1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 56 #include "isci.h" 57 #include "host.h" 58 #include "phy.h" 59 #include "scu_event_codes.h" 60 #include "probe_roms.h" 61 62 /* Maximum arbitration wait time in micro-seconds */ 63 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) 64 65 enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy) 66 { 67 return iphy->max_negotiated_speed; 68 } 69 70 static enum sci_status 71 sci_phy_transport_layer_initialization(struct isci_phy *iphy, 72 struct scu_transport_layer_registers __iomem *reg) 73 { 74 u32 tl_control; 75 76 iphy->transport_layer_registers = reg; 77 78 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX, 79 &iphy->transport_layer_registers->stp_rni); 80 81 /* 82 * Hardware team recommends that we enable the STP prefetch for all 83 * transports 84 */ 85 tl_control = readl(&iphy->transport_layer_registers->control); 86 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); 87 writel(tl_control, &iphy->transport_layer_registers->control); 88 89 return SCI_SUCCESS; 90 } 91 92 static enum sci_status 93 sci_phy_link_layer_initialization(struct isci_phy *iphy, 94 struct scu_link_layer_registers __iomem *reg) 95 { 96 struct isci_host *ihost = iphy->owning_port->owning_controller; 97 int phy_idx = iphy->phy_index; 98 struct sci_phy_user_params *phy_user = &ihost->user_parameters.phys[phy_idx]; 99 struct sci_phy_oem_params *phy_oem = 100 &ihost->oem_parameters.phys[phy_idx]; 101 u32 phy_configuration; 102 struct sci_phy_cap phy_cap; 103 u32 parity_check = 0; 104 u32 parity_count = 0; 105 u32 llctl, link_rate; 106 u32 clksm_value = 0; 107 108 iphy->link_layer_registers = reg; 109 110 /* Set our IDENTIFY frame data */ 111 #define SCI_END_DEVICE 0x01 112 113 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | 114 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | 115 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | 116 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | 117 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE), 118 &iphy->link_layer_registers->transmit_identification); 119 120 /* Write the device SAS Address */ 121 writel(0xFEDCBA98, 122 &iphy->link_layer_registers->sas_device_name_high); 123 writel(phy_idx, &iphy->link_layer_registers->sas_device_name_low); 124 125 /* Write the source SAS Address */ 126 writel(phy_oem->sas_address.high, 127 &iphy->link_layer_registers->source_sas_address_high); 128 writel(phy_oem->sas_address.low, 129 &iphy->link_layer_registers->source_sas_address_low); 130 131 /* Clear and Set the PHY Identifier */ 132 writel(0, &iphy->link_layer_registers->identify_frame_phy_id); 133 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), 134 &iphy->link_layer_registers->identify_frame_phy_id); 135 136 /* Change the initial state of the phy configuration register */ 137 phy_configuration = 138 readl(&iphy->link_layer_registers->phy_configuration); 139 140 /* Hold OOB state machine in reset */ 141 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 142 writel(phy_configuration, 143 &iphy->link_layer_registers->phy_configuration); 144 145 /* Configure the SNW capabilities */ 146 phy_cap.all = 0; 147 phy_cap.start = 1; 148 phy_cap.gen3_no_ssc = 1; 149 phy_cap.gen2_no_ssc = 1; 150 phy_cap.gen1_no_ssc = 1; 151 if (ihost->oem_parameters.controller.do_enable_ssc == true) { 152 phy_cap.gen3_ssc = 1; 153 phy_cap.gen2_ssc = 1; 154 phy_cap.gen1_ssc = 1; 155 } 156 157 /* 158 * The SAS specification indicates that the phy_capabilities that 159 * are transmitted shall have an even parity. Calculate the parity. */ 160 parity_check = phy_cap.all; 161 while (parity_check != 0) { 162 if (parity_check & 0x1) 163 parity_count++; 164 parity_check >>= 1; 165 } 166 167 /* 168 * If parity indicates there are an odd number of bits set, then 169 * set the parity bit to 1 in the phy capabilities. */ 170 if ((parity_count % 2) != 0) 171 phy_cap.parity = 1; 172 173 writel(phy_cap.all, &iphy->link_layer_registers->phy_capabilities); 174 175 /* Set the enable spinup period but disable the ability to send 176 * notify enable spinup 177 */ 178 writel(SCU_ENSPINUP_GEN_VAL(COUNT, 179 phy_user->notify_enable_spin_up_insertion_frequency), 180 &iphy->link_layer_registers->notify_enable_spinup_control); 181 182 /* Write the ALIGN Insertion Ferequency for connected phy and 183 * inpendent of connected state 184 */ 185 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED, 186 phy_user->in_connection_align_insertion_frequency); 187 188 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL, 189 phy_user->align_insertion_frequency); 190 191 writel(clksm_value, &iphy->link_layer_registers->clock_skew_management); 192 193 /* @todo Provide a way to write this register correctly */ 194 writel(0x02108421, 195 &iphy->link_layer_registers->afe_lookup_table_control); 196 197 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT, 198 (u8)ihost->user_parameters.no_outbound_task_timeout); 199 200 switch(phy_user->max_speed_generation) { 201 case SCIC_SDS_PARM_GEN3_SPEED: 202 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3; 203 break; 204 case SCIC_SDS_PARM_GEN2_SPEED: 205 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2; 206 break; 207 default: 208 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1; 209 break; 210 } 211 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate); 212 writel(llctl, &iphy->link_layer_registers->link_layer_control); 213 214 if (is_a2(ihost->pdev)) { 215 /* Program the max ARB time for the PHY to 700us so we inter-operate with 216 * the PMC expander which shuts down PHYs if the expander PHY generates too 217 * many breaks. This time value will guarantee that the initiator PHY will 218 * generate the break. 219 */ 220 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME, 221 &iphy->link_layer_registers->maximum_arbitration_wait_timer_timeout); 222 } 223 224 /* Disable link layer hang detection, rely on the OS timeout for I/O timeouts. */ 225 writel(0, &iphy->link_layer_registers->link_layer_hang_detection_timeout); 226 227 /* We can exit the initial state to the stopped state */ 228 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 229 230 return SCI_SUCCESS; 231 } 232 233 static void phy_sata_timeout(unsigned long data) 234 { 235 struct sci_timer *tmr = (struct sci_timer *)data; 236 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer); 237 struct isci_host *ihost = iphy->owning_port->owning_controller; 238 unsigned long flags; 239 240 spin_lock_irqsave(&ihost->scic_lock, flags); 241 242 if (tmr->cancel) 243 goto done; 244 245 dev_dbg(sciphy_to_dev(iphy), 246 "%s: SCIC SDS Phy 0x%p did not receive signature fis before " 247 "timeout.\n", 248 __func__, 249 iphy); 250 251 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 252 done: 253 spin_unlock_irqrestore(&ihost->scic_lock, flags); 254 } 255 256 /** 257 * This method returns the port currently containing this phy. If the phy is 258 * currently contained by the dummy port, then the phy is considered to not 259 * be part of a port. 260 * @sci_phy: This parameter specifies the phy for which to retrieve the 261 * containing port. 262 * 263 * This method returns a handle to a port that contains the supplied phy. 264 * NULL This value is returned if the phy is not part of a real 265 * port (i.e. it's contained in the dummy port). !NULL All other 266 * values indicate a handle/pointer to the port containing the phy. 267 */ 268 struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy) 269 { 270 struct isci_port *iport = iphy->owning_port; 271 272 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT) 273 return NULL; 274 275 return iphy->owning_port; 276 } 277 278 /** 279 * This method will assign a port to the phy object. 280 * @out]: iphy This parameter specifies the phy for which to assign a port 281 * object. 282 * 283 * 284 */ 285 void sci_phy_set_port( 286 struct isci_phy *iphy, 287 struct isci_port *iport) 288 { 289 iphy->owning_port = iport; 290 291 if (iphy->bcn_received_while_port_unassigned) { 292 iphy->bcn_received_while_port_unassigned = false; 293 sci_port_broadcast_change_received(iphy->owning_port, iphy); 294 } 295 } 296 297 enum sci_status sci_phy_initialize(struct isci_phy *iphy, 298 struct scu_transport_layer_registers __iomem *tl, 299 struct scu_link_layer_registers __iomem *ll) 300 { 301 /* Perfrom the initialization of the TL hardware */ 302 sci_phy_transport_layer_initialization(iphy, tl); 303 304 /* Perofrm the initialization of the PE hardware */ 305 sci_phy_link_layer_initialization(iphy, ll); 306 307 /* There is nothing that needs to be done in this state just 308 * transition to the stopped state 309 */ 310 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 311 312 return SCI_SUCCESS; 313 } 314 315 /** 316 * This method assigns the direct attached device ID for this phy. 317 * 318 * @iphy The phy for which the direct attached device id is to 319 * be assigned. 320 * @device_id The direct attached device ID to assign to the phy. 321 * This will either be the RNi for the device or an invalid RNi if there 322 * is no current device assigned to the phy. 323 */ 324 void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id) 325 { 326 u32 tl_control; 327 328 writel(device_id, &iphy->transport_layer_registers->stp_rni); 329 330 /* 331 * The read should guarantee that the first write gets posted 332 * before the next write 333 */ 334 tl_control = readl(&iphy->transport_layer_registers->control); 335 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); 336 writel(tl_control, &iphy->transport_layer_registers->control); 337 } 338 339 static void sci_phy_suspend(struct isci_phy *iphy) 340 { 341 u32 scu_sas_pcfg_value; 342 343 scu_sas_pcfg_value = 344 readl(&iphy->link_layer_registers->phy_configuration); 345 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 346 writel(scu_sas_pcfg_value, 347 &iphy->link_layer_registers->phy_configuration); 348 349 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); 350 } 351 352 void sci_phy_resume(struct isci_phy *iphy) 353 { 354 u32 scu_sas_pcfg_value; 355 356 scu_sas_pcfg_value = 357 readl(&iphy->link_layer_registers->phy_configuration); 358 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); 359 writel(scu_sas_pcfg_value, 360 &iphy->link_layer_registers->phy_configuration); 361 } 362 363 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 364 { 365 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high); 366 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low); 367 } 368 369 void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) 370 { 371 struct sas_identify_frame *iaf; 372 373 iaf = &iphy->frame_rcvd.iaf; 374 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE); 375 } 376 377 void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto) 378 { 379 proto->all = readl(&iphy->link_layer_registers->transmit_identification); 380 } 381 382 enum sci_status sci_phy_start(struct isci_phy *iphy) 383 { 384 enum sci_phy_states state = iphy->sm.current_state_id; 385 386 if (state != SCI_PHY_STOPPED) { 387 dev_dbg(sciphy_to_dev(iphy), 388 "%s: in wrong state: %d\n", __func__, state); 389 return SCI_FAILURE_INVALID_STATE; 390 } 391 392 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 393 return SCI_SUCCESS; 394 } 395 396 enum sci_status sci_phy_stop(struct isci_phy *iphy) 397 { 398 enum sci_phy_states state = iphy->sm.current_state_id; 399 400 switch (state) { 401 case SCI_PHY_SUB_INITIAL: 402 case SCI_PHY_SUB_AWAIT_OSSP_EN: 403 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 404 case SCI_PHY_SUB_AWAIT_SAS_POWER: 405 case SCI_PHY_SUB_AWAIT_SATA_POWER: 406 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 407 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 408 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 409 case SCI_PHY_SUB_FINAL: 410 case SCI_PHY_READY: 411 break; 412 default: 413 dev_dbg(sciphy_to_dev(iphy), 414 "%s: in wrong state: %d\n", __func__, state); 415 return SCI_FAILURE_INVALID_STATE; 416 } 417 418 sci_change_state(&iphy->sm, SCI_PHY_STOPPED); 419 return SCI_SUCCESS; 420 } 421 422 enum sci_status sci_phy_reset(struct isci_phy *iphy) 423 { 424 enum sci_phy_states state = iphy->sm.current_state_id; 425 426 if (state != SCI_PHY_READY) { 427 dev_dbg(sciphy_to_dev(iphy), 428 "%s: in wrong state: %d\n", __func__, state); 429 return SCI_FAILURE_INVALID_STATE; 430 } 431 432 sci_change_state(&iphy->sm, SCI_PHY_RESETTING); 433 return SCI_SUCCESS; 434 } 435 436 enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy) 437 { 438 enum sci_phy_states state = iphy->sm.current_state_id; 439 440 switch (state) { 441 case SCI_PHY_SUB_AWAIT_SAS_POWER: { 442 u32 enable_spinup; 443 444 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 445 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); 446 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control); 447 448 /* Change state to the final state this substate machine has run to completion */ 449 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 450 451 return SCI_SUCCESS; 452 } 453 case SCI_PHY_SUB_AWAIT_SATA_POWER: { 454 u32 scu_sas_pcfg_value; 455 456 /* Release the spinup hold state and reset the OOB state machine */ 457 scu_sas_pcfg_value = 458 readl(&iphy->link_layer_registers->phy_configuration); 459 scu_sas_pcfg_value &= 460 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); 461 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 462 writel(scu_sas_pcfg_value, 463 &iphy->link_layer_registers->phy_configuration); 464 465 /* Now restart the OOB operation */ 466 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 467 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 468 writel(scu_sas_pcfg_value, 469 &iphy->link_layer_registers->phy_configuration); 470 471 /* Change state to the final state this substate machine has run to completion */ 472 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN); 473 474 return SCI_SUCCESS; 475 } 476 default: 477 dev_dbg(sciphy_to_dev(iphy), 478 "%s: in wrong state: %d\n", __func__, state); 479 return SCI_FAILURE_INVALID_STATE; 480 } 481 } 482 483 static void sci_phy_start_sas_link_training(struct isci_phy *iphy) 484 { 485 /* continue the link training for the phy as if it were a SAS PHY 486 * instead of a SATA PHY. This is done because the completion queue had a SAS 487 * PHY DETECTED event when the state machine was expecting a SATA PHY event. 488 */ 489 u32 phy_control; 490 491 phy_control = readl(&iphy->link_layer_registers->phy_configuration); 492 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); 493 writel(phy_control, 494 &iphy->link_layer_registers->phy_configuration); 495 496 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN); 497 498 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS; 499 } 500 501 static void sci_phy_start_sata_link_training(struct isci_phy *iphy) 502 { 503 /* This method continues the link training for the phy as if it were a SATA PHY 504 * instead of a SAS PHY. This is done because the completion queue had a SATA 505 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none 506 */ 507 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER); 508 509 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; 510 } 511 512 /** 513 * sci_phy_complete_link_training - perform processing common to 514 * all protocols upon completion of link training. 515 * @sci_phy: This parameter specifies the phy object for which link training 516 * has completed. 517 * @max_link_rate: This parameter specifies the maximum link rate to be 518 * associated with this phy. 519 * @next_state: This parameter specifies the next state for the phy's starting 520 * sub-state machine. 521 * 522 */ 523 static void sci_phy_complete_link_training(struct isci_phy *iphy, 524 enum sas_linkrate max_link_rate, 525 u32 next_state) 526 { 527 iphy->max_negotiated_speed = max_link_rate; 528 529 sci_change_state(&iphy->sm, next_state); 530 } 531 532 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code) 533 { 534 enum sci_phy_states state = iphy->sm.current_state_id; 535 536 switch (state) { 537 case SCI_PHY_SUB_AWAIT_OSSP_EN: 538 switch (scu_get_event_code(event_code)) { 539 case SCU_EVENT_SAS_PHY_DETECTED: 540 sci_phy_start_sas_link_training(iphy); 541 iphy->is_in_link_training = true; 542 break; 543 case SCU_EVENT_SATA_SPINUP_HOLD: 544 sci_phy_start_sata_link_training(iphy); 545 iphy->is_in_link_training = true; 546 break; 547 default: 548 dev_dbg(sciphy_to_dev(iphy), 549 "%s: PHY starting substate machine received " 550 "unexpected event_code %x\n", 551 __func__, 552 event_code); 553 return SCI_FAILURE; 554 } 555 return SCI_SUCCESS; 556 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 557 switch (scu_get_event_code(event_code)) { 558 case SCU_EVENT_SAS_PHY_DETECTED: 559 /* 560 * Why is this being reported again by the controller? 561 * We would re-enter this state so just stay here */ 562 break; 563 case SCU_EVENT_SAS_15: 564 case SCU_EVENT_SAS_15_SSC: 565 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 566 SCI_PHY_SUB_AWAIT_IAF_UF); 567 break; 568 case SCU_EVENT_SAS_30: 569 case SCU_EVENT_SAS_30_SSC: 570 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 571 SCI_PHY_SUB_AWAIT_IAF_UF); 572 break; 573 case SCU_EVENT_SAS_60: 574 case SCU_EVENT_SAS_60_SSC: 575 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 576 SCI_PHY_SUB_AWAIT_IAF_UF); 577 break; 578 case SCU_EVENT_SATA_SPINUP_HOLD: 579 /* 580 * We were doing SAS PHY link training and received a SATA PHY event 581 * continue OOB/SN as if this were a SATA PHY */ 582 sci_phy_start_sata_link_training(iphy); 583 break; 584 case SCU_EVENT_LINK_FAILURE: 585 /* Link failure change state back to the starting state */ 586 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 587 break; 588 default: 589 dev_warn(sciphy_to_dev(iphy), 590 "%s: PHY starting substate machine received " 591 "unexpected event_code %x\n", 592 __func__, event_code); 593 594 return SCI_FAILURE; 595 break; 596 } 597 return SCI_SUCCESS; 598 case SCI_PHY_SUB_AWAIT_IAF_UF: 599 switch (scu_get_event_code(event_code)) { 600 case SCU_EVENT_SAS_PHY_DETECTED: 601 /* Backup the state machine */ 602 sci_phy_start_sas_link_training(iphy); 603 break; 604 case SCU_EVENT_SATA_SPINUP_HOLD: 605 /* We were doing SAS PHY link training and received a 606 * SATA PHY event continue OOB/SN as if this were a 607 * SATA PHY 608 */ 609 sci_phy_start_sata_link_training(iphy); 610 break; 611 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: 612 case SCU_EVENT_LINK_FAILURE: 613 case SCU_EVENT_HARD_RESET_RECEIVED: 614 /* Start the oob/sn state machine over again */ 615 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 616 break; 617 default: 618 dev_warn(sciphy_to_dev(iphy), 619 "%s: PHY starting substate machine received " 620 "unexpected event_code %x\n", 621 __func__, event_code); 622 return SCI_FAILURE; 623 } 624 return SCI_SUCCESS; 625 case SCI_PHY_SUB_AWAIT_SAS_POWER: 626 switch (scu_get_event_code(event_code)) { 627 case SCU_EVENT_LINK_FAILURE: 628 /* Link failure change state back to the starting state */ 629 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 630 break; 631 default: 632 dev_warn(sciphy_to_dev(iphy), 633 "%s: PHY starting substate machine received unexpected " 634 "event_code %x\n", 635 __func__, 636 event_code); 637 return SCI_FAILURE; 638 } 639 return SCI_SUCCESS; 640 case SCI_PHY_SUB_AWAIT_SATA_POWER: 641 switch (scu_get_event_code(event_code)) { 642 case SCU_EVENT_LINK_FAILURE: 643 /* Link failure change state back to the starting state */ 644 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 645 break; 646 case SCU_EVENT_SATA_SPINUP_HOLD: 647 /* These events are received every 10ms and are 648 * expected while in this state 649 */ 650 break; 651 652 case SCU_EVENT_SAS_PHY_DETECTED: 653 /* There has been a change in the phy type before OOB/SN for the 654 * SATA finished start down the SAS link traning path. 655 */ 656 sci_phy_start_sas_link_training(iphy); 657 break; 658 659 default: 660 dev_warn(sciphy_to_dev(iphy), 661 "%s: PHY starting substate machine received " 662 "unexpected event_code %x\n", 663 __func__, event_code); 664 665 return SCI_FAILURE; 666 } 667 return SCI_SUCCESS; 668 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 669 switch (scu_get_event_code(event_code)) { 670 case SCU_EVENT_LINK_FAILURE: 671 /* Link failure change state back to the starting state */ 672 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 673 break; 674 case SCU_EVENT_SATA_SPINUP_HOLD: 675 /* These events might be received since we dont know how many may be in 676 * the completion queue while waiting for power 677 */ 678 break; 679 case SCU_EVENT_SATA_PHY_DETECTED: 680 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; 681 682 /* We have received the SATA PHY notification change state */ 683 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 684 break; 685 case SCU_EVENT_SAS_PHY_DETECTED: 686 /* There has been a change in the phy type before OOB/SN for the 687 * SATA finished start down the SAS link traning path. 688 */ 689 sci_phy_start_sas_link_training(iphy); 690 break; 691 default: 692 dev_warn(sciphy_to_dev(iphy), 693 "%s: PHY starting substate machine received " 694 "unexpected event_code %x\n", 695 __func__, 696 event_code); 697 698 return SCI_FAILURE;; 699 } 700 return SCI_SUCCESS; 701 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 702 switch (scu_get_event_code(event_code)) { 703 case SCU_EVENT_SATA_PHY_DETECTED: 704 /* 705 * The hardware reports multiple SATA PHY detected events 706 * ignore the extras */ 707 break; 708 case SCU_EVENT_SATA_15: 709 case SCU_EVENT_SATA_15_SSC: 710 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, 711 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 712 break; 713 case SCU_EVENT_SATA_30: 714 case SCU_EVENT_SATA_30_SSC: 715 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, 716 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 717 break; 718 case SCU_EVENT_SATA_60: 719 case SCU_EVENT_SATA_60_SSC: 720 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, 721 SCI_PHY_SUB_AWAIT_SIG_FIS_UF); 722 break; 723 case SCU_EVENT_LINK_FAILURE: 724 /* Link failure change state back to the starting state */ 725 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 726 break; 727 case SCU_EVENT_SAS_PHY_DETECTED: 728 /* 729 * There has been a change in the phy type before OOB/SN for the 730 * SATA finished start down the SAS link traning path. */ 731 sci_phy_start_sas_link_training(iphy); 732 break; 733 default: 734 dev_warn(sciphy_to_dev(iphy), 735 "%s: PHY starting substate machine received " 736 "unexpected event_code %x\n", 737 __func__, event_code); 738 739 return SCI_FAILURE; 740 } 741 742 return SCI_SUCCESS; 743 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 744 switch (scu_get_event_code(event_code)) { 745 case SCU_EVENT_SATA_PHY_DETECTED: 746 /* Backup the state machine */ 747 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); 748 break; 749 750 case SCU_EVENT_LINK_FAILURE: 751 /* Link failure change state back to the starting state */ 752 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 753 break; 754 755 default: 756 dev_warn(sciphy_to_dev(iphy), 757 "%s: PHY starting substate machine received " 758 "unexpected event_code %x\n", 759 __func__, 760 event_code); 761 762 return SCI_FAILURE; 763 } 764 return SCI_SUCCESS; 765 case SCI_PHY_READY: 766 switch (scu_get_event_code(event_code)) { 767 case SCU_EVENT_LINK_FAILURE: 768 /* Link failure change state back to the starting state */ 769 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 770 break; 771 case SCU_EVENT_BROADCAST_CHANGE: 772 /* Broadcast change received. Notify the port. */ 773 if (phy_get_non_dummy_port(iphy) != NULL) 774 sci_port_broadcast_change_received(iphy->owning_port, iphy); 775 else 776 iphy->bcn_received_while_port_unassigned = true; 777 break; 778 default: 779 dev_warn(sciphy_to_dev(iphy), 780 "%sP SCIC PHY 0x%p ready state machine received " 781 "unexpected event_code %x\n", 782 __func__, iphy, event_code); 783 return SCI_FAILURE_INVALID_STATE; 784 } 785 return SCI_SUCCESS; 786 case SCI_PHY_RESETTING: 787 switch (scu_get_event_code(event_code)) { 788 case SCU_EVENT_HARD_RESET_TRANSMITTED: 789 /* Link failure change state back to the starting state */ 790 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 791 break; 792 default: 793 dev_warn(sciphy_to_dev(iphy), 794 "%s: SCIC PHY 0x%p resetting state machine received " 795 "unexpected event_code %x\n", 796 __func__, iphy, event_code); 797 798 return SCI_FAILURE_INVALID_STATE; 799 break; 800 } 801 return SCI_SUCCESS; 802 default: 803 dev_dbg(sciphy_to_dev(iphy), 804 "%s: in wrong state: %d\n", __func__, state); 805 return SCI_FAILURE_INVALID_STATE; 806 } 807 } 808 809 enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index) 810 { 811 enum sci_phy_states state = iphy->sm.current_state_id; 812 struct isci_host *ihost = iphy->owning_port->owning_controller; 813 enum sci_status result; 814 unsigned long flags; 815 816 switch (state) { 817 case SCI_PHY_SUB_AWAIT_IAF_UF: { 818 u32 *frame_words; 819 struct sas_identify_frame iaf; 820 821 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 822 frame_index, 823 (void **)&frame_words); 824 825 if (result != SCI_SUCCESS) 826 return result; 827 828 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32)); 829 if (iaf.frame_type == 0) { 830 u32 state; 831 832 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 833 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf)); 834 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 835 if (iaf.smp_tport) { 836 /* We got the IAF for an expander PHY go to the final 837 * state since there are no power requirements for 838 * expander phys. 839 */ 840 state = SCI_PHY_SUB_FINAL; 841 } else { 842 /* We got the IAF we can now go to the await spinup 843 * semaphore state 844 */ 845 state = SCI_PHY_SUB_AWAIT_SAS_POWER; 846 } 847 sci_change_state(&iphy->sm, state); 848 result = SCI_SUCCESS; 849 } else 850 dev_warn(sciphy_to_dev(iphy), 851 "%s: PHY starting substate machine received " 852 "unexpected frame id %x\n", 853 __func__, frame_index); 854 855 sci_controller_release_frame(ihost, frame_index); 856 return result; 857 } 858 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: { 859 struct dev_to_host_fis *frame_header; 860 u32 *fis_frame_data; 861 862 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, 863 frame_index, 864 (void **)&frame_header); 865 866 if (result != SCI_SUCCESS) 867 return result; 868 869 if ((frame_header->fis_type == FIS_REGD2H) && 870 !(frame_header->status & ATA_BUSY)) { 871 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, 872 frame_index, 873 (void **)&fis_frame_data); 874 875 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); 876 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis, 877 frame_header, 878 fis_frame_data); 879 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); 880 881 /* got IAF we can now go to the await spinup semaphore state */ 882 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); 883 884 result = SCI_SUCCESS; 885 } else 886 dev_warn(sciphy_to_dev(iphy), 887 "%s: PHY starting substate machine received " 888 "unexpected frame id %x\n", 889 __func__, frame_index); 890 891 /* Regardless of the result we are done with this frame with it */ 892 sci_controller_release_frame(ihost, frame_index); 893 894 return result; 895 } 896 default: 897 dev_dbg(sciphy_to_dev(iphy), 898 "%s: in wrong state: %d\n", __func__, state); 899 return SCI_FAILURE_INVALID_STATE; 900 } 901 902 } 903 904 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm) 905 { 906 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 907 908 /* This is just an temporary state go off to the starting state */ 909 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN); 910 } 911 912 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm) 913 { 914 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 915 struct isci_host *ihost = iphy->owning_port->owning_controller; 916 917 sci_controller_power_control_queue_insert(ihost, iphy); 918 } 919 920 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm) 921 { 922 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 923 struct isci_host *ihost = iphy->owning_port->owning_controller; 924 925 sci_controller_power_control_queue_remove(ihost, iphy); 926 } 927 928 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm) 929 { 930 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 931 struct isci_host *ihost = iphy->owning_port->owning_controller; 932 933 sci_controller_power_control_queue_insert(ihost, iphy); 934 } 935 936 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm) 937 { 938 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 939 struct isci_host *ihost = iphy->owning_port->owning_controller; 940 941 sci_controller_power_control_queue_remove(ihost, iphy); 942 } 943 944 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm) 945 { 946 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 947 948 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 949 } 950 951 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm) 952 { 953 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 954 955 sci_del_timer(&iphy->sata_timer); 956 } 957 958 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm) 959 { 960 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 961 962 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); 963 } 964 965 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm) 966 { 967 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 968 969 sci_del_timer(&iphy->sata_timer); 970 } 971 972 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm) 973 { 974 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 975 976 if (sci_port_link_detected(iphy->owning_port, iphy)) { 977 978 /* 979 * Clear the PE suspend condition so we can actually 980 * receive SIG FIS 981 * The hardware will not respond to the XRDY until the PE 982 * suspend condition is cleared. 983 */ 984 sci_phy_resume(iphy); 985 986 sci_mod_timer(&iphy->sata_timer, 987 SCIC_SDS_SIGNATURE_FIS_TIMEOUT); 988 } else 989 iphy->is_in_link_training = false; 990 } 991 992 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm) 993 { 994 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 995 996 sci_del_timer(&iphy->sata_timer); 997 } 998 999 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm) 1000 { 1001 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1002 1003 /* State machine has run to completion so exit out and change 1004 * the base state machine to the ready state 1005 */ 1006 sci_change_state(&iphy->sm, SCI_PHY_READY); 1007 } 1008 1009 /** 1010 * 1011 * @sci_phy: This is the struct isci_phy object to stop. 1012 * 1013 * This method will stop the struct isci_phy object. This does not reset the 1014 * protocol engine it just suspends it and places it in a state where it will 1015 * not cause the end device to power up. none 1016 */ 1017 static void scu_link_layer_stop_protocol_engine( 1018 struct isci_phy *iphy) 1019 { 1020 u32 scu_sas_pcfg_value; 1021 u32 enable_spinup_value; 1022 1023 /* Suspend the protocol engine and place it in a sata spinup hold state */ 1024 scu_sas_pcfg_value = 1025 readl(&iphy->link_layer_registers->phy_configuration); 1026 scu_sas_pcfg_value |= 1027 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1028 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | 1029 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)); 1030 writel(scu_sas_pcfg_value, 1031 &iphy->link_layer_registers->phy_configuration); 1032 1033 /* Disable the notify enable spinup primitives */ 1034 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control); 1035 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); 1036 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control); 1037 } 1038 1039 /** 1040 * 1041 * 1042 * This method will start the OOB/SN state machine for this struct isci_phy object. 1043 */ 1044 static void scu_link_layer_start_oob( 1045 struct isci_phy *iphy) 1046 { 1047 u32 scu_sas_pcfg_value; 1048 1049 scu_sas_pcfg_value = 1050 readl(&iphy->link_layer_registers->phy_configuration); 1051 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1052 scu_sas_pcfg_value &= 1053 ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | 1054 SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); 1055 writel(scu_sas_pcfg_value, 1056 &iphy->link_layer_registers->phy_configuration); 1057 } 1058 1059 /** 1060 * 1061 * 1062 * This method will transmit a hard reset request on the specified phy. The SCU 1063 * hardware requires that we reset the OOB state machine and set the hard reset 1064 * bit in the phy configuration register. We then must start OOB over with the 1065 * hard reset bit set. 1066 */ 1067 static void scu_link_layer_tx_hard_reset( 1068 struct isci_phy *iphy) 1069 { 1070 u32 phy_configuration_value; 1071 1072 /* 1073 * SAS Phys must wait for the HARD_RESET_TX event notification to transition 1074 * to the starting state. */ 1075 phy_configuration_value = 1076 readl(&iphy->link_layer_registers->phy_configuration); 1077 phy_configuration_value |= 1078 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | 1079 SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); 1080 writel(phy_configuration_value, 1081 &iphy->link_layer_registers->phy_configuration); 1082 1083 /* Now take the OOB state machine out of reset */ 1084 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); 1085 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); 1086 writel(phy_configuration_value, 1087 &iphy->link_layer_registers->phy_configuration); 1088 } 1089 1090 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm) 1091 { 1092 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1093 struct isci_port *iport = iphy->owning_port; 1094 struct isci_host *ihost = iport->owning_controller; 1095 1096 /* 1097 * @todo We need to get to the controller to place this PE in a 1098 * reset state 1099 */ 1100 sci_del_timer(&iphy->sata_timer); 1101 1102 scu_link_layer_stop_protocol_engine(iphy); 1103 1104 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL) 1105 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1106 } 1107 1108 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm) 1109 { 1110 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1111 struct isci_port *iport = iphy->owning_port; 1112 struct isci_host *ihost = iport->owning_controller; 1113 1114 scu_link_layer_stop_protocol_engine(iphy); 1115 scu_link_layer_start_oob(iphy); 1116 1117 /* We don't know what kind of phy we are going to be just yet */ 1118 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; 1119 iphy->bcn_received_while_port_unassigned = false; 1120 1121 if (iphy->sm.previous_state_id == SCI_PHY_READY) 1122 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); 1123 1124 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL); 1125 } 1126 1127 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm) 1128 { 1129 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1130 struct isci_port *iport = iphy->owning_port; 1131 struct isci_host *ihost = iport->owning_controller; 1132 1133 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy); 1134 } 1135 1136 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm) 1137 { 1138 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1139 1140 sci_phy_suspend(iphy); 1141 } 1142 1143 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm) 1144 { 1145 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); 1146 1147 /* The phy is being reset, therefore deactivate it from the port. In 1148 * the resetting state we don't notify the user regarding link up and 1149 * link down notifications 1150 */ 1151 sci_port_deactivate_phy(iphy->owning_port, iphy, false); 1152 1153 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { 1154 scu_link_layer_tx_hard_reset(iphy); 1155 } else { 1156 /* The SCU does not need to have a discrete reset state so 1157 * just go back to the starting state. 1158 */ 1159 sci_change_state(&iphy->sm, SCI_PHY_STARTING); 1160 } 1161 } 1162 1163 static const struct sci_base_state sci_phy_state_table[] = { 1164 [SCI_PHY_INITIAL] = { }, 1165 [SCI_PHY_STOPPED] = { 1166 .enter_state = sci_phy_stopped_state_enter, 1167 }, 1168 [SCI_PHY_STARTING] = { 1169 .enter_state = sci_phy_starting_state_enter, 1170 }, 1171 [SCI_PHY_SUB_INITIAL] = { 1172 .enter_state = sci_phy_starting_initial_substate_enter, 1173 }, 1174 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { }, 1175 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { }, 1176 [SCI_PHY_SUB_AWAIT_IAF_UF] = { }, 1177 [SCI_PHY_SUB_AWAIT_SAS_POWER] = { 1178 .enter_state = sci_phy_starting_await_sas_power_substate_enter, 1179 .exit_state = sci_phy_starting_await_sas_power_substate_exit, 1180 }, 1181 [SCI_PHY_SUB_AWAIT_SATA_POWER] = { 1182 .enter_state = sci_phy_starting_await_sata_power_substate_enter, 1183 .exit_state = sci_phy_starting_await_sata_power_substate_exit 1184 }, 1185 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = { 1186 .enter_state = sci_phy_starting_await_sata_phy_substate_enter, 1187 .exit_state = sci_phy_starting_await_sata_phy_substate_exit 1188 }, 1189 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = { 1190 .enter_state = sci_phy_starting_await_sata_speed_substate_enter, 1191 .exit_state = sci_phy_starting_await_sata_speed_substate_exit 1192 }, 1193 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = { 1194 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter, 1195 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit 1196 }, 1197 [SCI_PHY_SUB_FINAL] = { 1198 .enter_state = sci_phy_starting_final_substate_enter, 1199 }, 1200 [SCI_PHY_READY] = { 1201 .enter_state = sci_phy_ready_state_enter, 1202 .exit_state = sci_phy_ready_state_exit, 1203 }, 1204 [SCI_PHY_RESETTING] = { 1205 .enter_state = sci_phy_resetting_state_enter, 1206 }, 1207 [SCI_PHY_FINAL] = { }, 1208 }; 1209 1210 void sci_phy_construct(struct isci_phy *iphy, 1211 struct isci_port *iport, u8 phy_index) 1212 { 1213 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL); 1214 1215 /* Copy the rest of the input data to our locals */ 1216 iphy->owning_port = iport; 1217 iphy->phy_index = phy_index; 1218 iphy->bcn_received_while_port_unassigned = false; 1219 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; 1220 iphy->link_layer_registers = NULL; 1221 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN; 1222 1223 /* Create the SIGNATURE FIS Timeout timer for this phy */ 1224 sci_init_timer(&iphy->sata_timer, phy_sata_timeout); 1225 } 1226 1227 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index) 1228 { 1229 struct sci_oem_params *oem = &ihost->oem_parameters; 1230 u64 sci_sas_addr; 1231 __be64 sas_addr; 1232 1233 sci_sas_addr = oem->phys[index].sas_address.high; 1234 sci_sas_addr <<= 32; 1235 sci_sas_addr |= oem->phys[index].sas_address.low; 1236 sas_addr = cpu_to_be64(sci_sas_addr); 1237 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr)); 1238 1239 iphy->isci_port = NULL; 1240 iphy->sas_phy.enabled = 0; 1241 iphy->sas_phy.id = index; 1242 iphy->sas_phy.sas_addr = &iphy->sas_addr[0]; 1243 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd; 1244 iphy->sas_phy.ha = &ihost->sas_ha; 1245 iphy->sas_phy.lldd_phy = iphy; 1246 iphy->sas_phy.enabled = 1; 1247 iphy->sas_phy.class = SAS; 1248 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL; 1249 iphy->sas_phy.tproto = 0; 1250 iphy->sas_phy.type = PHY_TYPE_PHYSICAL; 1251 iphy->sas_phy.role = PHY_ROLE_INITIATOR; 1252 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED; 1253 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN; 1254 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd)); 1255 } 1256 1257 1258 /** 1259 * isci_phy_control() - This function is one of the SAS Domain Template 1260 * functions. This is a phy management function. 1261 * @phy: This parameter specifies the sphy being controlled. 1262 * @func: This parameter specifies the phy control function being invoked. 1263 * @buf: This parameter is specific to the phy function being invoked. 1264 * 1265 * status, zero indicates success. 1266 */ 1267 int isci_phy_control(struct asd_sas_phy *sas_phy, 1268 enum phy_func func, 1269 void *buf) 1270 { 1271 int ret = 0; 1272 struct isci_phy *iphy = sas_phy->lldd_phy; 1273 struct isci_port *iport = iphy->isci_port; 1274 struct isci_host *ihost = sas_phy->ha->lldd_ha; 1275 unsigned long flags; 1276 1277 dev_dbg(&ihost->pdev->dev, 1278 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n", 1279 __func__, sas_phy, func, buf, iphy, iport); 1280 1281 switch (func) { 1282 case PHY_FUNC_DISABLE: 1283 spin_lock_irqsave(&ihost->scic_lock, flags); 1284 sci_phy_stop(iphy); 1285 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1286 break; 1287 1288 case PHY_FUNC_LINK_RESET: 1289 spin_lock_irqsave(&ihost->scic_lock, flags); 1290 sci_phy_stop(iphy); 1291 sci_phy_start(iphy); 1292 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1293 break; 1294 1295 case PHY_FUNC_HARD_RESET: 1296 if (!iport) 1297 return -ENODEV; 1298 1299 /* Perform the port reset. */ 1300 ret = isci_port_perform_hard_reset(ihost, iport, iphy); 1301 1302 break; 1303 1304 default: 1305 dev_dbg(&ihost->pdev->dev, 1306 "%s: phy %p; func %d NOT IMPLEMENTED!\n", 1307 __func__, sas_phy, func); 1308 ret = -ENOSYS; 1309 break; 1310 } 1311 return ret; 1312 } 1313