1 /* 2 * Copyright (C) 1999 Eric Youngdale 3 * Copyright (C) 2014 Christoph Hellwig 4 * 5 * SCSI queueing library. 6 * Initial versions: Eric Youngdale (eric@andante.org). 7 * Based upon conversations with large numbers 8 * of people at Linux Expo. 9 */ 10 11 #include <linux/bio.h> 12 #include <linux/bitops.h> 13 #include <linux/blkdev.h> 14 #include <linux/completion.h> 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/pci.h> 19 #include <linux/delay.h> 20 #include <linux/hardirq.h> 21 #include <linux/scatterlist.h> 22 #include <linux/blk-mq.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_dbg.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_driver.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */ 34 #include <scsi/scsi_dh.h> 35 36 #include <trace/events/scsi.h> 37 38 #include "scsi_debugfs.h" 39 #include "scsi_priv.h" 40 #include "scsi_logging.h" 41 42 static struct kmem_cache *scsi_sdb_cache; 43 static struct kmem_cache *scsi_sense_cache; 44 static struct kmem_cache *scsi_sense_isadma_cache; 45 static DEFINE_MUTEX(scsi_sense_cache_mutex); 46 47 static inline struct kmem_cache * 48 scsi_select_sense_cache(bool unchecked_isa_dma) 49 { 50 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache; 51 } 52 53 static void scsi_free_sense_buffer(bool unchecked_isa_dma, 54 unsigned char *sense_buffer) 55 { 56 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma), 57 sense_buffer); 58 } 59 60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma, 61 gfp_t gfp_mask, int numa_node) 62 { 63 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma), 64 gfp_mask, numa_node); 65 } 66 67 int scsi_init_sense_cache(struct Scsi_Host *shost) 68 { 69 struct kmem_cache *cache; 70 int ret = 0; 71 72 cache = scsi_select_sense_cache(shost->unchecked_isa_dma); 73 if (cache) 74 return 0; 75 76 mutex_lock(&scsi_sense_cache_mutex); 77 if (shost->unchecked_isa_dma) { 78 scsi_sense_isadma_cache = 79 kmem_cache_create("scsi_sense_cache(DMA)", 80 SCSI_SENSE_BUFFERSIZE, 0, 81 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL); 82 if (!scsi_sense_isadma_cache) 83 ret = -ENOMEM; 84 } else { 85 scsi_sense_cache = 86 kmem_cache_create("scsi_sense_cache", 87 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL); 88 if (!scsi_sense_cache) 89 ret = -ENOMEM; 90 } 91 92 mutex_unlock(&scsi_sense_cache_mutex); 93 return ret; 94 } 95 96 /* 97 * When to reinvoke queueing after a resource shortage. It's 3 msecs to 98 * not change behaviour from the previous unplug mechanism, experimentation 99 * may prove this needs changing. 100 */ 101 #define SCSI_QUEUE_DELAY 3 102 103 static void 104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason) 105 { 106 struct Scsi_Host *host = cmd->device->host; 107 struct scsi_device *device = cmd->device; 108 struct scsi_target *starget = scsi_target(device); 109 110 /* 111 * Set the appropriate busy bit for the device/host. 112 * 113 * If the host/device isn't busy, assume that something actually 114 * completed, and that we should be able to queue a command now. 115 * 116 * Note that the prior mid-layer assumption that any host could 117 * always queue at least one command is now broken. The mid-layer 118 * will implement a user specifiable stall (see 119 * scsi_host.max_host_blocked and scsi_device.max_device_blocked) 120 * if a command is requeued with no other commands outstanding 121 * either for the device or for the host. 122 */ 123 switch (reason) { 124 case SCSI_MLQUEUE_HOST_BUSY: 125 atomic_set(&host->host_blocked, host->max_host_blocked); 126 break; 127 case SCSI_MLQUEUE_DEVICE_BUSY: 128 case SCSI_MLQUEUE_EH_RETRY: 129 atomic_set(&device->device_blocked, 130 device->max_device_blocked); 131 break; 132 case SCSI_MLQUEUE_TARGET_BUSY: 133 atomic_set(&starget->target_blocked, 134 starget->max_target_blocked); 135 break; 136 } 137 } 138 139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd) 140 { 141 struct scsi_device *sdev = cmd->device; 142 143 blk_mq_requeue_request(cmd->request, true); 144 put_device(&sdev->sdev_gendev); 145 } 146 147 /** 148 * __scsi_queue_insert - private queue insertion 149 * @cmd: The SCSI command being requeued 150 * @reason: The reason for the requeue 151 * @unbusy: Whether the queue should be unbusied 152 * 153 * This is a private queue insertion. The public interface 154 * scsi_queue_insert() always assumes the queue should be unbusied 155 * because it's always called before the completion. This function is 156 * for a requeue after completion, which should only occur in this 157 * file. 158 */ 159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy) 160 { 161 struct scsi_device *device = cmd->device; 162 struct request_queue *q = device->request_queue; 163 unsigned long flags; 164 165 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd, 166 "Inserting command %p into mlqueue\n", cmd)); 167 168 scsi_set_blocked(cmd, reason); 169 170 /* 171 * Decrement the counters, since these commands are no longer 172 * active on the host/device. 173 */ 174 if (unbusy) 175 scsi_device_unbusy(device); 176 177 /* 178 * Requeue this command. It will go before all other commands 179 * that are already in the queue. Schedule requeue work under 180 * lock such that the kblockd_schedule_work() call happens 181 * before blk_cleanup_queue() finishes. 182 */ 183 cmd->result = 0; 184 if (q->mq_ops) { 185 scsi_mq_requeue_cmd(cmd); 186 return; 187 } 188 spin_lock_irqsave(q->queue_lock, flags); 189 blk_requeue_request(q, cmd->request); 190 kblockd_schedule_work(&device->requeue_work); 191 spin_unlock_irqrestore(q->queue_lock, flags); 192 } 193 194 /* 195 * Function: scsi_queue_insert() 196 * 197 * Purpose: Insert a command in the midlevel queue. 198 * 199 * Arguments: cmd - command that we are adding to queue. 200 * reason - why we are inserting command to queue. 201 * 202 * Lock status: Assumed that lock is not held upon entry. 203 * 204 * Returns: Nothing. 205 * 206 * Notes: We do this for one of two cases. Either the host is busy 207 * and it cannot accept any more commands for the time being, 208 * or the device returned QUEUE_FULL and can accept no more 209 * commands. 210 * Notes: This could be called either from an interrupt context or a 211 * normal process context. 212 */ 213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason) 214 { 215 __scsi_queue_insert(cmd, reason, 1); 216 } 217 218 219 /** 220 * scsi_execute - insert request and wait for the result 221 * @sdev: scsi device 222 * @cmd: scsi command 223 * @data_direction: data direction 224 * @buffer: data buffer 225 * @bufflen: len of buffer 226 * @sense: optional sense buffer 227 * @sshdr: optional decoded sense header 228 * @timeout: request timeout in seconds 229 * @retries: number of times to retry request 230 * @flags: flags for ->cmd_flags 231 * @rq_flags: flags for ->rq_flags 232 * @resid: optional residual length 233 * 234 * Returns the scsi_cmnd result field if a command was executed, or a negative 235 * Linux error code if we didn't get that far. 236 */ 237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd, 238 int data_direction, void *buffer, unsigned bufflen, 239 unsigned char *sense, struct scsi_sense_hdr *sshdr, 240 int timeout, int retries, u64 flags, req_flags_t rq_flags, 241 int *resid) 242 { 243 struct request *req; 244 struct scsi_request *rq; 245 int ret = DRIVER_ERROR << 24; 246 247 req = blk_get_request(sdev->request_queue, 248 data_direction == DMA_TO_DEVICE ? 249 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM); 250 if (IS_ERR(req)) 251 return ret; 252 rq = scsi_req(req); 253 254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req, 255 buffer, bufflen, __GFP_RECLAIM)) 256 goto out; 257 258 rq->cmd_len = COMMAND_SIZE(cmd[0]); 259 memcpy(rq->cmd, cmd, rq->cmd_len); 260 rq->retries = retries; 261 req->timeout = timeout; 262 req->cmd_flags |= flags; 263 req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT; 264 265 /* 266 * head injection *required* here otherwise quiesce won't work 267 */ 268 blk_execute_rq(req->q, NULL, req, 1); 269 270 /* 271 * Some devices (USB mass-storage in particular) may transfer 272 * garbage data together with a residue indicating that the data 273 * is invalid. Prevent the garbage from being misinterpreted 274 * and prevent security leaks by zeroing out the excess data. 275 */ 276 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen)) 277 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len); 278 279 if (resid) 280 *resid = rq->resid_len; 281 if (sense && rq->sense_len) 282 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE); 283 if (sshdr) 284 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr); 285 ret = rq->result; 286 out: 287 blk_put_request(req); 288 289 return ret; 290 } 291 EXPORT_SYMBOL(scsi_execute); 292 293 /* 294 * Function: scsi_init_cmd_errh() 295 * 296 * Purpose: Initialize cmd fields related to error handling. 297 * 298 * Arguments: cmd - command that is ready to be queued. 299 * 300 * Notes: This function has the job of initializing a number of 301 * fields related to error handling. Typically this will 302 * be called once for each command, as required. 303 */ 304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd) 305 { 306 cmd->serial_number = 0; 307 scsi_set_resid(cmd, 0); 308 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 309 if (cmd->cmd_len == 0) 310 cmd->cmd_len = scsi_command_size(cmd->cmnd); 311 } 312 313 void scsi_device_unbusy(struct scsi_device *sdev) 314 { 315 struct Scsi_Host *shost = sdev->host; 316 struct scsi_target *starget = scsi_target(sdev); 317 unsigned long flags; 318 319 atomic_dec(&shost->host_busy); 320 if (starget->can_queue > 0) 321 atomic_dec(&starget->target_busy); 322 323 if (unlikely(scsi_host_in_recovery(shost) && 324 (shost->host_failed || shost->host_eh_scheduled))) { 325 spin_lock_irqsave(shost->host_lock, flags); 326 scsi_eh_wakeup(shost); 327 spin_unlock_irqrestore(shost->host_lock, flags); 328 } 329 330 atomic_dec(&sdev->device_busy); 331 } 332 333 static void scsi_kick_queue(struct request_queue *q) 334 { 335 if (q->mq_ops) 336 blk_mq_start_hw_queues(q); 337 else 338 blk_run_queue(q); 339 } 340 341 /* 342 * Called for single_lun devices on IO completion. Clear starget_sdev_user, 343 * and call blk_run_queue for all the scsi_devices on the target - 344 * including current_sdev first. 345 * 346 * Called with *no* scsi locks held. 347 */ 348 static void scsi_single_lun_run(struct scsi_device *current_sdev) 349 { 350 struct Scsi_Host *shost = current_sdev->host; 351 struct scsi_device *sdev, *tmp; 352 struct scsi_target *starget = scsi_target(current_sdev); 353 unsigned long flags; 354 355 spin_lock_irqsave(shost->host_lock, flags); 356 starget->starget_sdev_user = NULL; 357 spin_unlock_irqrestore(shost->host_lock, flags); 358 359 /* 360 * Call blk_run_queue for all LUNs on the target, starting with 361 * current_sdev. We race with others (to set starget_sdev_user), 362 * but in most cases, we will be first. Ideally, each LU on the 363 * target would get some limited time or requests on the target. 364 */ 365 scsi_kick_queue(current_sdev->request_queue); 366 367 spin_lock_irqsave(shost->host_lock, flags); 368 if (starget->starget_sdev_user) 369 goto out; 370 list_for_each_entry_safe(sdev, tmp, &starget->devices, 371 same_target_siblings) { 372 if (sdev == current_sdev) 373 continue; 374 if (scsi_device_get(sdev)) 375 continue; 376 377 spin_unlock_irqrestore(shost->host_lock, flags); 378 scsi_kick_queue(sdev->request_queue); 379 spin_lock_irqsave(shost->host_lock, flags); 380 381 scsi_device_put(sdev); 382 } 383 out: 384 spin_unlock_irqrestore(shost->host_lock, flags); 385 } 386 387 static inline bool scsi_device_is_busy(struct scsi_device *sdev) 388 { 389 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth) 390 return true; 391 if (atomic_read(&sdev->device_blocked) > 0) 392 return true; 393 return false; 394 } 395 396 static inline bool scsi_target_is_busy(struct scsi_target *starget) 397 { 398 if (starget->can_queue > 0) { 399 if (atomic_read(&starget->target_busy) >= starget->can_queue) 400 return true; 401 if (atomic_read(&starget->target_blocked) > 0) 402 return true; 403 } 404 return false; 405 } 406 407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost) 408 { 409 if (shost->can_queue > 0 && 410 atomic_read(&shost->host_busy) >= shost->can_queue) 411 return true; 412 if (atomic_read(&shost->host_blocked) > 0) 413 return true; 414 if (shost->host_self_blocked) 415 return true; 416 return false; 417 } 418 419 static void scsi_starved_list_run(struct Scsi_Host *shost) 420 { 421 LIST_HEAD(starved_list); 422 struct scsi_device *sdev; 423 unsigned long flags; 424 425 spin_lock_irqsave(shost->host_lock, flags); 426 list_splice_init(&shost->starved_list, &starved_list); 427 428 while (!list_empty(&starved_list)) { 429 struct request_queue *slq; 430 431 /* 432 * As long as shost is accepting commands and we have 433 * starved queues, call blk_run_queue. scsi_request_fn 434 * drops the queue_lock and can add us back to the 435 * starved_list. 436 * 437 * host_lock protects the starved_list and starved_entry. 438 * scsi_request_fn must get the host_lock before checking 439 * or modifying starved_list or starved_entry. 440 */ 441 if (scsi_host_is_busy(shost)) 442 break; 443 444 sdev = list_entry(starved_list.next, 445 struct scsi_device, starved_entry); 446 list_del_init(&sdev->starved_entry); 447 if (scsi_target_is_busy(scsi_target(sdev))) { 448 list_move_tail(&sdev->starved_entry, 449 &shost->starved_list); 450 continue; 451 } 452 453 /* 454 * Once we drop the host lock, a racing scsi_remove_device() 455 * call may remove the sdev from the starved list and destroy 456 * it and the queue. Mitigate by taking a reference to the 457 * queue and never touching the sdev again after we drop the 458 * host lock. Note: if __scsi_remove_device() invokes 459 * blk_cleanup_queue() before the queue is run from this 460 * function then blk_run_queue() will return immediately since 461 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING. 462 */ 463 slq = sdev->request_queue; 464 if (!blk_get_queue(slq)) 465 continue; 466 spin_unlock_irqrestore(shost->host_lock, flags); 467 468 scsi_kick_queue(slq); 469 blk_put_queue(slq); 470 471 spin_lock_irqsave(shost->host_lock, flags); 472 } 473 /* put any unprocessed entries back */ 474 list_splice(&starved_list, &shost->starved_list); 475 spin_unlock_irqrestore(shost->host_lock, flags); 476 } 477 478 /* 479 * Function: scsi_run_queue() 480 * 481 * Purpose: Select a proper request queue to serve next 482 * 483 * Arguments: q - last request's queue 484 * 485 * Returns: Nothing 486 * 487 * Notes: The previous command was completely finished, start 488 * a new one if possible. 489 */ 490 static void scsi_run_queue(struct request_queue *q) 491 { 492 struct scsi_device *sdev = q->queuedata; 493 494 if (scsi_target(sdev)->single_lun) 495 scsi_single_lun_run(sdev); 496 if (!list_empty(&sdev->host->starved_list)) 497 scsi_starved_list_run(sdev->host); 498 499 if (q->mq_ops) 500 blk_mq_run_hw_queues(q, false); 501 else 502 blk_run_queue(q); 503 } 504 505 void scsi_requeue_run_queue(struct work_struct *work) 506 { 507 struct scsi_device *sdev; 508 struct request_queue *q; 509 510 sdev = container_of(work, struct scsi_device, requeue_work); 511 q = sdev->request_queue; 512 scsi_run_queue(q); 513 } 514 515 /* 516 * Function: scsi_requeue_command() 517 * 518 * Purpose: Handle post-processing of completed commands. 519 * 520 * Arguments: q - queue to operate on 521 * cmd - command that may need to be requeued. 522 * 523 * Returns: Nothing 524 * 525 * Notes: After command completion, there may be blocks left 526 * over which weren't finished by the previous command 527 * this can be for a number of reasons - the main one is 528 * I/O errors in the middle of the request, in which case 529 * we need to request the blocks that come after the bad 530 * sector. 531 * Notes: Upon return, cmd is a stale pointer. 532 */ 533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd) 534 { 535 struct scsi_device *sdev = cmd->device; 536 struct request *req = cmd->request; 537 unsigned long flags; 538 539 spin_lock_irqsave(q->queue_lock, flags); 540 blk_unprep_request(req); 541 req->special = NULL; 542 scsi_put_command(cmd); 543 blk_requeue_request(q, req); 544 spin_unlock_irqrestore(q->queue_lock, flags); 545 546 scsi_run_queue(q); 547 548 put_device(&sdev->sdev_gendev); 549 } 550 551 void scsi_run_host_queues(struct Scsi_Host *shost) 552 { 553 struct scsi_device *sdev; 554 555 shost_for_each_device(sdev, shost) 556 scsi_run_queue(sdev->request_queue); 557 } 558 559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd) 560 { 561 if (!blk_rq_is_passthrough(cmd->request)) { 562 struct scsi_driver *drv = scsi_cmd_to_driver(cmd); 563 564 if (drv->uninit_command) 565 drv->uninit_command(cmd); 566 } 567 } 568 569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd) 570 { 571 struct scsi_data_buffer *sdb; 572 573 if (cmd->sdb.table.nents) 574 sg_free_table_chained(&cmd->sdb.table, true); 575 if (cmd->request->next_rq) { 576 sdb = cmd->request->next_rq->special; 577 if (sdb) 578 sg_free_table_chained(&sdb->table, true); 579 } 580 if (scsi_prot_sg_count(cmd)) 581 sg_free_table_chained(&cmd->prot_sdb->table, true); 582 } 583 584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd) 585 { 586 scsi_mq_free_sgtables(cmd); 587 scsi_uninit_cmd(cmd); 588 scsi_del_cmd_from_list(cmd); 589 } 590 591 /* 592 * Function: scsi_release_buffers() 593 * 594 * Purpose: Free resources allocate for a scsi_command. 595 * 596 * Arguments: cmd - command that we are bailing. 597 * 598 * Lock status: Assumed that no lock is held upon entry. 599 * 600 * Returns: Nothing 601 * 602 * Notes: In the event that an upper level driver rejects a 603 * command, we must release resources allocated during 604 * the __init_io() function. Primarily this would involve 605 * the scatter-gather table. 606 */ 607 static void scsi_release_buffers(struct scsi_cmnd *cmd) 608 { 609 if (cmd->sdb.table.nents) 610 sg_free_table_chained(&cmd->sdb.table, false); 611 612 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 613 614 if (scsi_prot_sg_count(cmd)) 615 sg_free_table_chained(&cmd->prot_sdb->table, false); 616 } 617 618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd) 619 { 620 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special; 621 622 sg_free_table_chained(&bidi_sdb->table, false); 623 kmem_cache_free(scsi_sdb_cache, bidi_sdb); 624 cmd->request->next_rq->special = NULL; 625 } 626 627 static bool scsi_end_request(struct request *req, blk_status_t error, 628 unsigned int bytes, unsigned int bidi_bytes) 629 { 630 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 631 struct scsi_device *sdev = cmd->device; 632 struct request_queue *q = sdev->request_queue; 633 634 if (blk_update_request(req, error, bytes)) 635 return true; 636 637 /* Bidi request must be completed as a whole */ 638 if (unlikely(bidi_bytes) && 639 blk_update_request(req->next_rq, error, bidi_bytes)) 640 return true; 641 642 if (blk_queue_add_random(q)) 643 add_disk_randomness(req->rq_disk); 644 645 if (req->mq_ctx) { 646 /* 647 * In the MQ case the command gets freed by __blk_mq_end_request, 648 * so we have to do all cleanup that depends on it earlier. 649 * 650 * We also can't kick the queues from irq context, so we 651 * will have to defer it to a workqueue. 652 */ 653 scsi_mq_uninit_cmd(cmd); 654 655 __blk_mq_end_request(req, error); 656 657 if (scsi_target(sdev)->single_lun || 658 !list_empty(&sdev->host->starved_list)) 659 kblockd_schedule_work(&sdev->requeue_work); 660 else 661 blk_mq_run_hw_queues(q, true); 662 } else { 663 unsigned long flags; 664 665 if (bidi_bytes) 666 scsi_release_bidi_buffers(cmd); 667 scsi_release_buffers(cmd); 668 scsi_put_command(cmd); 669 670 spin_lock_irqsave(q->queue_lock, flags); 671 blk_finish_request(req, error); 672 spin_unlock_irqrestore(q->queue_lock, flags); 673 674 scsi_run_queue(q); 675 } 676 677 put_device(&sdev->sdev_gendev); 678 return false; 679 } 680 681 /** 682 * __scsi_error_from_host_byte - translate SCSI error code into errno 683 * @cmd: SCSI command (unused) 684 * @result: scsi error code 685 * 686 * Translate SCSI error code into block errors. 687 */ 688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd, 689 int result) 690 { 691 switch (host_byte(result)) { 692 case DID_TRANSPORT_FAILFAST: 693 return BLK_STS_TRANSPORT; 694 case DID_TARGET_FAILURE: 695 set_host_byte(cmd, DID_OK); 696 return BLK_STS_TARGET; 697 case DID_NEXUS_FAILURE: 698 return BLK_STS_NEXUS; 699 case DID_ALLOC_FAILURE: 700 set_host_byte(cmd, DID_OK); 701 return BLK_STS_NOSPC; 702 case DID_MEDIUM_ERROR: 703 set_host_byte(cmd, DID_OK); 704 return BLK_STS_MEDIUM; 705 default: 706 return BLK_STS_IOERR; 707 } 708 } 709 710 /* 711 * Function: scsi_io_completion() 712 * 713 * Purpose: Completion processing for block device I/O requests. 714 * 715 * Arguments: cmd - command that is finished. 716 * 717 * Lock status: Assumed that no lock is held upon entry. 718 * 719 * Returns: Nothing 720 * 721 * Notes: We will finish off the specified number of sectors. If we 722 * are done, the command block will be released and the queue 723 * function will be goosed. If we are not done then we have to 724 * figure out what to do next: 725 * 726 * a) We can call scsi_requeue_command(). The request 727 * will be unprepared and put back on the queue. Then 728 * a new command will be created for it. This should 729 * be used if we made forward progress, or if we want 730 * to switch from READ(10) to READ(6) for example. 731 * 732 * b) We can call __scsi_queue_insert(). The request will 733 * be put back on the queue and retried using the same 734 * command as before, possibly after a delay. 735 * 736 * c) We can call scsi_end_request() with -EIO to fail 737 * the remainder of the request. 738 */ 739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes) 740 { 741 int result = cmd->result; 742 struct request_queue *q = cmd->device->request_queue; 743 struct request *req = cmd->request; 744 blk_status_t error = BLK_STS_OK; 745 struct scsi_sense_hdr sshdr; 746 bool sense_valid = false; 747 int sense_deferred = 0, level = 0; 748 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY, 749 ACTION_DELAYED_RETRY} action; 750 unsigned long wait_for = (cmd->allowed + 1) * req->timeout; 751 752 if (result) { 753 sense_valid = scsi_command_normalize_sense(cmd, &sshdr); 754 if (sense_valid) 755 sense_deferred = scsi_sense_is_deferred(&sshdr); 756 } 757 758 if (blk_rq_is_passthrough(req)) { 759 if (result) { 760 if (sense_valid) { 761 /* 762 * SG_IO wants current and deferred errors 763 */ 764 scsi_req(req)->sense_len = 765 min(8 + cmd->sense_buffer[7], 766 SCSI_SENSE_BUFFERSIZE); 767 } 768 if (!sense_deferred) 769 error = __scsi_error_from_host_byte(cmd, result); 770 } 771 /* 772 * __scsi_error_from_host_byte may have reset the host_byte 773 */ 774 scsi_req(req)->result = cmd->result; 775 scsi_req(req)->resid_len = scsi_get_resid(cmd); 776 777 if (scsi_bidi_cmnd(cmd)) { 778 /* 779 * Bidi commands Must be complete as a whole, 780 * both sides at once. 781 */ 782 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid; 783 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req), 784 blk_rq_bytes(req->next_rq))) 785 BUG(); 786 return; 787 } 788 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) { 789 /* 790 * Flush commands do not transfers any data, and thus cannot use 791 * good_bytes != blk_rq_bytes(req) as the signal for an error. 792 * This sets the error explicitly for the problem case. 793 */ 794 error = __scsi_error_from_host_byte(cmd, result); 795 } 796 797 /* no bidi support for !blk_rq_is_passthrough yet */ 798 BUG_ON(blk_bidi_rq(req)); 799 800 /* 801 * Next deal with any sectors which we were able to correctly 802 * handle. 803 */ 804 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd, 805 "%u sectors total, %d bytes done.\n", 806 blk_rq_sectors(req), good_bytes)); 807 808 /* 809 * Recovered errors need reporting, but they're always treated as 810 * success, so fiddle the result code here. For passthrough requests 811 * we already took a copy of the original into sreq->result which 812 * is what gets returned to the user 813 */ 814 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) { 815 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip 816 * print since caller wants ATA registers. Only occurs on 817 * SCSI ATA PASS_THROUGH commands when CK_COND=1 818 */ 819 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d)) 820 ; 821 else if (!(req->rq_flags & RQF_QUIET)) 822 scsi_print_sense(cmd); 823 result = 0; 824 /* for passthrough error may be set */ 825 error = BLK_STS_OK; 826 } 827 828 /* 829 * special case: failed zero length commands always need to 830 * drop down into the retry code. Otherwise, if we finished 831 * all bytes in the request we are done now. 832 */ 833 if (!(blk_rq_bytes(req) == 0 && error) && 834 !scsi_end_request(req, error, good_bytes, 0)) 835 return; 836 837 /* 838 * Kill remainder if no retrys. 839 */ 840 if (error && scsi_noretry_cmd(cmd)) { 841 if (scsi_end_request(req, error, blk_rq_bytes(req), 0)) 842 BUG(); 843 return; 844 } 845 846 /* 847 * If there had been no error, but we have leftover bytes in the 848 * requeues just queue the command up again. 849 */ 850 if (result == 0) 851 goto requeue; 852 853 error = __scsi_error_from_host_byte(cmd, result); 854 855 if (host_byte(result) == DID_RESET) { 856 /* Third party bus reset or reset for error recovery 857 * reasons. Just retry the command and see what 858 * happens. 859 */ 860 action = ACTION_RETRY; 861 } else if (sense_valid && !sense_deferred) { 862 switch (sshdr.sense_key) { 863 case UNIT_ATTENTION: 864 if (cmd->device->removable) { 865 /* Detected disc change. Set a bit 866 * and quietly refuse further access. 867 */ 868 cmd->device->changed = 1; 869 action = ACTION_FAIL; 870 } else { 871 /* Must have been a power glitch, or a 872 * bus reset. Could not have been a 873 * media change, so we just retry the 874 * command and see what happens. 875 */ 876 action = ACTION_RETRY; 877 } 878 break; 879 case ILLEGAL_REQUEST: 880 /* If we had an ILLEGAL REQUEST returned, then 881 * we may have performed an unsupported 882 * command. The only thing this should be 883 * would be a ten byte read where only a six 884 * byte read was supported. Also, on a system 885 * where READ CAPACITY failed, we may have 886 * read past the end of the disk. 887 */ 888 if ((cmd->device->use_10_for_rw && 889 sshdr.asc == 0x20 && sshdr.ascq == 0x00) && 890 (cmd->cmnd[0] == READ_10 || 891 cmd->cmnd[0] == WRITE_10)) { 892 /* This will issue a new 6-byte command. */ 893 cmd->device->use_10_for_rw = 0; 894 action = ACTION_REPREP; 895 } else if (sshdr.asc == 0x10) /* DIX */ { 896 action = ACTION_FAIL; 897 error = BLK_STS_PROTECTION; 898 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 899 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 900 action = ACTION_FAIL; 901 error = BLK_STS_TARGET; 902 } else 903 action = ACTION_FAIL; 904 break; 905 case ABORTED_COMMAND: 906 action = ACTION_FAIL; 907 if (sshdr.asc == 0x10) /* DIF */ 908 error = BLK_STS_PROTECTION; 909 break; 910 case NOT_READY: 911 /* If the device is in the process of becoming 912 * ready, or has a temporary blockage, retry. 913 */ 914 if (sshdr.asc == 0x04) { 915 switch (sshdr.ascq) { 916 case 0x01: /* becoming ready */ 917 case 0x04: /* format in progress */ 918 case 0x05: /* rebuild in progress */ 919 case 0x06: /* recalculation in progress */ 920 case 0x07: /* operation in progress */ 921 case 0x08: /* Long write in progress */ 922 case 0x09: /* self test in progress */ 923 case 0x14: /* space allocation in progress */ 924 action = ACTION_DELAYED_RETRY; 925 break; 926 default: 927 action = ACTION_FAIL; 928 break; 929 } 930 } else 931 action = ACTION_FAIL; 932 break; 933 case VOLUME_OVERFLOW: 934 /* See SSC3rXX or current. */ 935 action = ACTION_FAIL; 936 break; 937 default: 938 action = ACTION_FAIL; 939 break; 940 } 941 } else 942 action = ACTION_FAIL; 943 944 if (action != ACTION_FAIL && 945 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) 946 action = ACTION_FAIL; 947 948 switch (action) { 949 case ACTION_FAIL: 950 /* Give up and fail the remainder of the request */ 951 if (!(req->rq_flags & RQF_QUIET)) { 952 static DEFINE_RATELIMIT_STATE(_rs, 953 DEFAULT_RATELIMIT_INTERVAL, 954 DEFAULT_RATELIMIT_BURST); 955 956 if (unlikely(scsi_logging_level)) 957 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT, 958 SCSI_LOG_MLCOMPLETE_BITS); 959 960 /* 961 * if logging is enabled the failure will be printed 962 * in scsi_log_completion(), so avoid duplicate messages 963 */ 964 if (!level && __ratelimit(&_rs)) { 965 scsi_print_result(cmd, NULL, FAILED); 966 if (driver_byte(result) & DRIVER_SENSE) 967 scsi_print_sense(cmd); 968 scsi_print_command(cmd); 969 } 970 } 971 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0)) 972 return; 973 /*FALLTHRU*/ 974 case ACTION_REPREP: 975 requeue: 976 /* Unprep the request and put it back at the head of the queue. 977 * A new command will be prepared and issued. 978 */ 979 if (q->mq_ops) { 980 cmd->request->rq_flags &= ~RQF_DONTPREP; 981 scsi_mq_uninit_cmd(cmd); 982 scsi_mq_requeue_cmd(cmd); 983 } else { 984 scsi_release_buffers(cmd); 985 scsi_requeue_command(q, cmd); 986 } 987 break; 988 case ACTION_RETRY: 989 /* Retry the same command immediately */ 990 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0); 991 break; 992 case ACTION_DELAYED_RETRY: 993 /* Retry the same command after a delay */ 994 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0); 995 break; 996 } 997 } 998 999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb) 1000 { 1001 int count; 1002 1003 /* 1004 * If sg table allocation fails, requeue request later. 1005 */ 1006 if (unlikely(sg_alloc_table_chained(&sdb->table, 1007 blk_rq_nr_phys_segments(req), sdb->table.sgl))) 1008 return BLKPREP_DEFER; 1009 1010 /* 1011 * Next, walk the list, and fill in the addresses and sizes of 1012 * each segment. 1013 */ 1014 count = blk_rq_map_sg(req->q, req, sdb->table.sgl); 1015 BUG_ON(count > sdb->table.nents); 1016 sdb->table.nents = count; 1017 sdb->length = blk_rq_payload_bytes(req); 1018 return BLKPREP_OK; 1019 } 1020 1021 /* 1022 * Function: scsi_init_io() 1023 * 1024 * Purpose: SCSI I/O initialize function. 1025 * 1026 * Arguments: cmd - Command descriptor we wish to initialize 1027 * 1028 * Returns: 0 on success 1029 * BLKPREP_DEFER if the failure is retryable 1030 * BLKPREP_KILL if the failure is fatal 1031 */ 1032 int scsi_init_io(struct scsi_cmnd *cmd) 1033 { 1034 struct scsi_device *sdev = cmd->device; 1035 struct request *rq = cmd->request; 1036 bool is_mq = (rq->mq_ctx != NULL); 1037 int error = BLKPREP_KILL; 1038 1039 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq))) 1040 goto err_exit; 1041 1042 error = scsi_init_sgtable(rq, &cmd->sdb); 1043 if (error) 1044 goto err_exit; 1045 1046 if (blk_bidi_rq(rq)) { 1047 if (!rq->q->mq_ops) { 1048 struct scsi_data_buffer *bidi_sdb = 1049 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC); 1050 if (!bidi_sdb) { 1051 error = BLKPREP_DEFER; 1052 goto err_exit; 1053 } 1054 1055 rq->next_rq->special = bidi_sdb; 1056 } 1057 1058 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special); 1059 if (error) 1060 goto err_exit; 1061 } 1062 1063 if (blk_integrity_rq(rq)) { 1064 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb; 1065 int ivecs, count; 1066 1067 if (prot_sdb == NULL) { 1068 /* 1069 * This can happen if someone (e.g. multipath) 1070 * queues a command to a device on an adapter 1071 * that does not support DIX. 1072 */ 1073 WARN_ON_ONCE(1); 1074 error = BLKPREP_KILL; 1075 goto err_exit; 1076 } 1077 1078 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio); 1079 1080 if (sg_alloc_table_chained(&prot_sdb->table, ivecs, 1081 prot_sdb->table.sgl)) { 1082 error = BLKPREP_DEFER; 1083 goto err_exit; 1084 } 1085 1086 count = blk_rq_map_integrity_sg(rq->q, rq->bio, 1087 prot_sdb->table.sgl); 1088 BUG_ON(unlikely(count > ivecs)); 1089 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q))); 1090 1091 cmd->prot_sdb = prot_sdb; 1092 cmd->prot_sdb->table.nents = count; 1093 } 1094 1095 return BLKPREP_OK; 1096 err_exit: 1097 if (is_mq) { 1098 scsi_mq_free_sgtables(cmd); 1099 } else { 1100 scsi_release_buffers(cmd); 1101 cmd->request->special = NULL; 1102 scsi_put_command(cmd); 1103 put_device(&sdev->sdev_gendev); 1104 } 1105 return error; 1106 } 1107 EXPORT_SYMBOL(scsi_init_io); 1108 1109 /** 1110 * scsi_initialize_rq - initialize struct scsi_cmnd.req 1111 * @rq: Request associated with the SCSI command to be initialized. 1112 * 1113 * Called from inside blk_get_request(). 1114 */ 1115 void scsi_initialize_rq(struct request *rq) 1116 { 1117 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1118 1119 scsi_req_init(&cmd->req); 1120 } 1121 EXPORT_SYMBOL(scsi_initialize_rq); 1122 1123 /* Add a command to the list used by the aacraid and dpt_i2o drivers */ 1124 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd) 1125 { 1126 struct scsi_device *sdev = cmd->device; 1127 struct Scsi_Host *shost = sdev->host; 1128 unsigned long flags; 1129 1130 if (shost->use_cmd_list) { 1131 spin_lock_irqsave(&sdev->list_lock, flags); 1132 list_add_tail(&cmd->list, &sdev->cmd_list); 1133 spin_unlock_irqrestore(&sdev->list_lock, flags); 1134 } 1135 } 1136 1137 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */ 1138 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd) 1139 { 1140 struct scsi_device *sdev = cmd->device; 1141 struct Scsi_Host *shost = sdev->host; 1142 unsigned long flags; 1143 1144 if (shost->use_cmd_list) { 1145 spin_lock_irqsave(&sdev->list_lock, flags); 1146 BUG_ON(list_empty(&cmd->list)); 1147 list_del_init(&cmd->list); 1148 spin_unlock_irqrestore(&sdev->list_lock, flags); 1149 } 1150 } 1151 1152 /* Called after a request has been started. */ 1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd) 1154 { 1155 void *buf = cmd->sense_buffer; 1156 void *prot = cmd->prot_sdb; 1157 unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA; 1158 1159 /* zero out the cmd, except for the embedded scsi_request */ 1160 memset((char *)cmd + sizeof(cmd->req), 0, 1161 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size); 1162 1163 cmd->device = dev; 1164 cmd->sense_buffer = buf; 1165 cmd->prot_sdb = prot; 1166 cmd->flags = unchecked_isa_dma; 1167 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler); 1168 cmd->jiffies_at_alloc = jiffies; 1169 1170 scsi_add_cmd_to_list(cmd); 1171 } 1172 1173 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req) 1174 { 1175 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1176 1177 /* 1178 * Passthrough requests may transfer data, in which case they must 1179 * a bio attached to them. Or they might contain a SCSI command 1180 * that does not transfer data, in which case they may optionally 1181 * submit a request without an attached bio. 1182 */ 1183 if (req->bio) { 1184 int ret = scsi_init_io(cmd); 1185 if (unlikely(ret)) 1186 return ret; 1187 } else { 1188 BUG_ON(blk_rq_bytes(req)); 1189 1190 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1191 } 1192 1193 cmd->cmd_len = scsi_req(req)->cmd_len; 1194 cmd->cmnd = scsi_req(req)->cmd; 1195 cmd->transfersize = blk_rq_bytes(req); 1196 cmd->allowed = scsi_req(req)->retries; 1197 return BLKPREP_OK; 1198 } 1199 1200 /* 1201 * Setup a normal block command. These are simple request from filesystems 1202 * that still need to be translated to SCSI CDBs from the ULD. 1203 */ 1204 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req) 1205 { 1206 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1207 1208 if (unlikely(sdev->handler && sdev->handler->prep_fn)) { 1209 int ret = sdev->handler->prep_fn(sdev, req); 1210 if (ret != BLKPREP_OK) 1211 return ret; 1212 } 1213 1214 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd; 1215 memset(cmd->cmnd, 0, BLK_MAX_CDB); 1216 return scsi_cmd_to_driver(cmd)->init_command(cmd); 1217 } 1218 1219 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req) 1220 { 1221 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1222 1223 if (!blk_rq_bytes(req)) 1224 cmd->sc_data_direction = DMA_NONE; 1225 else if (rq_data_dir(req) == WRITE) 1226 cmd->sc_data_direction = DMA_TO_DEVICE; 1227 else 1228 cmd->sc_data_direction = DMA_FROM_DEVICE; 1229 1230 if (blk_rq_is_scsi(req)) 1231 return scsi_setup_scsi_cmnd(sdev, req); 1232 else 1233 return scsi_setup_fs_cmnd(sdev, req); 1234 } 1235 1236 static int 1237 scsi_prep_state_check(struct scsi_device *sdev, struct request *req) 1238 { 1239 int ret = BLKPREP_OK; 1240 1241 /* 1242 * If the device is not in running state we will reject some 1243 * or all commands. 1244 */ 1245 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) { 1246 switch (sdev->sdev_state) { 1247 case SDEV_OFFLINE: 1248 case SDEV_TRANSPORT_OFFLINE: 1249 /* 1250 * If the device is offline we refuse to process any 1251 * commands. The device must be brought online 1252 * before trying any recovery commands. 1253 */ 1254 sdev_printk(KERN_ERR, sdev, 1255 "rejecting I/O to offline device\n"); 1256 ret = BLKPREP_KILL; 1257 break; 1258 case SDEV_DEL: 1259 /* 1260 * If the device is fully deleted, we refuse to 1261 * process any commands as well. 1262 */ 1263 sdev_printk(KERN_ERR, sdev, 1264 "rejecting I/O to dead device\n"); 1265 ret = BLKPREP_KILL; 1266 break; 1267 case SDEV_BLOCK: 1268 case SDEV_CREATED_BLOCK: 1269 ret = BLKPREP_DEFER; 1270 break; 1271 case SDEV_QUIESCE: 1272 /* 1273 * If the devices is blocked we defer normal commands. 1274 */ 1275 if (!(req->rq_flags & RQF_PREEMPT)) 1276 ret = BLKPREP_DEFER; 1277 break; 1278 default: 1279 /* 1280 * For any other not fully online state we only allow 1281 * special commands. In particular any user initiated 1282 * command is not allowed. 1283 */ 1284 if (!(req->rq_flags & RQF_PREEMPT)) 1285 ret = BLKPREP_KILL; 1286 break; 1287 } 1288 } 1289 return ret; 1290 } 1291 1292 static int 1293 scsi_prep_return(struct request_queue *q, struct request *req, int ret) 1294 { 1295 struct scsi_device *sdev = q->queuedata; 1296 1297 switch (ret) { 1298 case BLKPREP_KILL: 1299 case BLKPREP_INVALID: 1300 scsi_req(req)->result = DID_NO_CONNECT << 16; 1301 /* release the command and kill it */ 1302 if (req->special) { 1303 struct scsi_cmnd *cmd = req->special; 1304 scsi_release_buffers(cmd); 1305 scsi_put_command(cmd); 1306 put_device(&sdev->sdev_gendev); 1307 req->special = NULL; 1308 } 1309 break; 1310 case BLKPREP_DEFER: 1311 /* 1312 * If we defer, the blk_peek_request() returns NULL, but the 1313 * queue must be restarted, so we schedule a callback to happen 1314 * shortly. 1315 */ 1316 if (atomic_read(&sdev->device_busy) == 0) 1317 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1318 break; 1319 default: 1320 req->rq_flags |= RQF_DONTPREP; 1321 } 1322 1323 return ret; 1324 } 1325 1326 static int scsi_prep_fn(struct request_queue *q, struct request *req) 1327 { 1328 struct scsi_device *sdev = q->queuedata; 1329 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1330 int ret; 1331 1332 ret = scsi_prep_state_check(sdev, req); 1333 if (ret != BLKPREP_OK) 1334 goto out; 1335 1336 if (!req->special) { 1337 /* Bail if we can't get a reference to the device */ 1338 if (unlikely(!get_device(&sdev->sdev_gendev))) { 1339 ret = BLKPREP_DEFER; 1340 goto out; 1341 } 1342 1343 scsi_init_command(sdev, cmd); 1344 req->special = cmd; 1345 } 1346 1347 cmd->tag = req->tag; 1348 cmd->request = req; 1349 cmd->prot_op = SCSI_PROT_NORMAL; 1350 1351 ret = scsi_setup_cmnd(sdev, req); 1352 out: 1353 return scsi_prep_return(q, req, ret); 1354 } 1355 1356 static void scsi_unprep_fn(struct request_queue *q, struct request *req) 1357 { 1358 scsi_uninit_cmd(blk_mq_rq_to_pdu(req)); 1359 } 1360 1361 /* 1362 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else 1363 * return 0. 1364 * 1365 * Called with the queue_lock held. 1366 */ 1367 static inline int scsi_dev_queue_ready(struct request_queue *q, 1368 struct scsi_device *sdev) 1369 { 1370 unsigned int busy; 1371 1372 busy = atomic_inc_return(&sdev->device_busy) - 1; 1373 if (atomic_read(&sdev->device_blocked)) { 1374 if (busy) 1375 goto out_dec; 1376 1377 /* 1378 * unblock after device_blocked iterates to zero 1379 */ 1380 if (atomic_dec_return(&sdev->device_blocked) > 0) { 1381 /* 1382 * For the MQ case we take care of this in the caller. 1383 */ 1384 if (!q->mq_ops) 1385 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1386 goto out_dec; 1387 } 1388 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev, 1389 "unblocking device at zero depth\n")); 1390 } 1391 1392 if (busy >= sdev->queue_depth) 1393 goto out_dec; 1394 1395 return 1; 1396 out_dec: 1397 atomic_dec(&sdev->device_busy); 1398 return 0; 1399 } 1400 1401 /* 1402 * scsi_target_queue_ready: checks if there we can send commands to target 1403 * @sdev: scsi device on starget to check. 1404 */ 1405 static inline int scsi_target_queue_ready(struct Scsi_Host *shost, 1406 struct scsi_device *sdev) 1407 { 1408 struct scsi_target *starget = scsi_target(sdev); 1409 unsigned int busy; 1410 1411 if (starget->single_lun) { 1412 spin_lock_irq(shost->host_lock); 1413 if (starget->starget_sdev_user && 1414 starget->starget_sdev_user != sdev) { 1415 spin_unlock_irq(shost->host_lock); 1416 return 0; 1417 } 1418 starget->starget_sdev_user = sdev; 1419 spin_unlock_irq(shost->host_lock); 1420 } 1421 1422 if (starget->can_queue <= 0) 1423 return 1; 1424 1425 busy = atomic_inc_return(&starget->target_busy) - 1; 1426 if (atomic_read(&starget->target_blocked) > 0) { 1427 if (busy) 1428 goto starved; 1429 1430 /* 1431 * unblock after target_blocked iterates to zero 1432 */ 1433 if (atomic_dec_return(&starget->target_blocked) > 0) 1434 goto out_dec; 1435 1436 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget, 1437 "unblocking target at zero depth\n")); 1438 } 1439 1440 if (busy >= starget->can_queue) 1441 goto starved; 1442 1443 return 1; 1444 1445 starved: 1446 spin_lock_irq(shost->host_lock); 1447 list_move_tail(&sdev->starved_entry, &shost->starved_list); 1448 spin_unlock_irq(shost->host_lock); 1449 out_dec: 1450 if (starget->can_queue > 0) 1451 atomic_dec(&starget->target_busy); 1452 return 0; 1453 } 1454 1455 /* 1456 * scsi_host_queue_ready: if we can send requests to shost, return 1 else 1457 * return 0. We must end up running the queue again whenever 0 is 1458 * returned, else IO can hang. 1459 */ 1460 static inline int scsi_host_queue_ready(struct request_queue *q, 1461 struct Scsi_Host *shost, 1462 struct scsi_device *sdev) 1463 { 1464 unsigned int busy; 1465 1466 if (scsi_host_in_recovery(shost)) 1467 return 0; 1468 1469 busy = atomic_inc_return(&shost->host_busy) - 1; 1470 if (atomic_read(&shost->host_blocked) > 0) { 1471 if (busy) 1472 goto starved; 1473 1474 /* 1475 * unblock after host_blocked iterates to zero 1476 */ 1477 if (atomic_dec_return(&shost->host_blocked) > 0) 1478 goto out_dec; 1479 1480 SCSI_LOG_MLQUEUE(3, 1481 shost_printk(KERN_INFO, shost, 1482 "unblocking host at zero depth\n")); 1483 } 1484 1485 if (shost->can_queue > 0 && busy >= shost->can_queue) 1486 goto starved; 1487 if (shost->host_self_blocked) 1488 goto starved; 1489 1490 /* We're OK to process the command, so we can't be starved */ 1491 if (!list_empty(&sdev->starved_entry)) { 1492 spin_lock_irq(shost->host_lock); 1493 if (!list_empty(&sdev->starved_entry)) 1494 list_del_init(&sdev->starved_entry); 1495 spin_unlock_irq(shost->host_lock); 1496 } 1497 1498 return 1; 1499 1500 starved: 1501 spin_lock_irq(shost->host_lock); 1502 if (list_empty(&sdev->starved_entry)) 1503 list_add_tail(&sdev->starved_entry, &shost->starved_list); 1504 spin_unlock_irq(shost->host_lock); 1505 out_dec: 1506 atomic_dec(&shost->host_busy); 1507 return 0; 1508 } 1509 1510 /* 1511 * Busy state exporting function for request stacking drivers. 1512 * 1513 * For efficiency, no lock is taken to check the busy state of 1514 * shost/starget/sdev, since the returned value is not guaranteed and 1515 * may be changed after request stacking drivers call the function, 1516 * regardless of taking lock or not. 1517 * 1518 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi 1519 * needs to return 'not busy'. Otherwise, request stacking drivers 1520 * may hold requests forever. 1521 */ 1522 static int scsi_lld_busy(struct request_queue *q) 1523 { 1524 struct scsi_device *sdev = q->queuedata; 1525 struct Scsi_Host *shost; 1526 1527 if (blk_queue_dying(q)) 1528 return 0; 1529 1530 shost = sdev->host; 1531 1532 /* 1533 * Ignore host/starget busy state. 1534 * Since block layer does not have a concept of fairness across 1535 * multiple queues, congestion of host/starget needs to be handled 1536 * in SCSI layer. 1537 */ 1538 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev)) 1539 return 1; 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Kill a request for a dead device 1546 */ 1547 static void scsi_kill_request(struct request *req, struct request_queue *q) 1548 { 1549 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1550 struct scsi_device *sdev; 1551 struct scsi_target *starget; 1552 struct Scsi_Host *shost; 1553 1554 blk_start_request(req); 1555 1556 scmd_printk(KERN_INFO, cmd, "killing request\n"); 1557 1558 sdev = cmd->device; 1559 starget = scsi_target(sdev); 1560 shost = sdev->host; 1561 scsi_init_cmd_errh(cmd); 1562 cmd->result = DID_NO_CONNECT << 16; 1563 atomic_inc(&cmd->device->iorequest_cnt); 1564 1565 /* 1566 * SCSI request completion path will do scsi_device_unbusy(), 1567 * bump busy counts. To bump the counters, we need to dance 1568 * with the locks as normal issue path does. 1569 */ 1570 atomic_inc(&sdev->device_busy); 1571 atomic_inc(&shost->host_busy); 1572 if (starget->can_queue > 0) 1573 atomic_inc(&starget->target_busy); 1574 1575 blk_complete_request(req); 1576 } 1577 1578 static void scsi_softirq_done(struct request *rq) 1579 { 1580 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 1581 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout; 1582 int disposition; 1583 1584 INIT_LIST_HEAD(&cmd->eh_entry); 1585 1586 atomic_inc(&cmd->device->iodone_cnt); 1587 if (cmd->result) 1588 atomic_inc(&cmd->device->ioerr_cnt); 1589 1590 disposition = scsi_decide_disposition(cmd); 1591 if (disposition != SUCCESS && 1592 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) { 1593 sdev_printk(KERN_ERR, cmd->device, 1594 "timing out command, waited %lus\n", 1595 wait_for/HZ); 1596 disposition = SUCCESS; 1597 } 1598 1599 scsi_log_completion(cmd, disposition); 1600 1601 switch (disposition) { 1602 case SUCCESS: 1603 scsi_finish_command(cmd); 1604 break; 1605 case NEEDS_RETRY: 1606 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY); 1607 break; 1608 case ADD_TO_MLQUEUE: 1609 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY); 1610 break; 1611 default: 1612 scsi_eh_scmd_add(cmd); 1613 break; 1614 } 1615 } 1616 1617 /** 1618 * scsi_dispatch_command - Dispatch a command to the low-level driver. 1619 * @cmd: command block we are dispatching. 1620 * 1621 * Return: nonzero return request was rejected and device's queue needs to be 1622 * plugged. 1623 */ 1624 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd) 1625 { 1626 struct Scsi_Host *host = cmd->device->host; 1627 int rtn = 0; 1628 1629 atomic_inc(&cmd->device->iorequest_cnt); 1630 1631 /* check if the device is still usable */ 1632 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) { 1633 /* in SDEV_DEL we error all commands. DID_NO_CONNECT 1634 * returns an immediate error upwards, and signals 1635 * that the device is no longer present */ 1636 cmd->result = DID_NO_CONNECT << 16; 1637 goto done; 1638 } 1639 1640 /* Check to see if the scsi lld made this device blocked. */ 1641 if (unlikely(scsi_device_blocked(cmd->device))) { 1642 /* 1643 * in blocked state, the command is just put back on 1644 * the device queue. The suspend state has already 1645 * blocked the queue so future requests should not 1646 * occur until the device transitions out of the 1647 * suspend state. 1648 */ 1649 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1650 "queuecommand : device blocked\n")); 1651 return SCSI_MLQUEUE_DEVICE_BUSY; 1652 } 1653 1654 /* Store the LUN value in cmnd, if needed. */ 1655 if (cmd->device->lun_in_cdb) 1656 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) | 1657 (cmd->device->lun << 5 & 0xe0); 1658 1659 scsi_log_send(cmd); 1660 1661 /* 1662 * Before we queue this command, check if the command 1663 * length exceeds what the host adapter can handle. 1664 */ 1665 if (cmd->cmd_len > cmd->device->host->max_cmd_len) { 1666 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1667 "queuecommand : command too long. " 1668 "cdb_size=%d host->max_cmd_len=%d\n", 1669 cmd->cmd_len, cmd->device->host->max_cmd_len)); 1670 cmd->result = (DID_ABORT << 16); 1671 goto done; 1672 } 1673 1674 if (unlikely(host->shost_state == SHOST_DEL)) { 1675 cmd->result = (DID_NO_CONNECT << 16); 1676 goto done; 1677 1678 } 1679 1680 trace_scsi_dispatch_cmd_start(cmd); 1681 rtn = host->hostt->queuecommand(host, cmd); 1682 if (rtn) { 1683 trace_scsi_dispatch_cmd_error(cmd, rtn); 1684 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY && 1685 rtn != SCSI_MLQUEUE_TARGET_BUSY) 1686 rtn = SCSI_MLQUEUE_HOST_BUSY; 1687 1688 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd, 1689 "queuecommand : request rejected\n")); 1690 } 1691 1692 return rtn; 1693 done: 1694 cmd->scsi_done(cmd); 1695 return 0; 1696 } 1697 1698 /** 1699 * scsi_done - Invoke completion on finished SCSI command. 1700 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives 1701 * ownership back to SCSI Core -- i.e. the LLDD has finished with it. 1702 * 1703 * Description: This function is the mid-level's (SCSI Core) interrupt routine, 1704 * which regains ownership of the SCSI command (de facto) from a LLDD, and 1705 * calls blk_complete_request() for further processing. 1706 * 1707 * This function is interrupt context safe. 1708 */ 1709 static void scsi_done(struct scsi_cmnd *cmd) 1710 { 1711 trace_scsi_dispatch_cmd_done(cmd); 1712 blk_complete_request(cmd->request); 1713 } 1714 1715 /* 1716 * Function: scsi_request_fn() 1717 * 1718 * Purpose: Main strategy routine for SCSI. 1719 * 1720 * Arguments: q - Pointer to actual queue. 1721 * 1722 * Returns: Nothing 1723 * 1724 * Lock status: IO request lock assumed to be held when called. 1725 */ 1726 static void scsi_request_fn(struct request_queue *q) 1727 __releases(q->queue_lock) 1728 __acquires(q->queue_lock) 1729 { 1730 struct scsi_device *sdev = q->queuedata; 1731 struct Scsi_Host *shost; 1732 struct scsi_cmnd *cmd; 1733 struct request *req; 1734 1735 /* 1736 * To start with, we keep looping until the queue is empty, or until 1737 * the host is no longer able to accept any more requests. 1738 */ 1739 shost = sdev->host; 1740 for (;;) { 1741 int rtn; 1742 /* 1743 * get next queueable request. We do this early to make sure 1744 * that the request is fully prepared even if we cannot 1745 * accept it. 1746 */ 1747 req = blk_peek_request(q); 1748 if (!req) 1749 break; 1750 1751 if (unlikely(!scsi_device_online(sdev))) { 1752 sdev_printk(KERN_ERR, sdev, 1753 "rejecting I/O to offline device\n"); 1754 scsi_kill_request(req, q); 1755 continue; 1756 } 1757 1758 if (!scsi_dev_queue_ready(q, sdev)) 1759 break; 1760 1761 /* 1762 * Remove the request from the request list. 1763 */ 1764 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req))) 1765 blk_start_request(req); 1766 1767 spin_unlock_irq(q->queue_lock); 1768 cmd = blk_mq_rq_to_pdu(req); 1769 if (cmd != req->special) { 1770 printk(KERN_CRIT "impossible request in %s.\n" 1771 "please mail a stack trace to " 1772 "linux-scsi@vger.kernel.org\n", 1773 __func__); 1774 blk_dump_rq_flags(req, "foo"); 1775 BUG(); 1776 } 1777 1778 /* 1779 * We hit this when the driver is using a host wide 1780 * tag map. For device level tag maps the queue_depth check 1781 * in the device ready fn would prevent us from trying 1782 * to allocate a tag. Since the map is a shared host resource 1783 * we add the dev to the starved list so it eventually gets 1784 * a run when a tag is freed. 1785 */ 1786 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) { 1787 spin_lock_irq(shost->host_lock); 1788 if (list_empty(&sdev->starved_entry)) 1789 list_add_tail(&sdev->starved_entry, 1790 &shost->starved_list); 1791 spin_unlock_irq(shost->host_lock); 1792 goto not_ready; 1793 } 1794 1795 if (!scsi_target_queue_ready(shost, sdev)) 1796 goto not_ready; 1797 1798 if (!scsi_host_queue_ready(q, shost, sdev)) 1799 goto host_not_ready; 1800 1801 if (sdev->simple_tags) 1802 cmd->flags |= SCMD_TAGGED; 1803 else 1804 cmd->flags &= ~SCMD_TAGGED; 1805 1806 /* 1807 * Finally, initialize any error handling parameters, and set up 1808 * the timers for timeouts. 1809 */ 1810 scsi_init_cmd_errh(cmd); 1811 1812 /* 1813 * Dispatch the command to the low-level driver. 1814 */ 1815 cmd->scsi_done = scsi_done; 1816 rtn = scsi_dispatch_cmd(cmd); 1817 if (rtn) { 1818 scsi_queue_insert(cmd, rtn); 1819 spin_lock_irq(q->queue_lock); 1820 goto out_delay; 1821 } 1822 spin_lock_irq(q->queue_lock); 1823 } 1824 1825 return; 1826 1827 host_not_ready: 1828 if (scsi_target(sdev)->can_queue > 0) 1829 atomic_dec(&scsi_target(sdev)->target_busy); 1830 not_ready: 1831 /* 1832 * lock q, handle tag, requeue req, and decrement device_busy. We 1833 * must return with queue_lock held. 1834 * 1835 * Decrementing device_busy without checking it is OK, as all such 1836 * cases (host limits or settings) should run the queue at some 1837 * later time. 1838 */ 1839 spin_lock_irq(q->queue_lock); 1840 blk_requeue_request(q, req); 1841 atomic_dec(&sdev->device_busy); 1842 out_delay: 1843 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev)) 1844 blk_delay_queue(q, SCSI_QUEUE_DELAY); 1845 } 1846 1847 static inline blk_status_t prep_to_mq(int ret) 1848 { 1849 switch (ret) { 1850 case BLKPREP_OK: 1851 return BLK_STS_OK; 1852 case BLKPREP_DEFER: 1853 return BLK_STS_RESOURCE; 1854 default: 1855 return BLK_STS_IOERR; 1856 } 1857 } 1858 1859 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */ 1860 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost) 1861 { 1862 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) * 1863 sizeof(struct scatterlist); 1864 } 1865 1866 static int scsi_mq_prep_fn(struct request *req) 1867 { 1868 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1869 struct scsi_device *sdev = req->q->queuedata; 1870 struct Scsi_Host *shost = sdev->host; 1871 struct scatterlist *sg; 1872 1873 scsi_init_command(sdev, cmd); 1874 1875 req->special = cmd; 1876 1877 cmd->request = req; 1878 1879 cmd->tag = req->tag; 1880 cmd->prot_op = SCSI_PROT_NORMAL; 1881 1882 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 1883 cmd->sdb.table.sgl = sg; 1884 1885 if (scsi_host_get_prot(shost)) { 1886 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer)); 1887 1888 cmd->prot_sdb->table.sgl = 1889 (struct scatterlist *)(cmd->prot_sdb + 1); 1890 } 1891 1892 if (blk_bidi_rq(req)) { 1893 struct request *next_rq = req->next_rq; 1894 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq); 1895 1896 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer)); 1897 bidi_sdb->table.sgl = 1898 (struct scatterlist *)(bidi_sdb + 1); 1899 1900 next_rq->special = bidi_sdb; 1901 } 1902 1903 blk_mq_start_request(req); 1904 1905 return scsi_setup_cmnd(sdev, req); 1906 } 1907 1908 static void scsi_mq_done(struct scsi_cmnd *cmd) 1909 { 1910 trace_scsi_dispatch_cmd_done(cmd); 1911 blk_mq_complete_request(cmd->request); 1912 } 1913 1914 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx, 1915 const struct blk_mq_queue_data *bd) 1916 { 1917 struct request *req = bd->rq; 1918 struct request_queue *q = req->q; 1919 struct scsi_device *sdev = q->queuedata; 1920 struct Scsi_Host *shost = sdev->host; 1921 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req); 1922 blk_status_t ret; 1923 int reason; 1924 1925 ret = prep_to_mq(scsi_prep_state_check(sdev, req)); 1926 if (ret != BLK_STS_OK) 1927 goto out; 1928 1929 ret = BLK_STS_RESOURCE; 1930 if (!get_device(&sdev->sdev_gendev)) 1931 goto out; 1932 1933 if (!scsi_dev_queue_ready(q, sdev)) 1934 goto out_put_device; 1935 if (!scsi_target_queue_ready(shost, sdev)) 1936 goto out_dec_device_busy; 1937 if (!scsi_host_queue_ready(q, shost, sdev)) 1938 goto out_dec_target_busy; 1939 1940 if (!(req->rq_flags & RQF_DONTPREP)) { 1941 ret = prep_to_mq(scsi_mq_prep_fn(req)); 1942 if (ret != BLK_STS_OK) 1943 goto out_dec_host_busy; 1944 req->rq_flags |= RQF_DONTPREP; 1945 } else { 1946 blk_mq_start_request(req); 1947 } 1948 1949 if (sdev->simple_tags) 1950 cmd->flags |= SCMD_TAGGED; 1951 else 1952 cmd->flags &= ~SCMD_TAGGED; 1953 1954 scsi_init_cmd_errh(cmd); 1955 cmd->scsi_done = scsi_mq_done; 1956 1957 reason = scsi_dispatch_cmd(cmd); 1958 if (reason) { 1959 scsi_set_blocked(cmd, reason); 1960 ret = BLK_STS_RESOURCE; 1961 goto out_dec_host_busy; 1962 } 1963 1964 return BLK_STS_OK; 1965 1966 out_dec_host_busy: 1967 atomic_dec(&shost->host_busy); 1968 out_dec_target_busy: 1969 if (scsi_target(sdev)->can_queue > 0) 1970 atomic_dec(&scsi_target(sdev)->target_busy); 1971 out_dec_device_busy: 1972 atomic_dec(&sdev->device_busy); 1973 out_put_device: 1974 put_device(&sdev->sdev_gendev); 1975 out: 1976 switch (ret) { 1977 case BLK_STS_OK: 1978 break; 1979 case BLK_STS_RESOURCE: 1980 if (atomic_read(&sdev->device_busy) == 0 && 1981 !scsi_device_blocked(sdev)) 1982 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY); 1983 break; 1984 default: 1985 /* 1986 * Make sure to release all allocated ressources when 1987 * we hit an error, as we will never see this command 1988 * again. 1989 */ 1990 if (req->rq_flags & RQF_DONTPREP) 1991 scsi_mq_uninit_cmd(cmd); 1992 break; 1993 } 1994 return ret; 1995 } 1996 1997 static enum blk_eh_timer_return scsi_timeout(struct request *req, 1998 bool reserved) 1999 { 2000 if (reserved) 2001 return BLK_EH_RESET_TIMER; 2002 return scsi_times_out(req); 2003 } 2004 2005 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2006 unsigned int hctx_idx, unsigned int numa_node) 2007 { 2008 struct Scsi_Host *shost = set->driver_data; 2009 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2010 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2011 struct scatterlist *sg; 2012 2013 if (unchecked_isa_dma) 2014 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2015 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, 2016 GFP_KERNEL, numa_node); 2017 if (!cmd->sense_buffer) 2018 return -ENOMEM; 2019 cmd->req.sense = cmd->sense_buffer; 2020 2021 if (scsi_host_get_prot(shost)) { 2022 sg = (void *)cmd + sizeof(struct scsi_cmnd) + 2023 shost->hostt->cmd_size; 2024 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost); 2025 } 2026 2027 return 0; 2028 } 2029 2030 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq, 2031 unsigned int hctx_idx) 2032 { 2033 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2034 2035 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2036 cmd->sense_buffer); 2037 } 2038 2039 static int scsi_map_queues(struct blk_mq_tag_set *set) 2040 { 2041 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set); 2042 2043 if (shost->hostt->map_queues) 2044 return shost->hostt->map_queues(shost); 2045 return blk_mq_map_queues(set); 2046 } 2047 2048 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost) 2049 { 2050 struct device *host_dev; 2051 u64 bounce_limit = 0xffffffff; 2052 2053 if (shost->unchecked_isa_dma) 2054 return BLK_BOUNCE_ISA; 2055 /* 2056 * Platforms with virtual-DMA translation 2057 * hardware have no practical limit. 2058 */ 2059 if (!PCI_DMA_BUS_IS_PHYS) 2060 return BLK_BOUNCE_ANY; 2061 2062 host_dev = scsi_get_device(shost); 2063 if (host_dev && host_dev->dma_mask) 2064 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT; 2065 2066 return bounce_limit; 2067 } 2068 2069 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q) 2070 { 2071 struct device *dev = shost->dma_dev; 2072 2073 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q); 2074 2075 /* 2076 * this limit is imposed by hardware restrictions 2077 */ 2078 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize, 2079 SG_MAX_SEGMENTS)); 2080 2081 if (scsi_host_prot_dma(shost)) { 2082 shost->sg_prot_tablesize = 2083 min_not_zero(shost->sg_prot_tablesize, 2084 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS); 2085 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize); 2086 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize); 2087 } 2088 2089 blk_queue_max_hw_sectors(q, shost->max_sectors); 2090 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost)); 2091 blk_queue_segment_boundary(q, shost->dma_boundary); 2092 dma_set_seg_boundary(dev, shost->dma_boundary); 2093 2094 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev)); 2095 2096 if (!shost->use_clustering) 2097 q->limits.cluster = 0; 2098 2099 /* 2100 * set a reasonable default alignment on word boundaries: the 2101 * host and device may alter it using 2102 * blk_queue_update_dma_alignment() later. 2103 */ 2104 blk_queue_dma_alignment(q, 0x03); 2105 } 2106 EXPORT_SYMBOL_GPL(__scsi_init_queue); 2107 2108 static int scsi_old_init_rq(struct request_queue *q, struct request *rq, 2109 gfp_t gfp) 2110 { 2111 struct Scsi_Host *shost = q->rq_alloc_data; 2112 const bool unchecked_isa_dma = shost->unchecked_isa_dma; 2113 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2114 2115 memset(cmd, 0, sizeof(*cmd)); 2116 2117 if (unchecked_isa_dma) 2118 cmd->flags |= SCMD_UNCHECKED_ISA_DMA; 2119 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp, 2120 NUMA_NO_NODE); 2121 if (!cmd->sense_buffer) 2122 goto fail; 2123 cmd->req.sense = cmd->sense_buffer; 2124 2125 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) { 2126 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp); 2127 if (!cmd->prot_sdb) 2128 goto fail_free_sense; 2129 } 2130 2131 return 0; 2132 2133 fail_free_sense: 2134 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer); 2135 fail: 2136 return -ENOMEM; 2137 } 2138 2139 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq) 2140 { 2141 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 2142 2143 if (cmd->prot_sdb) 2144 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb); 2145 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA, 2146 cmd->sense_buffer); 2147 } 2148 2149 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev) 2150 { 2151 struct Scsi_Host *shost = sdev->host; 2152 struct request_queue *q; 2153 2154 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE); 2155 if (!q) 2156 return NULL; 2157 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size; 2158 q->rq_alloc_data = shost; 2159 q->request_fn = scsi_request_fn; 2160 q->init_rq_fn = scsi_old_init_rq; 2161 q->exit_rq_fn = scsi_old_exit_rq; 2162 q->initialize_rq_fn = scsi_initialize_rq; 2163 2164 if (blk_init_allocated_queue(q) < 0) { 2165 blk_cleanup_queue(q); 2166 return NULL; 2167 } 2168 2169 __scsi_init_queue(shost, q); 2170 blk_queue_prep_rq(q, scsi_prep_fn); 2171 blk_queue_unprep_rq(q, scsi_unprep_fn); 2172 blk_queue_softirq_done(q, scsi_softirq_done); 2173 blk_queue_rq_timed_out(q, scsi_times_out); 2174 blk_queue_lld_busy(q, scsi_lld_busy); 2175 return q; 2176 } 2177 2178 static const struct blk_mq_ops scsi_mq_ops = { 2179 .queue_rq = scsi_queue_rq, 2180 .complete = scsi_softirq_done, 2181 .timeout = scsi_timeout, 2182 #ifdef CONFIG_BLK_DEBUG_FS 2183 .show_rq = scsi_show_rq, 2184 #endif 2185 .init_request = scsi_mq_init_request, 2186 .exit_request = scsi_mq_exit_request, 2187 .initialize_rq_fn = scsi_initialize_rq, 2188 .map_queues = scsi_map_queues, 2189 }; 2190 2191 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev) 2192 { 2193 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set); 2194 if (IS_ERR(sdev->request_queue)) 2195 return NULL; 2196 2197 sdev->request_queue->queuedata = sdev; 2198 __scsi_init_queue(sdev->host, sdev->request_queue); 2199 return sdev->request_queue; 2200 } 2201 2202 int scsi_mq_setup_tags(struct Scsi_Host *shost) 2203 { 2204 unsigned int cmd_size, sgl_size; 2205 2206 sgl_size = scsi_mq_sgl_size(shost); 2207 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size; 2208 if (scsi_host_get_prot(shost)) 2209 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size; 2210 2211 memset(&shost->tag_set, 0, sizeof(shost->tag_set)); 2212 shost->tag_set.ops = &scsi_mq_ops; 2213 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1; 2214 shost->tag_set.queue_depth = shost->can_queue; 2215 shost->tag_set.cmd_size = cmd_size; 2216 shost->tag_set.numa_node = NUMA_NO_NODE; 2217 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 2218 shost->tag_set.flags |= 2219 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy); 2220 shost->tag_set.driver_data = shost; 2221 2222 return blk_mq_alloc_tag_set(&shost->tag_set); 2223 } 2224 2225 void scsi_mq_destroy_tags(struct Scsi_Host *shost) 2226 { 2227 blk_mq_free_tag_set(&shost->tag_set); 2228 } 2229 2230 /** 2231 * scsi_device_from_queue - return sdev associated with a request_queue 2232 * @q: The request queue to return the sdev from 2233 * 2234 * Return the sdev associated with a request queue or NULL if the 2235 * request_queue does not reference a SCSI device. 2236 */ 2237 struct scsi_device *scsi_device_from_queue(struct request_queue *q) 2238 { 2239 struct scsi_device *sdev = NULL; 2240 2241 if (q->mq_ops) { 2242 if (q->mq_ops == &scsi_mq_ops) 2243 sdev = q->queuedata; 2244 } else if (q->request_fn == scsi_request_fn) 2245 sdev = q->queuedata; 2246 if (!sdev || !get_device(&sdev->sdev_gendev)) 2247 sdev = NULL; 2248 2249 return sdev; 2250 } 2251 EXPORT_SYMBOL_GPL(scsi_device_from_queue); 2252 2253 /* 2254 * Function: scsi_block_requests() 2255 * 2256 * Purpose: Utility function used by low-level drivers to prevent further 2257 * commands from being queued to the device. 2258 * 2259 * Arguments: shost - Host in question 2260 * 2261 * Returns: Nothing 2262 * 2263 * Lock status: No locks are assumed held. 2264 * 2265 * Notes: There is no timer nor any other means by which the requests 2266 * get unblocked other than the low-level driver calling 2267 * scsi_unblock_requests(). 2268 */ 2269 void scsi_block_requests(struct Scsi_Host *shost) 2270 { 2271 shost->host_self_blocked = 1; 2272 } 2273 EXPORT_SYMBOL(scsi_block_requests); 2274 2275 /* 2276 * Function: scsi_unblock_requests() 2277 * 2278 * Purpose: Utility function used by low-level drivers to allow further 2279 * commands from being queued to the device. 2280 * 2281 * Arguments: shost - Host in question 2282 * 2283 * Returns: Nothing 2284 * 2285 * Lock status: No locks are assumed held. 2286 * 2287 * Notes: There is no timer nor any other means by which the requests 2288 * get unblocked other than the low-level driver calling 2289 * scsi_unblock_requests(). 2290 * 2291 * This is done as an API function so that changes to the 2292 * internals of the scsi mid-layer won't require wholesale 2293 * changes to drivers that use this feature. 2294 */ 2295 void scsi_unblock_requests(struct Scsi_Host *shost) 2296 { 2297 shost->host_self_blocked = 0; 2298 scsi_run_host_queues(shost); 2299 } 2300 EXPORT_SYMBOL(scsi_unblock_requests); 2301 2302 int __init scsi_init_queue(void) 2303 { 2304 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer", 2305 sizeof(struct scsi_data_buffer), 2306 0, 0, NULL); 2307 if (!scsi_sdb_cache) { 2308 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n"); 2309 return -ENOMEM; 2310 } 2311 2312 return 0; 2313 } 2314 2315 void scsi_exit_queue(void) 2316 { 2317 kmem_cache_destroy(scsi_sense_cache); 2318 kmem_cache_destroy(scsi_sense_isadma_cache); 2319 kmem_cache_destroy(scsi_sdb_cache); 2320 } 2321 2322 /** 2323 * scsi_mode_select - issue a mode select 2324 * @sdev: SCSI device to be queried 2325 * @pf: Page format bit (1 == standard, 0 == vendor specific) 2326 * @sp: Save page bit (0 == don't save, 1 == save) 2327 * @modepage: mode page being requested 2328 * @buffer: request buffer (may not be smaller than eight bytes) 2329 * @len: length of request buffer. 2330 * @timeout: command timeout 2331 * @retries: number of retries before failing 2332 * @data: returns a structure abstracting the mode header data 2333 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2334 * must be SCSI_SENSE_BUFFERSIZE big. 2335 * 2336 * Returns zero if successful; negative error number or scsi 2337 * status on error 2338 * 2339 */ 2340 int 2341 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage, 2342 unsigned char *buffer, int len, int timeout, int retries, 2343 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2344 { 2345 unsigned char cmd[10]; 2346 unsigned char *real_buffer; 2347 int ret; 2348 2349 memset(cmd, 0, sizeof(cmd)); 2350 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0); 2351 2352 if (sdev->use_10_for_ms) { 2353 if (len > 65535) 2354 return -EINVAL; 2355 real_buffer = kmalloc(8 + len, GFP_KERNEL); 2356 if (!real_buffer) 2357 return -ENOMEM; 2358 memcpy(real_buffer + 8, buffer, len); 2359 len += 8; 2360 real_buffer[0] = 0; 2361 real_buffer[1] = 0; 2362 real_buffer[2] = data->medium_type; 2363 real_buffer[3] = data->device_specific; 2364 real_buffer[4] = data->longlba ? 0x01 : 0; 2365 real_buffer[5] = 0; 2366 real_buffer[6] = data->block_descriptor_length >> 8; 2367 real_buffer[7] = data->block_descriptor_length; 2368 2369 cmd[0] = MODE_SELECT_10; 2370 cmd[7] = len >> 8; 2371 cmd[8] = len; 2372 } else { 2373 if (len > 255 || data->block_descriptor_length > 255 || 2374 data->longlba) 2375 return -EINVAL; 2376 2377 real_buffer = kmalloc(4 + len, GFP_KERNEL); 2378 if (!real_buffer) 2379 return -ENOMEM; 2380 memcpy(real_buffer + 4, buffer, len); 2381 len += 4; 2382 real_buffer[0] = 0; 2383 real_buffer[1] = data->medium_type; 2384 real_buffer[2] = data->device_specific; 2385 real_buffer[3] = data->block_descriptor_length; 2386 2387 2388 cmd[0] = MODE_SELECT; 2389 cmd[4] = len; 2390 } 2391 2392 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len, 2393 sshdr, timeout, retries, NULL); 2394 kfree(real_buffer); 2395 return ret; 2396 } 2397 EXPORT_SYMBOL_GPL(scsi_mode_select); 2398 2399 /** 2400 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary. 2401 * @sdev: SCSI device to be queried 2402 * @dbd: set if mode sense will allow block descriptors to be returned 2403 * @modepage: mode page being requested 2404 * @buffer: request buffer (may not be smaller than eight bytes) 2405 * @len: length of request buffer. 2406 * @timeout: command timeout 2407 * @retries: number of retries before failing 2408 * @data: returns a structure abstracting the mode header data 2409 * @sshdr: place to put sense data (or NULL if no sense to be collected). 2410 * must be SCSI_SENSE_BUFFERSIZE big. 2411 * 2412 * Returns zero if unsuccessful, or the header offset (either 4 2413 * or 8 depending on whether a six or ten byte command was 2414 * issued) if successful. 2415 */ 2416 int 2417 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, 2418 unsigned char *buffer, int len, int timeout, int retries, 2419 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) 2420 { 2421 unsigned char cmd[12]; 2422 int use_10_for_ms; 2423 int header_length; 2424 int result, retry_count = retries; 2425 struct scsi_sense_hdr my_sshdr; 2426 2427 memset(data, 0, sizeof(*data)); 2428 memset(&cmd[0], 0, 12); 2429 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */ 2430 cmd[2] = modepage; 2431 2432 /* caller might not be interested in sense, but we need it */ 2433 if (!sshdr) 2434 sshdr = &my_sshdr; 2435 2436 retry: 2437 use_10_for_ms = sdev->use_10_for_ms; 2438 2439 if (use_10_for_ms) { 2440 if (len < 8) 2441 len = 8; 2442 2443 cmd[0] = MODE_SENSE_10; 2444 cmd[8] = len; 2445 header_length = 8; 2446 } else { 2447 if (len < 4) 2448 len = 4; 2449 2450 cmd[0] = MODE_SENSE; 2451 cmd[4] = len; 2452 header_length = 4; 2453 } 2454 2455 memset(buffer, 0, len); 2456 2457 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len, 2458 sshdr, timeout, retries, NULL); 2459 2460 /* This code looks awful: what it's doing is making sure an 2461 * ILLEGAL REQUEST sense return identifies the actual command 2462 * byte as the problem. MODE_SENSE commands can return 2463 * ILLEGAL REQUEST if the code page isn't supported */ 2464 2465 if (use_10_for_ms && !scsi_status_is_good(result) && 2466 (driver_byte(result) & DRIVER_SENSE)) { 2467 if (scsi_sense_valid(sshdr)) { 2468 if ((sshdr->sense_key == ILLEGAL_REQUEST) && 2469 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) { 2470 /* 2471 * Invalid command operation code 2472 */ 2473 sdev->use_10_for_ms = 0; 2474 goto retry; 2475 } 2476 } 2477 } 2478 2479 if(scsi_status_is_good(result)) { 2480 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b && 2481 (modepage == 6 || modepage == 8))) { 2482 /* Initio breakage? */ 2483 header_length = 0; 2484 data->length = 13; 2485 data->medium_type = 0; 2486 data->device_specific = 0; 2487 data->longlba = 0; 2488 data->block_descriptor_length = 0; 2489 } else if(use_10_for_ms) { 2490 data->length = buffer[0]*256 + buffer[1] + 2; 2491 data->medium_type = buffer[2]; 2492 data->device_specific = buffer[3]; 2493 data->longlba = buffer[4] & 0x01; 2494 data->block_descriptor_length = buffer[6]*256 2495 + buffer[7]; 2496 } else { 2497 data->length = buffer[0] + 1; 2498 data->medium_type = buffer[1]; 2499 data->device_specific = buffer[2]; 2500 data->block_descriptor_length = buffer[3]; 2501 } 2502 data->header_length = header_length; 2503 } else if ((status_byte(result) == CHECK_CONDITION) && 2504 scsi_sense_valid(sshdr) && 2505 sshdr->sense_key == UNIT_ATTENTION && retry_count) { 2506 retry_count--; 2507 goto retry; 2508 } 2509 2510 return result; 2511 } 2512 EXPORT_SYMBOL(scsi_mode_sense); 2513 2514 /** 2515 * scsi_test_unit_ready - test if unit is ready 2516 * @sdev: scsi device to change the state of. 2517 * @timeout: command timeout 2518 * @retries: number of retries before failing 2519 * @sshdr: outpout pointer for decoded sense information. 2520 * 2521 * Returns zero if unsuccessful or an error if TUR failed. For 2522 * removable media, UNIT_ATTENTION sets ->changed flag. 2523 **/ 2524 int 2525 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries, 2526 struct scsi_sense_hdr *sshdr) 2527 { 2528 char cmd[] = { 2529 TEST_UNIT_READY, 0, 0, 0, 0, 0, 2530 }; 2531 int result; 2532 2533 /* try to eat the UNIT_ATTENTION if there are enough retries */ 2534 do { 2535 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr, 2536 timeout, retries, NULL); 2537 if (sdev->removable && scsi_sense_valid(sshdr) && 2538 sshdr->sense_key == UNIT_ATTENTION) 2539 sdev->changed = 1; 2540 } while (scsi_sense_valid(sshdr) && 2541 sshdr->sense_key == UNIT_ATTENTION && --retries); 2542 2543 return result; 2544 } 2545 EXPORT_SYMBOL(scsi_test_unit_ready); 2546 2547 /** 2548 * scsi_device_set_state - Take the given device through the device state model. 2549 * @sdev: scsi device to change the state of. 2550 * @state: state to change to. 2551 * 2552 * Returns zero if successful or an error if the requested 2553 * transition is illegal. 2554 */ 2555 int 2556 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state) 2557 { 2558 enum scsi_device_state oldstate = sdev->sdev_state; 2559 2560 if (state == oldstate) 2561 return 0; 2562 2563 switch (state) { 2564 case SDEV_CREATED: 2565 switch (oldstate) { 2566 case SDEV_CREATED_BLOCK: 2567 break; 2568 default: 2569 goto illegal; 2570 } 2571 break; 2572 2573 case SDEV_RUNNING: 2574 switch (oldstate) { 2575 case SDEV_CREATED: 2576 case SDEV_OFFLINE: 2577 case SDEV_TRANSPORT_OFFLINE: 2578 case SDEV_QUIESCE: 2579 case SDEV_BLOCK: 2580 break; 2581 default: 2582 goto illegal; 2583 } 2584 break; 2585 2586 case SDEV_QUIESCE: 2587 switch (oldstate) { 2588 case SDEV_RUNNING: 2589 case SDEV_OFFLINE: 2590 case SDEV_TRANSPORT_OFFLINE: 2591 break; 2592 default: 2593 goto illegal; 2594 } 2595 break; 2596 2597 case SDEV_OFFLINE: 2598 case SDEV_TRANSPORT_OFFLINE: 2599 switch (oldstate) { 2600 case SDEV_CREATED: 2601 case SDEV_RUNNING: 2602 case SDEV_QUIESCE: 2603 case SDEV_BLOCK: 2604 break; 2605 default: 2606 goto illegal; 2607 } 2608 break; 2609 2610 case SDEV_BLOCK: 2611 switch (oldstate) { 2612 case SDEV_RUNNING: 2613 case SDEV_CREATED_BLOCK: 2614 break; 2615 default: 2616 goto illegal; 2617 } 2618 break; 2619 2620 case SDEV_CREATED_BLOCK: 2621 switch (oldstate) { 2622 case SDEV_CREATED: 2623 break; 2624 default: 2625 goto illegal; 2626 } 2627 break; 2628 2629 case SDEV_CANCEL: 2630 switch (oldstate) { 2631 case SDEV_CREATED: 2632 case SDEV_RUNNING: 2633 case SDEV_QUIESCE: 2634 case SDEV_OFFLINE: 2635 case SDEV_TRANSPORT_OFFLINE: 2636 break; 2637 default: 2638 goto illegal; 2639 } 2640 break; 2641 2642 case SDEV_DEL: 2643 switch (oldstate) { 2644 case SDEV_CREATED: 2645 case SDEV_RUNNING: 2646 case SDEV_OFFLINE: 2647 case SDEV_TRANSPORT_OFFLINE: 2648 case SDEV_CANCEL: 2649 case SDEV_BLOCK: 2650 case SDEV_CREATED_BLOCK: 2651 break; 2652 default: 2653 goto illegal; 2654 } 2655 break; 2656 2657 } 2658 sdev->sdev_state = state; 2659 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state"); 2660 return 0; 2661 2662 illegal: 2663 SCSI_LOG_ERROR_RECOVERY(1, 2664 sdev_printk(KERN_ERR, sdev, 2665 "Illegal state transition %s->%s", 2666 scsi_device_state_name(oldstate), 2667 scsi_device_state_name(state)) 2668 ); 2669 return -EINVAL; 2670 } 2671 EXPORT_SYMBOL(scsi_device_set_state); 2672 2673 /** 2674 * sdev_evt_emit - emit a single SCSI device uevent 2675 * @sdev: associated SCSI device 2676 * @evt: event to emit 2677 * 2678 * Send a single uevent (scsi_event) to the associated scsi_device. 2679 */ 2680 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt) 2681 { 2682 int idx = 0; 2683 char *envp[3]; 2684 2685 switch (evt->evt_type) { 2686 case SDEV_EVT_MEDIA_CHANGE: 2687 envp[idx++] = "SDEV_MEDIA_CHANGE=1"; 2688 break; 2689 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2690 scsi_rescan_device(&sdev->sdev_gendev); 2691 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED"; 2692 break; 2693 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2694 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED"; 2695 break; 2696 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2697 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED"; 2698 break; 2699 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2700 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED"; 2701 break; 2702 case SDEV_EVT_LUN_CHANGE_REPORTED: 2703 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED"; 2704 break; 2705 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2706 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED"; 2707 break; 2708 default: 2709 /* do nothing */ 2710 break; 2711 } 2712 2713 envp[idx++] = NULL; 2714 2715 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp); 2716 } 2717 2718 /** 2719 * sdev_evt_thread - send a uevent for each scsi event 2720 * @work: work struct for scsi_device 2721 * 2722 * Dispatch queued events to their associated scsi_device kobjects 2723 * as uevents. 2724 */ 2725 void scsi_evt_thread(struct work_struct *work) 2726 { 2727 struct scsi_device *sdev; 2728 enum scsi_device_event evt_type; 2729 LIST_HEAD(event_list); 2730 2731 sdev = container_of(work, struct scsi_device, event_work); 2732 2733 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++) 2734 if (test_and_clear_bit(evt_type, sdev->pending_events)) 2735 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL); 2736 2737 while (1) { 2738 struct scsi_event *evt; 2739 struct list_head *this, *tmp; 2740 unsigned long flags; 2741 2742 spin_lock_irqsave(&sdev->list_lock, flags); 2743 list_splice_init(&sdev->event_list, &event_list); 2744 spin_unlock_irqrestore(&sdev->list_lock, flags); 2745 2746 if (list_empty(&event_list)) 2747 break; 2748 2749 list_for_each_safe(this, tmp, &event_list) { 2750 evt = list_entry(this, struct scsi_event, node); 2751 list_del(&evt->node); 2752 scsi_evt_emit(sdev, evt); 2753 kfree(evt); 2754 } 2755 } 2756 } 2757 2758 /** 2759 * sdev_evt_send - send asserted event to uevent thread 2760 * @sdev: scsi_device event occurred on 2761 * @evt: event to send 2762 * 2763 * Assert scsi device event asynchronously. 2764 */ 2765 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt) 2766 { 2767 unsigned long flags; 2768 2769 #if 0 2770 /* FIXME: currently this check eliminates all media change events 2771 * for polled devices. Need to update to discriminate between AN 2772 * and polled events */ 2773 if (!test_bit(evt->evt_type, sdev->supported_events)) { 2774 kfree(evt); 2775 return; 2776 } 2777 #endif 2778 2779 spin_lock_irqsave(&sdev->list_lock, flags); 2780 list_add_tail(&evt->node, &sdev->event_list); 2781 schedule_work(&sdev->event_work); 2782 spin_unlock_irqrestore(&sdev->list_lock, flags); 2783 } 2784 EXPORT_SYMBOL_GPL(sdev_evt_send); 2785 2786 /** 2787 * sdev_evt_alloc - allocate a new scsi event 2788 * @evt_type: type of event to allocate 2789 * @gfpflags: GFP flags for allocation 2790 * 2791 * Allocates and returns a new scsi_event. 2792 */ 2793 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type, 2794 gfp_t gfpflags) 2795 { 2796 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags); 2797 if (!evt) 2798 return NULL; 2799 2800 evt->evt_type = evt_type; 2801 INIT_LIST_HEAD(&evt->node); 2802 2803 /* evt_type-specific initialization, if any */ 2804 switch (evt_type) { 2805 case SDEV_EVT_MEDIA_CHANGE: 2806 case SDEV_EVT_INQUIRY_CHANGE_REPORTED: 2807 case SDEV_EVT_CAPACITY_CHANGE_REPORTED: 2808 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED: 2809 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED: 2810 case SDEV_EVT_LUN_CHANGE_REPORTED: 2811 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED: 2812 default: 2813 /* do nothing */ 2814 break; 2815 } 2816 2817 return evt; 2818 } 2819 EXPORT_SYMBOL_GPL(sdev_evt_alloc); 2820 2821 /** 2822 * sdev_evt_send_simple - send asserted event to uevent thread 2823 * @sdev: scsi_device event occurred on 2824 * @evt_type: type of event to send 2825 * @gfpflags: GFP flags for allocation 2826 * 2827 * Assert scsi device event asynchronously, given an event type. 2828 */ 2829 void sdev_evt_send_simple(struct scsi_device *sdev, 2830 enum scsi_device_event evt_type, gfp_t gfpflags) 2831 { 2832 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags); 2833 if (!evt) { 2834 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n", 2835 evt_type); 2836 return; 2837 } 2838 2839 sdev_evt_send(sdev, evt); 2840 } 2841 EXPORT_SYMBOL_GPL(sdev_evt_send_simple); 2842 2843 /** 2844 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn() 2845 * @sdev: SCSI device to count the number of scsi_request_fn() callers for. 2846 */ 2847 static int scsi_request_fn_active(struct scsi_device *sdev) 2848 { 2849 struct request_queue *q = sdev->request_queue; 2850 int request_fn_active; 2851 2852 WARN_ON_ONCE(sdev->host->use_blk_mq); 2853 2854 spin_lock_irq(q->queue_lock); 2855 request_fn_active = q->request_fn_active; 2856 spin_unlock_irq(q->queue_lock); 2857 2858 return request_fn_active; 2859 } 2860 2861 /** 2862 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls 2863 * @sdev: SCSI device pointer. 2864 * 2865 * Wait until the ongoing shost->hostt->queuecommand() calls that are 2866 * invoked from scsi_request_fn() have finished. 2867 */ 2868 static void scsi_wait_for_queuecommand(struct scsi_device *sdev) 2869 { 2870 WARN_ON_ONCE(sdev->host->use_blk_mq); 2871 2872 while (scsi_request_fn_active(sdev)) 2873 msleep(20); 2874 } 2875 2876 /** 2877 * scsi_device_quiesce - Block user issued commands. 2878 * @sdev: scsi device to quiesce. 2879 * 2880 * This works by trying to transition to the SDEV_QUIESCE state 2881 * (which must be a legal transition). When the device is in this 2882 * state, only special requests will be accepted, all others will 2883 * be deferred. Since special requests may also be requeued requests, 2884 * a successful return doesn't guarantee the device will be 2885 * totally quiescent. 2886 * 2887 * Must be called with user context, may sleep. 2888 * 2889 * Returns zero if unsuccessful or an error if not. 2890 */ 2891 int 2892 scsi_device_quiesce(struct scsi_device *sdev) 2893 { 2894 int err; 2895 2896 mutex_lock(&sdev->state_mutex); 2897 err = scsi_device_set_state(sdev, SDEV_QUIESCE); 2898 mutex_unlock(&sdev->state_mutex); 2899 2900 if (err) 2901 return err; 2902 2903 scsi_run_queue(sdev->request_queue); 2904 while (atomic_read(&sdev->device_busy)) { 2905 msleep_interruptible(200); 2906 scsi_run_queue(sdev->request_queue); 2907 } 2908 return 0; 2909 } 2910 EXPORT_SYMBOL(scsi_device_quiesce); 2911 2912 /** 2913 * scsi_device_resume - Restart user issued commands to a quiesced device. 2914 * @sdev: scsi device to resume. 2915 * 2916 * Moves the device from quiesced back to running and restarts the 2917 * queues. 2918 * 2919 * Must be called with user context, may sleep. 2920 */ 2921 void scsi_device_resume(struct scsi_device *sdev) 2922 { 2923 /* check if the device state was mutated prior to resume, and if 2924 * so assume the state is being managed elsewhere (for example 2925 * device deleted during suspend) 2926 */ 2927 mutex_lock(&sdev->state_mutex); 2928 if (sdev->sdev_state == SDEV_QUIESCE && 2929 scsi_device_set_state(sdev, SDEV_RUNNING) == 0) 2930 scsi_run_queue(sdev->request_queue); 2931 mutex_unlock(&sdev->state_mutex); 2932 } 2933 EXPORT_SYMBOL(scsi_device_resume); 2934 2935 static void 2936 device_quiesce_fn(struct scsi_device *sdev, void *data) 2937 { 2938 scsi_device_quiesce(sdev); 2939 } 2940 2941 void 2942 scsi_target_quiesce(struct scsi_target *starget) 2943 { 2944 starget_for_each_device(starget, NULL, device_quiesce_fn); 2945 } 2946 EXPORT_SYMBOL(scsi_target_quiesce); 2947 2948 static void 2949 device_resume_fn(struct scsi_device *sdev, void *data) 2950 { 2951 scsi_device_resume(sdev); 2952 } 2953 2954 void 2955 scsi_target_resume(struct scsi_target *starget) 2956 { 2957 starget_for_each_device(starget, NULL, device_resume_fn); 2958 } 2959 EXPORT_SYMBOL(scsi_target_resume); 2960 2961 /** 2962 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state 2963 * @sdev: device to block 2964 * 2965 * Pause SCSI command processing on the specified device. Does not sleep. 2966 * 2967 * Returns zero if successful or a negative error code upon failure. 2968 * 2969 * Notes: 2970 * This routine transitions the device to the SDEV_BLOCK state (which must be 2971 * a legal transition). When the device is in this state, command processing 2972 * is paused until the device leaves the SDEV_BLOCK state. See also 2973 * scsi_internal_device_unblock_nowait(). 2974 */ 2975 int scsi_internal_device_block_nowait(struct scsi_device *sdev) 2976 { 2977 struct request_queue *q = sdev->request_queue; 2978 unsigned long flags; 2979 int err = 0; 2980 2981 err = scsi_device_set_state(sdev, SDEV_BLOCK); 2982 if (err) { 2983 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK); 2984 2985 if (err) 2986 return err; 2987 } 2988 2989 /* 2990 * The device has transitioned to SDEV_BLOCK. Stop the 2991 * block layer from calling the midlayer with this device's 2992 * request queue. 2993 */ 2994 if (q->mq_ops) { 2995 blk_mq_quiesce_queue_nowait(q); 2996 } else { 2997 spin_lock_irqsave(q->queue_lock, flags); 2998 blk_stop_queue(q); 2999 spin_unlock_irqrestore(q->queue_lock, flags); 3000 } 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait); 3005 3006 /** 3007 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state 3008 * @sdev: device to block 3009 * 3010 * Pause SCSI command processing on the specified device and wait until all 3011 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep. 3012 * 3013 * Returns zero if successful or a negative error code upon failure. 3014 * 3015 * Note: 3016 * This routine transitions the device to the SDEV_BLOCK state (which must be 3017 * a legal transition). When the device is in this state, command processing 3018 * is paused until the device leaves the SDEV_BLOCK state. See also 3019 * scsi_internal_device_unblock(). 3020 * 3021 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after 3022 * scsi_internal_device_block() has blocked a SCSI device and also 3023 * remove the rport mutex lock and unlock calls from srp_queuecommand(). 3024 */ 3025 static int scsi_internal_device_block(struct scsi_device *sdev) 3026 { 3027 struct request_queue *q = sdev->request_queue; 3028 int err; 3029 3030 mutex_lock(&sdev->state_mutex); 3031 err = scsi_internal_device_block_nowait(sdev); 3032 if (err == 0) { 3033 if (q->mq_ops) 3034 blk_mq_quiesce_queue(q); 3035 else 3036 scsi_wait_for_queuecommand(sdev); 3037 } 3038 mutex_unlock(&sdev->state_mutex); 3039 3040 return err; 3041 } 3042 3043 void scsi_start_queue(struct scsi_device *sdev) 3044 { 3045 struct request_queue *q = sdev->request_queue; 3046 unsigned long flags; 3047 3048 if (q->mq_ops) { 3049 blk_mq_unquiesce_queue(q); 3050 } else { 3051 spin_lock_irqsave(q->queue_lock, flags); 3052 blk_start_queue(q); 3053 spin_unlock_irqrestore(q->queue_lock, flags); 3054 } 3055 } 3056 3057 /** 3058 * scsi_internal_device_unblock_nowait - resume a device after a block request 3059 * @sdev: device to resume 3060 * @new_state: state to set the device to after unblocking 3061 * 3062 * Restart the device queue for a previously suspended SCSI device. Does not 3063 * sleep. 3064 * 3065 * Returns zero if successful or a negative error code upon failure. 3066 * 3067 * Notes: 3068 * This routine transitions the device to the SDEV_RUNNING state or to one of 3069 * the offline states (which must be a legal transition) allowing the midlayer 3070 * to goose the queue for this device. 3071 */ 3072 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev, 3073 enum scsi_device_state new_state) 3074 { 3075 /* 3076 * Try to transition the scsi device to SDEV_RUNNING or one of the 3077 * offlined states and goose the device queue if successful. 3078 */ 3079 switch (sdev->sdev_state) { 3080 case SDEV_BLOCK: 3081 case SDEV_TRANSPORT_OFFLINE: 3082 sdev->sdev_state = new_state; 3083 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state"); 3084 break; 3085 case SDEV_CREATED_BLOCK: 3086 if (new_state == SDEV_TRANSPORT_OFFLINE || 3087 new_state == SDEV_OFFLINE) 3088 sdev->sdev_state = new_state; 3089 else 3090 sdev->sdev_state = SDEV_CREATED; 3091 sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state"); 3092 break; 3093 case SDEV_CANCEL: 3094 case SDEV_OFFLINE: 3095 break; 3096 default: 3097 return -EINVAL; 3098 } 3099 scsi_start_queue(sdev); 3100 3101 return 0; 3102 } 3103 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait); 3104 3105 /** 3106 * scsi_internal_device_unblock - resume a device after a block request 3107 * @sdev: device to resume 3108 * @new_state: state to set the device to after unblocking 3109 * 3110 * Restart the device queue for a previously suspended SCSI device. May sleep. 3111 * 3112 * Returns zero if successful or a negative error code upon failure. 3113 * 3114 * Notes: 3115 * This routine transitions the device to the SDEV_RUNNING state or to one of 3116 * the offline states (which must be a legal transition) allowing the midlayer 3117 * to goose the queue for this device. 3118 */ 3119 static int scsi_internal_device_unblock(struct scsi_device *sdev, 3120 enum scsi_device_state new_state) 3121 { 3122 int ret; 3123 3124 mutex_lock(&sdev->state_mutex); 3125 ret = scsi_internal_device_unblock_nowait(sdev, new_state); 3126 mutex_unlock(&sdev->state_mutex); 3127 3128 return ret; 3129 } 3130 3131 static void 3132 device_block(struct scsi_device *sdev, void *data) 3133 { 3134 scsi_internal_device_block(sdev); 3135 } 3136 3137 static int 3138 target_block(struct device *dev, void *data) 3139 { 3140 if (scsi_is_target_device(dev)) 3141 starget_for_each_device(to_scsi_target(dev), NULL, 3142 device_block); 3143 return 0; 3144 } 3145 3146 void 3147 scsi_target_block(struct device *dev) 3148 { 3149 if (scsi_is_target_device(dev)) 3150 starget_for_each_device(to_scsi_target(dev), NULL, 3151 device_block); 3152 else 3153 device_for_each_child(dev, NULL, target_block); 3154 } 3155 EXPORT_SYMBOL_GPL(scsi_target_block); 3156 3157 static void 3158 device_unblock(struct scsi_device *sdev, void *data) 3159 { 3160 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data); 3161 } 3162 3163 static int 3164 target_unblock(struct device *dev, void *data) 3165 { 3166 if (scsi_is_target_device(dev)) 3167 starget_for_each_device(to_scsi_target(dev), data, 3168 device_unblock); 3169 return 0; 3170 } 3171 3172 void 3173 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state) 3174 { 3175 if (scsi_is_target_device(dev)) 3176 starget_for_each_device(to_scsi_target(dev), &new_state, 3177 device_unblock); 3178 else 3179 device_for_each_child(dev, &new_state, target_unblock); 3180 } 3181 EXPORT_SYMBOL_GPL(scsi_target_unblock); 3182 3183 /** 3184 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt 3185 * @sgl: scatter-gather list 3186 * @sg_count: number of segments in sg 3187 * @offset: offset in bytes into sg, on return offset into the mapped area 3188 * @len: bytes to map, on return number of bytes mapped 3189 * 3190 * Returns virtual address of the start of the mapped page 3191 */ 3192 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count, 3193 size_t *offset, size_t *len) 3194 { 3195 int i; 3196 size_t sg_len = 0, len_complete = 0; 3197 struct scatterlist *sg; 3198 struct page *page; 3199 3200 WARN_ON(!irqs_disabled()); 3201 3202 for_each_sg(sgl, sg, sg_count, i) { 3203 len_complete = sg_len; /* Complete sg-entries */ 3204 sg_len += sg->length; 3205 if (sg_len > *offset) 3206 break; 3207 } 3208 3209 if (unlikely(i == sg_count)) { 3210 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, " 3211 "elements %d\n", 3212 __func__, sg_len, *offset, sg_count); 3213 WARN_ON(1); 3214 return NULL; 3215 } 3216 3217 /* Offset starting from the beginning of first page in this sg-entry */ 3218 *offset = *offset - len_complete + sg->offset; 3219 3220 /* Assumption: contiguous pages can be accessed as "page + i" */ 3221 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT)); 3222 *offset &= ~PAGE_MASK; 3223 3224 /* Bytes in this sg-entry from *offset to the end of the page */ 3225 sg_len = PAGE_SIZE - *offset; 3226 if (*len > sg_len) 3227 *len = sg_len; 3228 3229 return kmap_atomic(page); 3230 } 3231 EXPORT_SYMBOL(scsi_kmap_atomic_sg); 3232 3233 /** 3234 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg 3235 * @virt: virtual address to be unmapped 3236 */ 3237 void scsi_kunmap_atomic_sg(void *virt) 3238 { 3239 kunmap_atomic(virt); 3240 } 3241 EXPORT_SYMBOL(scsi_kunmap_atomic_sg); 3242 3243 void sdev_disable_disk_events(struct scsi_device *sdev) 3244 { 3245 atomic_inc(&sdev->disk_events_disable_depth); 3246 } 3247 EXPORT_SYMBOL(sdev_disable_disk_events); 3248 3249 void sdev_enable_disk_events(struct scsi_device *sdev) 3250 { 3251 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0)) 3252 return; 3253 atomic_dec(&sdev->disk_events_disable_depth); 3254 } 3255 EXPORT_SYMBOL(sdev_enable_disk_events); 3256 3257 /** 3258 * scsi_vpd_lun_id - return a unique device identification 3259 * @sdev: SCSI device 3260 * @id: buffer for the identification 3261 * @id_len: length of the buffer 3262 * 3263 * Copies a unique device identification into @id based 3264 * on the information in the VPD page 0x83 of the device. 3265 * The string will be formatted as a SCSI name string. 3266 * 3267 * Returns the length of the identification or error on failure. 3268 * If the identifier is longer than the supplied buffer the actual 3269 * identifier length is returned and the buffer is not zero-padded. 3270 */ 3271 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len) 3272 { 3273 u8 cur_id_type = 0xff; 3274 u8 cur_id_size = 0; 3275 unsigned char *d, *cur_id_str; 3276 unsigned char __rcu *vpd_pg83; 3277 int id_size = -EINVAL; 3278 3279 rcu_read_lock(); 3280 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3281 if (!vpd_pg83) { 3282 rcu_read_unlock(); 3283 return -ENXIO; 3284 } 3285 3286 /* 3287 * Look for the correct descriptor. 3288 * Order of preference for lun descriptor: 3289 * - SCSI name string 3290 * - NAA IEEE Registered Extended 3291 * - EUI-64 based 16-byte 3292 * - EUI-64 based 12-byte 3293 * - NAA IEEE Registered 3294 * - NAA IEEE Extended 3295 * - T10 Vendor ID 3296 * as longer descriptors reduce the likelyhood 3297 * of identification clashes. 3298 */ 3299 3300 /* The id string must be at least 20 bytes + terminating NULL byte */ 3301 if (id_len < 21) { 3302 rcu_read_unlock(); 3303 return -EINVAL; 3304 } 3305 3306 memset(id, 0, id_len); 3307 d = vpd_pg83 + 4; 3308 while (d < vpd_pg83 + sdev->vpd_pg83_len) { 3309 /* Skip designators not referring to the LUN */ 3310 if ((d[1] & 0x30) != 0x00) 3311 goto next_desig; 3312 3313 switch (d[1] & 0xf) { 3314 case 0x1: 3315 /* T10 Vendor ID */ 3316 if (cur_id_size > d[3]) 3317 break; 3318 /* Prefer anything */ 3319 if (cur_id_type > 0x01 && cur_id_type != 0xff) 3320 break; 3321 cur_id_size = d[3]; 3322 if (cur_id_size + 4 > id_len) 3323 cur_id_size = id_len - 4; 3324 cur_id_str = d + 4; 3325 cur_id_type = d[1] & 0xf; 3326 id_size = snprintf(id, id_len, "t10.%*pE", 3327 cur_id_size, cur_id_str); 3328 break; 3329 case 0x2: 3330 /* EUI-64 */ 3331 if (cur_id_size > d[3]) 3332 break; 3333 /* Prefer NAA IEEE Registered Extended */ 3334 if (cur_id_type == 0x3 && 3335 cur_id_size == d[3]) 3336 break; 3337 cur_id_size = d[3]; 3338 cur_id_str = d + 4; 3339 cur_id_type = d[1] & 0xf; 3340 switch (cur_id_size) { 3341 case 8: 3342 id_size = snprintf(id, id_len, 3343 "eui.%8phN", 3344 cur_id_str); 3345 break; 3346 case 12: 3347 id_size = snprintf(id, id_len, 3348 "eui.%12phN", 3349 cur_id_str); 3350 break; 3351 case 16: 3352 id_size = snprintf(id, id_len, 3353 "eui.%16phN", 3354 cur_id_str); 3355 break; 3356 default: 3357 cur_id_size = 0; 3358 break; 3359 } 3360 break; 3361 case 0x3: 3362 /* NAA */ 3363 if (cur_id_size > d[3]) 3364 break; 3365 cur_id_size = d[3]; 3366 cur_id_str = d + 4; 3367 cur_id_type = d[1] & 0xf; 3368 switch (cur_id_size) { 3369 case 8: 3370 id_size = snprintf(id, id_len, 3371 "naa.%8phN", 3372 cur_id_str); 3373 break; 3374 case 16: 3375 id_size = snprintf(id, id_len, 3376 "naa.%16phN", 3377 cur_id_str); 3378 break; 3379 default: 3380 cur_id_size = 0; 3381 break; 3382 } 3383 break; 3384 case 0x8: 3385 /* SCSI name string */ 3386 if (cur_id_size + 4 > d[3]) 3387 break; 3388 /* Prefer others for truncated descriptor */ 3389 if (cur_id_size && d[3] > id_len) 3390 break; 3391 cur_id_size = id_size = d[3]; 3392 cur_id_str = d + 4; 3393 cur_id_type = d[1] & 0xf; 3394 if (cur_id_size >= id_len) 3395 cur_id_size = id_len - 1; 3396 memcpy(id, cur_id_str, cur_id_size); 3397 /* Decrease priority for truncated descriptor */ 3398 if (cur_id_size != id_size) 3399 cur_id_size = 6; 3400 break; 3401 default: 3402 break; 3403 } 3404 next_desig: 3405 d += d[3] + 4; 3406 } 3407 rcu_read_unlock(); 3408 3409 return id_size; 3410 } 3411 EXPORT_SYMBOL(scsi_vpd_lun_id); 3412 3413 /* 3414 * scsi_vpd_tpg_id - return a target port group identifier 3415 * @sdev: SCSI device 3416 * 3417 * Returns the Target Port Group identifier from the information 3418 * froom VPD page 0x83 of the device. 3419 * 3420 * Returns the identifier or error on failure. 3421 */ 3422 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id) 3423 { 3424 unsigned char *d; 3425 unsigned char __rcu *vpd_pg83; 3426 int group_id = -EAGAIN, rel_port = -1; 3427 3428 rcu_read_lock(); 3429 vpd_pg83 = rcu_dereference(sdev->vpd_pg83); 3430 if (!vpd_pg83) { 3431 rcu_read_unlock(); 3432 return -ENXIO; 3433 } 3434 3435 d = sdev->vpd_pg83 + 4; 3436 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) { 3437 switch (d[1] & 0xf) { 3438 case 0x4: 3439 /* Relative target port */ 3440 rel_port = get_unaligned_be16(&d[6]); 3441 break; 3442 case 0x5: 3443 /* Target port group */ 3444 group_id = get_unaligned_be16(&d[6]); 3445 break; 3446 default: 3447 break; 3448 } 3449 d += d[3] + 4; 3450 } 3451 rcu_read_unlock(); 3452 3453 if (group_id >= 0 && rel_id && rel_port != -1) 3454 *rel_id = rel_port; 3455 3456 return group_id; 3457 } 3458 EXPORT_SYMBOL(scsi_vpd_tpg_id); 3459