xref: /openbmc/linux/drivers/scsi/libsas/sas_expander.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 
28 #include "sas_internal.h"
29 
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33 
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37 			     u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39 
40 /* ---------- SMP task management ---------- */
41 
42 static void smp_task_timedout(unsigned long _task)
43 {
44 	struct sas_task *task = (void *) _task;
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&task->task_state_lock, flags);
48 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50 	spin_unlock_irqrestore(&task->task_state_lock, flags);
51 
52 	complete(&task->completion);
53 }
54 
55 static void smp_task_done(struct sas_task *task)
56 {
57 	if (!del_timer(&task->timer))
58 		return;
59 	complete(&task->completion);
60 }
61 
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
64 
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66 			    void *resp, int resp_size)
67 {
68 	int res, retry;
69 	struct sas_task *task = NULL;
70 	struct sas_internal *i =
71 		to_sas_internal(dev->port->ha->core.shost->transportt);
72 
73 	for (retry = 0; retry < 3; retry++) {
74 		task = sas_alloc_task(GFP_KERNEL);
75 		if (!task)
76 			return -ENOMEM;
77 
78 		task->dev = dev;
79 		task->task_proto = dev->tproto;
80 		sg_init_one(&task->smp_task.smp_req, req, req_size);
81 		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
82 
83 		task->task_done = smp_task_done;
84 
85 		task->timer.data = (unsigned long) task;
86 		task->timer.function = smp_task_timedout;
87 		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88 		add_timer(&task->timer);
89 
90 		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
91 
92 		if (res) {
93 			del_timer(&task->timer);
94 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
95 			goto ex_err;
96 		}
97 
98 		wait_for_completion(&task->completion);
99 		res = -ETASK;
100 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101 			SAS_DPRINTK("smp task timed out or aborted\n");
102 			i->dft->lldd_abort_task(task);
103 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104 				SAS_DPRINTK("SMP task aborted and not done\n");
105 				goto ex_err;
106 			}
107 		}
108 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 		    task->task_status.stat == SAM_GOOD) {
110 			res = 0;
111 			break;
112 		} else {
113 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
114 				    "status 0x%x\n", __FUNCTION__,
115 				    SAS_ADDR(dev->sas_addr),
116 				    task->task_status.resp,
117 				    task->task_status.stat);
118 			sas_free_task(task);
119 			task = NULL;
120 		}
121 	}
122 ex_err:
123 	BUG_ON(retry == 3 && task != NULL);
124 	if (task != NULL) {
125 		sas_free_task(task);
126 	}
127 	return res;
128 }
129 
130 /* ---------- Allocations ---------- */
131 
132 static inline void *alloc_smp_req(int size)
133 {
134 	u8 *p = kzalloc(size, GFP_KERNEL);
135 	if (p)
136 		p[0] = SMP_REQUEST;
137 	return p;
138 }
139 
140 static inline void *alloc_smp_resp(int size)
141 {
142 	return kzalloc(size, GFP_KERNEL);
143 }
144 
145 /* ---------- Expander configuration ---------- */
146 
147 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
148 			   void *disc_resp)
149 {
150 	struct expander_device *ex = &dev->ex_dev;
151 	struct ex_phy *phy = &ex->ex_phy[phy_id];
152 	struct smp_resp *resp = disc_resp;
153 	struct discover_resp *dr = &resp->disc;
154 	struct sas_rphy *rphy = dev->rphy;
155 	int rediscover = (phy->phy != NULL);
156 
157 	if (!rediscover) {
158 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
159 
160 		/* FIXME: error_handling */
161 		BUG_ON(!phy->phy);
162 	}
163 
164 	switch (resp->result) {
165 	case SMP_RESP_PHY_VACANT:
166 		phy->phy_state = PHY_VACANT;
167 		return;
168 	default:
169 		phy->phy_state = PHY_NOT_PRESENT;
170 		return;
171 	case SMP_RESP_FUNC_ACC:
172 		phy->phy_state = PHY_EMPTY; /* do not know yet */
173 		break;
174 	}
175 
176 	phy->phy_id = phy_id;
177 	phy->attached_dev_type = dr->attached_dev_type;
178 	phy->linkrate = dr->linkrate;
179 	phy->attached_sata_host = dr->attached_sata_host;
180 	phy->attached_sata_dev  = dr->attached_sata_dev;
181 	phy->attached_sata_ps   = dr->attached_sata_ps;
182 	phy->attached_iproto = dr->iproto << 1;
183 	phy->attached_tproto = dr->tproto << 1;
184 	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
185 	phy->attached_phy_id = dr->attached_phy_id;
186 	phy->phy_change_count = dr->change_count;
187 	phy->routing_attr = dr->routing_attr;
188 	phy->virtual = dr->virtual;
189 	phy->last_da_index = -1;
190 
191 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
192 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
193 	phy->phy->identify.phy_identifier = phy_id;
194 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
195 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
196 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
197 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
198 	phy->phy->negotiated_linkrate = phy->linkrate;
199 
200 	if (!rediscover)
201 		sas_phy_add(phy->phy);
202 
203 	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
204 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
205 		    phy->routing_attr == TABLE_ROUTING ? 'T' :
206 		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
207 		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
208 		    SAS_ADDR(phy->attached_sas_addr));
209 
210 	return;
211 }
212 
213 #define DISCOVER_REQ_SIZE  16
214 #define DISCOVER_RESP_SIZE 56
215 
216 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
217 				      u8 *disc_resp, int single)
218 {
219 	int i, res;
220 
221 	disc_req[9] = single;
222 	for (i = 1 ; i < 3; i++) {
223 		struct discover_resp *dr;
224 
225 		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
226 				       disc_resp, DISCOVER_RESP_SIZE);
227 		if (res)
228 			return res;
229 		/* This is detecting a failure to transmit inital
230 		 * dev to host FIS as described in section G.5 of
231 		 * sas-2 r 04b */
232 		dr = &((struct smp_resp *)disc_resp)->disc;
233 		if (!(dr->attached_dev_type == 0 &&
234 		      dr->attached_sata_dev))
235 			break;
236 		/* In order to generate the dev to host FIS, we
237 		 * send a link reset to the expander port */
238 		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
239 		/* Wait for the reset to trigger the negotiation */
240 		msleep(500);
241 	}
242 	sas_set_ex_phy(dev, single, disc_resp);
243 	return 0;
244 }
245 
246 static int sas_ex_phy_discover(struct domain_device *dev, int single)
247 {
248 	struct expander_device *ex = &dev->ex_dev;
249 	int  res = 0;
250 	u8   *disc_req;
251 	u8   *disc_resp;
252 
253 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
254 	if (!disc_req)
255 		return -ENOMEM;
256 
257 	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
258 	if (!disc_resp) {
259 		kfree(disc_req);
260 		return -ENOMEM;
261 	}
262 
263 	disc_req[1] = SMP_DISCOVER;
264 
265 	if (0 <= single && single < ex->num_phys) {
266 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
267 	} else {
268 		int i;
269 
270 		for (i = 0; i < ex->num_phys; i++) {
271 			res = sas_ex_phy_discover_helper(dev, disc_req,
272 							 disc_resp, i);
273 			if (res)
274 				goto out_err;
275 		}
276 	}
277 out_err:
278 	kfree(disc_resp);
279 	kfree(disc_req);
280 	return res;
281 }
282 
283 static int sas_expander_discover(struct domain_device *dev)
284 {
285 	struct expander_device *ex = &dev->ex_dev;
286 	int res = -ENOMEM;
287 
288 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
289 	if (!ex->ex_phy)
290 		return -ENOMEM;
291 
292 	res = sas_ex_phy_discover(dev, -1);
293 	if (res)
294 		goto out_err;
295 
296 	return 0;
297  out_err:
298 	kfree(ex->ex_phy);
299 	ex->ex_phy = NULL;
300 	return res;
301 }
302 
303 #define MAX_EXPANDER_PHYS 128
304 
305 static void ex_assign_report_general(struct domain_device *dev,
306 					    struct smp_resp *resp)
307 {
308 	struct report_general_resp *rg = &resp->rg;
309 
310 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
311 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
312 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
313 	dev->ex_dev.conf_route_table = rg->conf_route_table;
314 	dev->ex_dev.configuring = rg->configuring;
315 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
316 }
317 
318 #define RG_REQ_SIZE   8
319 #define RG_RESP_SIZE 32
320 
321 static int sas_ex_general(struct domain_device *dev)
322 {
323 	u8 *rg_req;
324 	struct smp_resp *rg_resp;
325 	int res;
326 	int i;
327 
328 	rg_req = alloc_smp_req(RG_REQ_SIZE);
329 	if (!rg_req)
330 		return -ENOMEM;
331 
332 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
333 	if (!rg_resp) {
334 		kfree(rg_req);
335 		return -ENOMEM;
336 	}
337 
338 	rg_req[1] = SMP_REPORT_GENERAL;
339 
340 	for (i = 0; i < 5; i++) {
341 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
342 				       RG_RESP_SIZE);
343 
344 		if (res) {
345 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
346 				    SAS_ADDR(dev->sas_addr), res);
347 			goto out;
348 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
349 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
350 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
351 			res = rg_resp->result;
352 			goto out;
353 		}
354 
355 		ex_assign_report_general(dev, rg_resp);
356 
357 		if (dev->ex_dev.configuring) {
358 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
359 				    SAS_ADDR(dev->sas_addr));
360 			schedule_timeout_interruptible(5*HZ);
361 		} else
362 			break;
363 	}
364 out:
365 	kfree(rg_req);
366 	kfree(rg_resp);
367 	return res;
368 }
369 
370 static void ex_assign_manuf_info(struct domain_device *dev, void
371 					*_mi_resp)
372 {
373 	u8 *mi_resp = _mi_resp;
374 	struct sas_rphy *rphy = dev->rphy;
375 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
376 
377 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
378 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
379 	memcpy(edev->product_rev, mi_resp + 36,
380 	       SAS_EXPANDER_PRODUCT_REV_LEN);
381 
382 	if (mi_resp[8] & 1) {
383 		memcpy(edev->component_vendor_id, mi_resp + 40,
384 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
385 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
386 		edev->component_revision_id = mi_resp[50];
387 	}
388 }
389 
390 #define MI_REQ_SIZE   8
391 #define MI_RESP_SIZE 64
392 
393 static int sas_ex_manuf_info(struct domain_device *dev)
394 {
395 	u8 *mi_req;
396 	u8 *mi_resp;
397 	int res;
398 
399 	mi_req = alloc_smp_req(MI_REQ_SIZE);
400 	if (!mi_req)
401 		return -ENOMEM;
402 
403 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
404 	if (!mi_resp) {
405 		kfree(mi_req);
406 		return -ENOMEM;
407 	}
408 
409 	mi_req[1] = SMP_REPORT_MANUF_INFO;
410 
411 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
412 	if (res) {
413 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
414 			    SAS_ADDR(dev->sas_addr), res);
415 		goto out;
416 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
417 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
418 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
419 		goto out;
420 	}
421 
422 	ex_assign_manuf_info(dev, mi_resp);
423 out:
424 	kfree(mi_req);
425 	kfree(mi_resp);
426 	return res;
427 }
428 
429 #define PC_REQ_SIZE  44
430 #define PC_RESP_SIZE 8
431 
432 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
433 			enum phy_func phy_func,
434 			struct sas_phy_linkrates *rates)
435 {
436 	u8 *pc_req;
437 	u8 *pc_resp;
438 	int res;
439 
440 	pc_req = alloc_smp_req(PC_REQ_SIZE);
441 	if (!pc_req)
442 		return -ENOMEM;
443 
444 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
445 	if (!pc_resp) {
446 		kfree(pc_req);
447 		return -ENOMEM;
448 	}
449 
450 	pc_req[1] = SMP_PHY_CONTROL;
451 	pc_req[9] = phy_id;
452 	pc_req[10]= phy_func;
453 	if (rates) {
454 		pc_req[32] = rates->minimum_linkrate << 4;
455 		pc_req[33] = rates->maximum_linkrate << 4;
456 	}
457 
458 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
459 
460 	kfree(pc_resp);
461 	kfree(pc_req);
462 	return res;
463 }
464 
465 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
466 {
467 	struct expander_device *ex = &dev->ex_dev;
468 	struct ex_phy *phy = &ex->ex_phy[phy_id];
469 
470 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
471 	phy->linkrate = SAS_PHY_DISABLED;
472 }
473 
474 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
475 {
476 	struct expander_device *ex = &dev->ex_dev;
477 	int i;
478 
479 	for (i = 0; i < ex->num_phys; i++) {
480 		struct ex_phy *phy = &ex->ex_phy[i];
481 
482 		if (phy->phy_state == PHY_VACANT ||
483 		    phy->phy_state == PHY_NOT_PRESENT)
484 			continue;
485 
486 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
487 			sas_ex_disable_phy(dev, i);
488 	}
489 }
490 
491 static int sas_dev_present_in_domain(struct asd_sas_port *port,
492 					    u8 *sas_addr)
493 {
494 	struct domain_device *dev;
495 
496 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
497 		return 1;
498 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
499 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
500 			return 1;
501 	}
502 	return 0;
503 }
504 
505 #define RPEL_REQ_SIZE	16
506 #define RPEL_RESP_SIZE	32
507 int sas_smp_get_phy_events(struct sas_phy *phy)
508 {
509 	int res;
510 	u8 *req;
511 	u8 *resp;
512 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
513 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
514 
515 	req = alloc_smp_req(RPEL_REQ_SIZE);
516 	if (!req)
517 		return -ENOMEM;
518 
519 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
520 	if (!resp) {
521 		kfree(req);
522 		return -ENOMEM;
523 	}
524 
525 	req[1] = SMP_REPORT_PHY_ERR_LOG;
526 	req[9] = phy->number;
527 
528 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
529 			            resp, RPEL_RESP_SIZE);
530 
531 	if (!res)
532 		goto out;
533 
534 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
535 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
536 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
537 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
538 
539  out:
540 	kfree(resp);
541 	return res;
542 
543 }
544 
545 #ifdef CONFIG_SCSI_SAS_ATA
546 
547 #define RPS_REQ_SIZE  16
548 #define RPS_RESP_SIZE 60
549 
550 static int sas_get_report_phy_sata(struct domain_device *dev,
551 					  int phy_id,
552 					  struct smp_resp *rps_resp)
553 {
554 	int res;
555 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
556 	u8 *resp = (u8 *)rps_resp;
557 
558 	if (!rps_req)
559 		return -ENOMEM;
560 
561 	rps_req[1] = SMP_REPORT_PHY_SATA;
562 	rps_req[9] = phy_id;
563 
564 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
565 			            rps_resp, RPS_RESP_SIZE);
566 
567 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
568 	 * standards cockup here.  sas-2 explicitly specifies the FIS
569 	 * should be encoded so that FIS type is in resp[24].
570 	 * However, some expanders endian reverse this.  Undo the
571 	 * reversal here */
572 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
573 		int i;
574 
575 		for (i = 0; i < 5; i++) {
576 			int j = 24 + (i*4);
577 			u8 a, b;
578 			a = resp[j + 0];
579 			b = resp[j + 1];
580 			resp[j + 0] = resp[j + 3];
581 			resp[j + 1] = resp[j + 2];
582 			resp[j + 2] = b;
583 			resp[j + 3] = a;
584 		}
585 	}
586 
587 	kfree(rps_req);
588 	return res;
589 }
590 #endif
591 
592 static void sas_ex_get_linkrate(struct domain_device *parent,
593 				       struct domain_device *child,
594 				       struct ex_phy *parent_phy)
595 {
596 	struct expander_device *parent_ex = &parent->ex_dev;
597 	struct sas_port *port;
598 	int i;
599 
600 	child->pathways = 0;
601 
602 	port = parent_phy->port;
603 
604 	for (i = 0; i < parent_ex->num_phys; i++) {
605 		struct ex_phy *phy = &parent_ex->ex_phy[i];
606 
607 		if (phy->phy_state == PHY_VACANT ||
608 		    phy->phy_state == PHY_NOT_PRESENT)
609 			continue;
610 
611 		if (SAS_ADDR(phy->attached_sas_addr) ==
612 		    SAS_ADDR(child->sas_addr)) {
613 
614 			child->min_linkrate = min(parent->min_linkrate,
615 						  phy->linkrate);
616 			child->max_linkrate = max(parent->max_linkrate,
617 						  phy->linkrate);
618 			child->pathways++;
619 			sas_port_add_phy(port, phy->phy);
620 		}
621 	}
622 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
623 	child->pathways = min(child->pathways, parent->pathways);
624 }
625 
626 static struct domain_device *sas_ex_discover_end_dev(
627 	struct domain_device *parent, int phy_id)
628 {
629 	struct expander_device *parent_ex = &parent->ex_dev;
630 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
631 	struct domain_device *child = NULL;
632 	struct sas_rphy *rphy;
633 	int res;
634 
635 	if (phy->attached_sata_host || phy->attached_sata_ps)
636 		return NULL;
637 
638 	child = kzalloc(sizeof(*child), GFP_KERNEL);
639 	if (!child)
640 		return NULL;
641 
642 	child->parent = parent;
643 	child->port   = parent->port;
644 	child->iproto = phy->attached_iproto;
645 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
646 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
647 	if (!phy->port) {
648 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
649 		if (unlikely(!phy->port))
650 			goto out_err;
651 		if (unlikely(sas_port_add(phy->port) != 0)) {
652 			sas_port_free(phy->port);
653 			goto out_err;
654 		}
655 	}
656 	sas_ex_get_linkrate(parent, child, phy);
657 
658 #ifdef CONFIG_SCSI_SAS_ATA
659 	if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
660 		child->dev_type = SATA_DEV;
661 		if (phy->attached_tproto & SAS_PROTO_STP)
662 			child->tproto = phy->attached_tproto;
663 		if (phy->attached_sata_dev)
664 			child->tproto |= SATA_DEV;
665 		res = sas_get_report_phy_sata(parent, phy_id,
666 					      &child->sata_dev.rps_resp);
667 		if (res) {
668 			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
669 				    "0x%x\n", SAS_ADDR(parent->sas_addr),
670 				    phy_id, res);
671 			goto out_free;
672 		}
673 		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
674 		       sizeof(struct dev_to_host_fis));
675 
676 		rphy = sas_end_device_alloc(phy->port);
677 		if (unlikely(!rphy))
678 			goto out_free;
679 
680 		sas_init_dev(child);
681 
682 		child->rphy = rphy;
683 
684 		spin_lock_irq(&parent->port->dev_list_lock);
685 		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
686 		spin_unlock_irq(&parent->port->dev_list_lock);
687 
688 		res = sas_discover_sata(child);
689 		if (res) {
690 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
691 				    "%016llx:0x%x returned 0x%x\n",
692 				    SAS_ADDR(child->sas_addr),
693 				    SAS_ADDR(parent->sas_addr), phy_id, res);
694 			goto out_list_del;
695 		}
696 	} else
697 #endif
698 	  if (phy->attached_tproto & SAS_PROTO_SSP) {
699 		child->dev_type = SAS_END_DEV;
700 		rphy = sas_end_device_alloc(phy->port);
701 		/* FIXME: error handling */
702 		if (unlikely(!rphy))
703 			goto out_free;
704 		child->tproto = phy->attached_tproto;
705 		sas_init_dev(child);
706 
707 		child->rphy = rphy;
708 		sas_fill_in_rphy(child, rphy);
709 
710 		spin_lock_irq(&parent->port->dev_list_lock);
711 		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
712 		spin_unlock_irq(&parent->port->dev_list_lock);
713 
714 		res = sas_discover_end_dev(child);
715 		if (res) {
716 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
717 				    "at %016llx:0x%x returned 0x%x\n",
718 				    SAS_ADDR(child->sas_addr),
719 				    SAS_ADDR(parent->sas_addr), phy_id, res);
720 			goto out_list_del;
721 		}
722 	} else {
723 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
724 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
725 			    phy_id);
726 		goto out_free;
727 	}
728 
729 	list_add_tail(&child->siblings, &parent_ex->children);
730 	return child;
731 
732  out_list_del:
733 	sas_rphy_free(child->rphy);
734 	child->rphy = NULL;
735 	list_del(&child->dev_list_node);
736  out_free:
737 	sas_port_delete(phy->port);
738  out_err:
739 	phy->port = NULL;
740 	kfree(child);
741 	return NULL;
742 }
743 
744 /* See if this phy is part of a wide port */
745 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
746 {
747 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
748 	int i;
749 
750 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
751 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
752 
753 		if (ephy == phy)
754 			continue;
755 
756 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
757 			    SAS_ADDR_SIZE) && ephy->port) {
758 			sas_port_add_phy(ephy->port, phy->phy);
759 			phy->phy_state = PHY_DEVICE_DISCOVERED;
760 			return 0;
761 		}
762 	}
763 
764 	return -ENODEV;
765 }
766 
767 static struct domain_device *sas_ex_discover_expander(
768 	struct domain_device *parent, int phy_id)
769 {
770 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
771 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
772 	struct domain_device *child = NULL;
773 	struct sas_rphy *rphy;
774 	struct sas_expander_device *edev;
775 	struct asd_sas_port *port;
776 	int res;
777 
778 	if (phy->routing_attr == DIRECT_ROUTING) {
779 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
780 			    "allowed\n",
781 			    SAS_ADDR(parent->sas_addr), phy_id,
782 			    SAS_ADDR(phy->attached_sas_addr),
783 			    phy->attached_phy_id);
784 		return NULL;
785 	}
786 	child = kzalloc(sizeof(*child), GFP_KERNEL);
787 	if (!child)
788 		return NULL;
789 
790 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
791 	/* FIXME: better error handling */
792 	BUG_ON(sas_port_add(phy->port) != 0);
793 
794 
795 	switch (phy->attached_dev_type) {
796 	case EDGE_DEV:
797 		rphy = sas_expander_alloc(phy->port,
798 					  SAS_EDGE_EXPANDER_DEVICE);
799 		break;
800 	case FANOUT_DEV:
801 		rphy = sas_expander_alloc(phy->port,
802 					  SAS_FANOUT_EXPANDER_DEVICE);
803 		break;
804 	default:
805 		rphy = NULL;	/* shut gcc up */
806 		BUG();
807 	}
808 	port = parent->port;
809 	child->rphy = rphy;
810 	edev = rphy_to_expander_device(rphy);
811 	child->dev_type = phy->attached_dev_type;
812 	child->parent = parent;
813 	child->port = port;
814 	child->iproto = phy->attached_iproto;
815 	child->tproto = phy->attached_tproto;
816 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
817 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
818 	sas_ex_get_linkrate(parent, child, phy);
819 	edev->level = parent_ex->level + 1;
820 	parent->port->disc.max_level = max(parent->port->disc.max_level,
821 					   edev->level);
822 	sas_init_dev(child);
823 	sas_fill_in_rphy(child, rphy);
824 	sas_rphy_add(rphy);
825 
826 	spin_lock_irq(&parent->port->dev_list_lock);
827 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
828 	spin_unlock_irq(&parent->port->dev_list_lock);
829 
830 	res = sas_discover_expander(child);
831 	if (res) {
832 		kfree(child);
833 		return NULL;
834 	}
835 	list_add_tail(&child->siblings, &parent->ex_dev.children);
836 	return child;
837 }
838 
839 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
840 {
841 	struct expander_device *ex = &dev->ex_dev;
842 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
843 	struct domain_device *child = NULL;
844 	int res = 0;
845 
846 	/* Phy state */
847 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
848 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
849 			res = sas_ex_phy_discover(dev, phy_id);
850 		if (res)
851 			return res;
852 	}
853 
854 	/* Parent and domain coherency */
855 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
856 			     SAS_ADDR(dev->port->sas_addr))) {
857 		sas_add_parent_port(dev, phy_id);
858 		return 0;
859 	}
860 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
861 			    SAS_ADDR(dev->parent->sas_addr))) {
862 		sas_add_parent_port(dev, phy_id);
863 		if (ex_phy->routing_attr == TABLE_ROUTING)
864 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
865 		return 0;
866 	}
867 
868 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
869 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
870 
871 	if (ex_phy->attached_dev_type == NO_DEVICE) {
872 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
873 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
874 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
875 		}
876 		return 0;
877 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
878 		return 0;
879 
880 	if (ex_phy->attached_dev_type != SAS_END_DEV &&
881 	    ex_phy->attached_dev_type != FANOUT_DEV &&
882 	    ex_phy->attached_dev_type != EDGE_DEV) {
883 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
884 			    "phy 0x%x\n", ex_phy->attached_dev_type,
885 			    SAS_ADDR(dev->sas_addr),
886 			    phy_id);
887 		return 0;
888 	}
889 
890 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
891 	if (res) {
892 		SAS_DPRINTK("configure routing for dev %016llx "
893 			    "reported 0x%x. Forgotten\n",
894 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
895 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
896 		return res;
897 	}
898 
899 	res = sas_ex_join_wide_port(dev, phy_id);
900 	if (!res) {
901 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
902 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
903 		return res;
904 	}
905 
906 	switch (ex_phy->attached_dev_type) {
907 	case SAS_END_DEV:
908 		child = sas_ex_discover_end_dev(dev, phy_id);
909 		break;
910 	case FANOUT_DEV:
911 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
912 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
913 				    "attached to ex %016llx phy 0x%x\n",
914 				    SAS_ADDR(ex_phy->attached_sas_addr),
915 				    ex_phy->attached_phy_id,
916 				    SAS_ADDR(dev->sas_addr),
917 				    phy_id);
918 			sas_ex_disable_phy(dev, phy_id);
919 			break;
920 		} else
921 			memcpy(dev->port->disc.fanout_sas_addr,
922 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
923 		/* fallthrough */
924 	case EDGE_DEV:
925 		child = sas_ex_discover_expander(dev, phy_id);
926 		break;
927 	default:
928 		break;
929 	}
930 
931 	if (child) {
932 		int i;
933 
934 		for (i = 0; i < ex->num_phys; i++) {
935 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
936 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
937 				continue;
938 
939 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
940 			    SAS_ADDR(child->sas_addr))
941 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
942 		}
943 	}
944 
945 	return res;
946 }
947 
948 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
949 {
950 	struct expander_device *ex = &dev->ex_dev;
951 	int i;
952 
953 	for (i = 0; i < ex->num_phys; i++) {
954 		struct ex_phy *phy = &ex->ex_phy[i];
955 
956 		if (phy->phy_state == PHY_VACANT ||
957 		    phy->phy_state == PHY_NOT_PRESENT)
958 			continue;
959 
960 		if ((phy->attached_dev_type == EDGE_DEV ||
961 		     phy->attached_dev_type == FANOUT_DEV) &&
962 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
963 
964 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
965 
966 			return 1;
967 		}
968 	}
969 	return 0;
970 }
971 
972 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
973 {
974 	struct expander_device *ex = &dev->ex_dev;
975 	struct domain_device *child;
976 	u8 sub_addr[8] = {0, };
977 
978 	list_for_each_entry(child, &ex->children, siblings) {
979 		if (child->dev_type != EDGE_DEV &&
980 		    child->dev_type != FANOUT_DEV)
981 			continue;
982 		if (sub_addr[0] == 0) {
983 			sas_find_sub_addr(child, sub_addr);
984 			continue;
985 		} else {
986 			u8 s2[8];
987 
988 			if (sas_find_sub_addr(child, s2) &&
989 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
990 
991 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
992 					    "diverges from subtractive "
993 					    "boundary %016llx\n",
994 					    SAS_ADDR(dev->sas_addr),
995 					    SAS_ADDR(child->sas_addr),
996 					    SAS_ADDR(s2),
997 					    SAS_ADDR(sub_addr));
998 
999 				sas_ex_disable_port(child, s2);
1000 			}
1001 		}
1002 	}
1003 	return 0;
1004 }
1005 /**
1006  * sas_ex_discover_devices -- discover devices attached to this expander
1007  * dev: pointer to the expander domain device
1008  * single: if you want to do a single phy, else set to -1;
1009  *
1010  * Configure this expander for use with its devices and register the
1011  * devices of this expander.
1012  */
1013 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1014 {
1015 	struct expander_device *ex = &dev->ex_dev;
1016 	int i = 0, end = ex->num_phys;
1017 	int res = 0;
1018 
1019 	if (0 <= single && single < end) {
1020 		i = single;
1021 		end = i+1;
1022 	}
1023 
1024 	for ( ; i < end; i++) {
1025 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1026 
1027 		if (ex_phy->phy_state == PHY_VACANT ||
1028 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1029 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1030 			continue;
1031 
1032 		switch (ex_phy->linkrate) {
1033 		case SAS_PHY_DISABLED:
1034 		case SAS_PHY_RESET_PROBLEM:
1035 		case SAS_SATA_PORT_SELECTOR:
1036 			continue;
1037 		default:
1038 			res = sas_ex_discover_dev(dev, i);
1039 			if (res)
1040 				break;
1041 			continue;
1042 		}
1043 	}
1044 
1045 	if (!res)
1046 		sas_check_level_subtractive_boundary(dev);
1047 
1048 	return res;
1049 }
1050 
1051 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1052 {
1053 	struct expander_device *ex = &dev->ex_dev;
1054 	int i;
1055 	u8  *sub_sas_addr = NULL;
1056 
1057 	if (dev->dev_type != EDGE_DEV)
1058 		return 0;
1059 
1060 	for (i = 0; i < ex->num_phys; i++) {
1061 		struct ex_phy *phy = &ex->ex_phy[i];
1062 
1063 		if (phy->phy_state == PHY_VACANT ||
1064 		    phy->phy_state == PHY_NOT_PRESENT)
1065 			continue;
1066 
1067 		if ((phy->attached_dev_type == FANOUT_DEV ||
1068 		     phy->attached_dev_type == EDGE_DEV) &&
1069 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1070 
1071 			if (!sub_sas_addr)
1072 				sub_sas_addr = &phy->attached_sas_addr[0];
1073 			else if (SAS_ADDR(sub_sas_addr) !=
1074 				 SAS_ADDR(phy->attached_sas_addr)) {
1075 
1076 				SAS_DPRINTK("ex %016llx phy 0x%x "
1077 					    "diverges(%016llx) on subtractive "
1078 					    "boundary(%016llx). Disabled\n",
1079 					    SAS_ADDR(dev->sas_addr), i,
1080 					    SAS_ADDR(phy->attached_sas_addr),
1081 					    SAS_ADDR(sub_sas_addr));
1082 				sas_ex_disable_phy(dev, i);
1083 			}
1084 		}
1085 	}
1086 	return 0;
1087 }
1088 
1089 static void sas_print_parent_topology_bug(struct domain_device *child,
1090 						 struct ex_phy *parent_phy,
1091 						 struct ex_phy *child_phy)
1092 {
1093 	static const char ra_char[] = {
1094 		[DIRECT_ROUTING] = 'D',
1095 		[SUBTRACTIVE_ROUTING] = 'S',
1096 		[TABLE_ROUTING] = 'T',
1097 	};
1098 	static const char *ex_type[] = {
1099 		[EDGE_DEV] = "edge",
1100 		[FANOUT_DEV] = "fanout",
1101 	};
1102 	struct domain_device *parent = child->parent;
1103 
1104 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1105 		   "has %c:%c routing link!\n",
1106 
1107 		   ex_type[parent->dev_type],
1108 		   SAS_ADDR(parent->sas_addr),
1109 		   parent_phy->phy_id,
1110 
1111 		   ex_type[child->dev_type],
1112 		   SAS_ADDR(child->sas_addr),
1113 		   child_phy->phy_id,
1114 
1115 		   ra_char[parent_phy->routing_attr],
1116 		   ra_char[child_phy->routing_attr]);
1117 }
1118 
1119 static int sas_check_eeds(struct domain_device *child,
1120 				 struct ex_phy *parent_phy,
1121 				 struct ex_phy *child_phy)
1122 {
1123 	int res = 0;
1124 	struct domain_device *parent = child->parent;
1125 
1126 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1127 		res = -ENODEV;
1128 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1129 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1130 			    SAS_ADDR(parent->sas_addr),
1131 			    parent_phy->phy_id,
1132 			    SAS_ADDR(child->sas_addr),
1133 			    child_phy->phy_id,
1134 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1135 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1136 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1137 		       SAS_ADDR_SIZE);
1138 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1139 		       SAS_ADDR_SIZE);
1140 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1141 		    SAS_ADDR(parent->sas_addr)) ||
1142 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1143 		    SAS_ADDR(child->sas_addr)))
1144 		   &&
1145 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1146 		     SAS_ADDR(parent->sas_addr)) ||
1147 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1148 		     SAS_ADDR(child->sas_addr))))
1149 		;
1150 	else {
1151 		res = -ENODEV;
1152 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1153 			    "phy 0x%x link forms a third EEDS!\n",
1154 			    SAS_ADDR(parent->sas_addr),
1155 			    parent_phy->phy_id,
1156 			    SAS_ADDR(child->sas_addr),
1157 			    child_phy->phy_id);
1158 	}
1159 
1160 	return res;
1161 }
1162 
1163 /* Here we spill over 80 columns.  It is intentional.
1164  */
1165 static int sas_check_parent_topology(struct domain_device *child)
1166 {
1167 	struct expander_device *child_ex = &child->ex_dev;
1168 	struct expander_device *parent_ex;
1169 	int i;
1170 	int res = 0;
1171 
1172 	if (!child->parent)
1173 		return 0;
1174 
1175 	if (child->parent->dev_type != EDGE_DEV &&
1176 	    child->parent->dev_type != FANOUT_DEV)
1177 		return 0;
1178 
1179 	parent_ex = &child->parent->ex_dev;
1180 
1181 	for (i = 0; i < parent_ex->num_phys; i++) {
1182 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1183 		struct ex_phy *child_phy;
1184 
1185 		if (parent_phy->phy_state == PHY_VACANT ||
1186 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1187 			continue;
1188 
1189 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1190 			continue;
1191 
1192 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1193 
1194 		switch (child->parent->dev_type) {
1195 		case EDGE_DEV:
1196 			if (child->dev_type == FANOUT_DEV) {
1197 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1198 				    child_phy->routing_attr != TABLE_ROUTING) {
1199 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1200 					res = -ENODEV;
1201 				}
1202 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1203 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1204 					res = sas_check_eeds(child, parent_phy, child_phy);
1205 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1206 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1207 					res = -ENODEV;
1208 				}
1209 			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1210 				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1211 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1212 				res = -ENODEV;
1213 			}
1214 			break;
1215 		case FANOUT_DEV:
1216 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1217 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1218 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1219 				res = -ENODEV;
1220 			}
1221 			break;
1222 		default:
1223 			break;
1224 		}
1225 	}
1226 
1227 	return res;
1228 }
1229 
1230 #define RRI_REQ_SIZE  16
1231 #define RRI_RESP_SIZE 44
1232 
1233 static int sas_configure_present(struct domain_device *dev, int phy_id,
1234 				 u8 *sas_addr, int *index, int *present)
1235 {
1236 	int i, res = 0;
1237 	struct expander_device *ex = &dev->ex_dev;
1238 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1239 	u8 *rri_req;
1240 	u8 *rri_resp;
1241 
1242 	*present = 0;
1243 	*index = 0;
1244 
1245 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1246 	if (!rri_req)
1247 		return -ENOMEM;
1248 
1249 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1250 	if (!rri_resp) {
1251 		kfree(rri_req);
1252 		return -ENOMEM;
1253 	}
1254 
1255 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1256 	rri_req[9] = phy_id;
1257 
1258 	for (i = 0; i < ex->max_route_indexes ; i++) {
1259 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1260 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1261 				       RRI_RESP_SIZE);
1262 		if (res)
1263 			goto out;
1264 		res = rri_resp[2];
1265 		if (res == SMP_RESP_NO_INDEX) {
1266 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1267 				    "phy 0x%x index 0x%x\n",
1268 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1269 			goto out;
1270 		} else if (res != SMP_RESP_FUNC_ACC) {
1271 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1272 				    "result 0x%x\n", __FUNCTION__,
1273 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1274 			goto out;
1275 		}
1276 		if (SAS_ADDR(sas_addr) != 0) {
1277 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1278 				*index = i;
1279 				if ((rri_resp[12] & 0x80) == 0x80)
1280 					*present = 0;
1281 				else
1282 					*present = 1;
1283 				goto out;
1284 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1285 				*index = i;
1286 				*present = 0;
1287 				goto out;
1288 			}
1289 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1290 			   phy->last_da_index < i) {
1291 			phy->last_da_index = i;
1292 			*index = i;
1293 			*present = 0;
1294 			goto out;
1295 		}
1296 	}
1297 	res = -1;
1298 out:
1299 	kfree(rri_req);
1300 	kfree(rri_resp);
1301 	return res;
1302 }
1303 
1304 #define CRI_REQ_SIZE  44
1305 #define CRI_RESP_SIZE  8
1306 
1307 static int sas_configure_set(struct domain_device *dev, int phy_id,
1308 			     u8 *sas_addr, int index, int include)
1309 {
1310 	int res;
1311 	u8 *cri_req;
1312 	u8 *cri_resp;
1313 
1314 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1315 	if (!cri_req)
1316 		return -ENOMEM;
1317 
1318 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1319 	if (!cri_resp) {
1320 		kfree(cri_req);
1321 		return -ENOMEM;
1322 	}
1323 
1324 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1325 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1326 	cri_req[9] = phy_id;
1327 	if (SAS_ADDR(sas_addr) == 0 || !include)
1328 		cri_req[12] |= 0x80;
1329 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1330 
1331 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1332 			       CRI_RESP_SIZE);
1333 	if (res)
1334 		goto out;
1335 	res = cri_resp[2];
1336 	if (res == SMP_RESP_NO_INDEX) {
1337 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1338 			    "index 0x%x\n",
1339 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1340 	}
1341 out:
1342 	kfree(cri_req);
1343 	kfree(cri_resp);
1344 	return res;
1345 }
1346 
1347 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1348 				    u8 *sas_addr, int include)
1349 {
1350 	int index;
1351 	int present;
1352 	int res;
1353 
1354 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1355 	if (res)
1356 		return res;
1357 	if (include ^ present)
1358 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1359 
1360 	return res;
1361 }
1362 
1363 /**
1364  * sas_configure_parent -- configure routing table of parent
1365  * parent: parent expander
1366  * child: child expander
1367  * sas_addr: SAS port identifier of device directly attached to child
1368  */
1369 static int sas_configure_parent(struct domain_device *parent,
1370 				struct domain_device *child,
1371 				u8 *sas_addr, int include)
1372 {
1373 	struct expander_device *ex_parent = &parent->ex_dev;
1374 	int res = 0;
1375 	int i;
1376 
1377 	if (parent->parent) {
1378 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1379 					   include);
1380 		if (res)
1381 			return res;
1382 	}
1383 
1384 	if (ex_parent->conf_route_table == 0) {
1385 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1386 			    SAS_ADDR(parent->sas_addr));
1387 		return 0;
1388 	}
1389 
1390 	for (i = 0; i < ex_parent->num_phys; i++) {
1391 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1392 
1393 		if ((phy->routing_attr == TABLE_ROUTING) &&
1394 		    (SAS_ADDR(phy->attached_sas_addr) ==
1395 		     SAS_ADDR(child->sas_addr))) {
1396 			res = sas_configure_phy(parent, i, sas_addr, include);
1397 			if (res)
1398 				return res;
1399 		}
1400 	}
1401 
1402 	return res;
1403 }
1404 
1405 /**
1406  * sas_configure_routing -- configure routing
1407  * dev: expander device
1408  * sas_addr: port identifier of device directly attached to the expander device
1409  */
1410 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1411 {
1412 	if (dev->parent)
1413 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1414 	return 0;
1415 }
1416 
1417 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1418 {
1419 	if (dev->parent)
1420 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1421 	return 0;
1422 }
1423 
1424 /**
1425  * sas_discover_expander -- expander discovery
1426  * @ex: pointer to expander domain device
1427  *
1428  * See comment in sas_discover_sata().
1429  */
1430 static int sas_discover_expander(struct domain_device *dev)
1431 {
1432 	int res;
1433 
1434 	res = sas_notify_lldd_dev_found(dev);
1435 	if (res)
1436 		return res;
1437 
1438 	res = sas_ex_general(dev);
1439 	if (res)
1440 		goto out_err;
1441 	res = sas_ex_manuf_info(dev);
1442 	if (res)
1443 		goto out_err;
1444 
1445 	res = sas_expander_discover(dev);
1446 	if (res) {
1447 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1448 			    SAS_ADDR(dev->sas_addr), res);
1449 		goto out_err;
1450 	}
1451 
1452 	sas_check_ex_subtractive_boundary(dev);
1453 	res = sas_check_parent_topology(dev);
1454 	if (res)
1455 		goto out_err;
1456 	return 0;
1457 out_err:
1458 	sas_notify_lldd_dev_gone(dev);
1459 	return res;
1460 }
1461 
1462 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1463 {
1464 	int res = 0;
1465 	struct domain_device *dev;
1466 
1467 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1468 		if (dev->dev_type == EDGE_DEV ||
1469 		    dev->dev_type == FANOUT_DEV) {
1470 			struct sas_expander_device *ex =
1471 				rphy_to_expander_device(dev->rphy);
1472 
1473 			if (level == ex->level)
1474 				res = sas_ex_discover_devices(dev, -1);
1475 			else if (level > 0)
1476 				res = sas_ex_discover_devices(port->port_dev, -1);
1477 
1478 		}
1479 	}
1480 
1481 	return res;
1482 }
1483 
1484 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1485 {
1486 	int res;
1487 	int level;
1488 
1489 	do {
1490 		level = port->disc.max_level;
1491 		res = sas_ex_level_discovery(port, level);
1492 		mb();
1493 	} while (level < port->disc.max_level);
1494 
1495 	return res;
1496 }
1497 
1498 int sas_discover_root_expander(struct domain_device *dev)
1499 {
1500 	int res;
1501 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1502 
1503 	res = sas_rphy_add(dev->rphy);
1504 	if (res)
1505 		goto out_err;
1506 
1507 	ex->level = dev->port->disc.max_level; /* 0 */
1508 	res = sas_discover_expander(dev);
1509 	if (res)
1510 		goto out_err2;
1511 
1512 	sas_ex_bfs_disc(dev->port);
1513 
1514 	return res;
1515 
1516 out_err2:
1517 	sas_rphy_remove(dev->rphy);
1518 out_err:
1519 	return res;
1520 }
1521 
1522 /* ---------- Domain revalidation ---------- */
1523 
1524 static int sas_get_phy_discover(struct domain_device *dev,
1525 				int phy_id, struct smp_resp *disc_resp)
1526 {
1527 	int res;
1528 	u8 *disc_req;
1529 
1530 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1531 	if (!disc_req)
1532 		return -ENOMEM;
1533 
1534 	disc_req[1] = SMP_DISCOVER;
1535 	disc_req[9] = phy_id;
1536 
1537 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1538 			       disc_resp, DISCOVER_RESP_SIZE);
1539 	if (res)
1540 		goto out;
1541 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1542 		res = disc_resp->result;
1543 		goto out;
1544 	}
1545 out:
1546 	kfree(disc_req);
1547 	return res;
1548 }
1549 
1550 static int sas_get_phy_change_count(struct domain_device *dev,
1551 				    int phy_id, int *pcc)
1552 {
1553 	int res;
1554 	struct smp_resp *disc_resp;
1555 
1556 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1557 	if (!disc_resp)
1558 		return -ENOMEM;
1559 
1560 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1561 	if (!res)
1562 		*pcc = disc_resp->disc.change_count;
1563 
1564 	kfree(disc_resp);
1565 	return res;
1566 }
1567 
1568 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1569 					 int phy_id, u8 *attached_sas_addr)
1570 {
1571 	int res;
1572 	struct smp_resp *disc_resp;
1573 	struct discover_resp *dr;
1574 
1575 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1576 	if (!disc_resp)
1577 		return -ENOMEM;
1578 	dr = &disc_resp->disc;
1579 
1580 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1581 	if (!res) {
1582 		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1583 		if (dr->attached_dev_type == 0)
1584 			memset(attached_sas_addr, 0, 8);
1585 	}
1586 	kfree(disc_resp);
1587 	return res;
1588 }
1589 
1590 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1591 			      int from_phy)
1592 {
1593 	struct expander_device *ex = &dev->ex_dev;
1594 	int res = 0;
1595 	int i;
1596 
1597 	for (i = from_phy; i < ex->num_phys; i++) {
1598 		int phy_change_count = 0;
1599 
1600 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1601 		if (res)
1602 			goto out;
1603 		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1604 			ex->ex_phy[i].phy_change_count = phy_change_count;
1605 			*phy_id = i;
1606 			return 0;
1607 		}
1608 	}
1609 out:
1610 	return res;
1611 }
1612 
1613 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1614 {
1615 	int res;
1616 	u8  *rg_req;
1617 	struct smp_resp  *rg_resp;
1618 
1619 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1620 	if (!rg_req)
1621 		return -ENOMEM;
1622 
1623 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1624 	if (!rg_resp) {
1625 		kfree(rg_req);
1626 		return -ENOMEM;
1627 	}
1628 
1629 	rg_req[1] = SMP_REPORT_GENERAL;
1630 
1631 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1632 			       RG_RESP_SIZE);
1633 	if (res)
1634 		goto out;
1635 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1636 		res = rg_resp->result;
1637 		goto out;
1638 	}
1639 
1640 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1641 out:
1642 	kfree(rg_resp);
1643 	kfree(rg_req);
1644 	return res;
1645 }
1646 
1647 static int sas_find_bcast_dev(struct domain_device *dev,
1648 			      struct domain_device **src_dev)
1649 {
1650 	struct expander_device *ex = &dev->ex_dev;
1651 	int ex_change_count = -1;
1652 	int res;
1653 
1654 	res = sas_get_ex_change_count(dev, &ex_change_count);
1655 	if (res)
1656 		goto out;
1657 	if (ex_change_count != -1 &&
1658 	    ex_change_count != ex->ex_change_count) {
1659 		*src_dev = dev;
1660 		ex->ex_change_count = ex_change_count;
1661 	} else {
1662 		struct domain_device *ch;
1663 
1664 		list_for_each_entry(ch, &ex->children, siblings) {
1665 			if (ch->dev_type == EDGE_DEV ||
1666 			    ch->dev_type == FANOUT_DEV) {
1667 				res = sas_find_bcast_dev(ch, src_dev);
1668 				if (src_dev)
1669 					return res;
1670 			}
1671 		}
1672 	}
1673 out:
1674 	return res;
1675 }
1676 
1677 static void sas_unregister_ex_tree(struct domain_device *dev)
1678 {
1679 	struct expander_device *ex = &dev->ex_dev;
1680 	struct domain_device *child, *n;
1681 
1682 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1683 		if (child->dev_type == EDGE_DEV ||
1684 		    child->dev_type == FANOUT_DEV)
1685 			sas_unregister_ex_tree(child);
1686 		else
1687 			sas_unregister_dev(child);
1688 	}
1689 	sas_unregister_dev(dev);
1690 }
1691 
1692 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1693 					 int phy_id)
1694 {
1695 	struct expander_device *ex_dev = &parent->ex_dev;
1696 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1697 	struct domain_device *child, *n;
1698 
1699 	list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1700 		if (SAS_ADDR(child->sas_addr) ==
1701 		    SAS_ADDR(phy->attached_sas_addr)) {
1702 			if (child->dev_type == EDGE_DEV ||
1703 			    child->dev_type == FANOUT_DEV)
1704 				sas_unregister_ex_tree(child);
1705 			else
1706 				sas_unregister_dev(child);
1707 			break;
1708 		}
1709 	}
1710 	sas_disable_routing(parent, phy->attached_sas_addr);
1711 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1712 	sas_port_delete_phy(phy->port, phy->phy);
1713 	if (phy->port->num_phys == 0)
1714 		sas_port_delete(phy->port);
1715 	phy->port = NULL;
1716 }
1717 
1718 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1719 					  const int level)
1720 {
1721 	struct expander_device *ex_root = &root->ex_dev;
1722 	struct domain_device *child;
1723 	int res = 0;
1724 
1725 	list_for_each_entry(child, &ex_root->children, siblings) {
1726 		if (child->dev_type == EDGE_DEV ||
1727 		    child->dev_type == FANOUT_DEV) {
1728 			struct sas_expander_device *ex =
1729 				rphy_to_expander_device(child->rphy);
1730 
1731 			if (level > ex->level)
1732 				res = sas_discover_bfs_by_root_level(child,
1733 								     level);
1734 			else if (level == ex->level)
1735 				res = sas_ex_discover_devices(child, -1);
1736 		}
1737 	}
1738 	return res;
1739 }
1740 
1741 static int sas_discover_bfs_by_root(struct domain_device *dev)
1742 {
1743 	int res;
1744 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1745 	int level = ex->level+1;
1746 
1747 	res = sas_ex_discover_devices(dev, -1);
1748 	if (res)
1749 		goto out;
1750 	do {
1751 		res = sas_discover_bfs_by_root_level(dev, level);
1752 		mb();
1753 		level += 1;
1754 	} while (level <= dev->port->disc.max_level);
1755 out:
1756 	return res;
1757 }
1758 
1759 static int sas_discover_new(struct domain_device *dev, int phy_id)
1760 {
1761 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1762 	struct domain_device *child;
1763 	int res;
1764 
1765 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1766 		    SAS_ADDR(dev->sas_addr), phy_id);
1767 	res = sas_ex_phy_discover(dev, phy_id);
1768 	if (res)
1769 		goto out;
1770 	res = sas_ex_discover_devices(dev, phy_id);
1771 	if (res)
1772 		goto out;
1773 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1774 		if (SAS_ADDR(child->sas_addr) ==
1775 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1776 			if (child->dev_type == EDGE_DEV ||
1777 			    child->dev_type == FANOUT_DEV)
1778 				res = sas_discover_bfs_by_root(child);
1779 			break;
1780 		}
1781 	}
1782 out:
1783 	return res;
1784 }
1785 
1786 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1787 {
1788 	struct expander_device *ex = &dev->ex_dev;
1789 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1790 	u8 attached_sas_addr[8];
1791 	int res;
1792 
1793 	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1794 	switch (res) {
1795 	case SMP_RESP_NO_PHY:
1796 		phy->phy_state = PHY_NOT_PRESENT;
1797 		sas_unregister_devs_sas_addr(dev, phy_id);
1798 		goto out; break;
1799 	case SMP_RESP_PHY_VACANT:
1800 		phy->phy_state = PHY_VACANT;
1801 		sas_unregister_devs_sas_addr(dev, phy_id);
1802 		goto out; break;
1803 	case SMP_RESP_FUNC_ACC:
1804 		break;
1805 	}
1806 
1807 	if (SAS_ADDR(attached_sas_addr) == 0) {
1808 		phy->phy_state = PHY_EMPTY;
1809 		sas_unregister_devs_sas_addr(dev, phy_id);
1810 	} else if (SAS_ADDR(attached_sas_addr) ==
1811 		   SAS_ADDR(phy->attached_sas_addr)) {
1812 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1813 			    SAS_ADDR(dev->sas_addr), phy_id);
1814 		sas_ex_phy_discover(dev, phy_id);
1815 	} else
1816 		res = sas_discover_new(dev, phy_id);
1817 out:
1818 	return res;
1819 }
1820 
1821 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1822 {
1823 	struct expander_device *ex = &dev->ex_dev;
1824 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1825 	int res = 0;
1826 	int i;
1827 
1828 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1829 		    SAS_ADDR(dev->sas_addr), phy_id);
1830 
1831 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1832 		for (i = 0; i < ex->num_phys; i++) {
1833 			struct ex_phy *phy = &ex->ex_phy[i];
1834 
1835 			if (i == phy_id)
1836 				continue;
1837 			if (SAS_ADDR(phy->attached_sas_addr) ==
1838 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1839 				SAS_DPRINTK("phy%d part of wide port with "
1840 					    "phy%d\n", phy_id, i);
1841 				goto out;
1842 			}
1843 		}
1844 		res = sas_rediscover_dev(dev, phy_id);
1845 	} else
1846 		res = sas_discover_new(dev, phy_id);
1847 out:
1848 	return res;
1849 }
1850 
1851 /**
1852  * sas_revalidate_domain -- revalidate the domain
1853  * @port: port to the domain of interest
1854  *
1855  * NOTE: this process _must_ quit (return) as soon as any connection
1856  * errors are encountered.  Connection recovery is done elsewhere.
1857  * Discover process only interrogates devices in order to discover the
1858  * domain.
1859  */
1860 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1861 {
1862 	int res;
1863 	struct domain_device *dev = NULL;
1864 
1865 	res = sas_find_bcast_dev(port_dev, &dev);
1866 	if (res)
1867 		goto out;
1868 	if (dev) {
1869 		struct expander_device *ex = &dev->ex_dev;
1870 		int i = 0, phy_id;
1871 
1872 		do {
1873 			phy_id = -1;
1874 			res = sas_find_bcast_phy(dev, &phy_id, i);
1875 			if (phy_id == -1)
1876 				break;
1877 			res = sas_rediscover(dev, phy_id);
1878 			i = phy_id + 1;
1879 		} while (i < ex->num_phys);
1880 	}
1881 out:
1882 	return res;
1883 }
1884 
1885 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1886 		    struct request *req)
1887 {
1888 	struct domain_device *dev;
1889 	int ret, type;
1890 	struct request *rsp = req->next_rq;
1891 
1892 	if (!rsp) {
1893 		printk("%s: space for a smp response is missing\n",
1894 		       __FUNCTION__);
1895 		return -EINVAL;
1896 	}
1897 
1898 	/* no rphy means no smp target support (ie aic94xx host) */
1899 	if (!rphy) {
1900 		printk("%s: can we send a smp request to a host?\n",
1901 		       __FUNCTION__);
1902 		return -EINVAL;
1903 	}
1904 	type = rphy->identify.device_type;
1905 
1906 	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1907 	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1908 		printk("%s: can we send a smp request to a device?\n",
1909 		       __FUNCTION__);
1910 		return -EINVAL;
1911 	}
1912 
1913 	dev = sas_find_dev_by_rphy(rphy);
1914 	if (!dev) {
1915 		printk("%s: fail to find a domain_device?\n", __FUNCTION__);
1916 		return -EINVAL;
1917 	}
1918 
1919 	/* do we need to support multiple segments? */
1920 	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1921 		printk("%s: multiple segments req %u %u, rsp %u %u\n",
1922 		       __FUNCTION__, req->bio->bi_vcnt, req->data_len,
1923 		       rsp->bio->bi_vcnt, rsp->data_len);
1924 		return -EINVAL;
1925 	}
1926 
1927 	ret = smp_execute_task(dev, bio_data(req->bio), req->data_len,
1928 			       bio_data(rsp->bio), rsp->data_len);
1929 
1930 	return ret;
1931 }
1932