1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/circ_buf.h> 56 #include <linux/device.h> 57 #include <scsi/sas.h> 58 #include "host.h" 59 #include "isci.h" 60 #include "port.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scu_completion_codes.h" 65 #include "scu_event_codes.h" 66 #include "registers.h" 67 #include "scu_remote_node_context.h" 68 #include "scu_task_context.h" 69 70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 71 72 #define smu_max_ports(dcc_value) \ 73 (\ 74 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 75 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 76 ) 77 78 #define smu_max_task_contexts(dcc_value) \ 79 (\ 80 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 81 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 82 ) 83 84 #define smu_max_rncs(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 88 ) 89 90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 91 92 /** 93 * 94 * 95 * The number of milliseconds to wait while a given phy is consuming power 96 * before allowing another set of phys to consume power. Ultimately, this will 97 * be specified by OEM parameter. 98 */ 99 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 100 101 /** 102 * NORMALIZE_PUT_POINTER() - 103 * 104 * This macro will normalize the completion queue put pointer so its value can 105 * be used as an array inde 106 */ 107 #define NORMALIZE_PUT_POINTER(x) \ 108 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 109 110 111 /** 112 * NORMALIZE_EVENT_POINTER() - 113 * 114 * This macro will normalize the completion queue event entry so its value can 115 * be used as an index. 116 */ 117 #define NORMALIZE_EVENT_POINTER(x) \ 118 (\ 119 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 120 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 121 ) 122 123 /** 124 * NORMALIZE_GET_POINTER() - 125 * 126 * This macro will normalize the completion queue get pointer so its value can 127 * be used as an index into an array 128 */ 129 #define NORMALIZE_GET_POINTER(x) \ 130 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 131 132 /** 133 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 134 * 135 * This macro will normalize the completion queue cycle pointer so it matches 136 * the completion queue cycle bit 137 */ 138 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 139 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 140 141 /** 142 * COMPLETION_QUEUE_CYCLE_BIT() - 143 * 144 * This macro will return the cycle bit of the completion queue entry 145 */ 146 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 147 148 /* Init the state machine and call the state entry function (if any) */ 149 void sci_init_sm(struct sci_base_state_machine *sm, 150 const struct sci_base_state *state_table, u32 initial_state) 151 { 152 sci_state_transition_t handler; 153 154 sm->initial_state_id = initial_state; 155 sm->previous_state_id = initial_state; 156 sm->current_state_id = initial_state; 157 sm->state_table = state_table; 158 159 handler = sm->state_table[initial_state].enter_state; 160 if (handler) 161 handler(sm); 162 } 163 164 /* Call the state exit fn, update the current state, call the state entry fn */ 165 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) 166 { 167 sci_state_transition_t handler; 168 169 handler = sm->state_table[sm->current_state_id].exit_state; 170 if (handler) 171 handler(sm); 172 173 sm->previous_state_id = sm->current_state_id; 174 sm->current_state_id = next_state; 175 176 handler = sm->state_table[sm->current_state_id].enter_state; 177 if (handler) 178 handler(sm); 179 } 180 181 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) 182 { 183 u32 get_value = ihost->completion_queue_get; 184 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 185 186 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 187 COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) 188 return true; 189 190 return false; 191 } 192 193 static bool sci_controller_isr(struct isci_host *ihost) 194 { 195 if (sci_controller_completion_queue_has_entries(ihost)) { 196 return true; 197 } else { 198 /* 199 * we have a spurious interrupt it could be that we have already 200 * emptied the completion queue from a previous interrupt */ 201 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 202 203 /* 204 * There is a race in the hardware that could cause us not to be notified 205 * of an interrupt completion if we do not take this step. We will mask 206 * then unmask the interrupts so if there is another interrupt pending 207 * the clearing of the interrupt source we get the next interrupt message. */ 208 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 209 writel(0, &ihost->smu_registers->interrupt_mask); 210 } 211 212 return false; 213 } 214 215 irqreturn_t isci_msix_isr(int vec, void *data) 216 { 217 struct isci_host *ihost = data; 218 219 if (sci_controller_isr(ihost)) 220 tasklet_schedule(&ihost->completion_tasklet); 221 222 return IRQ_HANDLED; 223 } 224 225 static bool sci_controller_error_isr(struct isci_host *ihost) 226 { 227 u32 interrupt_status; 228 229 interrupt_status = 230 readl(&ihost->smu_registers->interrupt_status); 231 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 232 233 if (interrupt_status != 0) { 234 /* 235 * There is an error interrupt pending so let it through and handle 236 * in the callback */ 237 return true; 238 } 239 240 /* 241 * There is a race in the hardware that could cause us not to be notified 242 * of an interrupt completion if we do not take this step. We will mask 243 * then unmask the error interrupts so if there was another interrupt 244 * pending we will be notified. 245 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 246 writel(0xff, &ihost->smu_registers->interrupt_mask); 247 writel(0, &ihost->smu_registers->interrupt_mask); 248 249 return false; 250 } 251 252 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) 253 { 254 u32 index = SCU_GET_COMPLETION_INDEX(ent); 255 struct isci_request *ireq = ihost->reqs[index]; 256 257 /* Make sure that we really want to process this IO request */ 258 if (test_bit(IREQ_ACTIVE, &ireq->flags) && 259 ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && 260 ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) 261 /* Yep this is a valid io request pass it along to the 262 * io request handler 263 */ 264 sci_io_request_tc_completion(ireq, ent); 265 } 266 267 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) 268 { 269 u32 index; 270 struct isci_request *ireq; 271 struct isci_remote_device *idev; 272 273 index = SCU_GET_COMPLETION_INDEX(ent); 274 275 switch (scu_get_command_request_type(ent)) { 276 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 277 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 278 ireq = ihost->reqs[index]; 279 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", 280 __func__, ent, ireq); 281 /* @todo For a post TC operation we need to fail the IO 282 * request 283 */ 284 break; 285 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 286 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 287 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 288 idev = ihost->device_table[index]; 289 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", 290 __func__, ent, idev); 291 /* @todo For a port RNC operation we need to fail the 292 * device 293 */ 294 break; 295 default: 296 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", 297 __func__, ent); 298 break; 299 } 300 } 301 302 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) 303 { 304 u32 index; 305 u32 frame_index; 306 307 struct scu_unsolicited_frame_header *frame_header; 308 struct isci_phy *iphy; 309 struct isci_remote_device *idev; 310 311 enum sci_status result = SCI_FAILURE; 312 313 frame_index = SCU_GET_FRAME_INDEX(ent); 314 315 frame_header = ihost->uf_control.buffers.array[frame_index].header; 316 ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 317 318 if (SCU_GET_FRAME_ERROR(ent)) { 319 /* 320 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 321 * / this cause a problem? We expect the phy initialization will 322 * / fail if there is an error in the frame. */ 323 sci_controller_release_frame(ihost, frame_index); 324 return; 325 } 326 327 if (frame_header->is_address_frame) { 328 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 329 iphy = &ihost->phys[index]; 330 result = sci_phy_frame_handler(iphy, frame_index); 331 } else { 332 333 index = SCU_GET_COMPLETION_INDEX(ent); 334 335 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 336 /* 337 * This is a signature fis or a frame from a direct attached SATA 338 * device that has not yet been created. In either case forwared 339 * the frame to the PE and let it take care of the frame data. */ 340 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 341 iphy = &ihost->phys[index]; 342 result = sci_phy_frame_handler(iphy, frame_index); 343 } else { 344 if (index < ihost->remote_node_entries) 345 idev = ihost->device_table[index]; 346 else 347 idev = NULL; 348 349 if (idev != NULL) 350 result = sci_remote_device_frame_handler(idev, frame_index); 351 else 352 sci_controller_release_frame(ihost, frame_index); 353 } 354 } 355 356 if (result != SCI_SUCCESS) { 357 /* 358 * / @todo Is there any reason to report some additional error message 359 * / when we get this failure notifiction? */ 360 } 361 } 362 363 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) 364 { 365 struct isci_remote_device *idev; 366 struct isci_request *ireq; 367 struct isci_phy *iphy; 368 u32 index; 369 370 index = SCU_GET_COMPLETION_INDEX(ent); 371 372 switch (scu_get_event_type(ent)) { 373 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 374 /* / @todo The driver did something wrong and we need to fix the condtion. */ 375 dev_err(&ihost->pdev->dev, 376 "%s: SCIC Controller 0x%p received SMU command error " 377 "0x%x\n", 378 __func__, 379 ihost, 380 ent); 381 break; 382 383 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 384 case SCU_EVENT_TYPE_SMU_ERROR: 385 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 386 /* 387 * / @todo This is a hardware failure and its likely that we want to 388 * / reset the controller. */ 389 dev_err(&ihost->pdev->dev, 390 "%s: SCIC Controller 0x%p received fatal controller " 391 "event 0x%x\n", 392 __func__, 393 ihost, 394 ent); 395 break; 396 397 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 398 ireq = ihost->reqs[index]; 399 sci_io_request_event_handler(ireq, ent); 400 break; 401 402 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 403 switch (scu_get_event_specifier(ent)) { 404 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 405 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 406 ireq = ihost->reqs[index]; 407 if (ireq != NULL) 408 sci_io_request_event_handler(ireq, ent); 409 else 410 dev_warn(&ihost->pdev->dev, 411 "%s: SCIC Controller 0x%p received " 412 "event 0x%x for io request object " 413 "that doesnt exist.\n", 414 __func__, 415 ihost, 416 ent); 417 418 break; 419 420 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 421 idev = ihost->device_table[index]; 422 if (idev != NULL) 423 sci_remote_device_event_handler(idev, ent); 424 else 425 dev_warn(&ihost->pdev->dev, 426 "%s: SCIC Controller 0x%p received " 427 "event 0x%x for remote device object " 428 "that doesnt exist.\n", 429 __func__, 430 ihost, 431 ent); 432 433 break; 434 } 435 break; 436 437 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 438 /* 439 * direct the broadcast change event to the phy first and then let 440 * the phy redirect the broadcast change to the port object */ 441 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 442 /* 443 * direct error counter event to the phy object since that is where 444 * we get the event notification. This is a type 4 event. */ 445 case SCU_EVENT_TYPE_OSSP_EVENT: 446 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); 447 iphy = &ihost->phys[index]; 448 sci_phy_event_handler(iphy, ent); 449 break; 450 451 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 452 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 453 case SCU_EVENT_TYPE_RNC_OPS_MISC: 454 if (index < ihost->remote_node_entries) { 455 idev = ihost->device_table[index]; 456 457 if (idev != NULL) 458 sci_remote_device_event_handler(idev, ent); 459 } else 460 dev_err(&ihost->pdev->dev, 461 "%s: SCIC Controller 0x%p received event 0x%x " 462 "for remote device object 0x%0x that doesnt " 463 "exist.\n", 464 __func__, 465 ihost, 466 ent, 467 index); 468 469 break; 470 471 default: 472 dev_warn(&ihost->pdev->dev, 473 "%s: SCIC Controller received unknown event code %x\n", 474 __func__, 475 ent); 476 break; 477 } 478 } 479 480 static void sci_controller_process_completions(struct isci_host *ihost) 481 { 482 u32 completion_count = 0; 483 u32 ent; 484 u32 get_index; 485 u32 get_cycle; 486 u32 event_get; 487 u32 event_cycle; 488 489 dev_dbg(&ihost->pdev->dev, 490 "%s: completion queue begining get:0x%08x\n", 491 __func__, 492 ihost->completion_queue_get); 493 494 /* Get the component parts of the completion queue */ 495 get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); 496 get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; 497 498 event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); 499 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; 500 501 while ( 502 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 503 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) 504 ) { 505 completion_count++; 506 507 ent = ihost->completion_queue[get_index]; 508 509 /* increment the get pointer and check for rollover to toggle the cycle bit */ 510 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << 511 (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); 512 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); 513 514 dev_dbg(&ihost->pdev->dev, 515 "%s: completion queue entry:0x%08x\n", 516 __func__, 517 ent); 518 519 switch (SCU_GET_COMPLETION_TYPE(ent)) { 520 case SCU_COMPLETION_TYPE_TASK: 521 sci_controller_task_completion(ihost, ent); 522 break; 523 524 case SCU_COMPLETION_TYPE_SDMA: 525 sci_controller_sdma_completion(ihost, ent); 526 break; 527 528 case SCU_COMPLETION_TYPE_UFI: 529 sci_controller_unsolicited_frame(ihost, ent); 530 break; 531 532 case SCU_COMPLETION_TYPE_EVENT: 533 sci_controller_event_completion(ihost, ent); 534 break; 535 536 case SCU_COMPLETION_TYPE_NOTIFY: { 537 event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << 538 (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); 539 event_get = (event_get+1) & (SCU_MAX_EVENTS-1); 540 541 sci_controller_event_completion(ihost, ent); 542 break; 543 } 544 default: 545 dev_warn(&ihost->pdev->dev, 546 "%s: SCIC Controller received unknown " 547 "completion type %x\n", 548 __func__, 549 ent); 550 break; 551 } 552 } 553 554 /* Update the get register if we completed one or more entries */ 555 if (completion_count > 0) { 556 ihost->completion_queue_get = 557 SMU_CQGR_GEN_BIT(ENABLE) | 558 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 559 event_cycle | 560 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | 561 get_cycle | 562 SMU_CQGR_GEN_VAL(POINTER, get_index); 563 564 writel(ihost->completion_queue_get, 565 &ihost->smu_registers->completion_queue_get); 566 567 } 568 569 dev_dbg(&ihost->pdev->dev, 570 "%s: completion queue ending get:0x%08x\n", 571 __func__, 572 ihost->completion_queue_get); 573 574 } 575 576 static void sci_controller_error_handler(struct isci_host *ihost) 577 { 578 u32 interrupt_status; 579 580 interrupt_status = 581 readl(&ihost->smu_registers->interrupt_status); 582 583 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 584 sci_controller_completion_queue_has_entries(ihost)) { 585 586 sci_controller_process_completions(ihost); 587 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); 588 } else { 589 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, 590 interrupt_status); 591 592 sci_change_state(&ihost->sm, SCIC_FAILED); 593 594 return; 595 } 596 597 /* If we dont process any completions I am not sure that we want to do this. 598 * We are in the middle of a hardware fault and should probably be reset. 599 */ 600 writel(0, &ihost->smu_registers->interrupt_mask); 601 } 602 603 irqreturn_t isci_intx_isr(int vec, void *data) 604 { 605 irqreturn_t ret = IRQ_NONE; 606 struct isci_host *ihost = data; 607 608 if (sci_controller_isr(ihost)) { 609 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 610 tasklet_schedule(&ihost->completion_tasklet); 611 ret = IRQ_HANDLED; 612 } else if (sci_controller_error_isr(ihost)) { 613 spin_lock(&ihost->scic_lock); 614 sci_controller_error_handler(ihost); 615 spin_unlock(&ihost->scic_lock); 616 ret = IRQ_HANDLED; 617 } 618 619 return ret; 620 } 621 622 irqreturn_t isci_error_isr(int vec, void *data) 623 { 624 struct isci_host *ihost = data; 625 626 if (sci_controller_error_isr(ihost)) 627 sci_controller_error_handler(ihost); 628 629 return IRQ_HANDLED; 630 } 631 632 /** 633 * isci_host_start_complete() - This function is called by the core library, 634 * through the ISCI Module, to indicate controller start status. 635 * @isci_host: This parameter specifies the ISCI host object 636 * @completion_status: This parameter specifies the completion status from the 637 * core library. 638 * 639 */ 640 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 641 { 642 if (completion_status != SCI_SUCCESS) 643 dev_info(&ihost->pdev->dev, 644 "controller start timed out, continuing...\n"); 645 clear_bit(IHOST_START_PENDING, &ihost->flags); 646 wake_up(&ihost->eventq); 647 } 648 649 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 650 { 651 struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); 652 struct isci_host *ihost = ha->lldd_ha; 653 654 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 655 return 0; 656 657 sas_drain_work(ha); 658 659 return 1; 660 } 661 662 /** 663 * sci_controller_get_suggested_start_timeout() - This method returns the 664 * suggested sci_controller_start() timeout amount. The user is free to 665 * use any timeout value, but this method provides the suggested minimum 666 * start timeout value. The returned value is based upon empirical 667 * information determined as a result of interoperability testing. 668 * @controller: the handle to the controller object for which to return the 669 * suggested start timeout. 670 * 671 * This method returns the number of milliseconds for the suggested start 672 * operation timeout. 673 */ 674 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) 675 { 676 /* Validate the user supplied parameters. */ 677 if (!ihost) 678 return 0; 679 680 /* 681 * The suggested minimum timeout value for a controller start operation: 682 * 683 * Signature FIS Timeout 684 * + Phy Start Timeout 685 * + Number of Phy Spin Up Intervals 686 * --------------------------------- 687 * Number of milliseconds for the controller start operation. 688 * 689 * NOTE: The number of phy spin up intervals will be equivalent 690 * to the number of phys divided by the number phys allowed 691 * per interval - 1 (once OEM parameters are supported). 692 * Currently we assume only 1 phy per interval. */ 693 694 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 695 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 696 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 697 } 698 699 static void sci_controller_enable_interrupts(struct isci_host *ihost) 700 { 701 BUG_ON(ihost->smu_registers == NULL); 702 writel(0, &ihost->smu_registers->interrupt_mask); 703 } 704 705 void sci_controller_disable_interrupts(struct isci_host *ihost) 706 { 707 BUG_ON(ihost->smu_registers == NULL); 708 writel(0xffffffff, &ihost->smu_registers->interrupt_mask); 709 } 710 711 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) 712 { 713 u32 port_task_scheduler_value; 714 715 port_task_scheduler_value = 716 readl(&ihost->scu_registers->peg0.ptsg.control); 717 port_task_scheduler_value |= 718 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 719 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 720 writel(port_task_scheduler_value, 721 &ihost->scu_registers->peg0.ptsg.control); 722 } 723 724 static void sci_controller_assign_task_entries(struct isci_host *ihost) 725 { 726 u32 task_assignment; 727 728 /* 729 * Assign all the TCs to function 0 730 * TODO: Do we actually need to read this register to write it back? 731 */ 732 733 task_assignment = 734 readl(&ihost->smu_registers->task_context_assignment[0]); 735 736 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 737 (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | 738 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 739 740 writel(task_assignment, 741 &ihost->smu_registers->task_context_assignment[0]); 742 743 } 744 745 static void sci_controller_initialize_completion_queue(struct isci_host *ihost) 746 { 747 u32 index; 748 u32 completion_queue_control_value; 749 u32 completion_queue_get_value; 750 u32 completion_queue_put_value; 751 752 ihost->completion_queue_get = 0; 753 754 completion_queue_control_value = 755 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | 756 SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); 757 758 writel(completion_queue_control_value, 759 &ihost->smu_registers->completion_queue_control); 760 761 762 /* Set the completion queue get pointer and enable the queue */ 763 completion_queue_get_value = ( 764 (SMU_CQGR_GEN_VAL(POINTER, 0)) 765 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 766 | (SMU_CQGR_GEN_BIT(ENABLE)) 767 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 768 ); 769 770 writel(completion_queue_get_value, 771 &ihost->smu_registers->completion_queue_get); 772 773 /* Set the completion queue put pointer */ 774 completion_queue_put_value = ( 775 (SMU_CQPR_GEN_VAL(POINTER, 0)) 776 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 777 ); 778 779 writel(completion_queue_put_value, 780 &ihost->smu_registers->completion_queue_put); 781 782 /* Initialize the cycle bit of the completion queue entries */ 783 for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { 784 /* 785 * If get.cycle_bit != completion_queue.cycle_bit 786 * its not a valid completion queue entry 787 * so at system start all entries are invalid */ 788 ihost->completion_queue[index] = 0x80000000; 789 } 790 } 791 792 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) 793 { 794 u32 frame_queue_control_value; 795 u32 frame_queue_get_value; 796 u32 frame_queue_put_value; 797 798 /* Write the queue size */ 799 frame_queue_control_value = 800 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); 801 802 writel(frame_queue_control_value, 803 &ihost->scu_registers->sdma.unsolicited_frame_queue_control); 804 805 /* Setup the get pointer for the unsolicited frame queue */ 806 frame_queue_get_value = ( 807 SCU_UFQGP_GEN_VAL(POINTER, 0) 808 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 809 ); 810 811 writel(frame_queue_get_value, 812 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 813 /* Setup the put pointer for the unsolicited frame queue */ 814 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 815 writel(frame_queue_put_value, 816 &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); 817 } 818 819 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) 820 { 821 if (ihost->sm.current_state_id == SCIC_STARTING) { 822 /* 823 * We move into the ready state, because some of the phys/ports 824 * may be up and operational. 825 */ 826 sci_change_state(&ihost->sm, SCIC_READY); 827 828 isci_host_start_complete(ihost, status); 829 } 830 } 831 832 static bool is_phy_starting(struct isci_phy *iphy) 833 { 834 enum sci_phy_states state; 835 836 state = iphy->sm.current_state_id; 837 switch (state) { 838 case SCI_PHY_STARTING: 839 case SCI_PHY_SUB_INITIAL: 840 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: 841 case SCI_PHY_SUB_AWAIT_IAF_UF: 842 case SCI_PHY_SUB_AWAIT_SAS_POWER: 843 case SCI_PHY_SUB_AWAIT_SATA_POWER: 844 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: 845 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: 846 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: 847 case SCI_PHY_SUB_FINAL: 848 return true; 849 default: 850 return false; 851 } 852 } 853 854 /** 855 * sci_controller_start_next_phy - start phy 856 * @scic: controller 857 * 858 * If all the phys have been started, then attempt to transition the 859 * controller to the READY state and inform the user 860 * (sci_cb_controller_start_complete()). 861 */ 862 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) 863 { 864 struct sci_oem_params *oem = &ihost->oem_parameters; 865 struct isci_phy *iphy; 866 enum sci_status status; 867 868 status = SCI_SUCCESS; 869 870 if (ihost->phy_startup_timer_pending) 871 return status; 872 873 if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { 874 bool is_controller_start_complete = true; 875 u32 state; 876 u8 index; 877 878 for (index = 0; index < SCI_MAX_PHYS; index++) { 879 iphy = &ihost->phys[index]; 880 state = iphy->sm.current_state_id; 881 882 if (!phy_get_non_dummy_port(iphy)) 883 continue; 884 885 /* The controller start operation is complete iff: 886 * - all links have been given an opportunity to start 887 * - have no indication of a connected device 888 * - have an indication of a connected device and it has 889 * finished the link training process. 890 */ 891 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || 892 (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || 893 (iphy->is_in_link_training == true && is_phy_starting(iphy)) || 894 (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) { 895 is_controller_start_complete = false; 896 break; 897 } 898 } 899 900 /* 901 * The controller has successfully finished the start process. 902 * Inform the SCI Core user and transition to the READY state. */ 903 if (is_controller_start_complete == true) { 904 sci_controller_transition_to_ready(ihost, SCI_SUCCESS); 905 sci_del_timer(&ihost->phy_timer); 906 ihost->phy_startup_timer_pending = false; 907 } 908 } else { 909 iphy = &ihost->phys[ihost->next_phy_to_start]; 910 911 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 912 if (phy_get_non_dummy_port(iphy) == NULL) { 913 ihost->next_phy_to_start++; 914 915 /* Caution recursion ahead be forwarned 916 * 917 * The PHY was never added to a PORT in MPC mode 918 * so start the next phy in sequence This phy 919 * will never go link up and will not draw power 920 * the OEM parameters either configured the phy 921 * incorrectly for the PORT or it was never 922 * assigned to a PORT 923 */ 924 return sci_controller_start_next_phy(ihost); 925 } 926 } 927 928 status = sci_phy_start(iphy); 929 930 if (status == SCI_SUCCESS) { 931 sci_mod_timer(&ihost->phy_timer, 932 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 933 ihost->phy_startup_timer_pending = true; 934 } else { 935 dev_warn(&ihost->pdev->dev, 936 "%s: Controller stop operation failed " 937 "to stop phy %d because of status " 938 "%d.\n", 939 __func__, 940 ihost->phys[ihost->next_phy_to_start].phy_index, 941 status); 942 } 943 944 ihost->next_phy_to_start++; 945 } 946 947 return status; 948 } 949 950 static void phy_startup_timeout(unsigned long data) 951 { 952 struct sci_timer *tmr = (struct sci_timer *)data; 953 struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); 954 unsigned long flags; 955 enum sci_status status; 956 957 spin_lock_irqsave(&ihost->scic_lock, flags); 958 959 if (tmr->cancel) 960 goto done; 961 962 ihost->phy_startup_timer_pending = false; 963 964 do { 965 status = sci_controller_start_next_phy(ihost); 966 } while (status != SCI_SUCCESS); 967 968 done: 969 spin_unlock_irqrestore(&ihost->scic_lock, flags); 970 } 971 972 static u16 isci_tci_active(struct isci_host *ihost) 973 { 974 return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 975 } 976 977 static enum sci_status sci_controller_start(struct isci_host *ihost, 978 u32 timeout) 979 { 980 enum sci_status result; 981 u16 index; 982 983 if (ihost->sm.current_state_id != SCIC_INITIALIZED) { 984 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 985 __func__, ihost->sm.current_state_id); 986 return SCI_FAILURE_INVALID_STATE; 987 } 988 989 /* Build the TCi free pool */ 990 BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); 991 ihost->tci_head = 0; 992 ihost->tci_tail = 0; 993 for (index = 0; index < ihost->task_context_entries; index++) 994 isci_tci_free(ihost, index); 995 996 /* Build the RNi free pool */ 997 sci_remote_node_table_initialize(&ihost->available_remote_nodes, 998 ihost->remote_node_entries); 999 1000 /* 1001 * Before anything else lets make sure we will not be 1002 * interrupted by the hardware. 1003 */ 1004 sci_controller_disable_interrupts(ihost); 1005 1006 /* Enable the port task scheduler */ 1007 sci_controller_enable_port_task_scheduler(ihost); 1008 1009 /* Assign all the task entries to ihost physical function */ 1010 sci_controller_assign_task_entries(ihost); 1011 1012 /* Now initialize the completion queue */ 1013 sci_controller_initialize_completion_queue(ihost); 1014 1015 /* Initialize the unsolicited frame queue for use */ 1016 sci_controller_initialize_unsolicited_frame_queue(ihost); 1017 1018 /* Start all of the ports on this controller */ 1019 for (index = 0; index < ihost->logical_port_entries; index++) { 1020 struct isci_port *iport = &ihost->ports[index]; 1021 1022 result = sci_port_start(iport); 1023 if (result) 1024 return result; 1025 } 1026 1027 sci_controller_start_next_phy(ihost); 1028 1029 sci_mod_timer(&ihost->timer, timeout); 1030 1031 sci_change_state(&ihost->sm, SCIC_STARTING); 1032 1033 return SCI_SUCCESS; 1034 } 1035 1036 void isci_host_scan_start(struct Scsi_Host *shost) 1037 { 1038 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1039 unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); 1040 1041 set_bit(IHOST_START_PENDING, &ihost->flags); 1042 1043 spin_lock_irq(&ihost->scic_lock); 1044 sci_controller_start(ihost, tmo); 1045 sci_controller_enable_interrupts(ihost); 1046 spin_unlock_irq(&ihost->scic_lock); 1047 } 1048 1049 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) 1050 { 1051 sci_controller_disable_interrupts(ihost); 1052 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1053 wake_up(&ihost->eventq); 1054 } 1055 1056 static void sci_controller_completion_handler(struct isci_host *ihost) 1057 { 1058 /* Empty out the completion queue */ 1059 if (sci_controller_completion_queue_has_entries(ihost)) 1060 sci_controller_process_completions(ihost); 1061 1062 /* Clear the interrupt and enable all interrupts again */ 1063 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); 1064 /* Could we write the value of SMU_ISR_COMPLETION? */ 1065 writel(0xFF000000, &ihost->smu_registers->interrupt_mask); 1066 writel(0, &ihost->smu_registers->interrupt_mask); 1067 } 1068 1069 /** 1070 * isci_host_completion_routine() - This function is the delayed service 1071 * routine that calls the sci core library's completion handler. It's 1072 * scheduled as a tasklet from the interrupt service routine when interrupts 1073 * in use, or set as the timeout function in polled mode. 1074 * @data: This parameter specifies the ISCI host object 1075 * 1076 */ 1077 void isci_host_completion_routine(unsigned long data) 1078 { 1079 struct isci_host *ihost = (struct isci_host *)data; 1080 struct list_head completed_request_list; 1081 struct list_head errored_request_list; 1082 struct list_head *current_position; 1083 struct list_head *next_position; 1084 struct isci_request *request; 1085 struct isci_request *next_request; 1086 struct sas_task *task; 1087 u16 active; 1088 1089 INIT_LIST_HEAD(&completed_request_list); 1090 INIT_LIST_HEAD(&errored_request_list); 1091 1092 spin_lock_irq(&ihost->scic_lock); 1093 1094 sci_controller_completion_handler(ihost); 1095 1096 /* Take the lists of completed I/Os from the host. */ 1097 1098 list_splice_init(&ihost->requests_to_complete, 1099 &completed_request_list); 1100 1101 /* Take the list of errored I/Os from the host. */ 1102 list_splice_init(&ihost->requests_to_errorback, 1103 &errored_request_list); 1104 1105 spin_unlock_irq(&ihost->scic_lock); 1106 1107 /* Process any completions in the lists. */ 1108 list_for_each_safe(current_position, next_position, 1109 &completed_request_list) { 1110 1111 request = list_entry(current_position, struct isci_request, 1112 completed_node); 1113 task = isci_request_access_task(request); 1114 1115 /* Normal notification (task_done) */ 1116 dev_dbg(&ihost->pdev->dev, 1117 "%s: Normal - request/task = %p/%p\n", 1118 __func__, 1119 request, 1120 task); 1121 1122 /* Return the task to libsas */ 1123 if (task != NULL) { 1124 1125 task->lldd_task = NULL; 1126 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1127 1128 /* If the task is already in the abort path, 1129 * the task_done callback cannot be called. 1130 */ 1131 task->task_done(task); 1132 } 1133 } 1134 1135 spin_lock_irq(&ihost->scic_lock); 1136 isci_free_tag(ihost, request->io_tag); 1137 spin_unlock_irq(&ihost->scic_lock); 1138 } 1139 list_for_each_entry_safe(request, next_request, &errored_request_list, 1140 completed_node) { 1141 1142 task = isci_request_access_task(request); 1143 1144 /* Use sas_task_abort */ 1145 dev_warn(&ihost->pdev->dev, 1146 "%s: Error - request/task = %p/%p\n", 1147 __func__, 1148 request, 1149 task); 1150 1151 if (task != NULL) { 1152 1153 /* Put the task into the abort path if it's not there 1154 * already. 1155 */ 1156 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) 1157 sas_task_abort(task); 1158 1159 } else { 1160 /* This is a case where the request has completed with a 1161 * status such that it needed further target servicing, 1162 * but the sas_task reference has already been removed 1163 * from the request. Since it was errored, it was not 1164 * being aborted, so there is nothing to do except free 1165 * it. 1166 */ 1167 1168 spin_lock_irq(&ihost->scic_lock); 1169 /* Remove the request from the remote device's list 1170 * of pending requests. 1171 */ 1172 list_del_init(&request->dev_node); 1173 isci_free_tag(ihost, request->io_tag); 1174 spin_unlock_irq(&ihost->scic_lock); 1175 } 1176 } 1177 1178 /* the coalesence timeout doubles at each encoding step, so 1179 * update it based on the ilog2 value of the outstanding requests 1180 */ 1181 active = isci_tci_active(ihost); 1182 writel(SMU_ICC_GEN_VAL(NUMBER, active) | 1183 SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), 1184 &ihost->smu_registers->interrupt_coalesce_control); 1185 } 1186 1187 /** 1188 * sci_controller_stop() - This method will stop an individual controller 1189 * object.This method will invoke the associated user callback upon 1190 * completion. The completion callback is called when the following 1191 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1192 * controller has been quiesced. This method will ensure that all IO 1193 * requests are quiesced, phys are stopped, and all additional operation by 1194 * the hardware is halted. 1195 * @controller: the handle to the controller object to stop. 1196 * @timeout: This parameter specifies the number of milliseconds in which the 1197 * stop operation should complete. 1198 * 1199 * The controller must be in the STARTED or STOPPED state. Indicate if the 1200 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1201 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1202 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1203 * controller is not either in the STARTED or STOPPED states. 1204 */ 1205 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) 1206 { 1207 if (ihost->sm.current_state_id != SCIC_READY) { 1208 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1209 __func__, ihost->sm.current_state_id); 1210 return SCI_FAILURE_INVALID_STATE; 1211 } 1212 1213 sci_mod_timer(&ihost->timer, timeout); 1214 sci_change_state(&ihost->sm, SCIC_STOPPING); 1215 return SCI_SUCCESS; 1216 } 1217 1218 /** 1219 * sci_controller_reset() - This method will reset the supplied core 1220 * controller regardless of the state of said controller. This operation is 1221 * considered destructive. In other words, all current operations are wiped 1222 * out. No IO completions for outstanding devices occur. Outstanding IO 1223 * requests are not aborted or completed at the actual remote device. 1224 * @controller: the handle to the controller object to reset. 1225 * 1226 * Indicate if the controller reset method succeeded or failed in some way. 1227 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1228 * the controller reset operation is unable to complete. 1229 */ 1230 static enum sci_status sci_controller_reset(struct isci_host *ihost) 1231 { 1232 switch (ihost->sm.current_state_id) { 1233 case SCIC_RESET: 1234 case SCIC_READY: 1235 case SCIC_STOPPED: 1236 case SCIC_FAILED: 1237 /* 1238 * The reset operation is not a graceful cleanup, just 1239 * perform the state transition. 1240 */ 1241 sci_change_state(&ihost->sm, SCIC_RESETTING); 1242 return SCI_SUCCESS; 1243 default: 1244 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 1245 __func__, ihost->sm.current_state_id); 1246 return SCI_FAILURE_INVALID_STATE; 1247 } 1248 } 1249 1250 void isci_host_deinit(struct isci_host *ihost) 1251 { 1252 int i; 1253 1254 /* disable output data selects */ 1255 for (i = 0; i < isci_gpio_count(ihost); i++) 1256 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 1257 1258 for (i = 0; i < SCI_MAX_PORTS; i++) { 1259 struct isci_port *iport = &ihost->ports[i]; 1260 struct isci_remote_device *idev, *d; 1261 1262 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { 1263 if (test_bit(IDEV_ALLOCATED, &idev->flags)) 1264 isci_remote_device_stop(ihost, idev); 1265 } 1266 } 1267 1268 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1269 1270 spin_lock_irq(&ihost->scic_lock); 1271 sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); 1272 spin_unlock_irq(&ihost->scic_lock); 1273 1274 wait_for_stop(ihost); 1275 1276 /* disable sgpio: where the above wait should give time for the 1277 * enclosure to sample the gpios going inactive 1278 */ 1279 writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); 1280 1281 sci_controller_reset(ihost); 1282 1283 /* Cancel any/all outstanding port timers */ 1284 for (i = 0; i < ihost->logical_port_entries; i++) { 1285 struct isci_port *iport = &ihost->ports[i]; 1286 del_timer_sync(&iport->timer.timer); 1287 } 1288 1289 /* Cancel any/all outstanding phy timers */ 1290 for (i = 0; i < SCI_MAX_PHYS; i++) { 1291 struct isci_phy *iphy = &ihost->phys[i]; 1292 del_timer_sync(&iphy->sata_timer.timer); 1293 } 1294 1295 del_timer_sync(&ihost->port_agent.timer.timer); 1296 1297 del_timer_sync(&ihost->power_control.timer.timer); 1298 1299 del_timer_sync(&ihost->timer.timer); 1300 1301 del_timer_sync(&ihost->phy_timer.timer); 1302 } 1303 1304 static void __iomem *scu_base(struct isci_host *isci_host) 1305 { 1306 struct pci_dev *pdev = isci_host->pdev; 1307 int id = isci_host->id; 1308 1309 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1310 } 1311 1312 static void __iomem *smu_base(struct isci_host *isci_host) 1313 { 1314 struct pci_dev *pdev = isci_host->pdev; 1315 int id = isci_host->id; 1316 1317 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1318 } 1319 1320 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) 1321 { 1322 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1323 1324 sci_change_state(&ihost->sm, SCIC_RESET); 1325 } 1326 1327 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) 1328 { 1329 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1330 1331 sci_del_timer(&ihost->timer); 1332 } 1333 1334 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1335 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1336 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1337 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1338 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1339 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1340 1341 /** 1342 * sci_controller_set_interrupt_coalescence() - This method allows the user to 1343 * configure the interrupt coalescence. 1344 * @controller: This parameter represents the handle to the controller object 1345 * for which its interrupt coalesce register is overridden. 1346 * @coalesce_number: Used to control the number of entries in the Completion 1347 * Queue before an interrupt is generated. If the number of entries exceed 1348 * this number, an interrupt will be generated. The valid range of the input 1349 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1350 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1351 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1352 * interrupt coalescing timeout. 1353 * 1354 * Indicate if the user successfully set the interrupt coalesce parameters. 1355 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1356 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1357 */ 1358 static enum sci_status 1359 sci_controller_set_interrupt_coalescence(struct isci_host *ihost, 1360 u32 coalesce_number, 1361 u32 coalesce_timeout) 1362 { 1363 u8 timeout_encode = 0; 1364 u32 min = 0; 1365 u32 max = 0; 1366 1367 /* Check if the input parameters fall in the range. */ 1368 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1369 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1370 1371 /* 1372 * Defined encoding for interrupt coalescing timeout: 1373 * Value Min Max Units 1374 * ----- --- --- ----- 1375 * 0 - - Disabled 1376 * 1 13.3 20.0 ns 1377 * 2 26.7 40.0 1378 * 3 53.3 80.0 1379 * 4 106.7 160.0 1380 * 5 213.3 320.0 1381 * 6 426.7 640.0 1382 * 7 853.3 1280.0 1383 * 8 1.7 2.6 us 1384 * 9 3.4 5.1 1385 * 10 6.8 10.2 1386 * 11 13.7 20.5 1387 * 12 27.3 41.0 1388 * 13 54.6 81.9 1389 * 14 109.2 163.8 1390 * 15 218.5 327.7 1391 * 16 436.9 655.4 1392 * 17 873.8 1310.7 1393 * 18 1.7 2.6 ms 1394 * 19 3.5 5.2 1395 * 20 7.0 10.5 1396 * 21 14.0 21.0 1397 * 22 28.0 41.9 1398 * 23 55.9 83.9 1399 * 24 111.8 167.8 1400 * 25 223.7 335.5 1401 * 26 447.4 671.1 1402 * 27 894.8 1342.2 1403 * 28 1.8 2.7 s 1404 * Others Undefined */ 1405 1406 /* 1407 * Use the table above to decide the encode of interrupt coalescing timeout 1408 * value for register writing. */ 1409 if (coalesce_timeout == 0) 1410 timeout_encode = 0; 1411 else{ 1412 /* make the timeout value in unit of (10 ns). */ 1413 coalesce_timeout = coalesce_timeout * 100; 1414 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1415 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1416 1417 /* get the encode of timeout for register writing. */ 1418 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1419 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1420 timeout_encode++) { 1421 if (min <= coalesce_timeout && max > coalesce_timeout) 1422 break; 1423 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1424 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1425 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1426 break; 1427 else{ 1428 timeout_encode++; 1429 break; 1430 } 1431 } else { 1432 max = max * 2; 1433 min = min * 2; 1434 } 1435 } 1436 1437 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1438 /* the value is out of range. */ 1439 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1440 } 1441 1442 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1443 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1444 &ihost->smu_registers->interrupt_coalesce_control); 1445 1446 1447 ihost->interrupt_coalesce_number = (u16)coalesce_number; 1448 ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; 1449 1450 return SCI_SUCCESS; 1451 } 1452 1453 1454 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) 1455 { 1456 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1457 u32 val; 1458 1459 /* enable clock gating for power control of the scu unit */ 1460 val = readl(&ihost->smu_registers->clock_gating_control); 1461 val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | 1462 SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | 1463 SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); 1464 val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); 1465 writel(val, &ihost->smu_registers->clock_gating_control); 1466 1467 /* set the default interrupt coalescence number and timeout value. */ 1468 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1469 } 1470 1471 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) 1472 { 1473 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1474 1475 /* disable interrupt coalescence. */ 1476 sci_controller_set_interrupt_coalescence(ihost, 0, 0); 1477 } 1478 1479 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) 1480 { 1481 u32 index; 1482 enum sci_status status; 1483 enum sci_status phy_status; 1484 1485 status = SCI_SUCCESS; 1486 1487 for (index = 0; index < SCI_MAX_PHYS; index++) { 1488 phy_status = sci_phy_stop(&ihost->phys[index]); 1489 1490 if (phy_status != SCI_SUCCESS && 1491 phy_status != SCI_FAILURE_INVALID_STATE) { 1492 status = SCI_FAILURE; 1493 1494 dev_warn(&ihost->pdev->dev, 1495 "%s: Controller stop operation failed to stop " 1496 "phy %d because of status %d.\n", 1497 __func__, 1498 ihost->phys[index].phy_index, phy_status); 1499 } 1500 } 1501 1502 return status; 1503 } 1504 1505 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) 1506 { 1507 u32 index; 1508 enum sci_status port_status; 1509 enum sci_status status = SCI_SUCCESS; 1510 1511 for (index = 0; index < ihost->logical_port_entries; index++) { 1512 struct isci_port *iport = &ihost->ports[index]; 1513 1514 port_status = sci_port_stop(iport); 1515 1516 if ((port_status != SCI_SUCCESS) && 1517 (port_status != SCI_FAILURE_INVALID_STATE)) { 1518 status = SCI_FAILURE; 1519 1520 dev_warn(&ihost->pdev->dev, 1521 "%s: Controller stop operation failed to " 1522 "stop port %d because of status %d.\n", 1523 __func__, 1524 iport->logical_port_index, 1525 port_status); 1526 } 1527 } 1528 1529 return status; 1530 } 1531 1532 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) 1533 { 1534 u32 index; 1535 enum sci_status status; 1536 enum sci_status device_status; 1537 1538 status = SCI_SUCCESS; 1539 1540 for (index = 0; index < ihost->remote_node_entries; index++) { 1541 if (ihost->device_table[index] != NULL) { 1542 /* / @todo What timeout value do we want to provide to this request? */ 1543 device_status = sci_remote_device_stop(ihost->device_table[index], 0); 1544 1545 if ((device_status != SCI_SUCCESS) && 1546 (device_status != SCI_FAILURE_INVALID_STATE)) { 1547 dev_warn(&ihost->pdev->dev, 1548 "%s: Controller stop operation failed " 1549 "to stop device 0x%p because of " 1550 "status %d.\n", 1551 __func__, 1552 ihost->device_table[index], device_status); 1553 } 1554 } 1555 } 1556 1557 return status; 1558 } 1559 1560 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) 1561 { 1562 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1563 1564 /* Stop all of the components for this controller */ 1565 sci_controller_stop_phys(ihost); 1566 sci_controller_stop_ports(ihost); 1567 sci_controller_stop_devices(ihost); 1568 } 1569 1570 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) 1571 { 1572 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1573 1574 sci_del_timer(&ihost->timer); 1575 } 1576 1577 static void sci_controller_reset_hardware(struct isci_host *ihost) 1578 { 1579 /* Disable interrupts so we dont take any spurious interrupts */ 1580 sci_controller_disable_interrupts(ihost); 1581 1582 /* Reset the SCU */ 1583 writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); 1584 1585 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1586 udelay(1000); 1587 1588 /* The write to the CQGR clears the CQP */ 1589 writel(0x00000000, &ihost->smu_registers->completion_queue_get); 1590 1591 /* The write to the UFQGP clears the UFQPR */ 1592 writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 1593 } 1594 1595 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) 1596 { 1597 struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); 1598 1599 sci_controller_reset_hardware(ihost); 1600 sci_change_state(&ihost->sm, SCIC_RESET); 1601 } 1602 1603 static const struct sci_base_state sci_controller_state_table[] = { 1604 [SCIC_INITIAL] = { 1605 .enter_state = sci_controller_initial_state_enter, 1606 }, 1607 [SCIC_RESET] = {}, 1608 [SCIC_INITIALIZING] = {}, 1609 [SCIC_INITIALIZED] = {}, 1610 [SCIC_STARTING] = { 1611 .exit_state = sci_controller_starting_state_exit, 1612 }, 1613 [SCIC_READY] = { 1614 .enter_state = sci_controller_ready_state_enter, 1615 .exit_state = sci_controller_ready_state_exit, 1616 }, 1617 [SCIC_RESETTING] = { 1618 .enter_state = sci_controller_resetting_state_enter, 1619 }, 1620 [SCIC_STOPPING] = { 1621 .enter_state = sci_controller_stopping_state_enter, 1622 .exit_state = sci_controller_stopping_state_exit, 1623 }, 1624 [SCIC_STOPPED] = {}, 1625 [SCIC_FAILED] = {} 1626 }; 1627 1628 static void controller_timeout(unsigned long data) 1629 { 1630 struct sci_timer *tmr = (struct sci_timer *)data; 1631 struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); 1632 struct sci_base_state_machine *sm = &ihost->sm; 1633 unsigned long flags; 1634 1635 spin_lock_irqsave(&ihost->scic_lock, flags); 1636 1637 if (tmr->cancel) 1638 goto done; 1639 1640 if (sm->current_state_id == SCIC_STARTING) 1641 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); 1642 else if (sm->current_state_id == SCIC_STOPPING) { 1643 sci_change_state(sm, SCIC_FAILED); 1644 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); 1645 } else /* / @todo Now what do we want to do in this case? */ 1646 dev_err(&ihost->pdev->dev, 1647 "%s: Controller timer fired when controller was not " 1648 "in a state being timed.\n", 1649 __func__); 1650 1651 done: 1652 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1653 } 1654 1655 static enum sci_status sci_controller_construct(struct isci_host *ihost, 1656 void __iomem *scu_base, 1657 void __iomem *smu_base) 1658 { 1659 u8 i; 1660 1661 sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); 1662 1663 ihost->scu_registers = scu_base; 1664 ihost->smu_registers = smu_base; 1665 1666 sci_port_configuration_agent_construct(&ihost->port_agent); 1667 1668 /* Construct the ports for this controller */ 1669 for (i = 0; i < SCI_MAX_PORTS; i++) 1670 sci_port_construct(&ihost->ports[i], i, ihost); 1671 sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); 1672 1673 /* Construct the phys for this controller */ 1674 for (i = 0; i < SCI_MAX_PHYS; i++) { 1675 /* Add all the PHYs to the dummy port */ 1676 sci_phy_construct(&ihost->phys[i], 1677 &ihost->ports[SCI_MAX_PORTS], i); 1678 } 1679 1680 ihost->invalid_phy_mask = 0; 1681 1682 sci_init_timer(&ihost->timer, controller_timeout); 1683 1684 return sci_controller_reset(ihost); 1685 } 1686 1687 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) 1688 { 1689 int i; 1690 1691 for (i = 0; i < SCI_MAX_PORTS; i++) 1692 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1693 return -EINVAL; 1694 1695 for (i = 0; i < SCI_MAX_PHYS; i++) 1696 if (oem->phys[i].sas_address.high == 0 && 1697 oem->phys[i].sas_address.low == 0) 1698 return -EINVAL; 1699 1700 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1701 for (i = 0; i < SCI_MAX_PHYS; i++) 1702 if (oem->ports[i].phy_mask != 0) 1703 return -EINVAL; 1704 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1705 u8 phy_mask = 0; 1706 1707 for (i = 0; i < SCI_MAX_PHYS; i++) 1708 phy_mask |= oem->ports[i].phy_mask; 1709 1710 if (phy_mask == 0) 1711 return -EINVAL; 1712 } else 1713 return -EINVAL; 1714 1715 if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || 1716 oem->controller.max_concurr_spin_up < 1) 1717 return -EINVAL; 1718 1719 if (oem->controller.do_enable_ssc) { 1720 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) 1721 return -EINVAL; 1722 1723 if (version >= ISCI_ROM_VER_1_1) { 1724 u8 test = oem->controller.ssc_sata_tx_spread_level; 1725 1726 switch (test) { 1727 case 0: 1728 case 2: 1729 case 3: 1730 case 6: 1731 case 7: 1732 break; 1733 default: 1734 return -EINVAL; 1735 } 1736 1737 test = oem->controller.ssc_sas_tx_spread_level; 1738 if (oem->controller.ssc_sas_tx_type == 0) { 1739 switch (test) { 1740 case 0: 1741 case 2: 1742 case 3: 1743 break; 1744 default: 1745 return -EINVAL; 1746 } 1747 } else if (oem->controller.ssc_sas_tx_type == 1) { 1748 switch (test) { 1749 case 0: 1750 case 3: 1751 case 6: 1752 break; 1753 default: 1754 return -EINVAL; 1755 } 1756 } 1757 } 1758 } 1759 1760 return 0; 1761 } 1762 1763 static u8 max_spin_up(struct isci_host *ihost) 1764 { 1765 if (ihost->user_parameters.max_concurr_spinup) 1766 return min_t(u8, ihost->user_parameters.max_concurr_spinup, 1767 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1768 else 1769 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, 1770 MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); 1771 } 1772 1773 static void power_control_timeout(unsigned long data) 1774 { 1775 struct sci_timer *tmr = (struct sci_timer *)data; 1776 struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); 1777 struct isci_phy *iphy; 1778 unsigned long flags; 1779 u8 i; 1780 1781 spin_lock_irqsave(&ihost->scic_lock, flags); 1782 1783 if (tmr->cancel) 1784 goto done; 1785 1786 ihost->power_control.phys_granted_power = 0; 1787 1788 if (ihost->power_control.phys_waiting == 0) { 1789 ihost->power_control.timer_started = false; 1790 goto done; 1791 } 1792 1793 for (i = 0; i < SCI_MAX_PHYS; i++) { 1794 1795 if (ihost->power_control.phys_waiting == 0) 1796 break; 1797 1798 iphy = ihost->power_control.requesters[i]; 1799 if (iphy == NULL) 1800 continue; 1801 1802 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) 1803 break; 1804 1805 ihost->power_control.requesters[i] = NULL; 1806 ihost->power_control.phys_waiting--; 1807 ihost->power_control.phys_granted_power++; 1808 sci_phy_consume_power_handler(iphy); 1809 1810 if (iphy->protocol == SAS_PROTOCOL_SSP) { 1811 u8 j; 1812 1813 for (j = 0; j < SCI_MAX_PHYS; j++) { 1814 struct isci_phy *requester = ihost->power_control.requesters[j]; 1815 1816 /* 1817 * Search the power_control queue to see if there are other phys 1818 * attached to the same remote device. If found, take all of 1819 * them out of await_sas_power state. 1820 */ 1821 if (requester != NULL && requester != iphy) { 1822 u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, 1823 iphy->frame_rcvd.iaf.sas_addr, 1824 sizeof(requester->frame_rcvd.iaf.sas_addr)); 1825 1826 if (other == 0) { 1827 ihost->power_control.requesters[j] = NULL; 1828 ihost->power_control.phys_waiting--; 1829 sci_phy_consume_power_handler(requester); 1830 } 1831 } 1832 } 1833 } 1834 } 1835 1836 /* 1837 * It doesn't matter if the power list is empty, we need to start the 1838 * timer in case another phy becomes ready. 1839 */ 1840 sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1841 ihost->power_control.timer_started = true; 1842 1843 done: 1844 spin_unlock_irqrestore(&ihost->scic_lock, flags); 1845 } 1846 1847 void sci_controller_power_control_queue_insert(struct isci_host *ihost, 1848 struct isci_phy *iphy) 1849 { 1850 BUG_ON(iphy == NULL); 1851 1852 if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { 1853 ihost->power_control.phys_granted_power++; 1854 sci_phy_consume_power_handler(iphy); 1855 1856 /* 1857 * stop and start the power_control timer. When the timer fires, the 1858 * no_of_phys_granted_power will be set to 0 1859 */ 1860 if (ihost->power_control.timer_started) 1861 sci_del_timer(&ihost->power_control.timer); 1862 1863 sci_mod_timer(&ihost->power_control.timer, 1864 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1865 ihost->power_control.timer_started = true; 1866 1867 } else { 1868 /* 1869 * There are phys, attached to the same sas address as this phy, are 1870 * already in READY state, this phy don't need wait. 1871 */ 1872 u8 i; 1873 struct isci_phy *current_phy; 1874 1875 for (i = 0; i < SCI_MAX_PHYS; i++) { 1876 u8 other; 1877 current_phy = &ihost->phys[i]; 1878 1879 other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, 1880 iphy->frame_rcvd.iaf.sas_addr, 1881 sizeof(current_phy->frame_rcvd.iaf.sas_addr)); 1882 1883 if (current_phy->sm.current_state_id == SCI_PHY_READY && 1884 current_phy->protocol == SAS_PROTOCOL_SSP && 1885 other == 0) { 1886 sci_phy_consume_power_handler(iphy); 1887 break; 1888 } 1889 } 1890 1891 if (i == SCI_MAX_PHYS) { 1892 /* Add the phy in the waiting list */ 1893 ihost->power_control.requesters[iphy->phy_index] = iphy; 1894 ihost->power_control.phys_waiting++; 1895 } 1896 } 1897 } 1898 1899 void sci_controller_power_control_queue_remove(struct isci_host *ihost, 1900 struct isci_phy *iphy) 1901 { 1902 BUG_ON(iphy == NULL); 1903 1904 if (ihost->power_control.requesters[iphy->phy_index]) 1905 ihost->power_control.phys_waiting--; 1906 1907 ihost->power_control.requesters[iphy->phy_index] = NULL; 1908 } 1909 1910 static int is_long_cable(int phy, unsigned char selection_byte) 1911 { 1912 return !!(selection_byte & (1 << phy)); 1913 } 1914 1915 static int is_medium_cable(int phy, unsigned char selection_byte) 1916 { 1917 return !!(selection_byte & (1 << (phy + 4))); 1918 } 1919 1920 static enum cable_selections decode_selection_byte( 1921 int phy, 1922 unsigned char selection_byte) 1923 { 1924 return ((selection_byte & (1 << phy)) ? 1 : 0) 1925 + (selection_byte & (1 << (phy + 4)) ? 2 : 0); 1926 } 1927 1928 static unsigned char *to_cable_select(struct isci_host *ihost) 1929 { 1930 if (is_cable_select_overridden()) 1931 return ((unsigned char *)&cable_selection_override) 1932 + ihost->id; 1933 else 1934 return &ihost->oem_parameters.controller.cable_selection_mask; 1935 } 1936 1937 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) 1938 { 1939 return decode_selection_byte(phy, *to_cable_select(ihost)); 1940 } 1941 1942 char *lookup_cable_names(enum cable_selections selection) 1943 { 1944 static char *cable_names[] = { 1945 [short_cable] = "short", 1946 [long_cable] = "long", 1947 [medium_cable] = "medium", 1948 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */ 1949 }; 1950 return (selection <= undefined_cable) ? cable_names[selection] 1951 : cable_names[undefined_cable]; 1952 } 1953 1954 #define AFE_REGISTER_WRITE_DELAY 10 1955 1956 static void sci_controller_afe_initialization(struct isci_host *ihost) 1957 { 1958 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; 1959 const struct sci_oem_params *oem = &ihost->oem_parameters; 1960 struct pci_dev *pdev = ihost->pdev; 1961 u32 afe_status; 1962 u32 phy_id; 1963 unsigned char cable_selection_mask = *to_cable_select(ihost); 1964 1965 /* Clear DFX Status registers */ 1966 writel(0x0081000f, &afe->afe_dfx_master_control0); 1967 udelay(AFE_REGISTER_WRITE_DELAY); 1968 1969 if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { 1970 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 1971 * Timer, PM Stagger Timer 1972 */ 1973 writel(0x0007FFFF, &afe->afe_pmsn_master_control2); 1974 udelay(AFE_REGISTER_WRITE_DELAY); 1975 } 1976 1977 /* Configure bias currents to normal */ 1978 if (is_a2(pdev)) 1979 writel(0x00005A00, &afe->afe_bias_control); 1980 else if (is_b0(pdev) || is_c0(pdev)) 1981 writel(0x00005F00, &afe->afe_bias_control); 1982 else if (is_c1(pdev)) 1983 writel(0x00005500, &afe->afe_bias_control); 1984 1985 udelay(AFE_REGISTER_WRITE_DELAY); 1986 1987 /* Enable PLL */ 1988 if (is_a2(pdev)) 1989 writel(0x80040908, &afe->afe_pll_control0); 1990 else if (is_b0(pdev) || is_c0(pdev)) 1991 writel(0x80040A08, &afe->afe_pll_control0); 1992 else if (is_c1(pdev)) { 1993 writel(0x80000B08, &afe->afe_pll_control0); 1994 udelay(AFE_REGISTER_WRITE_DELAY); 1995 writel(0x00000B08, &afe->afe_pll_control0); 1996 udelay(AFE_REGISTER_WRITE_DELAY); 1997 writel(0x80000B08, &afe->afe_pll_control0); 1998 } 1999 2000 udelay(AFE_REGISTER_WRITE_DELAY); 2001 2002 /* Wait for the PLL to lock */ 2003 do { 2004 afe_status = readl(&afe->afe_common_block_status); 2005 udelay(AFE_REGISTER_WRITE_DELAY); 2006 } while ((afe_status & 0x00001000) == 0); 2007 2008 if (is_a2(pdev)) { 2009 /* Shorten SAS SNW lock time (RxLock timer value from 76 2010 * us to 50 us) 2011 */ 2012 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); 2013 udelay(AFE_REGISTER_WRITE_DELAY); 2014 } 2015 2016 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 2017 struct scu_afe_transceiver *xcvr = &afe->scu_afe_xcvr[phy_id]; 2018 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 2019 int cable_length_long = 2020 is_long_cable(phy_id, cable_selection_mask); 2021 int cable_length_medium = 2022 is_medium_cable(phy_id, cable_selection_mask); 2023 2024 if (is_a2(pdev)) { 2025 /* All defaults, except the Receive Word 2026 * Alignament/Comma Detect Enable....(0xe800) 2027 */ 2028 writel(0x00004512, &xcvr->afe_xcvr_control0); 2029 udelay(AFE_REGISTER_WRITE_DELAY); 2030 2031 writel(0x0050100F, &xcvr->afe_xcvr_control1); 2032 udelay(AFE_REGISTER_WRITE_DELAY); 2033 } else if (is_b0(pdev)) { 2034 /* Configure transmitter SSC parameters */ 2035 writel(0x00030000, &xcvr->afe_tx_ssc_control); 2036 udelay(AFE_REGISTER_WRITE_DELAY); 2037 } else if (is_c0(pdev)) { 2038 /* Configure transmitter SSC parameters */ 2039 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2040 udelay(AFE_REGISTER_WRITE_DELAY); 2041 2042 /* All defaults, except the Receive Word 2043 * Alignament/Comma Detect Enable....(0xe800) 2044 */ 2045 writel(0x00014500, &xcvr->afe_xcvr_control0); 2046 udelay(AFE_REGISTER_WRITE_DELAY); 2047 } else if (is_c1(pdev)) { 2048 /* Configure transmitter SSC parameters */ 2049 writel(0x00010202, &xcvr->afe_tx_ssc_control); 2050 udelay(AFE_REGISTER_WRITE_DELAY); 2051 2052 /* All defaults, except the Receive Word 2053 * Alignament/Comma Detect Enable....(0xe800) 2054 */ 2055 writel(0x0001C500, &xcvr->afe_xcvr_control0); 2056 udelay(AFE_REGISTER_WRITE_DELAY); 2057 } 2058 2059 /* Power up TX and RX out from power down (PWRDNTX and 2060 * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) 2061 */ 2062 if (is_a2(pdev)) 2063 writel(0x000003F0, &xcvr->afe_channel_control); 2064 else if (is_b0(pdev)) { 2065 writel(0x000003D7, &xcvr->afe_channel_control); 2066 udelay(AFE_REGISTER_WRITE_DELAY); 2067 2068 writel(0x000003D4, &xcvr->afe_channel_control); 2069 } else if (is_c0(pdev)) { 2070 writel(0x000001E7, &xcvr->afe_channel_control); 2071 udelay(AFE_REGISTER_WRITE_DELAY); 2072 2073 writel(0x000001E4, &xcvr->afe_channel_control); 2074 } else if (is_c1(pdev)) { 2075 writel(cable_length_long ? 0x000002F7 : 0x000001F7, 2076 &xcvr->afe_channel_control); 2077 udelay(AFE_REGISTER_WRITE_DELAY); 2078 2079 writel(cable_length_long ? 0x000002F4 : 0x000001F4, 2080 &xcvr->afe_channel_control); 2081 } 2082 udelay(AFE_REGISTER_WRITE_DELAY); 2083 2084 if (is_a2(pdev)) { 2085 /* Enable TX equalization (0xe824) */ 2086 writel(0x00040000, &xcvr->afe_tx_control); 2087 udelay(AFE_REGISTER_WRITE_DELAY); 2088 } 2089 2090 if (is_a2(pdev) || is_b0(pdev)) 2091 /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, 2092 * TPD=0x0(TX Power On), RDD=0x0(RX Detect 2093 * Enabled) ....(0xe800) 2094 */ 2095 writel(0x00004100, &xcvr->afe_xcvr_control0); 2096 else if (is_c0(pdev)) 2097 writel(0x00014100, &xcvr->afe_xcvr_control0); 2098 else if (is_c1(pdev)) 2099 writel(0x0001C100, &xcvr->afe_xcvr_control0); 2100 udelay(AFE_REGISTER_WRITE_DELAY); 2101 2102 /* Leave DFE/FFE on */ 2103 if (is_a2(pdev)) 2104 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2105 else if (is_b0(pdev)) { 2106 writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); 2107 udelay(AFE_REGISTER_WRITE_DELAY); 2108 /* Enable TX equalization (0xe824) */ 2109 writel(0x00040000, &xcvr->afe_tx_control); 2110 } else if (is_c0(pdev)) { 2111 writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); 2112 udelay(AFE_REGISTER_WRITE_DELAY); 2113 2114 writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); 2115 udelay(AFE_REGISTER_WRITE_DELAY); 2116 2117 /* Enable TX equalization (0xe824) */ 2118 writel(0x00040000, &xcvr->afe_tx_control); 2119 } else if (is_c1(pdev)) { 2120 writel(cable_length_long ? 0x01500C0C : 2121 cable_length_medium ? 0x01400C0D : 0x02400C0D, 2122 &xcvr->afe_xcvr_control1); 2123 udelay(AFE_REGISTER_WRITE_DELAY); 2124 2125 writel(0x000003E0, &xcvr->afe_dfx_rx_control1); 2126 udelay(AFE_REGISTER_WRITE_DELAY); 2127 2128 writel(cable_length_long ? 0x33091C1F : 2129 cable_length_medium ? 0x3315181F : 0x2B17161F, 2130 &xcvr->afe_rx_ssc_control0); 2131 udelay(AFE_REGISTER_WRITE_DELAY); 2132 2133 /* Enable TX equalization (0xe824) */ 2134 writel(0x00040000, &xcvr->afe_tx_control); 2135 } 2136 2137 udelay(AFE_REGISTER_WRITE_DELAY); 2138 2139 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); 2140 udelay(AFE_REGISTER_WRITE_DELAY); 2141 2142 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); 2143 udelay(AFE_REGISTER_WRITE_DELAY); 2144 2145 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); 2146 udelay(AFE_REGISTER_WRITE_DELAY); 2147 2148 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); 2149 udelay(AFE_REGISTER_WRITE_DELAY); 2150 } 2151 2152 /* Transfer control to the PEs */ 2153 writel(0x00010f00, &afe->afe_dfx_master_control0); 2154 udelay(AFE_REGISTER_WRITE_DELAY); 2155 } 2156 2157 static void sci_controller_initialize_power_control(struct isci_host *ihost) 2158 { 2159 sci_init_timer(&ihost->power_control.timer, power_control_timeout); 2160 2161 memset(ihost->power_control.requesters, 0, 2162 sizeof(ihost->power_control.requesters)); 2163 2164 ihost->power_control.phys_waiting = 0; 2165 ihost->power_control.phys_granted_power = 0; 2166 } 2167 2168 static enum sci_status sci_controller_initialize(struct isci_host *ihost) 2169 { 2170 struct sci_base_state_machine *sm = &ihost->sm; 2171 enum sci_status result = SCI_FAILURE; 2172 unsigned long i, state, val; 2173 2174 if (ihost->sm.current_state_id != SCIC_RESET) { 2175 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2176 __func__, ihost->sm.current_state_id); 2177 return SCI_FAILURE_INVALID_STATE; 2178 } 2179 2180 sci_change_state(sm, SCIC_INITIALIZING); 2181 2182 sci_init_timer(&ihost->phy_timer, phy_startup_timeout); 2183 2184 ihost->next_phy_to_start = 0; 2185 ihost->phy_startup_timer_pending = false; 2186 2187 sci_controller_initialize_power_control(ihost); 2188 2189 /* 2190 * There is nothing to do here for B0 since we do not have to 2191 * program the AFE registers. 2192 * / @todo The AFE settings are supposed to be correct for the B0 but 2193 * / presently they seem to be wrong. */ 2194 sci_controller_afe_initialization(ihost); 2195 2196 2197 /* Take the hardware out of reset */ 2198 writel(0, &ihost->smu_registers->soft_reset_control); 2199 2200 /* 2201 * / @todo Provide meaningfull error code for hardware failure 2202 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2203 for (i = 100; i >= 1; i--) { 2204 u32 status; 2205 2206 /* Loop until the hardware reports success */ 2207 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2208 status = readl(&ihost->smu_registers->control_status); 2209 2210 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) 2211 break; 2212 } 2213 if (i == 0) 2214 goto out; 2215 2216 /* 2217 * Determine what are the actaul device capacities that the 2218 * hardware will support */ 2219 val = readl(&ihost->smu_registers->device_context_capacity); 2220 2221 /* Record the smaller of the two capacity values */ 2222 ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); 2223 ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); 2224 ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); 2225 2226 /* 2227 * Make all PEs that are unassigned match up with the 2228 * logical ports 2229 */ 2230 for (i = 0; i < ihost->logical_port_entries; i++) { 2231 struct scu_port_task_scheduler_group_registers __iomem 2232 *ptsg = &ihost->scu_registers->peg0.ptsg; 2233 2234 writel(i, &ptsg->protocol_engine[i]); 2235 } 2236 2237 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2238 val = readl(&ihost->scu_registers->sdma.pdma_configuration); 2239 val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2240 writel(val, &ihost->scu_registers->sdma.pdma_configuration); 2241 2242 val = readl(&ihost->scu_registers->sdma.cdma_configuration); 2243 val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2244 writel(val, &ihost->scu_registers->sdma.cdma_configuration); 2245 2246 /* 2247 * Initialize the PHYs before the PORTs because the PHY registers 2248 * are accessed during the port initialization. 2249 */ 2250 for (i = 0; i < SCI_MAX_PHYS; i++) { 2251 result = sci_phy_initialize(&ihost->phys[i], 2252 &ihost->scu_registers->peg0.pe[i].tl, 2253 &ihost->scu_registers->peg0.pe[i].ll); 2254 if (result != SCI_SUCCESS) 2255 goto out; 2256 } 2257 2258 for (i = 0; i < ihost->logical_port_entries; i++) { 2259 struct isci_port *iport = &ihost->ports[i]; 2260 2261 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; 2262 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; 2263 iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; 2264 } 2265 2266 result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); 2267 2268 out: 2269 /* Advance the controller state machine */ 2270 if (result == SCI_SUCCESS) 2271 state = SCIC_INITIALIZED; 2272 else 2273 state = SCIC_FAILED; 2274 sci_change_state(sm, state); 2275 2276 return result; 2277 } 2278 2279 static int sci_controller_dma_alloc(struct isci_host *ihost) 2280 { 2281 struct device *dev = &ihost->pdev->dev; 2282 size_t size; 2283 int i; 2284 2285 /* detect re-initialization */ 2286 if (ihost->completion_queue) 2287 return 0; 2288 2289 size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); 2290 ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, 2291 GFP_KERNEL); 2292 if (!ihost->completion_queue) 2293 return -ENOMEM; 2294 2295 size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); 2296 ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, 2297 GFP_KERNEL); 2298 2299 if (!ihost->remote_node_context_table) 2300 return -ENOMEM; 2301 2302 size = ihost->task_context_entries * sizeof(struct scu_task_context), 2303 ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, 2304 GFP_KERNEL); 2305 if (!ihost->task_context_table) 2306 return -ENOMEM; 2307 2308 size = SCI_UFI_TOTAL_SIZE; 2309 ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); 2310 if (!ihost->ufi_buf) 2311 return -ENOMEM; 2312 2313 for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { 2314 struct isci_request *ireq; 2315 dma_addr_t dma; 2316 2317 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); 2318 if (!ireq) 2319 return -ENOMEM; 2320 2321 ireq->tc = &ihost->task_context_table[i]; 2322 ireq->owning_controller = ihost; 2323 spin_lock_init(&ireq->state_lock); 2324 ireq->request_daddr = dma; 2325 ireq->isci_host = ihost; 2326 ihost->reqs[i] = ireq; 2327 } 2328 2329 return 0; 2330 } 2331 2332 static int sci_controller_mem_init(struct isci_host *ihost) 2333 { 2334 int err = sci_controller_dma_alloc(ihost); 2335 2336 if (err) 2337 return err; 2338 2339 writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); 2340 writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); 2341 2342 writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); 2343 writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); 2344 2345 writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); 2346 writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); 2347 2348 sci_unsolicited_frame_control_construct(ihost); 2349 2350 /* 2351 * Inform the silicon as to the location of the UF headers and 2352 * address table. 2353 */ 2354 writel(lower_32_bits(ihost->uf_control.headers.physical_address), 2355 &ihost->scu_registers->sdma.uf_header_base_address_lower); 2356 writel(upper_32_bits(ihost->uf_control.headers.physical_address), 2357 &ihost->scu_registers->sdma.uf_header_base_address_upper); 2358 2359 writel(lower_32_bits(ihost->uf_control.address_table.physical_address), 2360 &ihost->scu_registers->sdma.uf_address_table_lower); 2361 writel(upper_32_bits(ihost->uf_control.address_table.physical_address), 2362 &ihost->scu_registers->sdma.uf_address_table_upper); 2363 2364 return 0; 2365 } 2366 2367 /** 2368 * isci_host_init - (re-)initialize hardware and internal (private) state 2369 * @ihost: host to init 2370 * 2371 * Any public facing objects (like asd_sas_port, and asd_sas_phys), or 2372 * one-time initialization objects like locks and waitqueues, are 2373 * not touched (they are initialized in isci_host_alloc) 2374 */ 2375 int isci_host_init(struct isci_host *ihost) 2376 { 2377 int i, err; 2378 enum sci_status status; 2379 2380 status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); 2381 if (status != SCI_SUCCESS) { 2382 dev_err(&ihost->pdev->dev, 2383 "%s: sci_controller_construct failed - status = %x\n", 2384 __func__, 2385 status); 2386 return -ENODEV; 2387 } 2388 2389 spin_lock_irq(&ihost->scic_lock); 2390 status = sci_controller_initialize(ihost); 2391 spin_unlock_irq(&ihost->scic_lock); 2392 if (status != SCI_SUCCESS) { 2393 dev_warn(&ihost->pdev->dev, 2394 "%s: sci_controller_initialize failed -" 2395 " status = 0x%x\n", 2396 __func__, status); 2397 return -ENODEV; 2398 } 2399 2400 err = sci_controller_mem_init(ihost); 2401 if (err) 2402 return err; 2403 2404 /* enable sgpio */ 2405 writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); 2406 for (i = 0; i < isci_gpio_count(ihost); i++) 2407 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); 2408 writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); 2409 2410 return 0; 2411 } 2412 2413 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, 2414 struct isci_phy *iphy) 2415 { 2416 switch (ihost->sm.current_state_id) { 2417 case SCIC_STARTING: 2418 sci_del_timer(&ihost->phy_timer); 2419 ihost->phy_startup_timer_pending = false; 2420 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2421 iport, iphy); 2422 sci_controller_start_next_phy(ihost); 2423 break; 2424 case SCIC_READY: 2425 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, 2426 iport, iphy); 2427 break; 2428 default: 2429 dev_dbg(&ihost->pdev->dev, 2430 "%s: SCIC Controller linkup event from phy %d in " 2431 "unexpected state %d\n", __func__, iphy->phy_index, 2432 ihost->sm.current_state_id); 2433 } 2434 } 2435 2436 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, 2437 struct isci_phy *iphy) 2438 { 2439 switch (ihost->sm.current_state_id) { 2440 case SCIC_STARTING: 2441 case SCIC_READY: 2442 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, 2443 iport, iphy); 2444 break; 2445 default: 2446 dev_dbg(&ihost->pdev->dev, 2447 "%s: SCIC Controller linkdown event from phy %d in " 2448 "unexpected state %d\n", 2449 __func__, 2450 iphy->phy_index, 2451 ihost->sm.current_state_id); 2452 } 2453 } 2454 2455 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) 2456 { 2457 u32 index; 2458 2459 for (index = 0; index < ihost->remote_node_entries; index++) { 2460 if ((ihost->device_table[index] != NULL) && 2461 (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) 2462 return true; 2463 } 2464 2465 return false; 2466 } 2467 2468 void sci_controller_remote_device_stopped(struct isci_host *ihost, 2469 struct isci_remote_device *idev) 2470 { 2471 if (ihost->sm.current_state_id != SCIC_STOPPING) { 2472 dev_dbg(&ihost->pdev->dev, 2473 "SCIC Controller 0x%p remote device stopped event " 2474 "from device 0x%p in unexpected state %d\n", 2475 ihost, idev, 2476 ihost->sm.current_state_id); 2477 return; 2478 } 2479 2480 if (!sci_controller_has_remote_devices_stopping(ihost)) 2481 sci_change_state(&ihost->sm, SCIC_STOPPED); 2482 } 2483 2484 void sci_controller_post_request(struct isci_host *ihost, u32 request) 2485 { 2486 dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", 2487 __func__, ihost->id, request); 2488 2489 writel(request, &ihost->smu_registers->post_context_port); 2490 } 2491 2492 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) 2493 { 2494 u16 task_index; 2495 u16 task_sequence; 2496 2497 task_index = ISCI_TAG_TCI(io_tag); 2498 2499 if (task_index < ihost->task_context_entries) { 2500 struct isci_request *ireq = ihost->reqs[task_index]; 2501 2502 if (test_bit(IREQ_ACTIVE, &ireq->flags)) { 2503 task_sequence = ISCI_TAG_SEQ(io_tag); 2504 2505 if (task_sequence == ihost->io_request_sequence[task_index]) 2506 return ireq; 2507 } 2508 } 2509 2510 return NULL; 2511 } 2512 2513 /** 2514 * This method allocates remote node index and the reserves the remote node 2515 * context space for use. This method can fail if there are no more remote 2516 * node index available. 2517 * @scic: This is the controller object which contains the set of 2518 * free remote node ids 2519 * @sci_dev: This is the device object which is requesting the a remote node 2520 * id 2521 * @node_id: This is the remote node id that is assinged to the device if one 2522 * is available 2523 * 2524 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2525 * node index available. 2526 */ 2527 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, 2528 struct isci_remote_device *idev, 2529 u16 *node_id) 2530 { 2531 u16 node_index; 2532 u32 remote_node_count = sci_remote_device_node_count(idev); 2533 2534 node_index = sci_remote_node_table_allocate_remote_node( 2535 &ihost->available_remote_nodes, remote_node_count 2536 ); 2537 2538 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2539 ihost->device_table[node_index] = idev; 2540 2541 *node_id = node_index; 2542 2543 return SCI_SUCCESS; 2544 } 2545 2546 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2547 } 2548 2549 void sci_controller_free_remote_node_context(struct isci_host *ihost, 2550 struct isci_remote_device *idev, 2551 u16 node_id) 2552 { 2553 u32 remote_node_count = sci_remote_device_node_count(idev); 2554 2555 if (ihost->device_table[node_id] == idev) { 2556 ihost->device_table[node_id] = NULL; 2557 2558 sci_remote_node_table_release_remote_node_index( 2559 &ihost->available_remote_nodes, remote_node_count, node_id 2560 ); 2561 } 2562 } 2563 2564 void sci_controller_copy_sata_response(void *response_buffer, 2565 void *frame_header, 2566 void *frame_buffer) 2567 { 2568 /* XXX type safety? */ 2569 memcpy(response_buffer, frame_header, sizeof(u32)); 2570 2571 memcpy(response_buffer + sizeof(u32), 2572 frame_buffer, 2573 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2574 } 2575 2576 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) 2577 { 2578 if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) 2579 writel(ihost->uf_control.get, 2580 &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); 2581 } 2582 2583 void isci_tci_free(struct isci_host *ihost, u16 tci) 2584 { 2585 u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); 2586 2587 ihost->tci_pool[tail] = tci; 2588 ihost->tci_tail = tail + 1; 2589 } 2590 2591 static u16 isci_tci_alloc(struct isci_host *ihost) 2592 { 2593 u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); 2594 u16 tci = ihost->tci_pool[head]; 2595 2596 ihost->tci_head = head + 1; 2597 return tci; 2598 } 2599 2600 static u16 isci_tci_space(struct isci_host *ihost) 2601 { 2602 return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); 2603 } 2604 2605 u16 isci_alloc_tag(struct isci_host *ihost) 2606 { 2607 if (isci_tci_space(ihost)) { 2608 u16 tci = isci_tci_alloc(ihost); 2609 u8 seq = ihost->io_request_sequence[tci]; 2610 2611 return ISCI_TAG(seq, tci); 2612 } 2613 2614 return SCI_CONTROLLER_INVALID_IO_TAG; 2615 } 2616 2617 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) 2618 { 2619 u16 tci = ISCI_TAG_TCI(io_tag); 2620 u16 seq = ISCI_TAG_SEQ(io_tag); 2621 2622 /* prevent tail from passing head */ 2623 if (isci_tci_active(ihost) == 0) 2624 return SCI_FAILURE_INVALID_IO_TAG; 2625 2626 if (seq == ihost->io_request_sequence[tci]) { 2627 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); 2628 2629 isci_tci_free(ihost, tci); 2630 2631 return SCI_SUCCESS; 2632 } 2633 return SCI_FAILURE_INVALID_IO_TAG; 2634 } 2635 2636 enum sci_status sci_controller_start_io(struct isci_host *ihost, 2637 struct isci_remote_device *idev, 2638 struct isci_request *ireq) 2639 { 2640 enum sci_status status; 2641 2642 if (ihost->sm.current_state_id != SCIC_READY) { 2643 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2644 __func__, ihost->sm.current_state_id); 2645 return SCI_FAILURE_INVALID_STATE; 2646 } 2647 2648 status = sci_remote_device_start_io(ihost, idev, ireq); 2649 if (status != SCI_SUCCESS) 2650 return status; 2651 2652 set_bit(IREQ_ACTIVE, &ireq->flags); 2653 sci_controller_post_request(ihost, ireq->post_context); 2654 return SCI_SUCCESS; 2655 } 2656 2657 enum sci_status sci_controller_terminate_request(struct isci_host *ihost, 2658 struct isci_remote_device *idev, 2659 struct isci_request *ireq) 2660 { 2661 /* terminate an ongoing (i.e. started) core IO request. This does not 2662 * abort the IO request at the target, but rather removes the IO 2663 * request from the host controller. 2664 */ 2665 enum sci_status status; 2666 2667 if (ihost->sm.current_state_id != SCIC_READY) { 2668 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2669 __func__, ihost->sm.current_state_id); 2670 return SCI_FAILURE_INVALID_STATE; 2671 } 2672 2673 status = sci_io_request_terminate(ireq); 2674 if (status != SCI_SUCCESS) 2675 return status; 2676 2677 /* 2678 * Utilize the original post context command and or in the POST_TC_ABORT 2679 * request sub-type. 2680 */ 2681 sci_controller_post_request(ihost, 2682 ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2683 return SCI_SUCCESS; 2684 } 2685 2686 /** 2687 * sci_controller_complete_io() - This method will perform core specific 2688 * completion operations for an IO request. After this method is invoked, 2689 * the user should consider the IO request as invalid until it is properly 2690 * reused (i.e. re-constructed). 2691 * @ihost: The handle to the controller object for which to complete the 2692 * IO request. 2693 * @idev: The handle to the remote device object for which to complete 2694 * the IO request. 2695 * @ireq: the handle to the io request object to complete. 2696 */ 2697 enum sci_status sci_controller_complete_io(struct isci_host *ihost, 2698 struct isci_remote_device *idev, 2699 struct isci_request *ireq) 2700 { 2701 enum sci_status status; 2702 u16 index; 2703 2704 switch (ihost->sm.current_state_id) { 2705 case SCIC_STOPPING: 2706 /* XXX: Implement this function */ 2707 return SCI_FAILURE; 2708 case SCIC_READY: 2709 status = sci_remote_device_complete_io(ihost, idev, ireq); 2710 if (status != SCI_SUCCESS) 2711 return status; 2712 2713 index = ISCI_TAG_TCI(ireq->io_tag); 2714 clear_bit(IREQ_ACTIVE, &ireq->flags); 2715 return SCI_SUCCESS; 2716 default: 2717 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2718 __func__, ihost->sm.current_state_id); 2719 return SCI_FAILURE_INVALID_STATE; 2720 } 2721 2722 } 2723 2724 enum sci_status sci_controller_continue_io(struct isci_request *ireq) 2725 { 2726 struct isci_host *ihost = ireq->owning_controller; 2727 2728 if (ihost->sm.current_state_id != SCIC_READY) { 2729 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", 2730 __func__, ihost->sm.current_state_id); 2731 return SCI_FAILURE_INVALID_STATE; 2732 } 2733 2734 set_bit(IREQ_ACTIVE, &ireq->flags); 2735 sci_controller_post_request(ihost, ireq->post_context); 2736 return SCI_SUCCESS; 2737 } 2738 2739 /** 2740 * sci_controller_start_task() - This method is called by the SCIC user to 2741 * send/start a framework task management request. 2742 * @controller: the handle to the controller object for which to start the task 2743 * management request. 2744 * @remote_device: the handle to the remote device object for which to start 2745 * the task management request. 2746 * @task_request: the handle to the task request object to start. 2747 */ 2748 enum sci_task_status sci_controller_start_task(struct isci_host *ihost, 2749 struct isci_remote_device *idev, 2750 struct isci_request *ireq) 2751 { 2752 enum sci_status status; 2753 2754 if (ihost->sm.current_state_id != SCIC_READY) { 2755 dev_warn(&ihost->pdev->dev, 2756 "%s: SCIC Controller starting task from invalid " 2757 "state\n", 2758 __func__); 2759 return SCI_TASK_FAILURE_INVALID_STATE; 2760 } 2761 2762 status = sci_remote_device_start_task(ihost, idev, ireq); 2763 switch (status) { 2764 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 2765 set_bit(IREQ_ACTIVE, &ireq->flags); 2766 2767 /* 2768 * We will let framework know this task request started successfully, 2769 * although core is still woring on starting the request (to post tc when 2770 * RNC is resumed.) 2771 */ 2772 return SCI_SUCCESS; 2773 case SCI_SUCCESS: 2774 set_bit(IREQ_ACTIVE, &ireq->flags); 2775 sci_controller_post_request(ihost, ireq->post_context); 2776 break; 2777 default: 2778 break; 2779 } 2780 2781 return status; 2782 } 2783 2784 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) 2785 { 2786 int d; 2787 2788 /* no support for TX_GP_CFG */ 2789 if (reg_index == 0) 2790 return -EINVAL; 2791 2792 for (d = 0; d < isci_gpio_count(ihost); d++) { 2793 u32 val = 0x444; /* all ODx.n clear */ 2794 int i; 2795 2796 for (i = 0; i < 3; i++) { 2797 int bit = (i << 2) + 2; 2798 2799 bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), 2800 write_data, reg_index, 2801 reg_count); 2802 if (bit < 0) 2803 break; 2804 2805 /* if od is set, clear the 'invert' bit */ 2806 val &= ~(bit << ((i << 2) + 2)); 2807 } 2808 2809 if (i < 3) 2810 break; 2811 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); 2812 } 2813 2814 /* unless reg_index is > 1, we should always be able to write at 2815 * least one register 2816 */ 2817 return d > 0; 2818 } 2819 2820 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, 2821 u8 reg_count, u8 *write_data) 2822 { 2823 struct isci_host *ihost = sas_ha->lldd_ha; 2824 int written; 2825 2826 switch (reg_type) { 2827 case SAS_GPIO_REG_TX_GP: 2828 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); 2829 break; 2830 default: 2831 written = -EINVAL; 2832 } 2833 2834 return written; 2835 } 2836