xref: /openbmc/linux/drivers/scsi/scsi_lib.c (revision 35c0506f27f6e3f278592d631901163cbccce28d)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static inline struct kmem_cache *
48 scsi_select_sense_cache(bool unchecked_isa_dma)
49 {
50 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
51 }
52 
53 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
54 				   unsigned char *sense_buffer)
55 {
56 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
57 			sense_buffer);
58 }
59 
60 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
61 	gfp_t gfp_mask, int numa_node)
62 {
63 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
64 				     gfp_mask, numa_node);
65 }
66 
67 int scsi_init_sense_cache(struct Scsi_Host *shost)
68 {
69 	struct kmem_cache *cache;
70 	int ret = 0;
71 
72 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
73 	if (cache)
74 		return 0;
75 
76 	mutex_lock(&scsi_sense_cache_mutex);
77 	if (shost->unchecked_isa_dma) {
78 		scsi_sense_isadma_cache =
79 			kmem_cache_create("scsi_sense_cache(DMA)",
80 			SCSI_SENSE_BUFFERSIZE, 0,
81 			SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
82 		if (!scsi_sense_isadma_cache)
83 			ret = -ENOMEM;
84 	} else {
85 		scsi_sense_cache =
86 			kmem_cache_create("scsi_sense_cache",
87 			SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
88 		if (!scsi_sense_cache)
89 			ret = -ENOMEM;
90 	}
91 
92 	mutex_unlock(&scsi_sense_cache_mutex);
93 	return ret;
94 }
95 
96 /*
97  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
98  * not change behaviour from the previous unplug mechanism, experimentation
99  * may prove this needs changing.
100  */
101 #define SCSI_QUEUE_DELAY	3
102 
103 static void
104 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
105 {
106 	struct Scsi_Host *host = cmd->device->host;
107 	struct scsi_device *device = cmd->device;
108 	struct scsi_target *starget = scsi_target(device);
109 
110 	/*
111 	 * Set the appropriate busy bit for the device/host.
112 	 *
113 	 * If the host/device isn't busy, assume that something actually
114 	 * completed, and that we should be able to queue a command now.
115 	 *
116 	 * Note that the prior mid-layer assumption that any host could
117 	 * always queue at least one command is now broken.  The mid-layer
118 	 * will implement a user specifiable stall (see
119 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
120 	 * if a command is requeued with no other commands outstanding
121 	 * either for the device or for the host.
122 	 */
123 	switch (reason) {
124 	case SCSI_MLQUEUE_HOST_BUSY:
125 		atomic_set(&host->host_blocked, host->max_host_blocked);
126 		break;
127 	case SCSI_MLQUEUE_DEVICE_BUSY:
128 	case SCSI_MLQUEUE_EH_RETRY:
129 		atomic_set(&device->device_blocked,
130 			   device->max_device_blocked);
131 		break;
132 	case SCSI_MLQUEUE_TARGET_BUSY:
133 		atomic_set(&starget->target_blocked,
134 			   starget->max_target_blocked);
135 		break;
136 	}
137 }
138 
139 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
140 {
141 	struct scsi_device *sdev = cmd->device;
142 
143 	blk_mq_requeue_request(cmd->request, true);
144 	put_device(&sdev->sdev_gendev);
145 }
146 
147 /**
148  * __scsi_queue_insert - private queue insertion
149  * @cmd: The SCSI command being requeued
150  * @reason:  The reason for the requeue
151  * @unbusy: Whether the queue should be unbusied
152  *
153  * This is a private queue insertion.  The public interface
154  * scsi_queue_insert() always assumes the queue should be unbusied
155  * because it's always called before the completion.  This function is
156  * for a requeue after completion, which should only occur in this
157  * file.
158  */
159 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
160 {
161 	struct scsi_device *device = cmd->device;
162 	struct request_queue *q = device->request_queue;
163 	unsigned long flags;
164 
165 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
166 		"Inserting command %p into mlqueue\n", cmd));
167 
168 	scsi_set_blocked(cmd, reason);
169 
170 	/*
171 	 * Decrement the counters, since these commands are no longer
172 	 * active on the host/device.
173 	 */
174 	if (unbusy)
175 		scsi_device_unbusy(device);
176 
177 	/*
178 	 * Requeue this command.  It will go before all other commands
179 	 * that are already in the queue. Schedule requeue work under
180 	 * lock such that the kblockd_schedule_work() call happens
181 	 * before blk_cleanup_queue() finishes.
182 	 */
183 	cmd->result = 0;
184 	if (q->mq_ops) {
185 		scsi_mq_requeue_cmd(cmd);
186 		return;
187 	}
188 	spin_lock_irqsave(q->queue_lock, flags);
189 	blk_requeue_request(q, cmd->request);
190 	kblockd_schedule_work(&device->requeue_work);
191 	spin_unlock_irqrestore(q->queue_lock, flags);
192 }
193 
194 /*
195  * Function:    scsi_queue_insert()
196  *
197  * Purpose:     Insert a command in the midlevel queue.
198  *
199  * Arguments:   cmd    - command that we are adding to queue.
200  *              reason - why we are inserting command to queue.
201  *
202  * Lock status: Assumed that lock is not held upon entry.
203  *
204  * Returns:     Nothing.
205  *
206  * Notes:       We do this for one of two cases.  Either the host is busy
207  *              and it cannot accept any more commands for the time being,
208  *              or the device returned QUEUE_FULL and can accept no more
209  *              commands.
210  * Notes:       This could be called either from an interrupt context or a
211  *              normal process context.
212  */
213 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
214 {
215 	__scsi_queue_insert(cmd, reason, 1);
216 }
217 
218 
219 /**
220  * scsi_execute - insert request and wait for the result
221  * @sdev:	scsi device
222  * @cmd:	scsi command
223  * @data_direction: data direction
224  * @buffer:	data buffer
225  * @bufflen:	len of buffer
226  * @sense:	optional sense buffer
227  * @sshdr:	optional decoded sense header
228  * @timeout:	request timeout in seconds
229  * @retries:	number of times to retry request
230  * @flags:	flags for ->cmd_flags
231  * @rq_flags:	flags for ->rq_flags
232  * @resid:	optional residual length
233  *
234  * Returns the scsi_cmnd result field if a command was executed, or a negative
235  * Linux error code if we didn't get that far.
236  */
237 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
238 		 int data_direction, void *buffer, unsigned bufflen,
239 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
240 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
241 		 int *resid)
242 {
243 	struct request *req;
244 	struct scsi_request *rq;
245 	int ret = DRIVER_ERROR << 24;
246 
247 	req = blk_get_request(sdev->request_queue,
248 			data_direction == DMA_TO_DEVICE ?
249 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
250 	if (IS_ERR(req))
251 		return ret;
252 	rq = scsi_req(req);
253 
254 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
255 					buffer, bufflen, __GFP_RECLAIM))
256 		goto out;
257 
258 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
259 	memcpy(rq->cmd, cmd, rq->cmd_len);
260 	rq->retries = retries;
261 	req->timeout = timeout;
262 	req->cmd_flags |= flags;
263 	req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
264 
265 	/*
266 	 * head injection *required* here otherwise quiesce won't work
267 	 */
268 	blk_execute_rq(req->q, NULL, req, 1);
269 
270 	/*
271 	 * Some devices (USB mass-storage in particular) may transfer
272 	 * garbage data together with a residue indicating that the data
273 	 * is invalid.  Prevent the garbage from being misinterpreted
274 	 * and prevent security leaks by zeroing out the excess data.
275 	 */
276 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
277 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
278 
279 	if (resid)
280 		*resid = rq->resid_len;
281 	if (sense && rq->sense_len)
282 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
283 	if (sshdr)
284 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
285 	ret = rq->result;
286  out:
287 	blk_put_request(req);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL(scsi_execute);
292 
293 /*
294  * Function:    scsi_init_cmd_errh()
295  *
296  * Purpose:     Initialize cmd fields related to error handling.
297  *
298  * Arguments:   cmd	- command that is ready to be queued.
299  *
300  * Notes:       This function has the job of initializing a number of
301  *              fields related to error handling.   Typically this will
302  *              be called once for each command, as required.
303  */
304 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
305 {
306 	cmd->serial_number = 0;
307 	scsi_set_resid(cmd, 0);
308 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
309 	if (cmd->cmd_len == 0)
310 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
311 }
312 
313 void scsi_device_unbusy(struct scsi_device *sdev)
314 {
315 	struct Scsi_Host *shost = sdev->host;
316 	struct scsi_target *starget = scsi_target(sdev);
317 	unsigned long flags;
318 
319 	atomic_dec(&shost->host_busy);
320 	if (starget->can_queue > 0)
321 		atomic_dec(&starget->target_busy);
322 
323 	if (unlikely(scsi_host_in_recovery(shost) &&
324 		     (shost->host_failed || shost->host_eh_scheduled))) {
325 		spin_lock_irqsave(shost->host_lock, flags);
326 		scsi_eh_wakeup(shost);
327 		spin_unlock_irqrestore(shost->host_lock, flags);
328 	}
329 
330 	atomic_dec(&sdev->device_busy);
331 }
332 
333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 	if (q->mq_ops)
336 		blk_mq_start_hw_queues(q);
337 	else
338 		blk_run_queue(q);
339 }
340 
341 /*
342  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343  * and call blk_run_queue for all the scsi_devices on the target -
344  * including current_sdev first.
345  *
346  * Called with *no* scsi locks held.
347  */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 	struct Scsi_Host *shost = current_sdev->host;
351 	struct scsi_device *sdev, *tmp;
352 	struct scsi_target *starget = scsi_target(current_sdev);
353 	unsigned long flags;
354 
355 	spin_lock_irqsave(shost->host_lock, flags);
356 	starget->starget_sdev_user = NULL;
357 	spin_unlock_irqrestore(shost->host_lock, flags);
358 
359 	/*
360 	 * Call blk_run_queue for all LUNs on the target, starting with
361 	 * current_sdev. We race with others (to set starget_sdev_user),
362 	 * but in most cases, we will be first. Ideally, each LU on the
363 	 * target would get some limited time or requests on the target.
364 	 */
365 	scsi_kick_queue(current_sdev->request_queue);
366 
367 	spin_lock_irqsave(shost->host_lock, flags);
368 	if (starget->starget_sdev_user)
369 		goto out;
370 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 			same_target_siblings) {
372 		if (sdev == current_sdev)
373 			continue;
374 		if (scsi_device_get(sdev))
375 			continue;
376 
377 		spin_unlock_irqrestore(shost->host_lock, flags);
378 		scsi_kick_queue(sdev->request_queue);
379 		spin_lock_irqsave(shost->host_lock, flags);
380 
381 		scsi_device_put(sdev);
382 	}
383  out:
384 	spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 
387 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
390 		return true;
391 	if (atomic_read(&sdev->device_blocked) > 0)
392 		return true;
393 	return false;
394 }
395 
396 static inline bool scsi_target_is_busy(struct scsi_target *starget)
397 {
398 	if (starget->can_queue > 0) {
399 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
400 			return true;
401 		if (atomic_read(&starget->target_blocked) > 0)
402 			return true;
403 	}
404 	return false;
405 }
406 
407 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
408 {
409 	if (shost->can_queue > 0 &&
410 	    atomic_read(&shost->host_busy) >= shost->can_queue)
411 		return true;
412 	if (atomic_read(&shost->host_blocked) > 0)
413 		return true;
414 	if (shost->host_self_blocked)
415 		return true;
416 	return false;
417 }
418 
419 static void scsi_starved_list_run(struct Scsi_Host *shost)
420 {
421 	LIST_HEAD(starved_list);
422 	struct scsi_device *sdev;
423 	unsigned long flags;
424 
425 	spin_lock_irqsave(shost->host_lock, flags);
426 	list_splice_init(&shost->starved_list, &starved_list);
427 
428 	while (!list_empty(&starved_list)) {
429 		struct request_queue *slq;
430 
431 		/*
432 		 * As long as shost is accepting commands and we have
433 		 * starved queues, call blk_run_queue. scsi_request_fn
434 		 * drops the queue_lock and can add us back to the
435 		 * starved_list.
436 		 *
437 		 * host_lock protects the starved_list and starved_entry.
438 		 * scsi_request_fn must get the host_lock before checking
439 		 * or modifying starved_list or starved_entry.
440 		 */
441 		if (scsi_host_is_busy(shost))
442 			break;
443 
444 		sdev = list_entry(starved_list.next,
445 				  struct scsi_device, starved_entry);
446 		list_del_init(&sdev->starved_entry);
447 		if (scsi_target_is_busy(scsi_target(sdev))) {
448 			list_move_tail(&sdev->starved_entry,
449 				       &shost->starved_list);
450 			continue;
451 		}
452 
453 		/*
454 		 * Once we drop the host lock, a racing scsi_remove_device()
455 		 * call may remove the sdev from the starved list and destroy
456 		 * it and the queue.  Mitigate by taking a reference to the
457 		 * queue and never touching the sdev again after we drop the
458 		 * host lock.  Note: if __scsi_remove_device() invokes
459 		 * blk_cleanup_queue() before the queue is run from this
460 		 * function then blk_run_queue() will return immediately since
461 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
462 		 */
463 		slq = sdev->request_queue;
464 		if (!blk_get_queue(slq))
465 			continue;
466 		spin_unlock_irqrestore(shost->host_lock, flags);
467 
468 		scsi_kick_queue(slq);
469 		blk_put_queue(slq);
470 
471 		spin_lock_irqsave(shost->host_lock, flags);
472 	}
473 	/* put any unprocessed entries back */
474 	list_splice(&starved_list, &shost->starved_list);
475 	spin_unlock_irqrestore(shost->host_lock, flags);
476 }
477 
478 /*
479  * Function:   scsi_run_queue()
480  *
481  * Purpose:    Select a proper request queue to serve next
482  *
483  * Arguments:  q       - last request's queue
484  *
485  * Returns:     Nothing
486  *
487  * Notes:      The previous command was completely finished, start
488  *             a new one if possible.
489  */
490 static void scsi_run_queue(struct request_queue *q)
491 {
492 	struct scsi_device *sdev = q->queuedata;
493 
494 	if (scsi_target(sdev)->single_lun)
495 		scsi_single_lun_run(sdev);
496 	if (!list_empty(&sdev->host->starved_list))
497 		scsi_starved_list_run(sdev->host);
498 
499 	if (q->mq_ops)
500 		blk_mq_run_hw_queues(q, false);
501 	else
502 		blk_run_queue(q);
503 }
504 
505 void scsi_requeue_run_queue(struct work_struct *work)
506 {
507 	struct scsi_device *sdev;
508 	struct request_queue *q;
509 
510 	sdev = container_of(work, struct scsi_device, requeue_work);
511 	q = sdev->request_queue;
512 	scsi_run_queue(q);
513 }
514 
515 /*
516  * Function:	scsi_requeue_command()
517  *
518  * Purpose:	Handle post-processing of completed commands.
519  *
520  * Arguments:	q	- queue to operate on
521  *		cmd	- command that may need to be requeued.
522  *
523  * Returns:	Nothing
524  *
525  * Notes:	After command completion, there may be blocks left
526  *		over which weren't finished by the previous command
527  *		this can be for a number of reasons - the main one is
528  *		I/O errors in the middle of the request, in which case
529  *		we need to request the blocks that come after the bad
530  *		sector.
531  * Notes:	Upon return, cmd is a stale pointer.
532  */
533 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
534 {
535 	struct scsi_device *sdev = cmd->device;
536 	struct request *req = cmd->request;
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(q->queue_lock, flags);
540 	blk_unprep_request(req);
541 	req->special = NULL;
542 	scsi_put_command(cmd);
543 	blk_requeue_request(q, req);
544 	spin_unlock_irqrestore(q->queue_lock, flags);
545 
546 	scsi_run_queue(q);
547 
548 	put_device(&sdev->sdev_gendev);
549 }
550 
551 void scsi_run_host_queues(struct Scsi_Host *shost)
552 {
553 	struct scsi_device *sdev;
554 
555 	shost_for_each_device(sdev, shost)
556 		scsi_run_queue(sdev->request_queue);
557 }
558 
559 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
560 {
561 	if (!blk_rq_is_passthrough(cmd->request)) {
562 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
563 
564 		if (drv->uninit_command)
565 			drv->uninit_command(cmd);
566 	}
567 }
568 
569 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
570 {
571 	struct scsi_data_buffer *sdb;
572 
573 	if (cmd->sdb.table.nents)
574 		sg_free_table_chained(&cmd->sdb.table, true);
575 	if (cmd->request->next_rq) {
576 		sdb = cmd->request->next_rq->special;
577 		if (sdb)
578 			sg_free_table_chained(&sdb->table, true);
579 	}
580 	if (scsi_prot_sg_count(cmd))
581 		sg_free_table_chained(&cmd->prot_sdb->table, true);
582 }
583 
584 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
585 {
586 	scsi_mq_free_sgtables(cmd);
587 	scsi_uninit_cmd(cmd);
588 	scsi_del_cmd_from_list(cmd);
589 }
590 
591 /*
592  * Function:    scsi_release_buffers()
593  *
594  * Purpose:     Free resources allocate for a scsi_command.
595  *
596  * Arguments:   cmd	- command that we are bailing.
597  *
598  * Lock status: Assumed that no lock is held upon entry.
599  *
600  * Returns:     Nothing
601  *
602  * Notes:       In the event that an upper level driver rejects a
603  *		command, we must release resources allocated during
604  *		the __init_io() function.  Primarily this would involve
605  *		the scatter-gather table.
606  */
607 static void scsi_release_buffers(struct scsi_cmnd *cmd)
608 {
609 	if (cmd->sdb.table.nents)
610 		sg_free_table_chained(&cmd->sdb.table, false);
611 
612 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
613 
614 	if (scsi_prot_sg_count(cmd))
615 		sg_free_table_chained(&cmd->prot_sdb->table, false);
616 }
617 
618 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
619 {
620 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
621 
622 	sg_free_table_chained(&bidi_sdb->table, false);
623 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
624 	cmd->request->next_rq->special = NULL;
625 }
626 
627 static bool scsi_end_request(struct request *req, blk_status_t error,
628 		unsigned int bytes, unsigned int bidi_bytes)
629 {
630 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
631 	struct scsi_device *sdev = cmd->device;
632 	struct request_queue *q = sdev->request_queue;
633 
634 	if (blk_update_request(req, error, bytes))
635 		return true;
636 
637 	/* Bidi request must be completed as a whole */
638 	if (unlikely(bidi_bytes) &&
639 	    blk_update_request(req->next_rq, error, bidi_bytes))
640 		return true;
641 
642 	if (blk_queue_add_random(q))
643 		add_disk_randomness(req->rq_disk);
644 
645 	if (req->mq_ctx) {
646 		/*
647 		 * In the MQ case the command gets freed by __blk_mq_end_request,
648 		 * so we have to do all cleanup that depends on it earlier.
649 		 *
650 		 * We also can't kick the queues from irq context, so we
651 		 * will have to defer it to a workqueue.
652 		 */
653 		scsi_mq_uninit_cmd(cmd);
654 
655 		__blk_mq_end_request(req, error);
656 
657 		if (scsi_target(sdev)->single_lun ||
658 		    !list_empty(&sdev->host->starved_list))
659 			kblockd_schedule_work(&sdev->requeue_work);
660 		else
661 			blk_mq_run_hw_queues(q, true);
662 	} else {
663 		unsigned long flags;
664 
665 		if (bidi_bytes)
666 			scsi_release_bidi_buffers(cmd);
667 		scsi_release_buffers(cmd);
668 		scsi_put_command(cmd);
669 
670 		spin_lock_irqsave(q->queue_lock, flags);
671 		blk_finish_request(req, error);
672 		spin_unlock_irqrestore(q->queue_lock, flags);
673 
674 		scsi_run_queue(q);
675 	}
676 
677 	put_device(&sdev->sdev_gendev);
678 	return false;
679 }
680 
681 /**
682  * __scsi_error_from_host_byte - translate SCSI error code into errno
683  * @cmd:	SCSI command (unused)
684  * @result:	scsi error code
685  *
686  * Translate SCSI error code into block errors.
687  */
688 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
689 		int result)
690 {
691 	switch (host_byte(result)) {
692 	case DID_TRANSPORT_FAILFAST:
693 		return BLK_STS_TRANSPORT;
694 	case DID_TARGET_FAILURE:
695 		set_host_byte(cmd, DID_OK);
696 		return BLK_STS_TARGET;
697 	case DID_NEXUS_FAILURE:
698 		return BLK_STS_NEXUS;
699 	case DID_ALLOC_FAILURE:
700 		set_host_byte(cmd, DID_OK);
701 		return BLK_STS_NOSPC;
702 	case DID_MEDIUM_ERROR:
703 		set_host_byte(cmd, DID_OK);
704 		return BLK_STS_MEDIUM;
705 	default:
706 		return BLK_STS_IOERR;
707 	}
708 }
709 
710 /*
711  * Function:    scsi_io_completion()
712  *
713  * Purpose:     Completion processing for block device I/O requests.
714  *
715  * Arguments:   cmd   - command that is finished.
716  *
717  * Lock status: Assumed that no lock is held upon entry.
718  *
719  * Returns:     Nothing
720  *
721  * Notes:       We will finish off the specified number of sectors.  If we
722  *		are done, the command block will be released and the queue
723  *		function will be goosed.  If we are not done then we have to
724  *		figure out what to do next:
725  *
726  *		a) We can call scsi_requeue_command().  The request
727  *		   will be unprepared and put back on the queue.  Then
728  *		   a new command will be created for it.  This should
729  *		   be used if we made forward progress, or if we want
730  *		   to switch from READ(10) to READ(6) for example.
731  *
732  *		b) We can call __scsi_queue_insert().  The request will
733  *		   be put back on the queue and retried using the same
734  *		   command as before, possibly after a delay.
735  *
736  *		c) We can call scsi_end_request() with -EIO to fail
737  *		   the remainder of the request.
738  */
739 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
740 {
741 	int result = cmd->result;
742 	struct request_queue *q = cmd->device->request_queue;
743 	struct request *req = cmd->request;
744 	blk_status_t error = BLK_STS_OK;
745 	struct scsi_sense_hdr sshdr;
746 	bool sense_valid = false;
747 	int sense_deferred = 0, level = 0;
748 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
749 	      ACTION_DELAYED_RETRY} action;
750 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
751 
752 	if (result) {
753 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
754 		if (sense_valid)
755 			sense_deferred = scsi_sense_is_deferred(&sshdr);
756 	}
757 
758 	if (blk_rq_is_passthrough(req)) {
759 		if (result) {
760 			if (sense_valid) {
761 				/*
762 				 * SG_IO wants current and deferred errors
763 				 */
764 				scsi_req(req)->sense_len =
765 					min(8 + cmd->sense_buffer[7],
766 					    SCSI_SENSE_BUFFERSIZE);
767 			}
768 			if (!sense_deferred)
769 				error = __scsi_error_from_host_byte(cmd, result);
770 		}
771 		/*
772 		 * __scsi_error_from_host_byte may have reset the host_byte
773 		 */
774 		scsi_req(req)->result = cmd->result;
775 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
776 
777 		if (scsi_bidi_cmnd(cmd)) {
778 			/*
779 			 * Bidi commands Must be complete as a whole,
780 			 * both sides at once.
781 			 */
782 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
783 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
784 					blk_rq_bytes(req->next_rq)))
785 				BUG();
786 			return;
787 		}
788 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
789 		/*
790 		 * Flush commands do not transfers any data, and thus cannot use
791 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
792 		 * This sets the error explicitly for the problem case.
793 		 */
794 		error = __scsi_error_from_host_byte(cmd, result);
795 	}
796 
797 	/* no bidi support for !blk_rq_is_passthrough yet */
798 	BUG_ON(blk_bidi_rq(req));
799 
800 	/*
801 	 * Next deal with any sectors which we were able to correctly
802 	 * handle.
803 	 */
804 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
805 		"%u sectors total, %d bytes done.\n",
806 		blk_rq_sectors(req), good_bytes));
807 
808 	/*
809 	 * Recovered errors need reporting, but they're always treated as
810 	 * success, so fiddle the result code here.  For passthrough requests
811 	 * we already took a copy of the original into sreq->result which
812 	 * is what gets returned to the user
813 	 */
814 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816 		 * print since caller wants ATA registers. Only occurs on
817 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
818 		 */
819 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820 			;
821 		else if (!(req->rq_flags & RQF_QUIET))
822 			scsi_print_sense(cmd);
823 		result = 0;
824 		/* for passthrough error may be set */
825 		error = BLK_STS_OK;
826 	}
827 
828 	/*
829 	 * special case: failed zero length commands always need to
830 	 * drop down into the retry code. Otherwise, if we finished
831 	 * all bytes in the request we are done now.
832 	 */
833 	if (!(blk_rq_bytes(req) == 0 && error) &&
834 	    !scsi_end_request(req, error, good_bytes, 0))
835 		return;
836 
837 	/*
838 	 * Kill remainder if no retrys.
839 	 */
840 	if (error && scsi_noretry_cmd(cmd)) {
841 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
842 			BUG();
843 		return;
844 	}
845 
846 	/*
847 	 * If there had been no error, but we have leftover bytes in the
848 	 * requeues just queue the command up again.
849 	 */
850 	if (result == 0)
851 		goto requeue;
852 
853 	error = __scsi_error_from_host_byte(cmd, result);
854 
855 	if (host_byte(result) == DID_RESET) {
856 		/* Third party bus reset or reset for error recovery
857 		 * reasons.  Just retry the command and see what
858 		 * happens.
859 		 */
860 		action = ACTION_RETRY;
861 	} else if (sense_valid && !sense_deferred) {
862 		switch (sshdr.sense_key) {
863 		case UNIT_ATTENTION:
864 			if (cmd->device->removable) {
865 				/* Detected disc change.  Set a bit
866 				 * and quietly refuse further access.
867 				 */
868 				cmd->device->changed = 1;
869 				action = ACTION_FAIL;
870 			} else {
871 				/* Must have been a power glitch, or a
872 				 * bus reset.  Could not have been a
873 				 * media change, so we just retry the
874 				 * command and see what happens.
875 				 */
876 				action = ACTION_RETRY;
877 			}
878 			break;
879 		case ILLEGAL_REQUEST:
880 			/* If we had an ILLEGAL REQUEST returned, then
881 			 * we may have performed an unsupported
882 			 * command.  The only thing this should be
883 			 * would be a ten byte read where only a six
884 			 * byte read was supported.  Also, on a system
885 			 * where READ CAPACITY failed, we may have
886 			 * read past the end of the disk.
887 			 */
888 			if ((cmd->device->use_10_for_rw &&
889 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890 			    (cmd->cmnd[0] == READ_10 ||
891 			     cmd->cmnd[0] == WRITE_10)) {
892 				/* This will issue a new 6-byte command. */
893 				cmd->device->use_10_for_rw = 0;
894 				action = ACTION_REPREP;
895 			} else if (sshdr.asc == 0x10) /* DIX */ {
896 				action = ACTION_FAIL;
897 				error = BLK_STS_PROTECTION;
898 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
899 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
900 				action = ACTION_FAIL;
901 				error = BLK_STS_TARGET;
902 			} else
903 				action = ACTION_FAIL;
904 			break;
905 		case ABORTED_COMMAND:
906 			action = ACTION_FAIL;
907 			if (sshdr.asc == 0x10) /* DIF */
908 				error = BLK_STS_PROTECTION;
909 			break;
910 		case NOT_READY:
911 			/* If the device is in the process of becoming
912 			 * ready, or has a temporary blockage, retry.
913 			 */
914 			if (sshdr.asc == 0x04) {
915 				switch (sshdr.ascq) {
916 				case 0x01: /* becoming ready */
917 				case 0x04: /* format in progress */
918 				case 0x05: /* rebuild in progress */
919 				case 0x06: /* recalculation in progress */
920 				case 0x07: /* operation in progress */
921 				case 0x08: /* Long write in progress */
922 				case 0x09: /* self test in progress */
923 				case 0x14: /* space allocation in progress */
924 					action = ACTION_DELAYED_RETRY;
925 					break;
926 				default:
927 					action = ACTION_FAIL;
928 					break;
929 				}
930 			} else
931 				action = ACTION_FAIL;
932 			break;
933 		case VOLUME_OVERFLOW:
934 			/* See SSC3rXX or current. */
935 			action = ACTION_FAIL;
936 			break;
937 		default:
938 			action = ACTION_FAIL;
939 			break;
940 		}
941 	} else
942 		action = ACTION_FAIL;
943 
944 	if (action != ACTION_FAIL &&
945 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
946 		action = ACTION_FAIL;
947 
948 	switch (action) {
949 	case ACTION_FAIL:
950 		/* Give up and fail the remainder of the request */
951 		if (!(req->rq_flags & RQF_QUIET)) {
952 			static DEFINE_RATELIMIT_STATE(_rs,
953 					DEFAULT_RATELIMIT_INTERVAL,
954 					DEFAULT_RATELIMIT_BURST);
955 
956 			if (unlikely(scsi_logging_level))
957 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
958 						       SCSI_LOG_MLCOMPLETE_BITS);
959 
960 			/*
961 			 * if logging is enabled the failure will be printed
962 			 * in scsi_log_completion(), so avoid duplicate messages
963 			 */
964 			if (!level && __ratelimit(&_rs)) {
965 				scsi_print_result(cmd, NULL, FAILED);
966 				if (driver_byte(result) & DRIVER_SENSE)
967 					scsi_print_sense(cmd);
968 				scsi_print_command(cmd);
969 			}
970 		}
971 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
972 			return;
973 		/*FALLTHRU*/
974 	case ACTION_REPREP:
975 	requeue:
976 		/* Unprep the request and put it back at the head of the queue.
977 		 * A new command will be prepared and issued.
978 		 */
979 		if (q->mq_ops) {
980 			cmd->request->rq_flags &= ~RQF_DONTPREP;
981 			scsi_mq_uninit_cmd(cmd);
982 			scsi_mq_requeue_cmd(cmd);
983 		} else {
984 			scsi_release_buffers(cmd);
985 			scsi_requeue_command(q, cmd);
986 		}
987 		break;
988 	case ACTION_RETRY:
989 		/* Retry the same command immediately */
990 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
991 		break;
992 	case ACTION_DELAYED_RETRY:
993 		/* Retry the same command after a delay */
994 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
995 		break;
996 	}
997 }
998 
999 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1000 {
1001 	int count;
1002 
1003 	/*
1004 	 * If sg table allocation fails, requeue request later.
1005 	 */
1006 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1007 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1008 		return BLKPREP_DEFER;
1009 
1010 	/*
1011 	 * Next, walk the list, and fill in the addresses and sizes of
1012 	 * each segment.
1013 	 */
1014 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1015 	BUG_ON(count > sdb->table.nents);
1016 	sdb->table.nents = count;
1017 	sdb->length = blk_rq_payload_bytes(req);
1018 	return BLKPREP_OK;
1019 }
1020 
1021 /*
1022  * Function:    scsi_init_io()
1023  *
1024  * Purpose:     SCSI I/O initialize function.
1025  *
1026  * Arguments:   cmd   - Command descriptor we wish to initialize
1027  *
1028  * Returns:     0 on success
1029  *		BLKPREP_DEFER if the failure is retryable
1030  *		BLKPREP_KILL if the failure is fatal
1031  */
1032 int scsi_init_io(struct scsi_cmnd *cmd)
1033 {
1034 	struct scsi_device *sdev = cmd->device;
1035 	struct request *rq = cmd->request;
1036 	bool is_mq = (rq->mq_ctx != NULL);
1037 	int error = BLKPREP_KILL;
1038 
1039 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1040 		goto err_exit;
1041 
1042 	error = scsi_init_sgtable(rq, &cmd->sdb);
1043 	if (error)
1044 		goto err_exit;
1045 
1046 	if (blk_bidi_rq(rq)) {
1047 		if (!rq->q->mq_ops) {
1048 			struct scsi_data_buffer *bidi_sdb =
1049 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1050 			if (!bidi_sdb) {
1051 				error = BLKPREP_DEFER;
1052 				goto err_exit;
1053 			}
1054 
1055 			rq->next_rq->special = bidi_sdb;
1056 		}
1057 
1058 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1059 		if (error)
1060 			goto err_exit;
1061 	}
1062 
1063 	if (blk_integrity_rq(rq)) {
1064 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1065 		int ivecs, count;
1066 
1067 		if (prot_sdb == NULL) {
1068 			/*
1069 			 * This can happen if someone (e.g. multipath)
1070 			 * queues a command to a device on an adapter
1071 			 * that does not support DIX.
1072 			 */
1073 			WARN_ON_ONCE(1);
1074 			error = BLKPREP_KILL;
1075 			goto err_exit;
1076 		}
1077 
1078 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1079 
1080 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1081 				prot_sdb->table.sgl)) {
1082 			error = BLKPREP_DEFER;
1083 			goto err_exit;
1084 		}
1085 
1086 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1087 						prot_sdb->table.sgl);
1088 		BUG_ON(unlikely(count > ivecs));
1089 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1090 
1091 		cmd->prot_sdb = prot_sdb;
1092 		cmd->prot_sdb->table.nents = count;
1093 	}
1094 
1095 	return BLKPREP_OK;
1096 err_exit:
1097 	if (is_mq) {
1098 		scsi_mq_free_sgtables(cmd);
1099 	} else {
1100 		scsi_release_buffers(cmd);
1101 		cmd->request->special = NULL;
1102 		scsi_put_command(cmd);
1103 		put_device(&sdev->sdev_gendev);
1104 	}
1105 	return error;
1106 }
1107 EXPORT_SYMBOL(scsi_init_io);
1108 
1109 /**
1110  * scsi_initialize_rq - initialize struct scsi_cmnd.req
1111  * @rq: Request associated with the SCSI command to be initialized.
1112  *
1113  * Called from inside blk_get_request().
1114  */
1115 void scsi_initialize_rq(struct request *rq)
1116 {
1117 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1118 
1119 	scsi_req_init(&cmd->req);
1120 }
1121 EXPORT_SYMBOL(scsi_initialize_rq);
1122 
1123 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1124 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1125 {
1126 	struct scsi_device *sdev = cmd->device;
1127 	struct Scsi_Host *shost = sdev->host;
1128 	unsigned long flags;
1129 
1130 	if (shost->use_cmd_list) {
1131 		spin_lock_irqsave(&sdev->list_lock, flags);
1132 		list_add_tail(&cmd->list, &sdev->cmd_list);
1133 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1134 	}
1135 }
1136 
1137 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1138 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1139 {
1140 	struct scsi_device *sdev = cmd->device;
1141 	struct Scsi_Host *shost = sdev->host;
1142 	unsigned long flags;
1143 
1144 	if (shost->use_cmd_list) {
1145 		spin_lock_irqsave(&sdev->list_lock, flags);
1146 		BUG_ON(list_empty(&cmd->list));
1147 		list_del_init(&cmd->list);
1148 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1149 	}
1150 }
1151 
1152 /* Called after a request has been started. */
1153 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1154 {
1155 	void *buf = cmd->sense_buffer;
1156 	void *prot = cmd->prot_sdb;
1157 	unsigned int unchecked_isa_dma = cmd->flags & SCMD_UNCHECKED_ISA_DMA;
1158 
1159 	/* zero out the cmd, except for the embedded scsi_request */
1160 	memset((char *)cmd + sizeof(cmd->req), 0,
1161 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1162 
1163 	cmd->device = dev;
1164 	cmd->sense_buffer = buf;
1165 	cmd->prot_sdb = prot;
1166 	cmd->flags = unchecked_isa_dma;
1167 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1168 	cmd->jiffies_at_alloc = jiffies;
1169 
1170 	scsi_add_cmd_to_list(cmd);
1171 }
1172 
1173 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1174 {
1175 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176 
1177 	/*
1178 	 * Passthrough requests may transfer data, in which case they must
1179 	 * a bio attached to them.  Or they might contain a SCSI command
1180 	 * that does not transfer data, in which case they may optionally
1181 	 * submit a request without an attached bio.
1182 	 */
1183 	if (req->bio) {
1184 		int ret = scsi_init_io(cmd);
1185 		if (unlikely(ret))
1186 			return ret;
1187 	} else {
1188 		BUG_ON(blk_rq_bytes(req));
1189 
1190 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191 	}
1192 
1193 	cmd->cmd_len = scsi_req(req)->cmd_len;
1194 	cmd->cmnd = scsi_req(req)->cmd;
1195 	cmd->transfersize = blk_rq_bytes(req);
1196 	cmd->allowed = scsi_req(req)->retries;
1197 	return BLKPREP_OK;
1198 }
1199 
1200 /*
1201  * Setup a normal block command.  These are simple request from filesystems
1202  * that still need to be translated to SCSI CDBs from the ULD.
1203  */
1204 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1207 
1208 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1209 		int ret = sdev->handler->prep_fn(sdev, req);
1210 		if (ret != BLKPREP_OK)
1211 			return ret;
1212 	}
1213 
1214 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1215 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1216 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1217 }
1218 
1219 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1220 {
1221 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1222 
1223 	if (!blk_rq_bytes(req))
1224 		cmd->sc_data_direction = DMA_NONE;
1225 	else if (rq_data_dir(req) == WRITE)
1226 		cmd->sc_data_direction = DMA_TO_DEVICE;
1227 	else
1228 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1229 
1230 	if (blk_rq_is_scsi(req))
1231 		return scsi_setup_scsi_cmnd(sdev, req);
1232 	else
1233 		return scsi_setup_fs_cmnd(sdev, req);
1234 }
1235 
1236 static int
1237 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1238 {
1239 	int ret = BLKPREP_OK;
1240 
1241 	/*
1242 	 * If the device is not in running state we will reject some
1243 	 * or all commands.
1244 	 */
1245 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1246 		switch (sdev->sdev_state) {
1247 		case SDEV_OFFLINE:
1248 		case SDEV_TRANSPORT_OFFLINE:
1249 			/*
1250 			 * If the device is offline we refuse to process any
1251 			 * commands.  The device must be brought online
1252 			 * before trying any recovery commands.
1253 			 */
1254 			sdev_printk(KERN_ERR, sdev,
1255 				    "rejecting I/O to offline device\n");
1256 			ret = BLKPREP_KILL;
1257 			break;
1258 		case SDEV_DEL:
1259 			/*
1260 			 * If the device is fully deleted, we refuse to
1261 			 * process any commands as well.
1262 			 */
1263 			sdev_printk(KERN_ERR, sdev,
1264 				    "rejecting I/O to dead device\n");
1265 			ret = BLKPREP_KILL;
1266 			break;
1267 		case SDEV_BLOCK:
1268 		case SDEV_CREATED_BLOCK:
1269 			ret = BLKPREP_DEFER;
1270 			break;
1271 		case SDEV_QUIESCE:
1272 			/*
1273 			 * If the devices is blocked we defer normal commands.
1274 			 */
1275 			if (!(req->rq_flags & RQF_PREEMPT))
1276 				ret = BLKPREP_DEFER;
1277 			break;
1278 		default:
1279 			/*
1280 			 * For any other not fully online state we only allow
1281 			 * special commands.  In particular any user initiated
1282 			 * command is not allowed.
1283 			 */
1284 			if (!(req->rq_flags & RQF_PREEMPT))
1285 				ret = BLKPREP_KILL;
1286 			break;
1287 		}
1288 	}
1289 	return ret;
1290 }
1291 
1292 static int
1293 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1294 {
1295 	struct scsi_device *sdev = q->queuedata;
1296 
1297 	switch (ret) {
1298 	case BLKPREP_KILL:
1299 	case BLKPREP_INVALID:
1300 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1301 		/* release the command and kill it */
1302 		if (req->special) {
1303 			struct scsi_cmnd *cmd = req->special;
1304 			scsi_release_buffers(cmd);
1305 			scsi_put_command(cmd);
1306 			put_device(&sdev->sdev_gendev);
1307 			req->special = NULL;
1308 		}
1309 		break;
1310 	case BLKPREP_DEFER:
1311 		/*
1312 		 * If we defer, the blk_peek_request() returns NULL, but the
1313 		 * queue must be restarted, so we schedule a callback to happen
1314 		 * shortly.
1315 		 */
1316 		if (atomic_read(&sdev->device_busy) == 0)
1317 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1318 		break;
1319 	default:
1320 		req->rq_flags |= RQF_DONTPREP;
1321 	}
1322 
1323 	return ret;
1324 }
1325 
1326 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1327 {
1328 	struct scsi_device *sdev = q->queuedata;
1329 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1330 	int ret;
1331 
1332 	ret = scsi_prep_state_check(sdev, req);
1333 	if (ret != BLKPREP_OK)
1334 		goto out;
1335 
1336 	if (!req->special) {
1337 		/* Bail if we can't get a reference to the device */
1338 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1339 			ret = BLKPREP_DEFER;
1340 			goto out;
1341 		}
1342 
1343 		scsi_init_command(sdev, cmd);
1344 		req->special = cmd;
1345 	}
1346 
1347 	cmd->tag = req->tag;
1348 	cmd->request = req;
1349 	cmd->prot_op = SCSI_PROT_NORMAL;
1350 
1351 	ret = scsi_setup_cmnd(sdev, req);
1352 out:
1353 	return scsi_prep_return(q, req, ret);
1354 }
1355 
1356 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1357 {
1358 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1359 }
1360 
1361 /*
1362  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1363  * return 0.
1364  *
1365  * Called with the queue_lock held.
1366  */
1367 static inline int scsi_dev_queue_ready(struct request_queue *q,
1368 				  struct scsi_device *sdev)
1369 {
1370 	unsigned int busy;
1371 
1372 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1373 	if (atomic_read(&sdev->device_blocked)) {
1374 		if (busy)
1375 			goto out_dec;
1376 
1377 		/*
1378 		 * unblock after device_blocked iterates to zero
1379 		 */
1380 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1381 			/*
1382 			 * For the MQ case we take care of this in the caller.
1383 			 */
1384 			if (!q->mq_ops)
1385 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1386 			goto out_dec;
1387 		}
1388 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1389 				   "unblocking device at zero depth\n"));
1390 	}
1391 
1392 	if (busy >= sdev->queue_depth)
1393 		goto out_dec;
1394 
1395 	return 1;
1396 out_dec:
1397 	atomic_dec(&sdev->device_busy);
1398 	return 0;
1399 }
1400 
1401 /*
1402  * scsi_target_queue_ready: checks if there we can send commands to target
1403  * @sdev: scsi device on starget to check.
1404  */
1405 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1406 					   struct scsi_device *sdev)
1407 {
1408 	struct scsi_target *starget = scsi_target(sdev);
1409 	unsigned int busy;
1410 
1411 	if (starget->single_lun) {
1412 		spin_lock_irq(shost->host_lock);
1413 		if (starget->starget_sdev_user &&
1414 		    starget->starget_sdev_user != sdev) {
1415 			spin_unlock_irq(shost->host_lock);
1416 			return 0;
1417 		}
1418 		starget->starget_sdev_user = sdev;
1419 		spin_unlock_irq(shost->host_lock);
1420 	}
1421 
1422 	if (starget->can_queue <= 0)
1423 		return 1;
1424 
1425 	busy = atomic_inc_return(&starget->target_busy) - 1;
1426 	if (atomic_read(&starget->target_blocked) > 0) {
1427 		if (busy)
1428 			goto starved;
1429 
1430 		/*
1431 		 * unblock after target_blocked iterates to zero
1432 		 */
1433 		if (atomic_dec_return(&starget->target_blocked) > 0)
1434 			goto out_dec;
1435 
1436 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1437 				 "unblocking target at zero depth\n"));
1438 	}
1439 
1440 	if (busy >= starget->can_queue)
1441 		goto starved;
1442 
1443 	return 1;
1444 
1445 starved:
1446 	spin_lock_irq(shost->host_lock);
1447 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1448 	spin_unlock_irq(shost->host_lock);
1449 out_dec:
1450 	if (starget->can_queue > 0)
1451 		atomic_dec(&starget->target_busy);
1452 	return 0;
1453 }
1454 
1455 /*
1456  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1457  * return 0. We must end up running the queue again whenever 0 is
1458  * returned, else IO can hang.
1459  */
1460 static inline int scsi_host_queue_ready(struct request_queue *q,
1461 				   struct Scsi_Host *shost,
1462 				   struct scsi_device *sdev)
1463 {
1464 	unsigned int busy;
1465 
1466 	if (scsi_host_in_recovery(shost))
1467 		return 0;
1468 
1469 	busy = atomic_inc_return(&shost->host_busy) - 1;
1470 	if (atomic_read(&shost->host_blocked) > 0) {
1471 		if (busy)
1472 			goto starved;
1473 
1474 		/*
1475 		 * unblock after host_blocked iterates to zero
1476 		 */
1477 		if (atomic_dec_return(&shost->host_blocked) > 0)
1478 			goto out_dec;
1479 
1480 		SCSI_LOG_MLQUEUE(3,
1481 			shost_printk(KERN_INFO, shost,
1482 				     "unblocking host at zero depth\n"));
1483 	}
1484 
1485 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1486 		goto starved;
1487 	if (shost->host_self_blocked)
1488 		goto starved;
1489 
1490 	/* We're OK to process the command, so we can't be starved */
1491 	if (!list_empty(&sdev->starved_entry)) {
1492 		spin_lock_irq(shost->host_lock);
1493 		if (!list_empty(&sdev->starved_entry))
1494 			list_del_init(&sdev->starved_entry);
1495 		spin_unlock_irq(shost->host_lock);
1496 	}
1497 
1498 	return 1;
1499 
1500 starved:
1501 	spin_lock_irq(shost->host_lock);
1502 	if (list_empty(&sdev->starved_entry))
1503 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1504 	spin_unlock_irq(shost->host_lock);
1505 out_dec:
1506 	atomic_dec(&shost->host_busy);
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Busy state exporting function for request stacking drivers.
1512  *
1513  * For efficiency, no lock is taken to check the busy state of
1514  * shost/starget/sdev, since the returned value is not guaranteed and
1515  * may be changed after request stacking drivers call the function,
1516  * regardless of taking lock or not.
1517  *
1518  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1519  * needs to return 'not busy'. Otherwise, request stacking drivers
1520  * may hold requests forever.
1521  */
1522 static int scsi_lld_busy(struct request_queue *q)
1523 {
1524 	struct scsi_device *sdev = q->queuedata;
1525 	struct Scsi_Host *shost;
1526 
1527 	if (blk_queue_dying(q))
1528 		return 0;
1529 
1530 	shost = sdev->host;
1531 
1532 	/*
1533 	 * Ignore host/starget busy state.
1534 	 * Since block layer does not have a concept of fairness across
1535 	 * multiple queues, congestion of host/starget needs to be handled
1536 	 * in SCSI layer.
1537 	 */
1538 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1539 		return 1;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Kill a request for a dead device
1546  */
1547 static void scsi_kill_request(struct request *req, struct request_queue *q)
1548 {
1549 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1550 	struct scsi_device *sdev;
1551 	struct scsi_target *starget;
1552 	struct Scsi_Host *shost;
1553 
1554 	blk_start_request(req);
1555 
1556 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1557 
1558 	sdev = cmd->device;
1559 	starget = scsi_target(sdev);
1560 	shost = sdev->host;
1561 	scsi_init_cmd_errh(cmd);
1562 	cmd->result = DID_NO_CONNECT << 16;
1563 	atomic_inc(&cmd->device->iorequest_cnt);
1564 
1565 	/*
1566 	 * SCSI request completion path will do scsi_device_unbusy(),
1567 	 * bump busy counts.  To bump the counters, we need to dance
1568 	 * with the locks as normal issue path does.
1569 	 */
1570 	atomic_inc(&sdev->device_busy);
1571 	atomic_inc(&shost->host_busy);
1572 	if (starget->can_queue > 0)
1573 		atomic_inc(&starget->target_busy);
1574 
1575 	blk_complete_request(req);
1576 }
1577 
1578 static void scsi_softirq_done(struct request *rq)
1579 {
1580 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1581 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1582 	int disposition;
1583 
1584 	INIT_LIST_HEAD(&cmd->eh_entry);
1585 
1586 	atomic_inc(&cmd->device->iodone_cnt);
1587 	if (cmd->result)
1588 		atomic_inc(&cmd->device->ioerr_cnt);
1589 
1590 	disposition = scsi_decide_disposition(cmd);
1591 	if (disposition != SUCCESS &&
1592 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1593 		sdev_printk(KERN_ERR, cmd->device,
1594 			    "timing out command, waited %lus\n",
1595 			    wait_for/HZ);
1596 		disposition = SUCCESS;
1597 	}
1598 
1599 	scsi_log_completion(cmd, disposition);
1600 
1601 	switch (disposition) {
1602 		case SUCCESS:
1603 			scsi_finish_command(cmd);
1604 			break;
1605 		case NEEDS_RETRY:
1606 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1607 			break;
1608 		case ADD_TO_MLQUEUE:
1609 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1610 			break;
1611 		default:
1612 			scsi_eh_scmd_add(cmd);
1613 			break;
1614 	}
1615 }
1616 
1617 /**
1618  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1619  * @cmd: command block we are dispatching.
1620  *
1621  * Return: nonzero return request was rejected and device's queue needs to be
1622  * plugged.
1623  */
1624 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1625 {
1626 	struct Scsi_Host *host = cmd->device->host;
1627 	int rtn = 0;
1628 
1629 	atomic_inc(&cmd->device->iorequest_cnt);
1630 
1631 	/* check if the device is still usable */
1632 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1633 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1634 		 * returns an immediate error upwards, and signals
1635 		 * that the device is no longer present */
1636 		cmd->result = DID_NO_CONNECT << 16;
1637 		goto done;
1638 	}
1639 
1640 	/* Check to see if the scsi lld made this device blocked. */
1641 	if (unlikely(scsi_device_blocked(cmd->device))) {
1642 		/*
1643 		 * in blocked state, the command is just put back on
1644 		 * the device queue.  The suspend state has already
1645 		 * blocked the queue so future requests should not
1646 		 * occur until the device transitions out of the
1647 		 * suspend state.
1648 		 */
1649 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1650 			"queuecommand : device blocked\n"));
1651 		return SCSI_MLQUEUE_DEVICE_BUSY;
1652 	}
1653 
1654 	/* Store the LUN value in cmnd, if needed. */
1655 	if (cmd->device->lun_in_cdb)
1656 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1657 			       (cmd->device->lun << 5 & 0xe0);
1658 
1659 	scsi_log_send(cmd);
1660 
1661 	/*
1662 	 * Before we queue this command, check if the command
1663 	 * length exceeds what the host adapter can handle.
1664 	 */
1665 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1666 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1667 			       "queuecommand : command too long. "
1668 			       "cdb_size=%d host->max_cmd_len=%d\n",
1669 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1670 		cmd->result = (DID_ABORT << 16);
1671 		goto done;
1672 	}
1673 
1674 	if (unlikely(host->shost_state == SHOST_DEL)) {
1675 		cmd->result = (DID_NO_CONNECT << 16);
1676 		goto done;
1677 
1678 	}
1679 
1680 	trace_scsi_dispatch_cmd_start(cmd);
1681 	rtn = host->hostt->queuecommand(host, cmd);
1682 	if (rtn) {
1683 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1684 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1685 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1686 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1687 
1688 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1689 			"queuecommand : request rejected\n"));
1690 	}
1691 
1692 	return rtn;
1693  done:
1694 	cmd->scsi_done(cmd);
1695 	return 0;
1696 }
1697 
1698 /**
1699  * scsi_done - Invoke completion on finished SCSI command.
1700  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1701  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1702  *
1703  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1704  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1705  * calls blk_complete_request() for further processing.
1706  *
1707  * This function is interrupt context safe.
1708  */
1709 static void scsi_done(struct scsi_cmnd *cmd)
1710 {
1711 	trace_scsi_dispatch_cmd_done(cmd);
1712 	blk_complete_request(cmd->request);
1713 }
1714 
1715 /*
1716  * Function:    scsi_request_fn()
1717  *
1718  * Purpose:     Main strategy routine for SCSI.
1719  *
1720  * Arguments:   q       - Pointer to actual queue.
1721  *
1722  * Returns:     Nothing
1723  *
1724  * Lock status: IO request lock assumed to be held when called.
1725  */
1726 static void scsi_request_fn(struct request_queue *q)
1727 	__releases(q->queue_lock)
1728 	__acquires(q->queue_lock)
1729 {
1730 	struct scsi_device *sdev = q->queuedata;
1731 	struct Scsi_Host *shost;
1732 	struct scsi_cmnd *cmd;
1733 	struct request *req;
1734 
1735 	/*
1736 	 * To start with, we keep looping until the queue is empty, or until
1737 	 * the host is no longer able to accept any more requests.
1738 	 */
1739 	shost = sdev->host;
1740 	for (;;) {
1741 		int rtn;
1742 		/*
1743 		 * get next queueable request.  We do this early to make sure
1744 		 * that the request is fully prepared even if we cannot
1745 		 * accept it.
1746 		 */
1747 		req = blk_peek_request(q);
1748 		if (!req)
1749 			break;
1750 
1751 		if (unlikely(!scsi_device_online(sdev))) {
1752 			sdev_printk(KERN_ERR, sdev,
1753 				    "rejecting I/O to offline device\n");
1754 			scsi_kill_request(req, q);
1755 			continue;
1756 		}
1757 
1758 		if (!scsi_dev_queue_ready(q, sdev))
1759 			break;
1760 
1761 		/*
1762 		 * Remove the request from the request list.
1763 		 */
1764 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1765 			blk_start_request(req);
1766 
1767 		spin_unlock_irq(q->queue_lock);
1768 		cmd = blk_mq_rq_to_pdu(req);
1769 		if (cmd != req->special) {
1770 			printk(KERN_CRIT "impossible request in %s.\n"
1771 					 "please mail a stack trace to "
1772 					 "linux-scsi@vger.kernel.org\n",
1773 					 __func__);
1774 			blk_dump_rq_flags(req, "foo");
1775 			BUG();
1776 		}
1777 
1778 		/*
1779 		 * We hit this when the driver is using a host wide
1780 		 * tag map. For device level tag maps the queue_depth check
1781 		 * in the device ready fn would prevent us from trying
1782 		 * to allocate a tag. Since the map is a shared host resource
1783 		 * we add the dev to the starved list so it eventually gets
1784 		 * a run when a tag is freed.
1785 		 */
1786 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1787 			spin_lock_irq(shost->host_lock);
1788 			if (list_empty(&sdev->starved_entry))
1789 				list_add_tail(&sdev->starved_entry,
1790 					      &shost->starved_list);
1791 			spin_unlock_irq(shost->host_lock);
1792 			goto not_ready;
1793 		}
1794 
1795 		if (!scsi_target_queue_ready(shost, sdev))
1796 			goto not_ready;
1797 
1798 		if (!scsi_host_queue_ready(q, shost, sdev))
1799 			goto host_not_ready;
1800 
1801 		if (sdev->simple_tags)
1802 			cmd->flags |= SCMD_TAGGED;
1803 		else
1804 			cmd->flags &= ~SCMD_TAGGED;
1805 
1806 		/*
1807 		 * Finally, initialize any error handling parameters, and set up
1808 		 * the timers for timeouts.
1809 		 */
1810 		scsi_init_cmd_errh(cmd);
1811 
1812 		/*
1813 		 * Dispatch the command to the low-level driver.
1814 		 */
1815 		cmd->scsi_done = scsi_done;
1816 		rtn = scsi_dispatch_cmd(cmd);
1817 		if (rtn) {
1818 			scsi_queue_insert(cmd, rtn);
1819 			spin_lock_irq(q->queue_lock);
1820 			goto out_delay;
1821 		}
1822 		spin_lock_irq(q->queue_lock);
1823 	}
1824 
1825 	return;
1826 
1827  host_not_ready:
1828 	if (scsi_target(sdev)->can_queue > 0)
1829 		atomic_dec(&scsi_target(sdev)->target_busy);
1830  not_ready:
1831 	/*
1832 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1833 	 * must return with queue_lock held.
1834 	 *
1835 	 * Decrementing device_busy without checking it is OK, as all such
1836 	 * cases (host limits or settings) should run the queue at some
1837 	 * later time.
1838 	 */
1839 	spin_lock_irq(q->queue_lock);
1840 	blk_requeue_request(q, req);
1841 	atomic_dec(&sdev->device_busy);
1842 out_delay:
1843 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1844 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1845 }
1846 
1847 static inline blk_status_t prep_to_mq(int ret)
1848 {
1849 	switch (ret) {
1850 	case BLKPREP_OK:
1851 		return BLK_STS_OK;
1852 	case BLKPREP_DEFER:
1853 		return BLK_STS_RESOURCE;
1854 	default:
1855 		return BLK_STS_IOERR;
1856 	}
1857 }
1858 
1859 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1860 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1861 {
1862 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1863 		sizeof(struct scatterlist);
1864 }
1865 
1866 static int scsi_mq_prep_fn(struct request *req)
1867 {
1868 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1869 	struct scsi_device *sdev = req->q->queuedata;
1870 	struct Scsi_Host *shost = sdev->host;
1871 	struct scatterlist *sg;
1872 
1873 	scsi_init_command(sdev, cmd);
1874 
1875 	req->special = cmd;
1876 
1877 	cmd->request = req;
1878 
1879 	cmd->tag = req->tag;
1880 	cmd->prot_op = SCSI_PROT_NORMAL;
1881 
1882 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1883 	cmd->sdb.table.sgl = sg;
1884 
1885 	if (scsi_host_get_prot(shost)) {
1886 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1887 
1888 		cmd->prot_sdb->table.sgl =
1889 			(struct scatterlist *)(cmd->prot_sdb + 1);
1890 	}
1891 
1892 	if (blk_bidi_rq(req)) {
1893 		struct request *next_rq = req->next_rq;
1894 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1895 
1896 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1897 		bidi_sdb->table.sgl =
1898 			(struct scatterlist *)(bidi_sdb + 1);
1899 
1900 		next_rq->special = bidi_sdb;
1901 	}
1902 
1903 	blk_mq_start_request(req);
1904 
1905 	return scsi_setup_cmnd(sdev, req);
1906 }
1907 
1908 static void scsi_mq_done(struct scsi_cmnd *cmd)
1909 {
1910 	trace_scsi_dispatch_cmd_done(cmd);
1911 	blk_mq_complete_request(cmd->request);
1912 }
1913 
1914 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1915 			 const struct blk_mq_queue_data *bd)
1916 {
1917 	struct request *req = bd->rq;
1918 	struct request_queue *q = req->q;
1919 	struct scsi_device *sdev = q->queuedata;
1920 	struct Scsi_Host *shost = sdev->host;
1921 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1922 	blk_status_t ret;
1923 	int reason;
1924 
1925 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1926 	if (ret != BLK_STS_OK)
1927 		goto out;
1928 
1929 	ret = BLK_STS_RESOURCE;
1930 	if (!get_device(&sdev->sdev_gendev))
1931 		goto out;
1932 
1933 	if (!scsi_dev_queue_ready(q, sdev))
1934 		goto out_put_device;
1935 	if (!scsi_target_queue_ready(shost, sdev))
1936 		goto out_dec_device_busy;
1937 	if (!scsi_host_queue_ready(q, shost, sdev))
1938 		goto out_dec_target_busy;
1939 
1940 	if (!(req->rq_flags & RQF_DONTPREP)) {
1941 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1942 		if (ret != BLK_STS_OK)
1943 			goto out_dec_host_busy;
1944 		req->rq_flags |= RQF_DONTPREP;
1945 	} else {
1946 		blk_mq_start_request(req);
1947 	}
1948 
1949 	if (sdev->simple_tags)
1950 		cmd->flags |= SCMD_TAGGED;
1951 	else
1952 		cmd->flags &= ~SCMD_TAGGED;
1953 
1954 	scsi_init_cmd_errh(cmd);
1955 	cmd->scsi_done = scsi_mq_done;
1956 
1957 	reason = scsi_dispatch_cmd(cmd);
1958 	if (reason) {
1959 		scsi_set_blocked(cmd, reason);
1960 		ret = BLK_STS_RESOURCE;
1961 		goto out_dec_host_busy;
1962 	}
1963 
1964 	return BLK_STS_OK;
1965 
1966 out_dec_host_busy:
1967 	atomic_dec(&shost->host_busy);
1968 out_dec_target_busy:
1969 	if (scsi_target(sdev)->can_queue > 0)
1970 		atomic_dec(&scsi_target(sdev)->target_busy);
1971 out_dec_device_busy:
1972 	atomic_dec(&sdev->device_busy);
1973 out_put_device:
1974 	put_device(&sdev->sdev_gendev);
1975 out:
1976 	switch (ret) {
1977 	case BLK_STS_OK:
1978 		break;
1979 	case BLK_STS_RESOURCE:
1980 		if (atomic_read(&sdev->device_busy) == 0 &&
1981 		    !scsi_device_blocked(sdev))
1982 			blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1983 		break;
1984 	default:
1985 		/*
1986 		 * Make sure to release all allocated ressources when
1987 		 * we hit an error, as we will never see this command
1988 		 * again.
1989 		 */
1990 		if (req->rq_flags & RQF_DONTPREP)
1991 			scsi_mq_uninit_cmd(cmd);
1992 		break;
1993 	}
1994 	return ret;
1995 }
1996 
1997 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1998 		bool reserved)
1999 {
2000 	if (reserved)
2001 		return BLK_EH_RESET_TIMER;
2002 	return scsi_times_out(req);
2003 }
2004 
2005 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2006 				unsigned int hctx_idx, unsigned int numa_node)
2007 {
2008 	struct Scsi_Host *shost = set->driver_data;
2009 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2010 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2011 	struct scatterlist *sg;
2012 
2013 	if (unchecked_isa_dma)
2014 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2015 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2016 						    GFP_KERNEL, numa_node);
2017 	if (!cmd->sense_buffer)
2018 		return -ENOMEM;
2019 	cmd->req.sense = cmd->sense_buffer;
2020 
2021 	if (scsi_host_get_prot(shost)) {
2022 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2023 			shost->hostt->cmd_size;
2024 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2025 	}
2026 
2027 	return 0;
2028 }
2029 
2030 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2031 				 unsigned int hctx_idx)
2032 {
2033 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2034 
2035 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2036 			       cmd->sense_buffer);
2037 }
2038 
2039 static int scsi_map_queues(struct blk_mq_tag_set *set)
2040 {
2041 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2042 
2043 	if (shost->hostt->map_queues)
2044 		return shost->hostt->map_queues(shost);
2045 	return blk_mq_map_queues(set);
2046 }
2047 
2048 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2049 {
2050 	struct device *host_dev;
2051 	u64 bounce_limit = 0xffffffff;
2052 
2053 	if (shost->unchecked_isa_dma)
2054 		return BLK_BOUNCE_ISA;
2055 	/*
2056 	 * Platforms with virtual-DMA translation
2057 	 * hardware have no practical limit.
2058 	 */
2059 	if (!PCI_DMA_BUS_IS_PHYS)
2060 		return BLK_BOUNCE_ANY;
2061 
2062 	host_dev = scsi_get_device(shost);
2063 	if (host_dev && host_dev->dma_mask)
2064 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2065 
2066 	return bounce_limit;
2067 }
2068 
2069 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2070 {
2071 	struct device *dev = shost->dma_dev;
2072 
2073 	queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2074 
2075 	/*
2076 	 * this limit is imposed by hardware restrictions
2077 	 */
2078 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2079 					SG_MAX_SEGMENTS));
2080 
2081 	if (scsi_host_prot_dma(shost)) {
2082 		shost->sg_prot_tablesize =
2083 			min_not_zero(shost->sg_prot_tablesize,
2084 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2085 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2086 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2087 	}
2088 
2089 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2090 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2091 	blk_queue_segment_boundary(q, shost->dma_boundary);
2092 	dma_set_seg_boundary(dev, shost->dma_boundary);
2093 
2094 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2095 
2096 	if (!shost->use_clustering)
2097 		q->limits.cluster = 0;
2098 
2099 	/*
2100 	 * set a reasonable default alignment on word boundaries: the
2101 	 * host and device may alter it using
2102 	 * blk_queue_update_dma_alignment() later.
2103 	 */
2104 	blk_queue_dma_alignment(q, 0x03);
2105 }
2106 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2107 
2108 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2109 			    gfp_t gfp)
2110 {
2111 	struct Scsi_Host *shost = q->rq_alloc_data;
2112 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2113 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2114 
2115 	memset(cmd, 0, sizeof(*cmd));
2116 
2117 	if (unchecked_isa_dma)
2118 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2119 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2120 						    NUMA_NO_NODE);
2121 	if (!cmd->sense_buffer)
2122 		goto fail;
2123 	cmd->req.sense = cmd->sense_buffer;
2124 
2125 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2126 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2127 		if (!cmd->prot_sdb)
2128 			goto fail_free_sense;
2129 	}
2130 
2131 	return 0;
2132 
2133 fail_free_sense:
2134 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2135 fail:
2136 	return -ENOMEM;
2137 }
2138 
2139 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2140 {
2141 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2142 
2143 	if (cmd->prot_sdb)
2144 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2145 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2146 			       cmd->sense_buffer);
2147 }
2148 
2149 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2150 {
2151 	struct Scsi_Host *shost = sdev->host;
2152 	struct request_queue *q;
2153 
2154 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2155 	if (!q)
2156 		return NULL;
2157 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2158 	q->rq_alloc_data = shost;
2159 	q->request_fn = scsi_request_fn;
2160 	q->init_rq_fn = scsi_old_init_rq;
2161 	q->exit_rq_fn = scsi_old_exit_rq;
2162 	q->initialize_rq_fn = scsi_initialize_rq;
2163 
2164 	if (blk_init_allocated_queue(q) < 0) {
2165 		blk_cleanup_queue(q);
2166 		return NULL;
2167 	}
2168 
2169 	__scsi_init_queue(shost, q);
2170 	blk_queue_prep_rq(q, scsi_prep_fn);
2171 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2172 	blk_queue_softirq_done(q, scsi_softirq_done);
2173 	blk_queue_rq_timed_out(q, scsi_times_out);
2174 	blk_queue_lld_busy(q, scsi_lld_busy);
2175 	return q;
2176 }
2177 
2178 static const struct blk_mq_ops scsi_mq_ops = {
2179 	.queue_rq	= scsi_queue_rq,
2180 	.complete	= scsi_softirq_done,
2181 	.timeout	= scsi_timeout,
2182 #ifdef CONFIG_BLK_DEBUG_FS
2183 	.show_rq	= scsi_show_rq,
2184 #endif
2185 	.init_request	= scsi_mq_init_request,
2186 	.exit_request	= scsi_mq_exit_request,
2187 	.initialize_rq_fn = scsi_initialize_rq,
2188 	.map_queues	= scsi_map_queues,
2189 };
2190 
2191 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2192 {
2193 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2194 	if (IS_ERR(sdev->request_queue))
2195 		return NULL;
2196 
2197 	sdev->request_queue->queuedata = sdev;
2198 	__scsi_init_queue(sdev->host, sdev->request_queue);
2199 	return sdev->request_queue;
2200 }
2201 
2202 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2203 {
2204 	unsigned int cmd_size, sgl_size;
2205 
2206 	sgl_size = scsi_mq_sgl_size(shost);
2207 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2208 	if (scsi_host_get_prot(shost))
2209 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2210 
2211 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2212 	shost->tag_set.ops = &scsi_mq_ops;
2213 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2214 	shost->tag_set.queue_depth = shost->can_queue;
2215 	shost->tag_set.cmd_size = cmd_size;
2216 	shost->tag_set.numa_node = NUMA_NO_NODE;
2217 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2218 	shost->tag_set.flags |=
2219 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2220 	shost->tag_set.driver_data = shost;
2221 
2222 	return blk_mq_alloc_tag_set(&shost->tag_set);
2223 }
2224 
2225 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2226 {
2227 	blk_mq_free_tag_set(&shost->tag_set);
2228 }
2229 
2230 /**
2231  * scsi_device_from_queue - return sdev associated with a request_queue
2232  * @q: The request queue to return the sdev from
2233  *
2234  * Return the sdev associated with a request queue or NULL if the
2235  * request_queue does not reference a SCSI device.
2236  */
2237 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2238 {
2239 	struct scsi_device *sdev = NULL;
2240 
2241 	if (q->mq_ops) {
2242 		if (q->mq_ops == &scsi_mq_ops)
2243 			sdev = q->queuedata;
2244 	} else if (q->request_fn == scsi_request_fn)
2245 		sdev = q->queuedata;
2246 	if (!sdev || !get_device(&sdev->sdev_gendev))
2247 		sdev = NULL;
2248 
2249 	return sdev;
2250 }
2251 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2252 
2253 /*
2254  * Function:    scsi_block_requests()
2255  *
2256  * Purpose:     Utility function used by low-level drivers to prevent further
2257  *		commands from being queued to the device.
2258  *
2259  * Arguments:   shost       - Host in question
2260  *
2261  * Returns:     Nothing
2262  *
2263  * Lock status: No locks are assumed held.
2264  *
2265  * Notes:       There is no timer nor any other means by which the requests
2266  *		get unblocked other than the low-level driver calling
2267  *		scsi_unblock_requests().
2268  */
2269 void scsi_block_requests(struct Scsi_Host *shost)
2270 {
2271 	shost->host_self_blocked = 1;
2272 }
2273 EXPORT_SYMBOL(scsi_block_requests);
2274 
2275 /*
2276  * Function:    scsi_unblock_requests()
2277  *
2278  * Purpose:     Utility function used by low-level drivers to allow further
2279  *		commands from being queued to the device.
2280  *
2281  * Arguments:   shost       - Host in question
2282  *
2283  * Returns:     Nothing
2284  *
2285  * Lock status: No locks are assumed held.
2286  *
2287  * Notes:       There is no timer nor any other means by which the requests
2288  *		get unblocked other than the low-level driver calling
2289  *		scsi_unblock_requests().
2290  *
2291  *		This is done as an API function so that changes to the
2292  *		internals of the scsi mid-layer won't require wholesale
2293  *		changes to drivers that use this feature.
2294  */
2295 void scsi_unblock_requests(struct Scsi_Host *shost)
2296 {
2297 	shost->host_self_blocked = 0;
2298 	scsi_run_host_queues(shost);
2299 }
2300 EXPORT_SYMBOL(scsi_unblock_requests);
2301 
2302 int __init scsi_init_queue(void)
2303 {
2304 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2305 					   sizeof(struct scsi_data_buffer),
2306 					   0, 0, NULL);
2307 	if (!scsi_sdb_cache) {
2308 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2309 		return -ENOMEM;
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 void scsi_exit_queue(void)
2316 {
2317 	kmem_cache_destroy(scsi_sense_cache);
2318 	kmem_cache_destroy(scsi_sense_isadma_cache);
2319 	kmem_cache_destroy(scsi_sdb_cache);
2320 }
2321 
2322 /**
2323  *	scsi_mode_select - issue a mode select
2324  *	@sdev:	SCSI device to be queried
2325  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2326  *	@sp:	Save page bit (0 == don't save, 1 == save)
2327  *	@modepage: mode page being requested
2328  *	@buffer: request buffer (may not be smaller than eight bytes)
2329  *	@len:	length of request buffer.
2330  *	@timeout: command timeout
2331  *	@retries: number of retries before failing
2332  *	@data: returns a structure abstracting the mode header data
2333  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2334  *		must be SCSI_SENSE_BUFFERSIZE big.
2335  *
2336  *	Returns zero if successful; negative error number or scsi
2337  *	status on error
2338  *
2339  */
2340 int
2341 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2342 		 unsigned char *buffer, int len, int timeout, int retries,
2343 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2344 {
2345 	unsigned char cmd[10];
2346 	unsigned char *real_buffer;
2347 	int ret;
2348 
2349 	memset(cmd, 0, sizeof(cmd));
2350 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2351 
2352 	if (sdev->use_10_for_ms) {
2353 		if (len > 65535)
2354 			return -EINVAL;
2355 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2356 		if (!real_buffer)
2357 			return -ENOMEM;
2358 		memcpy(real_buffer + 8, buffer, len);
2359 		len += 8;
2360 		real_buffer[0] = 0;
2361 		real_buffer[1] = 0;
2362 		real_buffer[2] = data->medium_type;
2363 		real_buffer[3] = data->device_specific;
2364 		real_buffer[4] = data->longlba ? 0x01 : 0;
2365 		real_buffer[5] = 0;
2366 		real_buffer[6] = data->block_descriptor_length >> 8;
2367 		real_buffer[7] = data->block_descriptor_length;
2368 
2369 		cmd[0] = MODE_SELECT_10;
2370 		cmd[7] = len >> 8;
2371 		cmd[8] = len;
2372 	} else {
2373 		if (len > 255 || data->block_descriptor_length > 255 ||
2374 		    data->longlba)
2375 			return -EINVAL;
2376 
2377 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2378 		if (!real_buffer)
2379 			return -ENOMEM;
2380 		memcpy(real_buffer + 4, buffer, len);
2381 		len += 4;
2382 		real_buffer[0] = 0;
2383 		real_buffer[1] = data->medium_type;
2384 		real_buffer[2] = data->device_specific;
2385 		real_buffer[3] = data->block_descriptor_length;
2386 
2387 
2388 		cmd[0] = MODE_SELECT;
2389 		cmd[4] = len;
2390 	}
2391 
2392 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2393 			       sshdr, timeout, retries, NULL);
2394 	kfree(real_buffer);
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(scsi_mode_select);
2398 
2399 /**
2400  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2401  *	@sdev:	SCSI device to be queried
2402  *	@dbd:	set if mode sense will allow block descriptors to be returned
2403  *	@modepage: mode page being requested
2404  *	@buffer: request buffer (may not be smaller than eight bytes)
2405  *	@len:	length of request buffer.
2406  *	@timeout: command timeout
2407  *	@retries: number of retries before failing
2408  *	@data: returns a structure abstracting the mode header data
2409  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2410  *		must be SCSI_SENSE_BUFFERSIZE big.
2411  *
2412  *	Returns zero if unsuccessful, or the header offset (either 4
2413  *	or 8 depending on whether a six or ten byte command was
2414  *	issued) if successful.
2415  */
2416 int
2417 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2418 		  unsigned char *buffer, int len, int timeout, int retries,
2419 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2420 {
2421 	unsigned char cmd[12];
2422 	int use_10_for_ms;
2423 	int header_length;
2424 	int result, retry_count = retries;
2425 	struct scsi_sense_hdr my_sshdr;
2426 
2427 	memset(data, 0, sizeof(*data));
2428 	memset(&cmd[0], 0, 12);
2429 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2430 	cmd[2] = modepage;
2431 
2432 	/* caller might not be interested in sense, but we need it */
2433 	if (!sshdr)
2434 		sshdr = &my_sshdr;
2435 
2436  retry:
2437 	use_10_for_ms = sdev->use_10_for_ms;
2438 
2439 	if (use_10_for_ms) {
2440 		if (len < 8)
2441 			len = 8;
2442 
2443 		cmd[0] = MODE_SENSE_10;
2444 		cmd[8] = len;
2445 		header_length = 8;
2446 	} else {
2447 		if (len < 4)
2448 			len = 4;
2449 
2450 		cmd[0] = MODE_SENSE;
2451 		cmd[4] = len;
2452 		header_length = 4;
2453 	}
2454 
2455 	memset(buffer, 0, len);
2456 
2457 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2458 				  sshdr, timeout, retries, NULL);
2459 
2460 	/* This code looks awful: what it's doing is making sure an
2461 	 * ILLEGAL REQUEST sense return identifies the actual command
2462 	 * byte as the problem.  MODE_SENSE commands can return
2463 	 * ILLEGAL REQUEST if the code page isn't supported */
2464 
2465 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2466 	    (driver_byte(result) & DRIVER_SENSE)) {
2467 		if (scsi_sense_valid(sshdr)) {
2468 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2469 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2470 				/*
2471 				 * Invalid command operation code
2472 				 */
2473 				sdev->use_10_for_ms = 0;
2474 				goto retry;
2475 			}
2476 		}
2477 	}
2478 
2479 	if(scsi_status_is_good(result)) {
2480 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2481 			     (modepage == 6 || modepage == 8))) {
2482 			/* Initio breakage? */
2483 			header_length = 0;
2484 			data->length = 13;
2485 			data->medium_type = 0;
2486 			data->device_specific = 0;
2487 			data->longlba = 0;
2488 			data->block_descriptor_length = 0;
2489 		} else if(use_10_for_ms) {
2490 			data->length = buffer[0]*256 + buffer[1] + 2;
2491 			data->medium_type = buffer[2];
2492 			data->device_specific = buffer[3];
2493 			data->longlba = buffer[4] & 0x01;
2494 			data->block_descriptor_length = buffer[6]*256
2495 				+ buffer[7];
2496 		} else {
2497 			data->length = buffer[0] + 1;
2498 			data->medium_type = buffer[1];
2499 			data->device_specific = buffer[2];
2500 			data->block_descriptor_length = buffer[3];
2501 		}
2502 		data->header_length = header_length;
2503 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2504 		   scsi_sense_valid(sshdr) &&
2505 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2506 		retry_count--;
2507 		goto retry;
2508 	}
2509 
2510 	return result;
2511 }
2512 EXPORT_SYMBOL(scsi_mode_sense);
2513 
2514 /**
2515  *	scsi_test_unit_ready - test if unit is ready
2516  *	@sdev:	scsi device to change the state of.
2517  *	@timeout: command timeout
2518  *	@retries: number of retries before failing
2519  *	@sshdr: outpout pointer for decoded sense information.
2520  *
2521  *	Returns zero if unsuccessful or an error if TUR failed.  For
2522  *	removable media, UNIT_ATTENTION sets ->changed flag.
2523  **/
2524 int
2525 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2526 		     struct scsi_sense_hdr *sshdr)
2527 {
2528 	char cmd[] = {
2529 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2530 	};
2531 	int result;
2532 
2533 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2534 	do {
2535 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2536 					  timeout, retries, NULL);
2537 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2538 		    sshdr->sense_key == UNIT_ATTENTION)
2539 			sdev->changed = 1;
2540 	} while (scsi_sense_valid(sshdr) &&
2541 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2542 
2543 	return result;
2544 }
2545 EXPORT_SYMBOL(scsi_test_unit_ready);
2546 
2547 /**
2548  *	scsi_device_set_state - Take the given device through the device state model.
2549  *	@sdev:	scsi device to change the state of.
2550  *	@state:	state to change to.
2551  *
2552  *	Returns zero if successful or an error if the requested
2553  *	transition is illegal.
2554  */
2555 int
2556 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2557 {
2558 	enum scsi_device_state oldstate = sdev->sdev_state;
2559 
2560 	if (state == oldstate)
2561 		return 0;
2562 
2563 	switch (state) {
2564 	case SDEV_CREATED:
2565 		switch (oldstate) {
2566 		case SDEV_CREATED_BLOCK:
2567 			break;
2568 		default:
2569 			goto illegal;
2570 		}
2571 		break;
2572 
2573 	case SDEV_RUNNING:
2574 		switch (oldstate) {
2575 		case SDEV_CREATED:
2576 		case SDEV_OFFLINE:
2577 		case SDEV_TRANSPORT_OFFLINE:
2578 		case SDEV_QUIESCE:
2579 		case SDEV_BLOCK:
2580 			break;
2581 		default:
2582 			goto illegal;
2583 		}
2584 		break;
2585 
2586 	case SDEV_QUIESCE:
2587 		switch (oldstate) {
2588 		case SDEV_RUNNING:
2589 		case SDEV_OFFLINE:
2590 		case SDEV_TRANSPORT_OFFLINE:
2591 			break;
2592 		default:
2593 			goto illegal;
2594 		}
2595 		break;
2596 
2597 	case SDEV_OFFLINE:
2598 	case SDEV_TRANSPORT_OFFLINE:
2599 		switch (oldstate) {
2600 		case SDEV_CREATED:
2601 		case SDEV_RUNNING:
2602 		case SDEV_QUIESCE:
2603 		case SDEV_BLOCK:
2604 			break;
2605 		default:
2606 			goto illegal;
2607 		}
2608 		break;
2609 
2610 	case SDEV_BLOCK:
2611 		switch (oldstate) {
2612 		case SDEV_RUNNING:
2613 		case SDEV_CREATED_BLOCK:
2614 			break;
2615 		default:
2616 			goto illegal;
2617 		}
2618 		break;
2619 
2620 	case SDEV_CREATED_BLOCK:
2621 		switch (oldstate) {
2622 		case SDEV_CREATED:
2623 			break;
2624 		default:
2625 			goto illegal;
2626 		}
2627 		break;
2628 
2629 	case SDEV_CANCEL:
2630 		switch (oldstate) {
2631 		case SDEV_CREATED:
2632 		case SDEV_RUNNING:
2633 		case SDEV_QUIESCE:
2634 		case SDEV_OFFLINE:
2635 		case SDEV_TRANSPORT_OFFLINE:
2636 			break;
2637 		default:
2638 			goto illegal;
2639 		}
2640 		break;
2641 
2642 	case SDEV_DEL:
2643 		switch (oldstate) {
2644 		case SDEV_CREATED:
2645 		case SDEV_RUNNING:
2646 		case SDEV_OFFLINE:
2647 		case SDEV_TRANSPORT_OFFLINE:
2648 		case SDEV_CANCEL:
2649 		case SDEV_BLOCK:
2650 		case SDEV_CREATED_BLOCK:
2651 			break;
2652 		default:
2653 			goto illegal;
2654 		}
2655 		break;
2656 
2657 	}
2658 	sdev->sdev_state = state;
2659 	sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
2660 	return 0;
2661 
2662  illegal:
2663 	SCSI_LOG_ERROR_RECOVERY(1,
2664 				sdev_printk(KERN_ERR, sdev,
2665 					    "Illegal state transition %s->%s",
2666 					    scsi_device_state_name(oldstate),
2667 					    scsi_device_state_name(state))
2668 				);
2669 	return -EINVAL;
2670 }
2671 EXPORT_SYMBOL(scsi_device_set_state);
2672 
2673 /**
2674  * 	sdev_evt_emit - emit a single SCSI device uevent
2675  *	@sdev: associated SCSI device
2676  *	@evt: event to emit
2677  *
2678  *	Send a single uevent (scsi_event) to the associated scsi_device.
2679  */
2680 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2681 {
2682 	int idx = 0;
2683 	char *envp[3];
2684 
2685 	switch (evt->evt_type) {
2686 	case SDEV_EVT_MEDIA_CHANGE:
2687 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2688 		break;
2689 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2690 		scsi_rescan_device(&sdev->sdev_gendev);
2691 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2692 		break;
2693 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2694 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2695 		break;
2696 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2697 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2698 		break;
2699 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2700 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2701 		break;
2702 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2703 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2704 		break;
2705 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2706 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2707 		break;
2708 	default:
2709 		/* do nothing */
2710 		break;
2711 	}
2712 
2713 	envp[idx++] = NULL;
2714 
2715 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2716 }
2717 
2718 /**
2719  * 	sdev_evt_thread - send a uevent for each scsi event
2720  *	@work: work struct for scsi_device
2721  *
2722  *	Dispatch queued events to their associated scsi_device kobjects
2723  *	as uevents.
2724  */
2725 void scsi_evt_thread(struct work_struct *work)
2726 {
2727 	struct scsi_device *sdev;
2728 	enum scsi_device_event evt_type;
2729 	LIST_HEAD(event_list);
2730 
2731 	sdev = container_of(work, struct scsi_device, event_work);
2732 
2733 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2734 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2735 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2736 
2737 	while (1) {
2738 		struct scsi_event *evt;
2739 		struct list_head *this, *tmp;
2740 		unsigned long flags;
2741 
2742 		spin_lock_irqsave(&sdev->list_lock, flags);
2743 		list_splice_init(&sdev->event_list, &event_list);
2744 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2745 
2746 		if (list_empty(&event_list))
2747 			break;
2748 
2749 		list_for_each_safe(this, tmp, &event_list) {
2750 			evt = list_entry(this, struct scsi_event, node);
2751 			list_del(&evt->node);
2752 			scsi_evt_emit(sdev, evt);
2753 			kfree(evt);
2754 		}
2755 	}
2756 }
2757 
2758 /**
2759  * 	sdev_evt_send - send asserted event to uevent thread
2760  *	@sdev: scsi_device event occurred on
2761  *	@evt: event to send
2762  *
2763  *	Assert scsi device event asynchronously.
2764  */
2765 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2766 {
2767 	unsigned long flags;
2768 
2769 #if 0
2770 	/* FIXME: currently this check eliminates all media change events
2771 	 * for polled devices.  Need to update to discriminate between AN
2772 	 * and polled events */
2773 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2774 		kfree(evt);
2775 		return;
2776 	}
2777 #endif
2778 
2779 	spin_lock_irqsave(&sdev->list_lock, flags);
2780 	list_add_tail(&evt->node, &sdev->event_list);
2781 	schedule_work(&sdev->event_work);
2782 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2783 }
2784 EXPORT_SYMBOL_GPL(sdev_evt_send);
2785 
2786 /**
2787  * 	sdev_evt_alloc - allocate a new scsi event
2788  *	@evt_type: type of event to allocate
2789  *	@gfpflags: GFP flags for allocation
2790  *
2791  *	Allocates and returns a new scsi_event.
2792  */
2793 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2794 				  gfp_t gfpflags)
2795 {
2796 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2797 	if (!evt)
2798 		return NULL;
2799 
2800 	evt->evt_type = evt_type;
2801 	INIT_LIST_HEAD(&evt->node);
2802 
2803 	/* evt_type-specific initialization, if any */
2804 	switch (evt_type) {
2805 	case SDEV_EVT_MEDIA_CHANGE:
2806 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2807 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2808 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2809 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2810 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2811 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2812 	default:
2813 		/* do nothing */
2814 		break;
2815 	}
2816 
2817 	return evt;
2818 }
2819 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2820 
2821 /**
2822  * 	sdev_evt_send_simple - send asserted event to uevent thread
2823  *	@sdev: scsi_device event occurred on
2824  *	@evt_type: type of event to send
2825  *	@gfpflags: GFP flags for allocation
2826  *
2827  *	Assert scsi device event asynchronously, given an event type.
2828  */
2829 void sdev_evt_send_simple(struct scsi_device *sdev,
2830 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2831 {
2832 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2833 	if (!evt) {
2834 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2835 			    evt_type);
2836 		return;
2837 	}
2838 
2839 	sdev_evt_send(sdev, evt);
2840 }
2841 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2842 
2843 /**
2844  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2845  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2846  */
2847 static int scsi_request_fn_active(struct scsi_device *sdev)
2848 {
2849 	struct request_queue *q = sdev->request_queue;
2850 	int request_fn_active;
2851 
2852 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2853 
2854 	spin_lock_irq(q->queue_lock);
2855 	request_fn_active = q->request_fn_active;
2856 	spin_unlock_irq(q->queue_lock);
2857 
2858 	return request_fn_active;
2859 }
2860 
2861 /**
2862  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2863  * @sdev: SCSI device pointer.
2864  *
2865  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2866  * invoked from scsi_request_fn() have finished.
2867  */
2868 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2869 {
2870 	WARN_ON_ONCE(sdev->host->use_blk_mq);
2871 
2872 	while (scsi_request_fn_active(sdev))
2873 		msleep(20);
2874 }
2875 
2876 /**
2877  *	scsi_device_quiesce - Block user issued commands.
2878  *	@sdev:	scsi device to quiesce.
2879  *
2880  *	This works by trying to transition to the SDEV_QUIESCE state
2881  *	(which must be a legal transition).  When the device is in this
2882  *	state, only special requests will be accepted, all others will
2883  *	be deferred.  Since special requests may also be requeued requests,
2884  *	a successful return doesn't guarantee the device will be
2885  *	totally quiescent.
2886  *
2887  *	Must be called with user context, may sleep.
2888  *
2889  *	Returns zero if unsuccessful or an error if not.
2890  */
2891 int
2892 scsi_device_quiesce(struct scsi_device *sdev)
2893 {
2894 	int err;
2895 
2896 	mutex_lock(&sdev->state_mutex);
2897 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2898 	mutex_unlock(&sdev->state_mutex);
2899 
2900 	if (err)
2901 		return err;
2902 
2903 	scsi_run_queue(sdev->request_queue);
2904 	while (atomic_read(&sdev->device_busy)) {
2905 		msleep_interruptible(200);
2906 		scsi_run_queue(sdev->request_queue);
2907 	}
2908 	return 0;
2909 }
2910 EXPORT_SYMBOL(scsi_device_quiesce);
2911 
2912 /**
2913  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2914  *	@sdev:	scsi device to resume.
2915  *
2916  *	Moves the device from quiesced back to running and restarts the
2917  *	queues.
2918  *
2919  *	Must be called with user context, may sleep.
2920  */
2921 void scsi_device_resume(struct scsi_device *sdev)
2922 {
2923 	/* check if the device state was mutated prior to resume, and if
2924 	 * so assume the state is being managed elsewhere (for example
2925 	 * device deleted during suspend)
2926 	 */
2927 	mutex_lock(&sdev->state_mutex);
2928 	if (sdev->sdev_state == SDEV_QUIESCE &&
2929 	    scsi_device_set_state(sdev, SDEV_RUNNING) == 0)
2930 		scsi_run_queue(sdev->request_queue);
2931 	mutex_unlock(&sdev->state_mutex);
2932 }
2933 EXPORT_SYMBOL(scsi_device_resume);
2934 
2935 static void
2936 device_quiesce_fn(struct scsi_device *sdev, void *data)
2937 {
2938 	scsi_device_quiesce(sdev);
2939 }
2940 
2941 void
2942 scsi_target_quiesce(struct scsi_target *starget)
2943 {
2944 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2945 }
2946 EXPORT_SYMBOL(scsi_target_quiesce);
2947 
2948 static void
2949 device_resume_fn(struct scsi_device *sdev, void *data)
2950 {
2951 	scsi_device_resume(sdev);
2952 }
2953 
2954 void
2955 scsi_target_resume(struct scsi_target *starget)
2956 {
2957 	starget_for_each_device(starget, NULL, device_resume_fn);
2958 }
2959 EXPORT_SYMBOL(scsi_target_resume);
2960 
2961 /**
2962  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2963  * @sdev: device to block
2964  *
2965  * Pause SCSI command processing on the specified device. Does not sleep.
2966  *
2967  * Returns zero if successful or a negative error code upon failure.
2968  *
2969  * Notes:
2970  * This routine transitions the device to the SDEV_BLOCK state (which must be
2971  * a legal transition). When the device is in this state, command processing
2972  * is paused until the device leaves the SDEV_BLOCK state. See also
2973  * scsi_internal_device_unblock_nowait().
2974  */
2975 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2976 {
2977 	struct request_queue *q = sdev->request_queue;
2978 	unsigned long flags;
2979 	int err = 0;
2980 
2981 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2982 	if (err) {
2983 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2984 
2985 		if (err)
2986 			return err;
2987 	}
2988 
2989 	/*
2990 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2991 	 * block layer from calling the midlayer with this device's
2992 	 * request queue.
2993 	 */
2994 	if (q->mq_ops) {
2995 		blk_mq_quiesce_queue_nowait(q);
2996 	} else {
2997 		spin_lock_irqsave(q->queue_lock, flags);
2998 		blk_stop_queue(q);
2999 		spin_unlock_irqrestore(q->queue_lock, flags);
3000 	}
3001 
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3005 
3006 /**
3007  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3008  * @sdev: device to block
3009  *
3010  * Pause SCSI command processing on the specified device and wait until all
3011  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3012  *
3013  * Returns zero if successful or a negative error code upon failure.
3014  *
3015  * Note:
3016  * This routine transitions the device to the SDEV_BLOCK state (which must be
3017  * a legal transition). When the device is in this state, command processing
3018  * is paused until the device leaves the SDEV_BLOCK state. See also
3019  * scsi_internal_device_unblock().
3020  *
3021  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3022  * scsi_internal_device_block() has blocked a SCSI device and also
3023  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3024  */
3025 static int scsi_internal_device_block(struct scsi_device *sdev)
3026 {
3027 	struct request_queue *q = sdev->request_queue;
3028 	int err;
3029 
3030 	mutex_lock(&sdev->state_mutex);
3031 	err = scsi_internal_device_block_nowait(sdev);
3032 	if (err == 0) {
3033 		if (q->mq_ops)
3034 			blk_mq_quiesce_queue(q);
3035 		else
3036 			scsi_wait_for_queuecommand(sdev);
3037 	}
3038 	mutex_unlock(&sdev->state_mutex);
3039 
3040 	return err;
3041 }
3042 
3043 void scsi_start_queue(struct scsi_device *sdev)
3044 {
3045 	struct request_queue *q = sdev->request_queue;
3046 	unsigned long flags;
3047 
3048 	if (q->mq_ops) {
3049 		blk_mq_unquiesce_queue(q);
3050 	} else {
3051 		spin_lock_irqsave(q->queue_lock, flags);
3052 		blk_start_queue(q);
3053 		spin_unlock_irqrestore(q->queue_lock, flags);
3054 	}
3055 }
3056 
3057 /**
3058  * scsi_internal_device_unblock_nowait - resume a device after a block request
3059  * @sdev:	device to resume
3060  * @new_state:	state to set the device to after unblocking
3061  *
3062  * Restart the device queue for a previously suspended SCSI device. Does not
3063  * sleep.
3064  *
3065  * Returns zero if successful or a negative error code upon failure.
3066  *
3067  * Notes:
3068  * This routine transitions the device to the SDEV_RUNNING state or to one of
3069  * the offline states (which must be a legal transition) allowing the midlayer
3070  * to goose the queue for this device.
3071  */
3072 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3073 					enum scsi_device_state new_state)
3074 {
3075 	/*
3076 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3077 	 * offlined states and goose the device queue if successful.
3078 	 */
3079 	switch (sdev->sdev_state) {
3080 	case SDEV_BLOCK:
3081 	case SDEV_TRANSPORT_OFFLINE:
3082 		sdev->sdev_state = new_state;
3083 		sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3084 		break;
3085 	case SDEV_CREATED_BLOCK:
3086 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3087 		    new_state == SDEV_OFFLINE)
3088 			sdev->sdev_state = new_state;
3089 		else
3090 			sdev->sdev_state = SDEV_CREATED;
3091 		sysfs_notify(&sdev->sdev_gendev.kobj, NULL, "state");
3092 		break;
3093 	case SDEV_CANCEL:
3094 	case SDEV_OFFLINE:
3095 		break;
3096 	default:
3097 		return -EINVAL;
3098 	}
3099 	scsi_start_queue(sdev);
3100 
3101 	return 0;
3102 }
3103 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3104 
3105 /**
3106  * scsi_internal_device_unblock - resume a device after a block request
3107  * @sdev:	device to resume
3108  * @new_state:	state to set the device to after unblocking
3109  *
3110  * Restart the device queue for a previously suspended SCSI device. May sleep.
3111  *
3112  * Returns zero if successful or a negative error code upon failure.
3113  *
3114  * Notes:
3115  * This routine transitions the device to the SDEV_RUNNING state or to one of
3116  * the offline states (which must be a legal transition) allowing the midlayer
3117  * to goose the queue for this device.
3118  */
3119 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3120 					enum scsi_device_state new_state)
3121 {
3122 	int ret;
3123 
3124 	mutex_lock(&sdev->state_mutex);
3125 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3126 	mutex_unlock(&sdev->state_mutex);
3127 
3128 	return ret;
3129 }
3130 
3131 static void
3132 device_block(struct scsi_device *sdev, void *data)
3133 {
3134 	scsi_internal_device_block(sdev);
3135 }
3136 
3137 static int
3138 target_block(struct device *dev, void *data)
3139 {
3140 	if (scsi_is_target_device(dev))
3141 		starget_for_each_device(to_scsi_target(dev), NULL,
3142 					device_block);
3143 	return 0;
3144 }
3145 
3146 void
3147 scsi_target_block(struct device *dev)
3148 {
3149 	if (scsi_is_target_device(dev))
3150 		starget_for_each_device(to_scsi_target(dev), NULL,
3151 					device_block);
3152 	else
3153 		device_for_each_child(dev, NULL, target_block);
3154 }
3155 EXPORT_SYMBOL_GPL(scsi_target_block);
3156 
3157 static void
3158 device_unblock(struct scsi_device *sdev, void *data)
3159 {
3160 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3161 }
3162 
3163 static int
3164 target_unblock(struct device *dev, void *data)
3165 {
3166 	if (scsi_is_target_device(dev))
3167 		starget_for_each_device(to_scsi_target(dev), data,
3168 					device_unblock);
3169 	return 0;
3170 }
3171 
3172 void
3173 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3174 {
3175 	if (scsi_is_target_device(dev))
3176 		starget_for_each_device(to_scsi_target(dev), &new_state,
3177 					device_unblock);
3178 	else
3179 		device_for_each_child(dev, &new_state, target_unblock);
3180 }
3181 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3182 
3183 /**
3184  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3185  * @sgl:	scatter-gather list
3186  * @sg_count:	number of segments in sg
3187  * @offset:	offset in bytes into sg, on return offset into the mapped area
3188  * @len:	bytes to map, on return number of bytes mapped
3189  *
3190  * Returns virtual address of the start of the mapped page
3191  */
3192 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3193 			  size_t *offset, size_t *len)
3194 {
3195 	int i;
3196 	size_t sg_len = 0, len_complete = 0;
3197 	struct scatterlist *sg;
3198 	struct page *page;
3199 
3200 	WARN_ON(!irqs_disabled());
3201 
3202 	for_each_sg(sgl, sg, sg_count, i) {
3203 		len_complete = sg_len; /* Complete sg-entries */
3204 		sg_len += sg->length;
3205 		if (sg_len > *offset)
3206 			break;
3207 	}
3208 
3209 	if (unlikely(i == sg_count)) {
3210 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3211 			"elements %d\n",
3212 		       __func__, sg_len, *offset, sg_count);
3213 		WARN_ON(1);
3214 		return NULL;
3215 	}
3216 
3217 	/* Offset starting from the beginning of first page in this sg-entry */
3218 	*offset = *offset - len_complete + sg->offset;
3219 
3220 	/* Assumption: contiguous pages can be accessed as "page + i" */
3221 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3222 	*offset &= ~PAGE_MASK;
3223 
3224 	/* Bytes in this sg-entry from *offset to the end of the page */
3225 	sg_len = PAGE_SIZE - *offset;
3226 	if (*len > sg_len)
3227 		*len = sg_len;
3228 
3229 	return kmap_atomic(page);
3230 }
3231 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3232 
3233 /**
3234  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3235  * @virt:	virtual address to be unmapped
3236  */
3237 void scsi_kunmap_atomic_sg(void *virt)
3238 {
3239 	kunmap_atomic(virt);
3240 }
3241 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3242 
3243 void sdev_disable_disk_events(struct scsi_device *sdev)
3244 {
3245 	atomic_inc(&sdev->disk_events_disable_depth);
3246 }
3247 EXPORT_SYMBOL(sdev_disable_disk_events);
3248 
3249 void sdev_enable_disk_events(struct scsi_device *sdev)
3250 {
3251 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3252 		return;
3253 	atomic_dec(&sdev->disk_events_disable_depth);
3254 }
3255 EXPORT_SYMBOL(sdev_enable_disk_events);
3256 
3257 /**
3258  * scsi_vpd_lun_id - return a unique device identification
3259  * @sdev: SCSI device
3260  * @id:   buffer for the identification
3261  * @id_len:  length of the buffer
3262  *
3263  * Copies a unique device identification into @id based
3264  * on the information in the VPD page 0x83 of the device.
3265  * The string will be formatted as a SCSI name string.
3266  *
3267  * Returns the length of the identification or error on failure.
3268  * If the identifier is longer than the supplied buffer the actual
3269  * identifier length is returned and the buffer is not zero-padded.
3270  */
3271 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3272 {
3273 	u8 cur_id_type = 0xff;
3274 	u8 cur_id_size = 0;
3275 	unsigned char *d, *cur_id_str;
3276 	unsigned char __rcu *vpd_pg83;
3277 	int id_size = -EINVAL;
3278 
3279 	rcu_read_lock();
3280 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3281 	if (!vpd_pg83) {
3282 		rcu_read_unlock();
3283 		return -ENXIO;
3284 	}
3285 
3286 	/*
3287 	 * Look for the correct descriptor.
3288 	 * Order of preference for lun descriptor:
3289 	 * - SCSI name string
3290 	 * - NAA IEEE Registered Extended
3291 	 * - EUI-64 based 16-byte
3292 	 * - EUI-64 based 12-byte
3293 	 * - NAA IEEE Registered
3294 	 * - NAA IEEE Extended
3295 	 * - T10 Vendor ID
3296 	 * as longer descriptors reduce the likelyhood
3297 	 * of identification clashes.
3298 	 */
3299 
3300 	/* The id string must be at least 20 bytes + terminating NULL byte */
3301 	if (id_len < 21) {
3302 		rcu_read_unlock();
3303 		return -EINVAL;
3304 	}
3305 
3306 	memset(id, 0, id_len);
3307 	d = vpd_pg83 + 4;
3308 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3309 		/* Skip designators not referring to the LUN */
3310 		if ((d[1] & 0x30) != 0x00)
3311 			goto next_desig;
3312 
3313 		switch (d[1] & 0xf) {
3314 		case 0x1:
3315 			/* T10 Vendor ID */
3316 			if (cur_id_size > d[3])
3317 				break;
3318 			/* Prefer anything */
3319 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3320 				break;
3321 			cur_id_size = d[3];
3322 			if (cur_id_size + 4 > id_len)
3323 				cur_id_size = id_len - 4;
3324 			cur_id_str = d + 4;
3325 			cur_id_type = d[1] & 0xf;
3326 			id_size = snprintf(id, id_len, "t10.%*pE",
3327 					   cur_id_size, cur_id_str);
3328 			break;
3329 		case 0x2:
3330 			/* EUI-64 */
3331 			if (cur_id_size > d[3])
3332 				break;
3333 			/* Prefer NAA IEEE Registered Extended */
3334 			if (cur_id_type == 0x3 &&
3335 			    cur_id_size == d[3])
3336 				break;
3337 			cur_id_size = d[3];
3338 			cur_id_str = d + 4;
3339 			cur_id_type = d[1] & 0xf;
3340 			switch (cur_id_size) {
3341 			case 8:
3342 				id_size = snprintf(id, id_len,
3343 						   "eui.%8phN",
3344 						   cur_id_str);
3345 				break;
3346 			case 12:
3347 				id_size = snprintf(id, id_len,
3348 						   "eui.%12phN",
3349 						   cur_id_str);
3350 				break;
3351 			case 16:
3352 				id_size = snprintf(id, id_len,
3353 						   "eui.%16phN",
3354 						   cur_id_str);
3355 				break;
3356 			default:
3357 				cur_id_size = 0;
3358 				break;
3359 			}
3360 			break;
3361 		case 0x3:
3362 			/* NAA */
3363 			if (cur_id_size > d[3])
3364 				break;
3365 			cur_id_size = d[3];
3366 			cur_id_str = d + 4;
3367 			cur_id_type = d[1] & 0xf;
3368 			switch (cur_id_size) {
3369 			case 8:
3370 				id_size = snprintf(id, id_len,
3371 						   "naa.%8phN",
3372 						   cur_id_str);
3373 				break;
3374 			case 16:
3375 				id_size = snprintf(id, id_len,
3376 						   "naa.%16phN",
3377 						   cur_id_str);
3378 				break;
3379 			default:
3380 				cur_id_size = 0;
3381 				break;
3382 			}
3383 			break;
3384 		case 0x8:
3385 			/* SCSI name string */
3386 			if (cur_id_size + 4 > d[3])
3387 				break;
3388 			/* Prefer others for truncated descriptor */
3389 			if (cur_id_size && d[3] > id_len)
3390 				break;
3391 			cur_id_size = id_size = d[3];
3392 			cur_id_str = d + 4;
3393 			cur_id_type = d[1] & 0xf;
3394 			if (cur_id_size >= id_len)
3395 				cur_id_size = id_len - 1;
3396 			memcpy(id, cur_id_str, cur_id_size);
3397 			/* Decrease priority for truncated descriptor */
3398 			if (cur_id_size != id_size)
3399 				cur_id_size = 6;
3400 			break;
3401 		default:
3402 			break;
3403 		}
3404 next_desig:
3405 		d += d[3] + 4;
3406 	}
3407 	rcu_read_unlock();
3408 
3409 	return id_size;
3410 }
3411 EXPORT_SYMBOL(scsi_vpd_lun_id);
3412 
3413 /*
3414  * scsi_vpd_tpg_id - return a target port group identifier
3415  * @sdev: SCSI device
3416  *
3417  * Returns the Target Port Group identifier from the information
3418  * froom VPD page 0x83 of the device.
3419  *
3420  * Returns the identifier or error on failure.
3421  */
3422 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3423 {
3424 	unsigned char *d;
3425 	unsigned char __rcu *vpd_pg83;
3426 	int group_id = -EAGAIN, rel_port = -1;
3427 
3428 	rcu_read_lock();
3429 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3430 	if (!vpd_pg83) {
3431 		rcu_read_unlock();
3432 		return -ENXIO;
3433 	}
3434 
3435 	d = sdev->vpd_pg83 + 4;
3436 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3437 		switch (d[1] & 0xf) {
3438 		case 0x4:
3439 			/* Relative target port */
3440 			rel_port = get_unaligned_be16(&d[6]);
3441 			break;
3442 		case 0x5:
3443 			/* Target port group */
3444 			group_id = get_unaligned_be16(&d[6]);
3445 			break;
3446 		default:
3447 			break;
3448 		}
3449 		d += d[3] + 4;
3450 	}
3451 	rcu_read_unlock();
3452 
3453 	if (group_id >= 0 && rel_id && rel_port != -1)
3454 		*rel_id = rel_port;
3455 
3456 	return group_id;
3457 }
3458 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3459