
1544 		case NEEDS_RETRY:
1545 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1546 			break;
1547 		case ADD_TO_MLQUEUE:
1548 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1549 			break;
1550 		default:
1551 			if (!scsi_eh_scmd_add(cmd, 0))
1552 				scsi_finish_command(cmd);
1553 	}
1554 }
1555 
1556 /*
1557  * Function:    scsi_request_fn()
1558  *
1559  * Purpose:     Main strategy routine for SCSI.
1560  *
1561  * Arguments:   q       - Pointer to actual queue.
1562  *
1563  * Returns:     Nothing
1564  *
1565  * Lock status: IO request lock assumed to be held when called.
1566  */
1567 static void scsi_request_fn(struct request_queue *q)
1568 {
1569 	struct scsi_device *sdev = q->queuedata;
1570 	struct Scsi_Host *shost;
1571 	struct scsi_cmnd *cmd;
1572 	struct request *req;
1573 
1574 	if(!get_device(&sdev->sdev_gendev))
1575 		/* We must be tearing the block queue down already */
1576 		return;
1577 
1578 	/*
1579 	 * To start with, we keep looping until the queue is empty, or until
1580 	 * the host is no longer able to accept any more requests.
1581 	 */
1582 	shost = sdev->host;
1583 	for (;;) {
1584 		int rtn;
1585 		/*
1586 		 * get next queueable request.  We do this early to make sure
1587 		 * that the request is fully prepared even if we cannot
1588 		 * accept it.
1589 		 */
1590 		req = blk_peek_request(q);
1591 		if (!req || !scsi_dev_queue_ready(q, sdev))
1592 			break;
1593 
1594 		if (unlikely(!scsi_device_online(sdev))) {
1595 			sdev_printk(KERN_ERR, sdev,
1596 				    "rejecting I/O to offline device\n");
1597 			scsi_kill_request(req, q);
1598 			continue;
1599 		}
1600 
1601 
1602 		/*
1603 		 * Remove the request from the request list.
1604 		 */
1605 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1606 			blk_start_request(req);
1607 		sdev->device_busy++;
1608 
1609 		spin_unlock(q->queue_lock);
1610 		cmd = req->special;
1611 		if (unlikely(cmd == NULL)) {
1612 			printk(KERN_CRIT "impossible request in %s.\n"
1613 					 "please mail a stack trace to "
1614 					 "linux-scsi@vger.kernel.org\n",
1615 					 __func__);
1616 			blk_dump_rq_flags(req, "foo");
1617 			BUG();
1618 		}
1619 		spin_lock(shost->host_lock);
1620 
1621 		/*
1622 		 * We hit this when the driver is using a host wide
1623 		 * tag map. For device level tag maps the queue_depth check
1624 		 * in the device ready fn would prevent us from trying
1625 		 * to allocate a tag. Since the map is a shared host resource
1626 		 * we add the dev to the starved list so it eventually gets
1627 		 * a run when a tag is freed.
1628 		 */
1629 		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1630 			if (list_empty(&sdev->starved_entry))
1631 				list_add_tail(&sdev->starved_entry,
1632 					      &shost->starved_list);
1633 			goto not_ready;
1634 		}
1635 
1636 		if (!scsi_target_queue_ready(shost, sdev))
1637 			goto not_ready;
1638 
1639 		if (!scsi_host_queue_ready(q, shost, sdev))
1640 			goto not_ready;
1641 
1642 		scsi_target(sdev)->target_busy++;
1643 		shost->host_busy++;
1644 
1645 		/*
1646 		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1647 		 *		take the lock again.
1648 		 */
1649 		spin_unlock_irq(shost->host_lock);
1650 
1651 		/*
1652 		 * Finally, initialize any error handling parameters, and set up
1653 		 * the timers for timeouts.
1654 		 */
1655 		scsi_init_cmd_errh(cmd);
1656 
1657 		/*
1658 		 * Dispatch the command to the low-level driver.
1659 		 */
1660 		rtn = scsi_dispatch_cmd(cmd);
1661 		spin_lock_irq(q->queue_lock);
1662 		if (rtn)
1663 			goto out_delay;
1664 	}
1665 
1666 	goto out;
1667 
1668  not_ready:
1669 	spin_unlock_irq(shost->host_lock);
1670 
1671 	/*
1672 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1673 	 * must return with queue_lock held.
1674 	 *
1675 	 * Decrementing device_busy without checking it is OK, as all such
1676 	 * cases (host limits or settings) should run the queue at some
1677 	 * later time.
1678 	 */
1679 	spin_lock_irq(q->queue_lock);
1680 	blk_requeue_request(q, req);
1681 	sdev->device_busy--;
1682 out_delay:
1683 	if (sdev->device_busy == 0)
1684 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1685 out:
1686 	/* must be careful here...if we trigger the ->remove() function
1687 	 * we cannot be holding the q lock */
1688 	spin_unlock_irq(q->queue_lock);
1689 	put_device(&sdev->sdev_gendev);
1690 	spin_lock_irq(q->queue_lock);
1691 }
1692 
1693 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1694 {
1695 	struct device *host_dev;
1696 	u64 bounce_limit = 0xffffffff;
1697 
1698 	if (shost->unchecked_isa_dma)
1699 		return BLK_BOUNCE_ISA;
1700 	/*
1701 	 * Platforms with virtual-DMA translation
1702 	 * hardware have no practical limit.
1703 	 */
1704 	if (!PCI_DMA_BUS_IS_PHYS)
1705 		return BLK_BOUNCE_ANY;
1706 
1707 	host_dev = scsi_get_device(shost);
1708 	if (host_dev && host_dev->dma_mask)
1709 		bounce_limit = *host_dev->dma_mask;
1710 
1711 	return bounce_limit;
1712 }
1713 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1714 
1715 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1716 					 request_fn_proc *request_fn)
1717 {
1718 	struct request_queue *q;
1719 	struct device *dev = shost->dma_dev;
1720 
1721 	q = blk_init_queue(request_fn, NULL);
1722 	if (!q)
1723 		return NULL;
1724 
1725 	/*
1726 	 * this limit is imposed by hardware restrictions
1727 	 */
1728 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1729 					SCSI_MAX_SG_CHAIN_SEGMENTS));
1730 
1731 	if (scsi_host_prot_dma(shost)) {
1732 		shost->sg_prot_tablesize =
1733 			min_not_zero(shost->sg_prot_tablesize,
1734 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1735 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1736 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1737 	}
1738 
1739 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1740 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1741 	blk_queue_segment_boundary(q, shost->dma_boundary);
1742 	dma_set_seg_boundary(dev, shost->dma_boundary);
1743 
1744 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1745 
1746 	if (!shost->use_clustering)
1747 		q->limits.cluster = 0;
1748 
1749 	/*
1750 	 * set a reasonable default alignment on word boundaries: the
1751 	 * host and device may alter it using
1752 	 * blk_queue_update_dma_alignment() later.
1753 	 */
1754 	blk_queue_dma_alignment(q, 0x03);
1755 
1756 	return q;
1757 }
1758 EXPORT_SYMBOL(__scsi_alloc_queue);
1759 
1760 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1761 {
1762 	struct request_queue *q;
1763 
1764 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1765 	if (!q)
1766 		return NULL;
1767 
1768 	blk_queue_prep_rq(q, scsi_prep_fn);
1769 	blk_queue_softirq_done(q, scsi_softirq_done);
1770 	blk_queue_rq_timed_out(q, scsi_times_out);
1771 	blk_queue_lld_busy(q, scsi_lld_busy);
1772 	return q;
1773 }
1774 
1775 /*
1776  * Function:    scsi_block_requests()
1777  *
1778  * Purpose:     Utility function used by low-level drivers to prevent further
1779  *		commands from being queued to the device.
1780  *
1781  * Arguments:   shost       - Host in question
1782  *
1783  * Returns:     Nothing
1784  *
1785  * Lock status: No locks are assumed held.
1786  *
1787  * Notes:       There is no timer nor any other means by which the requests
1788  *		get unblocked other than the low-level driver calling
1789  *		scsi_unblock_requests().
1790  */
1791 void scsi_block_requests(struct Scsi_Host *shost)
1792 {
1793 	shost->host_self_blocked = 1;
1794 }
1795 EXPORT_SYMBOL(scsi_block_requests);
1796 
1797 /*
1798  * Function:    scsi_unblock_requests()
1799  *
1800  * Purpose:     Utility function used by low-level drivers to allow further
1801  *		commands from being queued to the device.
1802  *
1803  * Arguments:   shost       - Host in question
1804  *
1805  * Returns:     Nothing
1806  *
1807  * Lock status: No locks are assumed held.
1808  *
1809  * Notes:       There is no timer nor any other means by which the requests
1810  *		get unblocked other than the low-level driver calling
1811  *		scsi_unblock_requests().
1812  *
1813  *		This is done as an API function so that changes to the
1814  *		internals of the scsi mid-layer won't require wholesale
1815  *		changes to drivers that use this feature.
1816  */
1817 void scsi_unblock_requests(struct Scsi_Host *shost)
1818 {
1819 	shost->host_self_blocked = 0;
1820 	scsi_run_host_queues(shost);
1821 }
1822 EXPORT_SYMBOL(scsi_unblock_requests);
1823 
1824 int __init scsi_init_queue(void)
1825 {
1826 	int i;
1827 
1828 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1829 					   sizeof(struct scsi_data_buffer),
1830 					   0, 0, NULL);
1831 	if (!scsi_sdb_cache) {
1832 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1833 		return -ENOMEM;
1834 	}
1835 
1836 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838 		int size = sgp->size * sizeof(struct scatterlist);
1839 
1840 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1841 				SLAB_HWCACHE_ALIGN, NULL);
1842 		if (!sgp->slab) {
1843 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1844 					sgp->name);
1845 			goto cleanup_sdb;
1846 		}
1847 
1848 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1849 						     sgp->slab);
1850 		if (!sgp->pool) {
1851 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1852 					sgp->name);
1853 			goto cleanup_sdb;
1854 		}
1855 	}
1856 
1857 	return 0;
1858 
1859 cleanup_sdb:
1860 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1861 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1862 		if (sgp->pool)
1863 			mempool_destroy(sgp->pool);
1864 		if (sgp->slab)
1865 			kmem_cache_destroy(sgp->slab);
1866 	}
1867 	kmem_cache_destroy(scsi_sdb_cache);
1868 
1869 	return -ENOMEM;
1870 }
1871 
1872 void scsi_exit_queue(void)
1873 {
1874 	int i;
1875 
1876 	kmem_cache_destroy(scsi_sdb_cache);
1877 
1878 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1879 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1880 		mempool_destroy(sgp->pool);
1881 		kmem_cache_destroy(sgp->slab);
1882 	}
1883 }
1884 
1885 /**
1886  *	scsi_mode_select - issue a mode select
1887  *	@sdev:	SCSI device to be queried
1888  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1889  *	@sp:	Save page bit (0 == don't save, 1 == save)
1890  *	@modepage: mode page being requested
1891  *	@buffer: request buffer (may not be smaller than eight bytes)
1892  *	@len:	length of request buffer.
1893  *	@timeout: command timeout
1894  *	@retries: number of retries before failing
1895  *	@data: returns a structure abstracting the mode header data
1896  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1897  *		must be SCSI_SENSE_BUFFERSIZE big.
1898  *
1899  *	Returns zero if successful; negative error number or scsi
1900  *	status on error
1901  *
1902  */
1903 int
1904 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1905 		 unsigned char *buffer, int len, int timeout, int retries,
1906 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1907 {
1908 	unsigned char cmd[10];
1909 	unsigned char *real_buffer;
1910 	int ret;
1911 
1912 	memset(cmd, 0, sizeof(cmd));
1913 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1914 
1915 	if (sdev->use_10_for_ms) {
1916 		if (len > 65535)
1917 			return -EINVAL;
1918 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1919 		if (!real_buffer)
1920 			return -ENOMEM;
1921 		memcpy(real_buffer + 8, buffer, len);
1922 		len += 8;
1923 		real_buffer[0] = 0;
1924 		real_buffer[1] = 0;
1925 		real_buffer[2] = data->medium_type;
1926 		real_buffer[3] = data->device_specific;
1927 		real_buffer[4] = data->longlba ? 0x01 : 0;
1928 		real_buffer[5] = 0;
1929 		real_buffer[6] = data->block_descriptor_length >> 8;
1930 		real_buffer[7] = data->block_descriptor_length;
1931 
1932 		cmd[0] = MODE_SELECT_10;
1933 		cmd[7] = len >> 8;
1934 		cmd[8] = len;
1935 	} else {
1936 		if (len > 255 || data->block_descriptor_length > 255 ||
1937 		    data->longlba)
1938 			return -EINVAL;
1939 
1940 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1941 		if (!real_buffer)
1942 			return -ENOMEM;
1943 		memcpy(real_buffer + 4, buffer, len);
1944 		len += 4;
1945 		real_buffer[0] = 0;
1946 		real_buffer[1] = data->medium_type;
1947 		real_buffer[2] = data->device_specific;
1948 		real_buffer[3] = data->block_descriptor_length;
1949 
1950 
1951 		cmd[0] = MODE_SELECT;
1952 		cmd[4] = len;
1953 	}
1954 
1955 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1956 			       sshdr, timeout, retries, NULL);
1957 	kfree(real_buffer);
1958 	return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(scsi_mode_select);
1961 
1962 /**
1963  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1964  *	@sdev:	SCSI device to be queried
1965  *	@dbd:	set if mode sense will allow block descriptors to be returned
1966  *	@modepage: mode page being requested
1967  *	@buffer: request buffer (may not be smaller than eight bytes)
1968  *	@len:	length of request buffer.
1969  *	@timeout: command timeout
1970  *	@retries: number of retries before failing
1971  *	@data: returns a structure abstracting the mode header data
1972  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1973  *		must be SCSI_SENSE_BUFFERSIZE big.
1974  *
1975  *	Returns zero if unsuccessful, or the header offset (either 4
1976  *	or 8 depending on whether a six or ten byte command was
1977  *	issued) if successful.
1978  */
1979 int
1980 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1981 		  unsigned char *buffer, int len, int timeout, int retries,
1982 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983 {
1984 	unsigned char cmd[12];
1985 	int use_10_for_ms;
1986 	int header_length;
1987 	int result;
1988 	struct scsi_sense_hdr my_sshdr;
1989 
1990 	memset(data, 0, sizeof(*data));
1991 	memset(&cmd[0], 0, 12);
1992 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1993 	cmd[2] = modepage;
1994 
1995 	/* caller might not be interested in sense, but we need it */
1996 	if (!sshdr)
1997 		sshdr = &my_sshdr;
1998 
1999  retry:
2000 	use_10_for_ms = sdev->use_10_for_ms;
2001 
2002 	if (use_10_for_ms) {
2003 		if (len < 8)
2004 			len = 8;
2005 
2006 		cmd[0] = MODE_SENSE_10;
2007 		cmd[8] = len;
2008 		header_length = 8;
2009 	} else {
2010 		if (len < 4)
2011 			len = 4;
2012 
2013 		cmd[0] = MODE_SENSE;
2014 		cmd[4] = len;
2015 		header_length = 4;
2016 	}
2017 
2018 	memset(buffer, 0, len);
2019 
2020 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2021 				  sshdr, timeout, retries, NULL);
2022 
2023 	/* This code looks awful: what it's doing is making sure an
2024 	 * ILLEGAL REQUEST sense return identifies the actual command
2025 	 * byte as the problem.  MODE_SENSE commands can return
2026 	 * ILLEGAL REQUEST if the code page isn't supported */
2027 
2028 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2029 	    (driver_byte(result) & DRIVER_SENSE)) {
2030 		if (scsi_sense_valid(sshdr)) {
2031 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2032 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2033 				/*
2034 				 * Invalid command operation code
2035 				 */
2036 				sdev->use_10_for_ms = 0;
2037 				goto retry;
2038 			}
2039 		}
2040 	}
2041 
2042 	if(scsi_status_is_good(result)) {
2043 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2044 			     (modepage == 6 || modepage == 8))) {
2045 			/* Initio breakage? */
2046 			header_length = 0;
2047 			data->length = 13;
2048 			data->medium_type = 0;
2049 			data->device_specific = 0;
2050 			data->longlba = 0;
2051 			data->block_descriptor_length = 0;
2052 		} else if(use_10_for_ms) {
2053 			data->length = buffer[0]*256 + buffer[1] + 2;
2054 			data->medium_type = buffer[2];
2055 			data->device_specific = buffer[3];
2056 			data->longlba = buffer[4] & 0x01;
2057 			data->block_descriptor_length = buffer[6]*256
2058 				+ buffer[7];
2059 		} else {
2060 			data->length = buffer[0] + 1;
2061 			data->medium_type = buffer[1];
2062 			data->device_specific = buffer[2];
2063 			data->block_descriptor_length = buffer[3];
2064 		}
2065 		data->header_length = header_length;
2066 	}
2067 
2068 	return result;
2069 }
2070 EXPORT_SYMBOL(scsi_mode_sense);
2071 
2072 /**
2073  *	scsi_test_unit_ready - test if unit is ready
2074  *	@sdev:	scsi device to change the state of.
2075  *	@timeout: command timeout
2076  *	@retries: number of retries before failing
2077  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2078  *		returning sense. Make sure that this is cleared before passing
2079  *		in.
2080  *
2081  *	Returns zero if unsuccessful or an error if TUR failed.  For
2082  *	removable media, UNIT_ATTENTION sets ->changed flag.
2083  **/
2084 int
2085 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2086 		     struct scsi_sense_hdr *sshdr_external)
2087 {
2088 	char cmd[] = {
2089 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2090 	};
2091 	struct scsi_sense_hdr *sshdr;
2092 	int result;
2093 
2094 	if (!sshdr_external)
2095 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2096 	else
2097 		sshdr = sshdr_external;
2098 
2099 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2100 	do {
2101 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2102 					  timeout, retries, NULL);
2103 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2104 		    sshdr->sense_key == UNIT_ATTENTION)
2105 			sdev->changed = 1;
2106 	} while (scsi_sense_valid(sshdr) &&
2107 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2108 
2109 	if (!sshdr_external)
2110 		kfree(sshdr);
2111 	return result;
2112 }
2113 EXPORT_SYMBOL(scsi_test_unit_ready);
2114 
2115 /**
2116  *	scsi_device_set_state - Take the given device through the device state model.
2117  *	@sdev:	scsi device to change the state of.
2118  *	@state:	state to change to.
2119  *
2120  *	Returns zero if unsuccessful or an error if the requested
2121  *	transition is illegal.
2122  */
2123 int
2124 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2125 {
2126 	enum scsi_device_state oldstate = sdev->sdev_state;
2127 
2128 	if (state == oldstate)
2129 		return 0;
2130 
2131 	switch (state) {
2132 	case SDEV_CREATED:
2133 		switch (oldstate) {
2134 		case SDEV_CREATED_BLOCK:
2135 			break;
2136 		default:
2137 			goto illegal;
2138 		}
2139 		break;
2140 
2141 	case SDEV_RUNNING:
2142 		switch (oldstate) {
2143 		case SDEV_CREATED:
2144 		case SDEV_OFFLINE:
2145 		case SDEV_TRANSPORT_OFFLINE:
2146 		case SDEV_QUIESCE:
2147 		case SDEV_BLOCK:
2148 			break;
2149 		default:
2150 			goto illegal;
2151 		}
2152 		break;
2153 
2154 	case SDEV_QUIESCE:
2155 		switch (oldstate) {
2156 		case SDEV_RUNNING:
2157 		case SDEV_OFFLINE:
2158 		case SDEV_TRANSPORT_OFFLINE:
2159 			break;
2160 		default:
2161 			goto illegal;
2162 		}
2163 		break;
2164 
2165 	case SDEV_OFFLINE:
2166 	case SDEV_TRANSPORT_OFFLINE:
2167 		switch (oldstate) {
2168 		case SDEV_CREATED:
2169 		case SDEV_RUNNING:
2170 		case SDEV_QUIESCE:
2171 		case SDEV_BLOCK:
2172 			break;
2173 		default:
2174 			goto illegal;
2175 		}
2176 		break;
2177 
2178 	case SDEV_BLOCK:
2179 		switch (oldstate) {
2180 		case SDEV_RUNNING:
2181 		case SDEV_CREATED_BLOCK:
2182 			break;
2183 		default:
2184 			goto illegal;
2185 		}
2186 		break;
2187 
2188 	case SDEV_CREATED_BLOCK:
2189 		switch (oldstate) {
2190 		case SDEV_CREATED:
2191 			break;
2192 		default:
2193 			goto illegal;
2194 		}
2195 		break;
2196 
2197 	case SDEV_CANCEL:
2198 		switch (oldstate) {
2199 		case SDEV_CREATED:
2200 		case SDEV_RUNNING:
2201 		case SDEV_QUIESCE:
2202 		case SDEV_OFFLINE:
2203 		case SDEV_TRANSPORT_OFFLINE:
2204 		case SDEV_BLOCK:
2205 			break;
2206 		default:
2207 			goto illegal;
2208 		}
2209 		break;
2210 
2211 	case SDEV_DEL:
2212 		switch (oldstate) {
2213 		case SDEV_CREATED:
2214 		case SDEV_RUNNING:
2215 		case SDEV_OFFLINE:
2216 		case SDEV_TRANSPORT_OFFLINE:
2217 		case SDEV_CANCEL:
2218 		case SDEV_CREATED_BLOCK:
2219 			break;
2220 		default:
2221 			goto illegal;
2222 		}
2223 		break;
2224 
2225 	}
2226 	sdev->sdev_state = state;
2227 	return 0;
2228 
2229  illegal:
2230 	SCSI_LOG_ERROR_RECOVERY(1,
2231 				sdev_printk(KERN_ERR, sdev,
2232 					    "Illegal state transition %s->%s\n",
2233 					    scsi_device_state_name(oldstate),
2234 					    scsi_device_state_name(state))
2235 				);
2236 	return -EINVAL;
2237 }
2238 EXPORT_SYMBOL(scsi_device_set_state);
2239 
2240 /**
2241  * 	sdev_evt_emit - emit a single SCSI device uevent
2242  *	@sdev: associated SCSI device
2243  *	@evt: event to emit
2244  *
2245  *	Send a single uevent (scsi_event) to the associated scsi_device.
2246  */
2247 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2248 {
2249 	int idx = 0;
2250 	char *envp[3];
2251 
2252 	switch (evt->evt_type) {
2253 	case SDEV_EVT_MEDIA_CHANGE:
2254 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2255 		break;
2256 
2257 	default:
2258 		/* do nothing */
2259 		break;
2260 	}
2261 
2262 	envp[idx++] = NULL;
2263 
2264 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2265 }
2266 
2267 /**
2268  * 	sdev_evt_thread - send a uevent for each scsi event
2269  *	@work: work struct for scsi_device
2270  *
2271  *	Dispatch queued events to their associated scsi_device kobjects
2272  *	as uevents.
2273  */
2274 void scsi_evt_thread(struct work_struct *work)
2275 {
2276 	struct scsi_device *sdev;
2277 	LIST_HEAD(event_list);
2278 
2279 	sdev = container_of(work, struct scsi_device, event_work);
2280 
2281 	while (1) {
2282 		struct scsi_event *evt;
2283 		struct list_head *this, *tmp;
2284 		unsigned long flags;
2285 
2286 		spin_lock_irqsave(&sdev->list_lock, flags);
2287 		list_splice_init(&sdev->event_list, &event_list);
2288 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2289 
2290 		if (list_empty(&event_list))
2291 			break;
2292 
2293 		list_for_each_safe(this, tmp, &event_list) {
2294 			evt = list_entry(this, struct scsi_event, node);
2295 			list_del(&evt->node);
2296 			scsi_evt_emit(sdev, evt);
2297 			kfree(evt);
2298 		}
2299 	}
2300 }
2301 
2302 /**
2303  * 	sdev_evt_send - send asserted event to uevent thread
2304  *	@sdev: scsi_device event occurred on
2305  *	@evt: event to send
2306  *
2307  *	Assert scsi device event asynchronously.
2308  */
2309 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2310 {
2311 	unsigned long flags;
2312 
2313 #if 0
2314 	/* FIXME: currently this check eliminates all media change events
2315 	 * for polled devices.  Need to update to discriminate between AN
2316 	 * and polled events */
2317 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2318 		kfree(evt);
2319 		return;
2320 	}
2321 #endif
2322 
2323 	spin_lock_irqsave(&sdev->list_lock, flags);
2324 	list_add_tail(&evt->node, &sdev->event_list);
2325 	schedule_work(&sdev->event_work);
2326 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2327 }
2328 EXPORT_SYMBOL_GPL(sdev_evt_send);
2329 
2330 /**
2331  * 	sdev_evt_alloc - allocate a new scsi event
2332  *	@evt_type: type of event to allocate
2333  *	@gfpflags: GFP flags for allocation
2334  *
2335  *	Allocates and returns a new scsi_event.
2336  */
2337 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2338 				  gfp_t gfpflags)
2339 {
2340 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2341 	if (!evt)
2342 		return NULL;
2343 
2344 	evt->evt_type = evt_type;
2345 	INIT_LIST_HEAD(&evt->node);
2346 
2347 	/* evt_type-specific initialization, if any */
2348 	switch (evt_type) {
2349 	case SDEV_EVT_MEDIA_CHANGE:
2350 	default:
2351 		/* do nothing */
2352 		break;
2353 	}
2354 
2355 	return evt;
2356 }
2357 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2358 
2359 /**
2360  * 	sdev_evt_send_simple - send asserted event to uevent thread
2361  *	@sdev: scsi_device event occurred on
2362  *	@evt_type: type of event to send
2363  *	@gfpflags: GFP flags for allocation
2364  *
2365  *	Assert scsi device event asynchronously, given an event type.
2366  */
2367 void sdev_evt_send_simple(struct scsi_device *sdev,
2368 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2369 {
2370 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2371 	if (!evt) {
2372 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2373 			    evt_type);
2374 		return;
2375 	}
2376 
2377 	sdev_evt_send(sdev, evt);
2378 }
2379 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2380 
2381 /**
2382  *	scsi_device_quiesce - Block user issued commands.
2383  *	@sdev:	scsi device to quiesce.
2384  *
2385  *	This works by trying to transition to the SDEV_QUIESCE state
2386  *	(which must be a legal transition).  When the device is in this
2387  *	state, only special requests will be accepted, all others will
2388  *	be deferred.  Since special requests may also be requeued requests,
2389  *	a successful return doesn't guarantee the device will be
2390  *	totally quiescent.
2391  *
2392  *	Must be called with user context, may sleep.
2393  *
2394  *	Returns zero if unsuccessful or an error if not.
2395  */
2396 int
2397 scsi_device_quiesce(struct scsi_device *sdev)
2398 {
2399 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2400 	if (err)
2401 		return err;
2402 
2403 	scsi_run_queue(sdev->request_queue);
2404 	while (sdev->device_busy) {
2405 		msleep_interruptible(200);
2406 		scsi_run_queue(sdev->request_queue);
2407 	}
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL(scsi_device_quiesce);
2411 
2412 /**
2413  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2414  *	@sdev:	scsi device to resume.
2415  *
2416  *	Moves the device from quiesced back to running and restarts the
2417  *	queues.
2418  *
2419  *	Must be called with user context, may sleep.
2420  */
2421 void scsi_device_resume(struct scsi_device *sdev)
2422 {
2423 	/* check if the device state was mutated prior to resume, and if
2424 	 * so assume the state is being managed elsewhere (for example
2425 	 * device deleted during suspend)
2426 	 */
2427 	if (sdev->sdev_state != SDEV_QUIESCE ||
2428 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2429 		return;
2430 	scsi_run_queue(sdev->request_queue);
2431 }
2432 EXPORT_SYMBOL(scsi_device_resume);
2433 
2434 static void
2435 device_quiesce_fn(struct scsi_device *sdev, void *data)
2436 {
2437 	scsi_device_quiesce(sdev);
2438 }
2439 
2440 void
2441 scsi_target_quiesce(struct scsi_target *starget)
2442 {
2443 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2444 }
2445 EXPORT_SYMBOL(scsi_target_quiesce);
2446 
2447 static void
2448 device_resume_fn(struct scsi_device *sdev, void *data)
2449 {
2450 	scsi_device_resume(sdev);
2451 }
2452 
2453 void
2454 scsi_target_resume(struct scsi_target *starget)
2455 {
2456 	starget_for_each_device(starget, NULL, device_resume_fn);
2457 }
2458 EXPORT_SYMBOL(scsi_target_resume);
2459 
2460 /**
2461  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2462  * @sdev:	device to block
2463  *
2464  * Block request made by scsi lld's to temporarily stop all
2465  * scsi commands on the specified device.  Called from interrupt
2466  * or normal process context.
2467  *
2468  * Returns zero if successful or error if not
2469  *
2470  * Notes:
2471  *	This routine transitions the device to the SDEV_BLOCK state
2472  *	(which must be a legal transition).  When the device is in this
2473  *	state, all commands are deferred until the scsi lld reenables
2474  *	the device with scsi_device_unblock or device_block_tmo fires.
2475  */
2476 int
2477 scsi_internal_device_block(struct scsi_device *sdev)
2478 {
2479 	struct request_queue *q = sdev->request_queue;
2480 	unsigned long flags;
2481 	int err = 0;
2482 
2483 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2484 	if (err) {
2485 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2486 
2487 		if (err)
2488 			return err;
2489 	}
2490 
2491 	/*
2492 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2493 	 * block layer from calling the midlayer with this device's
2494 	 * request queue.
2495 	 */
2496 	spin_lock_irqsave(q->queue_lock, flags);
2497 	blk_stop_queue(q);
2498 	spin_unlock_irqrestore(q->queue_lock, flags);
2499 
2500 	return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2503 
2504 /**
2505  * scsi_internal_device_unblock - resume a device after a block request
2506  * @sdev:	device to resume
2507  * @new_state:	state to set devices to after unblocking
2508  *
2509  * Called by scsi lld's or the midlayer to restart the device queue
2510  * for the previously suspended scsi device.  Called from interrupt or
2511  * normal process context.
2512  *
2513  * Returns zero if successful or error if not.
2514  *
2515  * Notes:
2516  *	This routine transitions the device to the SDEV_RUNNING state
2517  *	or to one of the offline states (which must be a legal transition)
2518  *	allowing the midlayer to goose the queue for this device.
2519  */
2520 int
2521 scsi_internal_device_unblock(struct scsi_device *sdev,
2522 			     enum scsi_device_state new_state)
2523 {
2524 	struct request_queue *q = sdev->request_queue;
2525 	unsigned long flags;
2526 
2527 	/*
2528 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2529 	 * offlined states and goose the device queue if successful.
2530 	 */
2531 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2532 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2533 		sdev->sdev_state = new_state;
2534 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2535 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2536 		    new_state == SDEV_OFFLINE)
2537 			sdev->sdev_state = new_state;
2538 		else
2539 			sdev->sdev_state = SDEV_CREATED;
2540 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2541 		 sdev->sdev_state != SDEV_OFFLINE)
2542 		return -EINVAL;
2543 
2544 	spin_lock_irqsave(q->queue_lock, flags);
2545 	blk_start_queue(q);
2546 	spin_unlock_irqrestore(q->queue_lock, flags);
2547 
2548 	return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2551 
2552 static void
2553 device_block(struct scsi_device *sdev, void *data)
2554 {
2555 	scsi_internal_device_block(sdev);
2556 }
2557 
2558 static int
2559 target_block(struct device *dev, void *data)
2560 {
2561 	if (scsi_is_target_device(dev))
2562 		starget_for_each_device(to_scsi_target(dev), NULL,
2563 					device_block);
2564 	return 0;
2565 }
2566 
2567 void
2568 scsi_target_block(struct device *dev)
2569 {
2570 	if (scsi_is_target_device(dev))
2571 		starget_for_each_device(to_scsi_target(dev), NULL,
2572 					device_block);
2573 	else
2574 		device_for_each_child(dev, NULL, target_block);
2575 }
2576 EXPORT_SYMBOL_GPL(scsi_target_block);
2577 
2578 static void
2579 device_unblock(struct scsi_device *sdev, void *data)
2580 {
2581 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2582 }
2583 
2584 static int
2585 target_unblock(struct device *dev, void *data)
2586 {
2587 	if (scsi_is_target_device(dev))
2588 		starget_for_each_device(to_scsi_target(dev), data,
2589 					device_unblock);
2590 	return 0;
2591 }
2592 
2593 void
2594 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2595 {
2596 	if (scsi_is_target_device(dev))
2597 		starget_for_each_device(to_scsi_target(dev), &new_state,
2598 					device_unblock);
2599 	else
2600 		device_for_each_child(dev, &new_state, target_unblock);
2601 }
2602 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2603 
2604 /**
2605  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2606  * @sgl:	scatter-gather list
2607  * @sg_count:	number of segments in sg
2608  * @offset:	offset in bytes into sg, on return offset into the mapped area
2609  * @len:	bytes to map, on return number of bytes mapped
2610  *
2611  * Returns virtual address of the start of the mapped page
2612  */
2613 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2614 			  size_t *offset, size_t *len)
2615 {
2616 	int i;
2617 	size_t sg_len = 0, len_complete = 0;
2618 	struct scatterlist *sg;
2619 	struct page *page;
2620 
2621 	WARN_ON(!irqs_disabled());
2622 
2623 	for_each_sg(sgl, sg, sg_count, i) {
2624 		len_complete = sg_len; /* Complete sg-entries */
2625 		sg_len += sg->length;
2626 		if (sg_len > *offset)
2627 			break;
2628 	}
2629 
2630 	if (unlikely(i == sg_count)) {
2631 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2632 			"elements %d\n",
2633 		       __func__, sg_len, *offset, sg_count);
2634 		WARN_ON(1);
2635 		return NULL;
2636 	}
2637 
2638 	/* Offset starting from the beginning of first page in this sg-entry */
2639 	*offset = *offset - len_complete + sg->offset;
2640 
2641 	/* Assumption: contiguous pages can be accessed as "page + i" */
2642 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2643 	*offset &= ~PAGE_MASK;
2644 
2645 	/* Bytes in this sg-entry from *offset to the end of the page */
2646 	sg_len = PAGE_SIZE - *offset;
2647 	if (*len > sg_len)
2648 		*len = sg_len;
2649 
2650 	return kmap_atomic(page);
2651 }
2652 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2653 
2654 /**
2655  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2656  * @virt:	virtual address to be unmapped
2657  */
2658 void scsi_kunmap_atomic_sg(void *virt)
2659 {
2660 	kunmap_atomic(virt);
2661 }
2662 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2663 
2664 void sdev_disable_disk_events(struct scsi_device *sdev)
2665 {
2666 	atomic_inc(&sdev->disk_events_disable_depth);
2667 }
2668 EXPORT_SYMBOL(sdev_disable_disk_events);
2669 
2670 void sdev_enable_disk_events(struct scsi_device *sdev)
2671 {
2672 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2673 		return;
2674 	atomic_dec(&sdev->disk_events_disable_depth);
2675 }
2676 EXPORT_SYMBOL(sdev_enable_disk_events);
2677