1 /* 2 * Serial Attached SCSI (SAS) Expander discovery and configuration 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License as 11 * published by the Free Software Foundation; either version 2 of the 12 * License, or (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/scatterlist.h> 26 #include <linux/blkdev.h> 27 28 #include "sas_internal.h" 29 30 #include <scsi/scsi_transport.h> 31 #include <scsi/scsi_transport_sas.h> 32 #include "../scsi_sas_internal.h" 33 34 static int sas_discover_expander(struct domain_device *dev); 35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr); 36 static int sas_configure_phy(struct domain_device *dev, int phy_id, 37 u8 *sas_addr, int include); 38 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr); 39 40 /* ---------- SMP task management ---------- */ 41 42 static void smp_task_timedout(unsigned long _task) 43 { 44 struct sas_task *task = (void *) _task; 45 unsigned long flags; 46 47 spin_lock_irqsave(&task->task_state_lock, flags); 48 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) 49 task->task_state_flags |= SAS_TASK_STATE_ABORTED; 50 spin_unlock_irqrestore(&task->task_state_lock, flags); 51 52 complete(&task->completion); 53 } 54 55 static void smp_task_done(struct sas_task *task) 56 { 57 if (!del_timer(&task->timer)) 58 return; 59 complete(&task->completion); 60 } 61 62 /* Give it some long enough timeout. In seconds. */ 63 #define SMP_TIMEOUT 10 64 65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size, 66 void *resp, int resp_size) 67 { 68 int res, retry; 69 struct sas_task *task = NULL; 70 struct sas_internal *i = 71 to_sas_internal(dev->port->ha->core.shost->transportt); 72 73 for (retry = 0; retry < 3; retry++) { 74 task = sas_alloc_task(GFP_KERNEL); 75 if (!task) 76 return -ENOMEM; 77 78 task->dev = dev; 79 task->task_proto = dev->tproto; 80 sg_init_one(&task->smp_task.smp_req, req, req_size); 81 sg_init_one(&task->smp_task.smp_resp, resp, resp_size); 82 83 task->task_done = smp_task_done; 84 85 task->timer.data = (unsigned long) task; 86 task->timer.function = smp_task_timedout; 87 task->timer.expires = jiffies + SMP_TIMEOUT*HZ; 88 add_timer(&task->timer); 89 90 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); 91 92 if (res) { 93 del_timer(&task->timer); 94 SAS_DPRINTK("executing SMP task failed:%d\n", res); 95 goto ex_err; 96 } 97 98 wait_for_completion(&task->completion); 99 res = -ETASK; 100 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 101 SAS_DPRINTK("smp task timed out or aborted\n"); 102 i->dft->lldd_abort_task(task); 103 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { 104 SAS_DPRINTK("SMP task aborted and not done\n"); 105 goto ex_err; 106 } 107 } 108 if (task->task_status.resp == SAS_TASK_COMPLETE && 109 task->task_status.stat == SAM_GOOD) { 110 res = 0; 111 break; 112 } else { 113 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x " 114 "status 0x%x\n", __FUNCTION__, 115 SAS_ADDR(dev->sas_addr), 116 task->task_status.resp, 117 task->task_status.stat); 118 sas_free_task(task); 119 task = NULL; 120 } 121 } 122 ex_err: 123 BUG_ON(retry == 3 && task != NULL); 124 if (task != NULL) { 125 sas_free_task(task); 126 } 127 return res; 128 } 129 130 /* ---------- Allocations ---------- */ 131 132 static inline void *alloc_smp_req(int size) 133 { 134 u8 *p = kzalloc(size, GFP_KERNEL); 135 if (p) 136 p[0] = SMP_REQUEST; 137 return p; 138 } 139 140 static inline void *alloc_smp_resp(int size) 141 { 142 return kzalloc(size, GFP_KERNEL); 143 } 144 145 /* ---------- Expander configuration ---------- */ 146 147 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, 148 void *disc_resp) 149 { 150 struct expander_device *ex = &dev->ex_dev; 151 struct ex_phy *phy = &ex->ex_phy[phy_id]; 152 struct smp_resp *resp = disc_resp; 153 struct discover_resp *dr = &resp->disc; 154 struct sas_rphy *rphy = dev->rphy; 155 int rediscover = (phy->phy != NULL); 156 157 if (!rediscover) { 158 phy->phy = sas_phy_alloc(&rphy->dev, phy_id); 159 160 /* FIXME: error_handling */ 161 BUG_ON(!phy->phy); 162 } 163 164 switch (resp->result) { 165 case SMP_RESP_PHY_VACANT: 166 phy->phy_state = PHY_VACANT; 167 return; 168 default: 169 phy->phy_state = PHY_NOT_PRESENT; 170 return; 171 case SMP_RESP_FUNC_ACC: 172 phy->phy_state = PHY_EMPTY; /* do not know yet */ 173 break; 174 } 175 176 phy->phy_id = phy_id; 177 phy->attached_dev_type = dr->attached_dev_type; 178 phy->linkrate = dr->linkrate; 179 phy->attached_sata_host = dr->attached_sata_host; 180 phy->attached_sata_dev = dr->attached_sata_dev; 181 phy->attached_sata_ps = dr->attached_sata_ps; 182 phy->attached_iproto = dr->iproto << 1; 183 phy->attached_tproto = dr->tproto << 1; 184 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE); 185 phy->attached_phy_id = dr->attached_phy_id; 186 phy->phy_change_count = dr->change_count; 187 phy->routing_attr = dr->routing_attr; 188 phy->virtual = dr->virtual; 189 phy->last_da_index = -1; 190 191 phy->phy->identify.initiator_port_protocols = phy->attached_iproto; 192 phy->phy->identify.target_port_protocols = phy->attached_tproto; 193 phy->phy->identify.phy_identifier = phy_id; 194 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate; 195 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate; 196 phy->phy->minimum_linkrate = dr->pmin_linkrate; 197 phy->phy->maximum_linkrate = dr->pmax_linkrate; 198 phy->phy->negotiated_linkrate = phy->linkrate; 199 200 if (!rediscover) 201 sas_phy_add(phy->phy); 202 203 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n", 204 SAS_ADDR(dev->sas_addr), phy->phy_id, 205 phy->routing_attr == TABLE_ROUTING ? 'T' : 206 phy->routing_attr == DIRECT_ROUTING ? 'D' : 207 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?', 208 SAS_ADDR(phy->attached_sas_addr)); 209 210 return; 211 } 212 213 #define DISCOVER_REQ_SIZE 16 214 #define DISCOVER_RESP_SIZE 56 215 216 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req, 217 u8 *disc_resp, int single) 218 { 219 int i, res; 220 221 disc_req[9] = single; 222 for (i = 1 ; i < 3; i++) { 223 struct discover_resp *dr; 224 225 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 226 disc_resp, DISCOVER_RESP_SIZE); 227 if (res) 228 return res; 229 /* This is detecting a failure to transmit inital 230 * dev to host FIS as described in section G.5 of 231 * sas-2 r 04b */ 232 dr = &((struct smp_resp *)disc_resp)->disc; 233 if (!(dr->attached_dev_type == 0 && 234 dr->attached_sata_dev)) 235 break; 236 /* In order to generate the dev to host FIS, we 237 * send a link reset to the expander port */ 238 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL); 239 /* Wait for the reset to trigger the negotiation */ 240 msleep(500); 241 } 242 sas_set_ex_phy(dev, single, disc_resp); 243 return 0; 244 } 245 246 static int sas_ex_phy_discover(struct domain_device *dev, int single) 247 { 248 struct expander_device *ex = &dev->ex_dev; 249 int res = 0; 250 u8 *disc_req; 251 u8 *disc_resp; 252 253 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 254 if (!disc_req) 255 return -ENOMEM; 256 257 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE); 258 if (!disc_resp) { 259 kfree(disc_req); 260 return -ENOMEM; 261 } 262 263 disc_req[1] = SMP_DISCOVER; 264 265 if (0 <= single && single < ex->num_phys) { 266 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single); 267 } else { 268 int i; 269 270 for (i = 0; i < ex->num_phys; i++) { 271 res = sas_ex_phy_discover_helper(dev, disc_req, 272 disc_resp, i); 273 if (res) 274 goto out_err; 275 } 276 } 277 out_err: 278 kfree(disc_resp); 279 kfree(disc_req); 280 return res; 281 } 282 283 static int sas_expander_discover(struct domain_device *dev) 284 { 285 struct expander_device *ex = &dev->ex_dev; 286 int res = -ENOMEM; 287 288 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL); 289 if (!ex->ex_phy) 290 return -ENOMEM; 291 292 res = sas_ex_phy_discover(dev, -1); 293 if (res) 294 goto out_err; 295 296 return 0; 297 out_err: 298 kfree(ex->ex_phy); 299 ex->ex_phy = NULL; 300 return res; 301 } 302 303 #define MAX_EXPANDER_PHYS 128 304 305 static void ex_assign_report_general(struct domain_device *dev, 306 struct smp_resp *resp) 307 { 308 struct report_general_resp *rg = &resp->rg; 309 310 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count); 311 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes); 312 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS); 313 dev->ex_dev.conf_route_table = rg->conf_route_table; 314 dev->ex_dev.configuring = rg->configuring; 315 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8); 316 } 317 318 #define RG_REQ_SIZE 8 319 #define RG_RESP_SIZE 32 320 321 static int sas_ex_general(struct domain_device *dev) 322 { 323 u8 *rg_req; 324 struct smp_resp *rg_resp; 325 int res; 326 int i; 327 328 rg_req = alloc_smp_req(RG_REQ_SIZE); 329 if (!rg_req) 330 return -ENOMEM; 331 332 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 333 if (!rg_resp) { 334 kfree(rg_req); 335 return -ENOMEM; 336 } 337 338 rg_req[1] = SMP_REPORT_GENERAL; 339 340 for (i = 0; i < 5; i++) { 341 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 342 RG_RESP_SIZE); 343 344 if (res) { 345 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n", 346 SAS_ADDR(dev->sas_addr), res); 347 goto out; 348 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) { 349 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n", 350 SAS_ADDR(dev->sas_addr), rg_resp->result); 351 res = rg_resp->result; 352 goto out; 353 } 354 355 ex_assign_report_general(dev, rg_resp); 356 357 if (dev->ex_dev.configuring) { 358 SAS_DPRINTK("RG: ex %llx self-configuring...\n", 359 SAS_ADDR(dev->sas_addr)); 360 schedule_timeout_interruptible(5*HZ); 361 } else 362 break; 363 } 364 out: 365 kfree(rg_req); 366 kfree(rg_resp); 367 return res; 368 } 369 370 static void ex_assign_manuf_info(struct domain_device *dev, void 371 *_mi_resp) 372 { 373 u8 *mi_resp = _mi_resp; 374 struct sas_rphy *rphy = dev->rphy; 375 struct sas_expander_device *edev = rphy_to_expander_device(rphy); 376 377 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN); 378 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN); 379 memcpy(edev->product_rev, mi_resp + 36, 380 SAS_EXPANDER_PRODUCT_REV_LEN); 381 382 if (mi_resp[8] & 1) { 383 memcpy(edev->component_vendor_id, mi_resp + 40, 384 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN); 385 edev->component_id = mi_resp[48] << 8 | mi_resp[49]; 386 edev->component_revision_id = mi_resp[50]; 387 } 388 } 389 390 #define MI_REQ_SIZE 8 391 #define MI_RESP_SIZE 64 392 393 static int sas_ex_manuf_info(struct domain_device *dev) 394 { 395 u8 *mi_req; 396 u8 *mi_resp; 397 int res; 398 399 mi_req = alloc_smp_req(MI_REQ_SIZE); 400 if (!mi_req) 401 return -ENOMEM; 402 403 mi_resp = alloc_smp_resp(MI_RESP_SIZE); 404 if (!mi_resp) { 405 kfree(mi_req); 406 return -ENOMEM; 407 } 408 409 mi_req[1] = SMP_REPORT_MANUF_INFO; 410 411 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE); 412 if (res) { 413 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n", 414 SAS_ADDR(dev->sas_addr), res); 415 goto out; 416 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) { 417 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n", 418 SAS_ADDR(dev->sas_addr), mi_resp[2]); 419 goto out; 420 } 421 422 ex_assign_manuf_info(dev, mi_resp); 423 out: 424 kfree(mi_req); 425 kfree(mi_resp); 426 return res; 427 } 428 429 #define PC_REQ_SIZE 44 430 #define PC_RESP_SIZE 8 431 432 int sas_smp_phy_control(struct domain_device *dev, int phy_id, 433 enum phy_func phy_func, 434 struct sas_phy_linkrates *rates) 435 { 436 u8 *pc_req; 437 u8 *pc_resp; 438 int res; 439 440 pc_req = alloc_smp_req(PC_REQ_SIZE); 441 if (!pc_req) 442 return -ENOMEM; 443 444 pc_resp = alloc_smp_resp(PC_RESP_SIZE); 445 if (!pc_resp) { 446 kfree(pc_req); 447 return -ENOMEM; 448 } 449 450 pc_req[1] = SMP_PHY_CONTROL; 451 pc_req[9] = phy_id; 452 pc_req[10]= phy_func; 453 if (rates) { 454 pc_req[32] = rates->minimum_linkrate << 4; 455 pc_req[33] = rates->maximum_linkrate << 4; 456 } 457 458 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE); 459 460 kfree(pc_resp); 461 kfree(pc_req); 462 return res; 463 } 464 465 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id) 466 { 467 struct expander_device *ex = &dev->ex_dev; 468 struct ex_phy *phy = &ex->ex_phy[phy_id]; 469 470 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL); 471 phy->linkrate = SAS_PHY_DISABLED; 472 } 473 474 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr) 475 { 476 struct expander_device *ex = &dev->ex_dev; 477 int i; 478 479 for (i = 0; i < ex->num_phys; i++) { 480 struct ex_phy *phy = &ex->ex_phy[i]; 481 482 if (phy->phy_state == PHY_VACANT || 483 phy->phy_state == PHY_NOT_PRESENT) 484 continue; 485 486 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr)) 487 sas_ex_disable_phy(dev, i); 488 } 489 } 490 491 static int sas_dev_present_in_domain(struct asd_sas_port *port, 492 u8 *sas_addr) 493 { 494 struct domain_device *dev; 495 496 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr)) 497 return 1; 498 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 499 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr)) 500 return 1; 501 } 502 return 0; 503 } 504 505 #define RPEL_REQ_SIZE 16 506 #define RPEL_RESP_SIZE 32 507 int sas_smp_get_phy_events(struct sas_phy *phy) 508 { 509 int res; 510 u8 *req; 511 u8 *resp; 512 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); 513 struct domain_device *dev = sas_find_dev_by_rphy(rphy); 514 515 req = alloc_smp_req(RPEL_REQ_SIZE); 516 if (!req) 517 return -ENOMEM; 518 519 resp = alloc_smp_resp(RPEL_RESP_SIZE); 520 if (!resp) { 521 kfree(req); 522 return -ENOMEM; 523 } 524 525 req[1] = SMP_REPORT_PHY_ERR_LOG; 526 req[9] = phy->number; 527 528 res = smp_execute_task(dev, req, RPEL_REQ_SIZE, 529 resp, RPEL_RESP_SIZE); 530 531 if (!res) 532 goto out; 533 534 phy->invalid_dword_count = scsi_to_u32(&resp[12]); 535 phy->running_disparity_error_count = scsi_to_u32(&resp[16]); 536 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); 537 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); 538 539 out: 540 kfree(resp); 541 return res; 542 543 } 544 545 #ifdef CONFIG_SCSI_SAS_ATA 546 547 #define RPS_REQ_SIZE 16 548 #define RPS_RESP_SIZE 60 549 550 static int sas_get_report_phy_sata(struct domain_device *dev, 551 int phy_id, 552 struct smp_resp *rps_resp) 553 { 554 int res; 555 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE); 556 u8 *resp = (u8 *)rps_resp; 557 558 if (!rps_req) 559 return -ENOMEM; 560 561 rps_req[1] = SMP_REPORT_PHY_SATA; 562 rps_req[9] = phy_id; 563 564 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE, 565 rps_resp, RPS_RESP_SIZE); 566 567 /* 0x34 is the FIS type for the D2H fis. There's a potential 568 * standards cockup here. sas-2 explicitly specifies the FIS 569 * should be encoded so that FIS type is in resp[24]. 570 * However, some expanders endian reverse this. Undo the 571 * reversal here */ 572 if (!res && resp[27] == 0x34 && resp[24] != 0x34) { 573 int i; 574 575 for (i = 0; i < 5; i++) { 576 int j = 24 + (i*4); 577 u8 a, b; 578 a = resp[j + 0]; 579 b = resp[j + 1]; 580 resp[j + 0] = resp[j + 3]; 581 resp[j + 1] = resp[j + 2]; 582 resp[j + 2] = b; 583 resp[j + 3] = a; 584 } 585 } 586 587 kfree(rps_req); 588 return res; 589 } 590 #endif 591 592 static void sas_ex_get_linkrate(struct domain_device *parent, 593 struct domain_device *child, 594 struct ex_phy *parent_phy) 595 { 596 struct expander_device *parent_ex = &parent->ex_dev; 597 struct sas_port *port; 598 int i; 599 600 child->pathways = 0; 601 602 port = parent_phy->port; 603 604 for (i = 0; i < parent_ex->num_phys; i++) { 605 struct ex_phy *phy = &parent_ex->ex_phy[i]; 606 607 if (phy->phy_state == PHY_VACANT || 608 phy->phy_state == PHY_NOT_PRESENT) 609 continue; 610 611 if (SAS_ADDR(phy->attached_sas_addr) == 612 SAS_ADDR(child->sas_addr)) { 613 614 child->min_linkrate = min(parent->min_linkrate, 615 phy->linkrate); 616 child->max_linkrate = max(parent->max_linkrate, 617 phy->linkrate); 618 child->pathways++; 619 sas_port_add_phy(port, phy->phy); 620 } 621 } 622 child->linkrate = min(parent_phy->linkrate, child->max_linkrate); 623 child->pathways = min(child->pathways, parent->pathways); 624 } 625 626 static struct domain_device *sas_ex_discover_end_dev( 627 struct domain_device *parent, int phy_id) 628 { 629 struct expander_device *parent_ex = &parent->ex_dev; 630 struct ex_phy *phy = &parent_ex->ex_phy[phy_id]; 631 struct domain_device *child = NULL; 632 struct sas_rphy *rphy; 633 int res; 634 635 if (phy->attached_sata_host || phy->attached_sata_ps) 636 return NULL; 637 638 child = kzalloc(sizeof(*child), GFP_KERNEL); 639 if (!child) 640 return NULL; 641 642 child->parent = parent; 643 child->port = parent->port; 644 child->iproto = phy->attached_iproto; 645 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 646 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 647 if (!phy->port) { 648 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 649 if (unlikely(!phy->port)) 650 goto out_err; 651 if (unlikely(sas_port_add(phy->port) != 0)) { 652 sas_port_free(phy->port); 653 goto out_err; 654 } 655 } 656 sas_ex_get_linkrate(parent, child, phy); 657 658 #ifdef CONFIG_SCSI_SAS_ATA 659 if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) { 660 child->dev_type = SATA_DEV; 661 if (phy->attached_tproto & SAS_PROTO_STP) 662 child->tproto = phy->attached_tproto; 663 if (phy->attached_sata_dev) 664 child->tproto |= SATA_DEV; 665 res = sas_get_report_phy_sata(parent, phy_id, 666 &child->sata_dev.rps_resp); 667 if (res) { 668 SAS_DPRINTK("report phy sata to %016llx:0x%x returned " 669 "0x%x\n", SAS_ADDR(parent->sas_addr), 670 phy_id, res); 671 goto out_free; 672 } 673 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis, 674 sizeof(struct dev_to_host_fis)); 675 676 rphy = sas_end_device_alloc(phy->port); 677 if (unlikely(!rphy)) 678 goto out_free; 679 680 sas_init_dev(child); 681 682 child->rphy = rphy; 683 684 spin_lock_irq(&parent->port->dev_list_lock); 685 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 686 spin_unlock_irq(&parent->port->dev_list_lock); 687 688 res = sas_discover_sata(child); 689 if (res) { 690 SAS_DPRINTK("sas_discover_sata() for device %16llx at " 691 "%016llx:0x%x returned 0x%x\n", 692 SAS_ADDR(child->sas_addr), 693 SAS_ADDR(parent->sas_addr), phy_id, res); 694 goto out_list_del; 695 } 696 } else 697 #endif 698 if (phy->attached_tproto & SAS_PROTO_SSP) { 699 child->dev_type = SAS_END_DEV; 700 rphy = sas_end_device_alloc(phy->port); 701 /* FIXME: error handling */ 702 if (unlikely(!rphy)) 703 goto out_free; 704 child->tproto = phy->attached_tproto; 705 sas_init_dev(child); 706 707 child->rphy = rphy; 708 sas_fill_in_rphy(child, rphy); 709 710 spin_lock_irq(&parent->port->dev_list_lock); 711 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 712 spin_unlock_irq(&parent->port->dev_list_lock); 713 714 res = sas_discover_end_dev(child); 715 if (res) { 716 SAS_DPRINTK("sas_discover_end_dev() for device %16llx " 717 "at %016llx:0x%x returned 0x%x\n", 718 SAS_ADDR(child->sas_addr), 719 SAS_ADDR(parent->sas_addr), phy_id, res); 720 goto out_list_del; 721 } 722 } else { 723 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n", 724 phy->attached_tproto, SAS_ADDR(parent->sas_addr), 725 phy_id); 726 goto out_free; 727 } 728 729 list_add_tail(&child->siblings, &parent_ex->children); 730 return child; 731 732 out_list_del: 733 sas_rphy_free(child->rphy); 734 child->rphy = NULL; 735 list_del(&child->dev_list_node); 736 out_free: 737 sas_port_delete(phy->port); 738 out_err: 739 phy->port = NULL; 740 kfree(child); 741 return NULL; 742 } 743 744 /* See if this phy is part of a wide port */ 745 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id) 746 { 747 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 748 int i; 749 750 for (i = 0; i < parent->ex_dev.num_phys; i++) { 751 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i]; 752 753 if (ephy == phy) 754 continue; 755 756 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr, 757 SAS_ADDR_SIZE) && ephy->port) { 758 sas_port_add_phy(ephy->port, phy->phy); 759 phy->phy_state = PHY_DEVICE_DISCOVERED; 760 return 0; 761 } 762 } 763 764 return -ENODEV; 765 } 766 767 static struct domain_device *sas_ex_discover_expander( 768 struct domain_device *parent, int phy_id) 769 { 770 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy); 771 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id]; 772 struct domain_device *child = NULL; 773 struct sas_rphy *rphy; 774 struct sas_expander_device *edev; 775 struct asd_sas_port *port; 776 int res; 777 778 if (phy->routing_attr == DIRECT_ROUTING) { 779 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not " 780 "allowed\n", 781 SAS_ADDR(parent->sas_addr), phy_id, 782 SAS_ADDR(phy->attached_sas_addr), 783 phy->attached_phy_id); 784 return NULL; 785 } 786 child = kzalloc(sizeof(*child), GFP_KERNEL); 787 if (!child) 788 return NULL; 789 790 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id); 791 /* FIXME: better error handling */ 792 BUG_ON(sas_port_add(phy->port) != 0); 793 794 795 switch (phy->attached_dev_type) { 796 case EDGE_DEV: 797 rphy = sas_expander_alloc(phy->port, 798 SAS_EDGE_EXPANDER_DEVICE); 799 break; 800 case FANOUT_DEV: 801 rphy = sas_expander_alloc(phy->port, 802 SAS_FANOUT_EXPANDER_DEVICE); 803 break; 804 default: 805 rphy = NULL; /* shut gcc up */ 806 BUG(); 807 } 808 port = parent->port; 809 child->rphy = rphy; 810 edev = rphy_to_expander_device(rphy); 811 child->dev_type = phy->attached_dev_type; 812 child->parent = parent; 813 child->port = port; 814 child->iproto = phy->attached_iproto; 815 child->tproto = phy->attached_tproto; 816 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE); 817 sas_hash_addr(child->hashed_sas_addr, child->sas_addr); 818 sas_ex_get_linkrate(parent, child, phy); 819 edev->level = parent_ex->level + 1; 820 parent->port->disc.max_level = max(parent->port->disc.max_level, 821 edev->level); 822 sas_init_dev(child); 823 sas_fill_in_rphy(child, rphy); 824 sas_rphy_add(rphy); 825 826 spin_lock_irq(&parent->port->dev_list_lock); 827 list_add_tail(&child->dev_list_node, &parent->port->dev_list); 828 spin_unlock_irq(&parent->port->dev_list_lock); 829 830 res = sas_discover_expander(child); 831 if (res) { 832 kfree(child); 833 return NULL; 834 } 835 list_add_tail(&child->siblings, &parent->ex_dev.children); 836 return child; 837 } 838 839 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id) 840 { 841 struct expander_device *ex = &dev->ex_dev; 842 struct ex_phy *ex_phy = &ex->ex_phy[phy_id]; 843 struct domain_device *child = NULL; 844 int res = 0; 845 846 /* Phy state */ 847 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) { 848 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL)) 849 res = sas_ex_phy_discover(dev, phy_id); 850 if (res) 851 return res; 852 } 853 854 /* Parent and domain coherency */ 855 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 856 SAS_ADDR(dev->port->sas_addr))) { 857 sas_add_parent_port(dev, phy_id); 858 return 0; 859 } 860 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) == 861 SAS_ADDR(dev->parent->sas_addr))) { 862 sas_add_parent_port(dev, phy_id); 863 if (ex_phy->routing_attr == TABLE_ROUTING) 864 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1); 865 return 0; 866 } 867 868 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr)) 869 sas_ex_disable_port(dev, ex_phy->attached_sas_addr); 870 871 if (ex_phy->attached_dev_type == NO_DEVICE) { 872 if (ex_phy->routing_attr == DIRECT_ROUTING) { 873 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 874 sas_configure_routing(dev, ex_phy->attached_sas_addr); 875 } 876 return 0; 877 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN) 878 return 0; 879 880 if (ex_phy->attached_dev_type != SAS_END_DEV && 881 ex_phy->attached_dev_type != FANOUT_DEV && 882 ex_phy->attached_dev_type != EDGE_DEV) { 883 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx " 884 "phy 0x%x\n", ex_phy->attached_dev_type, 885 SAS_ADDR(dev->sas_addr), 886 phy_id); 887 return 0; 888 } 889 890 res = sas_configure_routing(dev, ex_phy->attached_sas_addr); 891 if (res) { 892 SAS_DPRINTK("configure routing for dev %016llx " 893 "reported 0x%x. Forgotten\n", 894 SAS_ADDR(ex_phy->attached_sas_addr), res); 895 sas_disable_routing(dev, ex_phy->attached_sas_addr); 896 return res; 897 } 898 899 res = sas_ex_join_wide_port(dev, phy_id); 900 if (!res) { 901 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n", 902 phy_id, SAS_ADDR(ex_phy->attached_sas_addr)); 903 return res; 904 } 905 906 switch (ex_phy->attached_dev_type) { 907 case SAS_END_DEV: 908 child = sas_ex_discover_end_dev(dev, phy_id); 909 break; 910 case FANOUT_DEV: 911 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) { 912 SAS_DPRINTK("second fanout expander %016llx phy 0x%x " 913 "attached to ex %016llx phy 0x%x\n", 914 SAS_ADDR(ex_phy->attached_sas_addr), 915 ex_phy->attached_phy_id, 916 SAS_ADDR(dev->sas_addr), 917 phy_id); 918 sas_ex_disable_phy(dev, phy_id); 919 break; 920 } else 921 memcpy(dev->port->disc.fanout_sas_addr, 922 ex_phy->attached_sas_addr, SAS_ADDR_SIZE); 923 /* fallthrough */ 924 case EDGE_DEV: 925 child = sas_ex_discover_expander(dev, phy_id); 926 break; 927 default: 928 break; 929 } 930 931 if (child) { 932 int i; 933 934 for (i = 0; i < ex->num_phys; i++) { 935 if (ex->ex_phy[i].phy_state == PHY_VACANT || 936 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT) 937 continue; 938 939 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) == 940 SAS_ADDR(child->sas_addr)) 941 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED; 942 } 943 } 944 945 return res; 946 } 947 948 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr) 949 { 950 struct expander_device *ex = &dev->ex_dev; 951 int i; 952 953 for (i = 0; i < ex->num_phys; i++) { 954 struct ex_phy *phy = &ex->ex_phy[i]; 955 956 if (phy->phy_state == PHY_VACANT || 957 phy->phy_state == PHY_NOT_PRESENT) 958 continue; 959 960 if ((phy->attached_dev_type == EDGE_DEV || 961 phy->attached_dev_type == FANOUT_DEV) && 962 phy->routing_attr == SUBTRACTIVE_ROUTING) { 963 964 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE); 965 966 return 1; 967 } 968 } 969 return 0; 970 } 971 972 static int sas_check_level_subtractive_boundary(struct domain_device *dev) 973 { 974 struct expander_device *ex = &dev->ex_dev; 975 struct domain_device *child; 976 u8 sub_addr[8] = {0, }; 977 978 list_for_each_entry(child, &ex->children, siblings) { 979 if (child->dev_type != EDGE_DEV && 980 child->dev_type != FANOUT_DEV) 981 continue; 982 if (sub_addr[0] == 0) { 983 sas_find_sub_addr(child, sub_addr); 984 continue; 985 } else { 986 u8 s2[8]; 987 988 if (sas_find_sub_addr(child, s2) && 989 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) { 990 991 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx " 992 "diverges from subtractive " 993 "boundary %016llx\n", 994 SAS_ADDR(dev->sas_addr), 995 SAS_ADDR(child->sas_addr), 996 SAS_ADDR(s2), 997 SAS_ADDR(sub_addr)); 998 999 sas_ex_disable_port(child, s2); 1000 } 1001 } 1002 } 1003 return 0; 1004 } 1005 /** 1006 * sas_ex_discover_devices -- discover devices attached to this expander 1007 * dev: pointer to the expander domain device 1008 * single: if you want to do a single phy, else set to -1; 1009 * 1010 * Configure this expander for use with its devices and register the 1011 * devices of this expander. 1012 */ 1013 static int sas_ex_discover_devices(struct domain_device *dev, int single) 1014 { 1015 struct expander_device *ex = &dev->ex_dev; 1016 int i = 0, end = ex->num_phys; 1017 int res = 0; 1018 1019 if (0 <= single && single < end) { 1020 i = single; 1021 end = i+1; 1022 } 1023 1024 for ( ; i < end; i++) { 1025 struct ex_phy *ex_phy = &ex->ex_phy[i]; 1026 1027 if (ex_phy->phy_state == PHY_VACANT || 1028 ex_phy->phy_state == PHY_NOT_PRESENT || 1029 ex_phy->phy_state == PHY_DEVICE_DISCOVERED) 1030 continue; 1031 1032 switch (ex_phy->linkrate) { 1033 case SAS_PHY_DISABLED: 1034 case SAS_PHY_RESET_PROBLEM: 1035 case SAS_SATA_PORT_SELECTOR: 1036 continue; 1037 default: 1038 res = sas_ex_discover_dev(dev, i); 1039 if (res) 1040 break; 1041 continue; 1042 } 1043 } 1044 1045 if (!res) 1046 sas_check_level_subtractive_boundary(dev); 1047 1048 return res; 1049 } 1050 1051 static int sas_check_ex_subtractive_boundary(struct domain_device *dev) 1052 { 1053 struct expander_device *ex = &dev->ex_dev; 1054 int i; 1055 u8 *sub_sas_addr = NULL; 1056 1057 if (dev->dev_type != EDGE_DEV) 1058 return 0; 1059 1060 for (i = 0; i < ex->num_phys; i++) { 1061 struct ex_phy *phy = &ex->ex_phy[i]; 1062 1063 if (phy->phy_state == PHY_VACANT || 1064 phy->phy_state == PHY_NOT_PRESENT) 1065 continue; 1066 1067 if ((phy->attached_dev_type == FANOUT_DEV || 1068 phy->attached_dev_type == EDGE_DEV) && 1069 phy->routing_attr == SUBTRACTIVE_ROUTING) { 1070 1071 if (!sub_sas_addr) 1072 sub_sas_addr = &phy->attached_sas_addr[0]; 1073 else if (SAS_ADDR(sub_sas_addr) != 1074 SAS_ADDR(phy->attached_sas_addr)) { 1075 1076 SAS_DPRINTK("ex %016llx phy 0x%x " 1077 "diverges(%016llx) on subtractive " 1078 "boundary(%016llx). Disabled\n", 1079 SAS_ADDR(dev->sas_addr), i, 1080 SAS_ADDR(phy->attached_sas_addr), 1081 SAS_ADDR(sub_sas_addr)); 1082 sas_ex_disable_phy(dev, i); 1083 } 1084 } 1085 } 1086 return 0; 1087 } 1088 1089 static void sas_print_parent_topology_bug(struct domain_device *child, 1090 struct ex_phy *parent_phy, 1091 struct ex_phy *child_phy) 1092 { 1093 static const char ra_char[] = { 1094 [DIRECT_ROUTING] = 'D', 1095 [SUBTRACTIVE_ROUTING] = 'S', 1096 [TABLE_ROUTING] = 'T', 1097 }; 1098 static const char *ex_type[] = { 1099 [EDGE_DEV] = "edge", 1100 [FANOUT_DEV] = "fanout", 1101 }; 1102 struct domain_device *parent = child->parent; 1103 1104 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x " 1105 "has %c:%c routing link!\n", 1106 1107 ex_type[parent->dev_type], 1108 SAS_ADDR(parent->sas_addr), 1109 parent_phy->phy_id, 1110 1111 ex_type[child->dev_type], 1112 SAS_ADDR(child->sas_addr), 1113 child_phy->phy_id, 1114 1115 ra_char[parent_phy->routing_attr], 1116 ra_char[child_phy->routing_attr]); 1117 } 1118 1119 static int sas_check_eeds(struct domain_device *child, 1120 struct ex_phy *parent_phy, 1121 struct ex_phy *child_phy) 1122 { 1123 int res = 0; 1124 struct domain_device *parent = child->parent; 1125 1126 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) { 1127 res = -ENODEV; 1128 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx " 1129 "phy S:0x%x, while there is a fanout ex %016llx\n", 1130 SAS_ADDR(parent->sas_addr), 1131 parent_phy->phy_id, 1132 SAS_ADDR(child->sas_addr), 1133 child_phy->phy_id, 1134 SAS_ADDR(parent->port->disc.fanout_sas_addr)); 1135 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) { 1136 memcpy(parent->port->disc.eeds_a, parent->sas_addr, 1137 SAS_ADDR_SIZE); 1138 memcpy(parent->port->disc.eeds_b, child->sas_addr, 1139 SAS_ADDR_SIZE); 1140 } else if (((SAS_ADDR(parent->port->disc.eeds_a) == 1141 SAS_ADDR(parent->sas_addr)) || 1142 (SAS_ADDR(parent->port->disc.eeds_a) == 1143 SAS_ADDR(child->sas_addr))) 1144 && 1145 ((SAS_ADDR(parent->port->disc.eeds_b) == 1146 SAS_ADDR(parent->sas_addr)) || 1147 (SAS_ADDR(parent->port->disc.eeds_b) == 1148 SAS_ADDR(child->sas_addr)))) 1149 ; 1150 else { 1151 res = -ENODEV; 1152 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx " 1153 "phy 0x%x link forms a third EEDS!\n", 1154 SAS_ADDR(parent->sas_addr), 1155 parent_phy->phy_id, 1156 SAS_ADDR(child->sas_addr), 1157 child_phy->phy_id); 1158 } 1159 1160 return res; 1161 } 1162 1163 /* Here we spill over 80 columns. It is intentional. 1164 */ 1165 static int sas_check_parent_topology(struct domain_device *child) 1166 { 1167 struct expander_device *child_ex = &child->ex_dev; 1168 struct expander_device *parent_ex; 1169 int i; 1170 int res = 0; 1171 1172 if (!child->parent) 1173 return 0; 1174 1175 if (child->parent->dev_type != EDGE_DEV && 1176 child->parent->dev_type != FANOUT_DEV) 1177 return 0; 1178 1179 parent_ex = &child->parent->ex_dev; 1180 1181 for (i = 0; i < parent_ex->num_phys; i++) { 1182 struct ex_phy *parent_phy = &parent_ex->ex_phy[i]; 1183 struct ex_phy *child_phy; 1184 1185 if (parent_phy->phy_state == PHY_VACANT || 1186 parent_phy->phy_state == PHY_NOT_PRESENT) 1187 continue; 1188 1189 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr)) 1190 continue; 1191 1192 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id]; 1193 1194 switch (child->parent->dev_type) { 1195 case EDGE_DEV: 1196 if (child->dev_type == FANOUT_DEV) { 1197 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING || 1198 child_phy->routing_attr != TABLE_ROUTING) { 1199 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1200 res = -ENODEV; 1201 } 1202 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1203 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) { 1204 res = sas_check_eeds(child, parent_phy, child_phy); 1205 } else if (child_phy->routing_attr != TABLE_ROUTING) { 1206 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1207 res = -ENODEV; 1208 } 1209 } else if (parent_phy->routing_attr == TABLE_ROUTING && 1210 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1211 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1212 res = -ENODEV; 1213 } 1214 break; 1215 case FANOUT_DEV: 1216 if (parent_phy->routing_attr != TABLE_ROUTING || 1217 child_phy->routing_attr != SUBTRACTIVE_ROUTING) { 1218 sas_print_parent_topology_bug(child, parent_phy, child_phy); 1219 res = -ENODEV; 1220 } 1221 break; 1222 default: 1223 break; 1224 } 1225 } 1226 1227 return res; 1228 } 1229 1230 #define RRI_REQ_SIZE 16 1231 #define RRI_RESP_SIZE 44 1232 1233 static int sas_configure_present(struct domain_device *dev, int phy_id, 1234 u8 *sas_addr, int *index, int *present) 1235 { 1236 int i, res = 0; 1237 struct expander_device *ex = &dev->ex_dev; 1238 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1239 u8 *rri_req; 1240 u8 *rri_resp; 1241 1242 *present = 0; 1243 *index = 0; 1244 1245 rri_req = alloc_smp_req(RRI_REQ_SIZE); 1246 if (!rri_req) 1247 return -ENOMEM; 1248 1249 rri_resp = alloc_smp_resp(RRI_RESP_SIZE); 1250 if (!rri_resp) { 1251 kfree(rri_req); 1252 return -ENOMEM; 1253 } 1254 1255 rri_req[1] = SMP_REPORT_ROUTE_INFO; 1256 rri_req[9] = phy_id; 1257 1258 for (i = 0; i < ex->max_route_indexes ; i++) { 1259 *(__be16 *)(rri_req+6) = cpu_to_be16(i); 1260 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp, 1261 RRI_RESP_SIZE); 1262 if (res) 1263 goto out; 1264 res = rri_resp[2]; 1265 if (res == SMP_RESP_NO_INDEX) { 1266 SAS_DPRINTK("overflow of indexes: dev %016llx " 1267 "phy 0x%x index 0x%x\n", 1268 SAS_ADDR(dev->sas_addr), phy_id, i); 1269 goto out; 1270 } else if (res != SMP_RESP_FUNC_ACC) { 1271 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x " 1272 "result 0x%x\n", __FUNCTION__, 1273 SAS_ADDR(dev->sas_addr), phy_id, i, res); 1274 goto out; 1275 } 1276 if (SAS_ADDR(sas_addr) != 0) { 1277 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) { 1278 *index = i; 1279 if ((rri_resp[12] & 0x80) == 0x80) 1280 *present = 0; 1281 else 1282 *present = 1; 1283 goto out; 1284 } else if (SAS_ADDR(rri_resp+16) == 0) { 1285 *index = i; 1286 *present = 0; 1287 goto out; 1288 } 1289 } else if (SAS_ADDR(rri_resp+16) == 0 && 1290 phy->last_da_index < i) { 1291 phy->last_da_index = i; 1292 *index = i; 1293 *present = 0; 1294 goto out; 1295 } 1296 } 1297 res = -1; 1298 out: 1299 kfree(rri_req); 1300 kfree(rri_resp); 1301 return res; 1302 } 1303 1304 #define CRI_REQ_SIZE 44 1305 #define CRI_RESP_SIZE 8 1306 1307 static int sas_configure_set(struct domain_device *dev, int phy_id, 1308 u8 *sas_addr, int index, int include) 1309 { 1310 int res; 1311 u8 *cri_req; 1312 u8 *cri_resp; 1313 1314 cri_req = alloc_smp_req(CRI_REQ_SIZE); 1315 if (!cri_req) 1316 return -ENOMEM; 1317 1318 cri_resp = alloc_smp_resp(CRI_RESP_SIZE); 1319 if (!cri_resp) { 1320 kfree(cri_req); 1321 return -ENOMEM; 1322 } 1323 1324 cri_req[1] = SMP_CONF_ROUTE_INFO; 1325 *(__be16 *)(cri_req+6) = cpu_to_be16(index); 1326 cri_req[9] = phy_id; 1327 if (SAS_ADDR(sas_addr) == 0 || !include) 1328 cri_req[12] |= 0x80; 1329 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE); 1330 1331 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp, 1332 CRI_RESP_SIZE); 1333 if (res) 1334 goto out; 1335 res = cri_resp[2]; 1336 if (res == SMP_RESP_NO_INDEX) { 1337 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x " 1338 "index 0x%x\n", 1339 SAS_ADDR(dev->sas_addr), phy_id, index); 1340 } 1341 out: 1342 kfree(cri_req); 1343 kfree(cri_resp); 1344 return res; 1345 } 1346 1347 static int sas_configure_phy(struct domain_device *dev, int phy_id, 1348 u8 *sas_addr, int include) 1349 { 1350 int index; 1351 int present; 1352 int res; 1353 1354 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present); 1355 if (res) 1356 return res; 1357 if (include ^ present) 1358 return sas_configure_set(dev, phy_id, sas_addr, index,include); 1359 1360 return res; 1361 } 1362 1363 /** 1364 * sas_configure_parent -- configure routing table of parent 1365 * parent: parent expander 1366 * child: child expander 1367 * sas_addr: SAS port identifier of device directly attached to child 1368 */ 1369 static int sas_configure_parent(struct domain_device *parent, 1370 struct domain_device *child, 1371 u8 *sas_addr, int include) 1372 { 1373 struct expander_device *ex_parent = &parent->ex_dev; 1374 int res = 0; 1375 int i; 1376 1377 if (parent->parent) { 1378 res = sas_configure_parent(parent->parent, parent, sas_addr, 1379 include); 1380 if (res) 1381 return res; 1382 } 1383 1384 if (ex_parent->conf_route_table == 0) { 1385 SAS_DPRINTK("ex %016llx has self-configuring routing table\n", 1386 SAS_ADDR(parent->sas_addr)); 1387 return 0; 1388 } 1389 1390 for (i = 0; i < ex_parent->num_phys; i++) { 1391 struct ex_phy *phy = &ex_parent->ex_phy[i]; 1392 1393 if ((phy->routing_attr == TABLE_ROUTING) && 1394 (SAS_ADDR(phy->attached_sas_addr) == 1395 SAS_ADDR(child->sas_addr))) { 1396 res = sas_configure_phy(parent, i, sas_addr, include); 1397 if (res) 1398 return res; 1399 } 1400 } 1401 1402 return res; 1403 } 1404 1405 /** 1406 * sas_configure_routing -- configure routing 1407 * dev: expander device 1408 * sas_addr: port identifier of device directly attached to the expander device 1409 */ 1410 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr) 1411 { 1412 if (dev->parent) 1413 return sas_configure_parent(dev->parent, dev, sas_addr, 1); 1414 return 0; 1415 } 1416 1417 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr) 1418 { 1419 if (dev->parent) 1420 return sas_configure_parent(dev->parent, dev, sas_addr, 0); 1421 return 0; 1422 } 1423 1424 /** 1425 * sas_discover_expander -- expander discovery 1426 * @ex: pointer to expander domain device 1427 * 1428 * See comment in sas_discover_sata(). 1429 */ 1430 static int sas_discover_expander(struct domain_device *dev) 1431 { 1432 int res; 1433 1434 res = sas_notify_lldd_dev_found(dev); 1435 if (res) 1436 return res; 1437 1438 res = sas_ex_general(dev); 1439 if (res) 1440 goto out_err; 1441 res = sas_ex_manuf_info(dev); 1442 if (res) 1443 goto out_err; 1444 1445 res = sas_expander_discover(dev); 1446 if (res) { 1447 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n", 1448 SAS_ADDR(dev->sas_addr), res); 1449 goto out_err; 1450 } 1451 1452 sas_check_ex_subtractive_boundary(dev); 1453 res = sas_check_parent_topology(dev); 1454 if (res) 1455 goto out_err; 1456 return 0; 1457 out_err: 1458 sas_notify_lldd_dev_gone(dev); 1459 return res; 1460 } 1461 1462 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level) 1463 { 1464 int res = 0; 1465 struct domain_device *dev; 1466 1467 list_for_each_entry(dev, &port->dev_list, dev_list_node) { 1468 if (dev->dev_type == EDGE_DEV || 1469 dev->dev_type == FANOUT_DEV) { 1470 struct sas_expander_device *ex = 1471 rphy_to_expander_device(dev->rphy); 1472 1473 if (level == ex->level) 1474 res = sas_ex_discover_devices(dev, -1); 1475 else if (level > 0) 1476 res = sas_ex_discover_devices(port->port_dev, -1); 1477 1478 } 1479 } 1480 1481 return res; 1482 } 1483 1484 static int sas_ex_bfs_disc(struct asd_sas_port *port) 1485 { 1486 int res; 1487 int level; 1488 1489 do { 1490 level = port->disc.max_level; 1491 res = sas_ex_level_discovery(port, level); 1492 mb(); 1493 } while (level < port->disc.max_level); 1494 1495 return res; 1496 } 1497 1498 int sas_discover_root_expander(struct domain_device *dev) 1499 { 1500 int res; 1501 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1502 1503 res = sas_rphy_add(dev->rphy); 1504 if (res) 1505 goto out_err; 1506 1507 ex->level = dev->port->disc.max_level; /* 0 */ 1508 res = sas_discover_expander(dev); 1509 if (res) 1510 goto out_err2; 1511 1512 sas_ex_bfs_disc(dev->port); 1513 1514 return res; 1515 1516 out_err2: 1517 sas_rphy_remove(dev->rphy); 1518 out_err: 1519 return res; 1520 } 1521 1522 /* ---------- Domain revalidation ---------- */ 1523 1524 static int sas_get_phy_discover(struct domain_device *dev, 1525 int phy_id, struct smp_resp *disc_resp) 1526 { 1527 int res; 1528 u8 *disc_req; 1529 1530 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE); 1531 if (!disc_req) 1532 return -ENOMEM; 1533 1534 disc_req[1] = SMP_DISCOVER; 1535 disc_req[9] = phy_id; 1536 1537 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE, 1538 disc_resp, DISCOVER_RESP_SIZE); 1539 if (res) 1540 goto out; 1541 else if (disc_resp->result != SMP_RESP_FUNC_ACC) { 1542 res = disc_resp->result; 1543 goto out; 1544 } 1545 out: 1546 kfree(disc_req); 1547 return res; 1548 } 1549 1550 static int sas_get_phy_change_count(struct domain_device *dev, 1551 int phy_id, int *pcc) 1552 { 1553 int res; 1554 struct smp_resp *disc_resp; 1555 1556 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1557 if (!disc_resp) 1558 return -ENOMEM; 1559 1560 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1561 if (!res) 1562 *pcc = disc_resp->disc.change_count; 1563 1564 kfree(disc_resp); 1565 return res; 1566 } 1567 1568 static int sas_get_phy_attached_sas_addr(struct domain_device *dev, 1569 int phy_id, u8 *attached_sas_addr) 1570 { 1571 int res; 1572 struct smp_resp *disc_resp; 1573 struct discover_resp *dr; 1574 1575 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE); 1576 if (!disc_resp) 1577 return -ENOMEM; 1578 dr = &disc_resp->disc; 1579 1580 res = sas_get_phy_discover(dev, phy_id, disc_resp); 1581 if (!res) { 1582 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8); 1583 if (dr->attached_dev_type == 0) 1584 memset(attached_sas_addr, 0, 8); 1585 } 1586 kfree(disc_resp); 1587 return res; 1588 } 1589 1590 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id, 1591 int from_phy) 1592 { 1593 struct expander_device *ex = &dev->ex_dev; 1594 int res = 0; 1595 int i; 1596 1597 for (i = from_phy; i < ex->num_phys; i++) { 1598 int phy_change_count = 0; 1599 1600 res = sas_get_phy_change_count(dev, i, &phy_change_count); 1601 if (res) 1602 goto out; 1603 else if (phy_change_count != ex->ex_phy[i].phy_change_count) { 1604 ex->ex_phy[i].phy_change_count = phy_change_count; 1605 *phy_id = i; 1606 return 0; 1607 } 1608 } 1609 out: 1610 return res; 1611 } 1612 1613 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc) 1614 { 1615 int res; 1616 u8 *rg_req; 1617 struct smp_resp *rg_resp; 1618 1619 rg_req = alloc_smp_req(RG_REQ_SIZE); 1620 if (!rg_req) 1621 return -ENOMEM; 1622 1623 rg_resp = alloc_smp_resp(RG_RESP_SIZE); 1624 if (!rg_resp) { 1625 kfree(rg_req); 1626 return -ENOMEM; 1627 } 1628 1629 rg_req[1] = SMP_REPORT_GENERAL; 1630 1631 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp, 1632 RG_RESP_SIZE); 1633 if (res) 1634 goto out; 1635 if (rg_resp->result != SMP_RESP_FUNC_ACC) { 1636 res = rg_resp->result; 1637 goto out; 1638 } 1639 1640 *ecc = be16_to_cpu(rg_resp->rg.change_count); 1641 out: 1642 kfree(rg_resp); 1643 kfree(rg_req); 1644 return res; 1645 } 1646 1647 static int sas_find_bcast_dev(struct domain_device *dev, 1648 struct domain_device **src_dev) 1649 { 1650 struct expander_device *ex = &dev->ex_dev; 1651 int ex_change_count = -1; 1652 int res; 1653 1654 res = sas_get_ex_change_count(dev, &ex_change_count); 1655 if (res) 1656 goto out; 1657 if (ex_change_count != -1 && 1658 ex_change_count != ex->ex_change_count) { 1659 *src_dev = dev; 1660 ex->ex_change_count = ex_change_count; 1661 } else { 1662 struct domain_device *ch; 1663 1664 list_for_each_entry(ch, &ex->children, siblings) { 1665 if (ch->dev_type == EDGE_DEV || 1666 ch->dev_type == FANOUT_DEV) { 1667 res = sas_find_bcast_dev(ch, src_dev); 1668 if (src_dev) 1669 return res; 1670 } 1671 } 1672 } 1673 out: 1674 return res; 1675 } 1676 1677 static void sas_unregister_ex_tree(struct domain_device *dev) 1678 { 1679 struct expander_device *ex = &dev->ex_dev; 1680 struct domain_device *child, *n; 1681 1682 list_for_each_entry_safe(child, n, &ex->children, siblings) { 1683 if (child->dev_type == EDGE_DEV || 1684 child->dev_type == FANOUT_DEV) 1685 sas_unregister_ex_tree(child); 1686 else 1687 sas_unregister_dev(child); 1688 } 1689 sas_unregister_dev(dev); 1690 } 1691 1692 static void sas_unregister_devs_sas_addr(struct domain_device *parent, 1693 int phy_id) 1694 { 1695 struct expander_device *ex_dev = &parent->ex_dev; 1696 struct ex_phy *phy = &ex_dev->ex_phy[phy_id]; 1697 struct domain_device *child, *n; 1698 1699 list_for_each_entry_safe(child, n, &ex_dev->children, siblings) { 1700 if (SAS_ADDR(child->sas_addr) == 1701 SAS_ADDR(phy->attached_sas_addr)) { 1702 if (child->dev_type == EDGE_DEV || 1703 child->dev_type == FANOUT_DEV) 1704 sas_unregister_ex_tree(child); 1705 else 1706 sas_unregister_dev(child); 1707 break; 1708 } 1709 } 1710 sas_disable_routing(parent, phy->attached_sas_addr); 1711 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE); 1712 sas_port_delete_phy(phy->port, phy->phy); 1713 if (phy->port->num_phys == 0) 1714 sas_port_delete(phy->port); 1715 phy->port = NULL; 1716 } 1717 1718 static int sas_discover_bfs_by_root_level(struct domain_device *root, 1719 const int level) 1720 { 1721 struct expander_device *ex_root = &root->ex_dev; 1722 struct domain_device *child; 1723 int res = 0; 1724 1725 list_for_each_entry(child, &ex_root->children, siblings) { 1726 if (child->dev_type == EDGE_DEV || 1727 child->dev_type == FANOUT_DEV) { 1728 struct sas_expander_device *ex = 1729 rphy_to_expander_device(child->rphy); 1730 1731 if (level > ex->level) 1732 res = sas_discover_bfs_by_root_level(child, 1733 level); 1734 else if (level == ex->level) 1735 res = sas_ex_discover_devices(child, -1); 1736 } 1737 } 1738 return res; 1739 } 1740 1741 static int sas_discover_bfs_by_root(struct domain_device *dev) 1742 { 1743 int res; 1744 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy); 1745 int level = ex->level+1; 1746 1747 res = sas_ex_discover_devices(dev, -1); 1748 if (res) 1749 goto out; 1750 do { 1751 res = sas_discover_bfs_by_root_level(dev, level); 1752 mb(); 1753 level += 1; 1754 } while (level <= dev->port->disc.max_level); 1755 out: 1756 return res; 1757 } 1758 1759 static int sas_discover_new(struct domain_device *dev, int phy_id) 1760 { 1761 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id]; 1762 struct domain_device *child; 1763 int res; 1764 1765 SAS_DPRINTK("ex %016llx phy%d new device attached\n", 1766 SAS_ADDR(dev->sas_addr), phy_id); 1767 res = sas_ex_phy_discover(dev, phy_id); 1768 if (res) 1769 goto out; 1770 res = sas_ex_discover_devices(dev, phy_id); 1771 if (res) 1772 goto out; 1773 list_for_each_entry(child, &dev->ex_dev.children, siblings) { 1774 if (SAS_ADDR(child->sas_addr) == 1775 SAS_ADDR(ex_phy->attached_sas_addr)) { 1776 if (child->dev_type == EDGE_DEV || 1777 child->dev_type == FANOUT_DEV) 1778 res = sas_discover_bfs_by_root(child); 1779 break; 1780 } 1781 } 1782 out: 1783 return res; 1784 } 1785 1786 static int sas_rediscover_dev(struct domain_device *dev, int phy_id) 1787 { 1788 struct expander_device *ex = &dev->ex_dev; 1789 struct ex_phy *phy = &ex->ex_phy[phy_id]; 1790 u8 attached_sas_addr[8]; 1791 int res; 1792 1793 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr); 1794 switch (res) { 1795 case SMP_RESP_NO_PHY: 1796 phy->phy_state = PHY_NOT_PRESENT; 1797 sas_unregister_devs_sas_addr(dev, phy_id); 1798 goto out; break; 1799 case SMP_RESP_PHY_VACANT: 1800 phy->phy_state = PHY_VACANT; 1801 sas_unregister_devs_sas_addr(dev, phy_id); 1802 goto out; break; 1803 case SMP_RESP_FUNC_ACC: 1804 break; 1805 } 1806 1807 if (SAS_ADDR(attached_sas_addr) == 0) { 1808 phy->phy_state = PHY_EMPTY; 1809 sas_unregister_devs_sas_addr(dev, phy_id); 1810 } else if (SAS_ADDR(attached_sas_addr) == 1811 SAS_ADDR(phy->attached_sas_addr)) { 1812 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n", 1813 SAS_ADDR(dev->sas_addr), phy_id); 1814 sas_ex_phy_discover(dev, phy_id); 1815 } else 1816 res = sas_discover_new(dev, phy_id); 1817 out: 1818 return res; 1819 } 1820 1821 static int sas_rediscover(struct domain_device *dev, const int phy_id) 1822 { 1823 struct expander_device *ex = &dev->ex_dev; 1824 struct ex_phy *changed_phy = &ex->ex_phy[phy_id]; 1825 int res = 0; 1826 int i; 1827 1828 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n", 1829 SAS_ADDR(dev->sas_addr), phy_id); 1830 1831 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) { 1832 for (i = 0; i < ex->num_phys; i++) { 1833 struct ex_phy *phy = &ex->ex_phy[i]; 1834 1835 if (i == phy_id) 1836 continue; 1837 if (SAS_ADDR(phy->attached_sas_addr) == 1838 SAS_ADDR(changed_phy->attached_sas_addr)) { 1839 SAS_DPRINTK("phy%d part of wide port with " 1840 "phy%d\n", phy_id, i); 1841 goto out; 1842 } 1843 } 1844 res = sas_rediscover_dev(dev, phy_id); 1845 } else 1846 res = sas_discover_new(dev, phy_id); 1847 out: 1848 return res; 1849 } 1850 1851 /** 1852 * sas_revalidate_domain -- revalidate the domain 1853 * @port: port to the domain of interest 1854 * 1855 * NOTE: this process _must_ quit (return) as soon as any connection 1856 * errors are encountered. Connection recovery is done elsewhere. 1857 * Discover process only interrogates devices in order to discover the 1858 * domain. 1859 */ 1860 int sas_ex_revalidate_domain(struct domain_device *port_dev) 1861 { 1862 int res; 1863 struct domain_device *dev = NULL; 1864 1865 res = sas_find_bcast_dev(port_dev, &dev); 1866 if (res) 1867 goto out; 1868 if (dev) { 1869 struct expander_device *ex = &dev->ex_dev; 1870 int i = 0, phy_id; 1871 1872 do { 1873 phy_id = -1; 1874 res = sas_find_bcast_phy(dev, &phy_id, i); 1875 if (phy_id == -1) 1876 break; 1877 res = sas_rediscover(dev, phy_id); 1878 i = phy_id + 1; 1879 } while (i < ex->num_phys); 1880 } 1881 out: 1882 return res; 1883 } 1884 1885 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy, 1886 struct request *req) 1887 { 1888 struct domain_device *dev; 1889 int ret, type; 1890 struct request *rsp = req->next_rq; 1891 1892 if (!rsp) { 1893 printk("%s: space for a smp response is missing\n", 1894 __FUNCTION__); 1895 return -EINVAL; 1896 } 1897 1898 /* no rphy means no smp target support (ie aic94xx host) */ 1899 if (!rphy) { 1900 printk("%s: can we send a smp request to a host?\n", 1901 __FUNCTION__); 1902 return -EINVAL; 1903 } 1904 type = rphy->identify.device_type; 1905 1906 if (type != SAS_EDGE_EXPANDER_DEVICE && 1907 type != SAS_FANOUT_EXPANDER_DEVICE) { 1908 printk("%s: can we send a smp request to a device?\n", 1909 __FUNCTION__); 1910 return -EINVAL; 1911 } 1912 1913 dev = sas_find_dev_by_rphy(rphy); 1914 if (!dev) { 1915 printk("%s: fail to find a domain_device?\n", __FUNCTION__); 1916 return -EINVAL; 1917 } 1918 1919 /* do we need to support multiple segments? */ 1920 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) { 1921 printk("%s: multiple segments req %u %u, rsp %u %u\n", 1922 __FUNCTION__, req->bio->bi_vcnt, req->data_len, 1923 rsp->bio->bi_vcnt, rsp->data_len); 1924 return -EINVAL; 1925 } 1926 1927 ret = smp_execute_task(dev, bio_data(req->bio), req->data_len, 1928 bio_data(rsp->bio), rsp->data_len); 1929 1930 return ret; 1931 } 1932