xref: /openbmc/linux/drivers/scsi/hpsa.h (revision 76438d087f18fc0ce0431bf22e5195ec3db1656c)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 #ifndef HPSA_H
22 #define HPSA_H
23 
24 #include <scsi/scsicam.h>
25 
26 #define IO_OK		0
27 #define IO_ERROR	1
28 
29 struct ctlr_info;
30 
31 struct access_method {
32 	void (*submit_command)(struct ctlr_info *h,
33 		struct CommandList *c);
34 	void (*set_intr_mask)(struct ctlr_info *h, unsigned long val);
35 	unsigned long (*fifo_full)(struct ctlr_info *h);
36 	bool (*intr_pending)(struct ctlr_info *h);
37 	unsigned long (*command_completed)(struct ctlr_info *h, u8 q);
38 };
39 
40 struct hpsa_scsi_dev_t {
41 	int devtype;
42 	int bus, target, lun;		/* as presented to the OS */
43 	unsigned char scsi3addr[8];	/* as presented to the HW */
44 #define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0"
45 	unsigned char device_id[16];    /* from inquiry pg. 0x83 */
46 	unsigned char vendor[8];        /* bytes 8-15 of inquiry data */
47 	unsigned char model[16];        /* bytes 16-31 of inquiry data */
48 	unsigned char raid_level;	/* from inquiry page 0xC1 */
49 	u32 ioaccel_handle;
50 	int offload_config;		/* I/O accel RAID offload configured */
51 	int offload_enabled;		/* I/O accel RAID offload enabled */
52 	int offload_to_mirror;		/* Send next I/O accelerator RAID
53 					 * offload request to mirror drive
54 					 */
55 	struct raid_map_data raid_map;	/* I/O accelerator RAID map */
56 
57 };
58 
59 struct reply_pool {
60 	u64 *head;
61 	size_t size;
62 	u8 wraparound;
63 	u32 current_entry;
64 };
65 
66 struct ctlr_info {
67 	int	ctlr;
68 	char	devname[8];
69 	char    *product_name;
70 	struct pci_dev *pdev;
71 	u32	board_id;
72 	void __iomem *vaddr;
73 	unsigned long paddr;
74 	int 	nr_cmds; /* Number of commands allowed on this controller */
75 	struct CfgTable __iomem *cfgtable;
76 	int	interrupts_enabled;
77 	int	major;
78 	int 	max_commands;
79 	int	commands_outstanding;
80 	int 	max_outstanding; /* Debug */
81 	int	usage_count;  /* number of opens all all minor devices */
82 #	define PERF_MODE_INT	0
83 #	define DOORBELL_INT	1
84 #	define SIMPLE_MODE_INT	2
85 #	define MEMQ_MODE_INT	3
86 	unsigned int intr[MAX_REPLY_QUEUES];
87 	unsigned int msix_vector;
88 	unsigned int msi_vector;
89 	int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */
90 	struct access_method access;
91 
92 	/* queue and queue Info */
93 	struct list_head reqQ;
94 	struct list_head cmpQ;
95 	unsigned int Qdepth;
96 	unsigned int maxSG;
97 	spinlock_t lock;
98 	int maxsgentries;
99 	u8 max_cmd_sg_entries;
100 	int chainsize;
101 	struct SGDescriptor **cmd_sg_list;
102 
103 	/* pointers to command and error info pool */
104 	struct CommandList 	*cmd_pool;
105 	dma_addr_t		cmd_pool_dhandle;
106 	struct io_accel1_cmd	*ioaccel_cmd_pool;
107 	dma_addr_t		ioaccel_cmd_pool_dhandle;
108 	struct ErrorInfo 	*errinfo_pool;
109 	dma_addr_t		errinfo_pool_dhandle;
110 	unsigned long  		*cmd_pool_bits;
111 	int			scan_finished;
112 	spinlock_t		scan_lock;
113 	wait_queue_head_t	scan_wait_queue;
114 
115 	struct Scsi_Host *scsi_host;
116 	spinlock_t devlock; /* to protect hba[ctlr]->dev[];  */
117 	int ndevices; /* number of used elements in .dev[] array. */
118 	struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES];
119 	/*
120 	 * Performant mode tables.
121 	 */
122 	u32 trans_support;
123 	u32 trans_offset;
124 	struct TransTable_struct *transtable;
125 	unsigned long transMethod;
126 
127 	/* cap concurrent passthrus at some reasonable maximum */
128 #define HPSA_MAX_CONCURRENT_PASSTHRUS (20)
129 	spinlock_t passthru_count_lock; /* protects passthru_count */
130 	int passthru_count;
131 
132 	/*
133 	 * Performant mode completion buffers
134 	 */
135 	u64 *reply_pool;
136 	size_t reply_pool_size;
137 	struct reply_pool reply_queue[MAX_REPLY_QUEUES];
138 	u8 nreply_queues;
139 	dma_addr_t reply_pool_dhandle;
140 	u32 *blockFetchTable;
141 	u32 *ioaccel1_blockFetchTable;
142 	unsigned char *hba_inquiry_data;
143 	u32 driver_support;
144 	u32 fw_support;
145 	int ioaccel_support;
146 	int ioaccel_maxsg;
147 	u64 last_intr_timestamp;
148 	u32 last_heartbeat;
149 	u64 last_heartbeat_timestamp;
150 	u32 heartbeat_sample_interval;
151 	atomic_t firmware_flash_in_progress;
152 	u32 lockup_detected;
153 	struct delayed_work monitor_ctlr_work;
154 	int remove_in_progress;
155 	u32 fifo_recently_full;
156 	/* Address of h->q[x] is passed to intr handler to know which queue */
157 	u8 q[MAX_REPLY_QUEUES];
158 	u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */
159 #define HPSATMF_BITS_SUPPORTED  (1 << 0)
160 #define HPSATMF_PHYS_LUN_RESET  (1 << 1)
161 #define HPSATMF_PHYS_NEX_RESET  (1 << 2)
162 #define HPSATMF_PHYS_TASK_ABORT (1 << 3)
163 #define HPSATMF_PHYS_TSET_ABORT (1 << 4)
164 #define HPSATMF_PHYS_CLEAR_ACA  (1 << 5)
165 #define HPSATMF_PHYS_CLEAR_TSET (1 << 6)
166 #define HPSATMF_PHYS_QRY_TASK   (1 << 7)
167 #define HPSATMF_PHYS_QRY_TSET   (1 << 8)
168 #define HPSATMF_PHYS_QRY_ASYNC  (1 << 9)
169 #define HPSATMF_MASK_SUPPORTED  (1 << 16)
170 #define HPSATMF_LOG_LUN_RESET   (1 << 17)
171 #define HPSATMF_LOG_NEX_RESET   (1 << 18)
172 #define HPSATMF_LOG_TASK_ABORT  (1 << 19)
173 #define HPSATMF_LOG_TSET_ABORT  (1 << 20)
174 #define HPSATMF_LOG_CLEAR_ACA   (1 << 21)
175 #define HPSATMF_LOG_CLEAR_TSET  (1 << 22)
176 #define HPSATMF_LOG_QRY_TASK    (1 << 23)
177 #define HPSATMF_LOG_QRY_TSET    (1 << 24)
178 #define HPSATMF_LOG_QRY_ASYNC   (1 << 25)
179 	u32 events;
180 };
181 #define HPSA_ABORT_MSG 0
182 #define HPSA_DEVICE_RESET_MSG 1
183 #define HPSA_RESET_TYPE_CONTROLLER 0x00
184 #define HPSA_RESET_TYPE_BUS 0x01
185 #define HPSA_RESET_TYPE_TARGET 0x03
186 #define HPSA_RESET_TYPE_LUN 0x04
187 #define HPSA_MSG_SEND_RETRY_LIMIT 10
188 #define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000)
189 
190 /* Maximum time in seconds driver will wait for command completions
191  * when polling before giving up.
192  */
193 #define HPSA_MAX_POLL_TIME_SECS (20)
194 
195 /* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines
196  * how many times to retry TEST UNIT READY on a device
197  * while waiting for it to become ready before giving up.
198  * HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval
199  * between sending TURs while waiting for a device
200  * to become ready.
201  */
202 #define HPSA_TUR_RETRY_LIMIT (20)
203 #define HPSA_MAX_WAIT_INTERVAL_SECS (30)
204 
205 /* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board
206  * to become ready, in seconds, before giving up on it.
207  * HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait
208  * between polling the board to see if it is ready, in
209  * milliseconds.  HPSA_BOARD_READY_POLL_INTERVAL and
210  * HPSA_BOARD_READY_ITERATIONS are derived from those.
211  */
212 #define HPSA_BOARD_READY_WAIT_SECS (120)
213 #define HPSA_BOARD_NOT_READY_WAIT_SECS (100)
214 #define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100)
215 #define HPSA_BOARD_READY_POLL_INTERVAL \
216 	((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000)
217 #define HPSA_BOARD_READY_ITERATIONS \
218 	((HPSA_BOARD_READY_WAIT_SECS * 1000) / \
219 		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
220 #define HPSA_BOARD_NOT_READY_ITERATIONS \
221 	((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \
222 		HPSA_BOARD_READY_POLL_INTERVAL_MSECS)
223 #define HPSA_POST_RESET_PAUSE_MSECS (3000)
224 #define HPSA_POST_RESET_NOOP_RETRIES (12)
225 
226 /*  Defining the diffent access_menthods */
227 /*
228  * Memory mapped FIFO interface (SMART 53xx cards)
229  */
230 #define SA5_DOORBELL	0x20
231 #define SA5_REQUEST_PORT_OFFSET	0x40
232 #define SA5_REPLY_INTR_MASK_OFFSET	0x34
233 #define SA5_REPLY_PORT_OFFSET		0x44
234 #define SA5_INTR_STATUS		0x30
235 #define SA5_SCRATCHPAD_OFFSET	0xB0
236 
237 #define SA5_CTCFG_OFFSET	0xB4
238 #define SA5_CTMEM_OFFSET	0xB8
239 
240 #define SA5_INTR_OFF		0x08
241 #define SA5B_INTR_OFF		0x04
242 #define SA5_INTR_PENDING	0x08
243 #define SA5B_INTR_PENDING	0x04
244 #define FIFO_EMPTY		0xffffffff
245 #define HPSA_FIRMWARE_READY	0xffff0000 /* value in scratchpad register */
246 
247 #define HPSA_ERROR_BIT		0x02
248 
249 /* Performant mode flags */
250 #define SA5_PERF_INTR_PENDING   0x04
251 #define SA5_PERF_INTR_OFF       0x05
252 #define SA5_OUTDB_STATUS_PERF_BIT       0x01
253 #define SA5_OUTDB_CLEAR_PERF_BIT        0x01
254 #define SA5_OUTDB_CLEAR         0xA0
255 #define SA5_OUTDB_CLEAR_PERF_BIT        0x01
256 #define SA5_OUTDB_STATUS        0x9C
257 
258 
259 #define HPSA_INTR_ON 	1
260 #define HPSA_INTR_OFF	0
261 /*
262 	Send the command to the hardware
263 */
264 static void SA5_submit_command(struct ctlr_info *h,
265 	struct CommandList *c)
266 {
267 	dev_dbg(&h->pdev->dev, "Sending %x, tag = %x\n", c->busaddr,
268 		c->Header.Tag.lower);
269 	writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
270 	(void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
271 }
272 
273 /*
274  *  This card is the opposite of the other cards.
275  *   0 turns interrupts on...
276  *   0x08 turns them off...
277  */
278 static void SA5_intr_mask(struct ctlr_info *h, unsigned long val)
279 {
280 	if (val) { /* Turn interrupts on */
281 		h->interrupts_enabled = 1;
282 		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
283 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
284 	} else { /* Turn them off */
285 		h->interrupts_enabled = 0;
286 		writel(SA5_INTR_OFF,
287 			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
288 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
289 	}
290 }
291 
292 static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val)
293 {
294 	if (val) { /* turn on interrupts */
295 		h->interrupts_enabled = 1;
296 		writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
297 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
298 	} else {
299 		h->interrupts_enabled = 0;
300 		writel(SA5_PERF_INTR_OFF,
301 			h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
302 		(void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET);
303 	}
304 }
305 
306 static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q)
307 {
308 	struct reply_pool *rq = &h->reply_queue[q];
309 	unsigned long flags, register_value = FIFO_EMPTY;
310 
311 	/* msi auto clears the interrupt pending bit. */
312 	if (!(h->msi_vector || h->msix_vector)) {
313 		/* flush the controller write of the reply queue by reading
314 		 * outbound doorbell status register.
315 		 */
316 		register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
317 		writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR);
318 		/* Do a read in order to flush the write to the controller
319 		 * (as per spec.)
320 		 */
321 		register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
322 	}
323 
324 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
325 		register_value = rq->head[rq->current_entry];
326 		rq->current_entry++;
327 		spin_lock_irqsave(&h->lock, flags);
328 		h->commands_outstanding--;
329 		spin_unlock_irqrestore(&h->lock, flags);
330 	} else {
331 		register_value = FIFO_EMPTY;
332 	}
333 	/* Check for wraparound */
334 	if (rq->current_entry == h->max_commands) {
335 		rq->current_entry = 0;
336 		rq->wraparound ^= 1;
337 	}
338 	return register_value;
339 }
340 
341 /*
342  *  Returns true if fifo is full.
343  *
344  */
345 static unsigned long SA5_fifo_full(struct ctlr_info *h)
346 {
347 	if (h->commands_outstanding >= h->max_commands)
348 		return 1;
349 	else
350 		return 0;
351 
352 }
353 /*
354  *   returns value read from hardware.
355  *     returns FIFO_EMPTY if there is nothing to read
356  */
357 static unsigned long SA5_completed(struct ctlr_info *h,
358 	__attribute__((unused)) u8 q)
359 {
360 	unsigned long register_value
361 		= readl(h->vaddr + SA5_REPLY_PORT_OFFSET);
362 	unsigned long flags;
363 
364 	if (register_value != FIFO_EMPTY) {
365 		spin_lock_irqsave(&h->lock, flags);
366 		h->commands_outstanding--;
367 		spin_unlock_irqrestore(&h->lock, flags);
368 	}
369 
370 #ifdef HPSA_DEBUG
371 	if (register_value != FIFO_EMPTY)
372 		dev_dbg(&h->pdev->dev, "Read %lx back from board\n",
373 			register_value);
374 	else
375 		dev_dbg(&h->pdev->dev, "FIFO Empty read\n");
376 #endif
377 
378 	return register_value;
379 }
380 /*
381  *	Returns true if an interrupt is pending..
382  */
383 static bool SA5_intr_pending(struct ctlr_info *h)
384 {
385 	unsigned long register_value  =
386 		readl(h->vaddr + SA5_INTR_STATUS);
387 	dev_dbg(&h->pdev->dev, "intr_pending %lx\n", register_value);
388 	return register_value & SA5_INTR_PENDING;
389 }
390 
391 static bool SA5_performant_intr_pending(struct ctlr_info *h)
392 {
393 	unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
394 
395 	if (!register_value)
396 		return false;
397 
398 	if (h->msi_vector || h->msix_vector)
399 		return true;
400 
401 	/* Read outbound doorbell to flush */
402 	register_value = readl(h->vaddr + SA5_OUTDB_STATUS);
403 	return register_value & SA5_OUTDB_STATUS_PERF_BIT;
404 }
405 
406 #define SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT    0x100
407 
408 static bool SA5_ioaccel_mode1_intr_pending(struct ctlr_info *h)
409 {
410 	unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS);
411 
412 	return (register_value & SA5_IOACCEL_MODE1_INTR_STATUS_CMP_BIT) ?
413 		true : false;
414 }
415 
416 #define IOACCEL_MODE1_REPLY_QUEUE_INDEX  0x1A0
417 #define IOACCEL_MODE1_PRODUCER_INDEX     0x1B8
418 #define IOACCEL_MODE1_CONSUMER_INDEX     0x1BC
419 #define IOACCEL_MODE1_REPLY_UNUSED       0xFFFFFFFFFFFFFFFFULL
420 
421 static unsigned long SA5_ioaccel_mode1_completed(struct ctlr_info *h, u8 q)
422 {
423 	u64 register_value;
424 	struct reply_pool *rq = &h->reply_queue[q];
425 	unsigned long flags;
426 
427 	BUG_ON(q >= h->nreply_queues);
428 
429 	register_value = rq->head[rq->current_entry];
430 	if (register_value != IOACCEL_MODE1_REPLY_UNUSED) {
431 		rq->head[rq->current_entry] = IOACCEL_MODE1_REPLY_UNUSED;
432 		if (++rq->current_entry == rq->size)
433 			rq->current_entry = 0;
434 		/*
435 		 * @todo
436 		 *
437 		 * Don't really need to write the new index after each command,
438 		 * but with current driver design this is easiest.
439 		 */
440 		wmb();
441 		writel((q << 24) | rq->current_entry, h->vaddr +
442 				IOACCEL_MODE1_CONSUMER_INDEX);
443 		spin_lock_irqsave(&h->lock, flags);
444 		h->commands_outstanding--;
445 		spin_unlock_irqrestore(&h->lock, flags);
446 	}
447 	return (unsigned long) register_value;
448 }
449 
450 static struct access_method SA5_access = {
451 	SA5_submit_command,
452 	SA5_intr_mask,
453 	SA5_fifo_full,
454 	SA5_intr_pending,
455 	SA5_completed,
456 };
457 
458 static struct access_method SA5_ioaccel_mode1_access = {
459 	SA5_submit_command,
460 	SA5_performant_intr_mask,
461 	SA5_fifo_full,
462 	SA5_ioaccel_mode1_intr_pending,
463 	SA5_ioaccel_mode1_completed,
464 };
465 
466 static struct access_method SA5_performant_access = {
467 	SA5_submit_command,
468 	SA5_performant_intr_mask,
469 	SA5_fifo_full,
470 	SA5_performant_intr_pending,
471 	SA5_performant_completed,
472 };
473 
474 struct board_type {
475 	u32	board_id;
476 	char	*product_name;
477 	struct access_method *access;
478 };
479 
480 #endif /* HPSA_H */
481 
482