xref: /openbmc/linux/drivers/scsi/isci/host.c (revision ae904d15cf344bcb426f63982016f6bacc45825b)
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69 
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71 
72 #define smu_max_ports(dcc_value) \
73 	(\
74 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76 	)
77 
78 #define smu_max_task_contexts(dcc_value)	\
79 	(\
80 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82 	)
83 
84 #define smu_max_rncs(dcc_value) \
85 	(\
86 		(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87 		 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88 	)
89 
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91 
92 /**
93  *
94  *
95  * The number of milliseconds to wait while a given phy is consuming power
96  * before allowing another set of phys to consume power. Ultimately, this will
97  * be specified by OEM parameter.
98  */
99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
100 
101 /**
102  * NORMALIZE_PUT_POINTER() -
103  *
104  * This macro will normalize the completion queue put pointer so its value can
105  * be used as an array inde
106  */
107 #define NORMALIZE_PUT_POINTER(x) \
108 	((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
109 
110 
111 /**
112  * NORMALIZE_EVENT_POINTER() -
113  *
114  * This macro will normalize the completion queue event entry so its value can
115  * be used as an index.
116  */
117 #define NORMALIZE_EVENT_POINTER(x) \
118 	(\
119 		((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
120 		>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT	\
121 	)
122 
123 /**
124  * NORMALIZE_GET_POINTER() -
125  *
126  * This macro will normalize the completion queue get pointer so its value can
127  * be used as an index into an array
128  */
129 #define NORMALIZE_GET_POINTER(x) \
130 	((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
131 
132 /**
133  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
134  *
135  * This macro will normalize the completion queue cycle pointer so it matches
136  * the completion queue cycle bit
137  */
138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
139 	((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
140 
141 /**
142  * COMPLETION_QUEUE_CYCLE_BIT() -
143  *
144  * This macro will return the cycle bit of the completion queue entry
145  */
146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
147 
148 /* Init the state machine and call the state entry function (if any) */
149 void sci_init_sm(struct sci_base_state_machine *sm,
150 		 const struct sci_base_state *state_table, u32 initial_state)
151 {
152 	sci_state_transition_t handler;
153 
154 	sm->initial_state_id    = initial_state;
155 	sm->previous_state_id   = initial_state;
156 	sm->current_state_id    = initial_state;
157 	sm->state_table         = state_table;
158 
159 	handler = sm->state_table[initial_state].enter_state;
160 	if (handler)
161 		handler(sm);
162 }
163 
164 /* Call the state exit fn, update the current state, call the state entry fn */
165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
166 {
167 	sci_state_transition_t handler;
168 
169 	handler = sm->state_table[sm->current_state_id].exit_state;
170 	if (handler)
171 		handler(sm);
172 
173 	sm->previous_state_id = sm->current_state_id;
174 	sm->current_state_id = next_state;
175 
176 	handler = sm->state_table[sm->current_state_id].enter_state;
177 	if (handler)
178 		handler(sm);
179 }
180 
181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
182 {
183 	u32 get_value = ihost->completion_queue_get;
184 	u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
185 
186 	if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
187 	    COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
188 		return true;
189 
190 	return false;
191 }
192 
193 static bool sci_controller_isr(struct isci_host *ihost)
194 {
195 	if (sci_controller_completion_queue_has_entries(ihost)) {
196 		return true;
197 	} else {
198 		/*
199 		 * we have a spurious interrupt it could be that we have already
200 		 * emptied the completion queue from a previous interrupt */
201 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
202 
203 		/*
204 		 * There is a race in the hardware that could cause us not to be notified
205 		 * of an interrupt completion if we do not take this step.  We will mask
206 		 * then unmask the interrupts so if there is another interrupt pending
207 		 * the clearing of the interrupt source we get the next interrupt message. */
208 		writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
209 		writel(0, &ihost->smu_registers->interrupt_mask);
210 	}
211 
212 	return false;
213 }
214 
215 irqreturn_t isci_msix_isr(int vec, void *data)
216 {
217 	struct isci_host *ihost = data;
218 
219 	if (sci_controller_isr(ihost))
220 		tasklet_schedule(&ihost->completion_tasklet);
221 
222 	return IRQ_HANDLED;
223 }
224 
225 static bool sci_controller_error_isr(struct isci_host *ihost)
226 {
227 	u32 interrupt_status;
228 
229 	interrupt_status =
230 		readl(&ihost->smu_registers->interrupt_status);
231 	interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
232 
233 	if (interrupt_status != 0) {
234 		/*
235 		 * There is an error interrupt pending so let it through and handle
236 		 * in the callback */
237 		return true;
238 	}
239 
240 	/*
241 	 * There is a race in the hardware that could cause us not to be notified
242 	 * of an interrupt completion if we do not take this step.  We will mask
243 	 * then unmask the error interrupts so if there was another interrupt
244 	 * pending we will be notified.
245 	 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
246 	writel(0xff, &ihost->smu_registers->interrupt_mask);
247 	writel(0, &ihost->smu_registers->interrupt_mask);
248 
249 	return false;
250 }
251 
252 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
253 {
254 	u32 index = SCU_GET_COMPLETION_INDEX(ent);
255 	struct isci_request *ireq = ihost->reqs[index];
256 
257 	/* Make sure that we really want to process this IO request */
258 	if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
259 	    ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
260 	    ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
261 		/* Yep this is a valid io request pass it along to the
262 		 * io request handler
263 		 */
264 		sci_io_request_tc_completion(ireq, ent);
265 }
266 
267 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
268 {
269 	u32 index;
270 	struct isci_request *ireq;
271 	struct isci_remote_device *idev;
272 
273 	index = SCU_GET_COMPLETION_INDEX(ent);
274 
275 	switch (scu_get_command_request_type(ent)) {
276 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
277 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
278 		ireq = ihost->reqs[index];
279 		dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
280 			 __func__, ent, ireq);
281 		/* @todo For a post TC operation we need to fail the IO
282 		 * request
283 		 */
284 		break;
285 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
286 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
287 	case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
288 		idev = ihost->device_table[index];
289 		dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
290 			 __func__, ent, idev);
291 		/* @todo For a port RNC operation we need to fail the
292 		 * device
293 		 */
294 		break;
295 	default:
296 		dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
297 			 __func__, ent);
298 		break;
299 	}
300 }
301 
302 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
303 {
304 	u32 index;
305 	u32 frame_index;
306 
307 	struct scu_unsolicited_frame_header *frame_header;
308 	struct isci_phy *iphy;
309 	struct isci_remote_device *idev;
310 
311 	enum sci_status result = SCI_FAILURE;
312 
313 	frame_index = SCU_GET_FRAME_INDEX(ent);
314 
315 	frame_header = ihost->uf_control.buffers.array[frame_index].header;
316 	ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
317 
318 	if (SCU_GET_FRAME_ERROR(ent)) {
319 		/*
320 		 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
321 		 * /       this cause a problem? We expect the phy initialization will
322 		 * /       fail if there is an error in the frame. */
323 		sci_controller_release_frame(ihost, frame_index);
324 		return;
325 	}
326 
327 	if (frame_header->is_address_frame) {
328 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
329 		iphy = &ihost->phys[index];
330 		result = sci_phy_frame_handler(iphy, frame_index);
331 	} else {
332 
333 		index = SCU_GET_COMPLETION_INDEX(ent);
334 
335 		if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
336 			/*
337 			 * This is a signature fis or a frame from a direct attached SATA
338 			 * device that has not yet been created.  In either case forwared
339 			 * the frame to the PE and let it take care of the frame data. */
340 			index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
341 			iphy = &ihost->phys[index];
342 			result = sci_phy_frame_handler(iphy, frame_index);
343 		} else {
344 			if (index < ihost->remote_node_entries)
345 				idev = ihost->device_table[index];
346 			else
347 				idev = NULL;
348 
349 			if (idev != NULL)
350 				result = sci_remote_device_frame_handler(idev, frame_index);
351 			else
352 				sci_controller_release_frame(ihost, frame_index);
353 		}
354 	}
355 
356 	if (result != SCI_SUCCESS) {
357 		/*
358 		 * / @todo Is there any reason to report some additional error message
359 		 * /       when we get this failure notifiction? */
360 	}
361 }
362 
363 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
364 {
365 	struct isci_remote_device *idev;
366 	struct isci_request *ireq;
367 	struct isci_phy *iphy;
368 	u32 index;
369 
370 	index = SCU_GET_COMPLETION_INDEX(ent);
371 
372 	switch (scu_get_event_type(ent)) {
373 	case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
374 		/* / @todo The driver did something wrong and we need to fix the condtion. */
375 		dev_err(&ihost->pdev->dev,
376 			"%s: SCIC Controller 0x%p received SMU command error "
377 			"0x%x\n",
378 			__func__,
379 			ihost,
380 			ent);
381 		break;
382 
383 	case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
384 	case SCU_EVENT_TYPE_SMU_ERROR:
385 	case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
386 		/*
387 		 * / @todo This is a hardware failure and its likely that we want to
388 		 * /       reset the controller. */
389 		dev_err(&ihost->pdev->dev,
390 			"%s: SCIC Controller 0x%p received fatal controller "
391 			"event  0x%x\n",
392 			__func__,
393 			ihost,
394 			ent);
395 		break;
396 
397 	case SCU_EVENT_TYPE_TRANSPORT_ERROR:
398 		ireq = ihost->reqs[index];
399 		sci_io_request_event_handler(ireq, ent);
400 		break;
401 
402 	case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
403 		switch (scu_get_event_specifier(ent)) {
404 		case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
405 		case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
406 			ireq = ihost->reqs[index];
407 			if (ireq != NULL)
408 				sci_io_request_event_handler(ireq, ent);
409 			else
410 				dev_warn(&ihost->pdev->dev,
411 					 "%s: SCIC Controller 0x%p received "
412 					 "event 0x%x for io request object "
413 					 "that doesnt exist.\n",
414 					 __func__,
415 					 ihost,
416 					 ent);
417 
418 			break;
419 
420 		case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
421 			idev = ihost->device_table[index];
422 			if (idev != NULL)
423 				sci_remote_device_event_handler(idev, ent);
424 			else
425 				dev_warn(&ihost->pdev->dev,
426 					 "%s: SCIC Controller 0x%p received "
427 					 "event 0x%x for remote device object "
428 					 "that doesnt exist.\n",
429 					 __func__,
430 					 ihost,
431 					 ent);
432 
433 			break;
434 		}
435 		break;
436 
437 	case SCU_EVENT_TYPE_BROADCAST_CHANGE:
438 	/*
439 	 * direct the broadcast change event to the phy first and then let
440 	 * the phy redirect the broadcast change to the port object */
441 	case SCU_EVENT_TYPE_ERR_CNT_EVENT:
442 	/*
443 	 * direct error counter event to the phy object since that is where
444 	 * we get the event notification.  This is a type 4 event. */
445 	case SCU_EVENT_TYPE_OSSP_EVENT:
446 		index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
447 		iphy = &ihost->phys[index];
448 		sci_phy_event_handler(iphy, ent);
449 		break;
450 
451 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
452 	case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
453 	case SCU_EVENT_TYPE_RNC_OPS_MISC:
454 		if (index < ihost->remote_node_entries) {
455 			idev = ihost->device_table[index];
456 
457 			if (idev != NULL)
458 				sci_remote_device_event_handler(idev, ent);
459 		} else
460 			dev_err(&ihost->pdev->dev,
461 				"%s: SCIC Controller 0x%p received event 0x%x "
462 				"for remote device object 0x%0x that doesnt "
463 				"exist.\n",
464 				__func__,
465 				ihost,
466 				ent,
467 				index);
468 
469 		break;
470 
471 	default:
472 		dev_warn(&ihost->pdev->dev,
473 			 "%s: SCIC Controller received unknown event code %x\n",
474 			 __func__,
475 			 ent);
476 		break;
477 	}
478 }
479 
480 static void sci_controller_process_completions(struct isci_host *ihost)
481 {
482 	u32 completion_count = 0;
483 	u32 ent;
484 	u32 get_index;
485 	u32 get_cycle;
486 	u32 event_get;
487 	u32 event_cycle;
488 
489 	dev_dbg(&ihost->pdev->dev,
490 		"%s: completion queue begining get:0x%08x\n",
491 		__func__,
492 		ihost->completion_queue_get);
493 
494 	/* Get the component parts of the completion queue */
495 	get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
496 	get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
497 
498 	event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
499 	event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
500 
501 	while (
502 		NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
503 		== COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
504 		) {
505 		completion_count++;
506 
507 		ent = ihost->completion_queue[get_index];
508 
509 		/* increment the get pointer and check for rollover to toggle the cycle bit */
510 		get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
511 			     (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
512 		get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
513 
514 		dev_dbg(&ihost->pdev->dev,
515 			"%s: completion queue entry:0x%08x\n",
516 			__func__,
517 			ent);
518 
519 		switch (SCU_GET_COMPLETION_TYPE(ent)) {
520 		case SCU_COMPLETION_TYPE_TASK:
521 			sci_controller_task_completion(ihost, ent);
522 			break;
523 
524 		case SCU_COMPLETION_TYPE_SDMA:
525 			sci_controller_sdma_completion(ihost, ent);
526 			break;
527 
528 		case SCU_COMPLETION_TYPE_UFI:
529 			sci_controller_unsolicited_frame(ihost, ent);
530 			break;
531 
532 		case SCU_COMPLETION_TYPE_EVENT:
533 			sci_controller_event_completion(ihost, ent);
534 			break;
535 
536 		case SCU_COMPLETION_TYPE_NOTIFY: {
537 			event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
538 				       (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
539 			event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
540 
541 			sci_controller_event_completion(ihost, ent);
542 			break;
543 		}
544 		default:
545 			dev_warn(&ihost->pdev->dev,
546 				 "%s: SCIC Controller received unknown "
547 				 "completion type %x\n",
548 				 __func__,
549 				 ent);
550 			break;
551 		}
552 	}
553 
554 	/* Update the get register if we completed one or more entries */
555 	if (completion_count > 0) {
556 		ihost->completion_queue_get =
557 			SMU_CQGR_GEN_BIT(ENABLE) |
558 			SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
559 			event_cycle |
560 			SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
561 			get_cycle |
562 			SMU_CQGR_GEN_VAL(POINTER, get_index);
563 
564 		writel(ihost->completion_queue_get,
565 		       &ihost->smu_registers->completion_queue_get);
566 
567 	}
568 
569 	dev_dbg(&ihost->pdev->dev,
570 		"%s: completion queue ending get:0x%08x\n",
571 		__func__,
572 		ihost->completion_queue_get);
573 
574 }
575 
576 static void sci_controller_error_handler(struct isci_host *ihost)
577 {
578 	u32 interrupt_status;
579 
580 	interrupt_status =
581 		readl(&ihost->smu_registers->interrupt_status);
582 
583 	if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
584 	    sci_controller_completion_queue_has_entries(ihost)) {
585 
586 		sci_controller_process_completions(ihost);
587 		writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
588 	} else {
589 		dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
590 			interrupt_status);
591 
592 		sci_change_state(&ihost->sm, SCIC_FAILED);
593 
594 		return;
595 	}
596 
597 	/* If we dont process any completions I am not sure that we want to do this.
598 	 * We are in the middle of a hardware fault and should probably be reset.
599 	 */
600 	writel(0, &ihost->smu_registers->interrupt_mask);
601 }
602 
603 irqreturn_t isci_intx_isr(int vec, void *data)
604 {
605 	irqreturn_t ret = IRQ_NONE;
606 	struct isci_host *ihost = data;
607 
608 	if (sci_controller_isr(ihost)) {
609 		writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
610 		tasklet_schedule(&ihost->completion_tasklet);
611 		ret = IRQ_HANDLED;
612 	} else if (sci_controller_error_isr(ihost)) {
613 		spin_lock(&ihost->scic_lock);
614 		sci_controller_error_handler(ihost);
615 		spin_unlock(&ihost->scic_lock);
616 		ret = IRQ_HANDLED;
617 	}
618 
619 	return ret;
620 }
621 
622 irqreturn_t isci_error_isr(int vec, void *data)
623 {
624 	struct isci_host *ihost = data;
625 
626 	if (sci_controller_error_isr(ihost))
627 		sci_controller_error_handler(ihost);
628 
629 	return IRQ_HANDLED;
630 }
631 
632 /**
633  * isci_host_start_complete() - This function is called by the core library,
634  *    through the ISCI Module, to indicate controller start status.
635  * @isci_host: This parameter specifies the ISCI host object
636  * @completion_status: This parameter specifies the completion status from the
637  *    core library.
638  *
639  */
640 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
641 {
642 	if (completion_status != SCI_SUCCESS)
643 		dev_info(&ihost->pdev->dev,
644 			"controller start timed out, continuing...\n");
645 	clear_bit(IHOST_START_PENDING, &ihost->flags);
646 	wake_up(&ihost->eventq);
647 }
648 
649 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
650 {
651 	struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
652 	struct isci_host *ihost = ha->lldd_ha;
653 
654 	if (test_bit(IHOST_START_PENDING, &ihost->flags))
655 		return 0;
656 
657 	sas_drain_work(ha);
658 
659 	return 1;
660 }
661 
662 /**
663  * sci_controller_get_suggested_start_timeout() - This method returns the
664  *    suggested sci_controller_start() timeout amount.  The user is free to
665  *    use any timeout value, but this method provides the suggested minimum
666  *    start timeout value.  The returned value is based upon empirical
667  *    information determined as a result of interoperability testing.
668  * @controller: the handle to the controller object for which to return the
669  *    suggested start timeout.
670  *
671  * This method returns the number of milliseconds for the suggested start
672  * operation timeout.
673  */
674 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
675 {
676 	/* Validate the user supplied parameters. */
677 	if (!ihost)
678 		return 0;
679 
680 	/*
681 	 * The suggested minimum timeout value for a controller start operation:
682 	 *
683 	 *     Signature FIS Timeout
684 	 *   + Phy Start Timeout
685 	 *   + Number of Phy Spin Up Intervals
686 	 *   ---------------------------------
687 	 *   Number of milliseconds for the controller start operation.
688 	 *
689 	 * NOTE: The number of phy spin up intervals will be equivalent
690 	 *       to the number of phys divided by the number phys allowed
691 	 *       per interval - 1 (once OEM parameters are supported).
692 	 *       Currently we assume only 1 phy per interval. */
693 
694 	return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
695 		+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
696 		+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
697 }
698 
699 static void sci_controller_enable_interrupts(struct isci_host *ihost)
700 {
701 	BUG_ON(ihost->smu_registers == NULL);
702 	writel(0, &ihost->smu_registers->interrupt_mask);
703 }
704 
705 void sci_controller_disable_interrupts(struct isci_host *ihost)
706 {
707 	BUG_ON(ihost->smu_registers == NULL);
708 	writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
709 }
710 
711 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
712 {
713 	u32 port_task_scheduler_value;
714 
715 	port_task_scheduler_value =
716 		readl(&ihost->scu_registers->peg0.ptsg.control);
717 	port_task_scheduler_value |=
718 		(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
719 		 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
720 	writel(port_task_scheduler_value,
721 	       &ihost->scu_registers->peg0.ptsg.control);
722 }
723 
724 static void sci_controller_assign_task_entries(struct isci_host *ihost)
725 {
726 	u32 task_assignment;
727 
728 	/*
729 	 * Assign all the TCs to function 0
730 	 * TODO: Do we actually need to read this register to write it back?
731 	 */
732 
733 	task_assignment =
734 		readl(&ihost->smu_registers->task_context_assignment[0]);
735 
736 	task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
737 		(SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
738 		(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
739 
740 	writel(task_assignment,
741 		&ihost->smu_registers->task_context_assignment[0]);
742 
743 }
744 
745 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
746 {
747 	u32 index;
748 	u32 completion_queue_control_value;
749 	u32 completion_queue_get_value;
750 	u32 completion_queue_put_value;
751 
752 	ihost->completion_queue_get = 0;
753 
754 	completion_queue_control_value =
755 		(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
756 		 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
757 
758 	writel(completion_queue_control_value,
759 	       &ihost->smu_registers->completion_queue_control);
760 
761 
762 	/* Set the completion queue get pointer and enable the queue */
763 	completion_queue_get_value = (
764 		(SMU_CQGR_GEN_VAL(POINTER, 0))
765 		| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
766 		| (SMU_CQGR_GEN_BIT(ENABLE))
767 		| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
768 		);
769 
770 	writel(completion_queue_get_value,
771 	       &ihost->smu_registers->completion_queue_get);
772 
773 	/* Set the completion queue put pointer */
774 	completion_queue_put_value = (
775 		(SMU_CQPR_GEN_VAL(POINTER, 0))
776 		| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
777 		);
778 
779 	writel(completion_queue_put_value,
780 	       &ihost->smu_registers->completion_queue_put);
781 
782 	/* Initialize the cycle bit of the completion queue entries */
783 	for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
784 		/*
785 		 * If get.cycle_bit != completion_queue.cycle_bit
786 		 * its not a valid completion queue entry
787 		 * so at system start all entries are invalid */
788 		ihost->completion_queue[index] = 0x80000000;
789 	}
790 }
791 
792 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
793 {
794 	u32 frame_queue_control_value;
795 	u32 frame_queue_get_value;
796 	u32 frame_queue_put_value;
797 
798 	/* Write the queue size */
799 	frame_queue_control_value =
800 		SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
801 
802 	writel(frame_queue_control_value,
803 	       &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
804 
805 	/* Setup the get pointer for the unsolicited frame queue */
806 	frame_queue_get_value = (
807 		SCU_UFQGP_GEN_VAL(POINTER, 0)
808 		|  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
809 		);
810 
811 	writel(frame_queue_get_value,
812 	       &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
813 	/* Setup the put pointer for the unsolicited frame queue */
814 	frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
815 	writel(frame_queue_put_value,
816 	       &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
817 }
818 
819 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
820 {
821 	if (ihost->sm.current_state_id == SCIC_STARTING) {
822 		/*
823 		 * We move into the ready state, because some of the phys/ports
824 		 * may be up and operational.
825 		 */
826 		sci_change_state(&ihost->sm, SCIC_READY);
827 
828 		isci_host_start_complete(ihost, status);
829 	}
830 }
831 
832 static bool is_phy_starting(struct isci_phy *iphy)
833 {
834 	enum sci_phy_states state;
835 
836 	state = iphy->sm.current_state_id;
837 	switch (state) {
838 	case SCI_PHY_STARTING:
839 	case SCI_PHY_SUB_INITIAL:
840 	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
841 	case SCI_PHY_SUB_AWAIT_IAF_UF:
842 	case SCI_PHY_SUB_AWAIT_SAS_POWER:
843 	case SCI_PHY_SUB_AWAIT_SATA_POWER:
844 	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
845 	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
846 	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
847 	case SCI_PHY_SUB_FINAL:
848 		return true;
849 	default:
850 		return false;
851 	}
852 }
853 
854 /**
855  * sci_controller_start_next_phy - start phy
856  * @scic: controller
857  *
858  * If all the phys have been started, then attempt to transition the
859  * controller to the READY state and inform the user
860  * (sci_cb_controller_start_complete()).
861  */
862 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
863 {
864 	struct sci_oem_params *oem = &ihost->oem_parameters;
865 	struct isci_phy *iphy;
866 	enum sci_status status;
867 
868 	status = SCI_SUCCESS;
869 
870 	if (ihost->phy_startup_timer_pending)
871 		return status;
872 
873 	if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
874 		bool is_controller_start_complete = true;
875 		u32 state;
876 		u8 index;
877 
878 		for (index = 0; index < SCI_MAX_PHYS; index++) {
879 			iphy = &ihost->phys[index];
880 			state = iphy->sm.current_state_id;
881 
882 			if (!phy_get_non_dummy_port(iphy))
883 				continue;
884 
885 			/* The controller start operation is complete iff:
886 			 * - all links have been given an opportunity to start
887 			 * - have no indication of a connected device
888 			 * - have an indication of a connected device and it has
889 			 *   finished the link training process.
890 			 */
891 			if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
892 			    (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
893 			    (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
894 			    (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) {
895 				is_controller_start_complete = false;
896 				break;
897 			}
898 		}
899 
900 		/*
901 		 * The controller has successfully finished the start process.
902 		 * Inform the SCI Core user and transition to the READY state. */
903 		if (is_controller_start_complete == true) {
904 			sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
905 			sci_del_timer(&ihost->phy_timer);
906 			ihost->phy_startup_timer_pending = false;
907 		}
908 	} else {
909 		iphy = &ihost->phys[ihost->next_phy_to_start];
910 
911 		if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
912 			if (phy_get_non_dummy_port(iphy) == NULL) {
913 				ihost->next_phy_to_start++;
914 
915 				/* Caution recursion ahead be forwarned
916 				 *
917 				 * The PHY was never added to a PORT in MPC mode
918 				 * so start the next phy in sequence This phy
919 				 * will never go link up and will not draw power
920 				 * the OEM parameters either configured the phy
921 				 * incorrectly for the PORT or it was never
922 				 * assigned to a PORT
923 				 */
924 				return sci_controller_start_next_phy(ihost);
925 			}
926 		}
927 
928 		status = sci_phy_start(iphy);
929 
930 		if (status == SCI_SUCCESS) {
931 			sci_mod_timer(&ihost->phy_timer,
932 				      SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
933 			ihost->phy_startup_timer_pending = true;
934 		} else {
935 			dev_warn(&ihost->pdev->dev,
936 				 "%s: Controller stop operation failed "
937 				 "to stop phy %d because of status "
938 				 "%d.\n",
939 				 __func__,
940 				 ihost->phys[ihost->next_phy_to_start].phy_index,
941 				 status);
942 		}
943 
944 		ihost->next_phy_to_start++;
945 	}
946 
947 	return status;
948 }
949 
950 static void phy_startup_timeout(unsigned long data)
951 {
952 	struct sci_timer *tmr = (struct sci_timer *)data;
953 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
954 	unsigned long flags;
955 	enum sci_status status;
956 
957 	spin_lock_irqsave(&ihost->scic_lock, flags);
958 
959 	if (tmr->cancel)
960 		goto done;
961 
962 	ihost->phy_startup_timer_pending = false;
963 
964 	do {
965 		status = sci_controller_start_next_phy(ihost);
966 	} while (status != SCI_SUCCESS);
967 
968 done:
969 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
970 }
971 
972 static u16 isci_tci_active(struct isci_host *ihost)
973 {
974 	return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
975 }
976 
977 static enum sci_status sci_controller_start(struct isci_host *ihost,
978 					     u32 timeout)
979 {
980 	enum sci_status result;
981 	u16 index;
982 
983 	if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
984 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
985 			 __func__, ihost->sm.current_state_id);
986 		return SCI_FAILURE_INVALID_STATE;
987 	}
988 
989 	/* Build the TCi free pool */
990 	BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
991 	ihost->tci_head = 0;
992 	ihost->tci_tail = 0;
993 	for (index = 0; index < ihost->task_context_entries; index++)
994 		isci_tci_free(ihost, index);
995 
996 	/* Build the RNi free pool */
997 	sci_remote_node_table_initialize(&ihost->available_remote_nodes,
998 					 ihost->remote_node_entries);
999 
1000 	/*
1001 	 * Before anything else lets make sure we will not be
1002 	 * interrupted by the hardware.
1003 	 */
1004 	sci_controller_disable_interrupts(ihost);
1005 
1006 	/* Enable the port task scheduler */
1007 	sci_controller_enable_port_task_scheduler(ihost);
1008 
1009 	/* Assign all the task entries to ihost physical function */
1010 	sci_controller_assign_task_entries(ihost);
1011 
1012 	/* Now initialize the completion queue */
1013 	sci_controller_initialize_completion_queue(ihost);
1014 
1015 	/* Initialize the unsolicited frame queue for use */
1016 	sci_controller_initialize_unsolicited_frame_queue(ihost);
1017 
1018 	/* Start all of the ports on this controller */
1019 	for (index = 0; index < ihost->logical_port_entries; index++) {
1020 		struct isci_port *iport = &ihost->ports[index];
1021 
1022 		result = sci_port_start(iport);
1023 		if (result)
1024 			return result;
1025 	}
1026 
1027 	sci_controller_start_next_phy(ihost);
1028 
1029 	sci_mod_timer(&ihost->timer, timeout);
1030 
1031 	sci_change_state(&ihost->sm, SCIC_STARTING);
1032 
1033 	return SCI_SUCCESS;
1034 }
1035 
1036 void isci_host_scan_start(struct Scsi_Host *shost)
1037 {
1038 	struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1039 	unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1040 
1041 	set_bit(IHOST_START_PENDING, &ihost->flags);
1042 
1043 	spin_lock_irq(&ihost->scic_lock);
1044 	sci_controller_start(ihost, tmo);
1045 	sci_controller_enable_interrupts(ihost);
1046 	spin_unlock_irq(&ihost->scic_lock);
1047 }
1048 
1049 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1050 {
1051 	sci_controller_disable_interrupts(ihost);
1052 	clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1053 	wake_up(&ihost->eventq);
1054 }
1055 
1056 static void sci_controller_completion_handler(struct isci_host *ihost)
1057 {
1058 	/* Empty out the completion queue */
1059 	if (sci_controller_completion_queue_has_entries(ihost))
1060 		sci_controller_process_completions(ihost);
1061 
1062 	/* Clear the interrupt and enable all interrupts again */
1063 	writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1064 	/* Could we write the value of SMU_ISR_COMPLETION? */
1065 	writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1066 	writel(0, &ihost->smu_registers->interrupt_mask);
1067 }
1068 
1069 /**
1070  * isci_host_completion_routine() - This function is the delayed service
1071  *    routine that calls the sci core library's completion handler. It's
1072  *    scheduled as a tasklet from the interrupt service routine when interrupts
1073  *    in use, or set as the timeout function in polled mode.
1074  * @data: This parameter specifies the ISCI host object
1075  *
1076  */
1077 static void isci_host_completion_routine(unsigned long data)
1078 {
1079 	struct isci_host *ihost = (struct isci_host *)data;
1080 	struct list_head    completed_request_list;
1081 	struct list_head    errored_request_list;
1082 	struct list_head    *current_position;
1083 	struct list_head    *next_position;
1084 	struct isci_request *request;
1085 	struct isci_request *next_request;
1086 	struct sas_task     *task;
1087 	u16 active;
1088 
1089 	INIT_LIST_HEAD(&completed_request_list);
1090 	INIT_LIST_HEAD(&errored_request_list);
1091 
1092 	spin_lock_irq(&ihost->scic_lock);
1093 
1094 	sci_controller_completion_handler(ihost);
1095 
1096 	/* Take the lists of completed I/Os from the host. */
1097 
1098 	list_splice_init(&ihost->requests_to_complete,
1099 			 &completed_request_list);
1100 
1101 	/* Take the list of errored I/Os from the host. */
1102 	list_splice_init(&ihost->requests_to_errorback,
1103 			 &errored_request_list);
1104 
1105 	spin_unlock_irq(&ihost->scic_lock);
1106 
1107 	/* Process any completions in the lists. */
1108 	list_for_each_safe(current_position, next_position,
1109 			   &completed_request_list) {
1110 
1111 		request = list_entry(current_position, struct isci_request,
1112 				     completed_node);
1113 		task = isci_request_access_task(request);
1114 
1115 		/* Normal notification (task_done) */
1116 		dev_dbg(&ihost->pdev->dev,
1117 			"%s: Normal - request/task = %p/%p\n",
1118 			__func__,
1119 			request,
1120 			task);
1121 
1122 		/* Return the task to libsas */
1123 		if (task != NULL) {
1124 
1125 			task->lldd_task = NULL;
1126 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1127 
1128 				/* If the task is already in the abort path,
1129 				* the task_done callback cannot be called.
1130 				*/
1131 				task->task_done(task);
1132 			}
1133 		}
1134 
1135 		spin_lock_irq(&ihost->scic_lock);
1136 		isci_free_tag(ihost, request->io_tag);
1137 		spin_unlock_irq(&ihost->scic_lock);
1138 	}
1139 	list_for_each_entry_safe(request, next_request, &errored_request_list,
1140 				 completed_node) {
1141 
1142 		task = isci_request_access_task(request);
1143 
1144 		/* Use sas_task_abort */
1145 		dev_warn(&ihost->pdev->dev,
1146 			 "%s: Error - request/task = %p/%p\n",
1147 			 __func__,
1148 			 request,
1149 			 task);
1150 
1151 		if (task != NULL) {
1152 
1153 			/* Put the task into the abort path if it's not there
1154 			 * already.
1155 			 */
1156 			if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1157 				sas_task_abort(task);
1158 
1159 		} else {
1160 			/* This is a case where the request has completed with a
1161 			 * status such that it needed further target servicing,
1162 			 * but the sas_task reference has already been removed
1163 			 * from the request.  Since it was errored, it was not
1164 			 * being aborted, so there is nothing to do except free
1165 			 * it.
1166 			 */
1167 
1168 			spin_lock_irq(&ihost->scic_lock);
1169 			/* Remove the request from the remote device's list
1170 			* of pending requests.
1171 			*/
1172 			list_del_init(&request->dev_node);
1173 			isci_free_tag(ihost, request->io_tag);
1174 			spin_unlock_irq(&ihost->scic_lock);
1175 		}
1176 	}
1177 
1178 	/* the coalesence timeout doubles at each encoding step, so
1179 	 * update it based on the ilog2 value of the outstanding requests
1180 	 */
1181 	active = isci_tci_active(ihost);
1182 	writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1183 	       SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1184 	       &ihost->smu_registers->interrupt_coalesce_control);
1185 }
1186 
1187 /**
1188  * sci_controller_stop() - This method will stop an individual controller
1189  *    object.This method will invoke the associated user callback upon
1190  *    completion.  The completion callback is called when the following
1191  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1192  *    controller has been quiesced. This method will ensure that all IO
1193  *    requests are quiesced, phys are stopped, and all additional operation by
1194  *    the hardware is halted.
1195  * @controller: the handle to the controller object to stop.
1196  * @timeout: This parameter specifies the number of milliseconds in which the
1197  *    stop operation should complete.
1198  *
1199  * The controller must be in the STARTED or STOPPED state. Indicate if the
1200  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1201  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1202  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1203  * controller is not either in the STARTED or STOPPED states.
1204  */
1205 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1206 {
1207 	if (ihost->sm.current_state_id != SCIC_READY) {
1208 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1209 			 __func__, ihost->sm.current_state_id);
1210 		return SCI_FAILURE_INVALID_STATE;
1211 	}
1212 
1213 	sci_mod_timer(&ihost->timer, timeout);
1214 	sci_change_state(&ihost->sm, SCIC_STOPPING);
1215 	return SCI_SUCCESS;
1216 }
1217 
1218 /**
1219  * sci_controller_reset() - This method will reset the supplied core
1220  *    controller regardless of the state of said controller.  This operation is
1221  *    considered destructive.  In other words, all current operations are wiped
1222  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1223  *    requests are not aborted or completed at the actual remote device.
1224  * @controller: the handle to the controller object to reset.
1225  *
1226  * Indicate if the controller reset method succeeded or failed in some way.
1227  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1228  * the controller reset operation is unable to complete.
1229  */
1230 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231 {
1232 	switch (ihost->sm.current_state_id) {
1233 	case SCIC_RESET:
1234 	case SCIC_READY:
1235 	case SCIC_STOPPED:
1236 	case SCIC_FAILED:
1237 		/*
1238 		 * The reset operation is not a graceful cleanup, just
1239 		 * perform the state transition.
1240 		 */
1241 		sci_change_state(&ihost->sm, SCIC_RESETTING);
1242 		return SCI_SUCCESS;
1243 	default:
1244 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1245 			 __func__, ihost->sm.current_state_id);
1246 		return SCI_FAILURE_INVALID_STATE;
1247 	}
1248 }
1249 
1250 void isci_host_deinit(struct isci_host *ihost)
1251 {
1252 	int i;
1253 
1254 	/* disable output data selects */
1255 	for (i = 0; i < isci_gpio_count(ihost); i++)
1256 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1257 
1258 	for (i = 0; i < SCI_MAX_PORTS; i++) {
1259 		struct isci_port *iport = &ihost->ports[i];
1260 		struct isci_remote_device *idev, *d;
1261 
1262 		list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1263 			if (test_bit(IDEV_ALLOCATED, &idev->flags))
1264 				isci_remote_device_stop(ihost, idev);
1265 		}
1266 	}
1267 
1268 	set_bit(IHOST_STOP_PENDING, &ihost->flags);
1269 
1270 	spin_lock_irq(&ihost->scic_lock);
1271 	sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1272 	spin_unlock_irq(&ihost->scic_lock);
1273 
1274 	wait_for_stop(ihost);
1275 
1276 	/* disable sgpio: where the above wait should give time for the
1277 	 * enclosure to sample the gpios going inactive
1278 	 */
1279 	writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1280 
1281 	sci_controller_reset(ihost);
1282 
1283 	/* Cancel any/all outstanding port timers */
1284 	for (i = 0; i < ihost->logical_port_entries; i++) {
1285 		struct isci_port *iport = &ihost->ports[i];
1286 		del_timer_sync(&iport->timer.timer);
1287 	}
1288 
1289 	/* Cancel any/all outstanding phy timers */
1290 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1291 		struct isci_phy *iphy = &ihost->phys[i];
1292 		del_timer_sync(&iphy->sata_timer.timer);
1293 	}
1294 
1295 	del_timer_sync(&ihost->port_agent.timer.timer);
1296 
1297 	del_timer_sync(&ihost->power_control.timer.timer);
1298 
1299 	del_timer_sync(&ihost->timer.timer);
1300 
1301 	del_timer_sync(&ihost->phy_timer.timer);
1302 }
1303 
1304 static void __iomem *scu_base(struct isci_host *isci_host)
1305 {
1306 	struct pci_dev *pdev = isci_host->pdev;
1307 	int id = isci_host->id;
1308 
1309 	return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1310 }
1311 
1312 static void __iomem *smu_base(struct isci_host *isci_host)
1313 {
1314 	struct pci_dev *pdev = isci_host->pdev;
1315 	int id = isci_host->id;
1316 
1317 	return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1318 }
1319 
1320 static void isci_user_parameters_get(struct sci_user_parameters *u)
1321 {
1322 	int i;
1323 
1324 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1325 		struct sci_phy_user_params *u_phy = &u->phys[i];
1326 
1327 		u_phy->max_speed_generation = phy_gen;
1328 
1329 		/* we are not exporting these for now */
1330 		u_phy->align_insertion_frequency = 0x7f;
1331 		u_phy->in_connection_align_insertion_frequency = 0xff;
1332 		u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1333 	}
1334 
1335 	u->stp_inactivity_timeout = stp_inactive_to;
1336 	u->ssp_inactivity_timeout = ssp_inactive_to;
1337 	u->stp_max_occupancy_timeout = stp_max_occ_to;
1338 	u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1339 	u->no_outbound_task_timeout = no_outbound_task_to;
1340 	u->max_concurr_spinup = max_concurr_spinup;
1341 }
1342 
1343 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1344 {
1345 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1346 
1347 	sci_change_state(&ihost->sm, SCIC_RESET);
1348 }
1349 
1350 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1351 {
1352 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1353 
1354 	sci_del_timer(&ihost->timer);
1355 }
1356 
1357 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1358 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1359 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1360 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1361 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1362 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1363 
1364 /**
1365  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1366  *    configure the interrupt coalescence.
1367  * @controller: This parameter represents the handle to the controller object
1368  *    for which its interrupt coalesce register is overridden.
1369  * @coalesce_number: Used to control the number of entries in the Completion
1370  *    Queue before an interrupt is generated. If the number of entries exceed
1371  *    this number, an interrupt will be generated. The valid range of the input
1372  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1373  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1374  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1375  *    interrupt coalescing timeout.
1376  *
1377  * Indicate if the user successfully set the interrupt coalesce parameters.
1378  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1379  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1380  */
1381 static enum sci_status
1382 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1383 					 u32 coalesce_number,
1384 					 u32 coalesce_timeout)
1385 {
1386 	u8 timeout_encode = 0;
1387 	u32 min = 0;
1388 	u32 max = 0;
1389 
1390 	/* Check if the input parameters fall in the range. */
1391 	if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1392 		return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1393 
1394 	/*
1395 	 *  Defined encoding for interrupt coalescing timeout:
1396 	 *              Value   Min      Max     Units
1397 	 *              -----   ---      ---     -----
1398 	 *              0       -        -       Disabled
1399 	 *              1       13.3     20.0    ns
1400 	 *              2       26.7     40.0
1401 	 *              3       53.3     80.0
1402 	 *              4       106.7    160.0
1403 	 *              5       213.3    320.0
1404 	 *              6       426.7    640.0
1405 	 *              7       853.3    1280.0
1406 	 *              8       1.7      2.6     us
1407 	 *              9       3.4      5.1
1408 	 *              10      6.8      10.2
1409 	 *              11      13.7     20.5
1410 	 *              12      27.3     41.0
1411 	 *              13      54.6     81.9
1412 	 *              14      109.2    163.8
1413 	 *              15      218.5    327.7
1414 	 *              16      436.9    655.4
1415 	 *              17      873.8    1310.7
1416 	 *              18      1.7      2.6     ms
1417 	 *              19      3.5      5.2
1418 	 *              20      7.0      10.5
1419 	 *              21      14.0     21.0
1420 	 *              22      28.0     41.9
1421 	 *              23      55.9     83.9
1422 	 *              24      111.8    167.8
1423 	 *              25      223.7    335.5
1424 	 *              26      447.4    671.1
1425 	 *              27      894.8    1342.2
1426 	 *              28      1.8      2.7     s
1427 	 *              Others Undefined */
1428 
1429 	/*
1430 	 * Use the table above to decide the encode of interrupt coalescing timeout
1431 	 * value for register writing. */
1432 	if (coalesce_timeout == 0)
1433 		timeout_encode = 0;
1434 	else{
1435 		/* make the timeout value in unit of (10 ns). */
1436 		coalesce_timeout = coalesce_timeout * 100;
1437 		min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1438 		max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1439 
1440 		/* get the encode of timeout for register writing. */
1441 		for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1442 		      timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1443 		      timeout_encode++) {
1444 			if (min <= coalesce_timeout &&  max > coalesce_timeout)
1445 				break;
1446 			else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1447 				 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1448 				if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1449 					break;
1450 				else{
1451 					timeout_encode++;
1452 					break;
1453 				}
1454 			} else {
1455 				max = max * 2;
1456 				min = min * 2;
1457 			}
1458 		}
1459 
1460 		if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1461 			/* the value is out of range. */
1462 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1463 	}
1464 
1465 	writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1466 	       SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1467 	       &ihost->smu_registers->interrupt_coalesce_control);
1468 
1469 
1470 	ihost->interrupt_coalesce_number = (u16)coalesce_number;
1471 	ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1472 
1473 	return SCI_SUCCESS;
1474 }
1475 
1476 
1477 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1478 {
1479 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1480 	u32 val;
1481 
1482 	/* enable clock gating for power control of the scu unit */
1483 	val = readl(&ihost->smu_registers->clock_gating_control);
1484 	val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1485 		 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1486 		 SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1487 	val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1488 	writel(val, &ihost->smu_registers->clock_gating_control);
1489 
1490 	/* set the default interrupt coalescence number and timeout value. */
1491 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1492 }
1493 
1494 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1495 {
1496 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1497 
1498 	/* disable interrupt coalescence. */
1499 	sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1500 }
1501 
1502 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1503 {
1504 	u32 index;
1505 	enum sci_status status;
1506 	enum sci_status phy_status;
1507 
1508 	status = SCI_SUCCESS;
1509 
1510 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1511 		phy_status = sci_phy_stop(&ihost->phys[index]);
1512 
1513 		if (phy_status != SCI_SUCCESS &&
1514 		    phy_status != SCI_FAILURE_INVALID_STATE) {
1515 			status = SCI_FAILURE;
1516 
1517 			dev_warn(&ihost->pdev->dev,
1518 				 "%s: Controller stop operation failed to stop "
1519 				 "phy %d because of status %d.\n",
1520 				 __func__,
1521 				 ihost->phys[index].phy_index, phy_status);
1522 		}
1523 	}
1524 
1525 	return status;
1526 }
1527 
1528 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1529 {
1530 	u32 index;
1531 	enum sci_status port_status;
1532 	enum sci_status status = SCI_SUCCESS;
1533 
1534 	for (index = 0; index < ihost->logical_port_entries; index++) {
1535 		struct isci_port *iport = &ihost->ports[index];
1536 
1537 		port_status = sci_port_stop(iport);
1538 
1539 		if ((port_status != SCI_SUCCESS) &&
1540 		    (port_status != SCI_FAILURE_INVALID_STATE)) {
1541 			status = SCI_FAILURE;
1542 
1543 			dev_warn(&ihost->pdev->dev,
1544 				 "%s: Controller stop operation failed to "
1545 				 "stop port %d because of status %d.\n",
1546 				 __func__,
1547 				 iport->logical_port_index,
1548 				 port_status);
1549 		}
1550 	}
1551 
1552 	return status;
1553 }
1554 
1555 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1556 {
1557 	u32 index;
1558 	enum sci_status status;
1559 	enum sci_status device_status;
1560 
1561 	status = SCI_SUCCESS;
1562 
1563 	for (index = 0; index < ihost->remote_node_entries; index++) {
1564 		if (ihost->device_table[index] != NULL) {
1565 			/* / @todo What timeout value do we want to provide to this request? */
1566 			device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1567 
1568 			if ((device_status != SCI_SUCCESS) &&
1569 			    (device_status != SCI_FAILURE_INVALID_STATE)) {
1570 				dev_warn(&ihost->pdev->dev,
1571 					 "%s: Controller stop operation failed "
1572 					 "to stop device 0x%p because of "
1573 					 "status %d.\n",
1574 					 __func__,
1575 					 ihost->device_table[index], device_status);
1576 			}
1577 		}
1578 	}
1579 
1580 	return status;
1581 }
1582 
1583 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1584 {
1585 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1586 
1587 	/* Stop all of the components for this controller */
1588 	sci_controller_stop_phys(ihost);
1589 	sci_controller_stop_ports(ihost);
1590 	sci_controller_stop_devices(ihost);
1591 }
1592 
1593 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1594 {
1595 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1596 
1597 	sci_del_timer(&ihost->timer);
1598 }
1599 
1600 static void sci_controller_reset_hardware(struct isci_host *ihost)
1601 {
1602 	/* Disable interrupts so we dont take any spurious interrupts */
1603 	sci_controller_disable_interrupts(ihost);
1604 
1605 	/* Reset the SCU */
1606 	writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1607 
1608 	/* Delay for 1ms to before clearing the CQP and UFQPR. */
1609 	udelay(1000);
1610 
1611 	/* The write to the CQGR clears the CQP */
1612 	writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1613 
1614 	/* The write to the UFQGP clears the UFQPR */
1615 	writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1616 }
1617 
1618 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1619 {
1620 	struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1621 
1622 	sci_controller_reset_hardware(ihost);
1623 	sci_change_state(&ihost->sm, SCIC_RESET);
1624 }
1625 
1626 static const struct sci_base_state sci_controller_state_table[] = {
1627 	[SCIC_INITIAL] = {
1628 		.enter_state = sci_controller_initial_state_enter,
1629 	},
1630 	[SCIC_RESET] = {},
1631 	[SCIC_INITIALIZING] = {},
1632 	[SCIC_INITIALIZED] = {},
1633 	[SCIC_STARTING] = {
1634 		.exit_state  = sci_controller_starting_state_exit,
1635 	},
1636 	[SCIC_READY] = {
1637 		.enter_state = sci_controller_ready_state_enter,
1638 		.exit_state  = sci_controller_ready_state_exit,
1639 	},
1640 	[SCIC_RESETTING] = {
1641 		.enter_state = sci_controller_resetting_state_enter,
1642 	},
1643 	[SCIC_STOPPING] = {
1644 		.enter_state = sci_controller_stopping_state_enter,
1645 		.exit_state = sci_controller_stopping_state_exit,
1646 	},
1647 	[SCIC_STOPPED] = {},
1648 	[SCIC_FAILED] = {}
1649 };
1650 
1651 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1652 {
1653 	/* these defaults are overridden by the platform / firmware */
1654 	u16 index;
1655 
1656 	/* Default to APC mode. */
1657 	ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1658 
1659 	/* Default to APC mode. */
1660 	ihost->oem_parameters.controller.max_concurr_spin_up = 1;
1661 
1662 	/* Default to no SSC operation. */
1663 	ihost->oem_parameters.controller.do_enable_ssc = false;
1664 
1665 	/* Default to short cables on all phys. */
1666 	ihost->oem_parameters.controller.cable_selection_mask = 0;
1667 
1668 	/* Initialize all of the port parameter information to narrow ports. */
1669 	for (index = 0; index < SCI_MAX_PORTS; index++) {
1670 		ihost->oem_parameters.ports[index].phy_mask = 0;
1671 	}
1672 
1673 	/* Initialize all of the phy parameter information. */
1674 	for (index = 0; index < SCI_MAX_PHYS; index++) {
1675 		/* Default to 3G (i.e. Gen 2). */
1676 		ihost->user_parameters.phys[index].max_speed_generation =
1677 			SCIC_SDS_PARM_GEN2_SPEED;
1678 
1679 		/* the frequencies cannot be 0 */
1680 		ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1681 		ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1682 		ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1683 
1684 		/*
1685 		 * Previous Vitesse based expanders had a arbitration issue that
1686 		 * is worked around by having the upper 32-bits of SAS address
1687 		 * with a value greater then the Vitesse company identifier.
1688 		 * Hence, usage of 0x5FCFFFFF. */
1689 		ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1690 		ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1691 	}
1692 
1693 	ihost->user_parameters.stp_inactivity_timeout = 5;
1694 	ihost->user_parameters.ssp_inactivity_timeout = 5;
1695 	ihost->user_parameters.stp_max_occupancy_timeout = 5;
1696 	ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1697 	ihost->user_parameters.no_outbound_task_timeout = 2;
1698 }
1699 
1700 static void controller_timeout(unsigned long data)
1701 {
1702 	struct sci_timer *tmr = (struct sci_timer *)data;
1703 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1704 	struct sci_base_state_machine *sm = &ihost->sm;
1705 	unsigned long flags;
1706 
1707 	spin_lock_irqsave(&ihost->scic_lock, flags);
1708 
1709 	if (tmr->cancel)
1710 		goto done;
1711 
1712 	if (sm->current_state_id == SCIC_STARTING)
1713 		sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1714 	else if (sm->current_state_id == SCIC_STOPPING) {
1715 		sci_change_state(sm, SCIC_FAILED);
1716 		isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1717 	} else	/* / @todo Now what do we want to do in this case? */
1718 		dev_err(&ihost->pdev->dev,
1719 			"%s: Controller timer fired when controller was not "
1720 			"in a state being timed.\n",
1721 			__func__);
1722 
1723 done:
1724 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1725 }
1726 
1727 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1728 						void __iomem *scu_base,
1729 						void __iomem *smu_base)
1730 {
1731 	u8 i;
1732 
1733 	sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1734 
1735 	ihost->scu_registers = scu_base;
1736 	ihost->smu_registers = smu_base;
1737 
1738 	sci_port_configuration_agent_construct(&ihost->port_agent);
1739 
1740 	/* Construct the ports for this controller */
1741 	for (i = 0; i < SCI_MAX_PORTS; i++)
1742 		sci_port_construct(&ihost->ports[i], i, ihost);
1743 	sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1744 
1745 	/* Construct the phys for this controller */
1746 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1747 		/* Add all the PHYs to the dummy port */
1748 		sci_phy_construct(&ihost->phys[i],
1749 				  &ihost->ports[SCI_MAX_PORTS], i);
1750 	}
1751 
1752 	ihost->invalid_phy_mask = 0;
1753 
1754 	sci_init_timer(&ihost->timer, controller_timeout);
1755 
1756 	/* Initialize the User and OEM parameters to default values. */
1757 	sci_controller_set_default_config_parameters(ihost);
1758 
1759 	return sci_controller_reset(ihost);
1760 }
1761 
1762 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1763 {
1764 	int i;
1765 
1766 	for (i = 0; i < SCI_MAX_PORTS; i++)
1767 		if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1768 			return -EINVAL;
1769 
1770 	for (i = 0; i < SCI_MAX_PHYS; i++)
1771 		if (oem->phys[i].sas_address.high == 0 &&
1772 		    oem->phys[i].sas_address.low == 0)
1773 			return -EINVAL;
1774 
1775 	if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1776 		for (i = 0; i < SCI_MAX_PHYS; i++)
1777 			if (oem->ports[i].phy_mask != 0)
1778 				return -EINVAL;
1779 	} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1780 		u8 phy_mask = 0;
1781 
1782 		for (i = 0; i < SCI_MAX_PHYS; i++)
1783 			phy_mask |= oem->ports[i].phy_mask;
1784 
1785 		if (phy_mask == 0)
1786 			return -EINVAL;
1787 	} else
1788 		return -EINVAL;
1789 
1790 	if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1791 	    oem->controller.max_concurr_spin_up < 1)
1792 		return -EINVAL;
1793 
1794 	if (oem->controller.do_enable_ssc) {
1795 		if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1796 			return -EINVAL;
1797 
1798 		if (version >= ISCI_ROM_VER_1_1) {
1799 			u8 test = oem->controller.ssc_sata_tx_spread_level;
1800 
1801 			switch (test) {
1802 			case 0:
1803 			case 2:
1804 			case 3:
1805 			case 6:
1806 			case 7:
1807 				break;
1808 			default:
1809 				return -EINVAL;
1810 			}
1811 
1812 			test = oem->controller.ssc_sas_tx_spread_level;
1813 			if (oem->controller.ssc_sas_tx_type == 0) {
1814 				switch (test) {
1815 				case 0:
1816 				case 2:
1817 				case 3:
1818 					break;
1819 				default:
1820 					return -EINVAL;
1821 				}
1822 			} else if (oem->controller.ssc_sas_tx_type == 1) {
1823 				switch (test) {
1824 				case 0:
1825 				case 3:
1826 				case 6:
1827 					break;
1828 				default:
1829 					return -EINVAL;
1830 				}
1831 			}
1832 		}
1833 	}
1834 
1835 	return 0;
1836 }
1837 
1838 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1839 {
1840 	u32 state = ihost->sm.current_state_id;
1841 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
1842 
1843 	if (state == SCIC_RESET ||
1844 	    state == SCIC_INITIALIZING ||
1845 	    state == SCIC_INITIALIZED) {
1846 		u8 oem_version = pci_info->orom ? pci_info->orom->hdr.version :
1847 			ISCI_ROM_VER_1_0;
1848 
1849 		if (sci_oem_parameters_validate(&ihost->oem_parameters,
1850 						oem_version))
1851 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1852 
1853 		return SCI_SUCCESS;
1854 	}
1855 
1856 	return SCI_FAILURE_INVALID_STATE;
1857 }
1858 
1859 static u8 max_spin_up(struct isci_host *ihost)
1860 {
1861 	if (ihost->user_parameters.max_concurr_spinup)
1862 		return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1863 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1864 	else
1865 		return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1866 			     MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1867 }
1868 
1869 static void power_control_timeout(unsigned long data)
1870 {
1871 	struct sci_timer *tmr = (struct sci_timer *)data;
1872 	struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1873 	struct isci_phy *iphy;
1874 	unsigned long flags;
1875 	u8 i;
1876 
1877 	spin_lock_irqsave(&ihost->scic_lock, flags);
1878 
1879 	if (tmr->cancel)
1880 		goto done;
1881 
1882 	ihost->power_control.phys_granted_power = 0;
1883 
1884 	if (ihost->power_control.phys_waiting == 0) {
1885 		ihost->power_control.timer_started = false;
1886 		goto done;
1887 	}
1888 
1889 	for (i = 0; i < SCI_MAX_PHYS; i++) {
1890 
1891 		if (ihost->power_control.phys_waiting == 0)
1892 			break;
1893 
1894 		iphy = ihost->power_control.requesters[i];
1895 		if (iphy == NULL)
1896 			continue;
1897 
1898 		if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1899 			break;
1900 
1901 		ihost->power_control.requesters[i] = NULL;
1902 		ihost->power_control.phys_waiting--;
1903 		ihost->power_control.phys_granted_power++;
1904 		sci_phy_consume_power_handler(iphy);
1905 
1906 		if (iphy->protocol == SAS_PROTOCOL_SSP) {
1907 			u8 j;
1908 
1909 			for (j = 0; j < SCI_MAX_PHYS; j++) {
1910 				struct isci_phy *requester = ihost->power_control.requesters[j];
1911 
1912 				/*
1913 				 * Search the power_control queue to see if there are other phys
1914 				 * attached to the same remote device. If found, take all of
1915 				 * them out of await_sas_power state.
1916 				 */
1917 				if (requester != NULL && requester != iphy) {
1918 					u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1919 							  iphy->frame_rcvd.iaf.sas_addr,
1920 							  sizeof(requester->frame_rcvd.iaf.sas_addr));
1921 
1922 					if (other == 0) {
1923 						ihost->power_control.requesters[j] = NULL;
1924 						ihost->power_control.phys_waiting--;
1925 						sci_phy_consume_power_handler(requester);
1926 					}
1927 				}
1928 			}
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * It doesn't matter if the power list is empty, we need to start the
1934 	 * timer in case another phy becomes ready.
1935 	 */
1936 	sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1937 	ihost->power_control.timer_started = true;
1938 
1939 done:
1940 	spin_unlock_irqrestore(&ihost->scic_lock, flags);
1941 }
1942 
1943 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1944 					       struct isci_phy *iphy)
1945 {
1946 	BUG_ON(iphy == NULL);
1947 
1948 	if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1949 		ihost->power_control.phys_granted_power++;
1950 		sci_phy_consume_power_handler(iphy);
1951 
1952 		/*
1953 		 * stop and start the power_control timer. When the timer fires, the
1954 		 * no_of_phys_granted_power will be set to 0
1955 		 */
1956 		if (ihost->power_control.timer_started)
1957 			sci_del_timer(&ihost->power_control.timer);
1958 
1959 		sci_mod_timer(&ihost->power_control.timer,
1960 				 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1961 		ihost->power_control.timer_started = true;
1962 
1963 	} else {
1964 		/*
1965 		 * There are phys, attached to the same sas address as this phy, are
1966 		 * already in READY state, this phy don't need wait.
1967 		 */
1968 		u8 i;
1969 		struct isci_phy *current_phy;
1970 
1971 		for (i = 0; i < SCI_MAX_PHYS; i++) {
1972 			u8 other;
1973 			current_phy = &ihost->phys[i];
1974 
1975 			other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1976 				       iphy->frame_rcvd.iaf.sas_addr,
1977 				       sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1978 
1979 			if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1980 			    current_phy->protocol == SAS_PROTOCOL_SSP &&
1981 			    other == 0) {
1982 				sci_phy_consume_power_handler(iphy);
1983 				break;
1984 			}
1985 		}
1986 
1987 		if (i == SCI_MAX_PHYS) {
1988 			/* Add the phy in the waiting list */
1989 			ihost->power_control.requesters[iphy->phy_index] = iphy;
1990 			ihost->power_control.phys_waiting++;
1991 		}
1992 	}
1993 }
1994 
1995 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1996 					       struct isci_phy *iphy)
1997 {
1998 	BUG_ON(iphy == NULL);
1999 
2000 	if (ihost->power_control.requesters[iphy->phy_index])
2001 		ihost->power_control.phys_waiting--;
2002 
2003 	ihost->power_control.requesters[iphy->phy_index] = NULL;
2004 }
2005 
2006 static int is_long_cable(int phy, unsigned char selection_byte)
2007 {
2008 	return !!(selection_byte & (1 << phy));
2009 }
2010 
2011 static int is_medium_cable(int phy, unsigned char selection_byte)
2012 {
2013 	return !!(selection_byte & (1 << (phy + 4)));
2014 }
2015 
2016 static enum cable_selections decode_selection_byte(
2017 	int phy,
2018 	unsigned char selection_byte)
2019 {
2020 	return ((selection_byte & (1 << phy)) ? 1 : 0)
2021 		+ (selection_byte & (1 << (phy + 4)) ? 2 : 0);
2022 }
2023 
2024 static unsigned char *to_cable_select(struct isci_host *ihost)
2025 {
2026 	if (is_cable_select_overridden())
2027 		return ((unsigned char *)&cable_selection_override)
2028 			+ ihost->id;
2029 	else
2030 		return &ihost->oem_parameters.controller.cable_selection_mask;
2031 }
2032 
2033 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
2034 {
2035 	return decode_selection_byte(phy, *to_cable_select(ihost));
2036 }
2037 
2038 char *lookup_cable_names(enum cable_selections selection)
2039 {
2040 	static char *cable_names[] = {
2041 		[short_cable]     = "short",
2042 		[long_cable]      = "long",
2043 		[medium_cable]    = "medium",
2044 		[undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
2045 	};
2046 	return (selection <= undefined_cable) ? cable_names[selection]
2047 					      : cable_names[undefined_cable];
2048 }
2049 
2050 #define AFE_REGISTER_WRITE_DELAY 10
2051 
2052 static void sci_controller_afe_initialization(struct isci_host *ihost)
2053 {
2054 	struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
2055 	const struct sci_oem_params *oem = &ihost->oem_parameters;
2056 	struct pci_dev *pdev = ihost->pdev;
2057 	u32 afe_status;
2058 	u32 phy_id;
2059 	unsigned char cable_selection_mask = *to_cable_select(ihost);
2060 
2061 	/* Clear DFX Status registers */
2062 	writel(0x0081000f, &afe->afe_dfx_master_control0);
2063 	udelay(AFE_REGISTER_WRITE_DELAY);
2064 
2065 	if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
2066 		/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
2067 		 * Timer, PM Stagger Timer
2068 		 */
2069 		writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
2070 		udelay(AFE_REGISTER_WRITE_DELAY);
2071 	}
2072 
2073 	/* Configure bias currents to normal */
2074 	if (is_a2(pdev))
2075 		writel(0x00005A00, &afe->afe_bias_control);
2076 	else if (is_b0(pdev) || is_c0(pdev))
2077 		writel(0x00005F00, &afe->afe_bias_control);
2078 	else if (is_c1(pdev))
2079 		writel(0x00005500, &afe->afe_bias_control);
2080 
2081 	udelay(AFE_REGISTER_WRITE_DELAY);
2082 
2083 	/* Enable PLL */
2084 	if (is_a2(pdev))
2085 		writel(0x80040908, &afe->afe_pll_control0);
2086 	else if (is_b0(pdev) || is_c0(pdev))
2087 		writel(0x80040A08, &afe->afe_pll_control0);
2088 	else if (is_c1(pdev)) {
2089 		writel(0x80000B08, &afe->afe_pll_control0);
2090 		udelay(AFE_REGISTER_WRITE_DELAY);
2091 		writel(0x00000B08, &afe->afe_pll_control0);
2092 		udelay(AFE_REGISTER_WRITE_DELAY);
2093 		writel(0x80000B08, &afe->afe_pll_control0);
2094 	}
2095 
2096 	udelay(AFE_REGISTER_WRITE_DELAY);
2097 
2098 	/* Wait for the PLL to lock */
2099 	do {
2100 		afe_status = readl(&afe->afe_common_block_status);
2101 		udelay(AFE_REGISTER_WRITE_DELAY);
2102 	} while ((afe_status & 0x00001000) == 0);
2103 
2104 	if (is_a2(pdev)) {
2105 		/* Shorten SAS SNW lock time (RxLock timer value from 76
2106 		 * us to 50 us)
2107 		 */
2108 		writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
2109 		udelay(AFE_REGISTER_WRITE_DELAY);
2110 	}
2111 
2112 	for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
2113 		struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id];
2114 		const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
2115 		int cable_length_long =
2116 			is_long_cable(phy_id, cable_selection_mask);
2117 		int cable_length_medium =
2118 			is_medium_cable(phy_id, cable_selection_mask);
2119 
2120 		if (is_a2(pdev)) {
2121 			/* All defaults, except the Receive Word
2122 			 * Alignament/Comma Detect Enable....(0xe800)
2123 			 */
2124 			writel(0x00004512, &xcvr->afe_xcvr_control0);
2125 			udelay(AFE_REGISTER_WRITE_DELAY);
2126 
2127 			writel(0x0050100F, &xcvr->afe_xcvr_control1);
2128 			udelay(AFE_REGISTER_WRITE_DELAY);
2129 		} else if (is_b0(pdev)) {
2130 			/* Configure transmitter SSC parameters */
2131 			writel(0x00030000, &xcvr->afe_tx_ssc_control);
2132 			udelay(AFE_REGISTER_WRITE_DELAY);
2133 		} else if (is_c0(pdev)) {
2134 			/* Configure transmitter SSC parameters */
2135 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2136 			udelay(AFE_REGISTER_WRITE_DELAY);
2137 
2138 			/* All defaults, except the Receive Word
2139 			 * Alignament/Comma Detect Enable....(0xe800)
2140 			 */
2141 			writel(0x00014500, &xcvr->afe_xcvr_control0);
2142 			udelay(AFE_REGISTER_WRITE_DELAY);
2143 		} else if (is_c1(pdev)) {
2144 			/* Configure transmitter SSC parameters */
2145 			writel(0x00010202, &xcvr->afe_tx_ssc_control);
2146 			udelay(AFE_REGISTER_WRITE_DELAY);
2147 
2148 			/* All defaults, except the Receive Word
2149 			 * Alignament/Comma Detect Enable....(0xe800)
2150 			 */
2151 			writel(0x0001C500, &xcvr->afe_xcvr_control0);
2152 			udelay(AFE_REGISTER_WRITE_DELAY);
2153 		}
2154 
2155 		/* Power up TX and RX out from power down (PWRDNTX and
2156 		 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2157 		 */
2158 		if (is_a2(pdev))
2159 			writel(0x000003F0, &xcvr->afe_channel_control);
2160 		else if (is_b0(pdev)) {
2161 			writel(0x000003D7, &xcvr->afe_channel_control);
2162 			udelay(AFE_REGISTER_WRITE_DELAY);
2163 
2164 			writel(0x000003D4, &xcvr->afe_channel_control);
2165 		} else if (is_c0(pdev)) {
2166 			writel(0x000001E7, &xcvr->afe_channel_control);
2167 			udelay(AFE_REGISTER_WRITE_DELAY);
2168 
2169 			writel(0x000001E4, &xcvr->afe_channel_control);
2170 		} else if (is_c1(pdev)) {
2171 			writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2172 			       &xcvr->afe_channel_control);
2173 			udelay(AFE_REGISTER_WRITE_DELAY);
2174 
2175 			writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2176 			       &xcvr->afe_channel_control);
2177 		}
2178 		udelay(AFE_REGISTER_WRITE_DELAY);
2179 
2180 		if (is_a2(pdev)) {
2181 			/* Enable TX equalization (0xe824) */
2182 			writel(0x00040000, &xcvr->afe_tx_control);
2183 			udelay(AFE_REGISTER_WRITE_DELAY);
2184 		}
2185 
2186 		if (is_a2(pdev) || is_b0(pdev))
2187 			/* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2188 			 * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2189 			 * Enabled) ....(0xe800)
2190 			 */
2191 			writel(0x00004100, &xcvr->afe_xcvr_control0);
2192 		else if (is_c0(pdev))
2193 			writel(0x00014100, &xcvr->afe_xcvr_control0);
2194 		else if (is_c1(pdev))
2195 			writel(0x0001C100, &xcvr->afe_xcvr_control0);
2196 		udelay(AFE_REGISTER_WRITE_DELAY);
2197 
2198 		/* Leave DFE/FFE on */
2199 		if (is_a2(pdev))
2200 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2201 		else if (is_b0(pdev)) {
2202 			writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2203 			udelay(AFE_REGISTER_WRITE_DELAY);
2204 			/* Enable TX equalization (0xe824) */
2205 			writel(0x00040000, &xcvr->afe_tx_control);
2206 		} else if (is_c0(pdev)) {
2207 			writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2208 			udelay(AFE_REGISTER_WRITE_DELAY);
2209 
2210 			writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2211 			udelay(AFE_REGISTER_WRITE_DELAY);
2212 
2213 			/* Enable TX equalization (0xe824) */
2214 			writel(0x00040000, &xcvr->afe_tx_control);
2215 		} else if (is_c1(pdev)) {
2216 			writel(cable_length_long ? 0x01500C0C :
2217 			       cable_length_medium ? 0x01400C0D : 0x02400C0D,
2218 			       &xcvr->afe_xcvr_control1);
2219 			udelay(AFE_REGISTER_WRITE_DELAY);
2220 
2221 			writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2222 			udelay(AFE_REGISTER_WRITE_DELAY);
2223 
2224 			writel(cable_length_long ? 0x33091C1F :
2225 			       cable_length_medium ? 0x3315181F : 0x2B17161F,
2226 			       &xcvr->afe_rx_ssc_control0);
2227 			udelay(AFE_REGISTER_WRITE_DELAY);
2228 
2229 			/* Enable TX equalization (0xe824) */
2230 			writel(0x00040000, &xcvr->afe_tx_control);
2231 		}
2232 
2233 		udelay(AFE_REGISTER_WRITE_DELAY);
2234 
2235 		writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2236 		udelay(AFE_REGISTER_WRITE_DELAY);
2237 
2238 		writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2239 		udelay(AFE_REGISTER_WRITE_DELAY);
2240 
2241 		writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2242 		udelay(AFE_REGISTER_WRITE_DELAY);
2243 
2244 		writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2245 		udelay(AFE_REGISTER_WRITE_DELAY);
2246 	}
2247 
2248 	/* Transfer control to the PEs */
2249 	writel(0x00010f00, &afe->afe_dfx_master_control0);
2250 	udelay(AFE_REGISTER_WRITE_DELAY);
2251 }
2252 
2253 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2254 {
2255 	sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2256 
2257 	memset(ihost->power_control.requesters, 0,
2258 	       sizeof(ihost->power_control.requesters));
2259 
2260 	ihost->power_control.phys_waiting = 0;
2261 	ihost->power_control.phys_granted_power = 0;
2262 }
2263 
2264 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2265 {
2266 	struct sci_base_state_machine *sm = &ihost->sm;
2267 	enum sci_status result = SCI_FAILURE;
2268 	unsigned long i, state, val;
2269 
2270 	if (ihost->sm.current_state_id != SCIC_RESET) {
2271 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2272 			 __func__, ihost->sm.current_state_id);
2273 		return SCI_FAILURE_INVALID_STATE;
2274 	}
2275 
2276 	sci_change_state(sm, SCIC_INITIALIZING);
2277 
2278 	sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2279 
2280 	ihost->next_phy_to_start = 0;
2281 	ihost->phy_startup_timer_pending = false;
2282 
2283 	sci_controller_initialize_power_control(ihost);
2284 
2285 	/*
2286 	 * There is nothing to do here for B0 since we do not have to
2287 	 * program the AFE registers.
2288 	 * / @todo The AFE settings are supposed to be correct for the B0 but
2289 	 * /       presently they seem to be wrong. */
2290 	sci_controller_afe_initialization(ihost);
2291 
2292 
2293 	/* Take the hardware out of reset */
2294 	writel(0, &ihost->smu_registers->soft_reset_control);
2295 
2296 	/*
2297 	 * / @todo Provide meaningfull error code for hardware failure
2298 	 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2299 	for (i = 100; i >= 1; i--) {
2300 		u32 status;
2301 
2302 		/* Loop until the hardware reports success */
2303 		udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2304 		status = readl(&ihost->smu_registers->control_status);
2305 
2306 		if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2307 			break;
2308 	}
2309 	if (i == 0)
2310 		goto out;
2311 
2312 	/*
2313 	 * Determine what are the actaul device capacities that the
2314 	 * hardware will support */
2315 	val = readl(&ihost->smu_registers->device_context_capacity);
2316 
2317 	/* Record the smaller of the two capacity values */
2318 	ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2319 	ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2320 	ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2321 
2322 	/*
2323 	 * Make all PEs that are unassigned match up with the
2324 	 * logical ports
2325 	 */
2326 	for (i = 0; i < ihost->logical_port_entries; i++) {
2327 		struct scu_port_task_scheduler_group_registers __iomem
2328 			*ptsg = &ihost->scu_registers->peg0.ptsg;
2329 
2330 		writel(i, &ptsg->protocol_engine[i]);
2331 	}
2332 
2333 	/* Initialize hardware PCI Relaxed ordering in DMA engines */
2334 	val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2335 	val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2336 	writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2337 
2338 	val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2339 	val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2340 	writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2341 
2342 	/*
2343 	 * Initialize the PHYs before the PORTs because the PHY registers
2344 	 * are accessed during the port initialization.
2345 	 */
2346 	for (i = 0; i < SCI_MAX_PHYS; i++) {
2347 		result = sci_phy_initialize(&ihost->phys[i],
2348 					    &ihost->scu_registers->peg0.pe[i].tl,
2349 					    &ihost->scu_registers->peg0.pe[i].ll);
2350 		if (result != SCI_SUCCESS)
2351 			goto out;
2352 	}
2353 
2354 	for (i = 0; i < ihost->logical_port_entries; i++) {
2355 		struct isci_port *iport = &ihost->ports[i];
2356 
2357 		iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2358 		iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2359 		iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2360 	}
2361 
2362 	result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2363 
2364  out:
2365 	/* Advance the controller state machine */
2366 	if (result == SCI_SUCCESS)
2367 		state = SCIC_INITIALIZED;
2368 	else
2369 		state = SCIC_FAILED;
2370 	sci_change_state(sm, state);
2371 
2372 	return result;
2373 }
2374 
2375 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2376 					       struct sci_user_parameters *sci_parms)
2377 {
2378 	u32 state = ihost->sm.current_state_id;
2379 
2380 	if (state == SCIC_RESET ||
2381 	    state == SCIC_INITIALIZING ||
2382 	    state == SCIC_INITIALIZED) {
2383 		u16 index;
2384 
2385 		/*
2386 		 * Validate the user parameters.  If they are not legal, then
2387 		 * return a failure.
2388 		 */
2389 		for (index = 0; index < SCI_MAX_PHYS; index++) {
2390 			struct sci_phy_user_params *user_phy;
2391 
2392 			user_phy = &sci_parms->phys[index];
2393 
2394 			if (!((user_phy->max_speed_generation <=
2395 						SCIC_SDS_PARM_MAX_SPEED) &&
2396 			      (user_phy->max_speed_generation >
2397 						SCIC_SDS_PARM_NO_SPEED)))
2398 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2399 
2400 			if (user_phy->in_connection_align_insertion_frequency <
2401 					3)
2402 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2403 
2404 			if ((user_phy->in_connection_align_insertion_frequency <
2405 						3) ||
2406 			    (user_phy->align_insertion_frequency == 0) ||
2407 			    (user_phy->
2408 				notify_enable_spin_up_insertion_frequency ==
2409 						0))
2410 				return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2411 		}
2412 
2413 		if ((sci_parms->stp_inactivity_timeout == 0) ||
2414 		    (sci_parms->ssp_inactivity_timeout == 0) ||
2415 		    (sci_parms->stp_max_occupancy_timeout == 0) ||
2416 		    (sci_parms->ssp_max_occupancy_timeout == 0) ||
2417 		    (sci_parms->no_outbound_task_timeout == 0))
2418 			return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2419 
2420 		memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2421 
2422 		return SCI_SUCCESS;
2423 	}
2424 
2425 	return SCI_FAILURE_INVALID_STATE;
2426 }
2427 
2428 static int sci_controller_mem_init(struct isci_host *ihost)
2429 {
2430 	struct device *dev = &ihost->pdev->dev;
2431 	dma_addr_t dma;
2432 	size_t size;
2433 	int err;
2434 
2435 	size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2436 	ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2437 	if (!ihost->completion_queue)
2438 		return -ENOMEM;
2439 
2440 	writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2441 	writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2442 
2443 	size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2444 	ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2445 							       GFP_KERNEL);
2446 	if (!ihost->remote_node_context_table)
2447 		return -ENOMEM;
2448 
2449 	writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2450 	writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2451 
2452 	size = ihost->task_context_entries * sizeof(struct scu_task_context),
2453 	ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2454 	if (!ihost->task_context_table)
2455 		return -ENOMEM;
2456 
2457 	ihost->task_context_dma = dma;
2458 	writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2459 	writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2460 
2461 	err = sci_unsolicited_frame_control_construct(ihost);
2462 	if (err)
2463 		return err;
2464 
2465 	/*
2466 	 * Inform the silicon as to the location of the UF headers and
2467 	 * address table.
2468 	 */
2469 	writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2470 		&ihost->scu_registers->sdma.uf_header_base_address_lower);
2471 	writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2472 		&ihost->scu_registers->sdma.uf_header_base_address_upper);
2473 
2474 	writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2475 		&ihost->scu_registers->sdma.uf_address_table_lower);
2476 	writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2477 		&ihost->scu_registers->sdma.uf_address_table_upper);
2478 
2479 	return 0;
2480 }
2481 
2482 int isci_host_init(struct isci_host *ihost)
2483 {
2484 	int err = 0, i;
2485 	enum sci_status status;
2486 	struct sci_user_parameters sci_user_params;
2487 	struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2488 
2489 	spin_lock_init(&ihost->scic_lock);
2490 	init_waitqueue_head(&ihost->eventq);
2491 
2492 	status = sci_controller_construct(ihost, scu_base(ihost),
2493 					  smu_base(ihost));
2494 
2495 	if (status != SCI_SUCCESS) {
2496 		dev_err(&ihost->pdev->dev,
2497 			"%s: sci_controller_construct failed - status = %x\n",
2498 			__func__,
2499 			status);
2500 		return -ENODEV;
2501 	}
2502 
2503 	ihost->sas_ha.dev = &ihost->pdev->dev;
2504 	ihost->sas_ha.lldd_ha = ihost;
2505 
2506 	/*
2507 	 * grab initial values stored in the controller object for OEM and USER
2508 	 * parameters
2509 	 */
2510 	isci_user_parameters_get(&sci_user_params);
2511 	status = sci_user_parameters_set(ihost, &sci_user_params);
2512 	if (status != SCI_SUCCESS) {
2513 		dev_warn(&ihost->pdev->dev,
2514 			 "%s: sci_user_parameters_set failed\n",
2515 			 __func__);
2516 		return -ENODEV;
2517 	}
2518 
2519 	/* grab any OEM parameters specified in orom */
2520 	if (pci_info->orom) {
2521 		status = isci_parse_oem_parameters(&ihost->oem_parameters,
2522 						   pci_info->orom,
2523 						   ihost->id);
2524 		if (status != SCI_SUCCESS) {
2525 			dev_warn(&ihost->pdev->dev,
2526 				 "parsing firmware oem parameters failed\n");
2527 			return -EINVAL;
2528 		}
2529 	}
2530 
2531 	status = sci_oem_parameters_set(ihost);
2532 	if (status != SCI_SUCCESS) {
2533 		dev_warn(&ihost->pdev->dev,
2534 				"%s: sci_oem_parameters_set failed\n",
2535 				__func__);
2536 		return -ENODEV;
2537 	}
2538 
2539 	tasklet_init(&ihost->completion_tasklet,
2540 		     isci_host_completion_routine, (unsigned long)ihost);
2541 
2542 	INIT_LIST_HEAD(&ihost->requests_to_complete);
2543 	INIT_LIST_HEAD(&ihost->requests_to_errorback);
2544 
2545 	spin_lock_irq(&ihost->scic_lock);
2546 	status = sci_controller_initialize(ihost);
2547 	spin_unlock_irq(&ihost->scic_lock);
2548 	if (status != SCI_SUCCESS) {
2549 		dev_warn(&ihost->pdev->dev,
2550 			 "%s: sci_controller_initialize failed -"
2551 			 " status = 0x%x\n",
2552 			 __func__, status);
2553 		return -ENODEV;
2554 	}
2555 
2556 	err = sci_controller_mem_init(ihost);
2557 	if (err)
2558 		return err;
2559 
2560 	for (i = 0; i < SCI_MAX_PORTS; i++) {
2561 		struct isci_port *iport = &ihost->ports[i];
2562 
2563 		INIT_LIST_HEAD(&iport->remote_dev_list);
2564 		iport->isci_host = ihost;
2565 	}
2566 
2567 	for (i = 0; i < SCI_MAX_PHYS; i++)
2568 		isci_phy_init(&ihost->phys[i], ihost, i);
2569 
2570 	/* enable sgpio */
2571 	writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2572 	for (i = 0; i < isci_gpio_count(ihost); i++)
2573 		writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2574 	writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2575 
2576 	for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2577 		struct isci_remote_device *idev = &ihost->devices[i];
2578 
2579 		INIT_LIST_HEAD(&idev->reqs_in_process);
2580 		INIT_LIST_HEAD(&idev->node);
2581 	}
2582 
2583 	for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2584 		struct isci_request *ireq;
2585 		dma_addr_t dma;
2586 
2587 		ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2588 					   sizeof(struct isci_request), &dma,
2589 					   GFP_KERNEL);
2590 		if (!ireq)
2591 			return -ENOMEM;
2592 
2593 		ireq->tc = &ihost->task_context_table[i];
2594 		ireq->owning_controller = ihost;
2595 		spin_lock_init(&ireq->state_lock);
2596 		ireq->request_daddr = dma;
2597 		ireq->isci_host = ihost;
2598 		ihost->reqs[i] = ireq;
2599 	}
2600 
2601 	return 0;
2602 }
2603 
2604 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2605 			    struct isci_phy *iphy)
2606 {
2607 	switch (ihost->sm.current_state_id) {
2608 	case SCIC_STARTING:
2609 		sci_del_timer(&ihost->phy_timer);
2610 		ihost->phy_startup_timer_pending = false;
2611 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2612 						  iport, iphy);
2613 		sci_controller_start_next_phy(ihost);
2614 		break;
2615 	case SCIC_READY:
2616 		ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2617 						  iport, iphy);
2618 		break;
2619 	default:
2620 		dev_dbg(&ihost->pdev->dev,
2621 			"%s: SCIC Controller linkup event from phy %d in "
2622 			"unexpected state %d\n", __func__, iphy->phy_index,
2623 			ihost->sm.current_state_id);
2624 	}
2625 }
2626 
2627 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2628 			      struct isci_phy *iphy)
2629 {
2630 	switch (ihost->sm.current_state_id) {
2631 	case SCIC_STARTING:
2632 	case SCIC_READY:
2633 		ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2634 						   iport, iphy);
2635 		break;
2636 	default:
2637 		dev_dbg(&ihost->pdev->dev,
2638 			"%s: SCIC Controller linkdown event from phy %d in "
2639 			"unexpected state %d\n",
2640 			__func__,
2641 			iphy->phy_index,
2642 			ihost->sm.current_state_id);
2643 	}
2644 }
2645 
2646 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2647 {
2648 	u32 index;
2649 
2650 	for (index = 0; index < ihost->remote_node_entries; index++) {
2651 		if ((ihost->device_table[index] != NULL) &&
2652 		   (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2653 			return true;
2654 	}
2655 
2656 	return false;
2657 }
2658 
2659 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2660 					  struct isci_remote_device *idev)
2661 {
2662 	if (ihost->sm.current_state_id != SCIC_STOPPING) {
2663 		dev_dbg(&ihost->pdev->dev,
2664 			"SCIC Controller 0x%p remote device stopped event "
2665 			"from device 0x%p in unexpected state %d\n",
2666 			ihost, idev,
2667 			ihost->sm.current_state_id);
2668 		return;
2669 	}
2670 
2671 	if (!sci_controller_has_remote_devices_stopping(ihost))
2672 		sci_change_state(&ihost->sm, SCIC_STOPPED);
2673 }
2674 
2675 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2676 {
2677 	dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2678 		__func__, ihost->id, request);
2679 
2680 	writel(request, &ihost->smu_registers->post_context_port);
2681 }
2682 
2683 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2684 {
2685 	u16 task_index;
2686 	u16 task_sequence;
2687 
2688 	task_index = ISCI_TAG_TCI(io_tag);
2689 
2690 	if (task_index < ihost->task_context_entries) {
2691 		struct isci_request *ireq = ihost->reqs[task_index];
2692 
2693 		if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2694 			task_sequence = ISCI_TAG_SEQ(io_tag);
2695 
2696 			if (task_sequence == ihost->io_request_sequence[task_index])
2697 				return ireq;
2698 		}
2699 	}
2700 
2701 	return NULL;
2702 }
2703 
2704 /**
2705  * This method allocates remote node index and the reserves the remote node
2706  *    context space for use. This method can fail if there are no more remote
2707  *    node index available.
2708  * @scic: This is the controller object which contains the set of
2709  *    free remote node ids
2710  * @sci_dev: This is the device object which is requesting the a remote node
2711  *    id
2712  * @node_id: This is the remote node id that is assinged to the device if one
2713  *    is available
2714  *
2715  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2716  * node index available.
2717  */
2718 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2719 							    struct isci_remote_device *idev,
2720 							    u16 *node_id)
2721 {
2722 	u16 node_index;
2723 	u32 remote_node_count = sci_remote_device_node_count(idev);
2724 
2725 	node_index = sci_remote_node_table_allocate_remote_node(
2726 		&ihost->available_remote_nodes, remote_node_count
2727 		);
2728 
2729 	if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2730 		ihost->device_table[node_index] = idev;
2731 
2732 		*node_id = node_index;
2733 
2734 		return SCI_SUCCESS;
2735 	}
2736 
2737 	return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2738 }
2739 
2740 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2741 					     struct isci_remote_device *idev,
2742 					     u16 node_id)
2743 {
2744 	u32 remote_node_count = sci_remote_device_node_count(idev);
2745 
2746 	if (ihost->device_table[node_id] == idev) {
2747 		ihost->device_table[node_id] = NULL;
2748 
2749 		sci_remote_node_table_release_remote_node_index(
2750 			&ihost->available_remote_nodes, remote_node_count, node_id
2751 			);
2752 	}
2753 }
2754 
2755 void sci_controller_copy_sata_response(void *response_buffer,
2756 				       void *frame_header,
2757 				       void *frame_buffer)
2758 {
2759 	/* XXX type safety? */
2760 	memcpy(response_buffer, frame_header, sizeof(u32));
2761 
2762 	memcpy(response_buffer + sizeof(u32),
2763 	       frame_buffer,
2764 	       sizeof(struct dev_to_host_fis) - sizeof(u32));
2765 }
2766 
2767 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2768 {
2769 	if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2770 		writel(ihost->uf_control.get,
2771 			&ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2772 }
2773 
2774 void isci_tci_free(struct isci_host *ihost, u16 tci)
2775 {
2776 	u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2777 
2778 	ihost->tci_pool[tail] = tci;
2779 	ihost->tci_tail = tail + 1;
2780 }
2781 
2782 static u16 isci_tci_alloc(struct isci_host *ihost)
2783 {
2784 	u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2785 	u16 tci = ihost->tci_pool[head];
2786 
2787 	ihost->tci_head = head + 1;
2788 	return tci;
2789 }
2790 
2791 static u16 isci_tci_space(struct isci_host *ihost)
2792 {
2793 	return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2794 }
2795 
2796 u16 isci_alloc_tag(struct isci_host *ihost)
2797 {
2798 	if (isci_tci_space(ihost)) {
2799 		u16 tci = isci_tci_alloc(ihost);
2800 		u8 seq = ihost->io_request_sequence[tci];
2801 
2802 		return ISCI_TAG(seq, tci);
2803 	}
2804 
2805 	return SCI_CONTROLLER_INVALID_IO_TAG;
2806 }
2807 
2808 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2809 {
2810 	u16 tci = ISCI_TAG_TCI(io_tag);
2811 	u16 seq = ISCI_TAG_SEQ(io_tag);
2812 
2813 	/* prevent tail from passing head */
2814 	if (isci_tci_active(ihost) == 0)
2815 		return SCI_FAILURE_INVALID_IO_TAG;
2816 
2817 	if (seq == ihost->io_request_sequence[tci]) {
2818 		ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2819 
2820 		isci_tci_free(ihost, tci);
2821 
2822 		return SCI_SUCCESS;
2823 	}
2824 	return SCI_FAILURE_INVALID_IO_TAG;
2825 }
2826 
2827 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2828 					struct isci_remote_device *idev,
2829 					struct isci_request *ireq)
2830 {
2831 	enum sci_status status;
2832 
2833 	if (ihost->sm.current_state_id != SCIC_READY) {
2834 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2835 			 __func__, ihost->sm.current_state_id);
2836 		return SCI_FAILURE_INVALID_STATE;
2837 	}
2838 
2839 	status = sci_remote_device_start_io(ihost, idev, ireq);
2840 	if (status != SCI_SUCCESS)
2841 		return status;
2842 
2843 	set_bit(IREQ_ACTIVE, &ireq->flags);
2844 	sci_controller_post_request(ihost, ireq->post_context);
2845 	return SCI_SUCCESS;
2846 }
2847 
2848 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2849 						 struct isci_remote_device *idev,
2850 						 struct isci_request *ireq)
2851 {
2852 	/* terminate an ongoing (i.e. started) core IO request.  This does not
2853 	 * abort the IO request at the target, but rather removes the IO
2854 	 * request from the host controller.
2855 	 */
2856 	enum sci_status status;
2857 
2858 	if (ihost->sm.current_state_id != SCIC_READY) {
2859 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2860 			 __func__, ihost->sm.current_state_id);
2861 		return SCI_FAILURE_INVALID_STATE;
2862 	}
2863 
2864 	status = sci_io_request_terminate(ireq);
2865 	if (status != SCI_SUCCESS)
2866 		return status;
2867 
2868 	/*
2869 	 * Utilize the original post context command and or in the POST_TC_ABORT
2870 	 * request sub-type.
2871 	 */
2872 	sci_controller_post_request(ihost,
2873 				    ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2874 	return SCI_SUCCESS;
2875 }
2876 
2877 /**
2878  * sci_controller_complete_io() - This method will perform core specific
2879  *    completion operations for an IO request.  After this method is invoked,
2880  *    the user should consider the IO request as invalid until it is properly
2881  *    reused (i.e. re-constructed).
2882  * @ihost: The handle to the controller object for which to complete the
2883  *    IO request.
2884  * @idev: The handle to the remote device object for which to complete
2885  *    the IO request.
2886  * @ireq: the handle to the io request object to complete.
2887  */
2888 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2889 					   struct isci_remote_device *idev,
2890 					   struct isci_request *ireq)
2891 {
2892 	enum sci_status status;
2893 	u16 index;
2894 
2895 	switch (ihost->sm.current_state_id) {
2896 	case SCIC_STOPPING:
2897 		/* XXX: Implement this function */
2898 		return SCI_FAILURE;
2899 	case SCIC_READY:
2900 		status = sci_remote_device_complete_io(ihost, idev, ireq);
2901 		if (status != SCI_SUCCESS)
2902 			return status;
2903 
2904 		index = ISCI_TAG_TCI(ireq->io_tag);
2905 		clear_bit(IREQ_ACTIVE, &ireq->flags);
2906 		return SCI_SUCCESS;
2907 	default:
2908 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2909 			 __func__, ihost->sm.current_state_id);
2910 		return SCI_FAILURE_INVALID_STATE;
2911 	}
2912 
2913 }
2914 
2915 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2916 {
2917 	struct isci_host *ihost = ireq->owning_controller;
2918 
2919 	if (ihost->sm.current_state_id != SCIC_READY) {
2920 		dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2921 			 __func__, ihost->sm.current_state_id);
2922 		return SCI_FAILURE_INVALID_STATE;
2923 	}
2924 
2925 	set_bit(IREQ_ACTIVE, &ireq->flags);
2926 	sci_controller_post_request(ihost, ireq->post_context);
2927 	return SCI_SUCCESS;
2928 }
2929 
2930 /**
2931  * sci_controller_start_task() - This method is called by the SCIC user to
2932  *    send/start a framework task management request.
2933  * @controller: the handle to the controller object for which to start the task
2934  *    management request.
2935  * @remote_device: the handle to the remote device object for which to start
2936  *    the task management request.
2937  * @task_request: the handle to the task request object to start.
2938  */
2939 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2940 					       struct isci_remote_device *idev,
2941 					       struct isci_request *ireq)
2942 {
2943 	enum sci_status status;
2944 
2945 	if (ihost->sm.current_state_id != SCIC_READY) {
2946 		dev_warn(&ihost->pdev->dev,
2947 			 "%s: SCIC Controller starting task from invalid "
2948 			 "state\n",
2949 			 __func__);
2950 		return SCI_TASK_FAILURE_INVALID_STATE;
2951 	}
2952 
2953 	status = sci_remote_device_start_task(ihost, idev, ireq);
2954 	switch (status) {
2955 	case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2956 		set_bit(IREQ_ACTIVE, &ireq->flags);
2957 
2958 		/*
2959 		 * We will let framework know this task request started successfully,
2960 		 * although core is still woring on starting the request (to post tc when
2961 		 * RNC is resumed.)
2962 		 */
2963 		return SCI_SUCCESS;
2964 	case SCI_SUCCESS:
2965 		set_bit(IREQ_ACTIVE, &ireq->flags);
2966 		sci_controller_post_request(ihost, ireq->post_context);
2967 		break;
2968 	default:
2969 		break;
2970 	}
2971 
2972 	return status;
2973 }
2974 
2975 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2976 {
2977 	int d;
2978 
2979 	/* no support for TX_GP_CFG */
2980 	if (reg_index == 0)
2981 		return -EINVAL;
2982 
2983 	for (d = 0; d < isci_gpio_count(ihost); d++) {
2984 		u32 val = 0x444; /* all ODx.n clear */
2985 		int i;
2986 
2987 		for (i = 0; i < 3; i++) {
2988 			int bit = (i << 2) + 2;
2989 
2990 			bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2991 						       write_data, reg_index,
2992 						       reg_count);
2993 			if (bit < 0)
2994 				break;
2995 
2996 			/* if od is set, clear the 'invert' bit */
2997 			val &= ~(bit << ((i << 2) + 2));
2998 		}
2999 
3000 		if (i < 3)
3001 			break;
3002 		writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
3003 	}
3004 
3005 	/* unless reg_index is > 1, we should always be able to write at
3006 	 * least one register
3007 	 */
3008 	return d > 0;
3009 }
3010 
3011 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
3012 		    u8 reg_count, u8 *write_data)
3013 {
3014 	struct isci_host *ihost = sas_ha->lldd_ha;
3015 	int written;
3016 
3017 	switch (reg_type) {
3018 	case SAS_GPIO_REG_TX_GP:
3019 		written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
3020 		break;
3021 	default:
3022 		written = -EINVAL;
3023 	}
3024 
3025 	return written;
3026 }
3027