xref: /openbmc/linux/drivers/scsi/hpsa.c (revision fba63097b8614a4a158226c02eec0318f41cd24f)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80 	"Use 'simple mode' rather than 'performant mode'");
81 
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
100 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101 	{0,}
102 };
103 
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105 
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111 	{0x3241103C, "Smart Array P212", &SA5_access},
112 	{0x3243103C, "Smart Array P410", &SA5_access},
113 	{0x3245103C, "Smart Array P410i", &SA5_access},
114 	{0x3247103C, "Smart Array P411", &SA5_access},
115 	{0x3249103C, "Smart Array P812", &SA5_access},
116 	{0x324a103C, "Smart Array P712m", &SA5_access},
117 	{0x324b103C, "Smart Array P711m", &SA5_access},
118 	{0x3350103C, "Smart Array", &SA5_access},
119 	{0x3351103C, "Smart Array", &SA5_access},
120 	{0x3352103C, "Smart Array", &SA5_access},
121 	{0x3353103C, "Smart Array", &SA5_access},
122 	{0x3354103C, "Smart Array", &SA5_access},
123 	{0x3355103C, "Smart Array", &SA5_access},
124 	{0x3356103C, "Smart Array", &SA5_access},
125 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127 
128 static int number_of_controllers;
129 
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134 
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138 
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145 	int cmd_type);
146 
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150 	unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152 	int qdepth, int reason);
153 
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157 
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160 	struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162 	struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165 	int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170 	u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172 	unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175 	void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178 
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181 	unsigned long *priv = shost_priv(sdev->host);
182 	return (struct ctlr_info *) *priv;
183 }
184 
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187 	unsigned long *priv = shost_priv(sh);
188 	return (struct ctlr_info *) *priv;
189 }
190 
191 static int check_for_unit_attention(struct ctlr_info *h,
192 	struct CommandList *c)
193 {
194 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195 		return 0;
196 
197 	switch (c->err_info->SenseInfo[12]) {
198 	case STATE_CHANGED:
199 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200 			"detected, command retried\n", h->ctlr);
201 		break;
202 	case LUN_FAILED:
203 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204 			"detected, action required\n", h->ctlr);
205 		break;
206 	case REPORT_LUNS_CHANGED:
207 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208 			"changed, action required\n", h->ctlr);
209 	/*
210 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211 	 */
212 		break;
213 	case POWER_OR_RESET:
214 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215 			"or device reset detected\n", h->ctlr);
216 		break;
217 	case UNIT_ATTENTION_CLEARED:
218 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219 		    "cleared by another initiator\n", h->ctlr);
220 		break;
221 	default:
222 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223 			"unit attention detected\n", h->ctlr);
224 		break;
225 	}
226 	return 1;
227 }
228 
229 static ssize_t host_store_rescan(struct device *dev,
230 				 struct device_attribute *attr,
231 				 const char *buf, size_t count)
232 {
233 	struct ctlr_info *h;
234 	struct Scsi_Host *shost = class_to_shost(dev);
235 	h = shost_to_hba(shost);
236 	hpsa_scan_start(h->scsi_host);
237 	return count;
238 }
239 
240 static ssize_t host_show_firmware_revision(struct device *dev,
241 	     struct device_attribute *attr, char *buf)
242 {
243 	struct ctlr_info *h;
244 	struct Scsi_Host *shost = class_to_shost(dev);
245 	unsigned char *fwrev;
246 
247 	h = shost_to_hba(shost);
248 	if (!h->hba_inquiry_data)
249 		return 0;
250 	fwrev = &h->hba_inquiry_data[32];
251 	return snprintf(buf, 20, "%c%c%c%c\n",
252 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254 
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256 	     struct device_attribute *attr, char *buf)
257 {
258 	struct Scsi_Host *shost = class_to_shost(dev);
259 	struct ctlr_info *h = shost_to_hba(shost);
260 
261 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263 
264 static ssize_t host_show_transport_mode(struct device *dev,
265 	struct device_attribute *attr, char *buf)
266 {
267 	struct ctlr_info *h;
268 	struct Scsi_Host *shost = class_to_shost(dev);
269 
270 	h = shost_to_hba(shost);
271 	return snprintf(buf, 20, "%s\n",
272 		h->transMethod & CFGTBL_Trans_Performant ?
273 			"performant" : "simple");
274 }
275 
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278 	0x324a103C, /* Smart Array P712m */
279 	0x324b103C, /* SmartArray P711m */
280 	0x3223103C, /* Smart Array P800 */
281 	0x3234103C, /* Smart Array P400 */
282 	0x3235103C, /* Smart Array P400i */
283 	0x3211103C, /* Smart Array E200i */
284 	0x3212103C, /* Smart Array E200 */
285 	0x3213103C, /* Smart Array E200i */
286 	0x3214103C, /* Smart Array E200i */
287 	0x3215103C, /* Smart Array E200i */
288 	0x3237103C, /* Smart Array E500 */
289 	0x323D103C, /* Smart Array P700m */
290 	0x409C0E11, /* Smart Array 6400 */
291 	0x409D0E11, /* Smart Array 6400 EM */
292 };
293 
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296 	/* Exclude 640x boards.  These are two pci devices in one slot
297 	 * which share a battery backed cache module.  One controls the
298 	 * cache, the other accesses the cache through the one that controls
299 	 * it.  If we reset the one controlling the cache, the other will
300 	 * likely not be happy.  Just forbid resetting this conjoined mess.
301 	 * The 640x isn't really supported by hpsa anyway.
302 	 */
303 	0x409C0E11, /* Smart Array 6400 */
304 	0x409D0E11, /* Smart Array 6400 EM */
305 };
306 
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309 	int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312 		if (unresettable_controller[i] == board_id)
313 			return 0;
314 	return 1;
315 }
316 
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322 		if (soft_unresettable_controller[i] == board_id)
323 			return 0;
324 	return 1;
325 }
326 
327 static int ctlr_is_resettable(u32 board_id)
328 {
329 	return ctlr_is_hard_resettable(board_id) ||
330 		ctlr_is_soft_resettable(board_id);
331 }
332 
333 static ssize_t host_show_resettable(struct device *dev,
334 	struct device_attribute *attr, char *buf)
335 {
336 	struct ctlr_info *h;
337 	struct Scsi_Host *shost = class_to_shost(dev);
338 
339 	h = shost_to_hba(shost);
340 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342 
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345 	return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347 
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349 	"UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352 
353 static ssize_t raid_level_show(struct device *dev,
354 	     struct device_attribute *attr, char *buf)
355 {
356 	ssize_t l = 0;
357 	unsigned char rlevel;
358 	struct ctlr_info *h;
359 	struct scsi_device *sdev;
360 	struct hpsa_scsi_dev_t *hdev;
361 	unsigned long flags;
362 
363 	sdev = to_scsi_device(dev);
364 	h = sdev_to_hba(sdev);
365 	spin_lock_irqsave(&h->lock, flags);
366 	hdev = sdev->hostdata;
367 	if (!hdev) {
368 		spin_unlock_irqrestore(&h->lock, flags);
369 		return -ENODEV;
370 	}
371 
372 	/* Is this even a logical drive? */
373 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374 		spin_unlock_irqrestore(&h->lock, flags);
375 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
376 		return l;
377 	}
378 
379 	rlevel = hdev->raid_level;
380 	spin_unlock_irqrestore(&h->lock, flags);
381 	if (rlevel > RAID_UNKNOWN)
382 		rlevel = RAID_UNKNOWN;
383 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384 	return l;
385 }
386 
387 static ssize_t lunid_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	struct ctlr_info *h;
391 	struct scsi_device *sdev;
392 	struct hpsa_scsi_dev_t *hdev;
393 	unsigned long flags;
394 	unsigned char lunid[8];
395 
396 	sdev = to_scsi_device(dev);
397 	h = sdev_to_hba(sdev);
398 	spin_lock_irqsave(&h->lock, flags);
399 	hdev = sdev->hostdata;
400 	if (!hdev) {
401 		spin_unlock_irqrestore(&h->lock, flags);
402 		return -ENODEV;
403 	}
404 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405 	spin_unlock_irqrestore(&h->lock, flags);
406 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407 		lunid[0], lunid[1], lunid[2], lunid[3],
408 		lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410 
411 static ssize_t unique_id_show(struct device *dev,
412 	     struct device_attribute *attr, char *buf)
413 {
414 	struct ctlr_info *h;
415 	struct scsi_device *sdev;
416 	struct hpsa_scsi_dev_t *hdev;
417 	unsigned long flags;
418 	unsigned char sn[16];
419 
420 	sdev = to_scsi_device(dev);
421 	h = sdev_to_hba(sdev);
422 	spin_lock_irqsave(&h->lock, flags);
423 	hdev = sdev->hostdata;
424 	if (!hdev) {
425 		spin_unlock_irqrestore(&h->lock, flags);
426 		return -ENODEV;
427 	}
428 	memcpy(sn, hdev->device_id, sizeof(sn));
429 	spin_unlock_irqrestore(&h->lock, flags);
430 	return snprintf(buf, 16 * 2 + 2,
431 			"%02X%02X%02X%02X%02X%02X%02X%02X"
432 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
433 			sn[0], sn[1], sn[2], sn[3],
434 			sn[4], sn[5], sn[6], sn[7],
435 			sn[8], sn[9], sn[10], sn[11],
436 			sn[12], sn[13], sn[14], sn[15]);
437 }
438 
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444 	host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446 	host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448 	host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450 	host_show_resettable, NULL);
451 
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453 	&dev_attr_raid_level,
454 	&dev_attr_lunid,
455 	&dev_attr_unique_id,
456 	NULL,
457 };
458 
459 static struct device_attribute *hpsa_shost_attrs[] = {
460 	&dev_attr_rescan,
461 	&dev_attr_firmware_revision,
462 	&dev_attr_commands_outstanding,
463 	&dev_attr_transport_mode,
464 	&dev_attr_resettable,
465 	NULL,
466 };
467 
468 static struct scsi_host_template hpsa_driver_template = {
469 	.module			= THIS_MODULE,
470 	.name			= "hpsa",
471 	.proc_name		= "hpsa",
472 	.queuecommand		= hpsa_scsi_queue_command,
473 	.scan_start		= hpsa_scan_start,
474 	.scan_finished		= hpsa_scan_finished,
475 	.change_queue_depth	= hpsa_change_queue_depth,
476 	.this_id		= -1,
477 	.use_clustering		= ENABLE_CLUSTERING,
478 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
479 	.ioctl			= hpsa_ioctl,
480 	.slave_alloc		= hpsa_slave_alloc,
481 	.slave_destroy		= hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483 	.compat_ioctl		= hpsa_compat_ioctl,
484 #endif
485 	.sdev_attrs = hpsa_sdev_attrs,
486 	.shost_attrs = hpsa_shost_attrs,
487 };
488 
489 
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493 	list_add_tail(&c->list, list);
494 }
495 
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498 	u32 a;
499 
500 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501 		return h->access.command_completed(h);
502 
503 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505 		(h->reply_pool_head)++;
506 		h->commands_outstanding--;
507 	} else {
508 		a = FIFO_EMPTY;
509 	}
510 	/* Check for wraparound */
511 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512 		h->reply_pool_head = h->reply_pool;
513 		h->reply_pool_wraparound ^= 1;
514 	}
515 	return a;
516 }
517 
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
525 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527 
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529 	struct CommandList *c)
530 {
531 	unsigned long flags;
532 
533 	set_performant_mode(h, c);
534 	spin_lock_irqsave(&h->lock, flags);
535 	addQ(&h->reqQ, c);
536 	h->Qdepth++;
537 	start_io(h);
538 	spin_unlock_irqrestore(&h->lock, flags);
539 }
540 
541 static inline void removeQ(struct CommandList *c)
542 {
543 	if (WARN_ON(list_empty(&c->list)))
544 		return;
545 	list_del_init(&c->list);
546 }
547 
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552 
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555 	if (!h->hba_inquiry_data)
556 		return 0;
557 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
558 		return 1;
559 	return 0;
560 }
561 
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563 	unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565 	/* finds an unused bus, target, lun for a new physical device
566 	 * assumes h->devlock is held
567 	 */
568 	int i, found = 0;
569 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570 
571 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572 
573 	for (i = 0; i < h->ndevices; i++) {
574 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575 			set_bit(h->dev[i]->target, lun_taken);
576 	}
577 
578 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579 		if (!test_bit(i, lun_taken)) {
580 			/* *bus = 1; */
581 			*target = i;
582 			*lun = 0;
583 			found = 1;
584 			break;
585 		}
586 	}
587 	return !found;
588 }
589 
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592 		struct hpsa_scsi_dev_t *device,
593 		struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595 	/* assumes h->devlock is held */
596 	int n = h->ndevices;
597 	int i;
598 	unsigned char addr1[8], addr2[8];
599 	struct hpsa_scsi_dev_t *sd;
600 
601 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602 		dev_err(&h->pdev->dev, "too many devices, some will be "
603 			"inaccessible.\n");
604 		return -1;
605 	}
606 
607 	/* physical devices do not have lun or target assigned until now. */
608 	if (device->lun != -1)
609 		/* Logical device, lun is already assigned. */
610 		goto lun_assigned;
611 
612 	/* If this device a non-zero lun of a multi-lun device
613 	 * byte 4 of the 8-byte LUN addr will contain the logical
614 	 * unit no, zero otherise.
615 	 */
616 	if (device->scsi3addr[4] == 0) {
617 		/* This is not a non-zero lun of a multi-lun device */
618 		if (hpsa_find_target_lun(h, device->scsi3addr,
619 			device->bus, &device->target, &device->lun) != 0)
620 			return -1;
621 		goto lun_assigned;
622 	}
623 
624 	/* This is a non-zero lun of a multi-lun device.
625 	 * Search through our list and find the device which
626 	 * has the same 8 byte LUN address, excepting byte 4.
627 	 * Assign the same bus and target for this new LUN.
628 	 * Use the logical unit number from the firmware.
629 	 */
630 	memcpy(addr1, device->scsi3addr, 8);
631 	addr1[4] = 0;
632 	for (i = 0; i < n; i++) {
633 		sd = h->dev[i];
634 		memcpy(addr2, sd->scsi3addr, 8);
635 		addr2[4] = 0;
636 		/* differ only in byte 4? */
637 		if (memcmp(addr1, addr2, 8) == 0) {
638 			device->bus = sd->bus;
639 			device->target = sd->target;
640 			device->lun = device->scsi3addr[4];
641 			break;
642 		}
643 	}
644 	if (device->lun == -1) {
645 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646 			" suspect firmware bug or unsupported hardware "
647 			"configuration.\n");
648 			return -1;
649 	}
650 
651 lun_assigned:
652 
653 	h->dev[n] = device;
654 	h->ndevices++;
655 	added[*nadded] = device;
656 	(*nadded)++;
657 
658 	/* initially, (before registering with scsi layer) we don't
659 	 * know our hostno and we don't want to print anything first
660 	 * time anyway (the scsi layer's inquiries will show that info)
661 	 */
662 	/* if (hostno != -1) */
663 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664 			scsi_device_type(device->devtype), hostno,
665 			device->bus, device->target, device->lun);
666 	return 0;
667 }
668 
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671 	int entry, struct hpsa_scsi_dev_t *new_entry,
672 	struct hpsa_scsi_dev_t *added[], int *nadded,
673 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675 	/* assumes h->devlock is held */
676 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677 	removed[*nremoved] = h->dev[entry];
678 	(*nremoved)++;
679 
680 	/*
681 	 * New physical devices won't have target/lun assigned yet
682 	 * so we need to preserve the values in the slot we are replacing.
683 	 */
684 	if (new_entry->target == -1) {
685 		new_entry->target = h->dev[entry]->target;
686 		new_entry->lun = h->dev[entry]->lun;
687 	}
688 
689 	h->dev[entry] = new_entry;
690 	added[*nadded] = new_entry;
691 	(*nadded)++;
692 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
693 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
694 			new_entry->target, new_entry->lun);
695 }
696 
697 /* Remove an entry from h->dev[] array. */
698 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
699 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
700 {
701 	/* assumes h->devlock is held */
702 	int i;
703 	struct hpsa_scsi_dev_t *sd;
704 
705 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
706 
707 	sd = h->dev[entry];
708 	removed[*nremoved] = h->dev[entry];
709 	(*nremoved)++;
710 
711 	for (i = entry; i < h->ndevices-1; i++)
712 		h->dev[i] = h->dev[i+1];
713 	h->ndevices--;
714 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
715 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
716 		sd->lun);
717 }
718 
719 #define SCSI3ADDR_EQ(a, b) ( \
720 	(a)[7] == (b)[7] && \
721 	(a)[6] == (b)[6] && \
722 	(a)[5] == (b)[5] && \
723 	(a)[4] == (b)[4] && \
724 	(a)[3] == (b)[3] && \
725 	(a)[2] == (b)[2] && \
726 	(a)[1] == (b)[1] && \
727 	(a)[0] == (b)[0])
728 
729 static void fixup_botched_add(struct ctlr_info *h,
730 	struct hpsa_scsi_dev_t *added)
731 {
732 	/* called when scsi_add_device fails in order to re-adjust
733 	 * h->dev[] to match the mid layer's view.
734 	 */
735 	unsigned long flags;
736 	int i, j;
737 
738 	spin_lock_irqsave(&h->lock, flags);
739 	for (i = 0; i < h->ndevices; i++) {
740 		if (h->dev[i] == added) {
741 			for (j = i; j < h->ndevices-1; j++)
742 				h->dev[j] = h->dev[j+1];
743 			h->ndevices--;
744 			break;
745 		}
746 	}
747 	spin_unlock_irqrestore(&h->lock, flags);
748 	kfree(added);
749 }
750 
751 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
752 	struct hpsa_scsi_dev_t *dev2)
753 {
754 	/* we compare everything except lun and target as these
755 	 * are not yet assigned.  Compare parts likely
756 	 * to differ first
757 	 */
758 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
759 		sizeof(dev1->scsi3addr)) != 0)
760 		return 0;
761 	if (memcmp(dev1->device_id, dev2->device_id,
762 		sizeof(dev1->device_id)) != 0)
763 		return 0;
764 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
765 		return 0;
766 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
767 		return 0;
768 	if (dev1->devtype != dev2->devtype)
769 		return 0;
770 	if (dev1->bus != dev2->bus)
771 		return 0;
772 	return 1;
773 }
774 
775 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
776  * and return needle location in *index.  If scsi3addr matches, but not
777  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
778  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
779  */
780 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
781 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
782 	int *index)
783 {
784 	int i;
785 #define DEVICE_NOT_FOUND 0
786 #define DEVICE_CHANGED 1
787 #define DEVICE_SAME 2
788 	for (i = 0; i < haystack_size; i++) {
789 		if (haystack[i] == NULL) /* previously removed. */
790 			continue;
791 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
792 			*index = i;
793 			if (device_is_the_same(needle, haystack[i]))
794 				return DEVICE_SAME;
795 			else
796 				return DEVICE_CHANGED;
797 		}
798 	}
799 	*index = -1;
800 	return DEVICE_NOT_FOUND;
801 }
802 
803 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
804 	struct hpsa_scsi_dev_t *sd[], int nsds)
805 {
806 	/* sd contains scsi3 addresses and devtypes, and inquiry
807 	 * data.  This function takes what's in sd to be the current
808 	 * reality and updates h->dev[] to reflect that reality.
809 	 */
810 	int i, entry, device_change, changes = 0;
811 	struct hpsa_scsi_dev_t *csd;
812 	unsigned long flags;
813 	struct hpsa_scsi_dev_t **added, **removed;
814 	int nadded, nremoved;
815 	struct Scsi_Host *sh = NULL;
816 
817 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
818 		GFP_KERNEL);
819 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
820 		GFP_KERNEL);
821 
822 	if (!added || !removed) {
823 		dev_warn(&h->pdev->dev, "out of memory in "
824 			"adjust_hpsa_scsi_table\n");
825 		goto free_and_out;
826 	}
827 
828 	spin_lock_irqsave(&h->devlock, flags);
829 
830 	/* find any devices in h->dev[] that are not in
831 	 * sd[] and remove them from h->dev[], and for any
832 	 * devices which have changed, remove the old device
833 	 * info and add the new device info.
834 	 */
835 	i = 0;
836 	nremoved = 0;
837 	nadded = 0;
838 	while (i < h->ndevices) {
839 		csd = h->dev[i];
840 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
841 		if (device_change == DEVICE_NOT_FOUND) {
842 			changes++;
843 			hpsa_scsi_remove_entry(h, hostno, i,
844 				removed, &nremoved);
845 			continue; /* remove ^^^, hence i not incremented */
846 		} else if (device_change == DEVICE_CHANGED) {
847 			changes++;
848 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
849 				added, &nadded, removed, &nremoved);
850 			/* Set it to NULL to prevent it from being freed
851 			 * at the bottom of hpsa_update_scsi_devices()
852 			 */
853 			sd[entry] = NULL;
854 		}
855 		i++;
856 	}
857 
858 	/* Now, make sure every device listed in sd[] is also
859 	 * listed in h->dev[], adding them if they aren't found
860 	 */
861 
862 	for (i = 0; i < nsds; i++) {
863 		if (!sd[i]) /* if already added above. */
864 			continue;
865 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
866 					h->ndevices, &entry);
867 		if (device_change == DEVICE_NOT_FOUND) {
868 			changes++;
869 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
870 				added, &nadded) != 0)
871 				break;
872 			sd[i] = NULL; /* prevent from being freed later. */
873 		} else if (device_change == DEVICE_CHANGED) {
874 			/* should never happen... */
875 			changes++;
876 			dev_warn(&h->pdev->dev,
877 				"device unexpectedly changed.\n");
878 			/* but if it does happen, we just ignore that device */
879 		}
880 	}
881 	spin_unlock_irqrestore(&h->devlock, flags);
882 
883 	/* Don't notify scsi mid layer of any changes the first time through
884 	 * (or if there are no changes) scsi_scan_host will do it later the
885 	 * first time through.
886 	 */
887 	if (hostno == -1 || !changes)
888 		goto free_and_out;
889 
890 	sh = h->scsi_host;
891 	/* Notify scsi mid layer of any removed devices */
892 	for (i = 0; i < nremoved; i++) {
893 		struct scsi_device *sdev =
894 			scsi_device_lookup(sh, removed[i]->bus,
895 				removed[i]->target, removed[i]->lun);
896 		if (sdev != NULL) {
897 			scsi_remove_device(sdev);
898 			scsi_device_put(sdev);
899 		} else {
900 			/* We don't expect to get here.
901 			 * future cmds to this device will get selection
902 			 * timeout as if the device was gone.
903 			 */
904 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
905 				" for removal.", hostno, removed[i]->bus,
906 				removed[i]->target, removed[i]->lun);
907 		}
908 		kfree(removed[i]);
909 		removed[i] = NULL;
910 	}
911 
912 	/* Notify scsi mid layer of any added devices */
913 	for (i = 0; i < nadded; i++) {
914 		if (scsi_add_device(sh, added[i]->bus,
915 			added[i]->target, added[i]->lun) == 0)
916 			continue;
917 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
918 			"device not added.\n", hostno, added[i]->bus,
919 			added[i]->target, added[i]->lun);
920 		/* now we have to remove it from h->dev,
921 		 * since it didn't get added to scsi mid layer
922 		 */
923 		fixup_botched_add(h, added[i]);
924 	}
925 
926 free_and_out:
927 	kfree(added);
928 	kfree(removed);
929 }
930 
931 /*
932  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
933  * Assume's h->devlock is held.
934  */
935 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
936 	int bus, int target, int lun)
937 {
938 	int i;
939 	struct hpsa_scsi_dev_t *sd;
940 
941 	for (i = 0; i < h->ndevices; i++) {
942 		sd = h->dev[i];
943 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
944 			return sd;
945 	}
946 	return NULL;
947 }
948 
949 /* link sdev->hostdata to our per-device structure. */
950 static int hpsa_slave_alloc(struct scsi_device *sdev)
951 {
952 	struct hpsa_scsi_dev_t *sd;
953 	unsigned long flags;
954 	struct ctlr_info *h;
955 
956 	h = sdev_to_hba(sdev);
957 	spin_lock_irqsave(&h->devlock, flags);
958 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
959 		sdev_id(sdev), sdev->lun);
960 	if (sd != NULL)
961 		sdev->hostdata = sd;
962 	spin_unlock_irqrestore(&h->devlock, flags);
963 	return 0;
964 }
965 
966 static void hpsa_slave_destroy(struct scsi_device *sdev)
967 {
968 	/* nothing to do. */
969 }
970 
971 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
972 {
973 	int i;
974 
975 	if (!h->cmd_sg_list)
976 		return;
977 	for (i = 0; i < h->nr_cmds; i++) {
978 		kfree(h->cmd_sg_list[i]);
979 		h->cmd_sg_list[i] = NULL;
980 	}
981 	kfree(h->cmd_sg_list);
982 	h->cmd_sg_list = NULL;
983 }
984 
985 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
986 {
987 	int i;
988 
989 	if (h->chainsize <= 0)
990 		return 0;
991 
992 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
993 				GFP_KERNEL);
994 	if (!h->cmd_sg_list)
995 		return -ENOMEM;
996 	for (i = 0; i < h->nr_cmds; i++) {
997 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
998 						h->chainsize, GFP_KERNEL);
999 		if (!h->cmd_sg_list[i])
1000 			goto clean;
1001 	}
1002 	return 0;
1003 
1004 clean:
1005 	hpsa_free_sg_chain_blocks(h);
1006 	return -ENOMEM;
1007 }
1008 
1009 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1010 	struct CommandList *c)
1011 {
1012 	struct SGDescriptor *chain_sg, *chain_block;
1013 	u64 temp64;
1014 
1015 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1016 	chain_block = h->cmd_sg_list[c->cmdindex];
1017 	chain_sg->Ext = HPSA_SG_CHAIN;
1018 	chain_sg->Len = sizeof(*chain_sg) *
1019 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1020 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1021 				PCI_DMA_TODEVICE);
1022 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1023 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1024 }
1025 
1026 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1027 	struct CommandList *c)
1028 {
1029 	struct SGDescriptor *chain_sg;
1030 	union u64bit temp64;
1031 
1032 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1033 		return;
1034 
1035 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1036 	temp64.val32.lower = chain_sg->Addr.lower;
1037 	temp64.val32.upper = chain_sg->Addr.upper;
1038 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1039 }
1040 
1041 static void complete_scsi_command(struct CommandList *cp)
1042 {
1043 	struct scsi_cmnd *cmd;
1044 	struct ctlr_info *h;
1045 	struct ErrorInfo *ei;
1046 
1047 	unsigned char sense_key;
1048 	unsigned char asc;      /* additional sense code */
1049 	unsigned char ascq;     /* additional sense code qualifier */
1050 	unsigned long sense_data_size;
1051 
1052 	ei = cp->err_info;
1053 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1054 	h = cp->h;
1055 
1056 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1057 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1058 		hpsa_unmap_sg_chain_block(h, cp);
1059 
1060 	cmd->result = (DID_OK << 16); 		/* host byte */
1061 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1062 	cmd->result |= ei->ScsiStatus;
1063 
1064 	/* copy the sense data whether we need to or not. */
1065 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1066 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1067 	else
1068 		sense_data_size = sizeof(ei->SenseInfo);
1069 	if (ei->SenseLen < sense_data_size)
1070 		sense_data_size = ei->SenseLen;
1071 
1072 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1073 	scsi_set_resid(cmd, ei->ResidualCnt);
1074 
1075 	if (ei->CommandStatus == 0) {
1076 		cmd->scsi_done(cmd);
1077 		cmd_free(h, cp);
1078 		return;
1079 	}
1080 
1081 	/* an error has occurred */
1082 	switch (ei->CommandStatus) {
1083 
1084 	case CMD_TARGET_STATUS:
1085 		if (ei->ScsiStatus) {
1086 			/* Get sense key */
1087 			sense_key = 0xf & ei->SenseInfo[2];
1088 			/* Get additional sense code */
1089 			asc = ei->SenseInfo[12];
1090 			/* Get addition sense code qualifier */
1091 			ascq = ei->SenseInfo[13];
1092 		}
1093 
1094 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1095 			if (check_for_unit_attention(h, cp)) {
1096 				cmd->result = DID_SOFT_ERROR << 16;
1097 				break;
1098 			}
1099 			if (sense_key == ILLEGAL_REQUEST) {
1100 				/*
1101 				 * SCSI REPORT_LUNS is commonly unsupported on
1102 				 * Smart Array.  Suppress noisy complaint.
1103 				 */
1104 				if (cp->Request.CDB[0] == REPORT_LUNS)
1105 					break;
1106 
1107 				/* If ASC/ASCQ indicate Logical Unit
1108 				 * Not Supported condition,
1109 				 */
1110 				if ((asc == 0x25) && (ascq == 0x0)) {
1111 					dev_warn(&h->pdev->dev, "cp %p "
1112 						"has check condition\n", cp);
1113 					break;
1114 				}
1115 			}
1116 
1117 			if (sense_key == NOT_READY) {
1118 				/* If Sense is Not Ready, Logical Unit
1119 				 * Not ready, Manual Intervention
1120 				 * required
1121 				 */
1122 				if ((asc == 0x04) && (ascq == 0x03)) {
1123 					dev_warn(&h->pdev->dev, "cp %p "
1124 						"has check condition: unit "
1125 						"not ready, manual "
1126 						"intervention required\n", cp);
1127 					break;
1128 				}
1129 			}
1130 			if (sense_key == ABORTED_COMMAND) {
1131 				/* Aborted command is retryable */
1132 				dev_warn(&h->pdev->dev, "cp %p "
1133 					"has check condition: aborted command: "
1134 					"ASC: 0x%x, ASCQ: 0x%x\n",
1135 					cp, asc, ascq);
1136 				cmd->result = DID_SOFT_ERROR << 16;
1137 				break;
1138 			}
1139 			/* Must be some other type of check condition */
1140 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1141 					"unknown type: "
1142 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1143 					"Returning result: 0x%x, "
1144 					"cmd=[%02x %02x %02x %02x %02x "
1145 					"%02x %02x %02x %02x %02x %02x "
1146 					"%02x %02x %02x %02x %02x]\n",
1147 					cp, sense_key, asc, ascq,
1148 					cmd->result,
1149 					cmd->cmnd[0], cmd->cmnd[1],
1150 					cmd->cmnd[2], cmd->cmnd[3],
1151 					cmd->cmnd[4], cmd->cmnd[5],
1152 					cmd->cmnd[6], cmd->cmnd[7],
1153 					cmd->cmnd[8], cmd->cmnd[9],
1154 					cmd->cmnd[10], cmd->cmnd[11],
1155 					cmd->cmnd[12], cmd->cmnd[13],
1156 					cmd->cmnd[14], cmd->cmnd[15]);
1157 			break;
1158 		}
1159 
1160 
1161 		/* Problem was not a check condition
1162 		 * Pass it up to the upper layers...
1163 		 */
1164 		if (ei->ScsiStatus) {
1165 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1166 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1167 				"Returning result: 0x%x\n",
1168 				cp, ei->ScsiStatus,
1169 				sense_key, asc, ascq,
1170 				cmd->result);
1171 		} else {  /* scsi status is zero??? How??? */
1172 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1173 				"Returning no connection.\n", cp),
1174 
1175 			/* Ordinarily, this case should never happen,
1176 			 * but there is a bug in some released firmware
1177 			 * revisions that allows it to happen if, for
1178 			 * example, a 4100 backplane loses power and
1179 			 * the tape drive is in it.  We assume that
1180 			 * it's a fatal error of some kind because we
1181 			 * can't show that it wasn't. We will make it
1182 			 * look like selection timeout since that is
1183 			 * the most common reason for this to occur,
1184 			 * and it's severe enough.
1185 			 */
1186 
1187 			cmd->result = DID_NO_CONNECT << 16;
1188 		}
1189 		break;
1190 
1191 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1192 		break;
1193 	case CMD_DATA_OVERRUN:
1194 		dev_warn(&h->pdev->dev, "cp %p has"
1195 			" completed with data overrun "
1196 			"reported\n", cp);
1197 		break;
1198 	case CMD_INVALID: {
1199 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1200 		print_cmd(cp); */
1201 		/* We get CMD_INVALID if you address a non-existent device
1202 		 * instead of a selection timeout (no response).  You will
1203 		 * see this if you yank out a drive, then try to access it.
1204 		 * This is kind of a shame because it means that any other
1205 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1206 		 * missing target. */
1207 		cmd->result = DID_NO_CONNECT << 16;
1208 	}
1209 		break;
1210 	case CMD_PROTOCOL_ERR:
1211 		dev_warn(&h->pdev->dev, "cp %p has "
1212 			"protocol error \n", cp);
1213 		break;
1214 	case CMD_HARDWARE_ERR:
1215 		cmd->result = DID_ERROR << 16;
1216 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1217 		break;
1218 	case CMD_CONNECTION_LOST:
1219 		cmd->result = DID_ERROR << 16;
1220 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1221 		break;
1222 	case CMD_ABORTED:
1223 		cmd->result = DID_ABORT << 16;
1224 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1225 				cp, ei->ScsiStatus);
1226 		break;
1227 	case CMD_ABORT_FAILED:
1228 		cmd->result = DID_ERROR << 16;
1229 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1230 		break;
1231 	case CMD_UNSOLICITED_ABORT:
1232 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1233 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1234 			"abort\n", cp);
1235 		break;
1236 	case CMD_TIMEOUT:
1237 		cmd->result = DID_TIME_OUT << 16;
1238 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1239 		break;
1240 	case CMD_UNABORTABLE:
1241 		cmd->result = DID_ERROR << 16;
1242 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1243 		break;
1244 	default:
1245 		cmd->result = DID_ERROR << 16;
1246 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1247 				cp, ei->CommandStatus);
1248 	}
1249 	cmd->scsi_done(cmd);
1250 	cmd_free(h, cp);
1251 }
1252 
1253 static int hpsa_scsi_detect(struct ctlr_info *h)
1254 {
1255 	struct Scsi_Host *sh;
1256 	int error;
1257 
1258 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1259 	if (sh == NULL)
1260 		goto fail;
1261 
1262 	sh->io_port = 0;
1263 	sh->n_io_port = 0;
1264 	sh->this_id = -1;
1265 	sh->max_channel = 3;
1266 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1267 	sh->max_lun = HPSA_MAX_LUN;
1268 	sh->max_id = HPSA_MAX_LUN;
1269 	sh->can_queue = h->nr_cmds;
1270 	sh->cmd_per_lun = h->nr_cmds;
1271 	sh->sg_tablesize = h->maxsgentries;
1272 	h->scsi_host = sh;
1273 	sh->hostdata[0] = (unsigned long) h;
1274 	sh->irq = h->intr[h->intr_mode];
1275 	sh->unique_id = sh->irq;
1276 	error = scsi_add_host(sh, &h->pdev->dev);
1277 	if (error)
1278 		goto fail_host_put;
1279 	scsi_scan_host(sh);
1280 	return 0;
1281 
1282  fail_host_put:
1283 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1284 		" failed for controller %d\n", h->ctlr);
1285 	scsi_host_put(sh);
1286 	return error;
1287  fail:
1288 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1289 		" failed for controller %d\n", h->ctlr);
1290 	return -ENOMEM;
1291 }
1292 
1293 static void hpsa_pci_unmap(struct pci_dev *pdev,
1294 	struct CommandList *c, int sg_used, int data_direction)
1295 {
1296 	int i;
1297 	union u64bit addr64;
1298 
1299 	for (i = 0; i < sg_used; i++) {
1300 		addr64.val32.lower = c->SG[i].Addr.lower;
1301 		addr64.val32.upper = c->SG[i].Addr.upper;
1302 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1303 			data_direction);
1304 	}
1305 }
1306 
1307 static void hpsa_map_one(struct pci_dev *pdev,
1308 		struct CommandList *cp,
1309 		unsigned char *buf,
1310 		size_t buflen,
1311 		int data_direction)
1312 {
1313 	u64 addr64;
1314 
1315 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1316 		cp->Header.SGList = 0;
1317 		cp->Header.SGTotal = 0;
1318 		return;
1319 	}
1320 
1321 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1322 	cp->SG[0].Addr.lower =
1323 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1324 	cp->SG[0].Addr.upper =
1325 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1326 	cp->SG[0].Len = buflen;
1327 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1328 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1329 }
1330 
1331 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1332 	struct CommandList *c)
1333 {
1334 	DECLARE_COMPLETION_ONSTACK(wait);
1335 
1336 	c->waiting = &wait;
1337 	enqueue_cmd_and_start_io(h, c);
1338 	wait_for_completion(&wait);
1339 }
1340 
1341 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1342 	struct CommandList *c, int data_direction)
1343 {
1344 	int retry_count = 0;
1345 
1346 	do {
1347 		memset(c->err_info, 0, sizeof(*c->err_info));
1348 		hpsa_scsi_do_simple_cmd_core(h, c);
1349 		retry_count++;
1350 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1351 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1352 }
1353 
1354 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1355 {
1356 	struct ErrorInfo *ei;
1357 	struct device *d = &cp->h->pdev->dev;
1358 
1359 	ei = cp->err_info;
1360 	switch (ei->CommandStatus) {
1361 	case CMD_TARGET_STATUS:
1362 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1363 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1364 				ei->ScsiStatus);
1365 		if (ei->ScsiStatus == 0)
1366 			dev_warn(d, "SCSI status is abnormally zero.  "
1367 			"(probably indicates selection timeout "
1368 			"reported incorrectly due to a known "
1369 			"firmware bug, circa July, 2001.)\n");
1370 		break;
1371 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1372 			dev_info(d, "UNDERRUN\n");
1373 		break;
1374 	case CMD_DATA_OVERRUN:
1375 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1376 		break;
1377 	case CMD_INVALID: {
1378 		/* controller unfortunately reports SCSI passthru's
1379 		 * to non-existent targets as invalid commands.
1380 		 */
1381 		dev_warn(d, "cp %p is reported invalid (probably means "
1382 			"target device no longer present)\n", cp);
1383 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1384 		print_cmd(cp);  */
1385 		}
1386 		break;
1387 	case CMD_PROTOCOL_ERR:
1388 		dev_warn(d, "cp %p has protocol error \n", cp);
1389 		break;
1390 	case CMD_HARDWARE_ERR:
1391 		/* cmd->result = DID_ERROR << 16; */
1392 		dev_warn(d, "cp %p had hardware error\n", cp);
1393 		break;
1394 	case CMD_CONNECTION_LOST:
1395 		dev_warn(d, "cp %p had connection lost\n", cp);
1396 		break;
1397 	case CMD_ABORTED:
1398 		dev_warn(d, "cp %p was aborted\n", cp);
1399 		break;
1400 	case CMD_ABORT_FAILED:
1401 		dev_warn(d, "cp %p reports abort failed\n", cp);
1402 		break;
1403 	case CMD_UNSOLICITED_ABORT:
1404 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1405 		break;
1406 	case CMD_TIMEOUT:
1407 		dev_warn(d, "cp %p timed out\n", cp);
1408 		break;
1409 	case CMD_UNABORTABLE:
1410 		dev_warn(d, "Command unabortable\n");
1411 		break;
1412 	default:
1413 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1414 				ei->CommandStatus);
1415 	}
1416 }
1417 
1418 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1419 			unsigned char page, unsigned char *buf,
1420 			unsigned char bufsize)
1421 {
1422 	int rc = IO_OK;
1423 	struct CommandList *c;
1424 	struct ErrorInfo *ei;
1425 
1426 	c = cmd_special_alloc(h);
1427 
1428 	if (c == NULL) {			/* trouble... */
1429 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1430 		return -ENOMEM;
1431 	}
1432 
1433 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1434 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1435 	ei = c->err_info;
1436 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1437 		hpsa_scsi_interpret_error(c);
1438 		rc = -1;
1439 	}
1440 	cmd_special_free(h, c);
1441 	return rc;
1442 }
1443 
1444 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1445 {
1446 	int rc = IO_OK;
1447 	struct CommandList *c;
1448 	struct ErrorInfo *ei;
1449 
1450 	c = cmd_special_alloc(h);
1451 
1452 	if (c == NULL) {			/* trouble... */
1453 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1454 		return -ENOMEM;
1455 	}
1456 
1457 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1458 	hpsa_scsi_do_simple_cmd_core(h, c);
1459 	/* no unmap needed here because no data xfer. */
1460 
1461 	ei = c->err_info;
1462 	if (ei->CommandStatus != 0) {
1463 		hpsa_scsi_interpret_error(c);
1464 		rc = -1;
1465 	}
1466 	cmd_special_free(h, c);
1467 	return rc;
1468 }
1469 
1470 static void hpsa_get_raid_level(struct ctlr_info *h,
1471 	unsigned char *scsi3addr, unsigned char *raid_level)
1472 {
1473 	int rc;
1474 	unsigned char *buf;
1475 
1476 	*raid_level = RAID_UNKNOWN;
1477 	buf = kzalloc(64, GFP_KERNEL);
1478 	if (!buf)
1479 		return;
1480 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1481 	if (rc == 0)
1482 		*raid_level = buf[8];
1483 	if (*raid_level > RAID_UNKNOWN)
1484 		*raid_level = RAID_UNKNOWN;
1485 	kfree(buf);
1486 	return;
1487 }
1488 
1489 /* Get the device id from inquiry page 0x83 */
1490 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1491 	unsigned char *device_id, int buflen)
1492 {
1493 	int rc;
1494 	unsigned char *buf;
1495 
1496 	if (buflen > 16)
1497 		buflen = 16;
1498 	buf = kzalloc(64, GFP_KERNEL);
1499 	if (!buf)
1500 		return -1;
1501 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1502 	if (rc == 0)
1503 		memcpy(device_id, &buf[8], buflen);
1504 	kfree(buf);
1505 	return rc != 0;
1506 }
1507 
1508 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1509 		struct ReportLUNdata *buf, int bufsize,
1510 		int extended_response)
1511 {
1512 	int rc = IO_OK;
1513 	struct CommandList *c;
1514 	unsigned char scsi3addr[8];
1515 	struct ErrorInfo *ei;
1516 
1517 	c = cmd_special_alloc(h);
1518 	if (c == NULL) {			/* trouble... */
1519 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1520 		return -1;
1521 	}
1522 	/* address the controller */
1523 	memset(scsi3addr, 0, sizeof(scsi3addr));
1524 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1525 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1526 	if (extended_response)
1527 		c->Request.CDB[1] = extended_response;
1528 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1529 	ei = c->err_info;
1530 	if (ei->CommandStatus != 0 &&
1531 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1532 		hpsa_scsi_interpret_error(c);
1533 		rc = -1;
1534 	}
1535 	cmd_special_free(h, c);
1536 	return rc;
1537 }
1538 
1539 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1540 		struct ReportLUNdata *buf,
1541 		int bufsize, int extended_response)
1542 {
1543 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1544 }
1545 
1546 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1547 		struct ReportLUNdata *buf, int bufsize)
1548 {
1549 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1550 }
1551 
1552 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1553 	int bus, int target, int lun)
1554 {
1555 	device->bus = bus;
1556 	device->target = target;
1557 	device->lun = lun;
1558 }
1559 
1560 static int hpsa_update_device_info(struct ctlr_info *h,
1561 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1562 	unsigned char *is_OBDR_device)
1563 {
1564 
1565 #define OBDR_SIG_OFFSET 43
1566 #define OBDR_TAPE_SIG "$DR-10"
1567 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1568 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1569 
1570 	unsigned char *inq_buff;
1571 	unsigned char *obdr_sig;
1572 
1573 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1574 	if (!inq_buff)
1575 		goto bail_out;
1576 
1577 	/* Do an inquiry to the device to see what it is. */
1578 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1579 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1580 		/* Inquiry failed (msg printed already) */
1581 		dev_err(&h->pdev->dev,
1582 			"hpsa_update_device_info: inquiry failed\n");
1583 		goto bail_out;
1584 	}
1585 
1586 	this_device->devtype = (inq_buff[0] & 0x1f);
1587 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1588 	memcpy(this_device->vendor, &inq_buff[8],
1589 		sizeof(this_device->vendor));
1590 	memcpy(this_device->model, &inq_buff[16],
1591 		sizeof(this_device->model));
1592 	memset(this_device->device_id, 0,
1593 		sizeof(this_device->device_id));
1594 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1595 		sizeof(this_device->device_id));
1596 
1597 	if (this_device->devtype == TYPE_DISK &&
1598 		is_logical_dev_addr_mode(scsi3addr))
1599 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1600 	else
1601 		this_device->raid_level = RAID_UNKNOWN;
1602 
1603 	if (is_OBDR_device) {
1604 		/* See if this is a One-Button-Disaster-Recovery device
1605 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1606 		 */
1607 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1608 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1609 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1610 						OBDR_SIG_LEN) == 0);
1611 	}
1612 
1613 	kfree(inq_buff);
1614 	return 0;
1615 
1616 bail_out:
1617 	kfree(inq_buff);
1618 	return 1;
1619 }
1620 
1621 static unsigned char *msa2xxx_model[] = {
1622 	"MSA2012",
1623 	"MSA2024",
1624 	"MSA2312",
1625 	"MSA2324",
1626 	"P2000 G3 SAS",
1627 	NULL,
1628 };
1629 
1630 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1631 {
1632 	int i;
1633 
1634 	for (i = 0; msa2xxx_model[i]; i++)
1635 		if (strncmp(device->model, msa2xxx_model[i],
1636 			strlen(msa2xxx_model[i])) == 0)
1637 			return 1;
1638 	return 0;
1639 }
1640 
1641 /* Helper function to assign bus, target, lun mapping of devices.
1642  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1643  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1644  * Logical drive target and lun are assigned at this time, but
1645  * physical device lun and target assignment are deferred (assigned
1646  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1647  */
1648 static void figure_bus_target_lun(struct ctlr_info *h,
1649 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1650 	struct hpsa_scsi_dev_t *device)
1651 {
1652 	u32 lunid;
1653 
1654 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1655 		/* logical device */
1656 		if (unlikely(is_scsi_rev_5(h))) {
1657 			/* p1210m, logical drives lun assignments
1658 			 * match SCSI REPORT LUNS data.
1659 			 */
1660 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1661 			*bus = 0;
1662 			*target = 0;
1663 			*lun = (lunid & 0x3fff) + 1;
1664 		} else {
1665 			/* not p1210m... */
1666 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1667 			if (is_msa2xxx(h, device)) {
1668 				/* msa2xxx way, put logicals on bus 1
1669 				 * and match target/lun numbers box
1670 				 * reports.
1671 				 */
1672 				*bus = 1;
1673 				*target = (lunid >> 16) & 0x3fff;
1674 				*lun = lunid & 0x00ff;
1675 			} else {
1676 				/* Traditional smart array way. */
1677 				*bus = 0;
1678 				*lun = 0;
1679 				*target = lunid & 0x3fff;
1680 			}
1681 		}
1682 	} else {
1683 		/* physical device */
1684 		if (is_hba_lunid(lunaddrbytes))
1685 			if (unlikely(is_scsi_rev_5(h))) {
1686 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1687 				*target = 0;
1688 				*lun = 0;
1689 				return;
1690 			} else
1691 				*bus = 3; /* traditional smartarray */
1692 		else
1693 			*bus = 2; /* physical disk */
1694 		*target = -1;
1695 		*lun = -1; /* we will fill these in later. */
1696 	}
1697 }
1698 
1699 /*
1700  * If there is no lun 0 on a target, linux won't find any devices.
1701  * For the MSA2xxx boxes, we have to manually detect the enclosure
1702  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1703  * it for some reason.  *tmpdevice is the target we're adding,
1704  * this_device is a pointer into the current element of currentsd[]
1705  * that we're building up in update_scsi_devices(), below.
1706  * lunzerobits is a bitmap that tracks which targets already have a
1707  * lun 0 assigned.
1708  * Returns 1 if an enclosure was added, 0 if not.
1709  */
1710 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1711 	struct hpsa_scsi_dev_t *tmpdevice,
1712 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1713 	int bus, int target, int lun, unsigned long lunzerobits[],
1714 	int *nmsa2xxx_enclosures)
1715 {
1716 	unsigned char scsi3addr[8];
1717 
1718 	if (test_bit(target, lunzerobits))
1719 		return 0; /* There is already a lun 0 on this target. */
1720 
1721 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1722 		return 0; /* It's the logical targets that may lack lun 0. */
1723 
1724 	if (!is_msa2xxx(h, tmpdevice))
1725 		return 0; /* It's only the MSA2xxx that have this problem. */
1726 
1727 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1728 		return 0;
1729 
1730 	memset(scsi3addr, 0, 8);
1731 	scsi3addr[3] = target;
1732 	if (is_hba_lunid(scsi3addr))
1733 		return 0; /* Don't add the RAID controller here. */
1734 
1735 	if (is_scsi_rev_5(h))
1736 		return 0; /* p1210m doesn't need to do this. */
1737 
1738 #define MAX_MSA2XXX_ENCLOSURES 32
1739 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1740 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1741 			"enclosures exceeded.  Check your hardware "
1742 			"configuration.");
1743 		return 0;
1744 	}
1745 
1746 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1747 		return 0;
1748 	(*nmsa2xxx_enclosures)++;
1749 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1750 	set_bit(target, lunzerobits);
1751 	return 1;
1752 }
1753 
1754 /*
1755  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1756  * logdev.  The number of luns in physdev and logdev are returned in
1757  * *nphysicals and *nlogicals, respectively.
1758  * Returns 0 on success, -1 otherwise.
1759  */
1760 static int hpsa_gather_lun_info(struct ctlr_info *h,
1761 	int reportlunsize,
1762 	struct ReportLUNdata *physdev, u32 *nphysicals,
1763 	struct ReportLUNdata *logdev, u32 *nlogicals)
1764 {
1765 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1766 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1767 		return -1;
1768 	}
1769 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1770 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1771 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1772 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1773 			*nphysicals - HPSA_MAX_PHYS_LUN);
1774 		*nphysicals = HPSA_MAX_PHYS_LUN;
1775 	}
1776 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1777 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1778 		return -1;
1779 	}
1780 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1781 	/* Reject Logicals in excess of our max capability. */
1782 	if (*nlogicals > HPSA_MAX_LUN) {
1783 		dev_warn(&h->pdev->dev,
1784 			"maximum logical LUNs (%d) exceeded.  "
1785 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1786 			*nlogicals - HPSA_MAX_LUN);
1787 			*nlogicals = HPSA_MAX_LUN;
1788 	}
1789 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1790 		dev_warn(&h->pdev->dev,
1791 			"maximum logical + physical LUNs (%d) exceeded. "
1792 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1794 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1795 	}
1796 	return 0;
1797 }
1798 
1799 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1800 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1801 	struct ReportLUNdata *logdev_list)
1802 {
1803 	/* Helper function, figure out where the LUN ID info is coming from
1804 	 * given index i, lists of physical and logical devices, where in
1805 	 * the list the raid controller is supposed to appear (first or last)
1806 	 */
1807 
1808 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1809 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1810 
1811 	if (i == raid_ctlr_position)
1812 		return RAID_CTLR_LUNID;
1813 
1814 	if (i < logicals_start)
1815 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1816 
1817 	if (i < last_device)
1818 		return &logdev_list->LUN[i - nphysicals -
1819 			(raid_ctlr_position == 0)][0];
1820 	BUG();
1821 	return NULL;
1822 }
1823 
1824 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1825 {
1826 	/* the idea here is we could get notified
1827 	 * that some devices have changed, so we do a report
1828 	 * physical luns and report logical luns cmd, and adjust
1829 	 * our list of devices accordingly.
1830 	 *
1831 	 * The scsi3addr's of devices won't change so long as the
1832 	 * adapter is not reset.  That means we can rescan and
1833 	 * tell which devices we already know about, vs. new
1834 	 * devices, vs.  disappearing devices.
1835 	 */
1836 	struct ReportLUNdata *physdev_list = NULL;
1837 	struct ReportLUNdata *logdev_list = NULL;
1838 	u32 nphysicals = 0;
1839 	u32 nlogicals = 0;
1840 	u32 ndev_allocated = 0;
1841 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1842 	int ncurrent = 0;
1843 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1844 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1845 	int bus, target, lun;
1846 	int raid_ctlr_position;
1847 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1848 
1849 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1850 		GFP_KERNEL);
1851 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1852 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1853 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1854 
1855 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1856 		dev_err(&h->pdev->dev, "out of memory\n");
1857 		goto out;
1858 	}
1859 	memset(lunzerobits, 0, sizeof(lunzerobits));
1860 
1861 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1862 			logdev_list, &nlogicals))
1863 		goto out;
1864 
1865 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1866 	 * but each of them 4 times through different paths.  The plus 1
1867 	 * is for the RAID controller.
1868 	 */
1869 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1870 
1871 	/* Allocate the per device structures */
1872 	for (i = 0; i < ndevs_to_allocate; i++) {
1873 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1874 		if (!currentsd[i]) {
1875 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1876 				__FILE__, __LINE__);
1877 			goto out;
1878 		}
1879 		ndev_allocated++;
1880 	}
1881 
1882 	if (unlikely(is_scsi_rev_5(h)))
1883 		raid_ctlr_position = 0;
1884 	else
1885 		raid_ctlr_position = nphysicals + nlogicals;
1886 
1887 	/* adjust our table of devices */
1888 	nmsa2xxx_enclosures = 0;
1889 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1890 		u8 *lunaddrbytes, is_OBDR = 0;
1891 
1892 		/* Figure out where the LUN ID info is coming from */
1893 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1894 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1895 		/* skip masked physical devices. */
1896 		if (lunaddrbytes[3] & 0xC0 &&
1897 			i < nphysicals + (raid_ctlr_position == 0))
1898 			continue;
1899 
1900 		/* Get device type, vendor, model, device id */
1901 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1902 							&is_OBDR))
1903 			continue; /* skip it if we can't talk to it. */
1904 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1905 			tmpdevice);
1906 		this_device = currentsd[ncurrent];
1907 
1908 		/*
1909 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1910 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1911 		 * is nonetheless an enclosure device there.  We have to
1912 		 * present that otherwise linux won't find anything if
1913 		 * there is no lun 0.
1914 		 */
1915 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1916 				lunaddrbytes, bus, target, lun, lunzerobits,
1917 				&nmsa2xxx_enclosures)) {
1918 			ncurrent++;
1919 			this_device = currentsd[ncurrent];
1920 		}
1921 
1922 		*this_device = *tmpdevice;
1923 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1924 
1925 		switch (this_device->devtype) {
1926 		case TYPE_ROM:
1927 			/* We don't *really* support actual CD-ROM devices,
1928 			 * just "One Button Disaster Recovery" tape drive
1929 			 * which temporarily pretends to be a CD-ROM drive.
1930 			 * So we check that the device is really an OBDR tape
1931 			 * device by checking for "$DR-10" in bytes 43-48 of
1932 			 * the inquiry data.
1933 			 */
1934 			if (is_OBDR)
1935 				ncurrent++;
1936 			break;
1937 		case TYPE_DISK:
1938 			if (i < nphysicals)
1939 				break;
1940 			ncurrent++;
1941 			break;
1942 		case TYPE_TAPE:
1943 		case TYPE_MEDIUM_CHANGER:
1944 			ncurrent++;
1945 			break;
1946 		case TYPE_RAID:
1947 			/* Only present the Smartarray HBA as a RAID controller.
1948 			 * If it's a RAID controller other than the HBA itself
1949 			 * (an external RAID controller, MSA500 or similar)
1950 			 * don't present it.
1951 			 */
1952 			if (!is_hba_lunid(lunaddrbytes))
1953 				break;
1954 			ncurrent++;
1955 			break;
1956 		default:
1957 			break;
1958 		}
1959 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1960 			break;
1961 	}
1962 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1963 out:
1964 	kfree(tmpdevice);
1965 	for (i = 0; i < ndev_allocated; i++)
1966 		kfree(currentsd[i]);
1967 	kfree(currentsd);
1968 	kfree(physdev_list);
1969 	kfree(logdev_list);
1970 }
1971 
1972 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1973  * dma mapping  and fills in the scatter gather entries of the
1974  * hpsa command, cp.
1975  */
1976 static int hpsa_scatter_gather(struct ctlr_info *h,
1977 		struct CommandList *cp,
1978 		struct scsi_cmnd *cmd)
1979 {
1980 	unsigned int len;
1981 	struct scatterlist *sg;
1982 	u64 addr64;
1983 	int use_sg, i, sg_index, chained;
1984 	struct SGDescriptor *curr_sg;
1985 
1986 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1987 
1988 	use_sg = scsi_dma_map(cmd);
1989 	if (use_sg < 0)
1990 		return use_sg;
1991 
1992 	if (!use_sg)
1993 		goto sglist_finished;
1994 
1995 	curr_sg = cp->SG;
1996 	chained = 0;
1997 	sg_index = 0;
1998 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1999 		if (i == h->max_cmd_sg_entries - 1 &&
2000 			use_sg > h->max_cmd_sg_entries) {
2001 			chained = 1;
2002 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2003 			sg_index = 0;
2004 		}
2005 		addr64 = (u64) sg_dma_address(sg);
2006 		len  = sg_dma_len(sg);
2007 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2008 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2009 		curr_sg->Len = len;
2010 		curr_sg->Ext = 0;  /* we are not chaining */
2011 		curr_sg++;
2012 	}
2013 
2014 	if (use_sg + chained > h->maxSG)
2015 		h->maxSG = use_sg + chained;
2016 
2017 	if (chained) {
2018 		cp->Header.SGList = h->max_cmd_sg_entries;
2019 		cp->Header.SGTotal = (u16) (use_sg + 1);
2020 		hpsa_map_sg_chain_block(h, cp);
2021 		return 0;
2022 	}
2023 
2024 sglist_finished:
2025 
2026 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2027 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2028 	return 0;
2029 }
2030 
2031 
2032 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2033 	void (*done)(struct scsi_cmnd *))
2034 {
2035 	struct ctlr_info *h;
2036 	struct hpsa_scsi_dev_t *dev;
2037 	unsigned char scsi3addr[8];
2038 	struct CommandList *c;
2039 	unsigned long flags;
2040 
2041 	/* Get the ptr to our adapter structure out of cmd->host. */
2042 	h = sdev_to_hba(cmd->device);
2043 	dev = cmd->device->hostdata;
2044 	if (!dev) {
2045 		cmd->result = DID_NO_CONNECT << 16;
2046 		done(cmd);
2047 		return 0;
2048 	}
2049 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2050 
2051 	/* Need a lock as this is being allocated from the pool */
2052 	spin_lock_irqsave(&h->lock, flags);
2053 	c = cmd_alloc(h);
2054 	spin_unlock_irqrestore(&h->lock, flags);
2055 	if (c == NULL) {			/* trouble... */
2056 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2057 		return SCSI_MLQUEUE_HOST_BUSY;
2058 	}
2059 
2060 	/* Fill in the command list header */
2061 
2062 	cmd->scsi_done = done;    /* save this for use by completion code */
2063 
2064 	/* save c in case we have to abort it  */
2065 	cmd->host_scribble = (unsigned char *) c;
2066 
2067 	c->cmd_type = CMD_SCSI;
2068 	c->scsi_cmd = cmd;
2069 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2070 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2071 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2072 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2073 
2074 	/* Fill in the request block... */
2075 
2076 	c->Request.Timeout = 0;
2077 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2078 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2079 	c->Request.CDBLen = cmd->cmd_len;
2080 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2081 	c->Request.Type.Type = TYPE_CMD;
2082 	c->Request.Type.Attribute = ATTR_SIMPLE;
2083 	switch (cmd->sc_data_direction) {
2084 	case DMA_TO_DEVICE:
2085 		c->Request.Type.Direction = XFER_WRITE;
2086 		break;
2087 	case DMA_FROM_DEVICE:
2088 		c->Request.Type.Direction = XFER_READ;
2089 		break;
2090 	case DMA_NONE:
2091 		c->Request.Type.Direction = XFER_NONE;
2092 		break;
2093 	case DMA_BIDIRECTIONAL:
2094 		/* This can happen if a buggy application does a scsi passthru
2095 		 * and sets both inlen and outlen to non-zero. ( see
2096 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2097 		 */
2098 
2099 		c->Request.Type.Direction = XFER_RSVD;
2100 		/* This is technically wrong, and hpsa controllers should
2101 		 * reject it with CMD_INVALID, which is the most correct
2102 		 * response, but non-fibre backends appear to let it
2103 		 * slide by, and give the same results as if this field
2104 		 * were set correctly.  Either way is acceptable for
2105 		 * our purposes here.
2106 		 */
2107 
2108 		break;
2109 
2110 	default:
2111 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2112 			cmd->sc_data_direction);
2113 		BUG();
2114 		break;
2115 	}
2116 
2117 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2118 		cmd_free(h, c);
2119 		return SCSI_MLQUEUE_HOST_BUSY;
2120 	}
2121 	enqueue_cmd_and_start_io(h, c);
2122 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2123 	return 0;
2124 }
2125 
2126 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2127 
2128 static void hpsa_scan_start(struct Scsi_Host *sh)
2129 {
2130 	struct ctlr_info *h = shost_to_hba(sh);
2131 	unsigned long flags;
2132 
2133 	/* wait until any scan already in progress is finished. */
2134 	while (1) {
2135 		spin_lock_irqsave(&h->scan_lock, flags);
2136 		if (h->scan_finished)
2137 			break;
2138 		spin_unlock_irqrestore(&h->scan_lock, flags);
2139 		wait_event(h->scan_wait_queue, h->scan_finished);
2140 		/* Note: We don't need to worry about a race between this
2141 		 * thread and driver unload because the midlayer will
2142 		 * have incremented the reference count, so unload won't
2143 		 * happen if we're in here.
2144 		 */
2145 	}
2146 	h->scan_finished = 0; /* mark scan as in progress */
2147 	spin_unlock_irqrestore(&h->scan_lock, flags);
2148 
2149 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2150 
2151 	spin_lock_irqsave(&h->scan_lock, flags);
2152 	h->scan_finished = 1; /* mark scan as finished. */
2153 	wake_up_all(&h->scan_wait_queue);
2154 	spin_unlock_irqrestore(&h->scan_lock, flags);
2155 }
2156 
2157 static int hpsa_scan_finished(struct Scsi_Host *sh,
2158 	unsigned long elapsed_time)
2159 {
2160 	struct ctlr_info *h = shost_to_hba(sh);
2161 	unsigned long flags;
2162 	int finished;
2163 
2164 	spin_lock_irqsave(&h->scan_lock, flags);
2165 	finished = h->scan_finished;
2166 	spin_unlock_irqrestore(&h->scan_lock, flags);
2167 	return finished;
2168 }
2169 
2170 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2171 	int qdepth, int reason)
2172 {
2173 	struct ctlr_info *h = sdev_to_hba(sdev);
2174 
2175 	if (reason != SCSI_QDEPTH_DEFAULT)
2176 		return -ENOTSUPP;
2177 
2178 	if (qdepth < 1)
2179 		qdepth = 1;
2180 	else
2181 		if (qdepth > h->nr_cmds)
2182 			qdepth = h->nr_cmds;
2183 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2184 	return sdev->queue_depth;
2185 }
2186 
2187 static void hpsa_unregister_scsi(struct ctlr_info *h)
2188 {
2189 	/* we are being forcibly unloaded, and may not refuse. */
2190 	scsi_remove_host(h->scsi_host);
2191 	scsi_host_put(h->scsi_host);
2192 	h->scsi_host = NULL;
2193 }
2194 
2195 static int hpsa_register_scsi(struct ctlr_info *h)
2196 {
2197 	int rc;
2198 
2199 	rc = hpsa_scsi_detect(h);
2200 	if (rc != 0)
2201 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2202 			" hpsa_scsi_detect(), rc is %d\n", rc);
2203 	return rc;
2204 }
2205 
2206 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2207 	unsigned char lunaddr[])
2208 {
2209 	int rc = 0;
2210 	int count = 0;
2211 	int waittime = 1; /* seconds */
2212 	struct CommandList *c;
2213 
2214 	c = cmd_special_alloc(h);
2215 	if (!c) {
2216 		dev_warn(&h->pdev->dev, "out of memory in "
2217 			"wait_for_device_to_become_ready.\n");
2218 		return IO_ERROR;
2219 	}
2220 
2221 	/* Send test unit ready until device ready, or give up. */
2222 	while (count < HPSA_TUR_RETRY_LIMIT) {
2223 
2224 		/* Wait for a bit.  do this first, because if we send
2225 		 * the TUR right away, the reset will just abort it.
2226 		 */
2227 		msleep(1000 * waittime);
2228 		count++;
2229 
2230 		/* Increase wait time with each try, up to a point. */
2231 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2232 			waittime = waittime * 2;
2233 
2234 		/* Send the Test Unit Ready */
2235 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2236 		hpsa_scsi_do_simple_cmd_core(h, c);
2237 		/* no unmap needed here because no data xfer. */
2238 
2239 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2240 			break;
2241 
2242 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2243 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2244 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2245 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2246 			break;
2247 
2248 		dev_warn(&h->pdev->dev, "waiting %d secs "
2249 			"for device to become ready.\n", waittime);
2250 		rc = 1; /* device not ready. */
2251 	}
2252 
2253 	if (rc)
2254 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2255 	else
2256 		dev_warn(&h->pdev->dev, "device is ready.\n");
2257 
2258 	cmd_special_free(h, c);
2259 	return rc;
2260 }
2261 
2262 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2263  * complaining.  Doing a host- or bus-reset can't do anything good here.
2264  */
2265 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2266 {
2267 	int rc;
2268 	struct ctlr_info *h;
2269 	struct hpsa_scsi_dev_t *dev;
2270 
2271 	/* find the controller to which the command to be aborted was sent */
2272 	h = sdev_to_hba(scsicmd->device);
2273 	if (h == NULL) /* paranoia */
2274 		return FAILED;
2275 	dev = scsicmd->device->hostdata;
2276 	if (!dev) {
2277 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2278 			"device lookup failed.\n");
2279 		return FAILED;
2280 	}
2281 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2282 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2283 	/* send a reset to the SCSI LUN which the command was sent to */
2284 	rc = hpsa_send_reset(h, dev->scsi3addr);
2285 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2286 		return SUCCESS;
2287 
2288 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2289 	return FAILED;
2290 }
2291 
2292 /*
2293  * For operations that cannot sleep, a command block is allocated at init,
2294  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2295  * which ones are free or in use.  Lock must be held when calling this.
2296  * cmd_free() is the complement.
2297  */
2298 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2299 {
2300 	struct CommandList *c;
2301 	int i;
2302 	union u64bit temp64;
2303 	dma_addr_t cmd_dma_handle, err_dma_handle;
2304 
2305 	do {
2306 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2307 		if (i == h->nr_cmds)
2308 			return NULL;
2309 	} while (test_and_set_bit
2310 		 (i & (BITS_PER_LONG - 1),
2311 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2312 	c = h->cmd_pool + i;
2313 	memset(c, 0, sizeof(*c));
2314 	cmd_dma_handle = h->cmd_pool_dhandle
2315 	    + i * sizeof(*c);
2316 	c->err_info = h->errinfo_pool + i;
2317 	memset(c->err_info, 0, sizeof(*c->err_info));
2318 	err_dma_handle = h->errinfo_pool_dhandle
2319 	    + i * sizeof(*c->err_info);
2320 	h->nr_allocs++;
2321 
2322 	c->cmdindex = i;
2323 
2324 	INIT_LIST_HEAD(&c->list);
2325 	c->busaddr = (u32) cmd_dma_handle;
2326 	temp64.val = (u64) err_dma_handle;
2327 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2328 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2329 	c->ErrDesc.Len = sizeof(*c->err_info);
2330 
2331 	c->h = h;
2332 	return c;
2333 }
2334 
2335 /* For operations that can wait for kmalloc to possibly sleep,
2336  * this routine can be called. Lock need not be held to call
2337  * cmd_special_alloc. cmd_special_free() is the complement.
2338  */
2339 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2340 {
2341 	struct CommandList *c;
2342 	union u64bit temp64;
2343 	dma_addr_t cmd_dma_handle, err_dma_handle;
2344 
2345 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2346 	if (c == NULL)
2347 		return NULL;
2348 	memset(c, 0, sizeof(*c));
2349 
2350 	c->cmdindex = -1;
2351 
2352 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2353 		    &err_dma_handle);
2354 
2355 	if (c->err_info == NULL) {
2356 		pci_free_consistent(h->pdev,
2357 			sizeof(*c), c, cmd_dma_handle);
2358 		return NULL;
2359 	}
2360 	memset(c->err_info, 0, sizeof(*c->err_info));
2361 
2362 	INIT_LIST_HEAD(&c->list);
2363 	c->busaddr = (u32) cmd_dma_handle;
2364 	temp64.val = (u64) err_dma_handle;
2365 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2366 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2367 	c->ErrDesc.Len = sizeof(*c->err_info);
2368 
2369 	c->h = h;
2370 	return c;
2371 }
2372 
2373 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2374 {
2375 	int i;
2376 
2377 	i = c - h->cmd_pool;
2378 	clear_bit(i & (BITS_PER_LONG - 1),
2379 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2380 	h->nr_frees++;
2381 }
2382 
2383 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2384 {
2385 	union u64bit temp64;
2386 
2387 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2388 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2389 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2390 			    c->err_info, (dma_addr_t) temp64.val);
2391 	pci_free_consistent(h->pdev, sizeof(*c),
2392 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2393 }
2394 
2395 #ifdef CONFIG_COMPAT
2396 
2397 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2398 {
2399 	IOCTL32_Command_struct __user *arg32 =
2400 	    (IOCTL32_Command_struct __user *) arg;
2401 	IOCTL_Command_struct arg64;
2402 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2403 	int err;
2404 	u32 cp;
2405 
2406 	memset(&arg64, 0, sizeof(arg64));
2407 	err = 0;
2408 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2409 			   sizeof(arg64.LUN_info));
2410 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2411 			   sizeof(arg64.Request));
2412 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2413 			   sizeof(arg64.error_info));
2414 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2415 	err |= get_user(cp, &arg32->buf);
2416 	arg64.buf = compat_ptr(cp);
2417 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2418 
2419 	if (err)
2420 		return -EFAULT;
2421 
2422 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2423 	if (err)
2424 		return err;
2425 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2426 			 sizeof(arg32->error_info));
2427 	if (err)
2428 		return -EFAULT;
2429 	return err;
2430 }
2431 
2432 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2433 	int cmd, void *arg)
2434 {
2435 	BIG_IOCTL32_Command_struct __user *arg32 =
2436 	    (BIG_IOCTL32_Command_struct __user *) arg;
2437 	BIG_IOCTL_Command_struct arg64;
2438 	BIG_IOCTL_Command_struct __user *p =
2439 	    compat_alloc_user_space(sizeof(arg64));
2440 	int err;
2441 	u32 cp;
2442 
2443 	memset(&arg64, 0, sizeof(arg64));
2444 	err = 0;
2445 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2446 			   sizeof(arg64.LUN_info));
2447 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2448 			   sizeof(arg64.Request));
2449 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2450 			   sizeof(arg64.error_info));
2451 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2452 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2453 	err |= get_user(cp, &arg32->buf);
2454 	arg64.buf = compat_ptr(cp);
2455 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2456 
2457 	if (err)
2458 		return -EFAULT;
2459 
2460 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2461 	if (err)
2462 		return err;
2463 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2464 			 sizeof(arg32->error_info));
2465 	if (err)
2466 		return -EFAULT;
2467 	return err;
2468 }
2469 
2470 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2471 {
2472 	switch (cmd) {
2473 	case CCISS_GETPCIINFO:
2474 	case CCISS_GETINTINFO:
2475 	case CCISS_SETINTINFO:
2476 	case CCISS_GETNODENAME:
2477 	case CCISS_SETNODENAME:
2478 	case CCISS_GETHEARTBEAT:
2479 	case CCISS_GETBUSTYPES:
2480 	case CCISS_GETFIRMVER:
2481 	case CCISS_GETDRIVVER:
2482 	case CCISS_REVALIDVOLS:
2483 	case CCISS_DEREGDISK:
2484 	case CCISS_REGNEWDISK:
2485 	case CCISS_REGNEWD:
2486 	case CCISS_RESCANDISK:
2487 	case CCISS_GETLUNINFO:
2488 		return hpsa_ioctl(dev, cmd, arg);
2489 
2490 	case CCISS_PASSTHRU32:
2491 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2492 	case CCISS_BIG_PASSTHRU32:
2493 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2494 
2495 	default:
2496 		return -ENOIOCTLCMD;
2497 	}
2498 }
2499 #endif
2500 
2501 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2502 {
2503 	struct hpsa_pci_info pciinfo;
2504 
2505 	if (!argp)
2506 		return -EINVAL;
2507 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2508 	pciinfo.bus = h->pdev->bus->number;
2509 	pciinfo.dev_fn = h->pdev->devfn;
2510 	pciinfo.board_id = h->board_id;
2511 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2512 		return -EFAULT;
2513 	return 0;
2514 }
2515 
2516 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2517 {
2518 	DriverVer_type DriverVer;
2519 	unsigned char vmaj, vmin, vsubmin;
2520 	int rc;
2521 
2522 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2523 		&vmaj, &vmin, &vsubmin);
2524 	if (rc != 3) {
2525 		dev_info(&h->pdev->dev, "driver version string '%s' "
2526 			"unrecognized.", HPSA_DRIVER_VERSION);
2527 		vmaj = 0;
2528 		vmin = 0;
2529 		vsubmin = 0;
2530 	}
2531 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2532 	if (!argp)
2533 		return -EINVAL;
2534 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2535 		return -EFAULT;
2536 	return 0;
2537 }
2538 
2539 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2540 {
2541 	IOCTL_Command_struct iocommand;
2542 	struct CommandList *c;
2543 	char *buff = NULL;
2544 	union u64bit temp64;
2545 
2546 	if (!argp)
2547 		return -EINVAL;
2548 	if (!capable(CAP_SYS_RAWIO))
2549 		return -EPERM;
2550 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2551 		return -EFAULT;
2552 	if ((iocommand.buf_size < 1) &&
2553 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2554 		return -EINVAL;
2555 	}
2556 	if (iocommand.buf_size > 0) {
2557 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2558 		if (buff == NULL)
2559 			return -EFAULT;
2560 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2561 			/* Copy the data into the buffer we created */
2562 			if (copy_from_user(buff, iocommand.buf,
2563 				iocommand.buf_size)) {
2564 				kfree(buff);
2565 				return -EFAULT;
2566 			}
2567 		} else {
2568 			memset(buff, 0, iocommand.buf_size);
2569 		}
2570 	}
2571 	c = cmd_special_alloc(h);
2572 	if (c == NULL) {
2573 		kfree(buff);
2574 		return -ENOMEM;
2575 	}
2576 	/* Fill in the command type */
2577 	c->cmd_type = CMD_IOCTL_PEND;
2578 	/* Fill in Command Header */
2579 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2580 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2581 		c->Header.SGList = 1;
2582 		c->Header.SGTotal = 1;
2583 	} else	{ /* no buffers to fill */
2584 		c->Header.SGList = 0;
2585 		c->Header.SGTotal = 0;
2586 	}
2587 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2588 	/* use the kernel address the cmd block for tag */
2589 	c->Header.Tag.lower = c->busaddr;
2590 
2591 	/* Fill in Request block */
2592 	memcpy(&c->Request, &iocommand.Request,
2593 		sizeof(c->Request));
2594 
2595 	/* Fill in the scatter gather information */
2596 	if (iocommand.buf_size > 0) {
2597 		temp64.val = pci_map_single(h->pdev, buff,
2598 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2599 		c->SG[0].Addr.lower = temp64.val32.lower;
2600 		c->SG[0].Addr.upper = temp64.val32.upper;
2601 		c->SG[0].Len = iocommand.buf_size;
2602 		c->SG[0].Ext = 0; /* we are not chaining*/
2603 	}
2604 	hpsa_scsi_do_simple_cmd_core(h, c);
2605 	if (iocommand.buf_size > 0)
2606 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2607 	check_ioctl_unit_attention(h, c);
2608 
2609 	/* Copy the error information out */
2610 	memcpy(&iocommand.error_info, c->err_info,
2611 		sizeof(iocommand.error_info));
2612 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2613 		kfree(buff);
2614 		cmd_special_free(h, c);
2615 		return -EFAULT;
2616 	}
2617 	if (iocommand.Request.Type.Direction == XFER_READ &&
2618 		iocommand.buf_size > 0) {
2619 		/* Copy the data out of the buffer we created */
2620 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2621 			kfree(buff);
2622 			cmd_special_free(h, c);
2623 			return -EFAULT;
2624 		}
2625 	}
2626 	kfree(buff);
2627 	cmd_special_free(h, c);
2628 	return 0;
2629 }
2630 
2631 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2632 {
2633 	BIG_IOCTL_Command_struct *ioc;
2634 	struct CommandList *c;
2635 	unsigned char **buff = NULL;
2636 	int *buff_size = NULL;
2637 	union u64bit temp64;
2638 	BYTE sg_used = 0;
2639 	int status = 0;
2640 	int i;
2641 	u32 left;
2642 	u32 sz;
2643 	BYTE __user *data_ptr;
2644 
2645 	if (!argp)
2646 		return -EINVAL;
2647 	if (!capable(CAP_SYS_RAWIO))
2648 		return -EPERM;
2649 	ioc = (BIG_IOCTL_Command_struct *)
2650 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2651 	if (!ioc) {
2652 		status = -ENOMEM;
2653 		goto cleanup1;
2654 	}
2655 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2656 		status = -EFAULT;
2657 		goto cleanup1;
2658 	}
2659 	if ((ioc->buf_size < 1) &&
2660 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2661 		status = -EINVAL;
2662 		goto cleanup1;
2663 	}
2664 	/* Check kmalloc limits  using all SGs */
2665 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2666 		status = -EINVAL;
2667 		goto cleanup1;
2668 	}
2669 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2670 		status = -EINVAL;
2671 		goto cleanup1;
2672 	}
2673 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2674 	if (!buff) {
2675 		status = -ENOMEM;
2676 		goto cleanup1;
2677 	}
2678 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2679 	if (!buff_size) {
2680 		status = -ENOMEM;
2681 		goto cleanup1;
2682 	}
2683 	left = ioc->buf_size;
2684 	data_ptr = ioc->buf;
2685 	while (left) {
2686 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2687 		buff_size[sg_used] = sz;
2688 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2689 		if (buff[sg_used] == NULL) {
2690 			status = -ENOMEM;
2691 			goto cleanup1;
2692 		}
2693 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2694 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2695 				status = -ENOMEM;
2696 				goto cleanup1;
2697 			}
2698 		} else
2699 			memset(buff[sg_used], 0, sz);
2700 		left -= sz;
2701 		data_ptr += sz;
2702 		sg_used++;
2703 	}
2704 	c = cmd_special_alloc(h);
2705 	if (c == NULL) {
2706 		status = -ENOMEM;
2707 		goto cleanup1;
2708 	}
2709 	c->cmd_type = CMD_IOCTL_PEND;
2710 	c->Header.ReplyQueue = 0;
2711 	c->Header.SGList = c->Header.SGTotal = sg_used;
2712 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2713 	c->Header.Tag.lower = c->busaddr;
2714 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2715 	if (ioc->buf_size > 0) {
2716 		int i;
2717 		for (i = 0; i < sg_used; i++) {
2718 			temp64.val = pci_map_single(h->pdev, buff[i],
2719 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2720 			c->SG[i].Addr.lower = temp64.val32.lower;
2721 			c->SG[i].Addr.upper = temp64.val32.upper;
2722 			c->SG[i].Len = buff_size[i];
2723 			/* we are not chaining */
2724 			c->SG[i].Ext = 0;
2725 		}
2726 	}
2727 	hpsa_scsi_do_simple_cmd_core(h, c);
2728 	if (sg_used)
2729 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2730 	check_ioctl_unit_attention(h, c);
2731 	/* Copy the error information out */
2732 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2733 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2734 		cmd_special_free(h, c);
2735 		status = -EFAULT;
2736 		goto cleanup1;
2737 	}
2738 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2739 		/* Copy the data out of the buffer we created */
2740 		BYTE __user *ptr = ioc->buf;
2741 		for (i = 0; i < sg_used; i++) {
2742 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2743 				cmd_special_free(h, c);
2744 				status = -EFAULT;
2745 				goto cleanup1;
2746 			}
2747 			ptr += buff_size[i];
2748 		}
2749 	}
2750 	cmd_special_free(h, c);
2751 	status = 0;
2752 cleanup1:
2753 	if (buff) {
2754 		for (i = 0; i < sg_used; i++)
2755 			kfree(buff[i]);
2756 		kfree(buff);
2757 	}
2758 	kfree(buff_size);
2759 	kfree(ioc);
2760 	return status;
2761 }
2762 
2763 static void check_ioctl_unit_attention(struct ctlr_info *h,
2764 	struct CommandList *c)
2765 {
2766 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2767 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2768 		(void) check_for_unit_attention(h, c);
2769 }
2770 /*
2771  * ioctl
2772  */
2773 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2774 {
2775 	struct ctlr_info *h;
2776 	void __user *argp = (void __user *)arg;
2777 
2778 	h = sdev_to_hba(dev);
2779 
2780 	switch (cmd) {
2781 	case CCISS_DEREGDISK:
2782 	case CCISS_REGNEWDISK:
2783 	case CCISS_REGNEWD:
2784 		hpsa_scan_start(h->scsi_host);
2785 		return 0;
2786 	case CCISS_GETPCIINFO:
2787 		return hpsa_getpciinfo_ioctl(h, argp);
2788 	case CCISS_GETDRIVVER:
2789 		return hpsa_getdrivver_ioctl(h, argp);
2790 	case CCISS_PASSTHRU:
2791 		return hpsa_passthru_ioctl(h, argp);
2792 	case CCISS_BIG_PASSTHRU:
2793 		return hpsa_big_passthru_ioctl(h, argp);
2794 	default:
2795 		return -ENOTTY;
2796 	}
2797 }
2798 
2799 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2800 	unsigned char *scsi3addr, u8 reset_type)
2801 {
2802 	struct CommandList *c;
2803 
2804 	c = cmd_alloc(h);
2805 	if (!c)
2806 		return -ENOMEM;
2807 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2808 		RAID_CTLR_LUNID, TYPE_MSG);
2809 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2810 	c->waiting = NULL;
2811 	enqueue_cmd_and_start_io(h, c);
2812 	/* Don't wait for completion, the reset won't complete.  Don't free
2813 	 * the command either.  This is the last command we will send before
2814 	 * re-initializing everything, so it doesn't matter and won't leak.
2815 	 */
2816 	return 0;
2817 }
2818 
2819 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2820 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2821 	int cmd_type)
2822 {
2823 	int pci_dir = XFER_NONE;
2824 
2825 	c->cmd_type = CMD_IOCTL_PEND;
2826 	c->Header.ReplyQueue = 0;
2827 	if (buff != NULL && size > 0) {
2828 		c->Header.SGList = 1;
2829 		c->Header.SGTotal = 1;
2830 	} else {
2831 		c->Header.SGList = 0;
2832 		c->Header.SGTotal = 0;
2833 	}
2834 	c->Header.Tag.lower = c->busaddr;
2835 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2836 
2837 	c->Request.Type.Type = cmd_type;
2838 	if (cmd_type == TYPE_CMD) {
2839 		switch (cmd) {
2840 		case HPSA_INQUIRY:
2841 			/* are we trying to read a vital product page */
2842 			if (page_code != 0) {
2843 				c->Request.CDB[1] = 0x01;
2844 				c->Request.CDB[2] = page_code;
2845 			}
2846 			c->Request.CDBLen = 6;
2847 			c->Request.Type.Attribute = ATTR_SIMPLE;
2848 			c->Request.Type.Direction = XFER_READ;
2849 			c->Request.Timeout = 0;
2850 			c->Request.CDB[0] = HPSA_INQUIRY;
2851 			c->Request.CDB[4] = size & 0xFF;
2852 			break;
2853 		case HPSA_REPORT_LOG:
2854 		case HPSA_REPORT_PHYS:
2855 			/* Talking to controller so It's a physical command
2856 			   mode = 00 target = 0.  Nothing to write.
2857 			 */
2858 			c->Request.CDBLen = 12;
2859 			c->Request.Type.Attribute = ATTR_SIMPLE;
2860 			c->Request.Type.Direction = XFER_READ;
2861 			c->Request.Timeout = 0;
2862 			c->Request.CDB[0] = cmd;
2863 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2864 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2865 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2866 			c->Request.CDB[9] = size & 0xFF;
2867 			break;
2868 		case HPSA_CACHE_FLUSH:
2869 			c->Request.CDBLen = 12;
2870 			c->Request.Type.Attribute = ATTR_SIMPLE;
2871 			c->Request.Type.Direction = XFER_WRITE;
2872 			c->Request.Timeout = 0;
2873 			c->Request.CDB[0] = BMIC_WRITE;
2874 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2875 			break;
2876 		case TEST_UNIT_READY:
2877 			c->Request.CDBLen = 6;
2878 			c->Request.Type.Attribute = ATTR_SIMPLE;
2879 			c->Request.Type.Direction = XFER_NONE;
2880 			c->Request.Timeout = 0;
2881 			break;
2882 		default:
2883 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2884 			BUG();
2885 			return;
2886 		}
2887 	} else if (cmd_type == TYPE_MSG) {
2888 		switch (cmd) {
2889 
2890 		case  HPSA_DEVICE_RESET_MSG:
2891 			c->Request.CDBLen = 16;
2892 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2893 			c->Request.Type.Attribute = ATTR_SIMPLE;
2894 			c->Request.Type.Direction = XFER_NONE;
2895 			c->Request.Timeout = 0; /* Don't time out */
2896 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2897 			c->Request.CDB[0] =  cmd;
2898 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2899 			/* If bytes 4-7 are zero, it means reset the */
2900 			/* LunID device */
2901 			c->Request.CDB[4] = 0x00;
2902 			c->Request.CDB[5] = 0x00;
2903 			c->Request.CDB[6] = 0x00;
2904 			c->Request.CDB[7] = 0x00;
2905 		break;
2906 
2907 		default:
2908 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2909 				cmd);
2910 			BUG();
2911 		}
2912 	} else {
2913 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2914 		BUG();
2915 	}
2916 
2917 	switch (c->Request.Type.Direction) {
2918 	case XFER_READ:
2919 		pci_dir = PCI_DMA_FROMDEVICE;
2920 		break;
2921 	case XFER_WRITE:
2922 		pci_dir = PCI_DMA_TODEVICE;
2923 		break;
2924 	case XFER_NONE:
2925 		pci_dir = PCI_DMA_NONE;
2926 		break;
2927 	default:
2928 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2929 	}
2930 
2931 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2932 
2933 	return;
2934 }
2935 
2936 /*
2937  * Map (physical) PCI mem into (virtual) kernel space
2938  */
2939 static void __iomem *remap_pci_mem(ulong base, ulong size)
2940 {
2941 	ulong page_base = ((ulong) base) & PAGE_MASK;
2942 	ulong page_offs = ((ulong) base) - page_base;
2943 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2944 
2945 	return page_remapped ? (page_remapped + page_offs) : NULL;
2946 }
2947 
2948 /* Takes cmds off the submission queue and sends them to the hardware,
2949  * then puts them on the queue of cmds waiting for completion.
2950  */
2951 static void start_io(struct ctlr_info *h)
2952 {
2953 	struct CommandList *c;
2954 
2955 	while (!list_empty(&h->reqQ)) {
2956 		c = list_entry(h->reqQ.next, struct CommandList, list);
2957 		/* can't do anything if fifo is full */
2958 		if ((h->access.fifo_full(h))) {
2959 			dev_warn(&h->pdev->dev, "fifo full\n");
2960 			break;
2961 		}
2962 
2963 		/* Get the first entry from the Request Q */
2964 		removeQ(c);
2965 		h->Qdepth--;
2966 
2967 		/* Tell the controller execute command */
2968 		h->access.submit_command(h, c);
2969 
2970 		/* Put job onto the completed Q */
2971 		addQ(&h->cmpQ, c);
2972 	}
2973 }
2974 
2975 static inline unsigned long get_next_completion(struct ctlr_info *h)
2976 {
2977 	return h->access.command_completed(h);
2978 }
2979 
2980 static inline bool interrupt_pending(struct ctlr_info *h)
2981 {
2982 	return h->access.intr_pending(h);
2983 }
2984 
2985 static inline long interrupt_not_for_us(struct ctlr_info *h)
2986 {
2987 	return (h->access.intr_pending(h) == 0) ||
2988 		(h->interrupts_enabled == 0);
2989 }
2990 
2991 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2992 	u32 raw_tag)
2993 {
2994 	if (unlikely(tag_index >= h->nr_cmds)) {
2995 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2996 		return 1;
2997 	}
2998 	return 0;
2999 }
3000 
3001 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3002 {
3003 	removeQ(c);
3004 	if (likely(c->cmd_type == CMD_SCSI))
3005 		complete_scsi_command(c);
3006 	else if (c->cmd_type == CMD_IOCTL_PEND)
3007 		complete(c->waiting);
3008 }
3009 
3010 static inline u32 hpsa_tag_contains_index(u32 tag)
3011 {
3012 	return tag & DIRECT_LOOKUP_BIT;
3013 }
3014 
3015 static inline u32 hpsa_tag_to_index(u32 tag)
3016 {
3017 	return tag >> DIRECT_LOOKUP_SHIFT;
3018 }
3019 
3020 
3021 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3022 {
3023 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3024 #define HPSA_SIMPLE_ERROR_BITS 0x03
3025 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3026 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3027 	return tag & ~HPSA_PERF_ERROR_BITS;
3028 }
3029 
3030 /* process completion of an indexed ("direct lookup") command */
3031 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3032 	u32 raw_tag)
3033 {
3034 	u32 tag_index;
3035 	struct CommandList *c;
3036 
3037 	tag_index = hpsa_tag_to_index(raw_tag);
3038 	if (bad_tag(h, tag_index, raw_tag))
3039 		return next_command(h);
3040 	c = h->cmd_pool + tag_index;
3041 	finish_cmd(c, raw_tag);
3042 	return next_command(h);
3043 }
3044 
3045 /* process completion of a non-indexed command */
3046 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3047 	u32 raw_tag)
3048 {
3049 	u32 tag;
3050 	struct CommandList *c = NULL;
3051 
3052 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3053 	list_for_each_entry(c, &h->cmpQ, list) {
3054 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3055 			finish_cmd(c, raw_tag);
3056 			return next_command(h);
3057 		}
3058 	}
3059 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3060 	return next_command(h);
3061 }
3062 
3063 /* Some controllers, like p400, will give us one interrupt
3064  * after a soft reset, even if we turned interrupts off.
3065  * Only need to check for this in the hpsa_xxx_discard_completions
3066  * functions.
3067  */
3068 static int ignore_bogus_interrupt(struct ctlr_info *h)
3069 {
3070 	if (likely(!reset_devices))
3071 		return 0;
3072 
3073 	if (likely(h->interrupts_enabled))
3074 		return 0;
3075 
3076 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3077 		"(known firmware bug.)  Ignoring.\n");
3078 
3079 	return 1;
3080 }
3081 
3082 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3083 {
3084 	struct ctlr_info *h = dev_id;
3085 	unsigned long flags;
3086 	u32 raw_tag;
3087 
3088 	if (ignore_bogus_interrupt(h))
3089 		return IRQ_NONE;
3090 
3091 	if (interrupt_not_for_us(h))
3092 		return IRQ_NONE;
3093 	spin_lock_irqsave(&h->lock, flags);
3094 	while (interrupt_pending(h)) {
3095 		raw_tag = get_next_completion(h);
3096 		while (raw_tag != FIFO_EMPTY)
3097 			raw_tag = next_command(h);
3098 	}
3099 	spin_unlock_irqrestore(&h->lock, flags);
3100 	return IRQ_HANDLED;
3101 }
3102 
3103 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3104 {
3105 	struct ctlr_info *h = dev_id;
3106 	unsigned long flags;
3107 	u32 raw_tag;
3108 
3109 	if (ignore_bogus_interrupt(h))
3110 		return IRQ_NONE;
3111 
3112 	spin_lock_irqsave(&h->lock, flags);
3113 	raw_tag = get_next_completion(h);
3114 	while (raw_tag != FIFO_EMPTY)
3115 		raw_tag = next_command(h);
3116 	spin_unlock_irqrestore(&h->lock, flags);
3117 	return IRQ_HANDLED;
3118 }
3119 
3120 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3121 {
3122 	struct ctlr_info *h = dev_id;
3123 	unsigned long flags;
3124 	u32 raw_tag;
3125 
3126 	if (interrupt_not_for_us(h))
3127 		return IRQ_NONE;
3128 	spin_lock_irqsave(&h->lock, flags);
3129 	while (interrupt_pending(h)) {
3130 		raw_tag = get_next_completion(h);
3131 		while (raw_tag != FIFO_EMPTY) {
3132 			if (hpsa_tag_contains_index(raw_tag))
3133 				raw_tag = process_indexed_cmd(h, raw_tag);
3134 			else
3135 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3136 		}
3137 	}
3138 	spin_unlock_irqrestore(&h->lock, flags);
3139 	return IRQ_HANDLED;
3140 }
3141 
3142 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3143 {
3144 	struct ctlr_info *h = dev_id;
3145 	unsigned long flags;
3146 	u32 raw_tag;
3147 
3148 	spin_lock_irqsave(&h->lock, flags);
3149 	raw_tag = get_next_completion(h);
3150 	while (raw_tag != FIFO_EMPTY) {
3151 		if (hpsa_tag_contains_index(raw_tag))
3152 			raw_tag = process_indexed_cmd(h, raw_tag);
3153 		else
3154 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3155 	}
3156 	spin_unlock_irqrestore(&h->lock, flags);
3157 	return IRQ_HANDLED;
3158 }
3159 
3160 /* Send a message CDB to the firmware. Careful, this only works
3161  * in simple mode, not performant mode due to the tag lookup.
3162  * We only ever use this immediately after a controller reset.
3163  */
3164 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3165 						unsigned char type)
3166 {
3167 	struct Command {
3168 		struct CommandListHeader CommandHeader;
3169 		struct RequestBlock Request;
3170 		struct ErrDescriptor ErrorDescriptor;
3171 	};
3172 	struct Command *cmd;
3173 	static const size_t cmd_sz = sizeof(*cmd) +
3174 					sizeof(cmd->ErrorDescriptor);
3175 	dma_addr_t paddr64;
3176 	uint32_t paddr32, tag;
3177 	void __iomem *vaddr;
3178 	int i, err;
3179 
3180 	vaddr = pci_ioremap_bar(pdev, 0);
3181 	if (vaddr == NULL)
3182 		return -ENOMEM;
3183 
3184 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3185 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3186 	 * memory.
3187 	 */
3188 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3189 	if (err) {
3190 		iounmap(vaddr);
3191 		return -ENOMEM;
3192 	}
3193 
3194 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3195 	if (cmd == NULL) {
3196 		iounmap(vaddr);
3197 		return -ENOMEM;
3198 	}
3199 
3200 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3201 	 * although there's no guarantee, we assume that the address is at
3202 	 * least 4-byte aligned (most likely, it's page-aligned).
3203 	 */
3204 	paddr32 = paddr64;
3205 
3206 	cmd->CommandHeader.ReplyQueue = 0;
3207 	cmd->CommandHeader.SGList = 0;
3208 	cmd->CommandHeader.SGTotal = 0;
3209 	cmd->CommandHeader.Tag.lower = paddr32;
3210 	cmd->CommandHeader.Tag.upper = 0;
3211 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3212 
3213 	cmd->Request.CDBLen = 16;
3214 	cmd->Request.Type.Type = TYPE_MSG;
3215 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3216 	cmd->Request.Type.Direction = XFER_NONE;
3217 	cmd->Request.Timeout = 0; /* Don't time out */
3218 	cmd->Request.CDB[0] = opcode;
3219 	cmd->Request.CDB[1] = type;
3220 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3221 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3222 	cmd->ErrorDescriptor.Addr.upper = 0;
3223 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3224 
3225 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3226 
3227 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3228 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3229 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3230 			break;
3231 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3232 	}
3233 
3234 	iounmap(vaddr);
3235 
3236 	/* we leak the DMA buffer here ... no choice since the controller could
3237 	 *  still complete the command.
3238 	 */
3239 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3240 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3241 			opcode, type);
3242 		return -ETIMEDOUT;
3243 	}
3244 
3245 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3246 
3247 	if (tag & HPSA_ERROR_BIT) {
3248 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3249 			opcode, type);
3250 		return -EIO;
3251 	}
3252 
3253 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3254 		opcode, type);
3255 	return 0;
3256 }
3257 
3258 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3259 
3260 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3261 	void * __iomem vaddr, u32 use_doorbell)
3262 {
3263 	u16 pmcsr;
3264 	int pos;
3265 
3266 	if (use_doorbell) {
3267 		/* For everything after the P600, the PCI power state method
3268 		 * of resetting the controller doesn't work, so we have this
3269 		 * other way using the doorbell register.
3270 		 */
3271 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3272 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3273 	} else { /* Try to do it the PCI power state way */
3274 
3275 		/* Quoting from the Open CISS Specification: "The Power
3276 		 * Management Control/Status Register (CSR) controls the power
3277 		 * state of the device.  The normal operating state is D0,
3278 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3279 		 * the controller, place the interface device in D3 then to D0,
3280 		 * this causes a secondary PCI reset which will reset the
3281 		 * controller." */
3282 
3283 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3284 		if (pos == 0) {
3285 			dev_err(&pdev->dev,
3286 				"hpsa_reset_controller: "
3287 				"PCI PM not supported\n");
3288 			return -ENODEV;
3289 		}
3290 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3291 		/* enter the D3hot power management state */
3292 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3293 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3294 		pmcsr |= PCI_D3hot;
3295 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3296 
3297 		msleep(500);
3298 
3299 		/* enter the D0 power management state */
3300 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3301 		pmcsr |= PCI_D0;
3302 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3303 	}
3304 	return 0;
3305 }
3306 
3307 static __devinit void init_driver_version(char *driver_version, int len)
3308 {
3309 	memset(driver_version, 0, len);
3310 	strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3311 }
3312 
3313 static __devinit int write_driver_ver_to_cfgtable(
3314 	struct CfgTable __iomem *cfgtable)
3315 {
3316 	char *driver_version;
3317 	int i, size = sizeof(cfgtable->driver_version);
3318 
3319 	driver_version = kmalloc(size, GFP_KERNEL);
3320 	if (!driver_version)
3321 		return -ENOMEM;
3322 
3323 	init_driver_version(driver_version, size);
3324 	for (i = 0; i < size; i++)
3325 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3326 	kfree(driver_version);
3327 	return 0;
3328 }
3329 
3330 static __devinit void read_driver_ver_from_cfgtable(
3331 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3332 {
3333 	int i;
3334 
3335 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3336 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3337 }
3338 
3339 static __devinit int controller_reset_failed(
3340 	struct CfgTable __iomem *cfgtable)
3341 {
3342 
3343 	char *driver_ver, *old_driver_ver;
3344 	int rc, size = sizeof(cfgtable->driver_version);
3345 
3346 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3347 	if (!old_driver_ver)
3348 		return -ENOMEM;
3349 	driver_ver = old_driver_ver + size;
3350 
3351 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3352 	 * should have been changed, otherwise we know the reset failed.
3353 	 */
3354 	init_driver_version(old_driver_ver, size);
3355 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3356 	rc = !memcmp(driver_ver, old_driver_ver, size);
3357 	kfree(old_driver_ver);
3358 	return rc;
3359 }
3360 /* This does a hard reset of the controller using PCI power management
3361  * states or the using the doorbell register.
3362  */
3363 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3364 {
3365 	u64 cfg_offset;
3366 	u32 cfg_base_addr;
3367 	u64 cfg_base_addr_index;
3368 	void __iomem *vaddr;
3369 	unsigned long paddr;
3370 	u32 misc_fw_support;
3371 	int rc;
3372 	struct CfgTable __iomem *cfgtable;
3373 	u32 use_doorbell;
3374 	u32 board_id;
3375 	u16 command_register;
3376 
3377 	/* For controllers as old as the P600, this is very nearly
3378 	 * the same thing as
3379 	 *
3380 	 * pci_save_state(pci_dev);
3381 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3382 	 * pci_set_power_state(pci_dev, PCI_D0);
3383 	 * pci_restore_state(pci_dev);
3384 	 *
3385 	 * For controllers newer than the P600, the pci power state
3386 	 * method of resetting doesn't work so we have another way
3387 	 * using the doorbell register.
3388 	 */
3389 
3390 	rc = hpsa_lookup_board_id(pdev, &board_id);
3391 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3392 		dev_warn(&pdev->dev, "Not resetting device.\n");
3393 		return -ENODEV;
3394 	}
3395 
3396 	/* if controller is soft- but not hard resettable... */
3397 	if (!ctlr_is_hard_resettable(board_id))
3398 		return -ENOTSUPP; /* try soft reset later. */
3399 
3400 	/* Save the PCI command register */
3401 	pci_read_config_word(pdev, 4, &command_register);
3402 	/* Turn the board off.  This is so that later pci_restore_state()
3403 	 * won't turn the board on before the rest of config space is ready.
3404 	 */
3405 	pci_disable_device(pdev);
3406 	pci_save_state(pdev);
3407 
3408 	/* find the first memory BAR, so we can find the cfg table */
3409 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3410 	if (rc)
3411 		return rc;
3412 	vaddr = remap_pci_mem(paddr, 0x250);
3413 	if (!vaddr)
3414 		return -ENOMEM;
3415 
3416 	/* find cfgtable in order to check if reset via doorbell is supported */
3417 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3418 					&cfg_base_addr_index, &cfg_offset);
3419 	if (rc)
3420 		goto unmap_vaddr;
3421 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3422 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3423 	if (!cfgtable) {
3424 		rc = -ENOMEM;
3425 		goto unmap_vaddr;
3426 	}
3427 	rc = write_driver_ver_to_cfgtable(cfgtable);
3428 	if (rc)
3429 		goto unmap_vaddr;
3430 
3431 	/* If reset via doorbell register is supported, use that.
3432 	 * There are two such methods.  Favor the newest method.
3433 	 */
3434 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3435 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3436 	if (use_doorbell) {
3437 		use_doorbell = DOORBELL_CTLR_RESET2;
3438 	} else {
3439 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3440 		if (use_doorbell) {
3441 			dev_warn(&pdev->dev, "Soft reset not supported. "
3442 				"Firmware update is required.\n");
3443 			rc = -ENOTSUPP; /* try soft reset */
3444 			goto unmap_cfgtable;
3445 		}
3446 	}
3447 
3448 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3449 	if (rc)
3450 		goto unmap_cfgtable;
3451 
3452 	pci_restore_state(pdev);
3453 	rc = pci_enable_device(pdev);
3454 	if (rc) {
3455 		dev_warn(&pdev->dev, "failed to enable device.\n");
3456 		goto unmap_cfgtable;
3457 	}
3458 	pci_write_config_word(pdev, 4, command_register);
3459 
3460 	/* Some devices (notably the HP Smart Array 5i Controller)
3461 	   need a little pause here */
3462 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3463 
3464 	/* Wait for board to become not ready, then ready. */
3465 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3466 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3467 	if (rc) {
3468 		dev_warn(&pdev->dev,
3469 			"failed waiting for board to reset."
3470 			" Will try soft reset.\n");
3471 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3472 		goto unmap_cfgtable;
3473 	}
3474 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3475 	if (rc) {
3476 		dev_warn(&pdev->dev,
3477 			"failed waiting for board to become ready "
3478 			"after hard reset\n");
3479 		goto unmap_cfgtable;
3480 	}
3481 
3482 	rc = controller_reset_failed(vaddr);
3483 	if (rc < 0)
3484 		goto unmap_cfgtable;
3485 	if (rc) {
3486 		dev_warn(&pdev->dev, "Unable to successfully reset "
3487 			"controller. Will try soft reset.\n");
3488 		rc = -ENOTSUPP;
3489 	} else {
3490 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3491 	}
3492 
3493 unmap_cfgtable:
3494 	iounmap(cfgtable);
3495 
3496 unmap_vaddr:
3497 	iounmap(vaddr);
3498 	return rc;
3499 }
3500 
3501 /*
3502  *  We cannot read the structure directly, for portability we must use
3503  *   the io functions.
3504  *   This is for debug only.
3505  */
3506 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3507 {
3508 #ifdef HPSA_DEBUG
3509 	int i;
3510 	char temp_name[17];
3511 
3512 	dev_info(dev, "Controller Configuration information\n");
3513 	dev_info(dev, "------------------------------------\n");
3514 	for (i = 0; i < 4; i++)
3515 		temp_name[i] = readb(&(tb->Signature[i]));
3516 	temp_name[4] = '\0';
3517 	dev_info(dev, "   Signature = %s\n", temp_name);
3518 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3519 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3520 	       readl(&(tb->TransportSupport)));
3521 	dev_info(dev, "   Transport methods active = 0x%x\n",
3522 	       readl(&(tb->TransportActive)));
3523 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3524 	       readl(&(tb->HostWrite.TransportRequest)));
3525 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3526 	       readl(&(tb->HostWrite.CoalIntDelay)));
3527 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3528 	       readl(&(tb->HostWrite.CoalIntCount)));
3529 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3530 	       readl(&(tb->CmdsOutMax)));
3531 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3532 	for (i = 0; i < 16; i++)
3533 		temp_name[i] = readb(&(tb->ServerName[i]));
3534 	temp_name[16] = '\0';
3535 	dev_info(dev, "   Server Name = %s\n", temp_name);
3536 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3537 		readl(&(tb->HeartBeat)));
3538 #endif				/* HPSA_DEBUG */
3539 }
3540 
3541 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3542 {
3543 	int i, offset, mem_type, bar_type;
3544 
3545 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3546 		return 0;
3547 	offset = 0;
3548 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3549 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3550 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3551 			offset += 4;
3552 		else {
3553 			mem_type = pci_resource_flags(pdev, i) &
3554 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3555 			switch (mem_type) {
3556 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3557 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3558 				offset += 4;	/* 32 bit */
3559 				break;
3560 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3561 				offset += 8;
3562 				break;
3563 			default:	/* reserved in PCI 2.2 */
3564 				dev_warn(&pdev->dev,
3565 				       "base address is invalid\n");
3566 				return -1;
3567 				break;
3568 			}
3569 		}
3570 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3571 			return i + 1;
3572 	}
3573 	return -1;
3574 }
3575 
3576 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3577  * controllers that are capable. If not, we use IO-APIC mode.
3578  */
3579 
3580 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3581 {
3582 #ifdef CONFIG_PCI_MSI
3583 	int err;
3584 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3585 	{0, 2}, {0, 3}
3586 	};
3587 
3588 	/* Some boards advertise MSI but don't really support it */
3589 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3590 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3591 		goto default_int_mode;
3592 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3593 		dev_info(&h->pdev->dev, "MSIX\n");
3594 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3595 		if (!err) {
3596 			h->intr[0] = hpsa_msix_entries[0].vector;
3597 			h->intr[1] = hpsa_msix_entries[1].vector;
3598 			h->intr[2] = hpsa_msix_entries[2].vector;
3599 			h->intr[3] = hpsa_msix_entries[3].vector;
3600 			h->msix_vector = 1;
3601 			return;
3602 		}
3603 		if (err > 0) {
3604 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3605 			       "available\n", err);
3606 			goto default_int_mode;
3607 		} else {
3608 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3609 			       err);
3610 			goto default_int_mode;
3611 		}
3612 	}
3613 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3614 		dev_info(&h->pdev->dev, "MSI\n");
3615 		if (!pci_enable_msi(h->pdev))
3616 			h->msi_vector = 1;
3617 		else
3618 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3619 	}
3620 default_int_mode:
3621 #endif				/* CONFIG_PCI_MSI */
3622 	/* if we get here we're going to use the default interrupt mode */
3623 	h->intr[h->intr_mode] = h->pdev->irq;
3624 }
3625 
3626 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3627 {
3628 	int i;
3629 	u32 subsystem_vendor_id, subsystem_device_id;
3630 
3631 	subsystem_vendor_id = pdev->subsystem_vendor;
3632 	subsystem_device_id = pdev->subsystem_device;
3633 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3634 		    subsystem_vendor_id;
3635 
3636 	for (i = 0; i < ARRAY_SIZE(products); i++)
3637 		if (*board_id == products[i].board_id)
3638 			return i;
3639 
3640 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3641 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3642 		!hpsa_allow_any) {
3643 		dev_warn(&pdev->dev, "unrecognized board ID: "
3644 			"0x%08x, ignoring.\n", *board_id);
3645 			return -ENODEV;
3646 	}
3647 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3648 }
3649 
3650 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3651 {
3652 	u16 command;
3653 
3654 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3655 	return ((command & PCI_COMMAND_MEMORY) == 0);
3656 }
3657 
3658 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3659 	unsigned long *memory_bar)
3660 {
3661 	int i;
3662 
3663 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3664 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3665 			/* addressing mode bits already removed */
3666 			*memory_bar = pci_resource_start(pdev, i);
3667 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3668 				*memory_bar);
3669 			return 0;
3670 		}
3671 	dev_warn(&pdev->dev, "no memory BAR found\n");
3672 	return -ENODEV;
3673 }
3674 
3675 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3676 	void __iomem *vaddr, int wait_for_ready)
3677 {
3678 	int i, iterations;
3679 	u32 scratchpad;
3680 	if (wait_for_ready)
3681 		iterations = HPSA_BOARD_READY_ITERATIONS;
3682 	else
3683 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3684 
3685 	for (i = 0; i < iterations; i++) {
3686 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3687 		if (wait_for_ready) {
3688 			if (scratchpad == HPSA_FIRMWARE_READY)
3689 				return 0;
3690 		} else {
3691 			if (scratchpad != HPSA_FIRMWARE_READY)
3692 				return 0;
3693 		}
3694 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3695 	}
3696 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
3697 	return -ENODEV;
3698 }
3699 
3700 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3701 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3702 	u64 *cfg_offset)
3703 {
3704 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3705 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3706 	*cfg_base_addr &= (u32) 0x0000ffff;
3707 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3708 	if (*cfg_base_addr_index == -1) {
3709 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3710 		return -ENODEV;
3711 	}
3712 	return 0;
3713 }
3714 
3715 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3716 {
3717 	u64 cfg_offset;
3718 	u32 cfg_base_addr;
3719 	u64 cfg_base_addr_index;
3720 	u32 trans_offset;
3721 	int rc;
3722 
3723 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3724 		&cfg_base_addr_index, &cfg_offset);
3725 	if (rc)
3726 		return rc;
3727 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3728 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3729 	if (!h->cfgtable)
3730 		return -ENOMEM;
3731 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
3732 	if (rc)
3733 		return rc;
3734 	/* Find performant mode table. */
3735 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
3736 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3737 				cfg_base_addr_index)+cfg_offset+trans_offset,
3738 				sizeof(*h->transtable));
3739 	if (!h->transtable)
3740 		return -ENOMEM;
3741 	return 0;
3742 }
3743 
3744 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3745 {
3746 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3747 
3748 	/* Limit commands in memory limited kdump scenario. */
3749 	if (reset_devices && h->max_commands > 32)
3750 		h->max_commands = 32;
3751 
3752 	if (h->max_commands < 16) {
3753 		dev_warn(&h->pdev->dev, "Controller reports "
3754 			"max supported commands of %d, an obvious lie. "
3755 			"Using 16.  Ensure that firmware is up to date.\n",
3756 			h->max_commands);
3757 		h->max_commands = 16;
3758 	}
3759 }
3760 
3761 /* Interrogate the hardware for some limits:
3762  * max commands, max SG elements without chaining, and with chaining,
3763  * SG chain block size, etc.
3764  */
3765 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3766 {
3767 	hpsa_get_max_perf_mode_cmds(h);
3768 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3769 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3770 	/*
3771 	 * Limit in-command s/g elements to 32 save dma'able memory.
3772 	 * Howvever spec says if 0, use 31
3773 	 */
3774 	h->max_cmd_sg_entries = 31;
3775 	if (h->maxsgentries > 512) {
3776 		h->max_cmd_sg_entries = 32;
3777 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3778 		h->maxsgentries--; /* save one for chain pointer */
3779 	} else {
3780 		h->maxsgentries = 31; /* default to traditional values */
3781 		h->chainsize = 0;
3782 	}
3783 }
3784 
3785 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3786 {
3787 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3788 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3789 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3790 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3791 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3792 		return false;
3793 	}
3794 	return true;
3795 }
3796 
3797 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3798 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3799 {
3800 #ifdef CONFIG_X86
3801 	u32 prefetch;
3802 
3803 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3804 	prefetch |= 0x100;
3805 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3806 #endif
3807 }
3808 
3809 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3810  * in a prefetch beyond physical memory.
3811  */
3812 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3813 {
3814 	u32 dma_prefetch;
3815 
3816 	if (h->board_id != 0x3225103C)
3817 		return;
3818 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3819 	dma_prefetch |= 0x8000;
3820 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3821 }
3822 
3823 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3824 {
3825 	int i;
3826 	u32 doorbell_value;
3827 	unsigned long flags;
3828 
3829 	/* under certain very rare conditions, this can take awhile.
3830 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3831 	 * as we enter this code.)
3832 	 */
3833 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3834 		spin_lock_irqsave(&h->lock, flags);
3835 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3836 		spin_unlock_irqrestore(&h->lock, flags);
3837 		if (!(doorbell_value & CFGTBL_ChangeReq))
3838 			break;
3839 		/* delay and try again */
3840 		usleep_range(10000, 20000);
3841 	}
3842 }
3843 
3844 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3845 {
3846 	u32 trans_support;
3847 
3848 	trans_support = readl(&(h->cfgtable->TransportSupport));
3849 	if (!(trans_support & SIMPLE_MODE))
3850 		return -ENOTSUPP;
3851 
3852 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3853 	/* Update the field, and then ring the doorbell */
3854 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3855 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3856 	hpsa_wait_for_mode_change_ack(h);
3857 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3858 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3859 		dev_warn(&h->pdev->dev,
3860 			"unable to get board into simple mode\n");
3861 		return -ENODEV;
3862 	}
3863 	h->transMethod = CFGTBL_Trans_Simple;
3864 	return 0;
3865 }
3866 
3867 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3868 {
3869 	int prod_index, err;
3870 
3871 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3872 	if (prod_index < 0)
3873 		return -ENODEV;
3874 	h->product_name = products[prod_index].product_name;
3875 	h->access = *(products[prod_index].access);
3876 
3877 	if (hpsa_board_disabled(h->pdev)) {
3878 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3879 		return -ENODEV;
3880 	}
3881 	err = pci_enable_device(h->pdev);
3882 	if (err) {
3883 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3884 		return err;
3885 	}
3886 
3887 	err = pci_request_regions(h->pdev, "hpsa");
3888 	if (err) {
3889 		dev_err(&h->pdev->dev,
3890 			"cannot obtain PCI resources, aborting\n");
3891 		return err;
3892 	}
3893 	hpsa_interrupt_mode(h);
3894 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3895 	if (err)
3896 		goto err_out_free_res;
3897 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3898 	if (!h->vaddr) {
3899 		err = -ENOMEM;
3900 		goto err_out_free_res;
3901 	}
3902 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3903 	if (err)
3904 		goto err_out_free_res;
3905 	err = hpsa_find_cfgtables(h);
3906 	if (err)
3907 		goto err_out_free_res;
3908 	hpsa_find_board_params(h);
3909 
3910 	if (!hpsa_CISS_signature_present(h)) {
3911 		err = -ENODEV;
3912 		goto err_out_free_res;
3913 	}
3914 	hpsa_enable_scsi_prefetch(h);
3915 	hpsa_p600_dma_prefetch_quirk(h);
3916 	err = hpsa_enter_simple_mode(h);
3917 	if (err)
3918 		goto err_out_free_res;
3919 	return 0;
3920 
3921 err_out_free_res:
3922 	if (h->transtable)
3923 		iounmap(h->transtable);
3924 	if (h->cfgtable)
3925 		iounmap(h->cfgtable);
3926 	if (h->vaddr)
3927 		iounmap(h->vaddr);
3928 	/*
3929 	 * Deliberately omit pci_disable_device(): it does something nasty to
3930 	 * Smart Array controllers that pci_enable_device does not undo
3931 	 */
3932 	pci_release_regions(h->pdev);
3933 	return err;
3934 }
3935 
3936 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3937 {
3938 	int rc;
3939 
3940 #define HBA_INQUIRY_BYTE_COUNT 64
3941 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3942 	if (!h->hba_inquiry_data)
3943 		return;
3944 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3945 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3946 	if (rc != 0) {
3947 		kfree(h->hba_inquiry_data);
3948 		h->hba_inquiry_data = NULL;
3949 	}
3950 }
3951 
3952 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3953 {
3954 	int rc, i;
3955 
3956 	if (!reset_devices)
3957 		return 0;
3958 
3959 	/* Reset the controller with a PCI power-cycle or via doorbell */
3960 	rc = hpsa_kdump_hard_reset_controller(pdev);
3961 
3962 	/* -ENOTSUPP here means we cannot reset the controller
3963 	 * but it's already (and still) up and running in
3964 	 * "performant mode".  Or, it might be 640x, which can't reset
3965 	 * due to concerns about shared bbwc between 6402/6404 pair.
3966 	 */
3967 	if (rc == -ENOTSUPP)
3968 		return rc; /* just try to do the kdump anyhow. */
3969 	if (rc)
3970 		return -ENODEV;
3971 
3972 	/* Now try to get the controller to respond to a no-op */
3973 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3974 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3975 		if (hpsa_noop(pdev) == 0)
3976 			break;
3977 		else
3978 			dev_warn(&pdev->dev, "no-op failed%s\n",
3979 					(i < 11 ? "; re-trying" : ""));
3980 	}
3981 	return 0;
3982 }
3983 
3984 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3985 {
3986 	h->cmd_pool_bits = kzalloc(
3987 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3988 		sizeof(unsigned long), GFP_KERNEL);
3989 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3990 		    h->nr_cmds * sizeof(*h->cmd_pool),
3991 		    &(h->cmd_pool_dhandle));
3992 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3993 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3994 		    &(h->errinfo_pool_dhandle));
3995 	if ((h->cmd_pool_bits == NULL)
3996 	    || (h->cmd_pool == NULL)
3997 	    || (h->errinfo_pool == NULL)) {
3998 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3999 		return -ENOMEM;
4000 	}
4001 	return 0;
4002 }
4003 
4004 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4005 {
4006 	kfree(h->cmd_pool_bits);
4007 	if (h->cmd_pool)
4008 		pci_free_consistent(h->pdev,
4009 			    h->nr_cmds * sizeof(struct CommandList),
4010 			    h->cmd_pool, h->cmd_pool_dhandle);
4011 	if (h->errinfo_pool)
4012 		pci_free_consistent(h->pdev,
4013 			    h->nr_cmds * sizeof(struct ErrorInfo),
4014 			    h->errinfo_pool,
4015 			    h->errinfo_pool_dhandle);
4016 }
4017 
4018 static int hpsa_request_irq(struct ctlr_info *h,
4019 	irqreturn_t (*msixhandler)(int, void *),
4020 	irqreturn_t (*intxhandler)(int, void *))
4021 {
4022 	int rc;
4023 
4024 	if (h->msix_vector || h->msi_vector)
4025 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4026 				IRQF_DISABLED, h->devname, h);
4027 	else
4028 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4029 				IRQF_DISABLED, h->devname, h);
4030 	if (rc) {
4031 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4032 		       h->intr[h->intr_mode], h->devname);
4033 		return -ENODEV;
4034 	}
4035 	return 0;
4036 }
4037 
4038 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4039 {
4040 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4041 		HPSA_RESET_TYPE_CONTROLLER)) {
4042 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4043 		return -EIO;
4044 	}
4045 
4046 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4047 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4048 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4049 		return -1;
4050 	}
4051 
4052 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4053 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4054 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4055 			"after soft reset.\n");
4056 		return -1;
4057 	}
4058 
4059 	return 0;
4060 }
4061 
4062 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4063 {
4064 	free_irq(h->intr[h->intr_mode], h);
4065 #ifdef CONFIG_PCI_MSI
4066 	if (h->msix_vector)
4067 		pci_disable_msix(h->pdev);
4068 	else if (h->msi_vector)
4069 		pci_disable_msi(h->pdev);
4070 #endif /* CONFIG_PCI_MSI */
4071 	hpsa_free_sg_chain_blocks(h);
4072 	hpsa_free_cmd_pool(h);
4073 	kfree(h->blockFetchTable);
4074 	pci_free_consistent(h->pdev, h->reply_pool_size,
4075 		h->reply_pool, h->reply_pool_dhandle);
4076 	if (h->vaddr)
4077 		iounmap(h->vaddr);
4078 	if (h->transtable)
4079 		iounmap(h->transtable);
4080 	if (h->cfgtable)
4081 		iounmap(h->cfgtable);
4082 	pci_release_regions(h->pdev);
4083 	kfree(h);
4084 }
4085 
4086 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4087 				    const struct pci_device_id *ent)
4088 {
4089 	int dac, rc;
4090 	struct ctlr_info *h;
4091 	int try_soft_reset = 0;
4092 	unsigned long flags;
4093 
4094 	if (number_of_controllers == 0)
4095 		printk(KERN_INFO DRIVER_NAME "\n");
4096 
4097 	rc = hpsa_init_reset_devices(pdev);
4098 	if (rc) {
4099 		if (rc != -ENOTSUPP)
4100 			return rc;
4101 		/* If the reset fails in a particular way (it has no way to do
4102 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4103 		 * a soft reset once we get the controller configured up to the
4104 		 * point that it can accept a command.
4105 		 */
4106 		try_soft_reset = 1;
4107 		rc = 0;
4108 	}
4109 
4110 reinit_after_soft_reset:
4111 
4112 	/* Command structures must be aligned on a 32-byte boundary because
4113 	 * the 5 lower bits of the address are used by the hardware. and by
4114 	 * the driver.  See comments in hpsa.h for more info.
4115 	 */
4116 #define COMMANDLIST_ALIGNMENT 32
4117 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4118 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4119 	if (!h)
4120 		return -ENOMEM;
4121 
4122 	h->pdev = pdev;
4123 	h->busy_initializing = 1;
4124 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4125 	INIT_LIST_HEAD(&h->cmpQ);
4126 	INIT_LIST_HEAD(&h->reqQ);
4127 	spin_lock_init(&h->lock);
4128 	spin_lock_init(&h->scan_lock);
4129 	rc = hpsa_pci_init(h);
4130 	if (rc != 0)
4131 		goto clean1;
4132 
4133 	sprintf(h->devname, "hpsa%d", number_of_controllers);
4134 	h->ctlr = number_of_controllers;
4135 	number_of_controllers++;
4136 
4137 	/* configure PCI DMA stuff */
4138 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4139 	if (rc == 0) {
4140 		dac = 1;
4141 	} else {
4142 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4143 		if (rc == 0) {
4144 			dac = 0;
4145 		} else {
4146 			dev_err(&pdev->dev, "no suitable DMA available\n");
4147 			goto clean1;
4148 		}
4149 	}
4150 
4151 	/* make sure the board interrupts are off */
4152 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4153 
4154 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4155 		goto clean2;
4156 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4157 	       h->devname, pdev->device,
4158 	       h->intr[h->intr_mode], dac ? "" : " not");
4159 	if (hpsa_allocate_cmd_pool(h))
4160 		goto clean4;
4161 	if (hpsa_allocate_sg_chain_blocks(h))
4162 		goto clean4;
4163 	init_waitqueue_head(&h->scan_wait_queue);
4164 	h->scan_finished = 1; /* no scan currently in progress */
4165 
4166 	pci_set_drvdata(pdev, h);
4167 	h->ndevices = 0;
4168 	h->scsi_host = NULL;
4169 	spin_lock_init(&h->devlock);
4170 	hpsa_put_ctlr_into_performant_mode(h);
4171 
4172 	/* At this point, the controller is ready to take commands.
4173 	 * Now, if reset_devices and the hard reset didn't work, try
4174 	 * the soft reset and see if that works.
4175 	 */
4176 	if (try_soft_reset) {
4177 
4178 		/* This is kind of gross.  We may or may not get a completion
4179 		 * from the soft reset command, and if we do, then the value
4180 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4181 		 * after the reset throwing away any completions we get during
4182 		 * that time.  Unregister the interrupt handler and register
4183 		 * fake ones to scoop up any residual completions.
4184 		 */
4185 		spin_lock_irqsave(&h->lock, flags);
4186 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4187 		spin_unlock_irqrestore(&h->lock, flags);
4188 		free_irq(h->intr[h->intr_mode], h);
4189 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4190 					hpsa_intx_discard_completions);
4191 		if (rc) {
4192 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4193 				"soft reset.\n");
4194 			goto clean4;
4195 		}
4196 
4197 		rc = hpsa_kdump_soft_reset(h);
4198 		if (rc)
4199 			/* Neither hard nor soft reset worked, we're hosed. */
4200 			goto clean4;
4201 
4202 		dev_info(&h->pdev->dev, "Board READY.\n");
4203 		dev_info(&h->pdev->dev,
4204 			"Waiting for stale completions to drain.\n");
4205 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4206 		msleep(10000);
4207 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4208 
4209 		rc = controller_reset_failed(h->cfgtable);
4210 		if (rc)
4211 			dev_info(&h->pdev->dev,
4212 				"Soft reset appears to have failed.\n");
4213 
4214 		/* since the controller's reset, we have to go back and re-init
4215 		 * everything.  Easiest to just forget what we've done and do it
4216 		 * all over again.
4217 		 */
4218 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4219 		try_soft_reset = 0;
4220 		if (rc)
4221 			/* don't go to clean4, we already unallocated */
4222 			return -ENODEV;
4223 
4224 		goto reinit_after_soft_reset;
4225 	}
4226 
4227 	/* Turn the interrupts on so we can service requests */
4228 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4229 
4230 	hpsa_hba_inquiry(h);
4231 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4232 	h->busy_initializing = 0;
4233 	return 1;
4234 
4235 clean4:
4236 	hpsa_free_sg_chain_blocks(h);
4237 	hpsa_free_cmd_pool(h);
4238 	free_irq(h->intr[h->intr_mode], h);
4239 clean2:
4240 clean1:
4241 	h->busy_initializing = 0;
4242 	kfree(h);
4243 	return rc;
4244 }
4245 
4246 static void hpsa_flush_cache(struct ctlr_info *h)
4247 {
4248 	char *flush_buf;
4249 	struct CommandList *c;
4250 
4251 	flush_buf = kzalloc(4, GFP_KERNEL);
4252 	if (!flush_buf)
4253 		return;
4254 
4255 	c = cmd_special_alloc(h);
4256 	if (!c) {
4257 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4258 		goto out_of_memory;
4259 	}
4260 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4261 		RAID_CTLR_LUNID, TYPE_CMD);
4262 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4263 	if (c->err_info->CommandStatus != 0)
4264 		dev_warn(&h->pdev->dev,
4265 			"error flushing cache on controller\n");
4266 	cmd_special_free(h, c);
4267 out_of_memory:
4268 	kfree(flush_buf);
4269 }
4270 
4271 static void hpsa_shutdown(struct pci_dev *pdev)
4272 {
4273 	struct ctlr_info *h;
4274 
4275 	h = pci_get_drvdata(pdev);
4276 	/* Turn board interrupts off  and send the flush cache command
4277 	 * sendcmd will turn off interrupt, and send the flush...
4278 	 * To write all data in the battery backed cache to disks
4279 	 */
4280 	hpsa_flush_cache(h);
4281 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4282 	free_irq(h->intr[h->intr_mode], h);
4283 #ifdef CONFIG_PCI_MSI
4284 	if (h->msix_vector)
4285 		pci_disable_msix(h->pdev);
4286 	else if (h->msi_vector)
4287 		pci_disable_msi(h->pdev);
4288 #endif				/* CONFIG_PCI_MSI */
4289 }
4290 
4291 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4292 {
4293 	struct ctlr_info *h;
4294 
4295 	if (pci_get_drvdata(pdev) == NULL) {
4296 		dev_err(&pdev->dev, "unable to remove device \n");
4297 		return;
4298 	}
4299 	h = pci_get_drvdata(pdev);
4300 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4301 	hpsa_shutdown(pdev);
4302 	iounmap(h->vaddr);
4303 	iounmap(h->transtable);
4304 	iounmap(h->cfgtable);
4305 	hpsa_free_sg_chain_blocks(h);
4306 	pci_free_consistent(h->pdev,
4307 		h->nr_cmds * sizeof(struct CommandList),
4308 		h->cmd_pool, h->cmd_pool_dhandle);
4309 	pci_free_consistent(h->pdev,
4310 		h->nr_cmds * sizeof(struct ErrorInfo),
4311 		h->errinfo_pool, h->errinfo_pool_dhandle);
4312 	pci_free_consistent(h->pdev, h->reply_pool_size,
4313 		h->reply_pool, h->reply_pool_dhandle);
4314 	kfree(h->cmd_pool_bits);
4315 	kfree(h->blockFetchTable);
4316 	kfree(h->hba_inquiry_data);
4317 	/*
4318 	 * Deliberately omit pci_disable_device(): it does something nasty to
4319 	 * Smart Array controllers that pci_enable_device does not undo
4320 	 */
4321 	pci_release_regions(pdev);
4322 	pci_set_drvdata(pdev, NULL);
4323 	kfree(h);
4324 }
4325 
4326 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4327 	__attribute__((unused)) pm_message_t state)
4328 {
4329 	return -ENOSYS;
4330 }
4331 
4332 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4333 {
4334 	return -ENOSYS;
4335 }
4336 
4337 static struct pci_driver hpsa_pci_driver = {
4338 	.name = "hpsa",
4339 	.probe = hpsa_init_one,
4340 	.remove = __devexit_p(hpsa_remove_one),
4341 	.id_table = hpsa_pci_device_id,	/* id_table */
4342 	.shutdown = hpsa_shutdown,
4343 	.suspend = hpsa_suspend,
4344 	.resume = hpsa_resume,
4345 };
4346 
4347 /* Fill in bucket_map[], given nsgs (the max number of
4348  * scatter gather elements supported) and bucket[],
4349  * which is an array of 8 integers.  The bucket[] array
4350  * contains 8 different DMA transfer sizes (in 16
4351  * byte increments) which the controller uses to fetch
4352  * commands.  This function fills in bucket_map[], which
4353  * maps a given number of scatter gather elements to one of
4354  * the 8 DMA transfer sizes.  The point of it is to allow the
4355  * controller to only do as much DMA as needed to fetch the
4356  * command, with the DMA transfer size encoded in the lower
4357  * bits of the command address.
4358  */
4359 static void  calc_bucket_map(int bucket[], int num_buckets,
4360 	int nsgs, int *bucket_map)
4361 {
4362 	int i, j, b, size;
4363 
4364 	/* even a command with 0 SGs requires 4 blocks */
4365 #define MINIMUM_TRANSFER_BLOCKS 4
4366 #define NUM_BUCKETS 8
4367 	/* Note, bucket_map must have nsgs+1 entries. */
4368 	for (i = 0; i <= nsgs; i++) {
4369 		/* Compute size of a command with i SG entries */
4370 		size = i + MINIMUM_TRANSFER_BLOCKS;
4371 		b = num_buckets; /* Assume the biggest bucket */
4372 		/* Find the bucket that is just big enough */
4373 		for (j = 0; j < 8; j++) {
4374 			if (bucket[j] >= size) {
4375 				b = j;
4376 				break;
4377 			}
4378 		}
4379 		/* for a command with i SG entries, use bucket b. */
4380 		bucket_map[i] = b;
4381 	}
4382 }
4383 
4384 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4385 	u32 use_short_tags)
4386 {
4387 	int i;
4388 	unsigned long register_value;
4389 
4390 	/* This is a bit complicated.  There are 8 registers on
4391 	 * the controller which we write to to tell it 8 different
4392 	 * sizes of commands which there may be.  It's a way of
4393 	 * reducing the DMA done to fetch each command.  Encoded into
4394 	 * each command's tag are 3 bits which communicate to the controller
4395 	 * which of the eight sizes that command fits within.  The size of
4396 	 * each command depends on how many scatter gather entries there are.
4397 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4398 	 * with the number of 16-byte blocks a command of that size requires.
4399 	 * The smallest command possible requires 5 such 16 byte blocks.
4400 	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4401 	 * blocks.  Note, this only extends to the SG entries contained
4402 	 * within the command block, and does not extend to chained blocks
4403 	 * of SG elements.   bft[] contains the eight values we write to
4404 	 * the registers.  They are not evenly distributed, but have more
4405 	 * sizes for small commands, and fewer sizes for larger commands.
4406 	 */
4407 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4408 	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4409 	/*  5 = 1 s/g entry or 4k
4410 	 *  6 = 2 s/g entry or 8k
4411 	 *  8 = 4 s/g entry or 16k
4412 	 * 10 = 6 s/g entry or 24k
4413 	 */
4414 
4415 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4416 
4417 	/* Controller spec: zero out this buffer. */
4418 	memset(h->reply_pool, 0, h->reply_pool_size);
4419 	h->reply_pool_head = h->reply_pool;
4420 
4421 	bft[7] = h->max_sg_entries + 4;
4422 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4423 	for (i = 0; i < 8; i++)
4424 		writel(bft[i], &h->transtable->BlockFetch[i]);
4425 
4426 	/* size of controller ring buffer */
4427 	writel(h->max_commands, &h->transtable->RepQSize);
4428 	writel(1, &h->transtable->RepQCount);
4429 	writel(0, &h->transtable->RepQCtrAddrLow32);
4430 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4431 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4432 	writel(0, &h->transtable->RepQAddr0High32);
4433 	writel(CFGTBL_Trans_Performant | use_short_tags,
4434 		&(h->cfgtable->HostWrite.TransportRequest));
4435 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4436 	hpsa_wait_for_mode_change_ack(h);
4437 	register_value = readl(&(h->cfgtable->TransportActive));
4438 	if (!(register_value & CFGTBL_Trans_Performant)) {
4439 		dev_warn(&h->pdev->dev, "unable to get board into"
4440 					" performant mode\n");
4441 		return;
4442 	}
4443 	/* Change the access methods to the performant access methods */
4444 	h->access = SA5_performant_access;
4445 	h->transMethod = CFGTBL_Trans_Performant;
4446 }
4447 
4448 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4449 {
4450 	u32 trans_support;
4451 
4452 	if (hpsa_simple_mode)
4453 		return;
4454 
4455 	trans_support = readl(&(h->cfgtable->TransportSupport));
4456 	if (!(trans_support & PERFORMANT_MODE))
4457 		return;
4458 
4459 	hpsa_get_max_perf_mode_cmds(h);
4460 	h->max_sg_entries = 32;
4461 	/* Performant mode ring buffer and supporting data structures */
4462 	h->reply_pool_size = h->max_commands * sizeof(u64);
4463 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4464 				&(h->reply_pool_dhandle));
4465 
4466 	/* Need a block fetch table for performant mode */
4467 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4468 				sizeof(u32)), GFP_KERNEL);
4469 
4470 	if ((h->reply_pool == NULL)
4471 		|| (h->blockFetchTable == NULL))
4472 		goto clean_up;
4473 
4474 	hpsa_enter_performant_mode(h,
4475 		trans_support & CFGTBL_Trans_use_short_tags);
4476 
4477 	return;
4478 
4479 clean_up:
4480 	if (h->reply_pool)
4481 		pci_free_consistent(h->pdev, h->reply_pool_size,
4482 			h->reply_pool, h->reply_pool_dhandle);
4483 	kfree(h->blockFetchTable);
4484 }
4485 
4486 /*
4487  *  This is it.  Register the PCI driver information for the cards we control
4488  *  the OS will call our registered routines when it finds one of our cards.
4489  */
4490 static int __init hpsa_init(void)
4491 {
4492 	return pci_register_driver(&hpsa_pci_driver);
4493 }
4494 
4495 static void __exit hpsa_cleanup(void)
4496 {
4497 	pci_unregister_driver(&hpsa_pci_driver);
4498 }
4499 
4500 module_init(hpsa_init);
4501 module_exit(hpsa_cleanup);
4502