xref: /openbmc/linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 64794d6db49730d22f440aef0cf4da98a56a4ea3)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64 
65 
66 #include "mpt3sas_base.h"
67 
68 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
69 
70 
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72 
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH	30000
75 #define MAX_CHAIN_DEPTH		100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79 
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83 
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87 
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91 
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95 	" max msix vectors");
96 
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 	"irq poll weight (default= one fourth of HBA queue depth)");
101 
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 	" enable detection of firmware fault and halt firmware - (default=0)");
105 
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 	"0 - balanced: high iops mode is enabled &\n\t\t"
111 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 	"1 - iops: high iops mode is disabled &\n\t\t"
113 	"interrupt coalescing is enabled on all queues,\n\t\t"
114 	"2 - latency: high iops mode is disabled &\n\t\t"
115 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 	"\t\tdefault - default perf_mode is 'balanced'"
117 	);
118 
119 static int poll_queues;
120 module_param(poll_queues, int, 0444);
121 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
122 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
123 	"when poll_queues are enabled then &\n\t\t"
124 	"perf_mode is set to latency mode. &\n\t\t"
125 	);
126 
127 enum mpt3sas_perf_mode {
128 	MPT_PERF_MODE_DEFAULT	= -1,
129 	MPT_PERF_MODE_BALANCED	= 0,
130 	MPT_PERF_MODE_IOPS	= 1,
131 	MPT_PERF_MODE_LATENCY	= 2,
132 };
133 
134 static int
135 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
136 		u32 ioc_state, int timeout);
137 static int
138 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
139 static void
140 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
141 
142 /**
143  * mpt3sas_base_check_cmd_timeout - Function
144  *		to check timeout and command termination due
145  *		to Host reset.
146  *
147  * @ioc:	per adapter object.
148  * @status:	Status of issued command.
149  * @mpi_request:mf request pointer.
150  * @sz:		size of buffer.
151  *
152  * Return: 1/0 Reset to be done or Not
153  */
154 u8
155 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
156 		u8 status, void *mpi_request, int sz)
157 {
158 	u8 issue_reset = 0;
159 
160 	if (!(status & MPT3_CMD_RESET))
161 		issue_reset = 1;
162 
163 	ioc_err(ioc, "Command %s\n",
164 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
165 	_debug_dump_mf(mpi_request, sz);
166 
167 	return issue_reset;
168 }
169 
170 /**
171  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172  * @val: ?
173  * @kp: ?
174  *
175  * Return: ?
176  */
177 static int
178 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
179 {
180 	int ret = param_set_int(val, kp);
181 	struct MPT3SAS_ADAPTER *ioc;
182 
183 	if (ret)
184 		return ret;
185 
186 	/* global ioc spinlock to protect controller list on list operations */
187 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
188 	spin_lock(&gioc_lock);
189 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
190 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
191 	spin_unlock(&gioc_lock);
192 	return 0;
193 }
194 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
195 	param_get_int, &mpt3sas_fwfault_debug, 0644);
196 
197 /**
198  * _base_readl_aero - retry readl for max three times.
199  * @addr: MPT Fusion system interface register address
200  *
201  * Retry the readl() for max three times if it gets zero value
202  * while reading the system interface register.
203  */
204 static inline u32
205 _base_readl_aero(const volatile void __iomem *addr)
206 {
207 	u32 i = 0, ret_val;
208 
209 	do {
210 		ret_val = readl(addr);
211 		i++;
212 	} while (ret_val == 0 && i < 3);
213 
214 	return ret_val;
215 }
216 
217 static inline u32
218 _base_readl(const volatile void __iomem *addr)
219 {
220 	return readl(addr);
221 }
222 
223 /**
224  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
225  *				  in BAR0 space.
226  *
227  * @ioc: per adapter object
228  * @reply: reply message frame(lower 32bit addr)
229  * @index: System request message index.
230  */
231 static void
232 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
233 		u32 index)
234 {
235 	/*
236 	 * 256 is offset within sys register.
237 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
238 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
239 	 */
240 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
241 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
242 			MPI_FRAME_START_OFFSET +
243 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
244 
245 	writel(reply, reply_free_iomem);
246 }
247 
248 /**
249  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
250  *				to system/BAR0 region.
251  *
252  * @dst_iomem: Pointer to the destination location in BAR0 space.
253  * @src: Pointer to the Source data.
254  * @size: Size of data to be copied.
255  */
256 static void
257 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
258 {
259 	int i;
260 	u32 *src_virt_mem = (u32 *)src;
261 
262 	for (i = 0; i < size/4; i++)
263 		writel((u32)src_virt_mem[i],
264 				(void __iomem *)dst_iomem + (i * 4));
265 }
266 
267 /**
268  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
269  *
270  * @dst_iomem: Pointer to the destination location in BAR0 space.
271  * @src: Pointer to the Source data.
272  * @size: Size of data to be copied.
273  */
274 static void
275 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
276 {
277 	int i;
278 	u32 *src_virt_mem = (u32 *)(src);
279 
280 	for (i = 0; i < size/4; i++)
281 		writel((u32)src_virt_mem[i],
282 			(void __iomem *)dst_iomem + (i * 4));
283 }
284 
285 /**
286  * _base_get_chain - Calculates and Returns virtual chain address
287  *			 for the provided smid in BAR0 space.
288  *
289  * @ioc: per adapter object
290  * @smid: system request message index
291  * @sge_chain_count: Scatter gather chain count.
292  *
293  * Return: the chain address.
294  */
295 static inline void __iomem*
296 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
297 		u8 sge_chain_count)
298 {
299 	void __iomem *base_chain, *chain_virt;
300 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
301 
302 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
303 		(cmd_credit * ioc->request_sz) +
304 		REPLY_FREE_POOL_SIZE;
305 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
306 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
307 	return chain_virt;
308 }
309 
310 /**
311  * _base_get_chain_phys - Calculates and Returns physical address
312  *			in BAR0 for scatter gather chains, for
313  *			the provided smid.
314  *
315  * @ioc: per adapter object
316  * @smid: system request message index
317  * @sge_chain_count: Scatter gather chain count.
318  *
319  * Return: Physical chain address.
320  */
321 static inline phys_addr_t
322 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
323 		u8 sge_chain_count)
324 {
325 	phys_addr_t base_chain_phys, chain_phys;
326 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
327 
328 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
329 		(cmd_credit * ioc->request_sz) +
330 		REPLY_FREE_POOL_SIZE;
331 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
332 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
333 	return chain_phys;
334 }
335 
336 /**
337  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
338  *			buffer address for the provided smid.
339  *			(Each smid can have 64K starts from 17024)
340  *
341  * @ioc: per adapter object
342  * @smid: system request message index
343  *
344  * Return: Pointer to buffer location in BAR0.
345  */
346 
347 static void __iomem *
348 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
349 {
350 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
351 	// Added extra 1 to reach end of chain.
352 	void __iomem *chain_end = _base_get_chain(ioc,
353 			cmd_credit + 1,
354 			ioc->facts.MaxChainDepth);
355 	return chain_end + (smid * 64 * 1024);
356 }
357 
358 /**
359  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
360  *		Host buffer Physical address for the provided smid.
361  *		(Each smid can have 64K starts from 17024)
362  *
363  * @ioc: per adapter object
364  * @smid: system request message index
365  *
366  * Return: Pointer to buffer location in BAR0.
367  */
368 static phys_addr_t
369 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
370 {
371 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
372 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
373 			cmd_credit + 1,
374 			ioc->facts.MaxChainDepth);
375 	return chain_end_phys + (smid * 64 * 1024);
376 }
377 
378 /**
379  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
380  *			lookup list and Provides chain_buffer
381  *			address for the matching dma address.
382  *			(Each smid can have 64K starts from 17024)
383  *
384  * @ioc: per adapter object
385  * @chain_buffer_dma: Chain buffer dma address.
386  *
387  * Return: Pointer to chain buffer. Or Null on Failure.
388  */
389 static void *
390 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
391 		dma_addr_t chain_buffer_dma)
392 {
393 	u16 index, j;
394 	struct chain_tracker *ct;
395 
396 	for (index = 0; index < ioc->scsiio_depth; index++) {
397 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
398 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
399 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
400 				return ct->chain_buffer;
401 		}
402 	}
403 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
404 	return NULL;
405 }
406 
407 /**
408  * _clone_sg_entries -	MPI EP's scsiio and config requests
409  *			are handled here. Base function for
410  *			double buffering, before submitting
411  *			the requests.
412  *
413  * @ioc: per adapter object.
414  * @mpi_request: mf request pointer.
415  * @smid: system request message index.
416  */
417 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
418 		void *mpi_request, u16 smid)
419 {
420 	Mpi2SGESimple32_t *sgel, *sgel_next;
421 	u32  sgl_flags, sge_chain_count = 0;
422 	bool is_write = false;
423 	u16 i = 0;
424 	void __iomem *buffer_iomem;
425 	phys_addr_t buffer_iomem_phys;
426 	void __iomem *buff_ptr;
427 	phys_addr_t buff_ptr_phys;
428 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
429 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
430 	phys_addr_t dst_addr_phys;
431 	MPI2RequestHeader_t *request_hdr;
432 	struct scsi_cmnd *scmd;
433 	struct scatterlist *sg_scmd = NULL;
434 	int is_scsiio_req = 0;
435 
436 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
437 
438 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
439 		Mpi25SCSIIORequest_t *scsiio_request =
440 			(Mpi25SCSIIORequest_t *)mpi_request;
441 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
442 		is_scsiio_req = 1;
443 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
444 		Mpi2ConfigRequest_t  *config_req =
445 			(Mpi2ConfigRequest_t *)mpi_request;
446 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
447 	} else
448 		return;
449 
450 	/* From smid we can get scsi_cmd, once we have sg_scmd,
451 	 * we just need to get sg_virt and sg_next to get virtual
452 	 * address associated with sgel->Address.
453 	 */
454 
455 	if (is_scsiio_req) {
456 		/* Get scsi_cmd using smid */
457 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
458 		if (scmd == NULL) {
459 			ioc_err(ioc, "scmd is NULL\n");
460 			return;
461 		}
462 
463 		/* Get sg_scmd from scmd provided */
464 		sg_scmd = scsi_sglist(scmd);
465 	}
466 
467 	/*
468 	 * 0 - 255	System register
469 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
470 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
471 	 *		considering maxCredit 32. Reply need extra
472 	 *		room, for mCPU case kept four times of
473 	 *		maxCredit).
474 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
475 	 *		128 byte size = 12288)
476 	 * 17152 - x	Host buffer mapped with smid.
477 	 *		(Each smid can have 64K Max IO.)
478 	 * BAR0+Last 1K MSIX Addr and Data
479 	 * Total size in use 2113664 bytes of 4MB BAR0
480 	 */
481 
482 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
483 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
484 
485 	buff_ptr = buffer_iomem;
486 	buff_ptr_phys = buffer_iomem_phys;
487 	WARN_ON(buff_ptr_phys > U32_MAX);
488 
489 	if (le32_to_cpu(sgel->FlagsLength) &
490 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
491 		is_write = true;
492 
493 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
494 
495 		sgl_flags =
496 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
497 
498 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
499 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
500 			/*
501 			 * Helper function which on passing
502 			 * chain_buffer_dma returns chain_buffer. Get
503 			 * the virtual address for sgel->Address
504 			 */
505 			sgel_next =
506 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
507 						le32_to_cpu(sgel->Address));
508 			if (sgel_next == NULL)
509 				return;
510 			/*
511 			 * This is coping 128 byte chain
512 			 * frame (not a host buffer)
513 			 */
514 			dst_chain_addr[sge_chain_count] =
515 				_base_get_chain(ioc,
516 					smid, sge_chain_count);
517 			src_chain_addr[sge_chain_count] =
518 						(void *) sgel_next;
519 			dst_addr_phys = _base_get_chain_phys(ioc,
520 						smid, sge_chain_count);
521 			WARN_ON(dst_addr_phys > U32_MAX);
522 			sgel->Address =
523 				cpu_to_le32(lower_32_bits(dst_addr_phys));
524 			sgel = sgel_next;
525 			sge_chain_count++;
526 			break;
527 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
528 			if (is_write) {
529 				if (is_scsiio_req) {
530 					_base_clone_to_sys_mem(buff_ptr,
531 					    sg_virt(sg_scmd),
532 					    (le32_to_cpu(sgel->FlagsLength) &
533 					    0x00ffffff));
534 					/*
535 					 * FIXME: this relies on a a zero
536 					 * PCI mem_offset.
537 					 */
538 					sgel->Address =
539 					    cpu_to_le32((u32)buff_ptr_phys);
540 				} else {
541 					_base_clone_to_sys_mem(buff_ptr,
542 					    ioc->config_vaddr,
543 					    (le32_to_cpu(sgel->FlagsLength) &
544 					    0x00ffffff));
545 					sgel->Address =
546 					    cpu_to_le32((u32)buff_ptr_phys);
547 				}
548 			}
549 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
550 			    0x00ffffff);
551 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
552 			    0x00ffffff);
553 			if ((le32_to_cpu(sgel->FlagsLength) &
554 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
555 					<< MPI2_SGE_FLAGS_SHIFT)))
556 				goto eob_clone_chain;
557 			else {
558 				/*
559 				 * Every single element in MPT will have
560 				 * associated sg_next. Better to sanity that
561 				 * sg_next is not NULL, but it will be a bug
562 				 * if it is null.
563 				 */
564 				if (is_scsiio_req) {
565 					sg_scmd = sg_next(sg_scmd);
566 					if (sg_scmd)
567 						sgel++;
568 					else
569 						goto eob_clone_chain;
570 				}
571 			}
572 			break;
573 		}
574 	}
575 
576 eob_clone_chain:
577 	for (i = 0; i < sge_chain_count; i++) {
578 		if (is_scsiio_req)
579 			_base_clone_to_sys_mem(dst_chain_addr[i],
580 				src_chain_addr[i], ioc->request_sz);
581 	}
582 }
583 
584 /**
585  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
586  * @arg: input argument, used to derive ioc
587  *
588  * Return:
589  * 0 if controller is removed from pci subsystem.
590  * -1 for other case.
591  */
592 static int mpt3sas_remove_dead_ioc_func(void *arg)
593 {
594 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
595 	struct pci_dev *pdev;
596 
597 	if (!ioc)
598 		return -1;
599 
600 	pdev = ioc->pdev;
601 	if (!pdev)
602 		return -1;
603 	pci_stop_and_remove_bus_device_locked(pdev);
604 	return 0;
605 }
606 
607 /**
608  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
609  * @ioc: Per Adapter Object
610  *
611  * Return: nothing.
612  */
613 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
614 {
615 	Mpi26IoUnitControlRequest_t *mpi_request;
616 	Mpi26IoUnitControlReply_t *mpi_reply;
617 	u16 smid;
618 	ktime_t current_time;
619 	u64 TimeStamp = 0;
620 	u8 issue_reset = 0;
621 
622 	mutex_lock(&ioc->scsih_cmds.mutex);
623 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
624 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
625 		goto out;
626 	}
627 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
628 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
629 	if (!smid) {
630 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
631 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
632 		goto out;
633 	}
634 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
635 	ioc->scsih_cmds.smid = smid;
636 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
637 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
638 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
639 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
640 	current_time = ktime_get_real();
641 	TimeStamp = ktime_to_ms(current_time);
642 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
643 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp >> 32);
644 	init_completion(&ioc->scsih_cmds.done);
645 	ioc->put_smid_default(ioc, smid);
646 	dinitprintk(ioc, ioc_info(ioc,
647 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
648 	    TimeStamp));
649 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
650 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
651 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
652 		mpt3sas_check_cmd_timeout(ioc,
653 		    ioc->scsih_cmds.status, mpi_request,
654 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
655 		goto issue_host_reset;
656 	}
657 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
658 		mpi_reply = ioc->scsih_cmds.reply;
659 		dinitprintk(ioc, ioc_info(ioc,
660 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
661 		    le16_to_cpu(mpi_reply->IOCStatus),
662 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
663 	}
664 issue_host_reset:
665 	if (issue_reset)
666 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
667 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
668 out:
669 	mutex_unlock(&ioc->scsih_cmds.mutex);
670 }
671 
672 /**
673  * _base_fault_reset_work - workq handling ioc fault conditions
674  * @work: input argument, used to derive ioc
675  *
676  * Context: sleep.
677  */
678 static void
679 _base_fault_reset_work(struct work_struct *work)
680 {
681 	struct MPT3SAS_ADAPTER *ioc =
682 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
683 	unsigned long	 flags;
684 	u32 doorbell;
685 	int rc;
686 	struct task_struct *p;
687 
688 
689 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
690 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
691 			ioc->pci_error_recovery)
692 		goto rearm_timer;
693 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
694 
695 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
696 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
697 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
698 
699 		/* It may be possible that EEH recovery can resolve some of
700 		 * pci bus failure issues rather removing the dead ioc function
701 		 * by considering controller is in a non-operational state. So
702 		 * here priority is given to the EEH recovery. If it doesn't
703 		 * not resolve this issue, mpt3sas driver will consider this
704 		 * controller to non-operational state and remove the dead ioc
705 		 * function.
706 		 */
707 		if (ioc->non_operational_loop++ < 5) {
708 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
709 							 flags);
710 			goto rearm_timer;
711 		}
712 
713 		/*
714 		 * Call _scsih_flush_pending_cmds callback so that we flush all
715 		 * pending commands back to OS. This call is required to avoid
716 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
717 		 * and this call is safe since dead ioc will never return any
718 		 * command back from HW.
719 		 */
720 		mpt3sas_base_pause_mq_polling(ioc);
721 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
722 		/*
723 		 * Set remove_host flag early since kernel thread will
724 		 * take some time to execute.
725 		 */
726 		ioc->remove_host = 1;
727 		/*Remove the Dead Host */
728 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
729 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
730 		if (IS_ERR(p))
731 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
732 				__func__);
733 		else
734 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
735 				__func__);
736 		return; /* don't rearm timer */
737 	}
738 
739 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
740 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
741 		    ioc->manu_pg11.CoreDumpTOSec :
742 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
743 
744 		timeout /= (FAULT_POLLING_INTERVAL/1000);
745 
746 		if (ioc->ioc_coredump_loop == 0) {
747 			mpt3sas_print_coredump_info(ioc,
748 			    doorbell & MPI2_DOORBELL_DATA_MASK);
749 			/* do not accept any IOs and disable the interrupts */
750 			spin_lock_irqsave(
751 			    &ioc->ioc_reset_in_progress_lock, flags);
752 			ioc->shost_recovery = 1;
753 			spin_unlock_irqrestore(
754 			    &ioc->ioc_reset_in_progress_lock, flags);
755 			mpt3sas_base_mask_interrupts(ioc);
756 			mpt3sas_base_pause_mq_polling(ioc);
757 			_base_clear_outstanding_commands(ioc);
758 		}
759 
760 		ioc_info(ioc, "%s: CoreDump loop %d.",
761 		    __func__, ioc->ioc_coredump_loop);
762 
763 		/* Wait until CoreDump completes or times out */
764 		if (ioc->ioc_coredump_loop++ < timeout) {
765 			spin_lock_irqsave(
766 			    &ioc->ioc_reset_in_progress_lock, flags);
767 			goto rearm_timer;
768 		}
769 	}
770 
771 	if (ioc->ioc_coredump_loop) {
772 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
773 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
774 			    __func__, ioc->ioc_coredump_loop);
775 		else
776 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
777 			    __func__, ioc->ioc_coredump_loop);
778 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
779 	}
780 	ioc->non_operational_loop = 0;
781 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
782 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
783 		ioc_warn(ioc, "%s: hard reset: %s\n",
784 			 __func__, rc == 0 ? "success" : "failed");
785 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
786 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
787 			mpt3sas_print_fault_code(ioc, doorbell &
788 			    MPI2_DOORBELL_DATA_MASK);
789 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
790 		    MPI2_IOC_STATE_COREDUMP)
791 			mpt3sas_print_coredump_info(ioc, doorbell &
792 			    MPI2_DOORBELL_DATA_MASK);
793 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
794 		    MPI2_IOC_STATE_OPERATIONAL)
795 			return; /* don't rearm timer */
796 	}
797 	ioc->ioc_coredump_loop = 0;
798 	if (ioc->time_sync_interval &&
799 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
800 		ioc->timestamp_update_count = 0;
801 		_base_sync_drv_fw_timestamp(ioc);
802 	}
803 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
804  rearm_timer:
805 	if (ioc->fault_reset_work_q)
806 		queue_delayed_work(ioc->fault_reset_work_q,
807 		    &ioc->fault_reset_work,
808 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
809 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
810 }
811 
812 /**
813  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
814  * @ioc: per adapter object
815  *
816  * Context: sleep.
817  */
818 void
819 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
820 {
821 	unsigned long	 flags;
822 
823 	if (ioc->fault_reset_work_q)
824 		return;
825 
826 	ioc->timestamp_update_count = 0;
827 	/* initialize fault polling */
828 
829 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
830 	snprintf(ioc->fault_reset_work_q_name,
831 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
832 	    ioc->driver_name, ioc->id);
833 	ioc->fault_reset_work_q =
834 		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
835 	if (!ioc->fault_reset_work_q) {
836 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
837 		return;
838 	}
839 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
840 	if (ioc->fault_reset_work_q)
841 		queue_delayed_work(ioc->fault_reset_work_q,
842 		    &ioc->fault_reset_work,
843 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
844 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
845 }
846 
847 /**
848  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
849  * @ioc: per adapter object
850  *
851  * Context: sleep.
852  */
853 void
854 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
855 {
856 	unsigned long flags;
857 	struct workqueue_struct *wq;
858 
859 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
860 	wq = ioc->fault_reset_work_q;
861 	ioc->fault_reset_work_q = NULL;
862 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
863 	if (wq) {
864 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
865 			flush_workqueue(wq);
866 		destroy_workqueue(wq);
867 	}
868 }
869 
870 /**
871  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
872  * @ioc: per adapter object
873  * @fault_code: fault code
874  */
875 void
876 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
877 {
878 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
879 }
880 
881 /**
882  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
883  * @ioc: per adapter object
884  * @fault_code: fault code
885  *
886  * Return: nothing.
887  */
888 void
889 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
890 {
891 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
892 }
893 
894 /**
895  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
896  * completes or times out
897  * @ioc: per adapter object
898  * @caller: caller function name
899  *
900  * Return: 0 for success, non-zero for failure.
901  */
902 int
903 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
904 		const char *caller)
905 {
906 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
907 			ioc->manu_pg11.CoreDumpTOSec :
908 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
909 
910 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
911 					timeout);
912 
913 	if (ioc_state)
914 		ioc_err(ioc,
915 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
916 		    caller, ioc_state);
917 	else
918 		ioc_info(ioc,
919 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
920 		    caller, ioc_state);
921 
922 	return ioc_state;
923 }
924 
925 /**
926  * mpt3sas_halt_firmware - halt's mpt controller firmware
927  * @ioc: per adapter object
928  *
929  * For debugging timeout related issues.  Writing 0xCOFFEE00
930  * to the doorbell register will halt controller firmware. With
931  * the purpose to stop both driver and firmware, the enduser can
932  * obtain a ring buffer from controller UART.
933  */
934 void
935 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
936 {
937 	u32 doorbell;
938 
939 	if (!ioc->fwfault_debug)
940 		return;
941 
942 	dump_stack();
943 
944 	doorbell = ioc->base_readl(&ioc->chip->Doorbell);
945 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
946 		mpt3sas_print_fault_code(ioc, doorbell &
947 		    MPI2_DOORBELL_DATA_MASK);
948 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
949 	    MPI2_IOC_STATE_COREDUMP) {
950 		mpt3sas_print_coredump_info(ioc, doorbell &
951 		    MPI2_DOORBELL_DATA_MASK);
952 	} else {
953 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
954 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
955 	}
956 
957 	if (ioc->fwfault_debug == 2)
958 		for (;;)
959 			;
960 	else
961 		panic("panic in %s\n", __func__);
962 }
963 
964 /**
965  * _base_sas_ioc_info - verbose translation of the ioc status
966  * @ioc: per adapter object
967  * @mpi_reply: reply mf payload returned from firmware
968  * @request_hdr: request mf
969  */
970 static void
971 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
972 	MPI2RequestHeader_t *request_hdr)
973 {
974 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
975 	    MPI2_IOCSTATUS_MASK;
976 	char *desc = NULL;
977 	u16 frame_sz;
978 	char *func_str = NULL;
979 
980 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
981 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
982 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
983 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
984 		return;
985 
986 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
987 		return;
988 	/*
989 	 * Older Firmware version doesn't support driver trigger pages.
990 	 * So, skip displaying 'config invalid type' type
991 	 * of error message.
992 	 */
993 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
994 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
995 
996 		if ((rqst->ExtPageType ==
997 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
998 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
999 			return;
1000 		}
1001 	}
1002 
1003 	switch (ioc_status) {
1004 
1005 /****************************************************************************
1006 *  Common IOCStatus values for all replies
1007 ****************************************************************************/
1008 
1009 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1010 		desc = "invalid function";
1011 		break;
1012 	case MPI2_IOCSTATUS_BUSY:
1013 		desc = "busy";
1014 		break;
1015 	case MPI2_IOCSTATUS_INVALID_SGL:
1016 		desc = "invalid sgl";
1017 		break;
1018 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1019 		desc = "internal error";
1020 		break;
1021 	case MPI2_IOCSTATUS_INVALID_VPID:
1022 		desc = "invalid vpid";
1023 		break;
1024 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1025 		desc = "insufficient resources";
1026 		break;
1027 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1028 		desc = "insufficient power";
1029 		break;
1030 	case MPI2_IOCSTATUS_INVALID_FIELD:
1031 		desc = "invalid field";
1032 		break;
1033 	case MPI2_IOCSTATUS_INVALID_STATE:
1034 		desc = "invalid state";
1035 		break;
1036 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1037 		desc = "op state not supported";
1038 		break;
1039 
1040 /****************************************************************************
1041 *  Config IOCStatus values
1042 ****************************************************************************/
1043 
1044 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1045 		desc = "config invalid action";
1046 		break;
1047 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1048 		desc = "config invalid type";
1049 		break;
1050 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1051 		desc = "config invalid page";
1052 		break;
1053 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1054 		desc = "config invalid data";
1055 		break;
1056 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1057 		desc = "config no defaults";
1058 		break;
1059 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1060 		desc = "config cant commit";
1061 		break;
1062 
1063 /****************************************************************************
1064 *  SCSI IO Reply
1065 ****************************************************************************/
1066 
1067 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1068 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1069 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1070 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1071 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1072 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1073 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1074 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1075 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1076 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1077 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1078 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1079 		break;
1080 
1081 /****************************************************************************
1082 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1083 ****************************************************************************/
1084 
1085 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1086 		desc = "eedp guard error";
1087 		break;
1088 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1089 		desc = "eedp ref tag error";
1090 		break;
1091 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1092 		desc = "eedp app tag error";
1093 		break;
1094 
1095 /****************************************************************************
1096 *  SCSI Target values
1097 ****************************************************************************/
1098 
1099 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1100 		desc = "target invalid io index";
1101 		break;
1102 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1103 		desc = "target aborted";
1104 		break;
1105 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1106 		desc = "target no conn retryable";
1107 		break;
1108 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1109 		desc = "target no connection";
1110 		break;
1111 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1112 		desc = "target xfer count mismatch";
1113 		break;
1114 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1115 		desc = "target data offset error";
1116 		break;
1117 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1118 		desc = "target too much write data";
1119 		break;
1120 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1121 		desc = "target iu too short";
1122 		break;
1123 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1124 		desc = "target ack nak timeout";
1125 		break;
1126 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1127 		desc = "target nak received";
1128 		break;
1129 
1130 /****************************************************************************
1131 *  Serial Attached SCSI values
1132 ****************************************************************************/
1133 
1134 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1135 		desc = "smp request failed";
1136 		break;
1137 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1138 		desc = "smp data overrun";
1139 		break;
1140 
1141 /****************************************************************************
1142 *  Diagnostic Buffer Post / Diagnostic Release values
1143 ****************************************************************************/
1144 
1145 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1146 		desc = "diagnostic released";
1147 		break;
1148 	default:
1149 		break;
1150 	}
1151 
1152 	if (!desc)
1153 		return;
1154 
1155 	switch (request_hdr->Function) {
1156 	case MPI2_FUNCTION_CONFIG:
1157 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1158 		func_str = "config_page";
1159 		break;
1160 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1161 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1162 		func_str = "task_mgmt";
1163 		break;
1164 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1165 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1166 		func_str = "sas_iounit_ctl";
1167 		break;
1168 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1169 		frame_sz = sizeof(Mpi2SepRequest_t);
1170 		func_str = "enclosure";
1171 		break;
1172 	case MPI2_FUNCTION_IOC_INIT:
1173 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1174 		func_str = "ioc_init";
1175 		break;
1176 	case MPI2_FUNCTION_PORT_ENABLE:
1177 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1178 		func_str = "port_enable";
1179 		break;
1180 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1181 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1182 		func_str = "smp_passthru";
1183 		break;
1184 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1185 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1186 		    ioc->sge_size;
1187 		func_str = "nvme_encapsulated";
1188 		break;
1189 	default:
1190 		frame_sz = 32;
1191 		func_str = "unknown";
1192 		break;
1193 	}
1194 
1195 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1196 		 desc, ioc_status, request_hdr, func_str);
1197 
1198 	_debug_dump_mf(request_hdr, frame_sz/4);
1199 }
1200 
1201 /**
1202  * _base_display_event_data - verbose translation of firmware asyn events
1203  * @ioc: per adapter object
1204  * @mpi_reply: reply mf payload returned from firmware
1205  */
1206 static void
1207 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1208 	Mpi2EventNotificationReply_t *mpi_reply)
1209 {
1210 	char *desc = NULL;
1211 	u16 event;
1212 
1213 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1214 		return;
1215 
1216 	event = le16_to_cpu(mpi_reply->Event);
1217 
1218 	switch (event) {
1219 	case MPI2_EVENT_LOG_DATA:
1220 		desc = "Log Data";
1221 		break;
1222 	case MPI2_EVENT_STATE_CHANGE:
1223 		desc = "Status Change";
1224 		break;
1225 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1226 		desc = "Hard Reset Received";
1227 		break;
1228 	case MPI2_EVENT_EVENT_CHANGE:
1229 		desc = "Event Change";
1230 		break;
1231 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1232 		desc = "Device Status Change";
1233 		break;
1234 	case MPI2_EVENT_IR_OPERATION_STATUS:
1235 		if (!ioc->hide_ir_msg)
1236 			desc = "IR Operation Status";
1237 		break;
1238 	case MPI2_EVENT_SAS_DISCOVERY:
1239 	{
1240 		Mpi2EventDataSasDiscovery_t *event_data =
1241 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1242 		ioc_info(ioc, "Discovery: (%s)",
1243 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1244 			 "start" : "stop");
1245 		if (event_data->DiscoveryStatus)
1246 			pr_cont(" discovery_status(0x%08x)",
1247 			    le32_to_cpu(event_data->DiscoveryStatus));
1248 		pr_cont("\n");
1249 		return;
1250 	}
1251 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1252 		desc = "SAS Broadcast Primitive";
1253 		break;
1254 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1255 		desc = "SAS Init Device Status Change";
1256 		break;
1257 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1258 		desc = "SAS Init Table Overflow";
1259 		break;
1260 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1261 		desc = "SAS Topology Change List";
1262 		break;
1263 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1264 		desc = "SAS Enclosure Device Status Change";
1265 		break;
1266 	case MPI2_EVENT_IR_VOLUME:
1267 		if (!ioc->hide_ir_msg)
1268 			desc = "IR Volume";
1269 		break;
1270 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1271 		if (!ioc->hide_ir_msg)
1272 			desc = "IR Physical Disk";
1273 		break;
1274 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1275 		if (!ioc->hide_ir_msg)
1276 			desc = "IR Configuration Change List";
1277 		break;
1278 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1279 		if (!ioc->hide_ir_msg)
1280 			desc = "Log Entry Added";
1281 		break;
1282 	case MPI2_EVENT_TEMP_THRESHOLD:
1283 		desc = "Temperature Threshold";
1284 		break;
1285 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1286 		desc = "Cable Event";
1287 		break;
1288 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1289 		desc = "SAS Device Discovery Error";
1290 		break;
1291 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1292 		desc = "PCIE Device Status Change";
1293 		break;
1294 	case MPI2_EVENT_PCIE_ENUMERATION:
1295 	{
1296 		Mpi26EventDataPCIeEnumeration_t *event_data =
1297 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1298 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1299 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1300 			 "start" : "stop");
1301 		if (event_data->EnumerationStatus)
1302 			pr_cont("enumeration_status(0x%08x)",
1303 				le32_to_cpu(event_data->EnumerationStatus));
1304 		pr_cont("\n");
1305 		return;
1306 	}
1307 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1308 		desc = "PCIE Topology Change List";
1309 		break;
1310 	}
1311 
1312 	if (!desc)
1313 		return;
1314 
1315 	ioc_info(ioc, "%s\n", desc);
1316 }
1317 
1318 /**
1319  * _base_sas_log_info - verbose translation of firmware log info
1320  * @ioc: per adapter object
1321  * @log_info: log info
1322  */
1323 static void
1324 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1325 {
1326 	union loginfo_type {
1327 		u32	loginfo;
1328 		struct {
1329 			u32	subcode:16;
1330 			u32	code:8;
1331 			u32	originator:4;
1332 			u32	bus_type:4;
1333 		} dw;
1334 	};
1335 	union loginfo_type sas_loginfo;
1336 	char *originator_str = NULL;
1337 
1338 	sas_loginfo.loginfo = log_info;
1339 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1340 		return;
1341 
1342 	/* each nexus loss loginfo */
1343 	if (log_info == 0x31170000)
1344 		return;
1345 
1346 	/* eat the loginfos associated with task aborts */
1347 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1348 	    0x31140000 || log_info == 0x31130000))
1349 		return;
1350 
1351 	switch (sas_loginfo.dw.originator) {
1352 	case 0:
1353 		originator_str = "IOP";
1354 		break;
1355 	case 1:
1356 		originator_str = "PL";
1357 		break;
1358 	case 2:
1359 		if (!ioc->hide_ir_msg)
1360 			originator_str = "IR";
1361 		else
1362 			originator_str = "WarpDrive";
1363 		break;
1364 	}
1365 
1366 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1367 		 log_info,
1368 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1369 }
1370 
1371 /**
1372  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1373  * @ioc: per adapter object
1374  * @smid: system request message index
1375  * @msix_index: MSIX table index supplied by the OS
1376  * @reply: reply message frame (lower 32bit addr)
1377  */
1378 static void
1379 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1380 	u32 reply)
1381 {
1382 	MPI2DefaultReply_t *mpi_reply;
1383 	u16 ioc_status;
1384 	u32 loginfo = 0;
1385 
1386 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1387 	if (unlikely(!mpi_reply)) {
1388 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1389 			__FILE__, __LINE__, __func__);
1390 		return;
1391 	}
1392 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1393 
1394 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1395 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1396 		_base_sas_ioc_info(ioc , mpi_reply,
1397 		   mpt3sas_base_get_msg_frame(ioc, smid));
1398 	}
1399 
1400 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1401 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1402 		_base_sas_log_info(ioc, loginfo);
1403 	}
1404 
1405 	if (ioc_status || loginfo) {
1406 		ioc_status &= MPI2_IOCSTATUS_MASK;
1407 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1408 	}
1409 }
1410 
1411 /**
1412  * mpt3sas_base_done - base internal command completion routine
1413  * @ioc: per adapter object
1414  * @smid: system request message index
1415  * @msix_index: MSIX table index supplied by the OS
1416  * @reply: reply message frame(lower 32bit addr)
1417  *
1418  * Return:
1419  * 1 meaning mf should be freed from _base_interrupt
1420  * 0 means the mf is freed from this function.
1421  */
1422 u8
1423 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1424 	u32 reply)
1425 {
1426 	MPI2DefaultReply_t *mpi_reply;
1427 
1428 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1429 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1430 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1431 
1432 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1433 		return 1;
1434 
1435 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1436 	if (mpi_reply) {
1437 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1438 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1439 	}
1440 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1441 
1442 	complete(&ioc->base_cmds.done);
1443 	return 1;
1444 }
1445 
1446 /**
1447  * _base_async_event - main callback handler for firmware asyn events
1448  * @ioc: per adapter object
1449  * @msix_index: MSIX table index supplied by the OS
1450  * @reply: reply message frame(lower 32bit addr)
1451  *
1452  * Return:
1453  * 1 meaning mf should be freed from _base_interrupt
1454  * 0 means the mf is freed from this function.
1455  */
1456 static u8
1457 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1458 {
1459 	Mpi2EventNotificationReply_t *mpi_reply;
1460 	Mpi2EventAckRequest_t *ack_request;
1461 	u16 smid;
1462 	struct _event_ack_list *delayed_event_ack;
1463 
1464 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1465 	if (!mpi_reply)
1466 		return 1;
1467 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1468 		return 1;
1469 
1470 	_base_display_event_data(ioc, mpi_reply);
1471 
1472 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1473 		goto out;
1474 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1475 	if (!smid) {
1476 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1477 					GFP_ATOMIC);
1478 		if (!delayed_event_ack)
1479 			goto out;
1480 		INIT_LIST_HEAD(&delayed_event_ack->list);
1481 		delayed_event_ack->Event = mpi_reply->Event;
1482 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1483 		list_add_tail(&delayed_event_ack->list,
1484 				&ioc->delayed_event_ack_list);
1485 		dewtprintk(ioc,
1486 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1487 				    le16_to_cpu(mpi_reply->Event)));
1488 		goto out;
1489 	}
1490 
1491 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1492 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1493 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1494 	ack_request->Event = mpi_reply->Event;
1495 	ack_request->EventContext = mpi_reply->EventContext;
1496 	ack_request->VF_ID = 0;  /* TODO */
1497 	ack_request->VP_ID = 0;
1498 	ioc->put_smid_default(ioc, smid);
1499 
1500  out:
1501 
1502 	/* scsih callback handler */
1503 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1504 
1505 	/* ctl callback handler */
1506 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1507 
1508 	return 1;
1509 }
1510 
1511 static struct scsiio_tracker *
1512 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1513 {
1514 	struct scsi_cmnd *cmd;
1515 
1516 	if (WARN_ON(!smid) ||
1517 	    WARN_ON(smid >= ioc->hi_priority_smid))
1518 		return NULL;
1519 
1520 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1521 	if (cmd)
1522 		return scsi_cmd_priv(cmd);
1523 
1524 	return NULL;
1525 }
1526 
1527 /**
1528  * _base_get_cb_idx - obtain the callback index
1529  * @ioc: per adapter object
1530  * @smid: system request message index
1531  *
1532  * Return: callback index.
1533  */
1534 static u8
1535 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1536 {
1537 	int i;
1538 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1539 	u8 cb_idx = 0xFF;
1540 
1541 	if (smid < ioc->hi_priority_smid) {
1542 		struct scsiio_tracker *st;
1543 
1544 		if (smid < ctl_smid) {
1545 			st = _get_st_from_smid(ioc, smid);
1546 			if (st)
1547 				cb_idx = st->cb_idx;
1548 		} else if (smid == ctl_smid)
1549 			cb_idx = ioc->ctl_cb_idx;
1550 	} else if (smid < ioc->internal_smid) {
1551 		i = smid - ioc->hi_priority_smid;
1552 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1553 	} else if (smid <= ioc->hba_queue_depth) {
1554 		i = smid - ioc->internal_smid;
1555 		cb_idx = ioc->internal_lookup[i].cb_idx;
1556 	}
1557 	return cb_idx;
1558 }
1559 
1560 /**
1561  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1562  *				when driver is flushing out the IOs.
1563  * @ioc: per adapter object
1564  *
1565  * Pause polling on the mq poll (io uring) queues when driver is flushing
1566  * out the IOs. Otherwise we may see the race condition of completing the same
1567  * IO from two paths.
1568  *
1569  * Returns nothing.
1570  */
1571 void
1572 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1573 {
1574 	int iopoll_q_count =
1575 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1576 	int qid;
1577 
1578 	for (qid = 0; qid < iopoll_q_count; qid++)
1579 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1580 
1581 	/*
1582 	 * wait for current poll to complete.
1583 	 */
1584 	for (qid = 0; qid < iopoll_q_count; qid++) {
1585 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy))
1586 			udelay(500);
1587 	}
1588 }
1589 
1590 /**
1591  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1592  * @ioc: per adapter object
1593  *
1594  * Returns nothing.
1595  */
1596 void
1597 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1598 {
1599 	int iopoll_q_count =
1600 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1601 	int qid;
1602 
1603 	for (qid = 0; qid < iopoll_q_count; qid++)
1604 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1605 }
1606 
1607 /**
1608  * mpt3sas_base_mask_interrupts - disable interrupts
1609  * @ioc: per adapter object
1610  *
1611  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1612  */
1613 void
1614 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1615 {
1616 	u32 him_register;
1617 
1618 	ioc->mask_interrupts = 1;
1619 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1620 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1621 	writel(him_register, &ioc->chip->HostInterruptMask);
1622 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1623 }
1624 
1625 /**
1626  * mpt3sas_base_unmask_interrupts - enable interrupts
1627  * @ioc: per adapter object
1628  *
1629  * Enabling only Reply Interrupts
1630  */
1631 void
1632 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1633 {
1634 	u32 him_register;
1635 
1636 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1637 	him_register &= ~MPI2_HIM_RIM;
1638 	writel(him_register, &ioc->chip->HostInterruptMask);
1639 	ioc->mask_interrupts = 0;
1640 }
1641 
1642 union reply_descriptor {
1643 	u64 word;
1644 	struct {
1645 		u32 low;
1646 		u32 high;
1647 	} u;
1648 };
1649 
1650 static u32 base_mod64(u64 dividend, u32 divisor)
1651 {
1652 	u32 remainder;
1653 
1654 	if (!divisor)
1655 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1656 	remainder = do_div(dividend, divisor);
1657 	return remainder;
1658 }
1659 
1660 /**
1661  * _base_process_reply_queue - Process reply descriptors from reply
1662  *		descriptor post queue.
1663  * @reply_q: per IRQ's reply queue object.
1664  *
1665  * Return: number of reply descriptors processed from reply
1666  *		descriptor queue.
1667  */
1668 static int
1669 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1670 {
1671 	union reply_descriptor rd;
1672 	u64 completed_cmds;
1673 	u8 request_descript_type;
1674 	u16 smid;
1675 	u8 cb_idx;
1676 	u32 reply;
1677 	u8 msix_index = reply_q->msix_index;
1678 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1679 	Mpi2ReplyDescriptorsUnion_t *rpf;
1680 	u8 rc;
1681 
1682 	completed_cmds = 0;
1683 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1684 		return completed_cmds;
1685 
1686 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1687 	request_descript_type = rpf->Default.ReplyFlags
1688 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1689 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1690 		atomic_dec(&reply_q->busy);
1691 		return completed_cmds;
1692 	}
1693 
1694 	cb_idx = 0xFF;
1695 	do {
1696 		rd.word = le64_to_cpu(rpf->Words);
1697 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1698 			goto out;
1699 		reply = 0;
1700 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1701 		if (request_descript_type ==
1702 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1703 		    request_descript_type ==
1704 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1705 		    request_descript_type ==
1706 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1707 			cb_idx = _base_get_cb_idx(ioc, smid);
1708 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1709 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1710 				rc = mpt_callbacks[cb_idx](ioc, smid,
1711 				    msix_index, 0);
1712 				if (rc)
1713 					mpt3sas_base_free_smid(ioc, smid);
1714 			}
1715 		} else if (request_descript_type ==
1716 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1717 			reply = le32_to_cpu(
1718 			    rpf->AddressReply.ReplyFrameAddress);
1719 			if (reply > ioc->reply_dma_max_address ||
1720 			    reply < ioc->reply_dma_min_address)
1721 				reply = 0;
1722 			if (smid) {
1723 				cb_idx = _base_get_cb_idx(ioc, smid);
1724 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1725 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1726 					rc = mpt_callbacks[cb_idx](ioc, smid,
1727 					    msix_index, reply);
1728 					if (reply)
1729 						_base_display_reply_info(ioc,
1730 						    smid, msix_index, reply);
1731 					if (rc)
1732 						mpt3sas_base_free_smid(ioc,
1733 						    smid);
1734 				}
1735 			} else {
1736 				_base_async_event(ioc, msix_index, reply);
1737 			}
1738 
1739 			/* reply free queue handling */
1740 			if (reply) {
1741 				ioc->reply_free_host_index =
1742 				    (ioc->reply_free_host_index ==
1743 				    (ioc->reply_free_queue_depth - 1)) ?
1744 				    0 : ioc->reply_free_host_index + 1;
1745 				ioc->reply_free[ioc->reply_free_host_index] =
1746 				    cpu_to_le32(reply);
1747 				if (ioc->is_mcpu_endpoint)
1748 					_base_clone_reply_to_sys_mem(ioc,
1749 						reply,
1750 						ioc->reply_free_host_index);
1751 				writel(ioc->reply_free_host_index,
1752 				    &ioc->chip->ReplyFreeHostIndex);
1753 			}
1754 		}
1755 
1756 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1757 		reply_q->reply_post_host_index =
1758 		    (reply_q->reply_post_host_index ==
1759 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1760 		    reply_q->reply_post_host_index + 1;
1761 		request_descript_type =
1762 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1763 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1764 		completed_cmds++;
1765 		/* Update the reply post host index after continuously
1766 		 * processing the threshold number of Reply Descriptors.
1767 		 * So that FW can find enough entries to post the Reply
1768 		 * Descriptors in the reply descriptor post queue.
1769 		 */
1770 		if (completed_cmds >= ioc->thresh_hold) {
1771 			if (ioc->combined_reply_queue) {
1772 				writel(reply_q->reply_post_host_index |
1773 						((msix_index  & 7) <<
1774 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1775 				    ioc->replyPostRegisterIndex[msix_index/8]);
1776 			} else {
1777 				writel(reply_q->reply_post_host_index |
1778 						(msix_index <<
1779 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1780 						&ioc->chip->ReplyPostHostIndex);
1781 			}
1782 			if (!reply_q->is_iouring_poll_q &&
1783 			    !reply_q->irq_poll_scheduled) {
1784 				reply_q->irq_poll_scheduled = true;
1785 				irq_poll_sched(&reply_q->irqpoll);
1786 			}
1787 			atomic_dec(&reply_q->busy);
1788 			return completed_cmds;
1789 		}
1790 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1791 			goto out;
1792 		if (!reply_q->reply_post_host_index)
1793 			rpf = reply_q->reply_post_free;
1794 		else
1795 			rpf++;
1796 	} while (1);
1797 
1798  out:
1799 
1800 	if (!completed_cmds) {
1801 		atomic_dec(&reply_q->busy);
1802 		return completed_cmds;
1803 	}
1804 
1805 	if (ioc->is_warpdrive) {
1806 		writel(reply_q->reply_post_host_index,
1807 		ioc->reply_post_host_index[msix_index]);
1808 		atomic_dec(&reply_q->busy);
1809 		return completed_cmds;
1810 	}
1811 
1812 	/* Update Reply Post Host Index.
1813 	 * For those HBA's which support combined reply queue feature
1814 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1815 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1816 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1817 	 * 2. Then update this register with new reply host index value
1818 	 *    in ReplyPostIndex field and the MSIxIndex field with
1819 	 *    msix_index value reduced to a value between 0 and 7,
1820 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1821 	 *    Host Index Register supports 8 MSI-X vectors.
1822 	 *
1823 	 * For other HBA's just update the Reply Post Host Index register with
1824 	 * new reply host index value in ReplyPostIndex Field and msix_index
1825 	 * value in MSIxIndex field.
1826 	 */
1827 	if (ioc->combined_reply_queue)
1828 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1829 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1830 			ioc->replyPostRegisterIndex[msix_index/8]);
1831 	else
1832 		writel(reply_q->reply_post_host_index | (msix_index <<
1833 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1834 			&ioc->chip->ReplyPostHostIndex);
1835 	atomic_dec(&reply_q->busy);
1836 	return completed_cmds;
1837 }
1838 
1839 /**
1840  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1841  * @shost: Scsi_Host object
1842  * @queue_num: hw ctx queue number
1843  *
1844  * Return number of entries that has been processed from poll queue.
1845  */
1846 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1847 {
1848 	struct MPT3SAS_ADAPTER *ioc =
1849 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1850 	struct adapter_reply_queue *reply_q;
1851 	int num_entries = 0;
1852 	int qid = queue_num - ioc->iopoll_q_start_index;
1853 
1854 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1855 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1856 		return 0;
1857 
1858 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1859 
1860 	num_entries = _base_process_reply_queue(reply_q);
1861 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1862 
1863 	return num_entries;
1864 }
1865 
1866 /**
1867  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1868  * @irq: irq number (not used)
1869  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1870  *
1871  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1872  */
1873 static irqreturn_t
1874 _base_interrupt(int irq, void *bus_id)
1875 {
1876 	struct adapter_reply_queue *reply_q = bus_id;
1877 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1878 
1879 	if (ioc->mask_interrupts)
1880 		return IRQ_NONE;
1881 	if (reply_q->irq_poll_scheduled)
1882 		return IRQ_HANDLED;
1883 	return ((_base_process_reply_queue(reply_q) > 0) ?
1884 			IRQ_HANDLED : IRQ_NONE);
1885 }
1886 
1887 /**
1888  * _base_irqpoll - IRQ poll callback handler
1889  * @irqpoll: irq_poll object
1890  * @budget: irq poll weight
1891  *
1892  * Return: number of reply descriptors processed
1893  */
1894 static int
1895 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1896 {
1897 	struct adapter_reply_queue *reply_q;
1898 	int num_entries = 0;
1899 
1900 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1901 			irqpoll);
1902 	if (reply_q->irq_line_enable) {
1903 		disable_irq_nosync(reply_q->os_irq);
1904 		reply_q->irq_line_enable = false;
1905 	}
1906 	num_entries = _base_process_reply_queue(reply_q);
1907 	if (num_entries < budget) {
1908 		irq_poll_complete(irqpoll);
1909 		reply_q->irq_poll_scheduled = false;
1910 		reply_q->irq_line_enable = true;
1911 		enable_irq(reply_q->os_irq);
1912 		/*
1913 		 * Go for one more round of processing the
1914 		 * reply descriptor post queue in case the HBA
1915 		 * Firmware has posted some reply descriptors
1916 		 * while reenabling the IRQ.
1917 		 */
1918 		_base_process_reply_queue(reply_q);
1919 	}
1920 
1921 	return num_entries;
1922 }
1923 
1924 /**
1925  * _base_init_irqpolls - initliaze IRQ polls
1926  * @ioc: per adapter object
1927  *
1928  * Return: nothing
1929  */
1930 static void
1931 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1932 {
1933 	struct adapter_reply_queue *reply_q, *next;
1934 
1935 	if (list_empty(&ioc->reply_queue_list))
1936 		return;
1937 
1938 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1939 		if (reply_q->is_iouring_poll_q)
1940 			continue;
1941 		irq_poll_init(&reply_q->irqpoll,
1942 			ioc->hba_queue_depth/4, _base_irqpoll);
1943 		reply_q->irq_poll_scheduled = false;
1944 		reply_q->irq_line_enable = true;
1945 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1946 		    reply_q->msix_index);
1947 	}
1948 }
1949 
1950 /**
1951  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1952  * @ioc: per adapter object
1953  *
1954  * Return: Whether or not MSI/X is enabled.
1955  */
1956 static inline int
1957 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1958 {
1959 	return (ioc->facts.IOCCapabilities &
1960 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1961 }
1962 
1963 /**
1964  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1965  * @ioc: per adapter object
1966  * @poll: poll over reply descriptor pools incase interrupt for
1967  *		timed-out SCSI command got delayed
1968  * Context: non-ISR context
1969  *
1970  * Called when a Task Management request has completed.
1971  */
1972 void
1973 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1974 {
1975 	struct adapter_reply_queue *reply_q;
1976 
1977 	/* If MSIX capability is turned off
1978 	 * then multi-queues are not enabled
1979 	 */
1980 	if (!_base_is_controller_msix_enabled(ioc))
1981 		return;
1982 
1983 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1984 		if (ioc->shost_recovery || ioc->remove_host ||
1985 				ioc->pci_error_recovery)
1986 			return;
1987 		/* TMs are on msix_index == 0 */
1988 		if (reply_q->msix_index == 0)
1989 			continue;
1990 
1991 		if (reply_q->is_iouring_poll_q) {
1992 			_base_process_reply_queue(reply_q);
1993 			continue;
1994 		}
1995 
1996 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1997 		if (reply_q->irq_poll_scheduled) {
1998 			/* Calling irq_poll_disable will wait for any pending
1999 			 * callbacks to have completed.
2000 			 */
2001 			irq_poll_disable(&reply_q->irqpoll);
2002 			irq_poll_enable(&reply_q->irqpoll);
2003 			/* check how the scheduled poll has ended,
2004 			 * clean up only if necessary
2005 			 */
2006 			if (reply_q->irq_poll_scheduled) {
2007 				reply_q->irq_poll_scheduled = false;
2008 				reply_q->irq_line_enable = true;
2009 				enable_irq(reply_q->os_irq);
2010 			}
2011 		}
2012 	}
2013 	if (poll)
2014 		_base_process_reply_queue(reply_q);
2015 }
2016 
2017 /**
2018  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2019  * @cb_idx: callback index
2020  */
2021 void
2022 mpt3sas_base_release_callback_handler(u8 cb_idx)
2023 {
2024 	mpt_callbacks[cb_idx] = NULL;
2025 }
2026 
2027 /**
2028  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2029  * @cb_func: callback function
2030  *
2031  * Return: Index of @cb_func.
2032  */
2033 u8
2034 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2035 {
2036 	u8 cb_idx;
2037 
2038 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2039 		if (mpt_callbacks[cb_idx] == NULL)
2040 			break;
2041 
2042 	mpt_callbacks[cb_idx] = cb_func;
2043 	return cb_idx;
2044 }
2045 
2046 /**
2047  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2048  */
2049 void
2050 mpt3sas_base_initialize_callback_handler(void)
2051 {
2052 	u8 cb_idx;
2053 
2054 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2055 		mpt3sas_base_release_callback_handler(cb_idx);
2056 }
2057 
2058 
2059 /**
2060  * _base_build_zero_len_sge - build zero length sg entry
2061  * @ioc: per adapter object
2062  * @paddr: virtual address for SGE
2063  *
2064  * Create a zero length scatter gather entry to insure the IOCs hardware has
2065  * something to use if the target device goes brain dead and tries
2066  * to send data even when none is asked for.
2067  */
2068 static void
2069 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2070 {
2071 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2072 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2073 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2074 	    MPI2_SGE_FLAGS_SHIFT);
2075 	ioc->base_add_sg_single(paddr, flags_length, -1);
2076 }
2077 
2078 /**
2079  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2080  * @paddr: virtual address for SGE
2081  * @flags_length: SGE flags and data transfer length
2082  * @dma_addr: Physical address
2083  */
2084 static void
2085 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2086 {
2087 	Mpi2SGESimple32_t *sgel = paddr;
2088 
2089 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2090 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2091 	sgel->FlagsLength = cpu_to_le32(flags_length);
2092 	sgel->Address = cpu_to_le32(dma_addr);
2093 }
2094 
2095 
2096 /**
2097  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2098  * @paddr: virtual address for SGE
2099  * @flags_length: SGE flags and data transfer length
2100  * @dma_addr: Physical address
2101  */
2102 static void
2103 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2104 {
2105 	Mpi2SGESimple64_t *sgel = paddr;
2106 
2107 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2108 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2109 	sgel->FlagsLength = cpu_to_le32(flags_length);
2110 	sgel->Address = cpu_to_le64(dma_addr);
2111 }
2112 
2113 /**
2114  * _base_get_chain_buffer_tracker - obtain chain tracker
2115  * @ioc: per adapter object
2116  * @scmd: SCSI commands of the IO request
2117  *
2118  * Return: chain tracker from chain_lookup table using key as
2119  * smid and smid's chain_offset.
2120  */
2121 static struct chain_tracker *
2122 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2123 			       struct scsi_cmnd *scmd)
2124 {
2125 	struct chain_tracker *chain_req;
2126 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2127 	u16 smid = st->smid;
2128 	u8 chain_offset =
2129 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2130 
2131 	if (chain_offset == ioc->chains_needed_per_io)
2132 		return NULL;
2133 
2134 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2135 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2136 	return chain_req;
2137 }
2138 
2139 
2140 /**
2141  * _base_build_sg - build generic sg
2142  * @ioc: per adapter object
2143  * @psge: virtual address for SGE
2144  * @data_out_dma: physical address for WRITES
2145  * @data_out_sz: data xfer size for WRITES
2146  * @data_in_dma: physical address for READS
2147  * @data_in_sz: data xfer size for READS
2148  */
2149 static void
2150 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2151 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2152 	size_t data_in_sz)
2153 {
2154 	u32 sgl_flags;
2155 
2156 	if (!data_out_sz && !data_in_sz) {
2157 		_base_build_zero_len_sge(ioc, psge);
2158 		return;
2159 	}
2160 
2161 	if (data_out_sz && data_in_sz) {
2162 		/* WRITE sgel first */
2163 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2164 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2165 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2166 		ioc->base_add_sg_single(psge, sgl_flags |
2167 		    data_out_sz, data_out_dma);
2168 
2169 		/* incr sgel */
2170 		psge += ioc->sge_size;
2171 
2172 		/* READ sgel last */
2173 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2174 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2175 		    MPI2_SGE_FLAGS_END_OF_LIST);
2176 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2177 		ioc->base_add_sg_single(psge, sgl_flags |
2178 		    data_in_sz, data_in_dma);
2179 	} else if (data_out_sz) /* WRITE */ {
2180 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2181 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2182 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2183 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2184 		ioc->base_add_sg_single(psge, sgl_flags |
2185 		    data_out_sz, data_out_dma);
2186 	} else if (data_in_sz) /* READ */ {
2187 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2188 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2189 		    MPI2_SGE_FLAGS_END_OF_LIST);
2190 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2191 		ioc->base_add_sg_single(psge, sgl_flags |
2192 		    data_in_sz, data_in_dma);
2193 	}
2194 }
2195 
2196 /* IEEE format sgls */
2197 
2198 /**
2199  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2200  *                        a native SGL (NVMe PRP).
2201  * @ioc: per adapter object
2202  * @smid: system request message index for getting asscociated SGL
2203  * @nvme_encap_request: the NVMe request msg frame pointer
2204  * @data_out_dma: physical address for WRITES
2205  * @data_out_sz: data xfer size for WRITES
2206  * @data_in_dma: physical address for READS
2207  * @data_in_sz: data xfer size for READS
2208  *
2209  * The native SGL is built starting in the first PRP
2210  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2211  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2212  * used to describe a larger data buffer.  If the data buffer is too large to
2213  * describe using the two PRP entriess inside the NVMe message, then PRP1
2214  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2215  * list located elsewhere in memory to describe the remaining data memory
2216  * segments.  The PRP list will be contiguous.
2217  *
2218  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2219  * consists of a list of PRP entries to describe a number of noncontigous
2220  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2221  * however, that this function is only used by the IOCTL call, so the memory
2222  * given will be guaranteed to be contiguous.  There is no need to translate
2223  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2224  * contiguous space that is one page size each.
2225  *
2226  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2227  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2228  * contains the second PRP element if the memory being described fits within 2
2229  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2230  *
2231  * A PRP list pointer contains the address of a PRP list, structured as a linear
2232  * array of PRP entries.  Each PRP entry in this list describes a segment of
2233  * physical memory.
2234  *
2235  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2236  * always points at the beginning of a 4KB physical memory page, and the offset
2237  * describes where within that 4KB page the memory segment begins.  Only the
2238  * first element in a PRP list may contain a non-zero offset, implying that all
2239  * memory segments following the first begin at the start of a 4KB page.
2240  *
2241  * Each PRP element normally describes 4KB of physical memory, with exceptions
2242  * for the first and last elements in the list.  If the memory being described
2243  * by the list begins at a non-zero offset within the first 4KB page, then the
2244  * first PRP element will contain a non-zero offset indicating where the region
2245  * begins within the 4KB page.  The last memory segment may end before the end
2246  * of the 4KB segment, depending upon the overall size of the memory being
2247  * described by the PRP list.
2248  *
2249  * Since PRP entries lack any indication of size, the overall data buffer length
2250  * is used to determine where the end of the data memory buffer is located, and
2251  * how many PRP entries are required to describe it.
2252  */
2253 static void
2254 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2255 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2256 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2257 	size_t data_in_sz)
2258 {
2259 	int		prp_size = NVME_PRP_SIZE;
2260 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2261 	__le64		*prp_page;
2262 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2263 	u32		offset, entry_len;
2264 	u32		page_mask_result, page_mask;
2265 	size_t		length;
2266 	struct mpt3sas_nvme_cmd *nvme_cmd =
2267 		(void *)nvme_encap_request->NVMe_Command;
2268 
2269 	/*
2270 	 * Not all commands require a data transfer. If no data, just return
2271 	 * without constructing any PRP.
2272 	 */
2273 	if (!data_in_sz && !data_out_sz)
2274 		return;
2275 	prp1_entry = &nvme_cmd->prp1;
2276 	prp2_entry = &nvme_cmd->prp2;
2277 	prp_entry = prp1_entry;
2278 	/*
2279 	 * For the PRP entries, use the specially allocated buffer of
2280 	 * contiguous memory.
2281 	 */
2282 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2283 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2284 
2285 	/*
2286 	 * Check if we are within 1 entry of a page boundary we don't
2287 	 * want our first entry to be a PRP List entry.
2288 	 */
2289 	page_mask = ioc->page_size - 1;
2290 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2291 	if (!page_mask_result) {
2292 		/* Bump up to next page boundary. */
2293 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2294 		prp_page_dma = prp_page_dma + prp_size;
2295 	}
2296 
2297 	/*
2298 	 * Set PRP physical pointer, which initially points to the current PRP
2299 	 * DMA memory page.
2300 	 */
2301 	prp_entry_dma = prp_page_dma;
2302 
2303 	/* Get physical address and length of the data buffer. */
2304 	if (data_in_sz) {
2305 		dma_addr = data_in_dma;
2306 		length = data_in_sz;
2307 	} else {
2308 		dma_addr = data_out_dma;
2309 		length = data_out_sz;
2310 	}
2311 
2312 	/* Loop while the length is not zero. */
2313 	while (length) {
2314 		/*
2315 		 * Check if we need to put a list pointer here if we are at
2316 		 * page boundary - prp_size (8 bytes).
2317 		 */
2318 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2319 		if (!page_mask_result) {
2320 			/*
2321 			 * This is the last entry in a PRP List, so we need to
2322 			 * put a PRP list pointer here.  What this does is:
2323 			 *   - bump the current memory pointer to the next
2324 			 *     address, which will be the next full page.
2325 			 *   - set the PRP Entry to point to that page.  This
2326 			 *     is now the PRP List pointer.
2327 			 *   - bump the PRP Entry pointer the start of the
2328 			 *     next page.  Since all of this PRP memory is
2329 			 *     contiguous, no need to get a new page - it's
2330 			 *     just the next address.
2331 			 */
2332 			prp_entry_dma++;
2333 			*prp_entry = cpu_to_le64(prp_entry_dma);
2334 			prp_entry++;
2335 		}
2336 
2337 		/* Need to handle if entry will be part of a page. */
2338 		offset = dma_addr & page_mask;
2339 		entry_len = ioc->page_size - offset;
2340 
2341 		if (prp_entry == prp1_entry) {
2342 			/*
2343 			 * Must fill in the first PRP pointer (PRP1) before
2344 			 * moving on.
2345 			 */
2346 			*prp1_entry = cpu_to_le64(dma_addr);
2347 
2348 			/*
2349 			 * Now point to the second PRP entry within the
2350 			 * command (PRP2).
2351 			 */
2352 			prp_entry = prp2_entry;
2353 		} else if (prp_entry == prp2_entry) {
2354 			/*
2355 			 * Should the PRP2 entry be a PRP List pointer or just
2356 			 * a regular PRP pointer?  If there is more than one
2357 			 * more page of data, must use a PRP List pointer.
2358 			 */
2359 			if (length > ioc->page_size) {
2360 				/*
2361 				 * PRP2 will contain a PRP List pointer because
2362 				 * more PRP's are needed with this command. The
2363 				 * list will start at the beginning of the
2364 				 * contiguous buffer.
2365 				 */
2366 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2367 
2368 				/*
2369 				 * The next PRP Entry will be the start of the
2370 				 * first PRP List.
2371 				 */
2372 				prp_entry = prp_page;
2373 			} else {
2374 				/*
2375 				 * After this, the PRP Entries are complete.
2376 				 * This command uses 2 PRP's and no PRP list.
2377 				 */
2378 				*prp2_entry = cpu_to_le64(dma_addr);
2379 			}
2380 		} else {
2381 			/*
2382 			 * Put entry in list and bump the addresses.
2383 			 *
2384 			 * After PRP1 and PRP2 are filled in, this will fill in
2385 			 * all remaining PRP entries in a PRP List, one per
2386 			 * each time through the loop.
2387 			 */
2388 			*prp_entry = cpu_to_le64(dma_addr);
2389 			prp_entry++;
2390 			prp_entry_dma++;
2391 		}
2392 
2393 		/*
2394 		 * Bump the phys address of the command's data buffer by the
2395 		 * entry_len.
2396 		 */
2397 		dma_addr += entry_len;
2398 
2399 		/* Decrement length accounting for last partial page. */
2400 		if (entry_len > length)
2401 			length = 0;
2402 		else
2403 			length -= entry_len;
2404 	}
2405 }
2406 
2407 /**
2408  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2409  *			SGLs specific to NVMe drives only
2410  *
2411  * @ioc:		per adapter object
2412  * @scmd:		SCSI command from the mid-layer
2413  * @mpi_request:	mpi request
2414  * @smid:		msg Index
2415  * @sge_count:		scatter gather element count.
2416  *
2417  * Return:		true: PRPs are built
2418  *			false: IEEE SGLs needs to be built
2419  */
2420 static void
2421 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2422 		struct scsi_cmnd *scmd,
2423 		Mpi25SCSIIORequest_t *mpi_request,
2424 		u16 smid, int sge_count)
2425 {
2426 	int sge_len, num_prp_in_chain = 0;
2427 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2428 	__le64 *curr_buff;
2429 	dma_addr_t msg_dma, sge_addr, offset;
2430 	u32 page_mask, page_mask_result;
2431 	struct scatterlist *sg_scmd;
2432 	u32 first_prp_len;
2433 	int data_len = scsi_bufflen(scmd);
2434 	u32 nvme_pg_size;
2435 
2436 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2437 	/*
2438 	 * Nvme has a very convoluted prp format.  One prp is required
2439 	 * for each page or partial page. Driver need to split up OS sg_list
2440 	 * entries if it is longer than one page or cross a page
2441 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2442 	 * the last entry in each physical page of the PRP list.
2443 	 *
2444 	 * NOTE: The first PRP "entry" is actually placed in the first
2445 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2446 	 * entry in the main message is the chain element, and the rest
2447 	 * of the PRP entries are built in the contiguous pcie buffer.
2448 	 */
2449 	page_mask = nvme_pg_size - 1;
2450 
2451 	/*
2452 	 * Native SGL is needed.
2453 	 * Put a chain element in main message frame that points to the first
2454 	 * chain buffer.
2455 	 *
2456 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2457 	 *        a native SGL.
2458 	 */
2459 
2460 	/* Set main message chain element pointer */
2461 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2462 	/*
2463 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2464 	 * message.
2465 	 */
2466 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2467 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2468 
2469 	/*
2470 	 * For the PRP entries, use the specially allocated buffer of
2471 	 * contiguous memory.  Normal chain buffers can't be used
2472 	 * because each chain buffer would need to be the size of an OS
2473 	 * page (4k).
2474 	 */
2475 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2476 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2477 
2478 	main_chain_element->Address = cpu_to_le64(msg_dma);
2479 	main_chain_element->NextChainOffset = 0;
2480 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2481 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2482 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2483 
2484 	/* Build first prp, sge need not to be page aligned*/
2485 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2486 	sg_scmd = scsi_sglist(scmd);
2487 	sge_addr = sg_dma_address(sg_scmd);
2488 	sge_len = sg_dma_len(sg_scmd);
2489 
2490 	offset = sge_addr & page_mask;
2491 	first_prp_len = nvme_pg_size - offset;
2492 
2493 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2494 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2495 
2496 	data_len -= first_prp_len;
2497 
2498 	if (sge_len > first_prp_len) {
2499 		sge_addr += first_prp_len;
2500 		sge_len -= first_prp_len;
2501 	} else if (data_len && (sge_len == first_prp_len)) {
2502 		sg_scmd = sg_next(sg_scmd);
2503 		sge_addr = sg_dma_address(sg_scmd);
2504 		sge_len = sg_dma_len(sg_scmd);
2505 	}
2506 
2507 	for (;;) {
2508 		offset = sge_addr & page_mask;
2509 
2510 		/* Put PRP pointer due to page boundary*/
2511 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2512 		if (unlikely(!page_mask_result)) {
2513 			scmd_printk(KERN_NOTICE,
2514 				scmd, "page boundary curr_buff: 0x%p\n",
2515 				curr_buff);
2516 			msg_dma += 8;
2517 			*curr_buff = cpu_to_le64(msg_dma);
2518 			curr_buff++;
2519 			num_prp_in_chain++;
2520 		}
2521 
2522 		*curr_buff = cpu_to_le64(sge_addr);
2523 		curr_buff++;
2524 		msg_dma += 8;
2525 		num_prp_in_chain++;
2526 
2527 		sge_addr += nvme_pg_size;
2528 		sge_len -= nvme_pg_size;
2529 		data_len -= nvme_pg_size;
2530 
2531 		if (data_len <= 0)
2532 			break;
2533 
2534 		if (sge_len > 0)
2535 			continue;
2536 
2537 		sg_scmd = sg_next(sg_scmd);
2538 		sge_addr = sg_dma_address(sg_scmd);
2539 		sge_len = sg_dma_len(sg_scmd);
2540 	}
2541 
2542 	main_chain_element->Length =
2543 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2544 	return;
2545 }
2546 
2547 static bool
2548 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2549 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2550 {
2551 	u32 data_length = 0;
2552 	bool build_prp = true;
2553 
2554 	data_length = scsi_bufflen(scmd);
2555 	if (pcie_device &&
2556 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2557 		build_prp = false;
2558 		return build_prp;
2559 	}
2560 
2561 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2562 	 * we built IEEE SGL
2563 	 */
2564 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2565 		build_prp = false;
2566 
2567 	return build_prp;
2568 }
2569 
2570 /**
2571  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2572  * determine if the driver needs to build a native SGL.  If so, that native
2573  * SGL is built in the special contiguous buffers allocated especially for
2574  * PCIe SGL creation.  If the driver will not build a native SGL, return
2575  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2576  * supports NVMe.
2577  * @ioc: per adapter object
2578  * @mpi_request: mf request pointer
2579  * @smid: system request message index
2580  * @scmd: scsi command
2581  * @pcie_device: points to the PCIe device's info
2582  *
2583  * Return: 0 if native SGL was built, 1 if no SGL was built
2584  */
2585 static int
2586 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2587 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2588 	struct _pcie_device *pcie_device)
2589 {
2590 	int sges_left;
2591 
2592 	/* Get the SG list pointer and info. */
2593 	sges_left = scsi_dma_map(scmd);
2594 	if (sges_left < 0) {
2595 		sdev_printk(KERN_ERR, scmd->device,
2596 			"scsi_dma_map failed: request for %d bytes!\n",
2597 			scsi_bufflen(scmd));
2598 		return 1;
2599 	}
2600 
2601 	/* Check if we need to build a native SG list. */
2602 	if (!base_is_prp_possible(ioc, pcie_device,
2603 				scmd, sges_left)) {
2604 		/* We built a native SG list, just return. */
2605 		goto out;
2606 	}
2607 
2608 	/*
2609 	 * Build native NVMe PRP.
2610 	 */
2611 	base_make_prp_nvme(ioc, scmd, mpi_request,
2612 			smid, sges_left);
2613 
2614 	return 0;
2615 out:
2616 	scsi_dma_unmap(scmd);
2617 	return 1;
2618 }
2619 
2620 /**
2621  * _base_add_sg_single_ieee - add sg element for IEEE format
2622  * @paddr: virtual address for SGE
2623  * @flags: SGE flags
2624  * @chain_offset: number of 128 byte elements from start of segment
2625  * @length: data transfer length
2626  * @dma_addr: Physical address
2627  */
2628 static void
2629 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2630 	dma_addr_t dma_addr)
2631 {
2632 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2633 
2634 	sgel->Flags = flags;
2635 	sgel->NextChainOffset = chain_offset;
2636 	sgel->Length = cpu_to_le32(length);
2637 	sgel->Address = cpu_to_le64(dma_addr);
2638 }
2639 
2640 /**
2641  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2642  * @ioc: per adapter object
2643  * @paddr: virtual address for SGE
2644  *
2645  * Create a zero length scatter gather entry to insure the IOCs hardware has
2646  * something to use if the target device goes brain dead and tries
2647  * to send data even when none is asked for.
2648  */
2649 static void
2650 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2651 {
2652 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2653 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2654 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2655 
2656 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2657 }
2658 
2659 /**
2660  * _base_build_sg_scmd - main sg creation routine
2661  *		pcie_device is unused here!
2662  * @ioc: per adapter object
2663  * @scmd: scsi command
2664  * @smid: system request message index
2665  * @unused: unused pcie_device pointer
2666  * Context: none.
2667  *
2668  * The main routine that builds scatter gather table from a given
2669  * scsi request sent via the .queuecommand main handler.
2670  *
2671  * Return: 0 success, anything else error
2672  */
2673 static int
2674 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2675 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2676 {
2677 	Mpi2SCSIIORequest_t *mpi_request;
2678 	dma_addr_t chain_dma;
2679 	struct scatterlist *sg_scmd;
2680 	void *sg_local, *chain;
2681 	u32 chain_offset;
2682 	u32 chain_length;
2683 	u32 chain_flags;
2684 	int sges_left;
2685 	u32 sges_in_segment;
2686 	u32 sgl_flags;
2687 	u32 sgl_flags_last_element;
2688 	u32 sgl_flags_end_buffer;
2689 	struct chain_tracker *chain_req;
2690 
2691 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2692 
2693 	/* init scatter gather flags */
2694 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2695 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2696 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2697 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2698 	    << MPI2_SGE_FLAGS_SHIFT;
2699 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2700 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2701 	    << MPI2_SGE_FLAGS_SHIFT;
2702 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2703 
2704 	sg_scmd = scsi_sglist(scmd);
2705 	sges_left = scsi_dma_map(scmd);
2706 	if (sges_left < 0) {
2707 		sdev_printk(KERN_ERR, scmd->device,
2708 		 "scsi_dma_map failed: request for %d bytes!\n",
2709 		 scsi_bufflen(scmd));
2710 		return -ENOMEM;
2711 	}
2712 
2713 	sg_local = &mpi_request->SGL;
2714 	sges_in_segment = ioc->max_sges_in_main_message;
2715 	if (sges_left <= sges_in_segment)
2716 		goto fill_in_last_segment;
2717 
2718 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2719 	    (sges_in_segment * ioc->sge_size))/4;
2720 
2721 	/* fill in main message segment when there is a chain following */
2722 	while (sges_in_segment) {
2723 		if (sges_in_segment == 1)
2724 			ioc->base_add_sg_single(sg_local,
2725 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2726 			    sg_dma_address(sg_scmd));
2727 		else
2728 			ioc->base_add_sg_single(sg_local, sgl_flags |
2729 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2730 		sg_scmd = sg_next(sg_scmd);
2731 		sg_local += ioc->sge_size;
2732 		sges_left--;
2733 		sges_in_segment--;
2734 	}
2735 
2736 	/* initializing the chain flags and pointers */
2737 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2738 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2739 	if (!chain_req)
2740 		return -1;
2741 	chain = chain_req->chain_buffer;
2742 	chain_dma = chain_req->chain_buffer_dma;
2743 	do {
2744 		sges_in_segment = (sges_left <=
2745 		    ioc->max_sges_in_chain_message) ? sges_left :
2746 		    ioc->max_sges_in_chain_message;
2747 		chain_offset = (sges_left == sges_in_segment) ?
2748 		    0 : (sges_in_segment * ioc->sge_size)/4;
2749 		chain_length = sges_in_segment * ioc->sge_size;
2750 		if (chain_offset) {
2751 			chain_offset = chain_offset <<
2752 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2753 			chain_length += ioc->sge_size;
2754 		}
2755 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2756 		    chain_length, chain_dma);
2757 		sg_local = chain;
2758 		if (!chain_offset)
2759 			goto fill_in_last_segment;
2760 
2761 		/* fill in chain segments */
2762 		while (sges_in_segment) {
2763 			if (sges_in_segment == 1)
2764 				ioc->base_add_sg_single(sg_local,
2765 				    sgl_flags_last_element |
2766 				    sg_dma_len(sg_scmd),
2767 				    sg_dma_address(sg_scmd));
2768 			else
2769 				ioc->base_add_sg_single(sg_local, sgl_flags |
2770 				    sg_dma_len(sg_scmd),
2771 				    sg_dma_address(sg_scmd));
2772 			sg_scmd = sg_next(sg_scmd);
2773 			sg_local += ioc->sge_size;
2774 			sges_left--;
2775 			sges_in_segment--;
2776 		}
2777 
2778 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2779 		if (!chain_req)
2780 			return -1;
2781 		chain = chain_req->chain_buffer;
2782 		chain_dma = chain_req->chain_buffer_dma;
2783 	} while (1);
2784 
2785 
2786  fill_in_last_segment:
2787 
2788 	/* fill the last segment */
2789 	while (sges_left) {
2790 		if (sges_left == 1)
2791 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2792 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2793 		else
2794 			ioc->base_add_sg_single(sg_local, sgl_flags |
2795 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2796 		sg_scmd = sg_next(sg_scmd);
2797 		sg_local += ioc->sge_size;
2798 		sges_left--;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 /**
2805  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2806  * @ioc: per adapter object
2807  * @scmd: scsi command
2808  * @smid: system request message index
2809  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2810  * constructed on need.
2811  * Context: none.
2812  *
2813  * The main routine that builds scatter gather table from a given
2814  * scsi request sent via the .queuecommand main handler.
2815  *
2816  * Return: 0 success, anything else error
2817  */
2818 static int
2819 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2820 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2821 {
2822 	Mpi25SCSIIORequest_t *mpi_request;
2823 	dma_addr_t chain_dma;
2824 	struct scatterlist *sg_scmd;
2825 	void *sg_local, *chain;
2826 	u32 chain_offset;
2827 	u32 chain_length;
2828 	int sges_left;
2829 	u32 sges_in_segment;
2830 	u8 simple_sgl_flags;
2831 	u8 simple_sgl_flags_last;
2832 	u8 chain_sgl_flags;
2833 	struct chain_tracker *chain_req;
2834 
2835 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2836 
2837 	/* init scatter gather flags */
2838 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2839 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2840 	simple_sgl_flags_last = simple_sgl_flags |
2841 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2842 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2843 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2844 
2845 	/* Check if we need to build a native SG list. */
2846 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2847 			smid, scmd, pcie_device) == 0)) {
2848 		/* We built a native SG list, just return. */
2849 		return 0;
2850 	}
2851 
2852 	sg_scmd = scsi_sglist(scmd);
2853 	sges_left = scsi_dma_map(scmd);
2854 	if (sges_left < 0) {
2855 		sdev_printk(KERN_ERR, scmd->device,
2856 			"scsi_dma_map failed: request for %d bytes!\n",
2857 			scsi_bufflen(scmd));
2858 		return -ENOMEM;
2859 	}
2860 
2861 	sg_local = &mpi_request->SGL;
2862 	sges_in_segment = (ioc->request_sz -
2863 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2864 	if (sges_left <= sges_in_segment)
2865 		goto fill_in_last_segment;
2866 
2867 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2868 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2869 
2870 	/* fill in main message segment when there is a chain following */
2871 	while (sges_in_segment > 1) {
2872 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2873 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2874 		sg_scmd = sg_next(sg_scmd);
2875 		sg_local += ioc->sge_size_ieee;
2876 		sges_left--;
2877 		sges_in_segment--;
2878 	}
2879 
2880 	/* initializing the pointers */
2881 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2882 	if (!chain_req)
2883 		return -1;
2884 	chain = chain_req->chain_buffer;
2885 	chain_dma = chain_req->chain_buffer_dma;
2886 	do {
2887 		sges_in_segment = (sges_left <=
2888 		    ioc->max_sges_in_chain_message) ? sges_left :
2889 		    ioc->max_sges_in_chain_message;
2890 		chain_offset = (sges_left == sges_in_segment) ?
2891 		    0 : sges_in_segment;
2892 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2893 		if (chain_offset)
2894 			chain_length += ioc->sge_size_ieee;
2895 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2896 		    chain_offset, chain_length, chain_dma);
2897 
2898 		sg_local = chain;
2899 		if (!chain_offset)
2900 			goto fill_in_last_segment;
2901 
2902 		/* fill in chain segments */
2903 		while (sges_in_segment) {
2904 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2905 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2906 			sg_scmd = sg_next(sg_scmd);
2907 			sg_local += ioc->sge_size_ieee;
2908 			sges_left--;
2909 			sges_in_segment--;
2910 		}
2911 
2912 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2913 		if (!chain_req)
2914 			return -1;
2915 		chain = chain_req->chain_buffer;
2916 		chain_dma = chain_req->chain_buffer_dma;
2917 	} while (1);
2918 
2919 
2920  fill_in_last_segment:
2921 
2922 	/* fill the last segment */
2923 	while (sges_left > 0) {
2924 		if (sges_left == 1)
2925 			_base_add_sg_single_ieee(sg_local,
2926 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2927 			    sg_dma_address(sg_scmd));
2928 		else
2929 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2930 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2931 		sg_scmd = sg_next(sg_scmd);
2932 		sg_local += ioc->sge_size_ieee;
2933 		sges_left--;
2934 	}
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * _base_build_sg_ieee - build generic sg for IEEE format
2941  * @ioc: per adapter object
2942  * @psge: virtual address for SGE
2943  * @data_out_dma: physical address for WRITES
2944  * @data_out_sz: data xfer size for WRITES
2945  * @data_in_dma: physical address for READS
2946  * @data_in_sz: data xfer size for READS
2947  */
2948 static void
2949 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2950 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2951 	size_t data_in_sz)
2952 {
2953 	u8 sgl_flags;
2954 
2955 	if (!data_out_sz && !data_in_sz) {
2956 		_base_build_zero_len_sge_ieee(ioc, psge);
2957 		return;
2958 	}
2959 
2960 	if (data_out_sz && data_in_sz) {
2961 		/* WRITE sgel first */
2962 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2963 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2964 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2965 		    data_out_dma);
2966 
2967 		/* incr sgel */
2968 		psge += ioc->sge_size_ieee;
2969 
2970 		/* READ sgel last */
2971 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2972 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2973 		    data_in_dma);
2974 	} else if (data_out_sz) /* WRITE */ {
2975 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2976 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2977 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2978 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2979 		    data_out_dma);
2980 	} else if (data_in_sz) /* READ */ {
2981 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2982 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2983 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2984 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2985 		    data_in_dma);
2986 	}
2987 }
2988 
2989 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2990 
2991 /**
2992  * _base_config_dma_addressing - set dma addressing
2993  * @ioc: per adapter object
2994  * @pdev: PCI device struct
2995  *
2996  * Return: 0 for success, non-zero for failure.
2997  */
2998 static int
2999 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3000 {
3001 	struct sysinfo s;
3002 
3003 	if (ioc->is_mcpu_endpoint ||
3004 	    sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
3005 	    dma_get_required_mask(&pdev->dev) <= 32)
3006 		ioc->dma_mask = 32;
3007 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3008 	else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
3009 		ioc->dma_mask = 63;
3010 	else
3011 		ioc->dma_mask = 64;
3012 
3013 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)) ||
3014 	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(ioc->dma_mask)))
3015 		return -ENODEV;
3016 
3017 	if (ioc->dma_mask > 32) {
3018 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3019 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3020 	} else {
3021 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3022 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3023 	}
3024 
3025 	si_meminfo(&s);
3026 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3027 		ioc->dma_mask, convert_to_kb(s.totalram));
3028 
3029 	return 0;
3030 }
3031 
3032 /**
3033  * _base_check_enable_msix - checks MSIX capabable.
3034  * @ioc: per adapter object
3035  *
3036  * Check to see if card is capable of MSIX, and set number
3037  * of available msix vectors
3038  */
3039 static int
3040 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3041 {
3042 	int base;
3043 	u16 message_control;
3044 
3045 	/* Check whether controller SAS2008 B0 controller,
3046 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3047 	 */
3048 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3049 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3050 		return -EINVAL;
3051 	}
3052 
3053 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3054 	if (!base) {
3055 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3056 		return -EINVAL;
3057 	}
3058 
3059 	/* get msix vector count */
3060 	/* NUMA_IO not supported for older controllers */
3061 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3062 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3063 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3064 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3065 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3066 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3067 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3068 		ioc->msix_vector_count = 1;
3069 	else {
3070 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3071 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3072 	}
3073 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3074 				  ioc->msix_vector_count));
3075 	return 0;
3076 }
3077 
3078 /**
3079  * mpt3sas_base_free_irq - free irq
3080  * @ioc: per adapter object
3081  *
3082  * Freeing respective reply_queue from the list.
3083  */
3084 void
3085 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3086 {
3087 	struct adapter_reply_queue *reply_q, *next;
3088 
3089 	if (list_empty(&ioc->reply_queue_list))
3090 		return;
3091 
3092 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3093 		list_del(&reply_q->list);
3094 		if (reply_q->is_iouring_poll_q) {
3095 			kfree(reply_q);
3096 			continue;
3097 		}
3098 
3099 		if (ioc->smp_affinity_enable)
3100 			irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3101 			    reply_q->msix_index), NULL);
3102 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3103 			 reply_q);
3104 		kfree(reply_q);
3105 	}
3106 }
3107 
3108 /**
3109  * _base_request_irq - request irq
3110  * @ioc: per adapter object
3111  * @index: msix index into vector table
3112  *
3113  * Inserting respective reply_queue into the list.
3114  */
3115 static int
3116 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3117 {
3118 	struct pci_dev *pdev = ioc->pdev;
3119 	struct adapter_reply_queue *reply_q;
3120 	int r, qid;
3121 
3122 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3123 	if (!reply_q) {
3124 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3125 			sizeof(struct adapter_reply_queue));
3126 		return -ENOMEM;
3127 	}
3128 	reply_q->ioc = ioc;
3129 	reply_q->msix_index = index;
3130 
3131 	atomic_set(&reply_q->busy, 0);
3132 
3133 	if (index >= ioc->iopoll_q_start_index) {
3134 		qid = index - ioc->iopoll_q_start_index;
3135 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3136 		    ioc->driver_name, ioc->id, qid);
3137 		reply_q->is_iouring_poll_q = 1;
3138 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3139 		goto out;
3140 	}
3141 
3142 
3143 	if (ioc->msix_enable)
3144 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3145 		    ioc->driver_name, ioc->id, index);
3146 	else
3147 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3148 		    ioc->driver_name, ioc->id);
3149 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3150 			IRQF_SHARED, reply_q->name, reply_q);
3151 	if (r) {
3152 		pr_err("%s: unable to allocate interrupt %d!\n",
3153 		       reply_q->name, pci_irq_vector(pdev, index));
3154 		kfree(reply_q);
3155 		return -EBUSY;
3156 	}
3157 out:
3158 	INIT_LIST_HEAD(&reply_q->list);
3159 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3160 	return 0;
3161 }
3162 
3163 /**
3164  * _base_assign_reply_queues - assigning msix index for each cpu
3165  * @ioc: per adapter object
3166  *
3167  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3168  *
3169  * It would nice if we could call irq_set_affinity, however it is not
3170  * an exported symbol
3171  */
3172 static void
3173 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3174 {
3175 	unsigned int cpu, nr_cpus, nr_msix, index = 0;
3176 	struct adapter_reply_queue *reply_q;
3177 	int local_numa_node;
3178 	int iopoll_q_count = ioc->reply_queue_count -
3179 	    ioc->iopoll_q_start_index;
3180 
3181 	if (!_base_is_controller_msix_enabled(ioc))
3182 		return;
3183 
3184 	if (ioc->msix_load_balance)
3185 		return;
3186 
3187 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3188 
3189 	nr_cpus = num_online_cpus();
3190 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3191 					       ioc->facts.MaxMSIxVectors);
3192 	if (!nr_msix)
3193 		return;
3194 
3195 	if (ioc->smp_affinity_enable) {
3196 
3197 		/*
3198 		 * set irq affinity to local numa node for those irqs
3199 		 * corresponding to high iops queues.
3200 		 */
3201 		if (ioc->high_iops_queues) {
3202 			local_numa_node = dev_to_node(&ioc->pdev->dev);
3203 			for (index = 0; index < ioc->high_iops_queues;
3204 			    index++) {
3205 				irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3206 				    index), cpumask_of_node(local_numa_node));
3207 			}
3208 		}
3209 
3210 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3211 			const cpumask_t *mask;
3212 
3213 			if (reply_q->msix_index < ioc->high_iops_queues ||
3214 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3215 				continue;
3216 
3217 			mask = pci_irq_get_affinity(ioc->pdev,
3218 			    reply_q->msix_index);
3219 			if (!mask) {
3220 				ioc_warn(ioc, "no affinity for msi %x\n",
3221 					 reply_q->msix_index);
3222 				goto fall_back;
3223 			}
3224 
3225 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3226 				if (cpu >= ioc->cpu_msix_table_sz)
3227 					break;
3228 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3229 			}
3230 		}
3231 		return;
3232 	}
3233 
3234 fall_back:
3235 	cpu = cpumask_first(cpu_online_mask);
3236 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3237 	index = 0;
3238 
3239 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3240 		unsigned int i, group = nr_cpus / nr_msix;
3241 
3242 		if (reply_q->msix_index < ioc->high_iops_queues ||
3243 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3244 			continue;
3245 
3246 		if (cpu >= nr_cpus)
3247 			break;
3248 
3249 		if (index < nr_cpus % nr_msix)
3250 			group++;
3251 
3252 		for (i = 0 ; i < group ; i++) {
3253 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3254 			cpu = cpumask_next(cpu, cpu_online_mask);
3255 		}
3256 		index++;
3257 	}
3258 }
3259 
3260 /**
3261  * _base_check_and_enable_high_iops_queues - enable high iops mode
3262  * @ioc: per adapter object
3263  * @hba_msix_vector_count: msix vectors supported by HBA
3264  *
3265  * Enable high iops queues only if
3266  *  - HBA is a SEA/AERO controller and
3267  *  - MSI-Xs vector supported by the HBA is 128 and
3268  *  - total CPU count in the system >=16 and
3269  *  - loaded driver with default max_msix_vectors module parameter and
3270  *  - system booted in non kdump mode
3271  *
3272  * Return: nothing.
3273  */
3274 static void
3275 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3276 		int hba_msix_vector_count)
3277 {
3278 	u16 lnksta, speed;
3279 
3280 	/*
3281 	 * Disable high iops queues if io uring poll queues are enabled.
3282 	 */
3283 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3284 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3285 	    ioc->io_uring_poll_queues) {
3286 		ioc->high_iops_queues = 0;
3287 		return;
3288 	}
3289 
3290 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3291 
3292 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3293 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3294 
3295 		if (speed < 0x4) {
3296 			ioc->high_iops_queues = 0;
3297 			return;
3298 		}
3299 	}
3300 
3301 	if (!reset_devices && ioc->is_aero_ioc &&
3302 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3303 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3304 	    max_msix_vectors == -1)
3305 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3306 	else
3307 		ioc->high_iops_queues = 0;
3308 }
3309 
3310 /**
3311  * mpt3sas_base_disable_msix - disables msix
3312  * @ioc: per adapter object
3313  *
3314  */
3315 void
3316 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3317 {
3318 	if (!ioc->msix_enable)
3319 		return;
3320 	pci_free_irq_vectors(ioc->pdev);
3321 	ioc->msix_enable = 0;
3322 	kfree(ioc->io_uring_poll_queues);
3323 }
3324 
3325 /**
3326  * _base_alloc_irq_vectors - allocate msix vectors
3327  * @ioc: per adapter object
3328  *
3329  */
3330 static int
3331 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3332 {
3333 	int i, irq_flags = PCI_IRQ_MSIX;
3334 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3335 	struct irq_affinity *descp = &desc;
3336 	/*
3337 	 * Don't allocate msix vectors for poll_queues.
3338 	 * msix_vectors is always within a range of FW supported reply queue.
3339 	 */
3340 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3341 
3342 
3343 	if (ioc->smp_affinity_enable)
3344 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3345 	else
3346 		descp = NULL;
3347 
3348 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3349 	    ioc->reply_queue_count, nr_msix_vectors);
3350 
3351 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3352 	    ioc->high_iops_queues,
3353 	    nr_msix_vectors, irq_flags, descp);
3354 
3355 	return i;
3356 }
3357 
3358 /**
3359  * _base_enable_msix - enables msix, failback to io_apic
3360  * @ioc: per adapter object
3361  *
3362  */
3363 static int
3364 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3365 {
3366 	int r;
3367 	int i, local_max_msix_vectors;
3368 	u8 try_msix = 0;
3369 	int iopoll_q_count = 0;
3370 
3371 	ioc->msix_load_balance = false;
3372 
3373 	if (msix_disable == -1 || msix_disable == 0)
3374 		try_msix = 1;
3375 
3376 	if (!try_msix)
3377 		goto try_ioapic;
3378 
3379 	if (_base_check_enable_msix(ioc) != 0)
3380 		goto try_ioapic;
3381 
3382 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3383 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3384 		ioc->cpu_count, max_msix_vectors);
3385 
3386 	ioc->reply_queue_count =
3387 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3388 
3389 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3390 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3391 	else
3392 		local_max_msix_vectors = max_msix_vectors;
3393 
3394 	if (local_max_msix_vectors == 0)
3395 		goto try_ioapic;
3396 
3397 	/*
3398 	 * Enable msix_load_balance only if combined reply queue mode is
3399 	 * disabled on SAS3 & above generation HBA devices.
3400 	 */
3401 	if (!ioc->combined_reply_queue &&
3402 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3403 		ioc_info(ioc,
3404 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3405 		ioc->msix_load_balance = true;
3406 	}
3407 
3408 	/*
3409 	 * smp affinity setting is not need when msix load balance
3410 	 * is enabled.
3411 	 */
3412 	if (ioc->msix_load_balance)
3413 		ioc->smp_affinity_enable = 0;
3414 
3415 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3416 		ioc->shost->host_tagset = 0;
3417 
3418 	/*
3419 	 * Enable io uring poll queues only if host_tagset is enabled.
3420 	 */
3421 	if (ioc->shost->host_tagset)
3422 		iopoll_q_count = poll_queues;
3423 
3424 	if (iopoll_q_count) {
3425 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3426 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3427 		if (!ioc->io_uring_poll_queues)
3428 			iopoll_q_count = 0;
3429 	}
3430 
3431 	if (ioc->is_aero_ioc)
3432 		_base_check_and_enable_high_iops_queues(ioc,
3433 		    ioc->msix_vector_count);
3434 
3435 	/*
3436 	 * Add high iops queues count to reply queue count if high iops queues
3437 	 * are enabled.
3438 	 */
3439 	ioc->reply_queue_count = min_t(int,
3440 	    ioc->reply_queue_count + ioc->high_iops_queues,
3441 	    ioc->msix_vector_count);
3442 
3443 	/*
3444 	 * Adjust the reply queue count incase reply queue count
3445 	 * exceeds the user provided MSIx vectors count.
3446 	 */
3447 	if (local_max_msix_vectors > 0)
3448 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3449 		    ioc->reply_queue_count);
3450 	/*
3451 	 * Add io uring poll queues count to reply queues count
3452 	 * if io uring is enabled in driver.
3453 	 */
3454 	if (iopoll_q_count) {
3455 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3456 			iopoll_q_count = 0;
3457 		ioc->reply_queue_count = min_t(int,
3458 		    ioc->reply_queue_count + iopoll_q_count,
3459 		    ioc->msix_vector_count);
3460 	}
3461 
3462 	/*
3463 	 * Starting index of io uring poll queues in reply queue list.
3464 	 */
3465 	ioc->iopoll_q_start_index =
3466 	    ioc->reply_queue_count - iopoll_q_count;
3467 
3468 	r = _base_alloc_irq_vectors(ioc);
3469 	if (r < 0) {
3470 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3471 		goto try_ioapic;
3472 	}
3473 
3474 	/*
3475 	 * Adjust the reply queue count if the allocated
3476 	 * MSIx vectors is less then the requested number
3477 	 * of MSIx vectors.
3478 	 */
3479 	if (r < ioc->iopoll_q_start_index) {
3480 		ioc->reply_queue_count = r + iopoll_q_count;
3481 		ioc->iopoll_q_start_index =
3482 		    ioc->reply_queue_count - iopoll_q_count;
3483 	}
3484 
3485 	ioc->msix_enable = 1;
3486 	for (i = 0; i < ioc->reply_queue_count; i++) {
3487 		r = _base_request_irq(ioc, i);
3488 		if (r) {
3489 			mpt3sas_base_free_irq(ioc);
3490 			mpt3sas_base_disable_msix(ioc);
3491 			goto try_ioapic;
3492 		}
3493 	}
3494 
3495 	ioc_info(ioc, "High IOPs queues : %s\n",
3496 			ioc->high_iops_queues ? "enabled" : "disabled");
3497 
3498 	return 0;
3499 
3500 /* failback to io_apic interrupt routing */
3501  try_ioapic:
3502 	ioc->high_iops_queues = 0;
3503 	ioc_info(ioc, "High IOPs queues : disabled\n");
3504 	ioc->reply_queue_count = 1;
3505 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3506 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3507 	if (r < 0) {
3508 		dfailprintk(ioc,
3509 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3510 				     r));
3511 	} else
3512 		r = _base_request_irq(ioc, 0);
3513 
3514 	return r;
3515 }
3516 
3517 /**
3518  * mpt3sas_base_unmap_resources - free controller resources
3519  * @ioc: per adapter object
3520  */
3521 static void
3522 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3523 {
3524 	struct pci_dev *pdev = ioc->pdev;
3525 
3526 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3527 
3528 	mpt3sas_base_free_irq(ioc);
3529 	mpt3sas_base_disable_msix(ioc);
3530 
3531 	kfree(ioc->replyPostRegisterIndex);
3532 	ioc->replyPostRegisterIndex = NULL;
3533 
3534 
3535 	if (ioc->chip_phys) {
3536 		iounmap(ioc->chip);
3537 		ioc->chip_phys = 0;
3538 	}
3539 
3540 	if (pci_is_enabled(pdev)) {
3541 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3542 		pci_disable_pcie_error_reporting(pdev);
3543 		pci_disable_device(pdev);
3544 	}
3545 }
3546 
3547 static int
3548 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3549 
3550 /**
3551  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3552  *     and if it is in fault state then issue diag reset.
3553  * @ioc: per adapter object
3554  *
3555  * Return: 0 for success, non-zero for failure.
3556  */
3557 int
3558 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3559 {
3560 	u32 ioc_state;
3561 	int rc = -EFAULT;
3562 
3563 	dinitprintk(ioc, pr_info("%s\n", __func__));
3564 	if (ioc->pci_error_recovery)
3565 		return 0;
3566 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3567 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3568 
3569 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3570 		mpt3sas_print_fault_code(ioc, ioc_state &
3571 		    MPI2_DOORBELL_DATA_MASK);
3572 		mpt3sas_base_mask_interrupts(ioc);
3573 		rc = _base_diag_reset(ioc);
3574 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3575 	    MPI2_IOC_STATE_COREDUMP) {
3576 		mpt3sas_print_coredump_info(ioc, ioc_state &
3577 		     MPI2_DOORBELL_DATA_MASK);
3578 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3579 		mpt3sas_base_mask_interrupts(ioc);
3580 		rc = _base_diag_reset(ioc);
3581 	}
3582 
3583 	return rc;
3584 }
3585 
3586 /**
3587  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3588  * @ioc: per adapter object
3589  *
3590  * Return: 0 for success, non-zero for failure.
3591  */
3592 int
3593 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3594 {
3595 	struct pci_dev *pdev = ioc->pdev;
3596 	u32 memap_sz;
3597 	u32 pio_sz;
3598 	int i, r = 0, rc;
3599 	u64 pio_chip = 0;
3600 	phys_addr_t chip_phys = 0;
3601 	struct adapter_reply_queue *reply_q;
3602 	int iopoll_q_count = 0;
3603 
3604 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3605 
3606 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3607 	if (pci_enable_device_mem(pdev)) {
3608 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3609 		ioc->bars = 0;
3610 		return -ENODEV;
3611 	}
3612 
3613 
3614 	if (pci_request_selected_regions(pdev, ioc->bars,
3615 	    ioc->driver_name)) {
3616 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3617 		ioc->bars = 0;
3618 		r = -ENODEV;
3619 		goto out_fail;
3620 	}
3621 
3622 /* AER (Advanced Error Reporting) hooks */
3623 	pci_enable_pcie_error_reporting(pdev);
3624 
3625 	pci_set_master(pdev);
3626 
3627 
3628 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3629 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3630 		r = -ENODEV;
3631 		goto out_fail;
3632 	}
3633 
3634 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3635 	     (!memap_sz || !pio_sz); i++) {
3636 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3637 			if (pio_sz)
3638 				continue;
3639 			pio_chip = (u64)pci_resource_start(pdev, i);
3640 			pio_sz = pci_resource_len(pdev, i);
3641 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3642 			if (memap_sz)
3643 				continue;
3644 			ioc->chip_phys = pci_resource_start(pdev, i);
3645 			chip_phys = ioc->chip_phys;
3646 			memap_sz = pci_resource_len(pdev, i);
3647 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3648 		}
3649 	}
3650 
3651 	if (ioc->chip == NULL) {
3652 		ioc_err(ioc,
3653 		    "unable to map adapter memory! or resource not found\n");
3654 		r = -EINVAL;
3655 		goto out_fail;
3656 	}
3657 
3658 	mpt3sas_base_mask_interrupts(ioc);
3659 
3660 	r = _base_get_ioc_facts(ioc);
3661 	if (r) {
3662 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3663 		if (rc || (_base_get_ioc_facts(ioc)))
3664 			goto out_fail;
3665 	}
3666 
3667 	if (!ioc->rdpq_array_enable_assigned) {
3668 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3669 		ioc->rdpq_array_enable_assigned = 1;
3670 	}
3671 
3672 	r = _base_enable_msix(ioc);
3673 	if (r)
3674 		goto out_fail;
3675 
3676 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3677 	for (i = 0; i < iopoll_q_count; i++) {
3678 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3679 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3680 	}
3681 
3682 	if (!ioc->is_driver_loading)
3683 		_base_init_irqpolls(ioc);
3684 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3685 	 * revision HBAs and also only when reply queue count is greater than 8
3686 	 */
3687 	if (ioc->combined_reply_queue) {
3688 		/* Determine the Supplemental Reply Post Host Index Registers
3689 		 * Addresse. Supplemental Reply Post Host Index Registers
3690 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3691 		 * each register is at offset bytes of
3692 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3693 		 */
3694 		ioc->replyPostRegisterIndex = kcalloc(
3695 		     ioc->combined_reply_index_count,
3696 		     sizeof(resource_size_t *), GFP_KERNEL);
3697 		if (!ioc->replyPostRegisterIndex) {
3698 			ioc_err(ioc,
3699 			    "allocation for replyPostRegisterIndex failed!\n");
3700 			r = -ENOMEM;
3701 			goto out_fail;
3702 		}
3703 
3704 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3705 			ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3706 			     ((u8 __force *)&ioc->chip->Doorbell +
3707 			     MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3708 			     (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3709 		}
3710 	}
3711 
3712 	if (ioc->is_warpdrive) {
3713 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3714 		    &ioc->chip->ReplyPostHostIndex;
3715 
3716 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3717 			ioc->reply_post_host_index[i] =
3718 			(resource_size_t __iomem *)
3719 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3720 			* 4)));
3721 	}
3722 
3723 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3724 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3725 			pr_info("%s: enabled: index: %d\n",
3726 			    reply_q->name, reply_q->msix_index);
3727 			continue;
3728 		}
3729 
3730 		pr_info("%s: %s enabled: IRQ %d\n",
3731 			reply_q->name,
3732 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3733 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3734 	}
3735 
3736 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3737 		 &chip_phys, ioc->chip, memap_sz);
3738 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3739 		 (unsigned long long)pio_chip, pio_sz);
3740 
3741 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3742 	pci_save_state(pdev);
3743 	return 0;
3744 
3745  out_fail:
3746 	mpt3sas_base_unmap_resources(ioc);
3747 	return r;
3748 }
3749 
3750 /**
3751  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3752  * @ioc: per adapter object
3753  * @smid: system request message index(smid zero is invalid)
3754  *
3755  * Return: virt pointer to message frame.
3756  */
3757 void *
3758 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3759 {
3760 	return (void *)(ioc->request + (smid * ioc->request_sz));
3761 }
3762 
3763 /**
3764  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3765  * @ioc: per adapter object
3766  * @smid: system request message index
3767  *
3768  * Return: virt pointer to sense buffer.
3769  */
3770 void *
3771 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3772 {
3773 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3774 }
3775 
3776 /**
3777  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3778  * @ioc: per adapter object
3779  * @smid: system request message index
3780  *
3781  * Return: phys pointer to the low 32bit address of the sense buffer.
3782  */
3783 __le32
3784 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3785 {
3786 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3787 	    SCSI_SENSE_BUFFERSIZE));
3788 }
3789 
3790 /**
3791  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3792  * @ioc: per adapter object
3793  * @smid: system request message index
3794  *
3795  * Return: virt pointer to a PCIe SGL.
3796  */
3797 void *
3798 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3799 {
3800 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3801 }
3802 
3803 /**
3804  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3805  * @ioc: per adapter object
3806  * @smid: system request message index
3807  *
3808  * Return: phys pointer to the address of the PCIe buffer.
3809  */
3810 dma_addr_t
3811 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3812 {
3813 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3814 }
3815 
3816 /**
3817  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3818  * @ioc: per adapter object
3819  * @phys_addr: lower 32 physical addr of the reply
3820  *
3821  * Converts 32bit lower physical addr into a virt address.
3822  */
3823 void *
3824 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3825 {
3826 	if (!phys_addr)
3827 		return NULL;
3828 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3829 }
3830 
3831 /**
3832  * _base_get_msix_index - get the msix index
3833  * @ioc: per adapter object
3834  * @scmd: scsi_cmnd object
3835  *
3836  * Return: msix index of general reply queues,
3837  * i.e. reply queue on which IO request's reply
3838  * should be posted by the HBA firmware.
3839  */
3840 static inline u8
3841 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3842 	struct scsi_cmnd *scmd)
3843 {
3844 	/* Enables reply_queue load balancing */
3845 	if (ioc->msix_load_balance)
3846 		return ioc->reply_queue_count ?
3847 		    base_mod64(atomic64_add_return(1,
3848 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3849 
3850 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3851 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3852 
3853 		return blk_mq_unique_tag_to_hwq(tag) +
3854 			ioc->high_iops_queues;
3855 	}
3856 
3857 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3858 }
3859 
3860 /**
3861  * _base_get_high_iops_msix_index - get the msix index of
3862  *				high iops queues
3863  * @ioc: per adapter object
3864  * @scmd: scsi_cmnd object
3865  *
3866  * Return: msix index of high iops reply queues.
3867  * i.e. high iops reply queue on which IO request's
3868  * reply should be posted by the HBA firmware.
3869  */
3870 static inline u8
3871 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3872 	struct scsi_cmnd *scmd)
3873 {
3874 	/**
3875 	 * Round robin the IO interrupts among the high iops
3876 	 * reply queues in terms of batch count 16 when outstanding
3877 	 * IOs on the target device is >=8.
3878 	 */
3879 
3880 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3881 		return base_mod64((
3882 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3883 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3884 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3885 
3886 	return _base_get_msix_index(ioc, scmd);
3887 }
3888 
3889 /**
3890  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3891  * @ioc: per adapter object
3892  * @cb_idx: callback index
3893  *
3894  * Return: smid (zero is invalid)
3895  */
3896 u16
3897 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3898 {
3899 	unsigned long flags;
3900 	struct request_tracker *request;
3901 	u16 smid;
3902 
3903 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3904 	if (list_empty(&ioc->internal_free_list)) {
3905 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3906 		ioc_err(ioc, "%s: smid not available\n", __func__);
3907 		return 0;
3908 	}
3909 
3910 	request = list_entry(ioc->internal_free_list.next,
3911 	    struct request_tracker, tracker_list);
3912 	request->cb_idx = cb_idx;
3913 	smid = request->smid;
3914 	list_del(&request->tracker_list);
3915 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3916 	return smid;
3917 }
3918 
3919 /**
3920  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3921  * @ioc: per adapter object
3922  * @cb_idx: callback index
3923  * @scmd: pointer to scsi command object
3924  *
3925  * Return: smid (zero is invalid)
3926  */
3927 u16
3928 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3929 	struct scsi_cmnd *scmd)
3930 {
3931 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3932 	u16 smid;
3933 	u32 tag, unique_tag;
3934 
3935 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3936 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3937 
3938 	/*
3939 	 * Store hw queue number corresponding to the tag.
3940 	 * This hw queue number is used later to determine
3941 	 * the unique_tag using the logic below. This unique_tag
3942 	 * is used to retrieve the scmd pointer corresponding
3943 	 * to tag using scsi_host_find_tag() API.
3944 	 *
3945 	 * tag = smid - 1;
3946 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3947 	 */
3948 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3949 
3950 	smid = tag + 1;
3951 	request->cb_idx = cb_idx;
3952 	request->smid = smid;
3953 	request->scmd = scmd;
3954 	INIT_LIST_HEAD(&request->chain_list);
3955 	return smid;
3956 }
3957 
3958 /**
3959  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3960  * @ioc: per adapter object
3961  * @cb_idx: callback index
3962  *
3963  * Return: smid (zero is invalid)
3964  */
3965 u16
3966 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3967 {
3968 	unsigned long flags;
3969 	struct request_tracker *request;
3970 	u16 smid;
3971 
3972 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3973 	if (list_empty(&ioc->hpr_free_list)) {
3974 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3975 		return 0;
3976 	}
3977 
3978 	request = list_entry(ioc->hpr_free_list.next,
3979 	    struct request_tracker, tracker_list);
3980 	request->cb_idx = cb_idx;
3981 	smid = request->smid;
3982 	list_del(&request->tracker_list);
3983 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3984 	return smid;
3985 }
3986 
3987 static void
3988 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3989 {
3990 	/*
3991 	 * See _wait_for_commands_to_complete() call with regards to this code.
3992 	 */
3993 	if (ioc->shost_recovery && ioc->pending_io_count) {
3994 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
3995 		if (ioc->pending_io_count == 0)
3996 			wake_up(&ioc->reset_wq);
3997 	}
3998 }
3999 
4000 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4001 			   struct scsiio_tracker *st)
4002 {
4003 	if (WARN_ON(st->smid == 0))
4004 		return;
4005 	st->cb_idx = 0xFF;
4006 	st->direct_io = 0;
4007 	st->scmd = NULL;
4008 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4009 	st->smid = 0;
4010 }
4011 
4012 /**
4013  * mpt3sas_base_free_smid - put smid back on free_list
4014  * @ioc: per adapter object
4015  * @smid: system request message index
4016  */
4017 void
4018 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4019 {
4020 	unsigned long flags;
4021 	int i;
4022 
4023 	if (smid < ioc->hi_priority_smid) {
4024 		struct scsiio_tracker *st;
4025 		void *request;
4026 
4027 		st = _get_st_from_smid(ioc, smid);
4028 		if (!st) {
4029 			_base_recovery_check(ioc);
4030 			return;
4031 		}
4032 
4033 		/* Clear MPI request frame */
4034 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4035 		memset(request, 0, ioc->request_sz);
4036 
4037 		mpt3sas_base_clear_st(ioc, st);
4038 		_base_recovery_check(ioc);
4039 		ioc->io_queue_num[smid - 1] = 0;
4040 		return;
4041 	}
4042 
4043 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4044 	if (smid < ioc->internal_smid) {
4045 		/* hi-priority */
4046 		i = smid - ioc->hi_priority_smid;
4047 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4048 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4049 	} else if (smid <= ioc->hba_queue_depth) {
4050 		/* internal queue */
4051 		i = smid - ioc->internal_smid;
4052 		ioc->internal_lookup[i].cb_idx = 0xFF;
4053 		list_add(&ioc->internal_lookup[i].tracker_list,
4054 		    &ioc->internal_free_list);
4055 	}
4056 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4057 }
4058 
4059 /**
4060  * _base_mpi_ep_writeq - 32 bit write to MMIO
4061  * @b: data payload
4062  * @addr: address in MMIO space
4063  * @writeq_lock: spin lock
4064  *
4065  * This special handling for MPI EP to take care of 32 bit
4066  * environment where its not quarenteed to send the entire word
4067  * in one transfer.
4068  */
4069 static inline void
4070 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4071 					spinlock_t *writeq_lock)
4072 {
4073 	unsigned long flags;
4074 
4075 	spin_lock_irqsave(writeq_lock, flags);
4076 	__raw_writel((u32)(b), addr);
4077 	__raw_writel((u32)(b >> 32), (addr + 4));
4078 	spin_unlock_irqrestore(writeq_lock, flags);
4079 }
4080 
4081 /**
4082  * _base_writeq - 64 bit write to MMIO
4083  * @b: data payload
4084  * @addr: address in MMIO space
4085  * @writeq_lock: spin lock
4086  *
4087  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4088  * care of 32 bit environment where its not quarenteed to send the entire word
4089  * in one transfer.
4090  */
4091 #if defined(writeq) && defined(CONFIG_64BIT)
4092 static inline void
4093 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4094 {
4095 	wmb();
4096 	__raw_writeq(b, addr);
4097 	barrier();
4098 }
4099 #else
4100 static inline void
4101 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4102 {
4103 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4104 }
4105 #endif
4106 
4107 /**
4108  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4109  *                                variable of scsi tracker
4110  * @ioc: per adapter object
4111  * @smid: system request message index
4112  *
4113  * Return: msix index.
4114  */
4115 static u8
4116 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4117 {
4118 	struct scsiio_tracker *st = NULL;
4119 
4120 	if (smid < ioc->hi_priority_smid)
4121 		st = _get_st_from_smid(ioc, smid);
4122 
4123 	if (st == NULL)
4124 		return  _base_get_msix_index(ioc, NULL);
4125 
4126 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4127 	return st->msix_io;
4128 }
4129 
4130 /**
4131  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4132  * @ioc: per adapter object
4133  * @smid: system request message index
4134  * @handle: device handle
4135  */
4136 static void
4137 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4138 	u16 smid, u16 handle)
4139 {
4140 	Mpi2RequestDescriptorUnion_t descriptor;
4141 	u64 *request = (u64 *)&descriptor;
4142 	void *mpi_req_iomem;
4143 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4144 
4145 	_clone_sg_entries(ioc, (void *) mfp, smid);
4146 	mpi_req_iomem = (void __force *)ioc->chip +
4147 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4148 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4149 					ioc->request_sz);
4150 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4151 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4152 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4153 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4154 	descriptor.SCSIIO.LMID = 0;
4155 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4156 	    &ioc->scsi_lookup_lock);
4157 }
4158 
4159 /**
4160  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4161  * @ioc: per adapter object
4162  * @smid: system request message index
4163  * @handle: device handle
4164  */
4165 static void
4166 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4167 {
4168 	Mpi2RequestDescriptorUnion_t descriptor;
4169 	u64 *request = (u64 *)&descriptor;
4170 
4171 
4172 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4173 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4174 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4175 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4176 	descriptor.SCSIIO.LMID = 0;
4177 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4178 	    &ioc->scsi_lookup_lock);
4179 }
4180 
4181 /**
4182  * _base_put_smid_fast_path - send fast path request to firmware
4183  * @ioc: per adapter object
4184  * @smid: system request message index
4185  * @handle: device handle
4186  */
4187 static void
4188 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4189 	u16 handle)
4190 {
4191 	Mpi2RequestDescriptorUnion_t descriptor;
4192 	u64 *request = (u64 *)&descriptor;
4193 
4194 	descriptor.SCSIIO.RequestFlags =
4195 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4196 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4197 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4198 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4199 	descriptor.SCSIIO.LMID = 0;
4200 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4201 	    &ioc->scsi_lookup_lock);
4202 }
4203 
4204 /**
4205  * _base_put_smid_hi_priority - send Task Management request to firmware
4206  * @ioc: per adapter object
4207  * @smid: system request message index
4208  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4209  */
4210 static void
4211 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4212 	u16 msix_task)
4213 {
4214 	Mpi2RequestDescriptorUnion_t descriptor;
4215 	void *mpi_req_iomem;
4216 	u64 *request;
4217 
4218 	if (ioc->is_mcpu_endpoint) {
4219 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4220 
4221 		/* TBD 256 is offset within sys register. */
4222 		mpi_req_iomem = (void __force *)ioc->chip
4223 					+ MPI_FRAME_START_OFFSET
4224 					+ (smid * ioc->request_sz);
4225 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4226 							ioc->request_sz);
4227 	}
4228 
4229 	request = (u64 *)&descriptor;
4230 
4231 	descriptor.HighPriority.RequestFlags =
4232 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4233 	descriptor.HighPriority.MSIxIndex =  msix_task;
4234 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4235 	descriptor.HighPriority.LMID = 0;
4236 	descriptor.HighPriority.Reserved1 = 0;
4237 	if (ioc->is_mcpu_endpoint)
4238 		_base_mpi_ep_writeq(*request,
4239 				&ioc->chip->RequestDescriptorPostLow,
4240 				&ioc->scsi_lookup_lock);
4241 	else
4242 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4243 		    &ioc->scsi_lookup_lock);
4244 }
4245 
4246 /**
4247  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4248  *  firmware
4249  * @ioc: per adapter object
4250  * @smid: system request message index
4251  */
4252 void
4253 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4254 {
4255 	Mpi2RequestDescriptorUnion_t descriptor;
4256 	u64 *request = (u64 *)&descriptor;
4257 
4258 	descriptor.Default.RequestFlags =
4259 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4260 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4261 	descriptor.Default.SMID = cpu_to_le16(smid);
4262 	descriptor.Default.LMID = 0;
4263 	descriptor.Default.DescriptorTypeDependent = 0;
4264 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4265 	    &ioc->scsi_lookup_lock);
4266 }
4267 
4268 /**
4269  * _base_put_smid_default - Default, primarily used for config pages
4270  * @ioc: per adapter object
4271  * @smid: system request message index
4272  */
4273 static void
4274 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4275 {
4276 	Mpi2RequestDescriptorUnion_t descriptor;
4277 	void *mpi_req_iomem;
4278 	u64 *request;
4279 
4280 	if (ioc->is_mcpu_endpoint) {
4281 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4282 
4283 		_clone_sg_entries(ioc, (void *) mfp, smid);
4284 		/* TBD 256 is offset within sys register */
4285 		mpi_req_iomem = (void __force *)ioc->chip +
4286 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4287 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4288 							ioc->request_sz);
4289 	}
4290 	request = (u64 *)&descriptor;
4291 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4292 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4293 	descriptor.Default.SMID = cpu_to_le16(smid);
4294 	descriptor.Default.LMID = 0;
4295 	descriptor.Default.DescriptorTypeDependent = 0;
4296 	if (ioc->is_mcpu_endpoint)
4297 		_base_mpi_ep_writeq(*request,
4298 				&ioc->chip->RequestDescriptorPostLow,
4299 				&ioc->scsi_lookup_lock);
4300 	else
4301 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4302 				&ioc->scsi_lookup_lock);
4303 }
4304 
4305 /**
4306  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4307  *   Atomic Request Descriptor
4308  * @ioc: per adapter object
4309  * @smid: system request message index
4310  * @handle: device handle, unused in this function, for function type match
4311  *
4312  * Return: nothing.
4313  */
4314 static void
4315 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4316 	u16 handle)
4317 {
4318 	Mpi26AtomicRequestDescriptor_t descriptor;
4319 	u32 *request = (u32 *)&descriptor;
4320 
4321 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4322 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4323 	descriptor.SMID = cpu_to_le16(smid);
4324 
4325 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4326 }
4327 
4328 /**
4329  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4330  * using Atomic Request Descriptor
4331  * @ioc: per adapter object
4332  * @smid: system request message index
4333  * @handle: device handle, unused in this function, for function type match
4334  * Return: nothing
4335  */
4336 static void
4337 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4338 	u16 handle)
4339 {
4340 	Mpi26AtomicRequestDescriptor_t descriptor;
4341 	u32 *request = (u32 *)&descriptor;
4342 
4343 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4344 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4345 	descriptor.SMID = cpu_to_le16(smid);
4346 
4347 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4348 }
4349 
4350 /**
4351  * _base_put_smid_hi_priority_atomic - send Task Management request to
4352  * firmware using Atomic Request Descriptor
4353  * @ioc: per adapter object
4354  * @smid: system request message index
4355  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4356  *
4357  * Return: nothing.
4358  */
4359 static void
4360 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4361 	u16 msix_task)
4362 {
4363 	Mpi26AtomicRequestDescriptor_t descriptor;
4364 	u32 *request = (u32 *)&descriptor;
4365 
4366 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4367 	descriptor.MSIxIndex = msix_task;
4368 	descriptor.SMID = cpu_to_le16(smid);
4369 
4370 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4371 }
4372 
4373 /**
4374  * _base_put_smid_default_atomic - Default, primarily used for config pages
4375  * use Atomic Request Descriptor
4376  * @ioc: per adapter object
4377  * @smid: system request message index
4378  *
4379  * Return: nothing.
4380  */
4381 static void
4382 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4383 {
4384 	Mpi26AtomicRequestDescriptor_t descriptor;
4385 	u32 *request = (u32 *)&descriptor;
4386 
4387 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4388 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4389 	descriptor.SMID = cpu_to_le16(smid);
4390 
4391 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4392 }
4393 
4394 /**
4395  * _base_display_OEMs_branding - Display branding string
4396  * @ioc: per adapter object
4397  */
4398 static void
4399 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4400 {
4401 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4402 		return;
4403 
4404 	switch (ioc->pdev->subsystem_vendor) {
4405 	case PCI_VENDOR_ID_INTEL:
4406 		switch (ioc->pdev->device) {
4407 		case MPI2_MFGPAGE_DEVID_SAS2008:
4408 			switch (ioc->pdev->subsystem_device) {
4409 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4410 				ioc_info(ioc, "%s\n",
4411 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4412 				break;
4413 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4414 				ioc_info(ioc, "%s\n",
4415 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4416 				break;
4417 			case MPT2SAS_INTEL_SSD910_SSDID:
4418 				ioc_info(ioc, "%s\n",
4419 					 MPT2SAS_INTEL_SSD910_BRANDING);
4420 				break;
4421 			default:
4422 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4423 					 ioc->pdev->subsystem_device);
4424 				break;
4425 			}
4426 			break;
4427 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4428 			switch (ioc->pdev->subsystem_device) {
4429 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4430 				ioc_info(ioc, "%s\n",
4431 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4432 				break;
4433 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4434 				ioc_info(ioc, "%s\n",
4435 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4436 				break;
4437 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4438 				ioc_info(ioc, "%s\n",
4439 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4440 				break;
4441 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4442 				ioc_info(ioc, "%s\n",
4443 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4444 				break;
4445 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4446 				ioc_info(ioc, "%s\n",
4447 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4448 				break;
4449 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4450 				ioc_info(ioc, "%s\n",
4451 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4452 				break;
4453 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4454 				ioc_info(ioc, "%s\n",
4455 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4456 				break;
4457 			default:
4458 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4459 					 ioc->pdev->subsystem_device);
4460 				break;
4461 			}
4462 			break;
4463 		case MPI25_MFGPAGE_DEVID_SAS3008:
4464 			switch (ioc->pdev->subsystem_device) {
4465 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4466 				ioc_info(ioc, "%s\n",
4467 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4468 				break;
4469 
4470 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4471 				ioc_info(ioc, "%s\n",
4472 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4473 				break;
4474 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4475 				ioc_info(ioc, "%s\n",
4476 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4477 				break;
4478 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4479 				ioc_info(ioc, "%s\n",
4480 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4481 				break;
4482 			default:
4483 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4484 					 ioc->pdev->subsystem_device);
4485 				break;
4486 			}
4487 			break;
4488 		default:
4489 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4490 				 ioc->pdev->subsystem_device);
4491 			break;
4492 		}
4493 		break;
4494 	case PCI_VENDOR_ID_DELL:
4495 		switch (ioc->pdev->device) {
4496 		case MPI2_MFGPAGE_DEVID_SAS2008:
4497 			switch (ioc->pdev->subsystem_device) {
4498 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4499 				ioc_info(ioc, "%s\n",
4500 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4501 				break;
4502 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4503 				ioc_info(ioc, "%s\n",
4504 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4505 				break;
4506 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4507 				ioc_info(ioc, "%s\n",
4508 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4509 				break;
4510 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4511 				ioc_info(ioc, "%s\n",
4512 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4513 				break;
4514 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4515 				ioc_info(ioc, "%s\n",
4516 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4517 				break;
4518 			case MPT2SAS_DELL_PERC_H200_SSDID:
4519 				ioc_info(ioc, "%s\n",
4520 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4521 				break;
4522 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4523 				ioc_info(ioc, "%s\n",
4524 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4525 				break;
4526 			default:
4527 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4528 					 ioc->pdev->subsystem_device);
4529 				break;
4530 			}
4531 			break;
4532 		case MPI25_MFGPAGE_DEVID_SAS3008:
4533 			switch (ioc->pdev->subsystem_device) {
4534 			case MPT3SAS_DELL_12G_HBA_SSDID:
4535 				ioc_info(ioc, "%s\n",
4536 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4537 				break;
4538 			default:
4539 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4540 					 ioc->pdev->subsystem_device);
4541 				break;
4542 			}
4543 			break;
4544 		default:
4545 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4546 				 ioc->pdev->subsystem_device);
4547 			break;
4548 		}
4549 		break;
4550 	case PCI_VENDOR_ID_CISCO:
4551 		switch (ioc->pdev->device) {
4552 		case MPI25_MFGPAGE_DEVID_SAS3008:
4553 			switch (ioc->pdev->subsystem_device) {
4554 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4555 				ioc_info(ioc, "%s\n",
4556 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4557 				break;
4558 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4559 				ioc_info(ioc, "%s\n",
4560 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4561 				break;
4562 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4563 				ioc_info(ioc, "%s\n",
4564 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4565 				break;
4566 			default:
4567 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4568 					 ioc->pdev->subsystem_device);
4569 				break;
4570 			}
4571 			break;
4572 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4573 			switch (ioc->pdev->subsystem_device) {
4574 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4575 				ioc_info(ioc, "%s\n",
4576 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4577 				break;
4578 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4579 				ioc_info(ioc, "%s\n",
4580 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4581 				break;
4582 			default:
4583 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4584 					 ioc->pdev->subsystem_device);
4585 				break;
4586 			}
4587 			break;
4588 		default:
4589 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4590 				 ioc->pdev->subsystem_device);
4591 			break;
4592 		}
4593 		break;
4594 	case MPT2SAS_HP_3PAR_SSVID:
4595 		switch (ioc->pdev->device) {
4596 		case MPI2_MFGPAGE_DEVID_SAS2004:
4597 			switch (ioc->pdev->subsystem_device) {
4598 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4599 				ioc_info(ioc, "%s\n",
4600 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4601 				break;
4602 			default:
4603 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4604 					 ioc->pdev->subsystem_device);
4605 				break;
4606 			}
4607 			break;
4608 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4609 			switch (ioc->pdev->subsystem_device) {
4610 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4611 				ioc_info(ioc, "%s\n",
4612 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4613 				break;
4614 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4615 				ioc_info(ioc, "%s\n",
4616 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4617 				break;
4618 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4619 				ioc_info(ioc, "%s\n",
4620 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4621 				break;
4622 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4623 				ioc_info(ioc, "%s\n",
4624 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4625 				break;
4626 			default:
4627 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4628 					 ioc->pdev->subsystem_device);
4629 				break;
4630 			}
4631 			break;
4632 		default:
4633 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4634 				 ioc->pdev->subsystem_device);
4635 			break;
4636 		}
4637 		break;
4638 	default:
4639 		break;
4640 	}
4641 }
4642 
4643 /**
4644  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4645  *				version from FW Image Header.
4646  * @ioc: per adapter object
4647  *
4648  * Return: 0 for success, non-zero for failure.
4649  */
4650 	static int
4651 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4652 {
4653 	Mpi2FWImageHeader_t *fw_img_hdr;
4654 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4655 	Mpi25FWUploadRequest_t *mpi_request;
4656 	Mpi2FWUploadReply_t mpi_reply;
4657 	int r = 0, issue_diag_reset = 0;
4658 	u32  package_version = 0;
4659 	void *fwpkg_data = NULL;
4660 	dma_addr_t fwpkg_data_dma;
4661 	u16 smid, ioc_status;
4662 	size_t data_length;
4663 
4664 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4665 
4666 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4667 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4668 		return -EAGAIN;
4669 	}
4670 
4671 	data_length = sizeof(Mpi2FWImageHeader_t);
4672 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4673 			&fwpkg_data_dma, GFP_KERNEL);
4674 	if (!fwpkg_data) {
4675 		ioc_err(ioc,
4676 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4677 			__FILE__, __LINE__, __func__);
4678 		return -ENOMEM;
4679 	}
4680 
4681 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4682 	if (!smid) {
4683 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4684 		r = -EAGAIN;
4685 		goto out;
4686 	}
4687 
4688 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4689 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4690 	ioc->base_cmds.smid = smid;
4691 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4692 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4693 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4694 	mpi_request->ImageSize = cpu_to_le32(data_length);
4695 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4696 			data_length);
4697 	init_completion(&ioc->base_cmds.done);
4698 	ioc->put_smid_default(ioc, smid);
4699 	/* Wait for 15 seconds */
4700 	wait_for_completion_timeout(&ioc->base_cmds.done,
4701 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4702 	ioc_info(ioc, "%s: complete\n", __func__);
4703 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4704 		ioc_err(ioc, "%s: timeout\n", __func__);
4705 		_debug_dump_mf(mpi_request,
4706 				sizeof(Mpi25FWUploadRequest_t)/4);
4707 		issue_diag_reset = 1;
4708 	} else {
4709 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4710 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4711 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4712 					sizeof(Mpi2FWUploadReply_t));
4713 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4714 						MPI2_IOCSTATUS_MASK;
4715 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4716 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4717 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4718 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4719 					cmp_img_hdr =
4720 					    (Mpi26ComponentImageHeader_t *)
4721 					    (fwpkg_data);
4722 					package_version =
4723 					    le32_to_cpu(
4724 					    cmp_img_hdr->ApplicationSpecific);
4725 				} else
4726 					package_version =
4727 					    le32_to_cpu(
4728 					    fw_img_hdr->PackageVersion.Word);
4729 				if (package_version)
4730 					ioc_info(ioc,
4731 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4732 					((package_version) & 0xFF000000) >> 24,
4733 					((package_version) & 0x00FF0000) >> 16,
4734 					((package_version) & 0x0000FF00) >> 8,
4735 					(package_version) & 0x000000FF);
4736 			} else {
4737 				_debug_dump_mf(&mpi_reply,
4738 						sizeof(Mpi2FWUploadReply_t)/4);
4739 			}
4740 		}
4741 	}
4742 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4743 out:
4744 	if (fwpkg_data)
4745 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4746 				fwpkg_data_dma);
4747 	if (issue_diag_reset) {
4748 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4749 			return -EFAULT;
4750 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4751 			return -EFAULT;
4752 		r = -EAGAIN;
4753 	}
4754 	return r;
4755 }
4756 
4757 /**
4758  * _base_display_ioc_capabilities - Display IOC's capabilities.
4759  * @ioc: per adapter object
4760  */
4761 static void
4762 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4763 {
4764 	int i = 0;
4765 	char desc[16];
4766 	u32 iounit_pg1_flags;
4767 	u32 bios_version;
4768 
4769 	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4770 	strncpy(desc, ioc->manu_pg0.ChipName, 16);
4771 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4772 		 desc,
4773 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4774 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4775 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4776 		 ioc->facts.FWVersion.Word & 0x000000FF,
4777 		 ioc->pdev->revision,
4778 		 (bios_version & 0xFF000000) >> 24,
4779 		 (bios_version & 0x00FF0000) >> 16,
4780 		 (bios_version & 0x0000FF00) >> 8,
4781 		 bios_version & 0x000000FF);
4782 
4783 	_base_display_OEMs_branding(ioc);
4784 
4785 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4786 		pr_info("%sNVMe", i ? "," : "");
4787 		i++;
4788 	}
4789 
4790 	ioc_info(ioc, "Protocol=(");
4791 
4792 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4793 		pr_cont("Initiator");
4794 		i++;
4795 	}
4796 
4797 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4798 		pr_cont("%sTarget", i ? "," : "");
4799 		i++;
4800 	}
4801 
4802 	i = 0;
4803 	pr_cont("), Capabilities=(");
4804 
4805 	if (!ioc->hide_ir_msg) {
4806 		if (ioc->facts.IOCCapabilities &
4807 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4808 			pr_cont("Raid");
4809 			i++;
4810 		}
4811 	}
4812 
4813 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4814 		pr_cont("%sTLR", i ? "," : "");
4815 		i++;
4816 	}
4817 
4818 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4819 		pr_cont("%sMulticast", i ? "," : "");
4820 		i++;
4821 	}
4822 
4823 	if (ioc->facts.IOCCapabilities &
4824 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4825 		pr_cont("%sBIDI Target", i ? "," : "");
4826 		i++;
4827 	}
4828 
4829 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4830 		pr_cont("%sEEDP", i ? "," : "");
4831 		i++;
4832 	}
4833 
4834 	if (ioc->facts.IOCCapabilities &
4835 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4836 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4837 		i++;
4838 	}
4839 
4840 	if (ioc->facts.IOCCapabilities &
4841 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4842 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4843 		i++;
4844 	}
4845 
4846 	if (ioc->facts.IOCCapabilities &
4847 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4848 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4849 		i++;
4850 	}
4851 
4852 	if (ioc->facts.IOCCapabilities &
4853 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4854 		pr_cont("%sTask Set Full", i ? "," : "");
4855 		i++;
4856 	}
4857 
4858 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4859 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4860 		pr_cont("%sNCQ", i ? "," : "");
4861 		i++;
4862 	}
4863 
4864 	pr_cont(")\n");
4865 }
4866 
4867 /**
4868  * mpt3sas_base_update_missing_delay - change the missing delay timers
4869  * @ioc: per adapter object
4870  * @device_missing_delay: amount of time till device is reported missing
4871  * @io_missing_delay: interval IO is returned when there is a missing device
4872  *
4873  * Passed on the command line, this function will modify the device missing
4874  * delay, as well as the io missing delay. This should be called at driver
4875  * load time.
4876  */
4877 void
4878 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4879 	u16 device_missing_delay, u8 io_missing_delay)
4880 {
4881 	u16 dmd, dmd_new, dmd_orignal;
4882 	u8 io_missing_delay_original;
4883 	u16 sz;
4884 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4885 	Mpi2ConfigReply_t mpi_reply;
4886 	u8 num_phys = 0;
4887 	u16 ioc_status;
4888 
4889 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4890 	if (!num_phys)
4891 		return;
4892 
4893 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4894 	    sizeof(Mpi2SasIOUnit1PhyData_t));
4895 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4896 	if (!sas_iounit_pg1) {
4897 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4898 			__FILE__, __LINE__, __func__);
4899 		goto out;
4900 	}
4901 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4902 	    sas_iounit_pg1, sz))) {
4903 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4904 			__FILE__, __LINE__, __func__);
4905 		goto out;
4906 	}
4907 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4908 	    MPI2_IOCSTATUS_MASK;
4909 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4910 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4911 			__FILE__, __LINE__, __func__);
4912 		goto out;
4913 	}
4914 
4915 	/* device missing delay */
4916 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4917 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4918 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4919 	else
4920 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4921 	dmd_orignal = dmd;
4922 	if (device_missing_delay > 0x7F) {
4923 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4924 		    device_missing_delay;
4925 		dmd = dmd / 16;
4926 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4927 	} else
4928 		dmd = device_missing_delay;
4929 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4930 
4931 	/* io missing delay */
4932 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4933 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4934 
4935 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4936 	    sz)) {
4937 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4938 			dmd_new = (dmd &
4939 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4940 		else
4941 			dmd_new =
4942 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4943 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4944 			 dmd_orignal, dmd_new);
4945 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4946 			 io_missing_delay_original,
4947 			 io_missing_delay);
4948 		ioc->device_missing_delay = dmd_new;
4949 		ioc->io_missing_delay = io_missing_delay;
4950 	}
4951 
4952 out:
4953 	kfree(sas_iounit_pg1);
4954 }
4955 
4956 /**
4957  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4958  *    according to performance mode.
4959  * @ioc : per adapter object
4960  *
4961  * Return: zero on success; otherwise return EAGAIN error code asking the
4962  * caller to retry.
4963  */
4964 static int
4965 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4966 {
4967 	Mpi2IOCPage1_t ioc_pg1;
4968 	Mpi2ConfigReply_t mpi_reply;
4969 	int rc;
4970 
4971 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4972 	if (rc)
4973 		return rc;
4974 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4975 
4976 	switch (perf_mode) {
4977 	case MPT_PERF_MODE_DEFAULT:
4978 	case MPT_PERF_MODE_BALANCED:
4979 		if (ioc->high_iops_queues) {
4980 			ioc_info(ioc,
4981 				"Enable interrupt coalescing only for first\t"
4982 				"%d reply queues\n",
4983 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4984 			/*
4985 			 * If 31st bit is zero then interrupt coalescing is
4986 			 * enabled for all reply descriptor post queues.
4987 			 * If 31st bit is set to one then user can
4988 			 * enable/disable interrupt coalescing on per reply
4989 			 * descriptor post queue group(8) basis. So to enable
4990 			 * interrupt coalescing only on first reply descriptor
4991 			 * post queue group 31st bit and zero th bit is enabled.
4992 			 */
4993 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4994 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4995 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4996 			if (rc)
4997 				return rc;
4998 			ioc_info(ioc, "performance mode: balanced\n");
4999 			return 0;
5000 		}
5001 		fallthrough;
5002 	case MPT_PERF_MODE_LATENCY:
5003 		/*
5004 		 * Enable interrupt coalescing on all reply queues
5005 		 * with timeout value 0xA
5006 		 */
5007 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5008 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5009 		ioc_pg1.ProductSpecific = 0;
5010 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5011 		if (rc)
5012 			return rc;
5013 		ioc_info(ioc, "performance mode: latency\n");
5014 		break;
5015 	case MPT_PERF_MODE_IOPS:
5016 		/*
5017 		 * Enable interrupt coalescing on all reply queues.
5018 		 */
5019 		ioc_info(ioc,
5020 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5021 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5022 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5023 		ioc_pg1.ProductSpecific = 0;
5024 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5025 		if (rc)
5026 			return rc;
5027 		break;
5028 	}
5029 	return 0;
5030 }
5031 
5032 /**
5033  * _base_get_event_diag_triggers - get event diag trigger values from
5034  *				persistent pages
5035  * @ioc : per adapter object
5036  *
5037  * Return: nothing.
5038  */
5039 static int
5040 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5041 {
5042 	Mpi26DriverTriggerPage2_t trigger_pg2;
5043 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5044 	MPI26_DRIVER_MPI_EVENT_TIGGER_ENTRY *mpi_event_tg;
5045 	Mpi2ConfigReply_t mpi_reply;
5046 	int r = 0, i = 0;
5047 	u16 count = 0;
5048 	u16 ioc_status;
5049 
5050 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5051 	    &trigger_pg2);
5052 	if (r)
5053 		return r;
5054 
5055 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5056 	    MPI2_IOCSTATUS_MASK;
5057 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5058 		dinitprintk(ioc,
5059 		    ioc_err(ioc,
5060 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5061 		   __func__, ioc_status));
5062 		return 0;
5063 	}
5064 
5065 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5066 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5067 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5068 		ioc->diag_trigger_event.ValidEntries = count;
5069 
5070 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5071 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5072 		for (i = 0; i < count; i++) {
5073 			event_tg->EventValue = le16_to_cpu(
5074 			    mpi_event_tg->MPIEventCode);
5075 			event_tg->LogEntryQualifier = le16_to_cpu(
5076 			    mpi_event_tg->MPIEventCodeSpecific);
5077 			event_tg++;
5078 			mpi_event_tg++;
5079 		}
5080 	}
5081 	return 0;
5082 }
5083 
5084 /**
5085  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5086  *				persistent pages
5087  * @ioc : per adapter object
5088  *
5089  * Return: 0 on success; otherwise return failure status.
5090  */
5091 static int
5092 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5093 {
5094 	Mpi26DriverTriggerPage3_t trigger_pg3;
5095 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5096 	MPI26_DRIVER_SCSI_SENSE_TIGGER_ENTRY *mpi_scsi_tg;
5097 	Mpi2ConfigReply_t mpi_reply;
5098 	int r = 0, i = 0;
5099 	u16 count = 0;
5100 	u16 ioc_status;
5101 
5102 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5103 	    &trigger_pg3);
5104 	if (r)
5105 		return r;
5106 
5107 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5108 	    MPI2_IOCSTATUS_MASK;
5109 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5110 		dinitprintk(ioc,
5111 		    ioc_err(ioc,
5112 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5113 		    __func__, ioc_status));
5114 		return 0;
5115 	}
5116 
5117 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5118 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5119 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5120 		ioc->diag_trigger_scsi.ValidEntries = count;
5121 
5122 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5123 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5124 		for (i = 0; i < count; i++) {
5125 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5126 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5127 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5128 
5129 			scsi_tg++;
5130 			mpi_scsi_tg++;
5131 		}
5132 	}
5133 	return 0;
5134 }
5135 
5136 /**
5137  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5138  *				persistent pages
5139  * @ioc : per adapter object
5140  *
5141  * Return: 0 on success; otherwise return failure status.
5142  */
5143 static int
5144 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5145 {
5146 	Mpi26DriverTriggerPage4_t trigger_pg4;
5147 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5148 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TIGGER_ENTRY *mpi_status_tg;
5149 	Mpi2ConfigReply_t mpi_reply;
5150 	int r = 0, i = 0;
5151 	u16 count = 0;
5152 	u16 ioc_status;
5153 
5154 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5155 	    &trigger_pg4);
5156 	if (r)
5157 		return r;
5158 
5159 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5160 	    MPI2_IOCSTATUS_MASK;
5161 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5162 		dinitprintk(ioc,
5163 		    ioc_err(ioc,
5164 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5165 		    __func__, ioc_status));
5166 		return 0;
5167 	}
5168 
5169 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5170 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5171 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5172 		ioc->diag_trigger_mpi.ValidEntries = count;
5173 
5174 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5175 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5176 
5177 		for (i = 0; i < count; i++) {
5178 			status_tg->IOCStatus = le16_to_cpu(
5179 			    mpi_status_tg->IOCStatus);
5180 			status_tg->IocLogInfo = le32_to_cpu(
5181 			    mpi_status_tg->LogInfo);
5182 
5183 			status_tg++;
5184 			mpi_status_tg++;
5185 		}
5186 	}
5187 	return 0;
5188 }
5189 
5190 /**
5191  * _base_get_master_diag_triggers - get master diag trigger values from
5192  *				persistent pages
5193  * @ioc : per adapter object
5194  *
5195  * Return: nothing.
5196  */
5197 static int
5198 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5199 {
5200 	Mpi26DriverTriggerPage1_t trigger_pg1;
5201 	Mpi2ConfigReply_t mpi_reply;
5202 	int r;
5203 	u16 ioc_status;
5204 
5205 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5206 	    &trigger_pg1);
5207 	if (r)
5208 		return r;
5209 
5210 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5211 	    MPI2_IOCSTATUS_MASK;
5212 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5213 		dinitprintk(ioc,
5214 		    ioc_err(ioc,
5215 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5216 		   __func__, ioc_status));
5217 		return 0;
5218 	}
5219 
5220 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5221 		ioc->diag_trigger_master.MasterData |=
5222 		    le32_to_cpu(
5223 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5224 	return 0;
5225 }
5226 
5227 /**
5228  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5229  *					driver trigger pages or not
5230  * @ioc : per adapter object
5231  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5232  *
5233  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5234  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5235  * return EAGAIN if diag reset occurred due to FW fault and asking the
5236  * caller to retry the command.
5237  *
5238  */
5239 static int
5240 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5241 {
5242 	Mpi26DriverTriggerPage0_t trigger_pg0;
5243 	int r = 0;
5244 	Mpi2ConfigReply_t mpi_reply;
5245 	u16 ioc_status;
5246 
5247 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5248 	    &trigger_pg0);
5249 	if (r)
5250 		return r;
5251 
5252 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5253 	    MPI2_IOCSTATUS_MASK;
5254 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5255 		return -EFAULT;
5256 
5257 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5258 	return 0;
5259 }
5260 
5261 /**
5262  * _base_get_diag_triggers - Retrieve diag trigger values from
5263  *				persistent pages.
5264  * @ioc : per adapter object
5265  *
5266  * Return: zero on success; otherwise return EAGAIN error codes
5267  * asking the caller to retry.
5268  */
5269 static int
5270 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5271 {
5272 	int trigger_flags;
5273 	int r;
5274 
5275 	/*
5276 	 * Default setting of master trigger.
5277 	 */
5278 	ioc->diag_trigger_master.MasterData =
5279 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5280 
5281 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5282 	if (r) {
5283 		if (r == -EAGAIN)
5284 			return r;
5285 		/*
5286 		 * Don't go for error handling when FW doesn't support
5287 		 * driver trigger pages.
5288 		 */
5289 		return 0;
5290 	}
5291 
5292 	ioc->supports_trigger_pages = 1;
5293 
5294 	/*
5295 	 * Retrieve master diag trigger values from driver trigger pg1
5296 	 * if master trigger bit enabled in TriggerFlags.
5297 	 */
5298 	if ((u16)trigger_flags &
5299 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5300 		r = _base_get_master_diag_triggers(ioc);
5301 		if (r)
5302 			return r;
5303 	}
5304 
5305 	/*
5306 	 * Retrieve event diag trigger values from driver trigger pg2
5307 	 * if event trigger bit enabled in TriggerFlags.
5308 	 */
5309 	if ((u16)trigger_flags &
5310 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5311 		r = _base_get_event_diag_triggers(ioc);
5312 		if (r)
5313 			return r;
5314 	}
5315 
5316 	/*
5317 	 * Retrieve scsi diag trigger values from driver trigger pg3
5318 	 * if scsi trigger bit enabled in TriggerFlags.
5319 	 */
5320 	if ((u16)trigger_flags &
5321 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5322 		r = _base_get_scsi_diag_triggers(ioc);
5323 		if (r)
5324 			return r;
5325 	}
5326 	/*
5327 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5328 	 * if loginfo trigger bit enabled in TriggerFlags.
5329 	 */
5330 	if ((u16)trigger_flags &
5331 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5332 		r = _base_get_mpi_diag_triggers(ioc);
5333 		if (r)
5334 			return r;
5335 	}
5336 	return 0;
5337 }
5338 
5339 /**
5340  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5341  *			online FW update, in case updated FW supports driver
5342  *			trigger pages.
5343  * @ioc : per adapter object
5344  *
5345  * Return: nothing.
5346  */
5347 static void
5348 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5349 {
5350 
5351 	if (ioc->diag_trigger_master.MasterData)
5352 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5353 		    &ioc->diag_trigger_master, 1);
5354 
5355 	if (ioc->diag_trigger_event.ValidEntries)
5356 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5357 		    &ioc->diag_trigger_event, 1);
5358 
5359 	if (ioc->diag_trigger_scsi.ValidEntries)
5360 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5361 		    &ioc->diag_trigger_scsi, 1);
5362 
5363 	if (ioc->diag_trigger_mpi.ValidEntries)
5364 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5365 		    &ioc->diag_trigger_mpi, 1);
5366 }
5367 
5368 /**
5369  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5370  *				- On failure set default QD values.
5371  * @ioc : per adapter object
5372  *
5373  * Returns 0 for success, non-zero for failure.
5374  *
5375  */
5376 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5377 {
5378 	Mpi2ConfigReply_t mpi_reply;
5379 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
5380 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5381 	int sz;
5382 	int rc = 0;
5383 
5384 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5385 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5386 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5387 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5388 	if (!ioc->is_gen35_ioc)
5389 		goto out;
5390 	/* sas iounit page 1 */
5391 	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData);
5392 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
5393 	if (!sas_iounit_pg1) {
5394 		pr_err("%s: failure at %s:%d/%s()!\n",
5395 		    ioc->name, __FILE__, __LINE__, __func__);
5396 		return rc;
5397 	}
5398 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5399 	    sas_iounit_pg1, sz);
5400 	if (rc) {
5401 		pr_err("%s: failure at %s:%d/%s()!\n",
5402 		    ioc->name, __FILE__, __LINE__, __func__);
5403 		goto out;
5404 	}
5405 	ioc->max_wideport_qd =
5406 	    (le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth)) ?
5407 	    le16_to_cpu(sas_iounit_pg1->SASWideMaxQueueDepth) :
5408 	    MPT3SAS_SAS_QUEUE_DEPTH;
5409 	ioc->max_narrowport_qd =
5410 	    (le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth)) ?
5411 	    le16_to_cpu(sas_iounit_pg1->SASNarrowMaxQueueDepth) :
5412 	    MPT3SAS_SAS_QUEUE_DEPTH;
5413 	ioc->max_sata_qd = (sas_iounit_pg1->SATAMaxQDepth) ?
5414 	    sas_iounit_pg1->SATAMaxQDepth : MPT3SAS_SATA_QUEUE_DEPTH;
5415 	/* pcie iounit page 1 */
5416 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5417 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5418 	if (rc) {
5419 		pr_err("%s: failure at %s:%d/%s()!\n",
5420 		    ioc->name, __FILE__, __LINE__, __func__);
5421 		goto out;
5422 	}
5423 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5424 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5425 	    MPT3SAS_NVME_QUEUE_DEPTH;
5426 out:
5427 	dinitprintk(ioc, pr_err(
5428 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5429 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5430 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5431 	kfree(sas_iounit_pg1);
5432 	return rc;
5433 }
5434 
5435 /**
5436  * _base_static_config_pages - static start of day config pages
5437  * @ioc: per adapter object
5438  */
5439 static int
5440 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5441 {
5442 	Mpi2ConfigReply_t mpi_reply;
5443 	u32 iounit_pg1_flags;
5444 	int tg_flags = 0;
5445 	int rc;
5446 	ioc->nvme_abort_timeout = 30;
5447 
5448 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5449 	    &ioc->manu_pg0);
5450 	if (rc)
5451 		return rc;
5452 	if (ioc->ir_firmware) {
5453 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5454 		    &ioc->manu_pg10);
5455 		if (rc)
5456 			return rc;
5457 	}
5458 	/*
5459 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5460 	 * flag unset in NVDATA.
5461 	 */
5462 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5463 	    &ioc->manu_pg11);
5464 	if (rc)
5465 		return rc;
5466 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5467 		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
5468 		    ioc->name);
5469 		ioc->manu_pg11.EEDPTagMode &= ~0x3;
5470 		ioc->manu_pg11.EEDPTagMode |= 0x1;
5471 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5472 		    &ioc->manu_pg11);
5473 	}
5474 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5475 		ioc->tm_custom_handling = 1;
5476 	else {
5477 		ioc->tm_custom_handling = 0;
5478 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5479 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5480 		else if (ioc->manu_pg11.NVMeAbortTO >
5481 					NVME_TASK_ABORT_MAX_TIMEOUT)
5482 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5483 		else
5484 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5485 	}
5486 	ioc->time_sync_interval =
5487 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5488 	if (ioc->time_sync_interval) {
5489 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5490 			ioc->time_sync_interval =
5491 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5492 		else
5493 			ioc->time_sync_interval =
5494 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5495 		dinitprintk(ioc, ioc_info(ioc,
5496 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5497 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5498 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5499 	} else {
5500 		if (ioc->is_gen35_ioc)
5501 			ioc_warn(ioc,
5502 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5503 	}
5504 	rc = _base_assign_fw_reported_qd(ioc);
5505 	if (rc)
5506 		return rc;
5507 	rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5508 	if (rc)
5509 		return rc;
5510 	rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5511 	if (rc)
5512 		return rc;
5513 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5514 	if (rc)
5515 		return rc;
5516 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5517 	if (rc)
5518 		return rc;
5519 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5520 	if (rc)
5521 		return rc;
5522 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
5523 	if (rc)
5524 		return rc;
5525 	_base_display_ioc_capabilities(ioc);
5526 
5527 	/*
5528 	 * Enable task_set_full handling in iounit_pg1 when the
5529 	 * facts capabilities indicate that its supported.
5530 	 */
5531 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5532 	if ((ioc->facts.IOCCapabilities &
5533 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5534 		iounit_pg1_flags &=
5535 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5536 	else
5537 		iounit_pg1_flags |=
5538 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5539 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5540 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5541 	if (rc)
5542 		return rc;
5543 
5544 	if (ioc->iounit_pg8.NumSensors)
5545 		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
5546 	if (ioc->is_aero_ioc) {
5547 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5548 		if (rc)
5549 			return rc;
5550 	}
5551 	if (ioc->is_gen35_ioc) {
5552 		if (ioc->is_driver_loading) {
5553 			rc = _base_get_diag_triggers(ioc);
5554 			if (rc)
5555 				return rc;
5556 		} else {
5557 			/*
5558 			 * In case of online HBA FW update operation,
5559 			 * check whether updated FW supports the driver trigger
5560 			 * pages or not.
5561 			 * - If previous FW has not supported driver trigger
5562 			 *   pages and newer FW supports them then update these
5563 			 *   pages with current diag trigger values.
5564 			 * - If previous FW has supported driver trigger pages
5565 			 *   and new FW doesn't support them then disable
5566 			 *   support_trigger_pages flag.
5567 			 */
5568 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5569 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5570 				_base_update_diag_trigger_pages(ioc);
5571 			else if (ioc->supports_trigger_pages &&
5572 			    tg_flags == -EFAULT)
5573 				ioc->supports_trigger_pages = 0;
5574 		}
5575 	}
5576 	return 0;
5577 }
5578 
5579 /**
5580  * mpt3sas_free_enclosure_list - release memory
5581  * @ioc: per adapter object
5582  *
5583  * Free memory allocated during enclosure add.
5584  */
5585 void
5586 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5587 {
5588 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5589 
5590 	/* Free enclosure list */
5591 	list_for_each_entry_safe(enclosure_dev,
5592 			enclosure_dev_next, &ioc->enclosure_list, list) {
5593 		list_del(&enclosure_dev->list);
5594 		kfree(enclosure_dev);
5595 	}
5596 }
5597 
5598 /**
5599  * _base_release_memory_pools - release memory
5600  * @ioc: per adapter object
5601  *
5602  * Free memory allocated from _base_allocate_memory_pools.
5603  */
5604 static void
5605 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5606 {
5607 	int i = 0;
5608 	int j = 0;
5609 	int dma_alloc_count = 0;
5610 	struct chain_tracker *ct;
5611 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5612 
5613 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5614 
5615 	if (ioc->request) {
5616 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5617 		    ioc->request,  ioc->request_dma);
5618 		dexitprintk(ioc,
5619 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5620 				     ioc->request));
5621 		ioc->request = NULL;
5622 	}
5623 
5624 	if (ioc->sense) {
5625 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5626 		dma_pool_destroy(ioc->sense_dma_pool);
5627 		dexitprintk(ioc,
5628 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5629 				     ioc->sense));
5630 		ioc->sense = NULL;
5631 	}
5632 
5633 	if (ioc->reply) {
5634 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5635 		dma_pool_destroy(ioc->reply_dma_pool);
5636 		dexitprintk(ioc,
5637 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5638 				     ioc->reply));
5639 		ioc->reply = NULL;
5640 	}
5641 
5642 	if (ioc->reply_free) {
5643 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5644 		    ioc->reply_free_dma);
5645 		dma_pool_destroy(ioc->reply_free_dma_pool);
5646 		dexitprintk(ioc,
5647 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5648 				     ioc->reply_free));
5649 		ioc->reply_free = NULL;
5650 	}
5651 
5652 	if (ioc->reply_post) {
5653 		dma_alloc_count = DIV_ROUND_UP(count,
5654 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5655 		for (i = 0; i < count; i++) {
5656 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5657 			    && dma_alloc_count) {
5658 				if (ioc->reply_post[i].reply_post_free) {
5659 					dma_pool_free(
5660 					    ioc->reply_post_free_dma_pool,
5661 					    ioc->reply_post[i].reply_post_free,
5662 					ioc->reply_post[i].reply_post_free_dma);
5663 					dexitprintk(ioc, ioc_info(ioc,
5664 					   "reply_post_free_pool(0x%p): free\n",
5665 					   ioc->reply_post[i].reply_post_free));
5666 					ioc->reply_post[i].reply_post_free =
5667 									NULL;
5668 				}
5669 				--dma_alloc_count;
5670 			}
5671 		}
5672 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5673 		if (ioc->reply_post_free_array &&
5674 			ioc->rdpq_array_enable) {
5675 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5676 			    ioc->reply_post_free_array,
5677 			    ioc->reply_post_free_array_dma);
5678 			ioc->reply_post_free_array = NULL;
5679 		}
5680 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5681 		kfree(ioc->reply_post);
5682 	}
5683 
5684 	if (ioc->pcie_sgl_dma_pool) {
5685 		for (i = 0; i < ioc->scsiio_depth; i++) {
5686 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5687 					ioc->pcie_sg_lookup[i].pcie_sgl,
5688 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5689 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5690 		}
5691 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5692 	}
5693 	if (ioc->config_page) {
5694 		dexitprintk(ioc,
5695 			    ioc_info(ioc, "config_page(0x%p): free\n",
5696 				     ioc->config_page));
5697 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5698 		    ioc->config_page, ioc->config_page_dma);
5699 	}
5700 
5701 	kfree(ioc->hpr_lookup);
5702 	ioc->hpr_lookup = NULL;
5703 	kfree(ioc->internal_lookup);
5704 	ioc->internal_lookup = NULL;
5705 	if (ioc->chain_lookup) {
5706 		for (i = 0; i < ioc->scsiio_depth; i++) {
5707 			for (j = ioc->chains_per_prp_buffer;
5708 			    j < ioc->chains_needed_per_io; j++) {
5709 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5710 				if (ct && ct->chain_buffer)
5711 					dma_pool_free(ioc->chain_dma_pool,
5712 						ct->chain_buffer,
5713 						ct->chain_buffer_dma);
5714 			}
5715 			kfree(ioc->chain_lookup[i].chains_per_smid);
5716 		}
5717 		dma_pool_destroy(ioc->chain_dma_pool);
5718 		kfree(ioc->chain_lookup);
5719 		ioc->chain_lookup = NULL;
5720 	}
5721 
5722 	kfree(ioc->io_queue_num);
5723 	ioc->io_queue_num = NULL;
5724 }
5725 
5726 /**
5727  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5728  *	having same upper 32bits in their base memory address.
5729  * @reply_pool_start_address: Base address of a reply queue set
5730  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5731  *
5732  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5733  * memory address, else 0.
5734  */
5735 
5736 static int
5737 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
5738 {
5739 	long reply_pool_end_address;
5740 
5741 	reply_pool_end_address = reply_pool_start_address + pool_sz;
5742 
5743 	if (upper_32_bits(reply_pool_start_address) ==
5744 		upper_32_bits(reply_pool_end_address))
5745 		return 1;
5746 	else
5747 		return 0;
5748 }
5749 
5750 /**
5751  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5752  * @ioc: Adapter object
5753  *
5754  * Return: 0 for success, non-zero for failure.
5755  **/
5756 static inline int
5757 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5758 {
5759 	int reduce_sz = 64;
5760 
5761 	if ((ioc->hba_queue_depth - reduce_sz) >
5762 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5763 		ioc->hba_queue_depth -= reduce_sz;
5764 		return 0;
5765 	} else
5766 		return -ENOMEM;
5767 }
5768 
5769 /**
5770  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5771  *			for pcie sgl pools.
5772  * @ioc: Adapter object
5773  * @sz: DMA Pool size
5774  *
5775  * Return: 0 for success, non-zero for failure.
5776  */
5777 
5778 static int
5779 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5780 {
5781 	int i = 0, j = 0;
5782 	struct chain_tracker *ct;
5783 
5784 	ioc->pcie_sgl_dma_pool =
5785 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5786 	    ioc->page_size, 0);
5787 	if (!ioc->pcie_sgl_dma_pool) {
5788 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5789 		return -ENOMEM;
5790 	}
5791 
5792 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5793 	ioc->chains_per_prp_buffer =
5794 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5795 	for (i = 0; i < ioc->scsiio_depth; i++) {
5796 		ioc->pcie_sg_lookup[i].pcie_sgl =
5797 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5798 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5799 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5800 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5801 			return -EAGAIN;
5802 		}
5803 
5804 		if (!mpt3sas_check_same_4gb_region(
5805 		    (long)ioc->pcie_sg_lookup[i].pcie_sgl, sz)) {
5806 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5807 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5808 			    (unsigned long long)
5809 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5810 			ioc->use_32bit_dma = true;
5811 			return -EAGAIN;
5812 		}
5813 
5814 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5815 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5816 			ct->chain_buffer =
5817 			    ioc->pcie_sg_lookup[i].pcie_sgl +
5818 			    (j * ioc->chain_segment_sz);
5819 			ct->chain_buffer_dma =
5820 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5821 			    (j * ioc->chain_segment_sz);
5822 		}
5823 	}
5824 	dinitprintk(ioc, ioc_info(ioc,
5825 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5826 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
5827 	dinitprintk(ioc, ioc_info(ioc,
5828 	    "Number of chains can fit in a PRP page(%d)\n",
5829 	    ioc->chains_per_prp_buffer));
5830 	return 0;
5831 }
5832 
5833 /**
5834  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
5835  *			for chain dma pool.
5836  * @ioc: Adapter object
5837  * @sz: DMA Pool size
5838  *
5839  * Return: 0 for success, non-zero for failure.
5840  */
5841 static int
5842 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5843 {
5844 	int i = 0, j = 0;
5845 	struct chain_tracker *ctr;
5846 
5847 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5848 	    ioc->chain_segment_sz, 16, 0);
5849 	if (!ioc->chain_dma_pool)
5850 		return -ENOMEM;
5851 
5852 	for (i = 0; i < ioc->scsiio_depth; i++) {
5853 		for (j = ioc->chains_per_prp_buffer;
5854 		    j < ioc->chains_needed_per_io; j++) {
5855 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
5856 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
5857 			    GFP_KERNEL, &ctr->chain_buffer_dma);
5858 			if (!ctr->chain_buffer)
5859 				return -EAGAIN;
5860 			if (!mpt3sas_check_same_4gb_region((long)
5861 			    ctr->chain_buffer, ioc->chain_segment_sz)) {
5862 				ioc_err(ioc,
5863 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
5864 				    ctr->chain_buffer,
5865 				    (unsigned long long)ctr->chain_buffer_dma);
5866 				ioc->use_32bit_dma = true;
5867 				return -EAGAIN;
5868 			}
5869 		}
5870 	}
5871 	dinitprintk(ioc, ioc_info(ioc,
5872 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
5873 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
5874 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
5875 	    ioc->chain_segment_sz))/1024));
5876 	return 0;
5877 }
5878 
5879 /**
5880  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
5881  *			for sense dma pool.
5882  * @ioc: Adapter object
5883  * @sz: DMA Pool size
5884  * Return: 0 for success, non-zero for failure.
5885  */
5886 static int
5887 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5888 {
5889 	ioc->sense_dma_pool =
5890 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
5891 	if (!ioc->sense_dma_pool)
5892 		return -ENOMEM;
5893 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
5894 	    GFP_KERNEL, &ioc->sense_dma);
5895 	if (!ioc->sense)
5896 		return -EAGAIN;
5897 	if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5898 		dinitprintk(ioc, pr_err(
5899 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
5900 		    ioc->sense, (unsigned long long) ioc->sense_dma));
5901 		ioc->use_32bit_dma = true;
5902 		return -EAGAIN;
5903 	}
5904 	ioc_info(ioc,
5905 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
5906 	    ioc->sense, (unsigned long long)ioc->sense_dma,
5907 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
5908 	return 0;
5909 }
5910 
5911 /**
5912  * _base_allocate_reply_pool - Allocating DMA'able memory
5913  *			for reply pool.
5914  * @ioc: Adapter object
5915  * @sz: DMA Pool size
5916  * Return: 0 for success, non-zero for failure.
5917  */
5918 static int
5919 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5920 {
5921 	/* reply pool, 4 byte align */
5922 	ioc->reply_dma_pool = dma_pool_create("reply pool",
5923 	    &ioc->pdev->dev, sz, 4, 0);
5924 	if (!ioc->reply_dma_pool)
5925 		return -ENOMEM;
5926 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5927 	    &ioc->reply_dma);
5928 	if (!ioc->reply)
5929 		return -EAGAIN;
5930 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5931 		dinitprintk(ioc, pr_err(
5932 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
5933 		    ioc->reply, (unsigned long long) ioc->reply_dma));
5934 		ioc->use_32bit_dma = true;
5935 		return -EAGAIN;
5936 	}
5937 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5938 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5939 	ioc_info(ioc,
5940 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5941 	    ioc->reply, (unsigned long long)ioc->reply_dma,
5942 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
5943 	return 0;
5944 }
5945 
5946 /**
5947  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
5948  *			for reply free dma pool.
5949  * @ioc: Adapter object
5950  * @sz: DMA Pool size
5951  * Return: 0 for success, non-zero for failure.
5952  */
5953 static int
5954 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5955 {
5956 	/* reply free queue, 16 byte align */
5957 	ioc->reply_free_dma_pool = dma_pool_create(
5958 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
5959 	if (!ioc->reply_free_dma_pool)
5960 		return -ENOMEM;
5961 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
5962 	    GFP_KERNEL, &ioc->reply_free_dma);
5963 	if (!ioc->reply_free)
5964 		return -EAGAIN;
5965 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_free, sz)) {
5966 		dinitprintk(ioc,
5967 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
5968 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
5969 		ioc->use_32bit_dma = true;
5970 		return -EAGAIN;
5971 	}
5972 	memset(ioc->reply_free, 0, sz);
5973 	dinitprintk(ioc, ioc_info(ioc,
5974 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5975 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
5976 	dinitprintk(ioc, ioc_info(ioc,
5977 	    "reply_free_dma (0x%llx)\n",
5978 	    (unsigned long long)ioc->reply_free_dma));
5979 	return 0;
5980 }
5981 
5982 /**
5983  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
5984  *			for reply post free array.
5985  * @ioc: Adapter object
5986  * @reply_post_free_array_sz: DMA Pool size
5987  * Return: 0 for success, non-zero for failure.
5988  */
5989 
5990 static int
5991 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
5992 	u32 reply_post_free_array_sz)
5993 {
5994 	ioc->reply_post_free_array_dma_pool =
5995 	    dma_pool_create("reply_post_free_array pool",
5996 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5997 	if (!ioc->reply_post_free_array_dma_pool)
5998 		return -ENOMEM;
5999 	ioc->reply_post_free_array =
6000 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6001 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6002 	if (!ioc->reply_post_free_array)
6003 		return -EAGAIN;
6004 	if (!mpt3sas_check_same_4gb_region((long)ioc->reply_post_free_array,
6005 	    reply_post_free_array_sz)) {
6006 		dinitprintk(ioc, pr_err(
6007 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6008 		    ioc->reply_free,
6009 		    (unsigned long long) ioc->reply_free_dma));
6010 		ioc->use_32bit_dma = true;
6011 		return -EAGAIN;
6012 	}
6013 	return 0;
6014 }
6015 /**
6016  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6017  *                     for reply queues.
6018  * @ioc: per adapter object
6019  * @sz: DMA Pool size
6020  * Return: 0 for success, non-zero for failure.
6021  */
6022 static int
6023 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6024 {
6025 	int i = 0;
6026 	u32 dma_alloc_count = 0;
6027 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6028 		sizeof(Mpi2DefaultReplyDescriptor_t);
6029 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6030 
6031 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6032 			GFP_KERNEL);
6033 	if (!ioc->reply_post)
6034 		return -ENOMEM;
6035 	/*
6036 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6037 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6038 	 *  be within 4GB boundary i.e reply queues in a set must have same
6039 	 *  upper 32-bits in their memory address. so here driver is allocating
6040 	 *  the DMA'able memory for reply queues according.
6041 	 *  Driver uses limitation of
6042 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6043 	 */
6044 	dma_alloc_count = DIV_ROUND_UP(count,
6045 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6046 	ioc->reply_post_free_dma_pool =
6047 		dma_pool_create("reply_post_free pool",
6048 		    &ioc->pdev->dev, sz, 16, 0);
6049 	if (!ioc->reply_post_free_dma_pool)
6050 		return -ENOMEM;
6051 	for (i = 0; i < count; i++) {
6052 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6053 			ioc->reply_post[i].reply_post_free =
6054 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6055 				GFP_KERNEL,
6056 				&ioc->reply_post[i].reply_post_free_dma);
6057 			if (!ioc->reply_post[i].reply_post_free)
6058 				return -ENOMEM;
6059 			/*
6060 			 * Each set of RDPQ pool must satisfy 4gb boundary
6061 			 * restriction.
6062 			 * 1) Check if allocated resources for RDPQ pool are in
6063 			 *	the same 4GB range.
6064 			 * 2) If #1 is true, continue with 64 bit DMA.
6065 			 * 3) If #1 is false, return 1. which means free all the
6066 			 * resources and set DMA mask to 32 and allocate.
6067 			 */
6068 			if (!mpt3sas_check_same_4gb_region(
6069 				(long)ioc->reply_post[i].reply_post_free, sz)) {
6070 				dinitprintk(ioc,
6071 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6072 				    "reply_post_free_dma = (0x%llx)\n",
6073 				    ioc->reply_post[i].reply_post_free,
6074 				    (unsigned long long)
6075 				    ioc->reply_post[i].reply_post_free_dma));
6076 				return -EAGAIN;
6077 			}
6078 			dma_alloc_count--;
6079 
6080 		} else {
6081 			ioc->reply_post[i].reply_post_free =
6082 			    (Mpi2ReplyDescriptorsUnion_t *)
6083 			    ((long)ioc->reply_post[i-1].reply_post_free
6084 			    + reply_post_free_sz);
6085 			ioc->reply_post[i].reply_post_free_dma =
6086 			    (dma_addr_t)
6087 			    (ioc->reply_post[i-1].reply_post_free_dma +
6088 			    reply_post_free_sz);
6089 		}
6090 	}
6091 	return 0;
6092 }
6093 
6094 /**
6095  * _base_allocate_memory_pools - allocate start of day memory pools
6096  * @ioc: per adapter object
6097  *
6098  * Return: 0 success, anything else error.
6099  */
6100 static int
6101 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6102 {
6103 	struct mpt3sas_facts *facts;
6104 	u16 max_sge_elements;
6105 	u16 chains_needed_per_io;
6106 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6107 	u32 retry_sz;
6108 	u32 rdpq_sz = 0, sense_sz = 0;
6109 	u16 max_request_credit, nvme_blocks_needed;
6110 	unsigned short sg_tablesize;
6111 	u16 sge_size;
6112 	int i;
6113 	int ret = 0, rc = 0;
6114 
6115 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6116 
6117 
6118 	retry_sz = 0;
6119 	facts = &ioc->facts;
6120 
6121 	/* command line tunables for max sgl entries */
6122 	if (max_sgl_entries != -1)
6123 		sg_tablesize = max_sgl_entries;
6124 	else {
6125 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6126 			sg_tablesize = MPT2SAS_SG_DEPTH;
6127 		else
6128 			sg_tablesize = MPT3SAS_SG_DEPTH;
6129 	}
6130 
6131 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6132 	if (reset_devices)
6133 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6134 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6135 
6136 	if (ioc->is_mcpu_endpoint)
6137 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6138 	else {
6139 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6140 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6141 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6142 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6143 					SG_MAX_SEGMENTS);
6144 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6145 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6146 		}
6147 		ioc->shost->sg_tablesize = sg_tablesize;
6148 	}
6149 
6150 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6151 		(facts->RequestCredit / 4));
6152 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6153 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6154 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6155 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6156 				facts->RequestCredit);
6157 			return -ENOMEM;
6158 		}
6159 		ioc->internal_depth = 10;
6160 	}
6161 
6162 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6163 	/* command line tunables  for max controller queue depth */
6164 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6165 		max_request_credit = min_t(u16, max_queue_depth +
6166 			ioc->internal_depth, facts->RequestCredit);
6167 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6168 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6169 	} else if (reset_devices)
6170 		max_request_credit = min_t(u16, facts->RequestCredit,
6171 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6172 	else
6173 		max_request_credit = min_t(u16, facts->RequestCredit,
6174 		    MAX_HBA_QUEUE_DEPTH);
6175 
6176 	/* Firmware maintains additional facts->HighPriorityCredit number of
6177 	 * credits for HiPriprity Request messages, so hba queue depth will be
6178 	 * sum of max_request_credit and high priority queue depth.
6179 	 */
6180 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6181 
6182 	/* request frame size */
6183 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6184 
6185 	/* reply frame size */
6186 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6187 
6188 	/* chain segment size */
6189 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6190 		if (facts->IOCMaxChainSegmentSize)
6191 			ioc->chain_segment_sz =
6192 					facts->IOCMaxChainSegmentSize *
6193 					MAX_CHAIN_ELEMT_SZ;
6194 		else
6195 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6196 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6197 						    MAX_CHAIN_ELEMT_SZ;
6198 	} else
6199 		ioc->chain_segment_sz = ioc->request_sz;
6200 
6201 	/* calculate the max scatter element size */
6202 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6203 
6204  retry_allocation:
6205 	total_sz = 0;
6206 	/* calculate number of sg elements left over in the 1st frame */
6207 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6208 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6209 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6210 
6211 	/* now do the same for a chain buffer */
6212 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6213 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6214 
6215 	/*
6216 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6217 	 */
6218 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6219 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6220 	    + 1;
6221 	if (chains_needed_per_io > facts->MaxChainDepth) {
6222 		chains_needed_per_io = facts->MaxChainDepth;
6223 		ioc->shost->sg_tablesize = min_t(u16,
6224 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6225 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6226 	}
6227 	ioc->chains_needed_per_io = chains_needed_per_io;
6228 
6229 	/* reply free queue sizing - taking into account for 64 FW events */
6230 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6231 
6232 	/* mCPU manage single counters for simplicity */
6233 	if (ioc->is_mcpu_endpoint)
6234 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6235 	else {
6236 		/* calculate reply descriptor post queue depth */
6237 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6238 			ioc->reply_free_queue_depth +  1;
6239 		/* align the reply post queue on the next 16 count boundary */
6240 		if (ioc->reply_post_queue_depth % 16)
6241 			ioc->reply_post_queue_depth += 16 -
6242 				(ioc->reply_post_queue_depth % 16);
6243 	}
6244 
6245 	if (ioc->reply_post_queue_depth >
6246 	    facts->MaxReplyDescriptorPostQueueDepth) {
6247 		ioc->reply_post_queue_depth =
6248 				facts->MaxReplyDescriptorPostQueueDepth -
6249 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6250 		ioc->hba_queue_depth =
6251 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6252 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6253 	}
6254 
6255 	ioc_info(ioc,
6256 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6257 	    "sge_per_io(%d), chains_per_io(%d)\n",
6258 	    ioc->max_sges_in_main_message,
6259 	    ioc->max_sges_in_chain_message,
6260 	    ioc->shost->sg_tablesize,
6261 	    ioc->chains_needed_per_io);
6262 
6263 	/* reply post queue, 16 byte align */
6264 	reply_post_free_sz = ioc->reply_post_queue_depth *
6265 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6266 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6267 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6268 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6269 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6270 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6271 	if (ret == -EAGAIN) {
6272 		/*
6273 		 * Free allocated bad RDPQ memory pools.
6274 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6275 		 */
6276 		_base_release_memory_pools(ioc);
6277 		ioc->use_32bit_dma = true;
6278 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6279 			ioc_err(ioc,
6280 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6281 			return -ENODEV;
6282 		}
6283 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6284 			return -ENOMEM;
6285 	} else if (ret == -ENOMEM)
6286 		return -ENOMEM;
6287 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6288 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6289 	ioc->scsiio_depth = ioc->hba_queue_depth -
6290 	    ioc->hi_priority_depth - ioc->internal_depth;
6291 
6292 	/* set the scsi host can_queue depth
6293 	 * with some internal commands that could be outstanding
6294 	 */
6295 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6296 	dinitprintk(ioc,
6297 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6298 			     ioc->shost->can_queue));
6299 
6300 	/* contiguous pool for request and chains, 16 byte align, one extra "
6301 	 * "frame for smid=0
6302 	 */
6303 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6304 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6305 
6306 	/* hi-priority queue */
6307 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6308 
6309 	/* internal queue */
6310 	sz += (ioc->internal_depth * ioc->request_sz);
6311 
6312 	ioc->request_dma_sz = sz;
6313 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6314 			&ioc->request_dma, GFP_KERNEL);
6315 	if (!ioc->request) {
6316 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6317 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6318 			ioc->request_sz, sz / 1024);
6319 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6320 			goto out;
6321 		retry_sz = 64;
6322 		ioc->hba_queue_depth -= retry_sz;
6323 		_base_release_memory_pools(ioc);
6324 		goto retry_allocation;
6325 	}
6326 
6327 	if (retry_sz)
6328 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6329 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6330 			ioc->request_sz, sz / 1024);
6331 
6332 	/* hi-priority queue */
6333 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6334 	    ioc->request_sz);
6335 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6336 	    ioc->request_sz);
6337 
6338 	/* internal queue */
6339 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6340 	    ioc->request_sz);
6341 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6342 	    ioc->request_sz);
6343 
6344 	ioc_info(ioc,
6345 	    "request pool(0x%p) - dma(0x%llx): "
6346 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6347 	    ioc->request, (unsigned long long) ioc->request_dma,
6348 	    ioc->hba_queue_depth, ioc->request_sz,
6349 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6350 
6351 	total_sz += sz;
6352 
6353 	dinitprintk(ioc,
6354 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6355 			     ioc->request, ioc->scsiio_depth));
6356 
6357 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6358 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6359 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6360 	if (!ioc->chain_lookup) {
6361 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6362 		goto out;
6363 	}
6364 
6365 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6366 	for (i = 0; i < ioc->scsiio_depth; i++) {
6367 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6368 		if (!ioc->chain_lookup[i].chains_per_smid) {
6369 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6370 			goto out;
6371 		}
6372 	}
6373 
6374 	/* initialize hi-priority queue smid's */
6375 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6376 	    sizeof(struct request_tracker), GFP_KERNEL);
6377 	if (!ioc->hpr_lookup) {
6378 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6379 		goto out;
6380 	}
6381 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6382 	dinitprintk(ioc,
6383 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6384 			     ioc->hi_priority,
6385 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6386 
6387 	/* initialize internal queue smid's */
6388 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6389 	    sizeof(struct request_tracker), GFP_KERNEL);
6390 	if (!ioc->internal_lookup) {
6391 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6392 		goto out;
6393 	}
6394 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6395 	dinitprintk(ioc,
6396 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6397 			     ioc->internal,
6398 			     ioc->internal_depth, ioc->internal_smid));
6399 
6400 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6401 	    sizeof(u16), GFP_KERNEL);
6402 	if (!ioc->io_queue_num)
6403 		goto out;
6404 	/*
6405 	 * The number of NVMe page sized blocks needed is:
6406 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6407 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6408 	 * that is placed in the main message frame.  8 is the size of each PRP
6409 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6410 	 * because of the PRP list pointer entry at the end of a page, so this
6411 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6412 	 *
6413 	 * To avoid allocation failures due to the amount of memory that could
6414 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6415 	 * contiguous, so a new set is allocated for each possible I/O.
6416 	 */
6417 
6418 	ioc->chains_per_prp_buffer = 0;
6419 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6420 		nvme_blocks_needed =
6421 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6422 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6423 		nvme_blocks_needed++;
6424 
6425 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6426 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6427 		if (!ioc->pcie_sg_lookup) {
6428 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6429 			goto out;
6430 		}
6431 		sz = nvme_blocks_needed * ioc->page_size;
6432 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6433 		if (rc == -ENOMEM)
6434 			return -ENOMEM;
6435 		else if (rc == -EAGAIN)
6436 			goto try_32bit_dma;
6437 		total_sz += sz * ioc->scsiio_depth;
6438 	}
6439 
6440 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6441 	if (rc == -ENOMEM)
6442 		return -ENOMEM;
6443 	else if (rc == -EAGAIN)
6444 		goto try_32bit_dma;
6445 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6446 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6447 	dinitprintk(ioc,
6448 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6449 	    ioc->chain_depth, ioc->chain_segment_sz,
6450 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6451 	/* sense buffers, 4 byte align */
6452 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6453 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6454 	if (rc  == -ENOMEM)
6455 		return -ENOMEM;
6456 	else if (rc == -EAGAIN)
6457 		goto try_32bit_dma;
6458 	total_sz += sense_sz;
6459 	ioc_info(ioc,
6460 	    "sense pool(0x%p)- dma(0x%llx): depth(%d),"
6461 	    "element_size(%d), pool_size(%d kB)\n",
6462 	    ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
6463 	    SCSI_SENSE_BUFFERSIZE, sz / 1024);
6464 	/* reply pool, 4 byte align */
6465 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6466 	rc = _base_allocate_reply_pool(ioc, sz);
6467 	if (rc == -ENOMEM)
6468 		return -ENOMEM;
6469 	else if (rc == -EAGAIN)
6470 		goto try_32bit_dma;
6471 	total_sz += sz;
6472 
6473 	/* reply free queue, 16 byte align */
6474 	sz = ioc->reply_free_queue_depth * 4;
6475 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6476 	if (rc  == -ENOMEM)
6477 		return -ENOMEM;
6478 	else if (rc == -EAGAIN)
6479 		goto try_32bit_dma;
6480 	dinitprintk(ioc,
6481 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6482 			     (unsigned long long)ioc->reply_free_dma));
6483 	total_sz += sz;
6484 	if (ioc->rdpq_array_enable) {
6485 		reply_post_free_array_sz = ioc->reply_queue_count *
6486 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6487 		rc = _base_allocate_reply_post_free_array(ioc,
6488 		    reply_post_free_array_sz);
6489 		if (rc == -ENOMEM)
6490 			return -ENOMEM;
6491 		else if (rc == -EAGAIN)
6492 			goto try_32bit_dma;
6493 	}
6494 	ioc->config_page_sz = 512;
6495 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6496 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6497 	if (!ioc->config_page) {
6498 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6499 		goto out;
6500 	}
6501 
6502 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6503 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6504 	    ioc->config_page_sz);
6505 	total_sz += ioc->config_page_sz;
6506 
6507 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6508 		 total_sz / 1024);
6509 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6510 		 ioc->shost->can_queue, facts->RequestCredit);
6511 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6512 		 ioc->shost->sg_tablesize);
6513 	return 0;
6514 
6515 try_32bit_dma:
6516 	_base_release_memory_pools(ioc);
6517 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6518 		/* Change dma coherent mask to 32 bit and reallocate */
6519 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6520 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6521 			    pci_name(ioc->pdev));
6522 			return -ENODEV;
6523 		}
6524 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6525 		return -ENOMEM;
6526 	goto retry_allocation;
6527 
6528  out:
6529 	return -ENOMEM;
6530 }
6531 
6532 /**
6533  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6534  * @ioc: Pointer to MPT_ADAPTER structure
6535  * @cooked: Request raw or cooked IOC state
6536  *
6537  * Return: all IOC Doorbell register bits if cooked==0, else just the
6538  * Doorbell bits in MPI_IOC_STATE_MASK.
6539  */
6540 u32
6541 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6542 {
6543 	u32 s, sc;
6544 
6545 	s = ioc->base_readl(&ioc->chip->Doorbell);
6546 	sc = s & MPI2_IOC_STATE_MASK;
6547 	return cooked ? sc : s;
6548 }
6549 
6550 /**
6551  * _base_wait_on_iocstate - waiting on a particular ioc state
6552  * @ioc: ?
6553  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6554  * @timeout: timeout in second
6555  *
6556  * Return: 0 for success, non-zero for failure.
6557  */
6558 static int
6559 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6560 {
6561 	u32 count, cntdn;
6562 	u32 current_state;
6563 
6564 	count = 0;
6565 	cntdn = 1000 * timeout;
6566 	do {
6567 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6568 		if (current_state == ioc_state)
6569 			return 0;
6570 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6571 			break;
6572 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6573 			break;
6574 
6575 		usleep_range(1000, 1500);
6576 		count++;
6577 	} while (--cntdn);
6578 
6579 	return current_state;
6580 }
6581 
6582 /**
6583  * _base_dump_reg_set -	This function will print hexdump of register set.
6584  * @ioc: per adapter object
6585  *
6586  * Return: nothing.
6587  */
6588 static inline void
6589 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6590 {
6591 	unsigned int i, sz = 256;
6592 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6593 
6594 	ioc_info(ioc, "System Register set:\n");
6595 	for (i = 0; i < (sz / sizeof(u32)); i++)
6596 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6597 }
6598 
6599 /**
6600  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6601  * a write to the doorbell)
6602  * @ioc: per adapter object
6603  * @timeout: timeout in seconds
6604  *
6605  * Return: 0 for success, non-zero for failure.
6606  *
6607  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6608  */
6609 
6610 static int
6611 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6612 {
6613 	u32 cntdn, count;
6614 	u32 int_status;
6615 
6616 	count = 0;
6617 	cntdn = 1000 * timeout;
6618 	do {
6619 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6620 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6621 			dhsprintk(ioc,
6622 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6623 					   __func__, count, timeout));
6624 			return 0;
6625 		}
6626 
6627 		usleep_range(1000, 1500);
6628 		count++;
6629 	} while (--cntdn);
6630 
6631 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6632 		__func__, count, int_status);
6633 	return -EFAULT;
6634 }
6635 
6636 static int
6637 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6638 {
6639 	u32 cntdn, count;
6640 	u32 int_status;
6641 
6642 	count = 0;
6643 	cntdn = 2000 * timeout;
6644 	do {
6645 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6646 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6647 			dhsprintk(ioc,
6648 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6649 					   __func__, count, timeout));
6650 			return 0;
6651 		}
6652 
6653 		udelay(500);
6654 		count++;
6655 	} while (--cntdn);
6656 
6657 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6658 		__func__, count, int_status);
6659 	return -EFAULT;
6660 
6661 }
6662 
6663 /**
6664  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6665  * @ioc: per adapter object
6666  * @timeout: timeout in second
6667  *
6668  * Return: 0 for success, non-zero for failure.
6669  *
6670  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6671  * doorbell.
6672  */
6673 static int
6674 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6675 {
6676 	u32 cntdn, count;
6677 	u32 int_status;
6678 	u32 doorbell;
6679 
6680 	count = 0;
6681 	cntdn = 1000 * timeout;
6682 	do {
6683 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6684 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6685 			dhsprintk(ioc,
6686 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6687 					   __func__, count, timeout));
6688 			return 0;
6689 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6690 			doorbell = ioc->base_readl(&ioc->chip->Doorbell);
6691 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6692 			    MPI2_IOC_STATE_FAULT) {
6693 				mpt3sas_print_fault_code(ioc, doorbell);
6694 				return -EFAULT;
6695 			}
6696 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6697 			    MPI2_IOC_STATE_COREDUMP) {
6698 				mpt3sas_print_coredump_info(ioc, doorbell);
6699 				return -EFAULT;
6700 			}
6701 		} else if (int_status == 0xFFFFFFFF)
6702 			goto out;
6703 
6704 		usleep_range(1000, 1500);
6705 		count++;
6706 	} while (--cntdn);
6707 
6708  out:
6709 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6710 		__func__, count, int_status);
6711 	return -EFAULT;
6712 }
6713 
6714 /**
6715  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6716  * @ioc: per adapter object
6717  * @timeout: timeout in second
6718  *
6719  * Return: 0 for success, non-zero for failure.
6720  */
6721 static int
6722 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6723 {
6724 	u32 cntdn, count;
6725 	u32 doorbell_reg;
6726 
6727 	count = 0;
6728 	cntdn = 1000 * timeout;
6729 	do {
6730 		doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
6731 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6732 			dhsprintk(ioc,
6733 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6734 					   __func__, count, timeout));
6735 			return 0;
6736 		}
6737 
6738 		usleep_range(1000, 1500);
6739 		count++;
6740 	} while (--cntdn);
6741 
6742 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6743 		__func__, count, doorbell_reg);
6744 	return -EFAULT;
6745 }
6746 
6747 /**
6748  * _base_send_ioc_reset - send doorbell reset
6749  * @ioc: per adapter object
6750  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6751  * @timeout: timeout in second
6752  *
6753  * Return: 0 for success, non-zero for failure.
6754  */
6755 static int
6756 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6757 {
6758 	u32 ioc_state;
6759 	int r = 0;
6760 	unsigned long flags;
6761 
6762 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6763 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6764 		return -EFAULT;
6765 	}
6766 
6767 	if (!(ioc->facts.IOCCapabilities &
6768 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6769 		return -EFAULT;
6770 
6771 	ioc_info(ioc, "sending message unit reset !!\n");
6772 
6773 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6774 	    &ioc->chip->Doorbell);
6775 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6776 		r = -EFAULT;
6777 		goto out;
6778 	}
6779 
6780 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6781 	if (ioc_state) {
6782 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6783 			__func__, ioc_state);
6784 		r = -EFAULT;
6785 		goto out;
6786 	}
6787  out:
6788 	if (r != 0) {
6789 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6790 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6791 		/*
6792 		 * Wait for IOC state CoreDump to clear only during
6793 		 * HBA initialization & release time.
6794 		 */
6795 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6796 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6797 		    ioc->fault_reset_work_q == NULL)) {
6798 			spin_unlock_irqrestore(
6799 			    &ioc->ioc_reset_in_progress_lock, flags);
6800 			mpt3sas_print_coredump_info(ioc, ioc_state);
6801 			mpt3sas_base_wait_for_coredump_completion(ioc,
6802 			    __func__);
6803 			spin_lock_irqsave(
6804 			    &ioc->ioc_reset_in_progress_lock, flags);
6805 		}
6806 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6807 	}
6808 	ioc_info(ioc, "message unit reset: %s\n",
6809 		 r == 0 ? "SUCCESS" : "FAILED");
6810 	return r;
6811 }
6812 
6813 /**
6814  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6815  * @ioc: per adapter object
6816  * @timeout: timeout in seconds
6817  *
6818  * Return: Waits up to timeout seconds for the IOC to
6819  * become operational. Returns 0 if IOC is present
6820  * and operational; otherwise returns %-EFAULT.
6821  */
6822 
6823 int
6824 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
6825 {
6826 	int wait_state_count = 0;
6827 	u32 ioc_state;
6828 
6829 	do {
6830 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
6831 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
6832 			break;
6833 
6834 		/*
6835 		 * Watchdog thread will be started after IOC Initialization, so
6836 		 * no need to wait here for IOC state to become operational
6837 		 * when IOC Initialization is on. Instead the driver will
6838 		 * return ETIME status, so that calling function can issue
6839 		 * diag reset operation and retry the command.
6840 		 */
6841 		if (ioc->is_driver_loading)
6842 			return -ETIME;
6843 
6844 		ssleep(1);
6845 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
6846 				__func__, ++wait_state_count);
6847 	} while (--timeout);
6848 	if (!timeout) {
6849 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
6850 		return -EFAULT;
6851 	}
6852 	if (wait_state_count)
6853 		ioc_info(ioc, "ioc is operational\n");
6854 	return 0;
6855 }
6856 
6857 /**
6858  * _base_handshake_req_reply_wait - send request thru doorbell interface
6859  * @ioc: per adapter object
6860  * @request_bytes: request length
6861  * @request: pointer having request payload
6862  * @reply_bytes: reply length
6863  * @reply: pointer to reply payload
6864  * @timeout: timeout in second
6865  *
6866  * Return: 0 for success, non-zero for failure.
6867  */
6868 static int
6869 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
6870 	u32 *request, int reply_bytes, u16 *reply, int timeout)
6871 {
6872 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
6873 	int i;
6874 	u8 failed;
6875 	__le32 *mfp;
6876 
6877 	/* make sure doorbell is not in use */
6878 	if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
6879 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
6880 		return -EFAULT;
6881 	}
6882 
6883 	/* clear pending doorbell interrupts from previous state changes */
6884 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
6885 	    MPI2_HIS_IOC2SYS_DB_STATUS)
6886 		writel(0, &ioc->chip->HostInterruptStatus);
6887 
6888 	/* send message to ioc */
6889 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
6890 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
6891 	    &ioc->chip->Doorbell);
6892 
6893 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
6894 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6895 			__LINE__);
6896 		return -EFAULT;
6897 	}
6898 	writel(0, &ioc->chip->HostInterruptStatus);
6899 
6900 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
6901 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
6902 			__LINE__);
6903 		return -EFAULT;
6904 	}
6905 
6906 	/* send message 32-bits at a time */
6907 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
6908 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
6909 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
6910 			failed = 1;
6911 	}
6912 
6913 	if (failed) {
6914 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
6915 			__LINE__);
6916 		return -EFAULT;
6917 	}
6918 
6919 	/* now wait for the reply */
6920 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
6921 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6922 			__LINE__);
6923 		return -EFAULT;
6924 	}
6925 
6926 	/* read the first two 16-bits, it gives the total length of the reply */
6927 	reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6928 	    & MPI2_DOORBELL_DATA_MASK);
6929 	writel(0, &ioc->chip->HostInterruptStatus);
6930 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
6931 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6932 			__LINE__);
6933 		return -EFAULT;
6934 	}
6935 	reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
6936 	    & MPI2_DOORBELL_DATA_MASK);
6937 	writel(0, &ioc->chip->HostInterruptStatus);
6938 
6939 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
6940 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
6941 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
6942 				__LINE__);
6943 			return -EFAULT;
6944 		}
6945 		if (i >=  reply_bytes/2) /* overflow case */
6946 			ioc->base_readl(&ioc->chip->Doorbell);
6947 		else
6948 			reply[i] = le16_to_cpu(
6949 			    ioc->base_readl(&ioc->chip->Doorbell)
6950 			    & MPI2_DOORBELL_DATA_MASK);
6951 		writel(0, &ioc->chip->HostInterruptStatus);
6952 	}
6953 
6954 	_base_wait_for_doorbell_int(ioc, 5);
6955 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
6956 		dhsprintk(ioc,
6957 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
6958 				   __LINE__));
6959 	}
6960 	writel(0, &ioc->chip->HostInterruptStatus);
6961 
6962 	if (ioc->logging_level & MPT_DEBUG_INIT) {
6963 		mfp = (__le32 *)reply;
6964 		pr_info("\toffset:data\n");
6965 		for (i = 0; i < reply_bytes/4; i++)
6966 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6967 			    le32_to_cpu(mfp[i]));
6968 	}
6969 	return 0;
6970 }
6971 
6972 /**
6973  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6974  * @ioc: per adapter object
6975  * @mpi_reply: the reply payload from FW
6976  * @mpi_request: the request payload sent to FW
6977  *
6978  * The SAS IO Unit Control Request message allows the host to perform low-level
6979  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6980  * to obtain the IOC assigned device handles for a device if it has other
6981  * identifying information about the device, in addition allows the host to
6982  * remove IOC resources associated with the device.
6983  *
6984  * Return: 0 for success, non-zero for failure.
6985  */
6986 int
6987 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6988 	Mpi2SasIoUnitControlReply_t *mpi_reply,
6989 	Mpi2SasIoUnitControlRequest_t *mpi_request)
6990 {
6991 	u16 smid;
6992 	u8 issue_reset = 0;
6993 	int rc;
6994 	void *request;
6995 
6996 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6997 
6998 	mutex_lock(&ioc->base_cmds.mutex);
6999 
7000 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7001 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7002 		rc = -EAGAIN;
7003 		goto out;
7004 	}
7005 
7006 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7007 	if (rc)
7008 		goto out;
7009 
7010 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7011 	if (!smid) {
7012 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7013 		rc = -EAGAIN;
7014 		goto out;
7015 	}
7016 
7017 	rc = 0;
7018 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7019 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7020 	ioc->base_cmds.smid = smid;
7021 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7022 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7023 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7024 		ioc->ioc_link_reset_in_progress = 1;
7025 	init_completion(&ioc->base_cmds.done);
7026 	ioc->put_smid_default(ioc, smid);
7027 	wait_for_completion_timeout(&ioc->base_cmds.done,
7028 	    msecs_to_jiffies(10000));
7029 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7030 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7031 	    ioc->ioc_link_reset_in_progress)
7032 		ioc->ioc_link_reset_in_progress = 0;
7033 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7034 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7035 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7036 		    issue_reset);
7037 		goto issue_host_reset;
7038 	}
7039 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7040 		memcpy(mpi_reply, ioc->base_cmds.reply,
7041 		    sizeof(Mpi2SasIoUnitControlReply_t));
7042 	else
7043 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7044 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7045 	goto out;
7046 
7047  issue_host_reset:
7048 	if (issue_reset)
7049 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7050 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7051 	rc = -EFAULT;
7052  out:
7053 	mutex_unlock(&ioc->base_cmds.mutex);
7054 	return rc;
7055 }
7056 
7057 /**
7058  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7059  * @ioc: per adapter object
7060  * @mpi_reply: the reply payload from FW
7061  * @mpi_request: the request payload sent to FW
7062  *
7063  * The SCSI Enclosure Processor request message causes the IOC to
7064  * communicate with SES devices to control LED status signals.
7065  *
7066  * Return: 0 for success, non-zero for failure.
7067  */
7068 int
7069 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7070 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7071 {
7072 	u16 smid;
7073 	u8 issue_reset = 0;
7074 	int rc;
7075 	void *request;
7076 
7077 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7078 
7079 	mutex_lock(&ioc->base_cmds.mutex);
7080 
7081 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7082 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7083 		rc = -EAGAIN;
7084 		goto out;
7085 	}
7086 
7087 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7088 	if (rc)
7089 		goto out;
7090 
7091 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7092 	if (!smid) {
7093 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7094 		rc = -EAGAIN;
7095 		goto out;
7096 	}
7097 
7098 	rc = 0;
7099 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7100 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7101 	ioc->base_cmds.smid = smid;
7102 	memset(request, 0, ioc->request_sz);
7103 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7104 	init_completion(&ioc->base_cmds.done);
7105 	ioc->put_smid_default(ioc, smid);
7106 	wait_for_completion_timeout(&ioc->base_cmds.done,
7107 	    msecs_to_jiffies(10000));
7108 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7109 		mpt3sas_check_cmd_timeout(ioc,
7110 		    ioc->base_cmds.status, mpi_request,
7111 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7112 		goto issue_host_reset;
7113 	}
7114 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7115 		memcpy(mpi_reply, ioc->base_cmds.reply,
7116 		    sizeof(Mpi2SepReply_t));
7117 	else
7118 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7119 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7120 	goto out;
7121 
7122  issue_host_reset:
7123 	if (issue_reset)
7124 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7125 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7126 	rc = -EFAULT;
7127  out:
7128 	mutex_unlock(&ioc->base_cmds.mutex);
7129 	return rc;
7130 }
7131 
7132 /**
7133  * _base_get_port_facts - obtain port facts reply and save in ioc
7134  * @ioc: per adapter object
7135  * @port: ?
7136  *
7137  * Return: 0 for success, non-zero for failure.
7138  */
7139 static int
7140 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7141 {
7142 	Mpi2PortFactsRequest_t mpi_request;
7143 	Mpi2PortFactsReply_t mpi_reply;
7144 	struct mpt3sas_port_facts *pfacts;
7145 	int mpi_reply_sz, mpi_request_sz, r;
7146 
7147 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7148 
7149 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7150 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7151 	memset(&mpi_request, 0, mpi_request_sz);
7152 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7153 	mpi_request.PortNumber = port;
7154 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7155 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7156 
7157 	if (r != 0) {
7158 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7159 		return r;
7160 	}
7161 
7162 	pfacts = &ioc->pfacts[port];
7163 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7164 	pfacts->PortNumber = mpi_reply.PortNumber;
7165 	pfacts->VP_ID = mpi_reply.VP_ID;
7166 	pfacts->VF_ID = mpi_reply.VF_ID;
7167 	pfacts->MaxPostedCmdBuffers =
7168 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7169 
7170 	return 0;
7171 }
7172 
7173 /**
7174  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7175  * @ioc: per adapter object
7176  * @timeout:
7177  *
7178  * Return: 0 for success, non-zero for failure.
7179  */
7180 static int
7181 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7182 {
7183 	u32 ioc_state;
7184 	int rc;
7185 
7186 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7187 
7188 	if (ioc->pci_error_recovery) {
7189 		dfailprintk(ioc,
7190 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7191 				     __func__));
7192 		return -EFAULT;
7193 	}
7194 
7195 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7196 	dhsprintk(ioc,
7197 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7198 			   __func__, ioc_state));
7199 
7200 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7201 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7202 		return 0;
7203 
7204 	if (ioc_state & MPI2_DOORBELL_USED) {
7205 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7206 		goto issue_diag_reset;
7207 	}
7208 
7209 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7210 		mpt3sas_print_fault_code(ioc, ioc_state &
7211 		    MPI2_DOORBELL_DATA_MASK);
7212 		goto issue_diag_reset;
7213 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7214 	    MPI2_IOC_STATE_COREDUMP) {
7215 		ioc_info(ioc,
7216 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7217 		    __func__, ioc_state);
7218 		return -EFAULT;
7219 	}
7220 
7221 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7222 	if (ioc_state) {
7223 		dfailprintk(ioc,
7224 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7225 				     __func__, ioc_state));
7226 		return -EFAULT;
7227 	}
7228 
7229  issue_diag_reset:
7230 	rc = _base_diag_reset(ioc);
7231 	return rc;
7232 }
7233 
7234 /**
7235  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7236  * @ioc: per adapter object
7237  *
7238  * Return: 0 for success, non-zero for failure.
7239  */
7240 static int
7241 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7242 {
7243 	Mpi2IOCFactsRequest_t mpi_request;
7244 	Mpi2IOCFactsReply_t mpi_reply;
7245 	struct mpt3sas_facts *facts;
7246 	int mpi_reply_sz, mpi_request_sz, r;
7247 
7248 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7249 
7250 	r = _base_wait_for_iocstate(ioc, 10);
7251 	if (r) {
7252 		dfailprintk(ioc,
7253 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7254 				     __func__));
7255 		return r;
7256 	}
7257 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7258 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7259 	memset(&mpi_request, 0, mpi_request_sz);
7260 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7261 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7262 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7263 
7264 	if (r != 0) {
7265 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7266 		return r;
7267 	}
7268 
7269 	facts = &ioc->facts;
7270 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7271 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7272 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7273 	facts->VP_ID = mpi_reply.VP_ID;
7274 	facts->VF_ID = mpi_reply.VF_ID;
7275 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7276 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7277 	facts->WhoInit = mpi_reply.WhoInit;
7278 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7279 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7280 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7281 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7282 		ioc->combined_reply_queue = 0;
7283 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7284 	facts->MaxReplyDescriptorPostQueueDepth =
7285 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7286 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7287 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7288 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7289 		ioc->ir_firmware = 1;
7290 	if ((facts->IOCCapabilities &
7291 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7292 		ioc->rdpq_array_capable = 1;
7293 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7294 	    && ioc->is_aero_ioc)
7295 		ioc->atomic_desc_capable = 1;
7296 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7297 	facts->IOCRequestFrameSize =
7298 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7299 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7300 		facts->IOCMaxChainSegmentSize =
7301 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7302 	}
7303 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7304 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7305 	ioc->shost->max_id = -1;
7306 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7307 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7308 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7309 	facts->HighPriorityCredit =
7310 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7311 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7312 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7313 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7314 
7315 	/*
7316 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7317 	 */
7318 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7319 	if (ioc->page_size == 1) {
7320 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7321 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7322 	}
7323 	dinitprintk(ioc,
7324 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7325 			     facts->CurrentHostPageSize));
7326 
7327 	dinitprintk(ioc,
7328 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7329 			     facts->RequestCredit, facts->MaxChainDepth));
7330 	dinitprintk(ioc,
7331 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7332 			     facts->IOCRequestFrameSize * 4,
7333 			     facts->ReplyFrameSize * 4));
7334 	return 0;
7335 }
7336 
7337 /**
7338  * _base_send_ioc_init - send ioc_init to firmware
7339  * @ioc: per adapter object
7340  *
7341  * Return: 0 for success, non-zero for failure.
7342  */
7343 static int
7344 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7345 {
7346 	Mpi2IOCInitRequest_t mpi_request;
7347 	Mpi2IOCInitReply_t mpi_reply;
7348 	int i, r = 0;
7349 	ktime_t current_time;
7350 	u16 ioc_status;
7351 	u32 reply_post_free_array_sz = 0;
7352 
7353 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7354 
7355 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7356 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7357 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7358 	mpi_request.VF_ID = 0; /* TODO */
7359 	mpi_request.VP_ID = 0;
7360 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7361 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7362 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7363 
7364 	if (_base_is_controller_msix_enabled(ioc))
7365 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7366 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7367 	mpi_request.ReplyDescriptorPostQueueDepth =
7368 	    cpu_to_le16(ioc->reply_post_queue_depth);
7369 	mpi_request.ReplyFreeQueueDepth =
7370 	    cpu_to_le16(ioc->reply_free_queue_depth);
7371 
7372 	mpi_request.SenseBufferAddressHigh =
7373 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7374 	mpi_request.SystemReplyAddressHigh =
7375 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7376 	mpi_request.SystemRequestFrameBaseAddress =
7377 	    cpu_to_le64((u64)ioc->request_dma);
7378 	mpi_request.ReplyFreeQueueAddress =
7379 	    cpu_to_le64((u64)ioc->reply_free_dma);
7380 
7381 	if (ioc->rdpq_array_enable) {
7382 		reply_post_free_array_sz = ioc->reply_queue_count *
7383 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7384 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7385 		for (i = 0; i < ioc->reply_queue_count; i++)
7386 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7387 			    cpu_to_le64(
7388 				(u64)ioc->reply_post[i].reply_post_free_dma);
7389 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7390 		mpi_request.ReplyDescriptorPostQueueAddress =
7391 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7392 	} else {
7393 		mpi_request.ReplyDescriptorPostQueueAddress =
7394 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7395 	}
7396 
7397 	/*
7398 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7399 	 */
7400 	mpi_request.ConfigurationFlags |=
7401 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7402 
7403 	/* This time stamp specifies number of milliseconds
7404 	 * since epoch ~ midnight January 1, 1970.
7405 	 */
7406 	current_time = ktime_get_real();
7407 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7408 
7409 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7410 		__le32 *mfp;
7411 		int i;
7412 
7413 		mfp = (__le32 *)&mpi_request;
7414 		ioc_info(ioc, "\toffset:data\n");
7415 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7416 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7417 			    le32_to_cpu(mfp[i]));
7418 	}
7419 
7420 	r = _base_handshake_req_reply_wait(ioc,
7421 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7422 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7423 
7424 	if (r != 0) {
7425 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7426 		return r;
7427 	}
7428 
7429 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7430 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7431 	    mpi_reply.IOCLogInfo) {
7432 		ioc_err(ioc, "%s: failed\n", __func__);
7433 		r = -EIO;
7434 	}
7435 
7436 	/* Reset TimeSync Counter*/
7437 	ioc->timestamp_update_count = 0;
7438 	return r;
7439 }
7440 
7441 /**
7442  * mpt3sas_port_enable_done - command completion routine for port enable
7443  * @ioc: per adapter object
7444  * @smid: system request message index
7445  * @msix_index: MSIX table index supplied by the OS
7446  * @reply: reply message frame(lower 32bit addr)
7447  *
7448  * Return: 1 meaning mf should be freed from _base_interrupt
7449  *          0 means the mf is freed from this function.
7450  */
7451 u8
7452 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7453 	u32 reply)
7454 {
7455 	MPI2DefaultReply_t *mpi_reply;
7456 	u16 ioc_status;
7457 
7458 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7459 		return 1;
7460 
7461 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7462 	if (!mpi_reply)
7463 		return 1;
7464 
7465 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7466 		return 1;
7467 
7468 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7469 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7470 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7471 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7472 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7473 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7474 		ioc->port_enable_failed = 1;
7475 
7476 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7477 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7478 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7479 			mpt3sas_port_enable_complete(ioc);
7480 			return 1;
7481 		} else {
7482 			ioc->start_scan_failed = ioc_status;
7483 			ioc->start_scan = 0;
7484 			return 1;
7485 		}
7486 	}
7487 	complete(&ioc->port_enable_cmds.done);
7488 	return 1;
7489 }
7490 
7491 /**
7492  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7493  * @ioc: per adapter object
7494  *
7495  * Return: 0 for success, non-zero for failure.
7496  */
7497 static int
7498 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7499 {
7500 	Mpi2PortEnableRequest_t *mpi_request;
7501 	Mpi2PortEnableReply_t *mpi_reply;
7502 	int r = 0;
7503 	u16 smid;
7504 	u16 ioc_status;
7505 
7506 	ioc_info(ioc, "sending port enable !!\n");
7507 
7508 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7509 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7510 		return -EAGAIN;
7511 	}
7512 
7513 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7514 	if (!smid) {
7515 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7516 		return -EAGAIN;
7517 	}
7518 
7519 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7520 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7521 	ioc->port_enable_cmds.smid = smid;
7522 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7523 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7524 
7525 	init_completion(&ioc->port_enable_cmds.done);
7526 	ioc->put_smid_default(ioc, smid);
7527 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7528 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7529 		ioc_err(ioc, "%s: timeout\n", __func__);
7530 		_debug_dump_mf(mpi_request,
7531 		    sizeof(Mpi2PortEnableRequest_t)/4);
7532 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7533 			r = -EFAULT;
7534 		else
7535 			r = -ETIME;
7536 		goto out;
7537 	}
7538 
7539 	mpi_reply = ioc->port_enable_cmds.reply;
7540 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7541 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7542 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7543 			__func__, ioc_status);
7544 		r = -EFAULT;
7545 		goto out;
7546 	}
7547 
7548  out:
7549 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7550 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7551 	return r;
7552 }
7553 
7554 /**
7555  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7556  * @ioc: per adapter object
7557  *
7558  * Return: 0 for success, non-zero for failure.
7559  */
7560 int
7561 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7562 {
7563 	Mpi2PortEnableRequest_t *mpi_request;
7564 	u16 smid;
7565 
7566 	ioc_info(ioc, "sending port enable !!\n");
7567 
7568 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7569 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7570 		return -EAGAIN;
7571 	}
7572 
7573 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7574 	if (!smid) {
7575 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7576 		return -EAGAIN;
7577 	}
7578 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7579 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7580 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7581 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7582 	ioc->port_enable_cmds.smid = smid;
7583 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7584 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7585 
7586 	ioc->put_smid_default(ioc, smid);
7587 	return 0;
7588 }
7589 
7590 /**
7591  * _base_determine_wait_on_discovery - desposition
7592  * @ioc: per adapter object
7593  *
7594  * Decide whether to wait on discovery to complete. Used to either
7595  * locate boot device, or report volumes ahead of physical devices.
7596  *
7597  * Return: 1 for wait, 0 for don't wait.
7598  */
7599 static int
7600 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7601 {
7602 	/* We wait for discovery to complete if IR firmware is loaded.
7603 	 * The sas topology events arrive before PD events, so we need time to
7604 	 * turn on the bit in ioc->pd_handles to indicate PD
7605 	 * Also, it maybe required to report Volumes ahead of physical
7606 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7607 	 */
7608 	if (ioc->ir_firmware)
7609 		return 1;
7610 
7611 	/* if no Bios, then we don't need to wait */
7612 	if (!ioc->bios_pg3.BiosVersion)
7613 		return 0;
7614 
7615 	/* Bios is present, then we drop down here.
7616 	 *
7617 	 * If there any entries in the Bios Page 2, then we wait
7618 	 * for discovery to complete.
7619 	 */
7620 
7621 	/* Current Boot Device */
7622 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7623 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7624 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7625 	/* Request Boot Device */
7626 	   (ioc->bios_pg2.ReqBootDeviceForm &
7627 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7628 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7629 	/* Alternate Request Boot Device */
7630 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7631 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7632 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7633 		return 0;
7634 
7635 	return 1;
7636 }
7637 
7638 /**
7639  * _base_unmask_events - turn on notification for this event
7640  * @ioc: per adapter object
7641  * @event: firmware event
7642  *
7643  * The mask is stored in ioc->event_masks.
7644  */
7645 static void
7646 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7647 {
7648 	u32 desired_event;
7649 
7650 	if (event >= 128)
7651 		return;
7652 
7653 	desired_event = (1 << (event % 32));
7654 
7655 	if (event < 32)
7656 		ioc->event_masks[0] &= ~desired_event;
7657 	else if (event < 64)
7658 		ioc->event_masks[1] &= ~desired_event;
7659 	else if (event < 96)
7660 		ioc->event_masks[2] &= ~desired_event;
7661 	else if (event < 128)
7662 		ioc->event_masks[3] &= ~desired_event;
7663 }
7664 
7665 /**
7666  * _base_event_notification - send event notification
7667  * @ioc: per adapter object
7668  *
7669  * Return: 0 for success, non-zero for failure.
7670  */
7671 static int
7672 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7673 {
7674 	Mpi2EventNotificationRequest_t *mpi_request;
7675 	u16 smid;
7676 	int r = 0;
7677 	int i, issue_diag_reset = 0;
7678 
7679 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7680 
7681 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7682 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7683 		return -EAGAIN;
7684 	}
7685 
7686 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7687 	if (!smid) {
7688 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7689 		return -EAGAIN;
7690 	}
7691 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7692 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7693 	ioc->base_cmds.smid = smid;
7694 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7695 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7696 	mpi_request->VF_ID = 0; /* TODO */
7697 	mpi_request->VP_ID = 0;
7698 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7699 		mpi_request->EventMasks[i] =
7700 		    cpu_to_le32(ioc->event_masks[i]);
7701 	init_completion(&ioc->base_cmds.done);
7702 	ioc->put_smid_default(ioc, smid);
7703 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7704 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7705 		ioc_err(ioc, "%s: timeout\n", __func__);
7706 		_debug_dump_mf(mpi_request,
7707 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7708 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7709 			r = -EFAULT;
7710 		else
7711 			issue_diag_reset = 1;
7712 
7713 	} else
7714 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7715 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7716 
7717 	if (issue_diag_reset) {
7718 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7719 			return -EFAULT;
7720 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7721 			return -EFAULT;
7722 		r = -EAGAIN;
7723 	}
7724 	return r;
7725 }
7726 
7727 /**
7728  * mpt3sas_base_validate_event_type - validating event types
7729  * @ioc: per adapter object
7730  * @event_type: firmware event
7731  *
7732  * This will turn on firmware event notification when application
7733  * ask for that event. We don't mask events that are already enabled.
7734  */
7735 void
7736 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7737 {
7738 	int i, j;
7739 	u32 event_mask, desired_event;
7740 	u8 send_update_to_fw;
7741 
7742 	for (i = 0, send_update_to_fw = 0; i <
7743 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7744 		event_mask = ~event_type[i];
7745 		desired_event = 1;
7746 		for (j = 0; j < 32; j++) {
7747 			if (!(event_mask & desired_event) &&
7748 			    (ioc->event_masks[i] & desired_event)) {
7749 				ioc->event_masks[i] &= ~desired_event;
7750 				send_update_to_fw = 1;
7751 			}
7752 			desired_event = (desired_event << 1);
7753 		}
7754 	}
7755 
7756 	if (!send_update_to_fw)
7757 		return;
7758 
7759 	mutex_lock(&ioc->base_cmds.mutex);
7760 	_base_event_notification(ioc);
7761 	mutex_unlock(&ioc->base_cmds.mutex);
7762 }
7763 
7764 /**
7765  * _base_diag_reset - the "big hammer" start of day reset
7766  * @ioc: per adapter object
7767  *
7768  * Return: 0 for success, non-zero for failure.
7769  */
7770 static int
7771 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
7772 {
7773 	u32 host_diagnostic;
7774 	u32 ioc_state;
7775 	u32 count;
7776 	u32 hcb_size;
7777 
7778 	ioc_info(ioc, "sending diag reset !!\n");
7779 
7780 	pci_cfg_access_lock(ioc->pdev);
7781 
7782 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
7783 
7784 	count = 0;
7785 	do {
7786 		/* Write magic sequence to WriteSequence register
7787 		 * Loop until in diagnostic mode
7788 		 */
7789 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7790 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7791 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7792 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7793 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7794 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7795 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7796 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7797 
7798 		/* wait 100 msec */
7799 		msleep(100);
7800 
7801 		if (count++ > 20) {
7802 			ioc_info(ioc,
7803 			    "Stop writing magic sequence after 20 retries\n");
7804 			_base_dump_reg_set(ioc);
7805 			goto out;
7806 		}
7807 
7808 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7809 		drsprintk(ioc,
7810 			  ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7811 				   count, host_diagnostic));
7812 
7813 	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7814 
7815 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
7816 
7817 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
7818 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
7819 	     &ioc->chip->HostDiagnostic);
7820 
7821 	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
7822 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
7823 
7824 	/* Approximately 300 second max wait */
7825 	for (count = 0; count < (300000000 /
7826 		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
7827 
7828 		host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
7829 
7830 		if (host_diagnostic == 0xFFFFFFFF) {
7831 			ioc_info(ioc,
7832 			    "Invalid host diagnostic register value\n");
7833 			_base_dump_reg_set(ioc);
7834 			goto out;
7835 		}
7836 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
7837 			break;
7838 
7839 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
7840 	}
7841 
7842 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
7843 
7844 		drsprintk(ioc,
7845 			  ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
7846 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
7847 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
7848 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
7849 
7850 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
7851 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
7852 		    &ioc->chip->HCBSize);
7853 	}
7854 
7855 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
7856 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
7857 	    &ioc->chip->HostDiagnostic);
7858 
7859 	drsprintk(ioc,
7860 		  ioc_info(ioc, "disable writes to the diagnostic register\n"));
7861 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7862 
7863 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
7864 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
7865 	if (ioc_state) {
7866 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7867 			__func__, ioc_state);
7868 		_base_dump_reg_set(ioc);
7869 		goto out;
7870 	}
7871 
7872 	pci_cfg_access_unlock(ioc->pdev);
7873 	ioc_info(ioc, "diag reset: SUCCESS\n");
7874 	return 0;
7875 
7876  out:
7877 	pci_cfg_access_unlock(ioc->pdev);
7878 	ioc_err(ioc, "diag reset: FAILED\n");
7879 	return -EFAULT;
7880 }
7881 
7882 /**
7883  * mpt3sas_base_make_ioc_ready - put controller in READY state
7884  * @ioc: per adapter object
7885  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7886  *
7887  * Return: 0 for success, non-zero for failure.
7888  */
7889 int
7890 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
7891 {
7892 	u32 ioc_state;
7893 	int rc;
7894 	int count;
7895 
7896 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7897 
7898 	if (ioc->pci_error_recovery)
7899 		return 0;
7900 
7901 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7902 	dhsprintk(ioc,
7903 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7904 			   __func__, ioc_state));
7905 
7906 	/* if in RESET state, it should move to READY state shortly */
7907 	count = 0;
7908 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
7909 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
7910 		    MPI2_IOC_STATE_READY) {
7911 			if (count++ == 10) {
7912 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7913 					__func__, ioc_state);
7914 				return -EFAULT;
7915 			}
7916 			ssleep(1);
7917 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7918 		}
7919 	}
7920 
7921 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
7922 		return 0;
7923 
7924 	if (ioc_state & MPI2_DOORBELL_USED) {
7925 		ioc_info(ioc, "unexpected doorbell active!\n");
7926 		goto issue_diag_reset;
7927 	}
7928 
7929 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7930 		mpt3sas_print_fault_code(ioc, ioc_state &
7931 		    MPI2_DOORBELL_DATA_MASK);
7932 		goto issue_diag_reset;
7933 	}
7934 
7935 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
7936 		/*
7937 		 * if host reset is invoked while watch dog thread is waiting
7938 		 * for IOC state to be changed to Fault state then driver has
7939 		 * to wait here for CoreDump state to clear otherwise reset
7940 		 * will be issued to the FW and FW move the IOC state to
7941 		 * reset state without copying the FW logs to coredump region.
7942 		 */
7943 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
7944 			mpt3sas_print_coredump_info(ioc, ioc_state &
7945 			    MPI2_DOORBELL_DATA_MASK);
7946 			mpt3sas_base_wait_for_coredump_completion(ioc,
7947 			    __func__);
7948 		}
7949 		goto issue_diag_reset;
7950 	}
7951 
7952 	if (type == FORCE_BIG_HAMMER)
7953 		goto issue_diag_reset;
7954 
7955 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7956 		if (!(_base_send_ioc_reset(ioc,
7957 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
7958 			return 0;
7959 	}
7960 
7961  issue_diag_reset:
7962 	rc = _base_diag_reset(ioc);
7963 	return rc;
7964 }
7965 
7966 /**
7967  * _base_make_ioc_operational - put controller in OPERATIONAL state
7968  * @ioc: per adapter object
7969  *
7970  * Return: 0 for success, non-zero for failure.
7971  */
7972 static int
7973 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
7974 {
7975 	int r, i, index, rc;
7976 	unsigned long	flags;
7977 	u32 reply_address;
7978 	u16 smid;
7979 	struct _tr_list *delayed_tr, *delayed_tr_next;
7980 	struct _sc_list *delayed_sc, *delayed_sc_next;
7981 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7982 	u8 hide_flag;
7983 	struct adapter_reply_queue *reply_q;
7984 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7985 
7986 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7987 
7988 	/* clean the delayed target reset list */
7989 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7990 	    &ioc->delayed_tr_list, list) {
7991 		list_del(&delayed_tr->list);
7992 		kfree(delayed_tr);
7993 	}
7994 
7995 
7996 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7997 	    &ioc->delayed_tr_volume_list, list) {
7998 		list_del(&delayed_tr->list);
7999 		kfree(delayed_tr);
8000 	}
8001 
8002 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8003 	    &ioc->delayed_sc_list, list) {
8004 		list_del(&delayed_sc->list);
8005 		kfree(delayed_sc);
8006 	}
8007 
8008 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8009 	    &ioc->delayed_event_ack_list, list) {
8010 		list_del(&delayed_event_ack->list);
8011 		kfree(delayed_event_ack);
8012 	}
8013 
8014 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8015 
8016 	/* hi-priority queue */
8017 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8018 	smid = ioc->hi_priority_smid;
8019 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8020 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8021 		ioc->hpr_lookup[i].smid = smid;
8022 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8023 		    &ioc->hpr_free_list);
8024 	}
8025 
8026 	/* internal queue */
8027 	INIT_LIST_HEAD(&ioc->internal_free_list);
8028 	smid = ioc->internal_smid;
8029 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8030 		ioc->internal_lookup[i].cb_idx = 0xFF;
8031 		ioc->internal_lookup[i].smid = smid;
8032 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8033 		    &ioc->internal_free_list);
8034 	}
8035 
8036 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8037 
8038 	/* initialize Reply Free Queue */
8039 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8040 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8041 	    ioc->reply_sz) {
8042 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8043 		if (ioc->is_mcpu_endpoint)
8044 			_base_clone_reply_to_sys_mem(ioc,
8045 					reply_address, i);
8046 	}
8047 
8048 	/* initialize reply queues */
8049 	if (ioc->is_driver_loading)
8050 		_base_assign_reply_queues(ioc);
8051 
8052 	/* initialize Reply Post Free Queue */
8053 	index = 0;
8054 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8055 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8056 		/*
8057 		 * If RDPQ is enabled, switch to the next allocation.
8058 		 * Otherwise advance within the contiguous region.
8059 		 */
8060 		if (ioc->rdpq_array_enable) {
8061 			reply_q->reply_post_free =
8062 				ioc->reply_post[index++].reply_post_free;
8063 		} else {
8064 			reply_q->reply_post_free = reply_post_free_contig;
8065 			reply_post_free_contig += ioc->reply_post_queue_depth;
8066 		}
8067 
8068 		reply_q->reply_post_host_index = 0;
8069 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8070 			reply_q->reply_post_free[i].Words =
8071 			    cpu_to_le64(ULLONG_MAX);
8072 		if (!_base_is_controller_msix_enabled(ioc))
8073 			goto skip_init_reply_post_free_queue;
8074 	}
8075  skip_init_reply_post_free_queue:
8076 
8077 	r = _base_send_ioc_init(ioc);
8078 	if (r) {
8079 		/*
8080 		 * No need to check IOC state for fault state & issue
8081 		 * diag reset during host reset. This check is need
8082 		 * only during driver load time.
8083 		 */
8084 		if (!ioc->is_driver_loading)
8085 			return r;
8086 
8087 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8088 		if (rc || (_base_send_ioc_init(ioc)))
8089 			return r;
8090 	}
8091 
8092 	/* initialize reply free host index */
8093 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8094 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8095 
8096 	/* initialize reply post host index */
8097 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8098 		if (ioc->combined_reply_queue)
8099 			writel((reply_q->msix_index & 7)<<
8100 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8101 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8102 		else
8103 			writel(reply_q->msix_index <<
8104 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8105 				&ioc->chip->ReplyPostHostIndex);
8106 
8107 		if (!_base_is_controller_msix_enabled(ioc))
8108 			goto skip_init_reply_post_host_index;
8109 	}
8110 
8111  skip_init_reply_post_host_index:
8112 
8113 	mpt3sas_base_unmask_interrupts(ioc);
8114 
8115 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8116 		r = _base_display_fwpkg_version(ioc);
8117 		if (r)
8118 			return r;
8119 	}
8120 
8121 	r = _base_static_config_pages(ioc);
8122 	if (r)
8123 		return r;
8124 
8125 	r = _base_event_notification(ioc);
8126 	if (r)
8127 		return r;
8128 
8129 	if (!ioc->shost_recovery) {
8130 
8131 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8132 		    == 0x80) {
8133 			hide_flag = (u8) (
8134 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8135 			    MFG_PAGE10_HIDE_SSDS_MASK);
8136 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8137 				ioc->mfg_pg10_hide_flag = hide_flag;
8138 		}
8139 
8140 		ioc->wait_for_discovery_to_complete =
8141 		    _base_determine_wait_on_discovery(ioc);
8142 
8143 		return r; /* scan_start and scan_finished support */
8144 	}
8145 
8146 	r = _base_send_port_enable(ioc);
8147 	if (r)
8148 		return r;
8149 
8150 	return r;
8151 }
8152 
8153 /**
8154  * mpt3sas_base_free_resources - free resources controller resources
8155  * @ioc: per adapter object
8156  */
8157 void
8158 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8159 {
8160 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8161 
8162 	/* synchronizing freeing resource with pci_access_mutex lock */
8163 	mutex_lock(&ioc->pci_access_mutex);
8164 	if (ioc->chip_phys && ioc->chip) {
8165 		mpt3sas_base_mask_interrupts(ioc);
8166 		ioc->shost_recovery = 1;
8167 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8168 		ioc->shost_recovery = 0;
8169 	}
8170 
8171 	mpt3sas_base_unmap_resources(ioc);
8172 	mutex_unlock(&ioc->pci_access_mutex);
8173 	return;
8174 }
8175 
8176 /**
8177  * mpt3sas_base_attach - attach controller instance
8178  * @ioc: per adapter object
8179  *
8180  * Return: 0 for success, non-zero for failure.
8181  */
8182 int
8183 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8184 {
8185 	int r, i, rc;
8186 	int cpu_id, last_cpu_id = 0;
8187 
8188 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8189 
8190 	/* setup cpu_msix_table */
8191 	ioc->cpu_count = num_online_cpus();
8192 	for_each_online_cpu(cpu_id)
8193 		last_cpu_id = cpu_id;
8194 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8195 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8196 	ioc->reply_queue_count = 1;
8197 	if (!ioc->cpu_msix_table) {
8198 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8199 		r = -ENOMEM;
8200 		goto out_free_resources;
8201 	}
8202 
8203 	if (ioc->is_warpdrive) {
8204 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8205 		    sizeof(resource_size_t *), GFP_KERNEL);
8206 		if (!ioc->reply_post_host_index) {
8207 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8208 			r = -ENOMEM;
8209 			goto out_free_resources;
8210 		}
8211 	}
8212 
8213 	ioc->smp_affinity_enable = smp_affinity_enable;
8214 
8215 	ioc->rdpq_array_enable_assigned = 0;
8216 	ioc->use_32bit_dma = false;
8217 	ioc->dma_mask = 64;
8218 	if (ioc->is_aero_ioc)
8219 		ioc->base_readl = &_base_readl_aero;
8220 	else
8221 		ioc->base_readl = &_base_readl;
8222 	r = mpt3sas_base_map_resources(ioc);
8223 	if (r)
8224 		goto out_free_resources;
8225 
8226 	pci_set_drvdata(ioc->pdev, ioc->shost);
8227 	r = _base_get_ioc_facts(ioc);
8228 	if (r) {
8229 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8230 		if (rc || (_base_get_ioc_facts(ioc)))
8231 			goto out_free_resources;
8232 	}
8233 
8234 	switch (ioc->hba_mpi_version_belonged) {
8235 	case MPI2_VERSION:
8236 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8237 		ioc->build_sg = &_base_build_sg;
8238 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8239 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8240 		break;
8241 	case MPI25_VERSION:
8242 	case MPI26_VERSION:
8243 		/*
8244 		 * In SAS3.0,
8245 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8246 		 * Target Status - all require the IEEE formatted scatter gather
8247 		 * elements.
8248 		 */
8249 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8250 		ioc->build_sg = &_base_build_sg_ieee;
8251 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8252 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8253 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8254 		if (ioc->high_iops_queues)
8255 			ioc->get_msix_index_for_smlio =
8256 					&_base_get_high_iops_msix_index;
8257 		else
8258 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8259 		break;
8260 	}
8261 	if (ioc->atomic_desc_capable) {
8262 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8263 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8264 		ioc->put_smid_fast_path =
8265 				&_base_put_smid_fast_path_atomic;
8266 		ioc->put_smid_hi_priority =
8267 				&_base_put_smid_hi_priority_atomic;
8268 	} else {
8269 		ioc->put_smid_default = &_base_put_smid_default;
8270 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8271 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8272 		if (ioc->is_mcpu_endpoint)
8273 			ioc->put_smid_scsi_io =
8274 				&_base_put_smid_mpi_ep_scsi_io;
8275 		else
8276 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8277 	}
8278 	/*
8279 	 * These function pointers for other requests that don't
8280 	 * the require IEEE scatter gather elements.
8281 	 *
8282 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8283 	 */
8284 	ioc->build_sg_mpi = &_base_build_sg;
8285 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8286 
8287 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8288 	if (r)
8289 		goto out_free_resources;
8290 
8291 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8292 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8293 	if (!ioc->pfacts) {
8294 		r = -ENOMEM;
8295 		goto out_free_resources;
8296 	}
8297 
8298 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8299 		r = _base_get_port_facts(ioc, i);
8300 		if (r) {
8301 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8302 			if (rc || (_base_get_port_facts(ioc, i)))
8303 				goto out_free_resources;
8304 		}
8305 	}
8306 
8307 	r = _base_allocate_memory_pools(ioc);
8308 	if (r)
8309 		goto out_free_resources;
8310 
8311 	if (irqpoll_weight > 0)
8312 		ioc->thresh_hold = irqpoll_weight;
8313 	else
8314 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8315 
8316 	_base_init_irqpolls(ioc);
8317 	init_waitqueue_head(&ioc->reset_wq);
8318 
8319 	/* allocate memory pd handle bitmask list */
8320 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8321 	if (ioc->facts.MaxDevHandle % 8)
8322 		ioc->pd_handles_sz++;
8323 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8324 	    GFP_KERNEL);
8325 	if (!ioc->pd_handles) {
8326 		r = -ENOMEM;
8327 		goto out_free_resources;
8328 	}
8329 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8330 	    GFP_KERNEL);
8331 	if (!ioc->blocking_handles) {
8332 		r = -ENOMEM;
8333 		goto out_free_resources;
8334 	}
8335 
8336 	/* allocate memory for pending OS device add list */
8337 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8338 	if (ioc->facts.MaxDevHandle % 8)
8339 		ioc->pend_os_device_add_sz++;
8340 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8341 	    GFP_KERNEL);
8342 	if (!ioc->pend_os_device_add) {
8343 		r = -ENOMEM;
8344 		goto out_free_resources;
8345 	}
8346 
8347 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8348 	ioc->device_remove_in_progress =
8349 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8350 	if (!ioc->device_remove_in_progress) {
8351 		r = -ENOMEM;
8352 		goto out_free_resources;
8353 	}
8354 
8355 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8356 
8357 	/* base internal command bits */
8358 	mutex_init(&ioc->base_cmds.mutex);
8359 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8360 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8361 
8362 	/* port_enable command bits */
8363 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8364 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8365 
8366 	/* transport internal command bits */
8367 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8368 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8369 	mutex_init(&ioc->transport_cmds.mutex);
8370 
8371 	/* scsih internal command bits */
8372 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8373 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8374 	mutex_init(&ioc->scsih_cmds.mutex);
8375 
8376 	/* task management internal command bits */
8377 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8378 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8379 	mutex_init(&ioc->tm_cmds.mutex);
8380 
8381 	/* config page internal command bits */
8382 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8383 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8384 	mutex_init(&ioc->config_cmds.mutex);
8385 
8386 	/* ctl module internal command bits */
8387 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8388 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8389 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8390 	mutex_init(&ioc->ctl_cmds.mutex);
8391 
8392 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8393 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8394 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8395 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8396 		r = -ENOMEM;
8397 		goto out_free_resources;
8398 	}
8399 
8400 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8401 		ioc->event_masks[i] = -1;
8402 
8403 	/* here we enable the events we care about */
8404 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8405 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8406 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8407 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8408 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8409 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8410 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8411 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8412 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8413 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8414 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8415 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8416 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8417 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8418 		if (ioc->is_gen35_ioc) {
8419 			_base_unmask_events(ioc,
8420 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8421 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8422 			_base_unmask_events(ioc,
8423 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8424 		}
8425 	}
8426 	r = _base_make_ioc_operational(ioc);
8427 	if (r == -EAGAIN) {
8428 		r = _base_make_ioc_operational(ioc);
8429 		if (r)
8430 			goto out_free_resources;
8431 	}
8432 
8433 	/*
8434 	 * Copy current copy of IOCFacts in prev_fw_facts
8435 	 * and it will be used during online firmware upgrade.
8436 	 */
8437 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8438 	    sizeof(struct mpt3sas_facts));
8439 
8440 	ioc->non_operational_loop = 0;
8441 	ioc->ioc_coredump_loop = 0;
8442 	ioc->got_task_abort_from_ioctl = 0;
8443 	return 0;
8444 
8445  out_free_resources:
8446 
8447 	ioc->remove_host = 1;
8448 
8449 	mpt3sas_base_free_resources(ioc);
8450 	_base_release_memory_pools(ioc);
8451 	pci_set_drvdata(ioc->pdev, NULL);
8452 	kfree(ioc->cpu_msix_table);
8453 	if (ioc->is_warpdrive)
8454 		kfree(ioc->reply_post_host_index);
8455 	kfree(ioc->pd_handles);
8456 	kfree(ioc->blocking_handles);
8457 	kfree(ioc->device_remove_in_progress);
8458 	kfree(ioc->pend_os_device_add);
8459 	kfree(ioc->tm_cmds.reply);
8460 	kfree(ioc->transport_cmds.reply);
8461 	kfree(ioc->scsih_cmds.reply);
8462 	kfree(ioc->config_cmds.reply);
8463 	kfree(ioc->base_cmds.reply);
8464 	kfree(ioc->port_enable_cmds.reply);
8465 	kfree(ioc->ctl_cmds.reply);
8466 	kfree(ioc->ctl_cmds.sense);
8467 	kfree(ioc->pfacts);
8468 	ioc->ctl_cmds.reply = NULL;
8469 	ioc->base_cmds.reply = NULL;
8470 	ioc->tm_cmds.reply = NULL;
8471 	ioc->scsih_cmds.reply = NULL;
8472 	ioc->transport_cmds.reply = NULL;
8473 	ioc->config_cmds.reply = NULL;
8474 	ioc->pfacts = NULL;
8475 	return r;
8476 }
8477 
8478 
8479 /**
8480  * mpt3sas_base_detach - remove controller instance
8481  * @ioc: per adapter object
8482  */
8483 void
8484 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8485 {
8486 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8487 
8488 	mpt3sas_base_stop_watchdog(ioc);
8489 	mpt3sas_base_free_resources(ioc);
8490 	_base_release_memory_pools(ioc);
8491 	mpt3sas_free_enclosure_list(ioc);
8492 	pci_set_drvdata(ioc->pdev, NULL);
8493 	kfree(ioc->cpu_msix_table);
8494 	if (ioc->is_warpdrive)
8495 		kfree(ioc->reply_post_host_index);
8496 	kfree(ioc->pd_handles);
8497 	kfree(ioc->blocking_handles);
8498 	kfree(ioc->device_remove_in_progress);
8499 	kfree(ioc->pend_os_device_add);
8500 	kfree(ioc->pfacts);
8501 	kfree(ioc->ctl_cmds.reply);
8502 	kfree(ioc->ctl_cmds.sense);
8503 	kfree(ioc->base_cmds.reply);
8504 	kfree(ioc->port_enable_cmds.reply);
8505 	kfree(ioc->tm_cmds.reply);
8506 	kfree(ioc->transport_cmds.reply);
8507 	kfree(ioc->scsih_cmds.reply);
8508 	kfree(ioc->config_cmds.reply);
8509 }
8510 
8511 /**
8512  * _base_pre_reset_handler - pre reset handler
8513  * @ioc: per adapter object
8514  */
8515 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8516 {
8517 	mpt3sas_scsih_pre_reset_handler(ioc);
8518 	mpt3sas_ctl_pre_reset_handler(ioc);
8519 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8520 }
8521 
8522 /**
8523  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8524  * @ioc: per adapter object
8525  */
8526 static void
8527 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8528 {
8529 	dtmprintk(ioc,
8530 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8531 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8532 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8533 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8534 		complete(&ioc->transport_cmds.done);
8535 	}
8536 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8537 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8538 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8539 		complete(&ioc->base_cmds.done);
8540 	}
8541 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8542 		ioc->port_enable_failed = 1;
8543 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8544 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8545 		if (ioc->is_driver_loading) {
8546 			ioc->start_scan_failed =
8547 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8548 			ioc->start_scan = 0;
8549 		} else {
8550 			complete(&ioc->port_enable_cmds.done);
8551 		}
8552 	}
8553 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8554 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8555 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8556 		ioc->config_cmds.smid = USHRT_MAX;
8557 		complete(&ioc->config_cmds.done);
8558 	}
8559 }
8560 
8561 /**
8562  * _base_clear_outstanding_commands - clear all outstanding commands
8563  * @ioc: per adapter object
8564  */
8565 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8566 {
8567 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8568 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8569 	_base_clear_outstanding_mpt_commands(ioc);
8570 }
8571 
8572 /**
8573  * _base_reset_done_handler - reset done handler
8574  * @ioc: per adapter object
8575  */
8576 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8577 {
8578 	mpt3sas_scsih_reset_done_handler(ioc);
8579 	mpt3sas_ctl_reset_done_handler(ioc);
8580 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8581 }
8582 
8583 /**
8584  * mpt3sas_wait_for_commands_to_complete - reset controller
8585  * @ioc: Pointer to MPT_ADAPTER structure
8586  *
8587  * This function is waiting 10s for all pending commands to complete
8588  * prior to putting controller in reset.
8589  */
8590 void
8591 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8592 {
8593 	u32 ioc_state;
8594 
8595 	ioc->pending_io_count = 0;
8596 
8597 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8598 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8599 		return;
8600 
8601 	/* pending command count */
8602 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8603 
8604 	if (!ioc->pending_io_count)
8605 		return;
8606 
8607 	/* wait for pending commands to complete */
8608 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8609 }
8610 
8611 /**
8612  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8613  *     attributes during online firmware upgrade and update the corresponding
8614  *     IOC variables accordingly.
8615  *
8616  * @ioc: Pointer to MPT_ADAPTER structure
8617  */
8618 static int
8619 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8620 {
8621 	u16 pd_handles_sz;
8622 	void *pd_handles = NULL, *blocking_handles = NULL;
8623 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8624 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8625 
8626 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8627 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8628 		if (ioc->facts.MaxDevHandle % 8)
8629 			pd_handles_sz++;
8630 
8631 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8632 		    GFP_KERNEL);
8633 		if (!pd_handles) {
8634 			ioc_info(ioc,
8635 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8636 			    pd_handles_sz);
8637 			return -ENOMEM;
8638 		}
8639 		memset(pd_handles + ioc->pd_handles_sz, 0,
8640 		    (pd_handles_sz - ioc->pd_handles_sz));
8641 		ioc->pd_handles = pd_handles;
8642 
8643 		blocking_handles = krealloc(ioc->blocking_handles,
8644 		    pd_handles_sz, GFP_KERNEL);
8645 		if (!blocking_handles) {
8646 			ioc_info(ioc,
8647 			    "Unable to allocate the memory for "
8648 			    "blocking_handles of sz: %d\n",
8649 			    pd_handles_sz);
8650 			return -ENOMEM;
8651 		}
8652 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8653 		    (pd_handles_sz - ioc->pd_handles_sz));
8654 		ioc->blocking_handles = blocking_handles;
8655 		ioc->pd_handles_sz = pd_handles_sz;
8656 
8657 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8658 		    pd_handles_sz, GFP_KERNEL);
8659 		if (!pend_os_device_add) {
8660 			ioc_info(ioc,
8661 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8662 			    pd_handles_sz);
8663 			return -ENOMEM;
8664 		}
8665 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8666 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8667 		ioc->pend_os_device_add = pend_os_device_add;
8668 		ioc->pend_os_device_add_sz = pd_handles_sz;
8669 
8670 		device_remove_in_progress = krealloc(
8671 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8672 		if (!device_remove_in_progress) {
8673 			ioc_info(ioc,
8674 			    "Unable to allocate the memory for "
8675 			    "device_remove_in_progress of sz: %d\n "
8676 			    , pd_handles_sz);
8677 			return -ENOMEM;
8678 		}
8679 		memset(device_remove_in_progress +
8680 		    ioc->device_remove_in_progress_sz, 0,
8681 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8682 		ioc->device_remove_in_progress = device_remove_in_progress;
8683 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8684 	}
8685 
8686 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8687 	return 0;
8688 }
8689 
8690 /**
8691  * mpt3sas_base_hard_reset_handler - reset controller
8692  * @ioc: Pointer to MPT_ADAPTER structure
8693  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8694  *
8695  * Return: 0 for success, non-zero for failure.
8696  */
8697 int
8698 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8699 	enum reset_type type)
8700 {
8701 	int r;
8702 	unsigned long flags;
8703 	u32 ioc_state;
8704 	u8 is_fault = 0, is_trigger = 0;
8705 
8706 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8707 
8708 	if (ioc->pci_error_recovery) {
8709 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8710 		r = 0;
8711 		goto out_unlocked;
8712 	}
8713 
8714 	if (mpt3sas_fwfault_debug)
8715 		mpt3sas_halt_firmware(ioc);
8716 
8717 	/* wait for an active reset in progress to complete */
8718 	mutex_lock(&ioc->reset_in_progress_mutex);
8719 
8720 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8721 	ioc->shost_recovery = 1;
8722 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8723 
8724 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8725 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8726 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8727 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8728 		is_trigger = 1;
8729 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8730 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8731 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8732 		    MPI2_IOC_STATE_COREDUMP) {
8733 			is_fault = 1;
8734 			ioc->htb_rel.trigger_info_dwords[1] =
8735 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8736 		}
8737 	}
8738 	_base_pre_reset_handler(ioc);
8739 	mpt3sas_wait_for_commands_to_complete(ioc);
8740 	mpt3sas_base_mask_interrupts(ioc);
8741 	mpt3sas_base_pause_mq_polling(ioc);
8742 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8743 	if (r)
8744 		goto out;
8745 	_base_clear_outstanding_commands(ioc);
8746 
8747 	/* If this hard reset is called while port enable is active, then
8748 	 * there is no reason to call make_ioc_operational
8749 	 */
8750 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8751 		ioc->remove_host = 1;
8752 		r = -EFAULT;
8753 		goto out;
8754 	}
8755 	r = _base_get_ioc_facts(ioc);
8756 	if (r)
8757 		goto out;
8758 
8759 	r = _base_check_ioc_facts_changes(ioc);
8760 	if (r) {
8761 		ioc_info(ioc,
8762 		    "Some of the parameters got changed in this new firmware"
8763 		    " image and it requires system reboot\n");
8764 		goto out;
8765 	}
8766 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
8767 		panic("%s: Issue occurred with flashing controller firmware."
8768 		      "Please reboot the system and ensure that the correct"
8769 		      " firmware version is running\n", ioc->name);
8770 
8771 	r = _base_make_ioc_operational(ioc);
8772 	if (!r)
8773 		_base_reset_done_handler(ioc);
8774 
8775  out:
8776 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
8777 
8778 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8779 	ioc->shost_recovery = 0;
8780 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8781 	ioc->ioc_reset_count++;
8782 	mutex_unlock(&ioc->reset_in_progress_mutex);
8783 	mpt3sas_base_resume_mq_polling(ioc);
8784 
8785  out_unlocked:
8786 	if ((r == 0) && is_trigger) {
8787 		if (is_fault)
8788 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
8789 		else
8790 			mpt3sas_trigger_master(ioc,
8791 			    MASTER_TRIGGER_ADAPTER_RESET);
8792 	}
8793 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
8794 	return r;
8795 }
8796