xref: /openbmc/linux/drivers/scsi/hpsa.c (revision f89439bc2e12a0eab57f15411e668525dc7e61ec)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <asm/div64.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "3.4.4-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 #define HPSA "hpsa"
59 
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63 
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66 
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70 	HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74 
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78 		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82 	"Use 'simple mode' rather than 'performant mode'");
83 
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
127 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
128 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
131 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
132 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
133 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
134 	{0,}
135 };
136 
137 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
138 
139 /*  board_id = Subsystem Device ID & Vendor ID
140  *  product = Marketing Name for the board
141  *  access = Address of the struct of function pointers
142  */
143 static struct board_type products[] = {
144 	{0x3241103C, "Smart Array P212", &SA5_access},
145 	{0x3243103C, "Smart Array P410", &SA5_access},
146 	{0x3245103C, "Smart Array P410i", &SA5_access},
147 	{0x3247103C, "Smart Array P411", &SA5_access},
148 	{0x3249103C, "Smart Array P812", &SA5_access},
149 	{0x324A103C, "Smart Array P712m", &SA5_access},
150 	{0x324B103C, "Smart Array P711m", &SA5_access},
151 	{0x3350103C, "Smart Array P222", &SA5_access},
152 	{0x3351103C, "Smart Array P420", &SA5_access},
153 	{0x3352103C, "Smart Array P421", &SA5_access},
154 	{0x3353103C, "Smart Array P822", &SA5_access},
155 	{0x3354103C, "Smart Array P420i", &SA5_access},
156 	{0x3355103C, "Smart Array P220i", &SA5_access},
157 	{0x3356103C, "Smart Array P721m", &SA5_access},
158 	{0x1921103C, "Smart Array P830i", &SA5_access},
159 	{0x1922103C, "Smart Array P430", &SA5_access},
160 	{0x1923103C, "Smart Array P431", &SA5_access},
161 	{0x1924103C, "Smart Array P830", &SA5_access},
162 	{0x1926103C, "Smart Array P731m", &SA5_access},
163 	{0x1928103C, "Smart Array P230i", &SA5_access},
164 	{0x1929103C, "Smart Array P530", &SA5_access},
165 	{0x21BD103C, "Smart Array", &SA5_access},
166 	{0x21BE103C, "Smart Array", &SA5_access},
167 	{0x21BF103C, "Smart Array", &SA5_access},
168 	{0x21C0103C, "Smart Array", &SA5_access},
169 	{0x21C1103C, "Smart Array", &SA5_access},
170 	{0x21C2103C, "Smart Array", &SA5_access},
171 	{0x21C3103C, "Smart Array", &SA5_access},
172 	{0x21C4103C, "Smart Array", &SA5_access},
173 	{0x21C5103C, "Smart Array", &SA5_access},
174 	{0x21C6103C, "Smart Array", &SA5_access},
175 	{0x21C7103C, "Smart Array", &SA5_access},
176 	{0x21C8103C, "Smart Array", &SA5_access},
177 	{0x21C9103C, "Smart Array", &SA5_access},
178 	{0x21CA103C, "Smart Array", &SA5_access},
179 	{0x21CB103C, "Smart Array", &SA5_access},
180 	{0x21CC103C, "Smart Array", &SA5_access},
181 	{0x21CD103C, "Smart Array", &SA5_access},
182 	{0x21CE103C, "Smart Array", &SA5_access},
183 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
184 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
185 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
186 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
187 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
188 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
189 };
190 
191 static int number_of_controllers;
192 
193 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
194 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
195 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
196 static void start_io(struct ctlr_info *h);
197 
198 #ifdef CONFIG_COMPAT
199 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
200 #endif
201 
202 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
203 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
204 static struct CommandList *cmd_alloc(struct ctlr_info *h);
205 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
206 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
207 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
208 	int cmd_type);
209 #define VPD_PAGE (1 << 8)
210 
211 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
212 static void hpsa_scan_start(struct Scsi_Host *);
213 static int hpsa_scan_finished(struct Scsi_Host *sh,
214 	unsigned long elapsed_time);
215 static int hpsa_change_queue_depth(struct scsi_device *sdev,
216 	int qdepth, int reason);
217 
218 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
219 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
220 static int hpsa_slave_alloc(struct scsi_device *sdev);
221 static void hpsa_slave_destroy(struct scsi_device *sdev);
222 
223 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
224 static int check_for_unit_attention(struct ctlr_info *h,
225 	struct CommandList *c);
226 static void check_ioctl_unit_attention(struct ctlr_info *h,
227 	struct CommandList *c);
228 /* performant mode helper functions */
229 static void calc_bucket_map(int *bucket, int num_buckets,
230 	int nsgs, int min_blocks, int *bucket_map);
231 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
232 static inline u32 next_command(struct ctlr_info *h, u8 q);
233 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
234 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
235 			       u64 *cfg_offset);
236 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
237 				    unsigned long *memory_bar);
238 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
239 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
240 				     int wait_for_ready);
241 static inline void finish_cmd(struct CommandList *c);
242 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
243 #define BOARD_NOT_READY 0
244 #define BOARD_READY 1
245 static void hpsa_drain_accel_commands(struct ctlr_info *h);
246 static void hpsa_flush_cache(struct ctlr_info *h);
247 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
248 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
249 	u8 *scsi3addr);
250 
251 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
252 {
253 	unsigned long *priv = shost_priv(sdev->host);
254 	return (struct ctlr_info *) *priv;
255 }
256 
257 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
258 {
259 	unsigned long *priv = shost_priv(sh);
260 	return (struct ctlr_info *) *priv;
261 }
262 
263 static int check_for_unit_attention(struct ctlr_info *h,
264 	struct CommandList *c)
265 {
266 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
267 		return 0;
268 
269 	switch (c->err_info->SenseInfo[12]) {
270 	case STATE_CHANGED:
271 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
272 			"detected, command retried\n", h->ctlr);
273 		break;
274 	case LUN_FAILED:
275 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
276 			"detected, action required\n", h->ctlr);
277 		break;
278 	case REPORT_LUNS_CHANGED:
279 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
280 			"changed, action required\n", h->ctlr);
281 	/*
282 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
283 	 * target (array) devices.
284 	 */
285 		break;
286 	case POWER_OR_RESET:
287 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
288 			"or device reset detected\n", h->ctlr);
289 		break;
290 	case UNIT_ATTENTION_CLEARED:
291 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
292 		    "cleared by another initiator\n", h->ctlr);
293 		break;
294 	default:
295 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
296 			"unit attention detected\n", h->ctlr);
297 		break;
298 	}
299 	return 1;
300 }
301 
302 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
303 {
304 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
305 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
306 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
307 		return 0;
308 	dev_warn(&h->pdev->dev, HPSA "device busy");
309 	return 1;
310 }
311 
312 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
313 					 struct device_attribute *attr,
314 					 const char *buf, size_t count)
315 {
316 	int status, len;
317 	struct ctlr_info *h;
318 	struct Scsi_Host *shost = class_to_shost(dev);
319 	char tmpbuf[10];
320 
321 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
322 		return -EACCES;
323 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
324 	strncpy(tmpbuf, buf, len);
325 	tmpbuf[len] = '\0';
326 	if (sscanf(tmpbuf, "%d", &status) != 1)
327 		return -EINVAL;
328 	h = shost_to_hba(shost);
329 	h->acciopath_status = !!status;
330 	dev_warn(&h->pdev->dev,
331 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
332 		h->acciopath_status ? "enabled" : "disabled");
333 	return count;
334 }
335 
336 static ssize_t host_store_raid_offload_debug(struct device *dev,
337 					 struct device_attribute *attr,
338 					 const char *buf, size_t count)
339 {
340 	int debug_level, len;
341 	struct ctlr_info *h;
342 	struct Scsi_Host *shost = class_to_shost(dev);
343 	char tmpbuf[10];
344 
345 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
346 		return -EACCES;
347 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
348 	strncpy(tmpbuf, buf, len);
349 	tmpbuf[len] = '\0';
350 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
351 		return -EINVAL;
352 	if (debug_level < 0)
353 		debug_level = 0;
354 	h = shost_to_hba(shost);
355 	h->raid_offload_debug = debug_level;
356 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
357 		h->raid_offload_debug);
358 	return count;
359 }
360 
361 static ssize_t host_store_rescan(struct device *dev,
362 				 struct device_attribute *attr,
363 				 const char *buf, size_t count)
364 {
365 	struct ctlr_info *h;
366 	struct Scsi_Host *shost = class_to_shost(dev);
367 	h = shost_to_hba(shost);
368 	hpsa_scan_start(h->scsi_host);
369 	return count;
370 }
371 
372 static ssize_t host_show_firmware_revision(struct device *dev,
373 	     struct device_attribute *attr, char *buf)
374 {
375 	struct ctlr_info *h;
376 	struct Scsi_Host *shost = class_to_shost(dev);
377 	unsigned char *fwrev;
378 
379 	h = shost_to_hba(shost);
380 	if (!h->hba_inquiry_data)
381 		return 0;
382 	fwrev = &h->hba_inquiry_data[32];
383 	return snprintf(buf, 20, "%c%c%c%c\n",
384 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
385 }
386 
387 static ssize_t host_show_commands_outstanding(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	struct Scsi_Host *shost = class_to_shost(dev);
391 	struct ctlr_info *h = shost_to_hba(shost);
392 
393 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
394 }
395 
396 static ssize_t host_show_transport_mode(struct device *dev,
397 	struct device_attribute *attr, char *buf)
398 {
399 	struct ctlr_info *h;
400 	struct Scsi_Host *shost = class_to_shost(dev);
401 
402 	h = shost_to_hba(shost);
403 	return snprintf(buf, 20, "%s\n",
404 		h->transMethod & CFGTBL_Trans_Performant ?
405 			"performant" : "simple");
406 }
407 
408 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
409 	struct device_attribute *attr, char *buf)
410 {
411 	struct ctlr_info *h;
412 	struct Scsi_Host *shost = class_to_shost(dev);
413 
414 	h = shost_to_hba(shost);
415 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
416 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
417 }
418 
419 /* List of controllers which cannot be hard reset on kexec with reset_devices */
420 static u32 unresettable_controller[] = {
421 	0x324a103C, /* Smart Array P712m */
422 	0x324b103C, /* SmartArray P711m */
423 	0x3223103C, /* Smart Array P800 */
424 	0x3234103C, /* Smart Array P400 */
425 	0x3235103C, /* Smart Array P400i */
426 	0x3211103C, /* Smart Array E200i */
427 	0x3212103C, /* Smart Array E200 */
428 	0x3213103C, /* Smart Array E200i */
429 	0x3214103C, /* Smart Array E200i */
430 	0x3215103C, /* Smart Array E200i */
431 	0x3237103C, /* Smart Array E500 */
432 	0x323D103C, /* Smart Array P700m */
433 	0x40800E11, /* Smart Array 5i */
434 	0x409C0E11, /* Smart Array 6400 */
435 	0x409D0E11, /* Smart Array 6400 EM */
436 	0x40700E11, /* Smart Array 5300 */
437 	0x40820E11, /* Smart Array 532 */
438 	0x40830E11, /* Smart Array 5312 */
439 	0x409A0E11, /* Smart Array 641 */
440 	0x409B0E11, /* Smart Array 642 */
441 	0x40910E11, /* Smart Array 6i */
442 };
443 
444 /* List of controllers which cannot even be soft reset */
445 static u32 soft_unresettable_controller[] = {
446 	0x40800E11, /* Smart Array 5i */
447 	0x40700E11, /* Smart Array 5300 */
448 	0x40820E11, /* Smart Array 532 */
449 	0x40830E11, /* Smart Array 5312 */
450 	0x409A0E11, /* Smart Array 641 */
451 	0x409B0E11, /* Smart Array 642 */
452 	0x40910E11, /* Smart Array 6i */
453 	/* Exclude 640x boards.  These are two pci devices in one slot
454 	 * which share a battery backed cache module.  One controls the
455 	 * cache, the other accesses the cache through the one that controls
456 	 * it.  If we reset the one controlling the cache, the other will
457 	 * likely not be happy.  Just forbid resetting this conjoined mess.
458 	 * The 640x isn't really supported by hpsa anyway.
459 	 */
460 	0x409C0E11, /* Smart Array 6400 */
461 	0x409D0E11, /* Smart Array 6400 EM */
462 };
463 
464 static int ctlr_is_hard_resettable(u32 board_id)
465 {
466 	int i;
467 
468 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
469 		if (unresettable_controller[i] == board_id)
470 			return 0;
471 	return 1;
472 }
473 
474 static int ctlr_is_soft_resettable(u32 board_id)
475 {
476 	int i;
477 
478 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
479 		if (soft_unresettable_controller[i] == board_id)
480 			return 0;
481 	return 1;
482 }
483 
484 static int ctlr_is_resettable(u32 board_id)
485 {
486 	return ctlr_is_hard_resettable(board_id) ||
487 		ctlr_is_soft_resettable(board_id);
488 }
489 
490 static ssize_t host_show_resettable(struct device *dev,
491 	struct device_attribute *attr, char *buf)
492 {
493 	struct ctlr_info *h;
494 	struct Scsi_Host *shost = class_to_shost(dev);
495 
496 	h = shost_to_hba(shost);
497 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
498 }
499 
500 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
501 {
502 	return (scsi3addr[3] & 0xC0) == 0x40;
503 }
504 
505 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
506 	"1(ADM)", "UNKNOWN"
507 };
508 #define HPSA_RAID_0	0
509 #define HPSA_RAID_4	1
510 #define HPSA_RAID_1	2	/* also used for RAID 10 */
511 #define HPSA_RAID_5	3	/* also used for RAID 50 */
512 #define HPSA_RAID_51	4
513 #define HPSA_RAID_6	5	/* also used for RAID 60 */
514 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
515 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
516 
517 static ssize_t raid_level_show(struct device *dev,
518 	     struct device_attribute *attr, char *buf)
519 {
520 	ssize_t l = 0;
521 	unsigned char rlevel;
522 	struct ctlr_info *h;
523 	struct scsi_device *sdev;
524 	struct hpsa_scsi_dev_t *hdev;
525 	unsigned long flags;
526 
527 	sdev = to_scsi_device(dev);
528 	h = sdev_to_hba(sdev);
529 	spin_lock_irqsave(&h->lock, flags);
530 	hdev = sdev->hostdata;
531 	if (!hdev) {
532 		spin_unlock_irqrestore(&h->lock, flags);
533 		return -ENODEV;
534 	}
535 
536 	/* Is this even a logical drive? */
537 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
538 		spin_unlock_irqrestore(&h->lock, flags);
539 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
540 		return l;
541 	}
542 
543 	rlevel = hdev->raid_level;
544 	spin_unlock_irqrestore(&h->lock, flags);
545 	if (rlevel > RAID_UNKNOWN)
546 		rlevel = RAID_UNKNOWN;
547 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
548 	return l;
549 }
550 
551 static ssize_t lunid_show(struct device *dev,
552 	     struct device_attribute *attr, char *buf)
553 {
554 	struct ctlr_info *h;
555 	struct scsi_device *sdev;
556 	struct hpsa_scsi_dev_t *hdev;
557 	unsigned long flags;
558 	unsigned char lunid[8];
559 
560 	sdev = to_scsi_device(dev);
561 	h = sdev_to_hba(sdev);
562 	spin_lock_irqsave(&h->lock, flags);
563 	hdev = sdev->hostdata;
564 	if (!hdev) {
565 		spin_unlock_irqrestore(&h->lock, flags);
566 		return -ENODEV;
567 	}
568 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
569 	spin_unlock_irqrestore(&h->lock, flags);
570 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
571 		lunid[0], lunid[1], lunid[2], lunid[3],
572 		lunid[4], lunid[5], lunid[6], lunid[7]);
573 }
574 
575 static ssize_t unique_id_show(struct device *dev,
576 	     struct device_attribute *attr, char *buf)
577 {
578 	struct ctlr_info *h;
579 	struct scsi_device *sdev;
580 	struct hpsa_scsi_dev_t *hdev;
581 	unsigned long flags;
582 	unsigned char sn[16];
583 
584 	sdev = to_scsi_device(dev);
585 	h = sdev_to_hba(sdev);
586 	spin_lock_irqsave(&h->lock, flags);
587 	hdev = sdev->hostdata;
588 	if (!hdev) {
589 		spin_unlock_irqrestore(&h->lock, flags);
590 		return -ENODEV;
591 	}
592 	memcpy(sn, hdev->device_id, sizeof(sn));
593 	spin_unlock_irqrestore(&h->lock, flags);
594 	return snprintf(buf, 16 * 2 + 2,
595 			"%02X%02X%02X%02X%02X%02X%02X%02X"
596 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
597 			sn[0], sn[1], sn[2], sn[3],
598 			sn[4], sn[5], sn[6], sn[7],
599 			sn[8], sn[9], sn[10], sn[11],
600 			sn[12], sn[13], sn[14], sn[15]);
601 }
602 
603 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
604 	     struct device_attribute *attr, char *buf)
605 {
606 	struct ctlr_info *h;
607 	struct scsi_device *sdev;
608 	struct hpsa_scsi_dev_t *hdev;
609 	unsigned long flags;
610 	int offload_enabled;
611 
612 	sdev = to_scsi_device(dev);
613 	h = sdev_to_hba(sdev);
614 	spin_lock_irqsave(&h->lock, flags);
615 	hdev = sdev->hostdata;
616 	if (!hdev) {
617 		spin_unlock_irqrestore(&h->lock, flags);
618 		return -ENODEV;
619 	}
620 	offload_enabled = hdev->offload_enabled;
621 	spin_unlock_irqrestore(&h->lock, flags);
622 	return snprintf(buf, 20, "%d\n", offload_enabled);
623 }
624 
625 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
626 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
627 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
628 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
629 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
630 			host_show_hp_ssd_smart_path_enabled, NULL);
631 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
632 		host_show_hp_ssd_smart_path_status,
633 		host_store_hp_ssd_smart_path_status);
634 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
635 			host_store_raid_offload_debug);
636 static DEVICE_ATTR(firmware_revision, S_IRUGO,
637 	host_show_firmware_revision, NULL);
638 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
639 	host_show_commands_outstanding, NULL);
640 static DEVICE_ATTR(transport_mode, S_IRUGO,
641 	host_show_transport_mode, NULL);
642 static DEVICE_ATTR(resettable, S_IRUGO,
643 	host_show_resettable, NULL);
644 
645 static struct device_attribute *hpsa_sdev_attrs[] = {
646 	&dev_attr_raid_level,
647 	&dev_attr_lunid,
648 	&dev_attr_unique_id,
649 	&dev_attr_hp_ssd_smart_path_enabled,
650 	NULL,
651 };
652 
653 static struct device_attribute *hpsa_shost_attrs[] = {
654 	&dev_attr_rescan,
655 	&dev_attr_firmware_revision,
656 	&dev_attr_commands_outstanding,
657 	&dev_attr_transport_mode,
658 	&dev_attr_resettable,
659 	&dev_attr_hp_ssd_smart_path_status,
660 	&dev_attr_raid_offload_debug,
661 	NULL,
662 };
663 
664 static struct scsi_host_template hpsa_driver_template = {
665 	.module			= THIS_MODULE,
666 	.name			= HPSA,
667 	.proc_name		= HPSA,
668 	.queuecommand		= hpsa_scsi_queue_command,
669 	.scan_start		= hpsa_scan_start,
670 	.scan_finished		= hpsa_scan_finished,
671 	.change_queue_depth	= hpsa_change_queue_depth,
672 	.this_id		= -1,
673 	.use_clustering		= ENABLE_CLUSTERING,
674 	.eh_abort_handler	= hpsa_eh_abort_handler,
675 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
676 	.ioctl			= hpsa_ioctl,
677 	.slave_alloc		= hpsa_slave_alloc,
678 	.slave_destroy		= hpsa_slave_destroy,
679 #ifdef CONFIG_COMPAT
680 	.compat_ioctl		= hpsa_compat_ioctl,
681 #endif
682 	.sdev_attrs = hpsa_sdev_attrs,
683 	.shost_attrs = hpsa_shost_attrs,
684 	.max_sectors = 8192,
685 	.no_write_same = 1,
686 };
687 
688 
689 /* Enqueuing and dequeuing functions for cmdlists. */
690 static inline void addQ(struct list_head *list, struct CommandList *c)
691 {
692 	list_add_tail(&c->list, list);
693 }
694 
695 static inline u32 next_command(struct ctlr_info *h, u8 q)
696 {
697 	u32 a;
698 	struct reply_pool *rq = &h->reply_queue[q];
699 	unsigned long flags;
700 
701 	if (h->transMethod & CFGTBL_Trans_io_accel1)
702 		return h->access.command_completed(h, q);
703 
704 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
705 		return h->access.command_completed(h, q);
706 
707 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
708 		a = rq->head[rq->current_entry];
709 		rq->current_entry++;
710 		spin_lock_irqsave(&h->lock, flags);
711 		h->commands_outstanding--;
712 		spin_unlock_irqrestore(&h->lock, flags);
713 	} else {
714 		a = FIFO_EMPTY;
715 	}
716 	/* Check for wraparound */
717 	if (rq->current_entry == h->max_commands) {
718 		rq->current_entry = 0;
719 		rq->wraparound ^= 1;
720 	}
721 	return a;
722 }
723 
724 /*
725  * There are some special bits in the bus address of the
726  * command that we have to set for the controller to know
727  * how to process the command:
728  *
729  * Normal performant mode:
730  * bit 0: 1 means performant mode, 0 means simple mode.
731  * bits 1-3 = block fetch table entry
732  * bits 4-6 = command type (== 0)
733  *
734  * ioaccel1 mode:
735  * bit 0 = "performant mode" bit.
736  * bits 1-3 = block fetch table entry
737  * bits 4-6 = command type (== 110)
738  * (command type is needed because ioaccel1 mode
739  * commands are submitted through the same register as normal
740  * mode commands, so this is how the controller knows whether
741  * the command is normal mode or ioaccel1 mode.)
742  *
743  * ioaccel2 mode:
744  * bit 0 = "performant mode" bit.
745  * bits 1-4 = block fetch table entry (note extra bit)
746  * bits 4-6 = not needed, because ioaccel2 mode has
747  * a separate special register for submitting commands.
748  */
749 
750 /* set_performant_mode: Modify the tag for cciss performant
751  * set bit 0 for pull model, bits 3-1 for block fetch
752  * register number
753  */
754 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
755 {
756 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
757 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
758 		if (likely(h->msix_vector > 0))
759 			c->Header.ReplyQueue =
760 				raw_smp_processor_id() % h->nreply_queues;
761 	}
762 }
763 
764 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
765 						struct CommandList *c)
766 {
767 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
768 
769 	/* Tell the controller to post the reply to the queue for this
770 	 * processor.  This seems to give the best I/O throughput.
771 	 */
772 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
773 	/* Set the bits in the address sent down to include:
774 	 *  - performant mode bit (bit 0)
775 	 *  - pull count (bits 1-3)
776 	 *  - command type (bits 4-6)
777 	 */
778 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
779 					IOACCEL1_BUSADDR_CMDTYPE;
780 }
781 
782 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
783 						struct CommandList *c)
784 {
785 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
786 
787 	/* Tell the controller to post the reply to the queue for this
788 	 * processor.  This seems to give the best I/O throughput.
789 	 */
790 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
791 	/* Set the bits in the address sent down to include:
792 	 *  - performant mode bit not used in ioaccel mode 2
793 	 *  - pull count (bits 0-3)
794 	 *  - command type isn't needed for ioaccel2
795 	 */
796 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
797 }
798 
799 static int is_firmware_flash_cmd(u8 *cdb)
800 {
801 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
802 }
803 
804 /*
805  * During firmware flash, the heartbeat register may not update as frequently
806  * as it should.  So we dial down lockup detection during firmware flash. and
807  * dial it back up when firmware flash completes.
808  */
809 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
810 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
811 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
812 		struct CommandList *c)
813 {
814 	if (!is_firmware_flash_cmd(c->Request.CDB))
815 		return;
816 	atomic_inc(&h->firmware_flash_in_progress);
817 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
818 }
819 
820 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
821 		struct CommandList *c)
822 {
823 	if (is_firmware_flash_cmd(c->Request.CDB) &&
824 		atomic_dec_and_test(&h->firmware_flash_in_progress))
825 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
826 }
827 
828 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
829 	struct CommandList *c)
830 {
831 	unsigned long flags;
832 
833 	switch (c->cmd_type) {
834 	case CMD_IOACCEL1:
835 		set_ioaccel1_performant_mode(h, c);
836 		break;
837 	case CMD_IOACCEL2:
838 		set_ioaccel2_performant_mode(h, c);
839 		break;
840 	default:
841 		set_performant_mode(h, c);
842 	}
843 	dial_down_lockup_detection_during_fw_flash(h, c);
844 	spin_lock_irqsave(&h->lock, flags);
845 	addQ(&h->reqQ, c);
846 	h->Qdepth++;
847 	spin_unlock_irqrestore(&h->lock, flags);
848 	start_io(h);
849 }
850 
851 static inline void removeQ(struct CommandList *c)
852 {
853 	if (WARN_ON(list_empty(&c->list)))
854 		return;
855 	list_del_init(&c->list);
856 }
857 
858 static inline int is_hba_lunid(unsigned char scsi3addr[])
859 {
860 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
861 }
862 
863 static inline int is_scsi_rev_5(struct ctlr_info *h)
864 {
865 	if (!h->hba_inquiry_data)
866 		return 0;
867 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
868 		return 1;
869 	return 0;
870 }
871 
872 static int hpsa_find_target_lun(struct ctlr_info *h,
873 	unsigned char scsi3addr[], int bus, int *target, int *lun)
874 {
875 	/* finds an unused bus, target, lun for a new physical device
876 	 * assumes h->devlock is held
877 	 */
878 	int i, found = 0;
879 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
880 
881 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
882 
883 	for (i = 0; i < h->ndevices; i++) {
884 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
885 			__set_bit(h->dev[i]->target, lun_taken);
886 	}
887 
888 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
889 	if (i < HPSA_MAX_DEVICES) {
890 		/* *bus = 1; */
891 		*target = i;
892 		*lun = 0;
893 		found = 1;
894 	}
895 	return !found;
896 }
897 
898 /* Add an entry into h->dev[] array. */
899 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
900 		struct hpsa_scsi_dev_t *device,
901 		struct hpsa_scsi_dev_t *added[], int *nadded)
902 {
903 	/* assumes h->devlock is held */
904 	int n = h->ndevices;
905 	int i;
906 	unsigned char addr1[8], addr2[8];
907 	struct hpsa_scsi_dev_t *sd;
908 
909 	if (n >= HPSA_MAX_DEVICES) {
910 		dev_err(&h->pdev->dev, "too many devices, some will be "
911 			"inaccessible.\n");
912 		return -1;
913 	}
914 
915 	/* physical devices do not have lun or target assigned until now. */
916 	if (device->lun != -1)
917 		/* Logical device, lun is already assigned. */
918 		goto lun_assigned;
919 
920 	/* If this device a non-zero lun of a multi-lun device
921 	 * byte 4 of the 8-byte LUN addr will contain the logical
922 	 * unit no, zero otherise.
923 	 */
924 	if (device->scsi3addr[4] == 0) {
925 		/* This is not a non-zero lun of a multi-lun device */
926 		if (hpsa_find_target_lun(h, device->scsi3addr,
927 			device->bus, &device->target, &device->lun) != 0)
928 			return -1;
929 		goto lun_assigned;
930 	}
931 
932 	/* This is a non-zero lun of a multi-lun device.
933 	 * Search through our list and find the device which
934 	 * has the same 8 byte LUN address, excepting byte 4.
935 	 * Assign the same bus and target for this new LUN.
936 	 * Use the logical unit number from the firmware.
937 	 */
938 	memcpy(addr1, device->scsi3addr, 8);
939 	addr1[4] = 0;
940 	for (i = 0; i < n; i++) {
941 		sd = h->dev[i];
942 		memcpy(addr2, sd->scsi3addr, 8);
943 		addr2[4] = 0;
944 		/* differ only in byte 4? */
945 		if (memcmp(addr1, addr2, 8) == 0) {
946 			device->bus = sd->bus;
947 			device->target = sd->target;
948 			device->lun = device->scsi3addr[4];
949 			break;
950 		}
951 	}
952 	if (device->lun == -1) {
953 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
954 			" suspect firmware bug or unsupported hardware "
955 			"configuration.\n");
956 			return -1;
957 	}
958 
959 lun_assigned:
960 
961 	h->dev[n] = device;
962 	h->ndevices++;
963 	added[*nadded] = device;
964 	(*nadded)++;
965 
966 	/* initially, (before registering with scsi layer) we don't
967 	 * know our hostno and we don't want to print anything first
968 	 * time anyway (the scsi layer's inquiries will show that info)
969 	 */
970 	/* if (hostno != -1) */
971 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
972 			scsi_device_type(device->devtype), hostno,
973 			device->bus, device->target, device->lun);
974 	return 0;
975 }
976 
977 /* Update an entry in h->dev[] array. */
978 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
979 	int entry, struct hpsa_scsi_dev_t *new_entry)
980 {
981 	/* assumes h->devlock is held */
982 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
983 
984 	/* Raid level changed. */
985 	h->dev[entry]->raid_level = new_entry->raid_level;
986 
987 	/* Raid offload parameters changed. */
988 	h->dev[entry]->offload_config = new_entry->offload_config;
989 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
991 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
992 	h->dev[entry]->raid_map = new_entry->raid_map;
993 
994 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
995 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
996 		new_entry->target, new_entry->lun);
997 }
998 
999 /* Replace an entry from h->dev[] array. */
1000 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1001 	int entry, struct hpsa_scsi_dev_t *new_entry,
1002 	struct hpsa_scsi_dev_t *added[], int *nadded,
1003 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1004 {
1005 	/* assumes h->devlock is held */
1006 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1007 	removed[*nremoved] = h->dev[entry];
1008 	(*nremoved)++;
1009 
1010 	/*
1011 	 * New physical devices won't have target/lun assigned yet
1012 	 * so we need to preserve the values in the slot we are replacing.
1013 	 */
1014 	if (new_entry->target == -1) {
1015 		new_entry->target = h->dev[entry]->target;
1016 		new_entry->lun = h->dev[entry]->lun;
1017 	}
1018 
1019 	h->dev[entry] = new_entry;
1020 	added[*nadded] = new_entry;
1021 	(*nadded)++;
1022 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1023 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1024 			new_entry->target, new_entry->lun);
1025 }
1026 
1027 /* Remove an entry from h->dev[] array. */
1028 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1029 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1030 {
1031 	/* assumes h->devlock is held */
1032 	int i;
1033 	struct hpsa_scsi_dev_t *sd;
1034 
1035 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1036 
1037 	sd = h->dev[entry];
1038 	removed[*nremoved] = h->dev[entry];
1039 	(*nremoved)++;
1040 
1041 	for (i = entry; i < h->ndevices-1; i++)
1042 		h->dev[i] = h->dev[i+1];
1043 	h->ndevices--;
1044 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1045 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1046 		sd->lun);
1047 }
1048 
1049 #define SCSI3ADDR_EQ(a, b) ( \
1050 	(a)[7] == (b)[7] && \
1051 	(a)[6] == (b)[6] && \
1052 	(a)[5] == (b)[5] && \
1053 	(a)[4] == (b)[4] && \
1054 	(a)[3] == (b)[3] && \
1055 	(a)[2] == (b)[2] && \
1056 	(a)[1] == (b)[1] && \
1057 	(a)[0] == (b)[0])
1058 
1059 static void fixup_botched_add(struct ctlr_info *h,
1060 	struct hpsa_scsi_dev_t *added)
1061 {
1062 	/* called when scsi_add_device fails in order to re-adjust
1063 	 * h->dev[] to match the mid layer's view.
1064 	 */
1065 	unsigned long flags;
1066 	int i, j;
1067 
1068 	spin_lock_irqsave(&h->lock, flags);
1069 	for (i = 0; i < h->ndevices; i++) {
1070 		if (h->dev[i] == added) {
1071 			for (j = i; j < h->ndevices-1; j++)
1072 				h->dev[j] = h->dev[j+1];
1073 			h->ndevices--;
1074 			break;
1075 		}
1076 	}
1077 	spin_unlock_irqrestore(&h->lock, flags);
1078 	kfree(added);
1079 }
1080 
1081 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1082 	struct hpsa_scsi_dev_t *dev2)
1083 {
1084 	/* we compare everything except lun and target as these
1085 	 * are not yet assigned.  Compare parts likely
1086 	 * to differ first
1087 	 */
1088 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1089 		sizeof(dev1->scsi3addr)) != 0)
1090 		return 0;
1091 	if (memcmp(dev1->device_id, dev2->device_id,
1092 		sizeof(dev1->device_id)) != 0)
1093 		return 0;
1094 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1095 		return 0;
1096 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1097 		return 0;
1098 	if (dev1->devtype != dev2->devtype)
1099 		return 0;
1100 	if (dev1->bus != dev2->bus)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1106 	struct hpsa_scsi_dev_t *dev2)
1107 {
1108 	/* Device attributes that can change, but don't mean
1109 	 * that the device is a different device, nor that the OS
1110 	 * needs to be told anything about the change.
1111 	 */
1112 	if (dev1->raid_level != dev2->raid_level)
1113 		return 1;
1114 	if (dev1->offload_config != dev2->offload_config)
1115 		return 1;
1116 	if (dev1->offload_enabled != dev2->offload_enabled)
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1122  * and return needle location in *index.  If scsi3addr matches, but not
1123  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124  * location in *index.
1125  * In the case of a minor device attribute change, such as RAID level, just
1126  * return DEVICE_UPDATED, along with the updated device's location in index.
1127  * If needle not found, return DEVICE_NOT_FOUND.
1128  */
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131 	int *index)
1132 {
1133 	int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 	for (i = 0; i < haystack_size; i++) {
1139 		if (haystack[i] == NULL) /* previously removed. */
1140 			continue;
1141 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142 			*index = i;
1143 			if (device_is_the_same(needle, haystack[i])) {
1144 				if (device_updated(needle, haystack[i]))
1145 					return DEVICE_UPDATED;
1146 				return DEVICE_SAME;
1147 			} else {
1148 				/* Keep offline devices offline */
1149 				if (needle->volume_offline)
1150 					return DEVICE_NOT_FOUND;
1151 				return DEVICE_CHANGED;
1152 			}
1153 		}
1154 	}
1155 	*index = -1;
1156 	return DEVICE_NOT_FOUND;
1157 }
1158 
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160 					unsigned char scsi3addr[])
1161 {
1162 	struct offline_device_entry *device;
1163 	unsigned long flags;
1164 
1165 	/* Check to see if device is already on the list */
1166 	spin_lock_irqsave(&h->offline_device_lock, flags);
1167 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168 		if (memcmp(device->scsi3addr, scsi3addr,
1169 			sizeof(device->scsi3addr)) == 0) {
1170 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171 			return;
1172 		}
1173 	}
1174 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175 
1176 	/* Device is not on the list, add it. */
1177 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1178 	if (!device) {
1179 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180 		return;
1181 	}
1182 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183 	spin_lock_irqsave(&h->offline_device_lock, flags);
1184 	list_add_tail(&device->offline_list, &h->offline_device_list);
1185 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1186 }
1187 
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190 	struct hpsa_scsi_dev_t *sd)
1191 {
1192 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193 		dev_info(&h->pdev->dev,
1194 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 			h->scsi_host->host_no,
1196 			sd->bus, sd->target, sd->lun);
1197 	switch (sd->volume_offline) {
1198 	case HPSA_LV_OK:
1199 		break;
1200 	case HPSA_LV_UNDERGOING_ERASE:
1201 		dev_info(&h->pdev->dev,
1202 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 			h->scsi_host->host_no,
1204 			sd->bus, sd->target, sd->lun);
1205 		break;
1206 	case HPSA_LV_UNDERGOING_RPI:
1207 		dev_info(&h->pdev->dev,
1208 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 			h->scsi_host->host_no,
1210 			sd->bus, sd->target, sd->lun);
1211 		break;
1212 	case HPSA_LV_PENDING_RPI:
1213 		dev_info(&h->pdev->dev,
1214 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 				h->scsi_host->host_no,
1216 				sd->bus, sd->target, sd->lun);
1217 		break;
1218 	case HPSA_LV_ENCRYPTED_NO_KEY:
1219 		dev_info(&h->pdev->dev,
1220 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 			h->scsi_host->host_no,
1222 			sd->bus, sd->target, sd->lun);
1223 		break;
1224 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225 		dev_info(&h->pdev->dev,
1226 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 			h->scsi_host->host_no,
1228 			sd->bus, sd->target, sd->lun);
1229 		break;
1230 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1231 		dev_info(&h->pdev->dev,
1232 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 			h->scsi_host->host_no,
1234 			sd->bus, sd->target, sd->lun);
1235 		break;
1236 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237 		dev_info(&h->pdev->dev,
1238 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 			h->scsi_host->host_no,
1240 			sd->bus, sd->target, sd->lun);
1241 		break;
1242 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243 		dev_info(&h->pdev->dev,
1244 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 			h->scsi_host->host_no,
1246 			sd->bus, sd->target, sd->lun);
1247 		break;
1248 	case HPSA_LV_PENDING_ENCRYPTION:
1249 		dev_info(&h->pdev->dev,
1250 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 			h->scsi_host->host_no,
1252 			sd->bus, sd->target, sd->lun);
1253 		break;
1254 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255 		dev_info(&h->pdev->dev,
1256 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 			h->scsi_host->host_no,
1258 			sd->bus, sd->target, sd->lun);
1259 		break;
1260 	}
1261 }
1262 
1263 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1264 	struct hpsa_scsi_dev_t *sd[], int nsds)
1265 {
1266 	/* sd contains scsi3 addresses and devtypes, and inquiry
1267 	 * data.  This function takes what's in sd to be the current
1268 	 * reality and updates h->dev[] to reflect that reality.
1269 	 */
1270 	int i, entry, device_change, changes = 0;
1271 	struct hpsa_scsi_dev_t *csd;
1272 	unsigned long flags;
1273 	struct hpsa_scsi_dev_t **added, **removed;
1274 	int nadded, nremoved;
1275 	struct Scsi_Host *sh = NULL;
1276 
1277 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1278 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1279 
1280 	if (!added || !removed) {
1281 		dev_warn(&h->pdev->dev, "out of memory in "
1282 			"adjust_hpsa_scsi_table\n");
1283 		goto free_and_out;
1284 	}
1285 
1286 	spin_lock_irqsave(&h->devlock, flags);
1287 
1288 	/* find any devices in h->dev[] that are not in
1289 	 * sd[] and remove them from h->dev[], and for any
1290 	 * devices which have changed, remove the old device
1291 	 * info and add the new device info.
1292 	 * If minor device attributes change, just update
1293 	 * the existing device structure.
1294 	 */
1295 	i = 0;
1296 	nremoved = 0;
1297 	nadded = 0;
1298 	while (i < h->ndevices) {
1299 		csd = h->dev[i];
1300 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1301 		if (device_change == DEVICE_NOT_FOUND) {
1302 			changes++;
1303 			hpsa_scsi_remove_entry(h, hostno, i,
1304 				removed, &nremoved);
1305 			continue; /* remove ^^^, hence i not incremented */
1306 		} else if (device_change == DEVICE_CHANGED) {
1307 			changes++;
1308 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1309 				added, &nadded, removed, &nremoved);
1310 			/* Set it to NULL to prevent it from being freed
1311 			 * at the bottom of hpsa_update_scsi_devices()
1312 			 */
1313 			sd[entry] = NULL;
1314 		} else if (device_change == DEVICE_UPDATED) {
1315 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1316 		}
1317 		i++;
1318 	}
1319 
1320 	/* Now, make sure every device listed in sd[] is also
1321 	 * listed in h->dev[], adding them if they aren't found
1322 	 */
1323 
1324 	for (i = 0; i < nsds; i++) {
1325 		if (!sd[i]) /* if already added above. */
1326 			continue;
1327 
1328 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1329 		 * as the SCSI mid-layer does not handle such devices well.
1330 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1331 		 * at 160Hz, and prevents the system from coming up.
1332 		 */
1333 		if (sd[i]->volume_offline) {
1334 			hpsa_show_volume_status(h, sd[i]);
1335 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1336 				h->scsi_host->host_no,
1337 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1338 			continue;
1339 		}
1340 
1341 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1342 					h->ndevices, &entry);
1343 		if (device_change == DEVICE_NOT_FOUND) {
1344 			changes++;
1345 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1346 				added, &nadded) != 0)
1347 				break;
1348 			sd[i] = NULL; /* prevent from being freed later. */
1349 		} else if (device_change == DEVICE_CHANGED) {
1350 			/* should never happen... */
1351 			changes++;
1352 			dev_warn(&h->pdev->dev,
1353 				"device unexpectedly changed.\n");
1354 			/* but if it does happen, we just ignore that device */
1355 		}
1356 	}
1357 	spin_unlock_irqrestore(&h->devlock, flags);
1358 
1359 	/* Monitor devices which are in one of several NOT READY states to be
1360 	 * brought online later. This must be done without holding h->devlock,
1361 	 * so don't touch h->dev[]
1362 	 */
1363 	for (i = 0; i < nsds; i++) {
1364 		if (!sd[i]) /* if already added above. */
1365 			continue;
1366 		if (sd[i]->volume_offline)
1367 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1368 	}
1369 
1370 	/* Don't notify scsi mid layer of any changes the first time through
1371 	 * (or if there are no changes) scsi_scan_host will do it later the
1372 	 * first time through.
1373 	 */
1374 	if (hostno == -1 || !changes)
1375 		goto free_and_out;
1376 
1377 	sh = h->scsi_host;
1378 	/* Notify scsi mid layer of any removed devices */
1379 	for (i = 0; i < nremoved; i++) {
1380 		struct scsi_device *sdev =
1381 			scsi_device_lookup(sh, removed[i]->bus,
1382 				removed[i]->target, removed[i]->lun);
1383 		if (sdev != NULL) {
1384 			scsi_remove_device(sdev);
1385 			scsi_device_put(sdev);
1386 		} else {
1387 			/* We don't expect to get here.
1388 			 * future cmds to this device will get selection
1389 			 * timeout as if the device was gone.
1390 			 */
1391 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1392 				" for removal.", hostno, removed[i]->bus,
1393 				removed[i]->target, removed[i]->lun);
1394 		}
1395 		kfree(removed[i]);
1396 		removed[i] = NULL;
1397 	}
1398 
1399 	/* Notify scsi mid layer of any added devices */
1400 	for (i = 0; i < nadded; i++) {
1401 		if (scsi_add_device(sh, added[i]->bus,
1402 			added[i]->target, added[i]->lun) == 0)
1403 			continue;
1404 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1405 			"device not added.\n", hostno, added[i]->bus,
1406 			added[i]->target, added[i]->lun);
1407 		/* now we have to remove it from h->dev,
1408 		 * since it didn't get added to scsi mid layer
1409 		 */
1410 		fixup_botched_add(h, added[i]);
1411 	}
1412 
1413 free_and_out:
1414 	kfree(added);
1415 	kfree(removed);
1416 }
1417 
1418 /*
1419  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1420  * Assume's h->devlock is held.
1421  */
1422 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1423 	int bus, int target, int lun)
1424 {
1425 	int i;
1426 	struct hpsa_scsi_dev_t *sd;
1427 
1428 	for (i = 0; i < h->ndevices; i++) {
1429 		sd = h->dev[i];
1430 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1431 			return sd;
1432 	}
1433 	return NULL;
1434 }
1435 
1436 /* link sdev->hostdata to our per-device structure. */
1437 static int hpsa_slave_alloc(struct scsi_device *sdev)
1438 {
1439 	struct hpsa_scsi_dev_t *sd;
1440 	unsigned long flags;
1441 	struct ctlr_info *h;
1442 
1443 	h = sdev_to_hba(sdev);
1444 	spin_lock_irqsave(&h->devlock, flags);
1445 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1446 		sdev_id(sdev), sdev->lun);
1447 	if (sd != NULL)
1448 		sdev->hostdata = sd;
1449 	spin_unlock_irqrestore(&h->devlock, flags);
1450 	return 0;
1451 }
1452 
1453 static void hpsa_slave_destroy(struct scsi_device *sdev)
1454 {
1455 	/* nothing to do. */
1456 }
1457 
1458 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1459 {
1460 	int i;
1461 
1462 	if (!h->cmd_sg_list)
1463 		return;
1464 	for (i = 0; i < h->nr_cmds; i++) {
1465 		kfree(h->cmd_sg_list[i]);
1466 		h->cmd_sg_list[i] = NULL;
1467 	}
1468 	kfree(h->cmd_sg_list);
1469 	h->cmd_sg_list = NULL;
1470 }
1471 
1472 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1473 {
1474 	int i;
1475 
1476 	if (h->chainsize <= 0)
1477 		return 0;
1478 
1479 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1480 				GFP_KERNEL);
1481 	if (!h->cmd_sg_list)
1482 		return -ENOMEM;
1483 	for (i = 0; i < h->nr_cmds; i++) {
1484 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1485 						h->chainsize, GFP_KERNEL);
1486 		if (!h->cmd_sg_list[i])
1487 			goto clean;
1488 	}
1489 	return 0;
1490 
1491 clean:
1492 	hpsa_free_sg_chain_blocks(h);
1493 	return -ENOMEM;
1494 }
1495 
1496 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1497 	struct CommandList *c)
1498 {
1499 	struct SGDescriptor *chain_sg, *chain_block;
1500 	u64 temp64;
1501 
1502 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1503 	chain_block = h->cmd_sg_list[c->cmdindex];
1504 	chain_sg->Ext = HPSA_SG_CHAIN;
1505 	chain_sg->Len = sizeof(*chain_sg) *
1506 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1507 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1508 				PCI_DMA_TODEVICE);
1509 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1510 		/* prevent subsequent unmapping */
1511 		chain_sg->Addr.lower = 0;
1512 		chain_sg->Addr.upper = 0;
1513 		return -1;
1514 	}
1515 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1516 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1517 	return 0;
1518 }
1519 
1520 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1521 	struct CommandList *c)
1522 {
1523 	struct SGDescriptor *chain_sg;
1524 	union u64bit temp64;
1525 
1526 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1527 		return;
1528 
1529 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1530 	temp64.val32.lower = chain_sg->Addr.lower;
1531 	temp64.val32.upper = chain_sg->Addr.upper;
1532 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1533 }
1534 
1535 
1536 /* Decode the various types of errors on ioaccel2 path.
1537  * Return 1 for any error that should generate a RAID path retry.
1538  * Return 0 for errors that don't require a RAID path retry.
1539  */
1540 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1541 					struct CommandList *c,
1542 					struct scsi_cmnd *cmd,
1543 					struct io_accel2_cmd *c2)
1544 {
1545 	int data_len;
1546 	int retry = 0;
1547 
1548 	switch (c2->error_data.serv_response) {
1549 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1550 		switch (c2->error_data.status) {
1551 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1552 			break;
1553 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1554 			dev_warn(&h->pdev->dev,
1555 				"%s: task complete with check condition.\n",
1556 				"HP SSD Smart Path");
1557 			if (c2->error_data.data_present !=
1558 					IOACCEL2_SENSE_DATA_PRESENT)
1559 				break;
1560 			/* copy the sense data */
1561 			data_len = c2->error_data.sense_data_len;
1562 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1563 				data_len = SCSI_SENSE_BUFFERSIZE;
1564 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1565 				data_len =
1566 					sizeof(c2->error_data.sense_data_buff);
1567 			memcpy(cmd->sense_buffer,
1568 				c2->error_data.sense_data_buff, data_len);
1569 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1570 			retry = 1;
1571 			break;
1572 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1573 			dev_warn(&h->pdev->dev,
1574 				"%s: task complete with BUSY status.\n",
1575 				"HP SSD Smart Path");
1576 			retry = 1;
1577 			break;
1578 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1579 			dev_warn(&h->pdev->dev,
1580 				"%s: task complete with reservation conflict.\n",
1581 				"HP SSD Smart Path");
1582 			retry = 1;
1583 			break;
1584 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1585 			/* Make scsi midlayer do unlimited retries */
1586 			cmd->result = DID_IMM_RETRY << 16;
1587 			break;
1588 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1589 			dev_warn(&h->pdev->dev,
1590 				"%s: task complete with aborted status.\n",
1591 				"HP SSD Smart Path");
1592 			retry = 1;
1593 			break;
1594 		default:
1595 			dev_warn(&h->pdev->dev,
1596 				"%s: task complete with unrecognized status: 0x%02x\n",
1597 				"HP SSD Smart Path", c2->error_data.status);
1598 			retry = 1;
1599 			break;
1600 		}
1601 		break;
1602 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1603 		/* don't expect to get here. */
1604 		dev_warn(&h->pdev->dev,
1605 			"unexpected delivery or target failure, status = 0x%02x\n",
1606 			c2->error_data.status);
1607 		retry = 1;
1608 		break;
1609 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1610 		break;
1611 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1612 		break;
1613 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1614 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1615 		retry = 1;
1616 		break;
1617 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1618 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1619 		break;
1620 	default:
1621 		dev_warn(&h->pdev->dev,
1622 			"%s: Unrecognized server response: 0x%02x\n",
1623 			"HP SSD Smart Path",
1624 			c2->error_data.serv_response);
1625 		retry = 1;
1626 		break;
1627 	}
1628 
1629 	return retry;	/* retry on raid path? */
1630 }
1631 
1632 static void process_ioaccel2_completion(struct ctlr_info *h,
1633 		struct CommandList *c, struct scsi_cmnd *cmd,
1634 		struct hpsa_scsi_dev_t *dev)
1635 {
1636 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1637 	int raid_retry = 0;
1638 
1639 	/* check for good status */
1640 	if (likely(c2->error_data.serv_response == 0 &&
1641 			c2->error_data.status == 0)) {
1642 		cmd_free(h, c);
1643 		cmd->scsi_done(cmd);
1644 		return;
1645 	}
1646 
1647 	/* Any RAID offload error results in retry which will use
1648 	 * the normal I/O path so the controller can handle whatever's
1649 	 * wrong.
1650 	 */
1651 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1652 		c2->error_data.serv_response ==
1653 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1654 		if (c2->error_data.status ==
1655 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1656 			dev_warn(&h->pdev->dev,
1657 				"%s: Path is unavailable, retrying on standard path.\n",
1658 				"HP SSD Smart Path");
1659 		else
1660 			dev_warn(&h->pdev->dev,
1661 				"%s: Error 0x%02x, retrying on standard path.\n",
1662 				"HP SSD Smart Path", c2->error_data.status);
1663 
1664 		dev->offload_enabled = 0;
1665 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1666 		cmd->result = DID_SOFT_ERROR << 16;
1667 		cmd_free(h, c);
1668 		cmd->scsi_done(cmd);
1669 		return;
1670 	}
1671 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1672 	/* If error found, disable Smart Path, schedule a rescan,
1673 	 * and force a retry on the standard path.
1674 	 */
1675 	if (raid_retry) {
1676 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1677 			"HP SSD Smart Path");
1678 		dev->offload_enabled = 0; /* Disable Smart Path */
1679 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1680 		cmd->result = DID_SOFT_ERROR << 16;
1681 	}
1682 	cmd_free(h, c);
1683 	cmd->scsi_done(cmd);
1684 }
1685 
1686 static void complete_scsi_command(struct CommandList *cp)
1687 {
1688 	struct scsi_cmnd *cmd;
1689 	struct ctlr_info *h;
1690 	struct ErrorInfo *ei;
1691 	struct hpsa_scsi_dev_t *dev;
1692 
1693 	unsigned char sense_key;
1694 	unsigned char asc;      /* additional sense code */
1695 	unsigned char ascq;     /* additional sense code qualifier */
1696 	unsigned long sense_data_size;
1697 
1698 	ei = cp->err_info;
1699 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1700 	h = cp->h;
1701 	dev = cmd->device->hostdata;
1702 
1703 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1704 	if ((cp->cmd_type == CMD_SCSI) &&
1705 		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1706 		hpsa_unmap_sg_chain_block(h, cp);
1707 
1708 	cmd->result = (DID_OK << 16); 		/* host byte */
1709 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1710 
1711 	if (cp->cmd_type == CMD_IOACCEL2)
1712 		return process_ioaccel2_completion(h, cp, cmd, dev);
1713 
1714 	cmd->result |= ei->ScsiStatus;
1715 
1716 	/* copy the sense data whether we need to or not. */
1717 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1718 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1719 	else
1720 		sense_data_size = sizeof(ei->SenseInfo);
1721 	if (ei->SenseLen < sense_data_size)
1722 		sense_data_size = ei->SenseLen;
1723 
1724 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1725 	scsi_set_resid(cmd, ei->ResidualCnt);
1726 
1727 	if (ei->CommandStatus == 0) {
1728 		cmd_free(h, cp);
1729 		cmd->scsi_done(cmd);
1730 		return;
1731 	}
1732 
1733 	/* For I/O accelerator commands, copy over some fields to the normal
1734 	 * CISS header used below for error handling.
1735 	 */
1736 	if (cp->cmd_type == CMD_IOACCEL1) {
1737 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1738 		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1739 		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1740 		cp->Header.Tag.lower = c->Tag.lower;
1741 		cp->Header.Tag.upper = c->Tag.upper;
1742 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1743 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1744 
1745 		/* Any RAID offload error results in retry which will use
1746 		 * the normal I/O path so the controller can handle whatever's
1747 		 * wrong.
1748 		 */
1749 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1750 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1751 				dev->offload_enabled = 0;
1752 			cmd->result = DID_SOFT_ERROR << 16;
1753 			cmd_free(h, cp);
1754 			cmd->scsi_done(cmd);
1755 			return;
1756 		}
1757 	}
1758 
1759 	/* an error has occurred */
1760 	switch (ei->CommandStatus) {
1761 
1762 	case CMD_TARGET_STATUS:
1763 		if (ei->ScsiStatus) {
1764 			/* Get sense key */
1765 			sense_key = 0xf & ei->SenseInfo[2];
1766 			/* Get additional sense code */
1767 			asc = ei->SenseInfo[12];
1768 			/* Get addition sense code qualifier */
1769 			ascq = ei->SenseInfo[13];
1770 		}
1771 
1772 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1773 			if (check_for_unit_attention(h, cp))
1774 				break;
1775 			if (sense_key == ILLEGAL_REQUEST) {
1776 				/*
1777 				 * SCSI REPORT_LUNS is commonly unsupported on
1778 				 * Smart Array.  Suppress noisy complaint.
1779 				 */
1780 				if (cp->Request.CDB[0] == REPORT_LUNS)
1781 					break;
1782 
1783 				/* If ASC/ASCQ indicate Logical Unit
1784 				 * Not Supported condition,
1785 				 */
1786 				if ((asc == 0x25) && (ascq == 0x0)) {
1787 					dev_warn(&h->pdev->dev, "cp %p "
1788 						"has check condition\n", cp);
1789 					break;
1790 				}
1791 			}
1792 
1793 			if (sense_key == NOT_READY) {
1794 				/* If Sense is Not Ready, Logical Unit
1795 				 * Not ready, Manual Intervention
1796 				 * required
1797 				 */
1798 				if ((asc == 0x04) && (ascq == 0x03)) {
1799 					dev_warn(&h->pdev->dev, "cp %p "
1800 						"has check condition: unit "
1801 						"not ready, manual "
1802 						"intervention required\n", cp);
1803 					break;
1804 				}
1805 			}
1806 			if (sense_key == ABORTED_COMMAND) {
1807 				/* Aborted command is retryable */
1808 				dev_warn(&h->pdev->dev, "cp %p "
1809 					"has check condition: aborted command: "
1810 					"ASC: 0x%x, ASCQ: 0x%x\n",
1811 					cp, asc, ascq);
1812 				cmd->result |= DID_SOFT_ERROR << 16;
1813 				break;
1814 			}
1815 			/* Must be some other type of check condition */
1816 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1817 					"unknown type: "
1818 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1819 					"Returning result: 0x%x, "
1820 					"cmd=[%02x %02x %02x %02x %02x "
1821 					"%02x %02x %02x %02x %02x %02x "
1822 					"%02x %02x %02x %02x %02x]\n",
1823 					cp, sense_key, asc, ascq,
1824 					cmd->result,
1825 					cmd->cmnd[0], cmd->cmnd[1],
1826 					cmd->cmnd[2], cmd->cmnd[3],
1827 					cmd->cmnd[4], cmd->cmnd[5],
1828 					cmd->cmnd[6], cmd->cmnd[7],
1829 					cmd->cmnd[8], cmd->cmnd[9],
1830 					cmd->cmnd[10], cmd->cmnd[11],
1831 					cmd->cmnd[12], cmd->cmnd[13],
1832 					cmd->cmnd[14], cmd->cmnd[15]);
1833 			break;
1834 		}
1835 
1836 
1837 		/* Problem was not a check condition
1838 		 * Pass it up to the upper layers...
1839 		 */
1840 		if (ei->ScsiStatus) {
1841 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1842 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1843 				"Returning result: 0x%x\n",
1844 				cp, ei->ScsiStatus,
1845 				sense_key, asc, ascq,
1846 				cmd->result);
1847 		} else {  /* scsi status is zero??? How??? */
1848 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1849 				"Returning no connection.\n", cp),
1850 
1851 			/* Ordinarily, this case should never happen,
1852 			 * but there is a bug in some released firmware
1853 			 * revisions that allows it to happen if, for
1854 			 * example, a 4100 backplane loses power and
1855 			 * the tape drive is in it.  We assume that
1856 			 * it's a fatal error of some kind because we
1857 			 * can't show that it wasn't. We will make it
1858 			 * look like selection timeout since that is
1859 			 * the most common reason for this to occur,
1860 			 * and it's severe enough.
1861 			 */
1862 
1863 			cmd->result = DID_NO_CONNECT << 16;
1864 		}
1865 		break;
1866 
1867 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1868 		break;
1869 	case CMD_DATA_OVERRUN:
1870 		dev_warn(&h->pdev->dev, "cp %p has"
1871 			" completed with data overrun "
1872 			"reported\n", cp);
1873 		break;
1874 	case CMD_INVALID: {
1875 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1876 		print_cmd(cp); */
1877 		/* We get CMD_INVALID if you address a non-existent device
1878 		 * instead of a selection timeout (no response).  You will
1879 		 * see this if you yank out a drive, then try to access it.
1880 		 * This is kind of a shame because it means that any other
1881 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1882 		 * missing target. */
1883 		cmd->result = DID_NO_CONNECT << 16;
1884 	}
1885 		break;
1886 	case CMD_PROTOCOL_ERR:
1887 		cmd->result = DID_ERROR << 16;
1888 		dev_warn(&h->pdev->dev, "cp %p has "
1889 			"protocol error\n", cp);
1890 		break;
1891 	case CMD_HARDWARE_ERR:
1892 		cmd->result = DID_ERROR << 16;
1893 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1894 		break;
1895 	case CMD_CONNECTION_LOST:
1896 		cmd->result = DID_ERROR << 16;
1897 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1898 		break;
1899 	case CMD_ABORTED:
1900 		cmd->result = DID_ABORT << 16;
1901 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1902 				cp, ei->ScsiStatus);
1903 		break;
1904 	case CMD_ABORT_FAILED:
1905 		cmd->result = DID_ERROR << 16;
1906 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1907 		break;
1908 	case CMD_UNSOLICITED_ABORT:
1909 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1910 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1911 			"abort\n", cp);
1912 		break;
1913 	case CMD_TIMEOUT:
1914 		cmd->result = DID_TIME_OUT << 16;
1915 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1916 		break;
1917 	case CMD_UNABORTABLE:
1918 		cmd->result = DID_ERROR << 16;
1919 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1920 		break;
1921 	case CMD_IOACCEL_DISABLED:
1922 		/* This only handles the direct pass-through case since RAID
1923 		 * offload is handled above.  Just attempt a retry.
1924 		 */
1925 		cmd->result = DID_SOFT_ERROR << 16;
1926 		dev_warn(&h->pdev->dev,
1927 				"cp %p had HP SSD Smart Path error\n", cp);
1928 		break;
1929 	default:
1930 		cmd->result = DID_ERROR << 16;
1931 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1932 				cp, ei->CommandStatus);
1933 	}
1934 	cmd_free(h, cp);
1935 	cmd->scsi_done(cmd);
1936 }
1937 
1938 static void hpsa_pci_unmap(struct pci_dev *pdev,
1939 	struct CommandList *c, int sg_used, int data_direction)
1940 {
1941 	int i;
1942 	union u64bit addr64;
1943 
1944 	for (i = 0; i < sg_used; i++) {
1945 		addr64.val32.lower = c->SG[i].Addr.lower;
1946 		addr64.val32.upper = c->SG[i].Addr.upper;
1947 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1948 			data_direction);
1949 	}
1950 }
1951 
1952 static int hpsa_map_one(struct pci_dev *pdev,
1953 		struct CommandList *cp,
1954 		unsigned char *buf,
1955 		size_t buflen,
1956 		int data_direction)
1957 {
1958 	u64 addr64;
1959 
1960 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1961 		cp->Header.SGList = 0;
1962 		cp->Header.SGTotal = 0;
1963 		return 0;
1964 	}
1965 
1966 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1967 	if (dma_mapping_error(&pdev->dev, addr64)) {
1968 		/* Prevent subsequent unmap of something never mapped */
1969 		cp->Header.SGList = 0;
1970 		cp->Header.SGTotal = 0;
1971 		return -1;
1972 	}
1973 	cp->SG[0].Addr.lower =
1974 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1975 	cp->SG[0].Addr.upper =
1976 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1977 	cp->SG[0].Len = buflen;
1978 	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1979 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1980 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1981 	return 0;
1982 }
1983 
1984 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1985 	struct CommandList *c)
1986 {
1987 	DECLARE_COMPLETION_ONSTACK(wait);
1988 
1989 	c->waiting = &wait;
1990 	enqueue_cmd_and_start_io(h, c);
1991 	wait_for_completion(&wait);
1992 }
1993 
1994 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1995 	struct CommandList *c)
1996 {
1997 	unsigned long flags;
1998 
1999 	/* If controller lockup detected, fake a hardware error. */
2000 	spin_lock_irqsave(&h->lock, flags);
2001 	if (unlikely(h->lockup_detected)) {
2002 		spin_unlock_irqrestore(&h->lock, flags);
2003 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2004 	} else {
2005 		spin_unlock_irqrestore(&h->lock, flags);
2006 		hpsa_scsi_do_simple_cmd_core(h, c);
2007 	}
2008 }
2009 
2010 #define MAX_DRIVER_CMD_RETRIES 25
2011 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2012 	struct CommandList *c, int data_direction)
2013 {
2014 	int backoff_time = 10, retry_count = 0;
2015 
2016 	do {
2017 		memset(c->err_info, 0, sizeof(*c->err_info));
2018 		hpsa_scsi_do_simple_cmd_core(h, c);
2019 		retry_count++;
2020 		if (retry_count > 3) {
2021 			msleep(backoff_time);
2022 			if (backoff_time < 1000)
2023 				backoff_time *= 2;
2024 		}
2025 	} while ((check_for_unit_attention(h, c) ||
2026 			check_for_busy(h, c)) &&
2027 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2028 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2029 }
2030 
2031 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2032 				struct CommandList *c)
2033 {
2034 	const u8 *cdb = c->Request.CDB;
2035 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2036 
2037 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2038 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2039 		txt, lun[0], lun[1], lun[2], lun[3],
2040 		lun[4], lun[5], lun[6], lun[7],
2041 		cdb[0], cdb[1], cdb[2], cdb[3],
2042 		cdb[4], cdb[5], cdb[6], cdb[7],
2043 		cdb[8], cdb[9], cdb[10], cdb[11],
2044 		cdb[12], cdb[13], cdb[14], cdb[15]);
2045 }
2046 
2047 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2048 			struct CommandList *cp)
2049 {
2050 	const struct ErrorInfo *ei = cp->err_info;
2051 	struct device *d = &cp->h->pdev->dev;
2052 	const u8 *sd = ei->SenseInfo;
2053 
2054 	switch (ei->CommandStatus) {
2055 	case CMD_TARGET_STATUS:
2056 		hpsa_print_cmd(h, "SCSI status", cp);
2057 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2058 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2059 				sd[2] & 0x0f, sd[12], sd[13]);
2060 		else
2061 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2062 		if (ei->ScsiStatus == 0)
2063 			dev_warn(d, "SCSI status is abnormally zero.  "
2064 			"(probably indicates selection timeout "
2065 			"reported incorrectly due to a known "
2066 			"firmware bug, circa July, 2001.)\n");
2067 		break;
2068 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2069 		break;
2070 	case CMD_DATA_OVERRUN:
2071 		hpsa_print_cmd(h, "overrun condition", cp);
2072 		break;
2073 	case CMD_INVALID: {
2074 		/* controller unfortunately reports SCSI passthru's
2075 		 * to non-existent targets as invalid commands.
2076 		 */
2077 		hpsa_print_cmd(h, "invalid command", cp);
2078 		dev_warn(d, "probably means device no longer present\n");
2079 		}
2080 		break;
2081 	case CMD_PROTOCOL_ERR:
2082 		hpsa_print_cmd(h, "protocol error", cp);
2083 		break;
2084 	case CMD_HARDWARE_ERR:
2085 		hpsa_print_cmd(h, "hardware error", cp);
2086 		break;
2087 	case CMD_CONNECTION_LOST:
2088 		hpsa_print_cmd(h, "connection lost", cp);
2089 		break;
2090 	case CMD_ABORTED:
2091 		hpsa_print_cmd(h, "aborted", cp);
2092 		break;
2093 	case CMD_ABORT_FAILED:
2094 		hpsa_print_cmd(h, "abort failed", cp);
2095 		break;
2096 	case CMD_UNSOLICITED_ABORT:
2097 		hpsa_print_cmd(h, "unsolicited abort", cp);
2098 		break;
2099 	case CMD_TIMEOUT:
2100 		hpsa_print_cmd(h, "timed out", cp);
2101 		break;
2102 	case CMD_UNABORTABLE:
2103 		hpsa_print_cmd(h, "unabortable", cp);
2104 		break;
2105 	default:
2106 		hpsa_print_cmd(h, "unknown status", cp);
2107 		dev_warn(d, "Unknown command status %x\n",
2108 				ei->CommandStatus);
2109 	}
2110 }
2111 
2112 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2113 			u16 page, unsigned char *buf,
2114 			unsigned char bufsize)
2115 {
2116 	int rc = IO_OK;
2117 	struct CommandList *c;
2118 	struct ErrorInfo *ei;
2119 
2120 	c = cmd_special_alloc(h);
2121 
2122 	if (c == NULL) {			/* trouble... */
2123 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2124 		return -ENOMEM;
2125 	}
2126 
2127 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2128 			page, scsi3addr, TYPE_CMD)) {
2129 		rc = -1;
2130 		goto out;
2131 	}
2132 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2133 	ei = c->err_info;
2134 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2135 		hpsa_scsi_interpret_error(h, c);
2136 		rc = -1;
2137 	}
2138 out:
2139 	cmd_special_free(h, c);
2140 	return rc;
2141 }
2142 
2143 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2144 		unsigned char *scsi3addr, unsigned char page,
2145 		struct bmic_controller_parameters *buf, size_t bufsize)
2146 {
2147 	int rc = IO_OK;
2148 	struct CommandList *c;
2149 	struct ErrorInfo *ei;
2150 
2151 	c = cmd_special_alloc(h);
2152 
2153 	if (c == NULL) {			/* trouble... */
2154 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2155 		return -ENOMEM;
2156 	}
2157 
2158 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2159 			page, scsi3addr, TYPE_CMD)) {
2160 		rc = -1;
2161 		goto out;
2162 	}
2163 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2164 	ei = c->err_info;
2165 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2166 		hpsa_scsi_interpret_error(h, c);
2167 		rc = -1;
2168 	}
2169 out:
2170 	cmd_special_free(h, c);
2171 	return rc;
2172 	}
2173 
2174 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2175 	u8 reset_type)
2176 {
2177 	int rc = IO_OK;
2178 	struct CommandList *c;
2179 	struct ErrorInfo *ei;
2180 
2181 	c = cmd_special_alloc(h);
2182 
2183 	if (c == NULL) {			/* trouble... */
2184 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2185 		return -ENOMEM;
2186 	}
2187 
2188 	/* fill_cmd can't fail here, no data buffer to map. */
2189 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2190 			scsi3addr, TYPE_MSG);
2191 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2192 	hpsa_scsi_do_simple_cmd_core(h, c);
2193 	/* no unmap needed here because no data xfer. */
2194 
2195 	ei = c->err_info;
2196 	if (ei->CommandStatus != 0) {
2197 		hpsa_scsi_interpret_error(h, c);
2198 		rc = -1;
2199 	}
2200 	cmd_special_free(h, c);
2201 	return rc;
2202 }
2203 
2204 static void hpsa_get_raid_level(struct ctlr_info *h,
2205 	unsigned char *scsi3addr, unsigned char *raid_level)
2206 {
2207 	int rc;
2208 	unsigned char *buf;
2209 
2210 	*raid_level = RAID_UNKNOWN;
2211 	buf = kzalloc(64, GFP_KERNEL);
2212 	if (!buf)
2213 		return;
2214 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2215 	if (rc == 0)
2216 		*raid_level = buf[8];
2217 	if (*raid_level > RAID_UNKNOWN)
2218 		*raid_level = RAID_UNKNOWN;
2219 	kfree(buf);
2220 	return;
2221 }
2222 
2223 #define HPSA_MAP_DEBUG
2224 #ifdef HPSA_MAP_DEBUG
2225 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2226 				struct raid_map_data *map_buff)
2227 {
2228 	struct raid_map_disk_data *dd = &map_buff->data[0];
2229 	int map, row, col;
2230 	u16 map_cnt, row_cnt, disks_per_row;
2231 
2232 	if (rc != 0)
2233 		return;
2234 
2235 	/* Show details only if debugging has been activated. */
2236 	if (h->raid_offload_debug < 2)
2237 		return;
2238 
2239 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2240 				le32_to_cpu(map_buff->structure_size));
2241 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2242 			le32_to_cpu(map_buff->volume_blk_size));
2243 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2244 			le64_to_cpu(map_buff->volume_blk_cnt));
2245 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2246 			map_buff->phys_blk_shift);
2247 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2248 			map_buff->parity_rotation_shift);
2249 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2250 			le16_to_cpu(map_buff->strip_size));
2251 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2252 			le64_to_cpu(map_buff->disk_starting_blk));
2253 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2254 			le64_to_cpu(map_buff->disk_blk_cnt));
2255 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2256 			le16_to_cpu(map_buff->data_disks_per_row));
2257 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2258 			le16_to_cpu(map_buff->metadata_disks_per_row));
2259 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2260 			le16_to_cpu(map_buff->row_cnt));
2261 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2262 			le16_to_cpu(map_buff->layout_map_count));
2263 	dev_info(&h->pdev->dev, "flags = %u\n",
2264 			le16_to_cpu(map_buff->flags));
2265 	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2266 		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2267 	else
2268 		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2269 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2270 			le16_to_cpu(map_buff->dekindex));
2271 
2272 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2273 	for (map = 0; map < map_cnt; map++) {
2274 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2275 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2276 		for (row = 0; row < row_cnt; row++) {
2277 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2278 			disks_per_row =
2279 				le16_to_cpu(map_buff->data_disks_per_row);
2280 			for (col = 0; col < disks_per_row; col++, dd++)
2281 				dev_info(&h->pdev->dev,
2282 					"    D%02u: h=0x%04x xor=%u,%u\n",
2283 					col, dd->ioaccel_handle,
2284 					dd->xor_mult[0], dd->xor_mult[1]);
2285 			disks_per_row =
2286 				le16_to_cpu(map_buff->metadata_disks_per_row);
2287 			for (col = 0; col < disks_per_row; col++, dd++)
2288 				dev_info(&h->pdev->dev,
2289 					"    M%02u: h=0x%04x xor=%u,%u\n",
2290 					col, dd->ioaccel_handle,
2291 					dd->xor_mult[0], dd->xor_mult[1]);
2292 		}
2293 	}
2294 }
2295 #else
2296 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2297 			__attribute__((unused)) int rc,
2298 			__attribute__((unused)) struct raid_map_data *map_buff)
2299 {
2300 }
2301 #endif
2302 
2303 static int hpsa_get_raid_map(struct ctlr_info *h,
2304 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2305 {
2306 	int rc = 0;
2307 	struct CommandList *c;
2308 	struct ErrorInfo *ei;
2309 
2310 	c = cmd_special_alloc(h);
2311 	if (c == NULL) {
2312 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2313 		return -ENOMEM;
2314 	}
2315 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2316 			sizeof(this_device->raid_map), 0,
2317 			scsi3addr, TYPE_CMD)) {
2318 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2319 		cmd_special_free(h, c);
2320 		return -ENOMEM;
2321 	}
2322 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2323 	ei = c->err_info;
2324 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2325 		hpsa_scsi_interpret_error(h, c);
2326 		cmd_special_free(h, c);
2327 		return -1;
2328 	}
2329 	cmd_special_free(h, c);
2330 
2331 	/* @todo in the future, dynamically allocate RAID map memory */
2332 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2333 				sizeof(this_device->raid_map)) {
2334 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2335 		rc = -1;
2336 	}
2337 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2338 	return rc;
2339 }
2340 
2341 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2342 	unsigned char scsi3addr[], u8 page)
2343 {
2344 	int rc;
2345 	int i;
2346 	int pages;
2347 	unsigned char *buf, bufsize;
2348 
2349 	buf = kzalloc(256, GFP_KERNEL);
2350 	if (!buf)
2351 		return 0;
2352 
2353 	/* Get the size of the page list first */
2354 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2355 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2356 				buf, HPSA_VPD_HEADER_SZ);
2357 	if (rc != 0)
2358 		goto exit_unsupported;
2359 	pages = buf[3];
2360 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2361 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2362 	else
2363 		bufsize = 255;
2364 
2365 	/* Get the whole VPD page list */
2366 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2367 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2368 				buf, bufsize);
2369 	if (rc != 0)
2370 		goto exit_unsupported;
2371 
2372 	pages = buf[3];
2373 	for (i = 1; i <= pages; i++)
2374 		if (buf[3 + i] == page)
2375 			goto exit_supported;
2376 exit_unsupported:
2377 	kfree(buf);
2378 	return 0;
2379 exit_supported:
2380 	kfree(buf);
2381 	return 1;
2382 }
2383 
2384 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2385 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2386 {
2387 	int rc;
2388 	unsigned char *buf;
2389 	u8 ioaccel_status;
2390 
2391 	this_device->offload_config = 0;
2392 	this_device->offload_enabled = 0;
2393 
2394 	buf = kzalloc(64, GFP_KERNEL);
2395 	if (!buf)
2396 		return;
2397 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2398 		goto out;
2399 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2400 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2401 	if (rc != 0)
2402 		goto out;
2403 
2404 #define IOACCEL_STATUS_BYTE 4
2405 #define OFFLOAD_CONFIGURED_BIT 0x01
2406 #define OFFLOAD_ENABLED_BIT 0x02
2407 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2408 	this_device->offload_config =
2409 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2410 	if (this_device->offload_config) {
2411 		this_device->offload_enabled =
2412 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2413 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2414 			this_device->offload_enabled = 0;
2415 	}
2416 out:
2417 	kfree(buf);
2418 	return;
2419 }
2420 
2421 /* Get the device id from inquiry page 0x83 */
2422 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2423 	unsigned char *device_id, int buflen)
2424 {
2425 	int rc;
2426 	unsigned char *buf;
2427 
2428 	if (buflen > 16)
2429 		buflen = 16;
2430 	buf = kzalloc(64, GFP_KERNEL);
2431 	if (!buf)
2432 		return -1;
2433 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2434 	if (rc == 0)
2435 		memcpy(device_id, &buf[8], buflen);
2436 	kfree(buf);
2437 	return rc != 0;
2438 }
2439 
2440 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2441 		struct ReportLUNdata *buf, int bufsize,
2442 		int extended_response)
2443 {
2444 	int rc = IO_OK;
2445 	struct CommandList *c;
2446 	unsigned char scsi3addr[8];
2447 	struct ErrorInfo *ei;
2448 
2449 	c = cmd_special_alloc(h);
2450 	if (c == NULL) {			/* trouble... */
2451 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2452 		return -1;
2453 	}
2454 	/* address the controller */
2455 	memset(scsi3addr, 0, sizeof(scsi3addr));
2456 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2457 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2458 		rc = -1;
2459 		goto out;
2460 	}
2461 	if (extended_response)
2462 		c->Request.CDB[1] = extended_response;
2463 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2464 	ei = c->err_info;
2465 	if (ei->CommandStatus != 0 &&
2466 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2467 		hpsa_scsi_interpret_error(h, c);
2468 		rc = -1;
2469 	} else {
2470 		if (buf->extended_response_flag != extended_response) {
2471 			dev_err(&h->pdev->dev,
2472 				"report luns requested format %u, got %u\n",
2473 				extended_response,
2474 				buf->extended_response_flag);
2475 			rc = -1;
2476 		}
2477 	}
2478 out:
2479 	cmd_special_free(h, c);
2480 	return rc;
2481 }
2482 
2483 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2484 		struct ReportLUNdata *buf,
2485 		int bufsize, int extended_response)
2486 {
2487 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2488 }
2489 
2490 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2491 		struct ReportLUNdata *buf, int bufsize)
2492 {
2493 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2494 }
2495 
2496 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2497 	int bus, int target, int lun)
2498 {
2499 	device->bus = bus;
2500 	device->target = target;
2501 	device->lun = lun;
2502 }
2503 
2504 /* Use VPD inquiry to get details of volume status */
2505 static int hpsa_get_volume_status(struct ctlr_info *h,
2506 					unsigned char scsi3addr[])
2507 {
2508 	int rc;
2509 	int status;
2510 	int size;
2511 	unsigned char *buf;
2512 
2513 	buf = kzalloc(64, GFP_KERNEL);
2514 	if (!buf)
2515 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2516 
2517 	/* Does controller have VPD for logical volume status? */
2518 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) {
2519 		dev_warn(&h->pdev->dev, "Logical volume status VPD page is unsupported.\n");
2520 		goto exit_failed;
2521 	}
2522 
2523 	/* Get the size of the VPD return buffer */
2524 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2525 					buf, HPSA_VPD_HEADER_SZ);
2526 	if (rc != 0) {
2527 		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2528 		goto exit_failed;
2529 	}
2530 	size = buf[3];
2531 
2532 	/* Now get the whole VPD buffer */
2533 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2534 					buf, size + HPSA_VPD_HEADER_SZ);
2535 	if (rc != 0) {
2536 		dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2537 		goto exit_failed;
2538 	}
2539 	status = buf[4]; /* status byte */
2540 
2541 	kfree(buf);
2542 	return status;
2543 exit_failed:
2544 	kfree(buf);
2545 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2546 }
2547 
2548 /* Determine offline status of a volume.
2549  * Return either:
2550  *  0 (not offline)
2551  * -1 (offline for unknown reasons)
2552  *  # (integer code indicating one of several NOT READY states
2553  *     describing why a volume is to be kept offline)
2554  */
2555 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
2556 					unsigned char scsi3addr[])
2557 {
2558 	struct CommandList *c;
2559 	unsigned char *sense, sense_key, asc, ascq;
2560 	int ldstat = 0;
2561 	u16 cmd_status;
2562 	u8 scsi_status;
2563 #define ASC_LUN_NOT_READY 0x04
2564 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2565 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2566 
2567 	c = cmd_alloc(h);
2568 	if (!c)
2569 		return 0;
2570 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2571 	hpsa_scsi_do_simple_cmd_core(h, c);
2572 	sense = c->err_info->SenseInfo;
2573 	sense_key = sense[2];
2574 	asc = sense[12];
2575 	ascq = sense[13];
2576 	cmd_status = c->err_info->CommandStatus;
2577 	scsi_status = c->err_info->ScsiStatus;
2578 	cmd_free(h, c);
2579 	/* Is the volume 'not ready'? */
2580 	if (cmd_status != CMD_TARGET_STATUS ||
2581 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2582 		sense_key != NOT_READY ||
2583 		asc != ASC_LUN_NOT_READY)  {
2584 		return 0;
2585 	}
2586 
2587 	/* Determine the reason for not ready state */
2588 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2589 
2590 	/* Keep volume offline in certain cases: */
2591 	switch (ldstat) {
2592 	case HPSA_LV_UNDERGOING_ERASE:
2593 	case HPSA_LV_UNDERGOING_RPI:
2594 	case HPSA_LV_PENDING_RPI:
2595 	case HPSA_LV_ENCRYPTED_NO_KEY:
2596 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2597 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2598 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2599 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2600 		return ldstat;
2601 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2602 		/* If VPD status page isn't available,
2603 		 * use ASC/ASCQ to determine state
2604 		 */
2605 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2606 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2607 			return ldstat;
2608 		break;
2609 	default:
2610 		break;
2611 	}
2612 	return 0;
2613 }
2614 
2615 static int hpsa_update_device_info(struct ctlr_info *h,
2616 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2617 	unsigned char *is_OBDR_device)
2618 {
2619 
2620 #define OBDR_SIG_OFFSET 43
2621 #define OBDR_TAPE_SIG "$DR-10"
2622 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2623 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2624 
2625 	unsigned char *inq_buff;
2626 	unsigned char *obdr_sig;
2627 
2628 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2629 	if (!inq_buff)
2630 		goto bail_out;
2631 
2632 	/* Do an inquiry to the device to see what it is. */
2633 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2634 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2635 		/* Inquiry failed (msg printed already) */
2636 		dev_err(&h->pdev->dev,
2637 			"hpsa_update_device_info: inquiry failed\n");
2638 		goto bail_out;
2639 	}
2640 
2641 	this_device->devtype = (inq_buff[0] & 0x1f);
2642 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2643 	memcpy(this_device->vendor, &inq_buff[8],
2644 		sizeof(this_device->vendor));
2645 	memcpy(this_device->model, &inq_buff[16],
2646 		sizeof(this_device->model));
2647 	memset(this_device->device_id, 0,
2648 		sizeof(this_device->device_id));
2649 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2650 		sizeof(this_device->device_id));
2651 
2652 	if (this_device->devtype == TYPE_DISK &&
2653 		is_logical_dev_addr_mode(scsi3addr)) {
2654 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2655 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2656 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2657 		this_device->volume_offline =
2658 			hpsa_volume_offline(h, scsi3addr);
2659 	} else {
2660 		this_device->raid_level = RAID_UNKNOWN;
2661 		this_device->offload_config = 0;
2662 		this_device->offload_enabled = 0;
2663 		this_device->volume_offline = 0;
2664 	}
2665 
2666 	if (is_OBDR_device) {
2667 		/* See if this is a One-Button-Disaster-Recovery device
2668 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2669 		 */
2670 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2671 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2672 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2673 						OBDR_SIG_LEN) == 0);
2674 	}
2675 
2676 	kfree(inq_buff);
2677 	return 0;
2678 
2679 bail_out:
2680 	kfree(inq_buff);
2681 	return 1;
2682 }
2683 
2684 static unsigned char *ext_target_model[] = {
2685 	"MSA2012",
2686 	"MSA2024",
2687 	"MSA2312",
2688 	"MSA2324",
2689 	"P2000 G3 SAS",
2690 	"MSA 2040 SAS",
2691 	NULL,
2692 };
2693 
2694 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2695 {
2696 	int i;
2697 
2698 	for (i = 0; ext_target_model[i]; i++)
2699 		if (strncmp(device->model, ext_target_model[i],
2700 			strlen(ext_target_model[i])) == 0)
2701 			return 1;
2702 	return 0;
2703 }
2704 
2705 /* Helper function to assign bus, target, lun mapping of devices.
2706  * Puts non-external target logical volumes on bus 0, external target logical
2707  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2708  * Logical drive target and lun are assigned at this time, but
2709  * physical device lun and target assignment are deferred (assigned
2710  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2711  */
2712 static void figure_bus_target_lun(struct ctlr_info *h,
2713 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2714 {
2715 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2716 
2717 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2718 		/* physical device, target and lun filled in later */
2719 		if (is_hba_lunid(lunaddrbytes))
2720 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2721 		else
2722 			/* defer target, lun assignment for physical devices */
2723 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2724 		return;
2725 	}
2726 	/* It's a logical device */
2727 	if (is_ext_target(h, device)) {
2728 		/* external target way, put logicals on bus 1
2729 		 * and match target/lun numbers box
2730 		 * reports, other smart array, bus 0, target 0, match lunid
2731 		 */
2732 		hpsa_set_bus_target_lun(device,
2733 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2734 		return;
2735 	}
2736 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2737 }
2738 
2739 /*
2740  * If there is no lun 0 on a target, linux won't find any devices.
2741  * For the external targets (arrays), we have to manually detect the enclosure
2742  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2743  * it for some reason.  *tmpdevice is the target we're adding,
2744  * this_device is a pointer into the current element of currentsd[]
2745  * that we're building up in update_scsi_devices(), below.
2746  * lunzerobits is a bitmap that tracks which targets already have a
2747  * lun 0 assigned.
2748  * Returns 1 if an enclosure was added, 0 if not.
2749  */
2750 static int add_ext_target_dev(struct ctlr_info *h,
2751 	struct hpsa_scsi_dev_t *tmpdevice,
2752 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2753 	unsigned long lunzerobits[], int *n_ext_target_devs)
2754 {
2755 	unsigned char scsi3addr[8];
2756 
2757 	if (test_bit(tmpdevice->target, lunzerobits))
2758 		return 0; /* There is already a lun 0 on this target. */
2759 
2760 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2761 		return 0; /* It's the logical targets that may lack lun 0. */
2762 
2763 	if (!is_ext_target(h, tmpdevice))
2764 		return 0; /* Only external target devices have this problem. */
2765 
2766 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2767 		return 0;
2768 
2769 	memset(scsi3addr, 0, 8);
2770 	scsi3addr[3] = tmpdevice->target;
2771 	if (is_hba_lunid(scsi3addr))
2772 		return 0; /* Don't add the RAID controller here. */
2773 
2774 	if (is_scsi_rev_5(h))
2775 		return 0; /* p1210m doesn't need to do this. */
2776 
2777 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2778 		dev_warn(&h->pdev->dev, "Maximum number of external "
2779 			"target devices exceeded.  Check your hardware "
2780 			"configuration.");
2781 		return 0;
2782 	}
2783 
2784 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2785 		return 0;
2786 	(*n_ext_target_devs)++;
2787 	hpsa_set_bus_target_lun(this_device,
2788 				tmpdevice->bus, tmpdevice->target, 0);
2789 	set_bit(tmpdevice->target, lunzerobits);
2790 	return 1;
2791 }
2792 
2793 /*
2794  * Get address of physical disk used for an ioaccel2 mode command:
2795  *	1. Extract ioaccel2 handle from the command.
2796  *	2. Find a matching ioaccel2 handle from list of physical disks.
2797  *	3. Return:
2798  *		1 and set scsi3addr to address of matching physical
2799  *		0 if no matching physical disk was found.
2800  */
2801 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2802 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2803 {
2804 	struct ReportExtendedLUNdata *physicals = NULL;
2805 	int responsesize = 24;	/* size of physical extended response */
2806 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2807 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2808 	u32 nphysicals = 0;	/* number of reported physical devs */
2809 	int found = 0;		/* found match (1) or not (0) */
2810 	u32 find;		/* handle we need to match */
2811 	int i;
2812 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2813 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2814 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2815 	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2816 	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2817 
2818 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2819 		return 0; /* no match */
2820 
2821 	/* point to the ioaccel2 device handle */
2822 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2823 	if (c2a == NULL)
2824 		return 0; /* no match */
2825 
2826 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2827 	if (scmd == NULL)
2828 		return 0; /* no match */
2829 
2830 	d = scmd->device->hostdata;
2831 	if (d == NULL)
2832 		return 0; /* no match */
2833 
2834 	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2835 	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2836 	find = c2a->scsi_nexus;
2837 
2838 	if (h->raid_offload_debug > 0)
2839 		dev_info(&h->pdev->dev,
2840 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2841 			__func__, scsi_nexus,
2842 			d->device_id[0], d->device_id[1], d->device_id[2],
2843 			d->device_id[3], d->device_id[4], d->device_id[5],
2844 			d->device_id[6], d->device_id[7], d->device_id[8],
2845 			d->device_id[9], d->device_id[10], d->device_id[11],
2846 			d->device_id[12], d->device_id[13], d->device_id[14],
2847 			d->device_id[15]);
2848 
2849 	/* Get the list of physical devices */
2850 	physicals = kzalloc(reportsize, GFP_KERNEL);
2851 	if (physicals == NULL)
2852 		return 0;
2853 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2854 		reportsize, extended)) {
2855 		dev_err(&h->pdev->dev,
2856 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2857 			"HP SSD Smart Path");
2858 		kfree(physicals);
2859 		return 0;
2860 	}
2861 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2862 							responsesize;
2863 
2864 
2865 	/* find ioaccel2 handle in list of physicals: */
2866 	for (i = 0; i < nphysicals; i++) {
2867 		/* handle is in bytes 28-31 of each lun */
2868 		if (memcmp(&((struct ReportExtendedLUNdata *)
2869 				physicals)->LUN[i][20], &find, 4) != 0) {
2870 			continue; /* didn't match */
2871 		}
2872 		found = 1;
2873 		memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
2874 					physicals)->LUN[i][0], 8);
2875 		if (h->raid_offload_debug > 0)
2876 			dev_info(&h->pdev->dev,
2877 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2878 				__func__, find,
2879 				((struct ReportExtendedLUNdata *)
2880 					physicals)->LUN[i][20],
2881 				scsi3addr[0], scsi3addr[1], scsi3addr[2],
2882 				scsi3addr[3], scsi3addr[4], scsi3addr[5],
2883 				scsi3addr[6], scsi3addr[7]);
2884 		break; /* found it */
2885 	}
2886 
2887 	kfree(physicals);
2888 	if (found)
2889 		return 1;
2890 	else
2891 		return 0;
2892 
2893 }
2894 /*
2895  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2896  * logdev.  The number of luns in physdev and logdev are returned in
2897  * *nphysicals and *nlogicals, respectively.
2898  * Returns 0 on success, -1 otherwise.
2899  */
2900 static int hpsa_gather_lun_info(struct ctlr_info *h,
2901 	int reportlunsize,
2902 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2903 	struct ReportLUNdata *logdev, u32 *nlogicals)
2904 {
2905 	int physical_entry_size = 8;
2906 
2907 	*physical_mode = 0;
2908 
2909 	/* For I/O accelerator mode we need to read physical device handles */
2910 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2911 		h->transMethod & CFGTBL_Trans_io_accel2) {
2912 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2913 		physical_entry_size = 24;
2914 	}
2915 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2916 							*physical_mode)) {
2917 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2918 		return -1;
2919 	}
2920 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2921 							physical_entry_size;
2922 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2923 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2924 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2925 			*nphysicals - HPSA_MAX_PHYS_LUN);
2926 		*nphysicals = HPSA_MAX_PHYS_LUN;
2927 	}
2928 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2929 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2930 		return -1;
2931 	}
2932 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2933 	/* Reject Logicals in excess of our max capability. */
2934 	if (*nlogicals > HPSA_MAX_LUN) {
2935 		dev_warn(&h->pdev->dev,
2936 			"maximum logical LUNs (%d) exceeded.  "
2937 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2938 			*nlogicals - HPSA_MAX_LUN);
2939 			*nlogicals = HPSA_MAX_LUN;
2940 	}
2941 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2942 		dev_warn(&h->pdev->dev,
2943 			"maximum logical + physical LUNs (%d) exceeded. "
2944 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2945 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2946 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2947 	}
2948 	return 0;
2949 }
2950 
2951 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2952 	int nphysicals, int nlogicals,
2953 	struct ReportExtendedLUNdata *physdev_list,
2954 	struct ReportLUNdata *logdev_list)
2955 {
2956 	/* Helper function, figure out where the LUN ID info is coming from
2957 	 * given index i, lists of physical and logical devices, where in
2958 	 * the list the raid controller is supposed to appear (first or last)
2959 	 */
2960 
2961 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2962 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2963 
2964 	if (i == raid_ctlr_position)
2965 		return RAID_CTLR_LUNID;
2966 
2967 	if (i < logicals_start)
2968 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
2969 
2970 	if (i < last_device)
2971 		return &logdev_list->LUN[i - nphysicals -
2972 			(raid_ctlr_position == 0)][0];
2973 	BUG();
2974 	return NULL;
2975 }
2976 
2977 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2978 {
2979 	int rc;
2980 	int hba_mode_enabled;
2981 	struct bmic_controller_parameters *ctlr_params;
2982 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2983 		GFP_KERNEL);
2984 
2985 	if (!ctlr_params)
2986 		return -ENOMEM;
2987 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2988 		sizeof(struct bmic_controller_parameters));
2989 	if (rc) {
2990 		kfree(ctlr_params);
2991 		return rc;
2992 	}
2993 
2994 	hba_mode_enabled =
2995 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2996 	kfree(ctlr_params);
2997 	return hba_mode_enabled;
2998 }
2999 
3000 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3001 {
3002 	/* the idea here is we could get notified
3003 	 * that some devices have changed, so we do a report
3004 	 * physical luns and report logical luns cmd, and adjust
3005 	 * our list of devices accordingly.
3006 	 *
3007 	 * The scsi3addr's of devices won't change so long as the
3008 	 * adapter is not reset.  That means we can rescan and
3009 	 * tell which devices we already know about, vs. new
3010 	 * devices, vs.  disappearing devices.
3011 	 */
3012 	struct ReportExtendedLUNdata *physdev_list = NULL;
3013 	struct ReportLUNdata *logdev_list = NULL;
3014 	u32 nphysicals = 0;
3015 	u32 nlogicals = 0;
3016 	int physical_mode = 0;
3017 	u32 ndev_allocated = 0;
3018 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3019 	int ncurrent = 0;
3020 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3021 	int i, n_ext_target_devs, ndevs_to_allocate;
3022 	int raid_ctlr_position;
3023 	int rescan_hba_mode;
3024 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3025 
3026 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3027 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3028 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3029 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3030 
3031 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3032 		dev_err(&h->pdev->dev, "out of memory\n");
3033 		goto out;
3034 	}
3035 	memset(lunzerobits, 0, sizeof(lunzerobits));
3036 
3037 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3038 	if (rescan_hba_mode < 0)
3039 		goto out;
3040 
3041 	if (!h->hba_mode_enabled && rescan_hba_mode)
3042 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3043 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3044 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3045 
3046 	h->hba_mode_enabled = rescan_hba_mode;
3047 
3048 	if (hpsa_gather_lun_info(h, reportlunsize,
3049 			(struct ReportLUNdata *) physdev_list, &nphysicals,
3050 			&physical_mode, logdev_list, &nlogicals))
3051 		goto out;
3052 
3053 	/* We might see up to the maximum number of logical and physical disks
3054 	 * plus external target devices, and a device for the local RAID
3055 	 * controller.
3056 	 */
3057 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3058 
3059 	/* Allocate the per device structures */
3060 	for (i = 0; i < ndevs_to_allocate; i++) {
3061 		if (i >= HPSA_MAX_DEVICES) {
3062 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3063 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3064 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3065 			break;
3066 		}
3067 
3068 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3069 		if (!currentsd[i]) {
3070 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3071 				__FILE__, __LINE__);
3072 			goto out;
3073 		}
3074 		ndev_allocated++;
3075 	}
3076 
3077 	if (unlikely(is_scsi_rev_5(h)))
3078 		raid_ctlr_position = 0;
3079 	else
3080 		raid_ctlr_position = nphysicals + nlogicals;
3081 
3082 	/* adjust our table of devices */
3083 	n_ext_target_devs = 0;
3084 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3085 		u8 *lunaddrbytes, is_OBDR = 0;
3086 
3087 		/* Figure out where the LUN ID info is coming from */
3088 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3089 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3090 		/* skip masked physical devices. */
3091 		if (lunaddrbytes[3] & 0xC0 &&
3092 			i < nphysicals + (raid_ctlr_position == 0))
3093 			continue;
3094 
3095 		/* Get device type, vendor, model, device id */
3096 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3097 							&is_OBDR))
3098 			continue; /* skip it if we can't talk to it. */
3099 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3100 		this_device = currentsd[ncurrent];
3101 
3102 		/*
3103 		 * For external target devices, we have to insert a LUN 0 which
3104 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3105 		 * is nonetheless an enclosure device there.  We have to
3106 		 * present that otherwise linux won't find anything if
3107 		 * there is no lun 0.
3108 		 */
3109 		if (add_ext_target_dev(h, tmpdevice, this_device,
3110 				lunaddrbytes, lunzerobits,
3111 				&n_ext_target_devs)) {
3112 			ncurrent++;
3113 			this_device = currentsd[ncurrent];
3114 		}
3115 
3116 		*this_device = *tmpdevice;
3117 
3118 		switch (this_device->devtype) {
3119 		case TYPE_ROM:
3120 			/* We don't *really* support actual CD-ROM devices,
3121 			 * just "One Button Disaster Recovery" tape drive
3122 			 * which temporarily pretends to be a CD-ROM drive.
3123 			 * So we check that the device is really an OBDR tape
3124 			 * device by checking for "$DR-10" in bytes 43-48 of
3125 			 * the inquiry data.
3126 			 */
3127 			if (is_OBDR)
3128 				ncurrent++;
3129 			break;
3130 		case TYPE_DISK:
3131 			if (h->hba_mode_enabled) {
3132 				/* never use raid mapper in HBA mode */
3133 				this_device->offload_enabled = 0;
3134 				ncurrent++;
3135 				break;
3136 			} else if (h->acciopath_status) {
3137 				if (i >= nphysicals) {
3138 					ncurrent++;
3139 					break;
3140 				}
3141 			} else {
3142 				if (i < nphysicals)
3143 					break;
3144 				ncurrent++;
3145 				break;
3146 			}
3147 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3148 				memcpy(&this_device->ioaccel_handle,
3149 					&lunaddrbytes[20],
3150 					sizeof(this_device->ioaccel_handle));
3151 				ncurrent++;
3152 			}
3153 			break;
3154 		case TYPE_TAPE:
3155 		case TYPE_MEDIUM_CHANGER:
3156 			ncurrent++;
3157 			break;
3158 		case TYPE_RAID:
3159 			/* Only present the Smartarray HBA as a RAID controller.
3160 			 * If it's a RAID controller other than the HBA itself
3161 			 * (an external RAID controller, MSA500 or similar)
3162 			 * don't present it.
3163 			 */
3164 			if (!is_hba_lunid(lunaddrbytes))
3165 				break;
3166 			ncurrent++;
3167 			break;
3168 		default:
3169 			break;
3170 		}
3171 		if (ncurrent >= HPSA_MAX_DEVICES)
3172 			break;
3173 	}
3174 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3175 out:
3176 	kfree(tmpdevice);
3177 	for (i = 0; i < ndev_allocated; i++)
3178 		kfree(currentsd[i]);
3179 	kfree(currentsd);
3180 	kfree(physdev_list);
3181 	kfree(logdev_list);
3182 }
3183 
3184 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3185  * dma mapping  and fills in the scatter gather entries of the
3186  * hpsa command, cp.
3187  */
3188 static int hpsa_scatter_gather(struct ctlr_info *h,
3189 		struct CommandList *cp,
3190 		struct scsi_cmnd *cmd)
3191 {
3192 	unsigned int len;
3193 	struct scatterlist *sg;
3194 	u64 addr64;
3195 	int use_sg, i, sg_index, chained;
3196 	struct SGDescriptor *curr_sg;
3197 
3198 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3199 
3200 	use_sg = scsi_dma_map(cmd);
3201 	if (use_sg < 0)
3202 		return use_sg;
3203 
3204 	if (!use_sg)
3205 		goto sglist_finished;
3206 
3207 	curr_sg = cp->SG;
3208 	chained = 0;
3209 	sg_index = 0;
3210 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3211 		if (i == h->max_cmd_sg_entries - 1 &&
3212 			use_sg > h->max_cmd_sg_entries) {
3213 			chained = 1;
3214 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3215 			sg_index = 0;
3216 		}
3217 		addr64 = (u64) sg_dma_address(sg);
3218 		len  = sg_dma_len(sg);
3219 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3220 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3221 		curr_sg->Len = len;
3222 		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3223 		curr_sg++;
3224 	}
3225 
3226 	if (use_sg + chained > h->maxSG)
3227 		h->maxSG = use_sg + chained;
3228 
3229 	if (chained) {
3230 		cp->Header.SGList = h->max_cmd_sg_entries;
3231 		cp->Header.SGTotal = (u16) (use_sg + 1);
3232 		if (hpsa_map_sg_chain_block(h, cp)) {
3233 			scsi_dma_unmap(cmd);
3234 			return -1;
3235 		}
3236 		return 0;
3237 	}
3238 
3239 sglist_finished:
3240 
3241 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3242 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3243 	return 0;
3244 }
3245 
3246 #define IO_ACCEL_INELIGIBLE (1)
3247 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3248 {
3249 	int is_write = 0;
3250 	u32 block;
3251 	u32 block_cnt;
3252 
3253 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3254 	switch (cdb[0]) {
3255 	case WRITE_6:
3256 	case WRITE_12:
3257 		is_write = 1;
3258 	case READ_6:
3259 	case READ_12:
3260 		if (*cdb_len == 6) {
3261 			block = (((u32) cdb[2]) << 8) | cdb[3];
3262 			block_cnt = cdb[4];
3263 		} else {
3264 			BUG_ON(*cdb_len != 12);
3265 			block = (((u32) cdb[2]) << 24) |
3266 				(((u32) cdb[3]) << 16) |
3267 				(((u32) cdb[4]) << 8) |
3268 				cdb[5];
3269 			block_cnt =
3270 				(((u32) cdb[6]) << 24) |
3271 				(((u32) cdb[7]) << 16) |
3272 				(((u32) cdb[8]) << 8) |
3273 				cdb[9];
3274 		}
3275 		if (block_cnt > 0xffff)
3276 			return IO_ACCEL_INELIGIBLE;
3277 
3278 		cdb[0] = is_write ? WRITE_10 : READ_10;
3279 		cdb[1] = 0;
3280 		cdb[2] = (u8) (block >> 24);
3281 		cdb[3] = (u8) (block >> 16);
3282 		cdb[4] = (u8) (block >> 8);
3283 		cdb[5] = (u8) (block);
3284 		cdb[6] = 0;
3285 		cdb[7] = (u8) (block_cnt >> 8);
3286 		cdb[8] = (u8) (block_cnt);
3287 		cdb[9] = 0;
3288 		*cdb_len = 10;
3289 		break;
3290 	}
3291 	return 0;
3292 }
3293 
3294 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3295 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3296 	u8 *scsi3addr)
3297 {
3298 	struct scsi_cmnd *cmd = c->scsi_cmd;
3299 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3300 	unsigned int len;
3301 	unsigned int total_len = 0;
3302 	struct scatterlist *sg;
3303 	u64 addr64;
3304 	int use_sg, i;
3305 	struct SGDescriptor *curr_sg;
3306 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3307 
3308 	/* TODO: implement chaining support */
3309 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3310 		return IO_ACCEL_INELIGIBLE;
3311 
3312 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3313 
3314 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3315 		return IO_ACCEL_INELIGIBLE;
3316 
3317 	c->cmd_type = CMD_IOACCEL1;
3318 
3319 	/* Adjust the DMA address to point to the accelerated command buffer */
3320 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3321 				(c->cmdindex * sizeof(*cp));
3322 	BUG_ON(c->busaddr & 0x0000007F);
3323 
3324 	use_sg = scsi_dma_map(cmd);
3325 	if (use_sg < 0)
3326 		return use_sg;
3327 
3328 	if (use_sg) {
3329 		curr_sg = cp->SG;
3330 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3331 			addr64 = (u64) sg_dma_address(sg);
3332 			len  = sg_dma_len(sg);
3333 			total_len += len;
3334 			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3335 			curr_sg->Addr.upper =
3336 				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3337 			curr_sg->Len = len;
3338 
3339 			if (i == (scsi_sg_count(cmd) - 1))
3340 				curr_sg->Ext = HPSA_SG_LAST;
3341 			else
3342 				curr_sg->Ext = 0;  /* we are not chaining */
3343 			curr_sg++;
3344 		}
3345 
3346 		switch (cmd->sc_data_direction) {
3347 		case DMA_TO_DEVICE:
3348 			control |= IOACCEL1_CONTROL_DATA_OUT;
3349 			break;
3350 		case DMA_FROM_DEVICE:
3351 			control |= IOACCEL1_CONTROL_DATA_IN;
3352 			break;
3353 		case DMA_NONE:
3354 			control |= IOACCEL1_CONTROL_NODATAXFER;
3355 			break;
3356 		default:
3357 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3358 			cmd->sc_data_direction);
3359 			BUG();
3360 			break;
3361 		}
3362 	} else {
3363 		control |= IOACCEL1_CONTROL_NODATAXFER;
3364 	}
3365 
3366 	c->Header.SGList = use_sg;
3367 	/* Fill out the command structure to submit */
3368 	cp->dev_handle = ioaccel_handle & 0xFFFF;
3369 	cp->transfer_len = total_len;
3370 	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3371 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3372 	cp->control = control;
3373 	memcpy(cp->CDB, cdb, cdb_len);
3374 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3375 	/* Tag was already set at init time. */
3376 	enqueue_cmd_and_start_io(h, c);
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Queue a command directly to a device behind the controller using the
3382  * I/O accelerator path.
3383  */
3384 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3385 	struct CommandList *c)
3386 {
3387 	struct scsi_cmnd *cmd = c->scsi_cmd;
3388 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3389 
3390 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3391 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3392 }
3393 
3394 /*
3395  * Set encryption parameters for the ioaccel2 request
3396  */
3397 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3398 	struct CommandList *c, struct io_accel2_cmd *cp)
3399 {
3400 	struct scsi_cmnd *cmd = c->scsi_cmd;
3401 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3402 	struct raid_map_data *map = &dev->raid_map;
3403 	u64 first_block;
3404 
3405 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3406 
3407 	/* Are we doing encryption on this device */
3408 	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3409 		return;
3410 	/* Set the data encryption key index. */
3411 	cp->dekindex = map->dekindex;
3412 
3413 	/* Set the encryption enable flag, encoded into direction field. */
3414 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3415 
3416 	/* Set encryption tweak values based on logical block address
3417 	 * If block size is 512, tweak value is LBA.
3418 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3419 	 */
3420 	switch (cmd->cmnd[0]) {
3421 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3422 	case WRITE_6:
3423 	case READ_6:
3424 		if (map->volume_blk_size == 512) {
3425 			cp->tweak_lower =
3426 				(((u32) cmd->cmnd[2]) << 8) |
3427 					cmd->cmnd[3];
3428 			cp->tweak_upper = 0;
3429 		} else {
3430 			first_block =
3431 				(((u64) cmd->cmnd[2]) << 8) |
3432 					cmd->cmnd[3];
3433 			first_block = (first_block * map->volume_blk_size)/512;
3434 			cp->tweak_lower = (u32)first_block;
3435 			cp->tweak_upper = (u32)(first_block >> 32);
3436 		}
3437 		break;
3438 	case WRITE_10:
3439 	case READ_10:
3440 		if (map->volume_blk_size == 512) {
3441 			cp->tweak_lower =
3442 				(((u32) cmd->cmnd[2]) << 24) |
3443 				(((u32) cmd->cmnd[3]) << 16) |
3444 				(((u32) cmd->cmnd[4]) << 8) |
3445 					cmd->cmnd[5];
3446 			cp->tweak_upper = 0;
3447 		} else {
3448 			first_block =
3449 				(((u64) cmd->cmnd[2]) << 24) |
3450 				(((u64) cmd->cmnd[3]) << 16) |
3451 				(((u64) cmd->cmnd[4]) << 8) |
3452 					cmd->cmnd[5];
3453 			first_block = (first_block * map->volume_blk_size)/512;
3454 			cp->tweak_lower = (u32)first_block;
3455 			cp->tweak_upper = (u32)(first_block >> 32);
3456 		}
3457 		break;
3458 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3459 	case WRITE_12:
3460 	case READ_12:
3461 		if (map->volume_blk_size == 512) {
3462 			cp->tweak_lower =
3463 				(((u32) cmd->cmnd[2]) << 24) |
3464 				(((u32) cmd->cmnd[3]) << 16) |
3465 				(((u32) cmd->cmnd[4]) << 8) |
3466 					cmd->cmnd[5];
3467 			cp->tweak_upper = 0;
3468 		} else {
3469 			first_block =
3470 				(((u64) cmd->cmnd[2]) << 24) |
3471 				(((u64) cmd->cmnd[3]) << 16) |
3472 				(((u64) cmd->cmnd[4]) << 8) |
3473 					cmd->cmnd[5];
3474 			first_block = (first_block * map->volume_blk_size)/512;
3475 			cp->tweak_lower = (u32)first_block;
3476 			cp->tweak_upper = (u32)(first_block >> 32);
3477 		}
3478 		break;
3479 	case WRITE_16:
3480 	case READ_16:
3481 		if (map->volume_blk_size == 512) {
3482 			cp->tweak_lower =
3483 				(((u32) cmd->cmnd[6]) << 24) |
3484 				(((u32) cmd->cmnd[7]) << 16) |
3485 				(((u32) cmd->cmnd[8]) << 8) |
3486 					cmd->cmnd[9];
3487 			cp->tweak_upper =
3488 				(((u32) cmd->cmnd[2]) << 24) |
3489 				(((u32) cmd->cmnd[3]) << 16) |
3490 				(((u32) cmd->cmnd[4]) << 8) |
3491 					cmd->cmnd[5];
3492 		} else {
3493 			first_block =
3494 				(((u64) cmd->cmnd[2]) << 56) |
3495 				(((u64) cmd->cmnd[3]) << 48) |
3496 				(((u64) cmd->cmnd[4]) << 40) |
3497 				(((u64) cmd->cmnd[5]) << 32) |
3498 				(((u64) cmd->cmnd[6]) << 24) |
3499 				(((u64) cmd->cmnd[7]) << 16) |
3500 				(((u64) cmd->cmnd[8]) << 8) |
3501 					cmd->cmnd[9];
3502 			first_block = (first_block * map->volume_blk_size)/512;
3503 			cp->tweak_lower = (u32)first_block;
3504 			cp->tweak_upper = (u32)(first_block >> 32);
3505 		}
3506 		break;
3507 	default:
3508 		dev_err(&h->pdev->dev,
3509 			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3510 			__func__);
3511 		BUG();
3512 		break;
3513 	}
3514 }
3515 
3516 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3517 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3518 	u8 *scsi3addr)
3519 {
3520 	struct scsi_cmnd *cmd = c->scsi_cmd;
3521 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3522 	struct ioaccel2_sg_element *curr_sg;
3523 	int use_sg, i;
3524 	struct scatterlist *sg;
3525 	u64 addr64;
3526 	u32 len;
3527 	u32 total_len = 0;
3528 
3529 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3530 		return IO_ACCEL_INELIGIBLE;
3531 
3532 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3533 		return IO_ACCEL_INELIGIBLE;
3534 	c->cmd_type = CMD_IOACCEL2;
3535 	/* Adjust the DMA address to point to the accelerated command buffer */
3536 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3537 				(c->cmdindex * sizeof(*cp));
3538 	BUG_ON(c->busaddr & 0x0000007F);
3539 
3540 	memset(cp, 0, sizeof(*cp));
3541 	cp->IU_type = IOACCEL2_IU_TYPE;
3542 
3543 	use_sg = scsi_dma_map(cmd);
3544 	if (use_sg < 0)
3545 		return use_sg;
3546 
3547 	if (use_sg) {
3548 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3549 		curr_sg = cp->sg;
3550 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3551 			addr64 = (u64) sg_dma_address(sg);
3552 			len  = sg_dma_len(sg);
3553 			total_len += len;
3554 			curr_sg->address = cpu_to_le64(addr64);
3555 			curr_sg->length = cpu_to_le32(len);
3556 			curr_sg->reserved[0] = 0;
3557 			curr_sg->reserved[1] = 0;
3558 			curr_sg->reserved[2] = 0;
3559 			curr_sg->chain_indicator = 0;
3560 			curr_sg++;
3561 		}
3562 
3563 		switch (cmd->sc_data_direction) {
3564 		case DMA_TO_DEVICE:
3565 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3566 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3567 			break;
3568 		case DMA_FROM_DEVICE:
3569 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3570 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3571 			break;
3572 		case DMA_NONE:
3573 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3574 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3575 			break;
3576 		default:
3577 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3578 				cmd->sc_data_direction);
3579 			BUG();
3580 			break;
3581 		}
3582 	} else {
3583 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3584 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3585 	}
3586 
3587 	/* Set encryption parameters, if necessary */
3588 	set_encrypt_ioaccel2(h, c, cp);
3589 
3590 	cp->scsi_nexus = ioaccel_handle;
3591 	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3592 				DIRECT_LOOKUP_BIT;
3593 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3594 
3595 	/* fill in sg elements */
3596 	cp->sg_count = (u8) use_sg;
3597 
3598 	cp->data_len = cpu_to_le32(total_len);
3599 	cp->err_ptr = cpu_to_le64(c->busaddr +
3600 			offsetof(struct io_accel2_cmd, error_data));
3601 	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3602 
3603 	enqueue_cmd_and_start_io(h, c);
3604 	return 0;
3605 }
3606 
3607 /*
3608  * Queue a command to the correct I/O accelerator path.
3609  */
3610 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3611 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3612 	u8 *scsi3addr)
3613 {
3614 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3615 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3616 						cdb, cdb_len, scsi3addr);
3617 	else
3618 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3619 						cdb, cdb_len, scsi3addr);
3620 }
3621 
3622 static void raid_map_helper(struct raid_map_data *map,
3623 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3624 {
3625 	if (offload_to_mirror == 0)  {
3626 		/* use physical disk in the first mirrored group. */
3627 		*map_index %= map->data_disks_per_row;
3628 		return;
3629 	}
3630 	do {
3631 		/* determine mirror group that *map_index indicates */
3632 		*current_group = *map_index / map->data_disks_per_row;
3633 		if (offload_to_mirror == *current_group)
3634 			continue;
3635 		if (*current_group < (map->layout_map_count - 1)) {
3636 			/* select map index from next group */
3637 			*map_index += map->data_disks_per_row;
3638 			(*current_group)++;
3639 		} else {
3640 			/* select map index from first group */
3641 			*map_index %= map->data_disks_per_row;
3642 			*current_group = 0;
3643 		}
3644 	} while (offload_to_mirror != *current_group);
3645 }
3646 
3647 /*
3648  * Attempt to perform offload RAID mapping for a logical volume I/O.
3649  */
3650 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3651 	struct CommandList *c)
3652 {
3653 	struct scsi_cmnd *cmd = c->scsi_cmd;
3654 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3655 	struct raid_map_data *map = &dev->raid_map;
3656 	struct raid_map_disk_data *dd = &map->data[0];
3657 	int is_write = 0;
3658 	u32 map_index;
3659 	u64 first_block, last_block;
3660 	u32 block_cnt;
3661 	u32 blocks_per_row;
3662 	u64 first_row, last_row;
3663 	u32 first_row_offset, last_row_offset;
3664 	u32 first_column, last_column;
3665 	u64 r0_first_row, r0_last_row;
3666 	u32 r5or6_blocks_per_row;
3667 	u64 r5or6_first_row, r5or6_last_row;
3668 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3669 	u32 r5or6_first_column, r5or6_last_column;
3670 	u32 total_disks_per_row;
3671 	u32 stripesize;
3672 	u32 first_group, last_group, current_group;
3673 	u32 map_row;
3674 	u32 disk_handle;
3675 	u64 disk_block;
3676 	u32 disk_block_cnt;
3677 	u8 cdb[16];
3678 	u8 cdb_len;
3679 #if BITS_PER_LONG == 32
3680 	u64 tmpdiv;
3681 #endif
3682 	int offload_to_mirror;
3683 
3684 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3685 
3686 	/* check for valid opcode, get LBA and block count */
3687 	switch (cmd->cmnd[0]) {
3688 	case WRITE_6:
3689 		is_write = 1;
3690 	case READ_6:
3691 		first_block =
3692 			(((u64) cmd->cmnd[2]) << 8) |
3693 			cmd->cmnd[3];
3694 		block_cnt = cmd->cmnd[4];
3695 		break;
3696 	case WRITE_10:
3697 		is_write = 1;
3698 	case READ_10:
3699 		first_block =
3700 			(((u64) cmd->cmnd[2]) << 24) |
3701 			(((u64) cmd->cmnd[3]) << 16) |
3702 			(((u64) cmd->cmnd[4]) << 8) |
3703 			cmd->cmnd[5];
3704 		block_cnt =
3705 			(((u32) cmd->cmnd[7]) << 8) |
3706 			cmd->cmnd[8];
3707 		break;
3708 	case WRITE_12:
3709 		is_write = 1;
3710 	case READ_12:
3711 		first_block =
3712 			(((u64) cmd->cmnd[2]) << 24) |
3713 			(((u64) cmd->cmnd[3]) << 16) |
3714 			(((u64) cmd->cmnd[4]) << 8) |
3715 			cmd->cmnd[5];
3716 		block_cnt =
3717 			(((u32) cmd->cmnd[6]) << 24) |
3718 			(((u32) cmd->cmnd[7]) << 16) |
3719 			(((u32) cmd->cmnd[8]) << 8) |
3720 		cmd->cmnd[9];
3721 		break;
3722 	case WRITE_16:
3723 		is_write = 1;
3724 	case READ_16:
3725 		first_block =
3726 			(((u64) cmd->cmnd[2]) << 56) |
3727 			(((u64) cmd->cmnd[3]) << 48) |
3728 			(((u64) cmd->cmnd[4]) << 40) |
3729 			(((u64) cmd->cmnd[5]) << 32) |
3730 			(((u64) cmd->cmnd[6]) << 24) |
3731 			(((u64) cmd->cmnd[7]) << 16) |
3732 			(((u64) cmd->cmnd[8]) << 8) |
3733 			cmd->cmnd[9];
3734 		block_cnt =
3735 			(((u32) cmd->cmnd[10]) << 24) |
3736 			(((u32) cmd->cmnd[11]) << 16) |
3737 			(((u32) cmd->cmnd[12]) << 8) |
3738 			cmd->cmnd[13];
3739 		break;
3740 	default:
3741 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3742 	}
3743 	BUG_ON(block_cnt == 0);
3744 	last_block = first_block + block_cnt - 1;
3745 
3746 	/* check for write to non-RAID-0 */
3747 	if (is_write && dev->raid_level != 0)
3748 		return IO_ACCEL_INELIGIBLE;
3749 
3750 	/* check for invalid block or wraparound */
3751 	if (last_block >= map->volume_blk_cnt || last_block < first_block)
3752 		return IO_ACCEL_INELIGIBLE;
3753 
3754 	/* calculate stripe information for the request */
3755 	blocks_per_row = map->data_disks_per_row * map->strip_size;
3756 #if BITS_PER_LONG == 32
3757 	tmpdiv = first_block;
3758 	(void) do_div(tmpdiv, blocks_per_row);
3759 	first_row = tmpdiv;
3760 	tmpdiv = last_block;
3761 	(void) do_div(tmpdiv, blocks_per_row);
3762 	last_row = tmpdiv;
3763 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3764 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3765 	tmpdiv = first_row_offset;
3766 	(void) do_div(tmpdiv,  map->strip_size);
3767 	first_column = tmpdiv;
3768 	tmpdiv = last_row_offset;
3769 	(void) do_div(tmpdiv, map->strip_size);
3770 	last_column = tmpdiv;
3771 #else
3772 	first_row = first_block / blocks_per_row;
3773 	last_row = last_block / blocks_per_row;
3774 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3775 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3776 	first_column = first_row_offset / map->strip_size;
3777 	last_column = last_row_offset / map->strip_size;
3778 #endif
3779 
3780 	/* if this isn't a single row/column then give to the controller */
3781 	if ((first_row != last_row) || (first_column != last_column))
3782 		return IO_ACCEL_INELIGIBLE;
3783 
3784 	/* proceeding with driver mapping */
3785 	total_disks_per_row = map->data_disks_per_row +
3786 				map->metadata_disks_per_row;
3787 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3788 				map->row_cnt;
3789 	map_index = (map_row * total_disks_per_row) + first_column;
3790 
3791 	switch (dev->raid_level) {
3792 	case HPSA_RAID_0:
3793 		break; /* nothing special to do */
3794 	case HPSA_RAID_1:
3795 		/* Handles load balance across RAID 1 members.
3796 		 * (2-drive R1 and R10 with even # of drives.)
3797 		 * Appropriate for SSDs, not optimal for HDDs
3798 		 */
3799 		BUG_ON(map->layout_map_count != 2);
3800 		if (dev->offload_to_mirror)
3801 			map_index += map->data_disks_per_row;
3802 		dev->offload_to_mirror = !dev->offload_to_mirror;
3803 		break;
3804 	case HPSA_RAID_ADM:
3805 		/* Handles N-way mirrors  (R1-ADM)
3806 		 * and R10 with # of drives divisible by 3.)
3807 		 */
3808 		BUG_ON(map->layout_map_count != 3);
3809 
3810 		offload_to_mirror = dev->offload_to_mirror;
3811 		raid_map_helper(map, offload_to_mirror,
3812 				&map_index, &current_group);
3813 		/* set mirror group to use next time */
3814 		offload_to_mirror =
3815 			(offload_to_mirror >= map->layout_map_count - 1)
3816 			? 0 : offload_to_mirror + 1;
3817 		/* FIXME: remove after debug/dev */
3818 		BUG_ON(offload_to_mirror >= map->layout_map_count);
3819 		dev_warn(&h->pdev->dev,
3820 			"DEBUG: Using physical disk map index %d from mirror group %d\n",
3821 			map_index, offload_to_mirror);
3822 		dev->offload_to_mirror = offload_to_mirror;
3823 		/* Avoid direct use of dev->offload_to_mirror within this
3824 		 * function since multiple threads might simultaneously
3825 		 * increment it beyond the range of dev->layout_map_count -1.
3826 		 */
3827 		break;
3828 	case HPSA_RAID_5:
3829 	case HPSA_RAID_6:
3830 		if (map->layout_map_count <= 1)
3831 			break;
3832 
3833 		/* Verify first and last block are in same RAID group */
3834 		r5or6_blocks_per_row =
3835 			map->strip_size * map->data_disks_per_row;
3836 		BUG_ON(r5or6_blocks_per_row == 0);
3837 		stripesize = r5or6_blocks_per_row * map->layout_map_count;
3838 #if BITS_PER_LONG == 32
3839 		tmpdiv = first_block;
3840 		first_group = do_div(tmpdiv, stripesize);
3841 		tmpdiv = first_group;
3842 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3843 		first_group = tmpdiv;
3844 		tmpdiv = last_block;
3845 		last_group = do_div(tmpdiv, stripesize);
3846 		tmpdiv = last_group;
3847 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3848 		last_group = tmpdiv;
3849 #else
3850 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3851 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3852 #endif
3853 		if (first_group != last_group)
3854 			return IO_ACCEL_INELIGIBLE;
3855 
3856 		/* Verify request is in a single row of RAID 5/6 */
3857 #if BITS_PER_LONG == 32
3858 		tmpdiv = first_block;
3859 		(void) do_div(tmpdiv, stripesize);
3860 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3861 		tmpdiv = last_block;
3862 		(void) do_div(tmpdiv, stripesize);
3863 		r5or6_last_row = r0_last_row = tmpdiv;
3864 #else
3865 		first_row = r5or6_first_row = r0_first_row =
3866 						first_block / stripesize;
3867 		r5or6_last_row = r0_last_row = last_block / stripesize;
3868 #endif
3869 		if (r5or6_first_row != r5or6_last_row)
3870 			return IO_ACCEL_INELIGIBLE;
3871 
3872 
3873 		/* Verify request is in a single column */
3874 #if BITS_PER_LONG == 32
3875 		tmpdiv = first_block;
3876 		first_row_offset = do_div(tmpdiv, stripesize);
3877 		tmpdiv = first_row_offset;
3878 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3879 		r5or6_first_row_offset = first_row_offset;
3880 		tmpdiv = last_block;
3881 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3882 		tmpdiv = r5or6_last_row_offset;
3883 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3884 		tmpdiv = r5or6_first_row_offset;
3885 		(void) do_div(tmpdiv, map->strip_size);
3886 		first_column = r5or6_first_column = tmpdiv;
3887 		tmpdiv = r5or6_last_row_offset;
3888 		(void) do_div(tmpdiv, map->strip_size);
3889 		r5or6_last_column = tmpdiv;
3890 #else
3891 		first_row_offset = r5or6_first_row_offset =
3892 			(u32)((first_block % stripesize) %
3893 						r5or6_blocks_per_row);
3894 
3895 		r5or6_last_row_offset =
3896 			(u32)((last_block % stripesize) %
3897 						r5or6_blocks_per_row);
3898 
3899 		first_column = r5or6_first_column =
3900 			r5or6_first_row_offset / map->strip_size;
3901 		r5or6_last_column =
3902 			r5or6_last_row_offset / map->strip_size;
3903 #endif
3904 		if (r5or6_first_column != r5or6_last_column)
3905 			return IO_ACCEL_INELIGIBLE;
3906 
3907 		/* Request is eligible */
3908 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3909 			map->row_cnt;
3910 
3911 		map_index = (first_group *
3912 			(map->row_cnt * total_disks_per_row)) +
3913 			(map_row * total_disks_per_row) + first_column;
3914 		break;
3915 	default:
3916 		return IO_ACCEL_INELIGIBLE;
3917 	}
3918 
3919 	disk_handle = dd[map_index].ioaccel_handle;
3920 	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3921 			(first_row_offset - (first_column * map->strip_size));
3922 	disk_block_cnt = block_cnt;
3923 
3924 	/* handle differing logical/physical block sizes */
3925 	if (map->phys_blk_shift) {
3926 		disk_block <<= map->phys_blk_shift;
3927 		disk_block_cnt <<= map->phys_blk_shift;
3928 	}
3929 	BUG_ON(disk_block_cnt > 0xffff);
3930 
3931 	/* build the new CDB for the physical disk I/O */
3932 	if (disk_block > 0xffffffff) {
3933 		cdb[0] = is_write ? WRITE_16 : READ_16;
3934 		cdb[1] = 0;
3935 		cdb[2] = (u8) (disk_block >> 56);
3936 		cdb[3] = (u8) (disk_block >> 48);
3937 		cdb[4] = (u8) (disk_block >> 40);
3938 		cdb[5] = (u8) (disk_block >> 32);
3939 		cdb[6] = (u8) (disk_block >> 24);
3940 		cdb[7] = (u8) (disk_block >> 16);
3941 		cdb[8] = (u8) (disk_block >> 8);
3942 		cdb[9] = (u8) (disk_block);
3943 		cdb[10] = (u8) (disk_block_cnt >> 24);
3944 		cdb[11] = (u8) (disk_block_cnt >> 16);
3945 		cdb[12] = (u8) (disk_block_cnt >> 8);
3946 		cdb[13] = (u8) (disk_block_cnt);
3947 		cdb[14] = 0;
3948 		cdb[15] = 0;
3949 		cdb_len = 16;
3950 	} else {
3951 		cdb[0] = is_write ? WRITE_10 : READ_10;
3952 		cdb[1] = 0;
3953 		cdb[2] = (u8) (disk_block >> 24);
3954 		cdb[3] = (u8) (disk_block >> 16);
3955 		cdb[4] = (u8) (disk_block >> 8);
3956 		cdb[5] = (u8) (disk_block);
3957 		cdb[6] = 0;
3958 		cdb[7] = (u8) (disk_block_cnt >> 8);
3959 		cdb[8] = (u8) (disk_block_cnt);
3960 		cdb[9] = 0;
3961 		cdb_len = 10;
3962 	}
3963 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3964 						dev->scsi3addr);
3965 }
3966 
3967 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3968 	void (*done)(struct scsi_cmnd *))
3969 {
3970 	struct ctlr_info *h;
3971 	struct hpsa_scsi_dev_t *dev;
3972 	unsigned char scsi3addr[8];
3973 	struct CommandList *c;
3974 	unsigned long flags;
3975 	int rc = 0;
3976 
3977 	/* Get the ptr to our adapter structure out of cmd->host. */
3978 	h = sdev_to_hba(cmd->device);
3979 	dev = cmd->device->hostdata;
3980 	if (!dev) {
3981 		cmd->result = DID_NO_CONNECT << 16;
3982 		done(cmd);
3983 		return 0;
3984 	}
3985 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3986 
3987 	spin_lock_irqsave(&h->lock, flags);
3988 	if (unlikely(h->lockup_detected)) {
3989 		spin_unlock_irqrestore(&h->lock, flags);
3990 		cmd->result = DID_ERROR << 16;
3991 		done(cmd);
3992 		return 0;
3993 	}
3994 	spin_unlock_irqrestore(&h->lock, flags);
3995 	c = cmd_alloc(h);
3996 	if (c == NULL) {			/* trouble... */
3997 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3998 		return SCSI_MLQUEUE_HOST_BUSY;
3999 	}
4000 
4001 	/* Fill in the command list header */
4002 
4003 	cmd->scsi_done = done;    /* save this for use by completion code */
4004 
4005 	/* save c in case we have to abort it  */
4006 	cmd->host_scribble = (unsigned char *) c;
4007 
4008 	c->cmd_type = CMD_SCSI;
4009 	c->scsi_cmd = cmd;
4010 
4011 	/* Call alternate submit routine for I/O accelerated commands.
4012 	 * Retries always go down the normal I/O path.
4013 	 */
4014 	if (likely(cmd->retries == 0 &&
4015 		cmd->request->cmd_type == REQ_TYPE_FS &&
4016 		h->acciopath_status)) {
4017 		if (dev->offload_enabled) {
4018 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
4019 			if (rc == 0)
4020 				return 0; /* Sent on ioaccel path */
4021 			if (rc < 0) {   /* scsi_dma_map failed. */
4022 				cmd_free(h, c);
4023 				return SCSI_MLQUEUE_HOST_BUSY;
4024 			}
4025 		} else if (dev->ioaccel_handle) {
4026 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4027 			if (rc == 0)
4028 				return 0; /* Sent on direct map path */
4029 			if (rc < 0) {   /* scsi_dma_map failed. */
4030 				cmd_free(h, c);
4031 				return SCSI_MLQUEUE_HOST_BUSY;
4032 			}
4033 		}
4034 	}
4035 
4036 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4037 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4038 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4039 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4040 
4041 	/* Fill in the request block... */
4042 
4043 	c->Request.Timeout = 0;
4044 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4045 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4046 	c->Request.CDBLen = cmd->cmd_len;
4047 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4048 	c->Request.Type.Type = TYPE_CMD;
4049 	c->Request.Type.Attribute = ATTR_SIMPLE;
4050 	switch (cmd->sc_data_direction) {
4051 	case DMA_TO_DEVICE:
4052 		c->Request.Type.Direction = XFER_WRITE;
4053 		break;
4054 	case DMA_FROM_DEVICE:
4055 		c->Request.Type.Direction = XFER_READ;
4056 		break;
4057 	case DMA_NONE:
4058 		c->Request.Type.Direction = XFER_NONE;
4059 		break;
4060 	case DMA_BIDIRECTIONAL:
4061 		/* This can happen if a buggy application does a scsi passthru
4062 		 * and sets both inlen and outlen to non-zero. ( see
4063 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4064 		 */
4065 
4066 		c->Request.Type.Direction = XFER_RSVD;
4067 		/* This is technically wrong, and hpsa controllers should
4068 		 * reject it with CMD_INVALID, which is the most correct
4069 		 * response, but non-fibre backends appear to let it
4070 		 * slide by, and give the same results as if this field
4071 		 * were set correctly.  Either way is acceptable for
4072 		 * our purposes here.
4073 		 */
4074 
4075 		break;
4076 
4077 	default:
4078 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4079 			cmd->sc_data_direction);
4080 		BUG();
4081 		break;
4082 	}
4083 
4084 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4085 		cmd_free(h, c);
4086 		return SCSI_MLQUEUE_HOST_BUSY;
4087 	}
4088 	enqueue_cmd_and_start_io(h, c);
4089 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4090 	return 0;
4091 }
4092 
4093 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4094 
4095 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4096 {
4097 	unsigned long flags;
4098 
4099 	/*
4100 	 * Don't let rescans be initiated on a controller known
4101 	 * to be locked up.  If the controller locks up *during*
4102 	 * a rescan, that thread is probably hosed, but at least
4103 	 * we can prevent new rescan threads from piling up on a
4104 	 * locked up controller.
4105 	 */
4106 	spin_lock_irqsave(&h->lock, flags);
4107 	if (unlikely(h->lockup_detected)) {
4108 		spin_unlock_irqrestore(&h->lock, flags);
4109 		spin_lock_irqsave(&h->scan_lock, flags);
4110 		h->scan_finished = 1;
4111 		wake_up_all(&h->scan_wait_queue);
4112 		spin_unlock_irqrestore(&h->scan_lock, flags);
4113 		return 1;
4114 	}
4115 	spin_unlock_irqrestore(&h->lock, flags);
4116 	return 0;
4117 }
4118 
4119 static void hpsa_scan_start(struct Scsi_Host *sh)
4120 {
4121 	struct ctlr_info *h = shost_to_hba(sh);
4122 	unsigned long flags;
4123 
4124 	if (do_not_scan_if_controller_locked_up(h))
4125 		return;
4126 
4127 	/* wait until any scan already in progress is finished. */
4128 	while (1) {
4129 		spin_lock_irqsave(&h->scan_lock, flags);
4130 		if (h->scan_finished)
4131 			break;
4132 		spin_unlock_irqrestore(&h->scan_lock, flags);
4133 		wait_event(h->scan_wait_queue, h->scan_finished);
4134 		/* Note: We don't need to worry about a race between this
4135 		 * thread and driver unload because the midlayer will
4136 		 * have incremented the reference count, so unload won't
4137 		 * happen if we're in here.
4138 		 */
4139 	}
4140 	h->scan_finished = 0; /* mark scan as in progress */
4141 	spin_unlock_irqrestore(&h->scan_lock, flags);
4142 
4143 	if (do_not_scan_if_controller_locked_up(h))
4144 		return;
4145 
4146 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4147 
4148 	spin_lock_irqsave(&h->scan_lock, flags);
4149 	h->scan_finished = 1; /* mark scan as finished. */
4150 	wake_up_all(&h->scan_wait_queue);
4151 	spin_unlock_irqrestore(&h->scan_lock, flags);
4152 }
4153 
4154 static int hpsa_scan_finished(struct Scsi_Host *sh,
4155 	unsigned long elapsed_time)
4156 {
4157 	struct ctlr_info *h = shost_to_hba(sh);
4158 	unsigned long flags;
4159 	int finished;
4160 
4161 	spin_lock_irqsave(&h->scan_lock, flags);
4162 	finished = h->scan_finished;
4163 	spin_unlock_irqrestore(&h->scan_lock, flags);
4164 	return finished;
4165 }
4166 
4167 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4168 	int qdepth, int reason)
4169 {
4170 	struct ctlr_info *h = sdev_to_hba(sdev);
4171 
4172 	if (reason != SCSI_QDEPTH_DEFAULT)
4173 		return -ENOTSUPP;
4174 
4175 	if (qdepth < 1)
4176 		qdepth = 1;
4177 	else
4178 		if (qdepth > h->nr_cmds)
4179 			qdepth = h->nr_cmds;
4180 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4181 	return sdev->queue_depth;
4182 }
4183 
4184 static void hpsa_unregister_scsi(struct ctlr_info *h)
4185 {
4186 	/* we are being forcibly unloaded, and may not refuse. */
4187 	scsi_remove_host(h->scsi_host);
4188 	scsi_host_put(h->scsi_host);
4189 	h->scsi_host = NULL;
4190 }
4191 
4192 static int hpsa_register_scsi(struct ctlr_info *h)
4193 {
4194 	struct Scsi_Host *sh;
4195 	int error;
4196 
4197 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4198 	if (sh == NULL)
4199 		goto fail;
4200 
4201 	sh->io_port = 0;
4202 	sh->n_io_port = 0;
4203 	sh->this_id = -1;
4204 	sh->max_channel = 3;
4205 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4206 	sh->max_lun = HPSA_MAX_LUN;
4207 	sh->max_id = HPSA_MAX_LUN;
4208 	sh->can_queue = h->nr_cmds;
4209 	if (h->hba_mode_enabled)
4210 		sh->cmd_per_lun = 7;
4211 	else
4212 		sh->cmd_per_lun = h->nr_cmds;
4213 	sh->sg_tablesize = h->maxsgentries;
4214 	h->scsi_host = sh;
4215 	sh->hostdata[0] = (unsigned long) h;
4216 	sh->irq = h->intr[h->intr_mode];
4217 	sh->unique_id = sh->irq;
4218 	error = scsi_add_host(sh, &h->pdev->dev);
4219 	if (error)
4220 		goto fail_host_put;
4221 	scsi_scan_host(sh);
4222 	return 0;
4223 
4224  fail_host_put:
4225 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4226 		" failed for controller %d\n", __func__, h->ctlr);
4227 	scsi_host_put(sh);
4228 	return error;
4229  fail:
4230 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4231 		" failed for controller %d\n", __func__, h->ctlr);
4232 	return -ENOMEM;
4233 }
4234 
4235 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4236 	unsigned char lunaddr[])
4237 {
4238 	int rc;
4239 	int count = 0;
4240 	int waittime = 1; /* seconds */
4241 	struct CommandList *c;
4242 
4243 	c = cmd_special_alloc(h);
4244 	if (!c) {
4245 		dev_warn(&h->pdev->dev, "out of memory in "
4246 			"wait_for_device_to_become_ready.\n");
4247 		return IO_ERROR;
4248 	}
4249 
4250 	/* Send test unit ready until device ready, or give up. */
4251 	while (count < HPSA_TUR_RETRY_LIMIT) {
4252 
4253 		/* Wait for a bit.  do this first, because if we send
4254 		 * the TUR right away, the reset will just abort it.
4255 		 */
4256 		msleep(1000 * waittime);
4257 		count++;
4258 		rc = 0; /* Device ready. */
4259 
4260 		/* Increase wait time with each try, up to a point. */
4261 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4262 			waittime = waittime * 2;
4263 
4264 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4265 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4266 				NULL, 0, 0, lunaddr, TYPE_CMD);
4267 		hpsa_scsi_do_simple_cmd_core(h, c);
4268 		/* no unmap needed here because no data xfer. */
4269 
4270 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4271 			break;
4272 
4273 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4274 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4275 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4276 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4277 			break;
4278 
4279 		dev_warn(&h->pdev->dev, "waiting %d secs "
4280 			"for device to become ready.\n", waittime);
4281 		rc = 1; /* device not ready. */
4282 	}
4283 
4284 	if (rc)
4285 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4286 	else
4287 		dev_warn(&h->pdev->dev, "device is ready.\n");
4288 
4289 	cmd_special_free(h, c);
4290 	return rc;
4291 }
4292 
4293 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4294  * complaining.  Doing a host- or bus-reset can't do anything good here.
4295  */
4296 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4297 {
4298 	int rc;
4299 	struct ctlr_info *h;
4300 	struct hpsa_scsi_dev_t *dev;
4301 
4302 	/* find the controller to which the command to be aborted was sent */
4303 	h = sdev_to_hba(scsicmd->device);
4304 	if (h == NULL) /* paranoia */
4305 		return FAILED;
4306 	dev = scsicmd->device->hostdata;
4307 	if (!dev) {
4308 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4309 			"device lookup failed.\n");
4310 		return FAILED;
4311 	}
4312 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4313 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4314 	/* send a reset to the SCSI LUN which the command was sent to */
4315 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4316 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4317 		return SUCCESS;
4318 
4319 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4320 	return FAILED;
4321 }
4322 
4323 static void swizzle_abort_tag(u8 *tag)
4324 {
4325 	u8 original_tag[8];
4326 
4327 	memcpy(original_tag, tag, 8);
4328 	tag[0] = original_tag[3];
4329 	tag[1] = original_tag[2];
4330 	tag[2] = original_tag[1];
4331 	tag[3] = original_tag[0];
4332 	tag[4] = original_tag[7];
4333 	tag[5] = original_tag[6];
4334 	tag[6] = original_tag[5];
4335 	tag[7] = original_tag[4];
4336 }
4337 
4338 static void hpsa_get_tag(struct ctlr_info *h,
4339 	struct CommandList *c, u32 *taglower, u32 *tagupper)
4340 {
4341 	if (c->cmd_type == CMD_IOACCEL1) {
4342 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4343 			&h->ioaccel_cmd_pool[c->cmdindex];
4344 		*tagupper = cm1->Tag.upper;
4345 		*taglower = cm1->Tag.lower;
4346 		return;
4347 	}
4348 	if (c->cmd_type == CMD_IOACCEL2) {
4349 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4350 			&h->ioaccel2_cmd_pool[c->cmdindex];
4351 		/* upper tag not used in ioaccel2 mode */
4352 		memset(tagupper, 0, sizeof(*tagupper));
4353 		*taglower = cm2->Tag;
4354 		return;
4355 	}
4356 	*tagupper = c->Header.Tag.upper;
4357 	*taglower = c->Header.Tag.lower;
4358 }
4359 
4360 
4361 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4362 	struct CommandList *abort, int swizzle)
4363 {
4364 	int rc = IO_OK;
4365 	struct CommandList *c;
4366 	struct ErrorInfo *ei;
4367 	u32 tagupper, taglower;
4368 
4369 	c = cmd_special_alloc(h);
4370 	if (c == NULL) {	/* trouble... */
4371 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4372 		return -ENOMEM;
4373 	}
4374 
4375 	/* fill_cmd can't fail here, no buffer to map */
4376 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4377 		0, 0, scsi3addr, TYPE_MSG);
4378 	if (swizzle)
4379 		swizzle_abort_tag(&c->Request.CDB[4]);
4380 	hpsa_scsi_do_simple_cmd_core(h, c);
4381 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4382 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4383 		__func__, tagupper, taglower);
4384 	/* no unmap needed here because no data xfer. */
4385 
4386 	ei = c->err_info;
4387 	switch (ei->CommandStatus) {
4388 	case CMD_SUCCESS:
4389 		break;
4390 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4391 		rc = -1;
4392 		break;
4393 	default:
4394 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4395 			__func__, tagupper, taglower);
4396 		hpsa_scsi_interpret_error(h, c);
4397 		rc = -1;
4398 		break;
4399 	}
4400 	cmd_special_free(h, c);
4401 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4402 		__func__, tagupper, taglower);
4403 	return rc;
4404 }
4405 
4406 /*
4407  * hpsa_find_cmd_in_queue
4408  *
4409  * Used to determine whether a command (find) is still present
4410  * in queue_head.   Optionally excludes the last element of queue_head.
4411  *
4412  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4413  * not yet been submitted, and so can be aborted by the driver without
4414  * sending an abort to the hardware.
4415  *
4416  * Returns pointer to command if found in queue, NULL otherwise.
4417  */
4418 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4419 			struct scsi_cmnd *find, struct list_head *queue_head)
4420 {
4421 	unsigned long flags;
4422 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4423 
4424 	if (!find)
4425 		return 0;
4426 	spin_lock_irqsave(&h->lock, flags);
4427 	list_for_each_entry(c, queue_head, list) {
4428 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4429 			continue;
4430 		if (c->scsi_cmd == find) {
4431 			spin_unlock_irqrestore(&h->lock, flags);
4432 			return c;
4433 		}
4434 	}
4435 	spin_unlock_irqrestore(&h->lock, flags);
4436 	return NULL;
4437 }
4438 
4439 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4440 					u8 *tag, struct list_head *queue_head)
4441 {
4442 	unsigned long flags;
4443 	struct CommandList *c;
4444 
4445 	spin_lock_irqsave(&h->lock, flags);
4446 	list_for_each_entry(c, queue_head, list) {
4447 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
4448 			continue;
4449 		spin_unlock_irqrestore(&h->lock, flags);
4450 		return c;
4451 	}
4452 	spin_unlock_irqrestore(&h->lock, flags);
4453 	return NULL;
4454 }
4455 
4456 /* ioaccel2 path firmware cannot handle abort task requests.
4457  * Change abort requests to physical target reset, and send to the
4458  * address of the physical disk used for the ioaccel 2 command.
4459  * Return 0 on success (IO_OK)
4460  *	 -1 on failure
4461  */
4462 
4463 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4464 	unsigned char *scsi3addr, struct CommandList *abort)
4465 {
4466 	int rc = IO_OK;
4467 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4468 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4469 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4470 	unsigned char *psa = &phys_scsi3addr[0];
4471 
4472 	/* Get a pointer to the hpsa logical device. */
4473 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4474 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4475 	if (dev == NULL) {
4476 		dev_warn(&h->pdev->dev,
4477 			"Cannot abort: no device pointer for command.\n");
4478 			return -1; /* not abortable */
4479 	}
4480 
4481 	if (h->raid_offload_debug > 0)
4482 		dev_info(&h->pdev->dev,
4483 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4484 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4485 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4486 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4487 
4488 	if (!dev->offload_enabled) {
4489 		dev_warn(&h->pdev->dev,
4490 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4491 		return -1; /* not abortable */
4492 	}
4493 
4494 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4495 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4496 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4497 		return -1; /* not abortable */
4498 	}
4499 
4500 	/* send the reset */
4501 	if (h->raid_offload_debug > 0)
4502 		dev_info(&h->pdev->dev,
4503 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4504 			psa[0], psa[1], psa[2], psa[3],
4505 			psa[4], psa[5], psa[6], psa[7]);
4506 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4507 	if (rc != 0) {
4508 		dev_warn(&h->pdev->dev,
4509 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4510 			psa[0], psa[1], psa[2], psa[3],
4511 			psa[4], psa[5], psa[6], psa[7]);
4512 		return rc; /* failed to reset */
4513 	}
4514 
4515 	/* wait for device to recover */
4516 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4517 		dev_warn(&h->pdev->dev,
4518 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4519 			psa[0], psa[1], psa[2], psa[3],
4520 			psa[4], psa[5], psa[6], psa[7]);
4521 		return -1;  /* failed to recover */
4522 	}
4523 
4524 	/* device recovered */
4525 	dev_info(&h->pdev->dev,
4526 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4527 		psa[0], psa[1], psa[2], psa[3],
4528 		psa[4], psa[5], psa[6], psa[7]);
4529 
4530 	return rc; /* success */
4531 }
4532 
4533 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4534  * tell which kind we're dealing with, so we send the abort both ways.  There
4535  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4536  * way we construct our tags but we check anyway in case the assumptions which
4537  * make this true someday become false.
4538  */
4539 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4540 	unsigned char *scsi3addr, struct CommandList *abort)
4541 {
4542 	u8 swizzled_tag[8];
4543 	struct CommandList *c;
4544 	int rc = 0, rc2 = 0;
4545 
4546 	/* ioccelerator mode 2 commands should be aborted via the
4547 	 * accelerated path, since RAID path is unaware of these commands,
4548 	 * but underlying firmware can't handle abort TMF.
4549 	 * Change abort to physical device reset.
4550 	 */
4551 	if (abort->cmd_type == CMD_IOACCEL2)
4552 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4553 
4554 	/* we do not expect to find the swizzled tag in our queue, but
4555 	 * check anyway just to be sure the assumptions which make this
4556 	 * the case haven't become wrong.
4557 	 */
4558 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4559 	swizzle_abort_tag(swizzled_tag);
4560 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4561 	if (c != NULL) {
4562 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4563 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4564 	}
4565 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4566 
4567 	/* if the command is still in our queue, we can't conclude that it was
4568 	 * aborted (it might have just completed normally) but in any case
4569 	 * we don't need to try to abort it another way.
4570 	 */
4571 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4572 	if (c)
4573 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4574 	return rc && rc2;
4575 }
4576 
4577 /* Send an abort for the specified command.
4578  *	If the device and controller support it,
4579  *		send a task abort request.
4580  */
4581 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4582 {
4583 
4584 	int i, rc;
4585 	struct ctlr_info *h;
4586 	struct hpsa_scsi_dev_t *dev;
4587 	struct CommandList *abort; /* pointer to command to be aborted */
4588 	struct CommandList *found;
4589 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4590 	char msg[256];		/* For debug messaging. */
4591 	int ml = 0;
4592 	u32 tagupper, taglower;
4593 
4594 	/* Find the controller of the command to be aborted */
4595 	h = sdev_to_hba(sc->device);
4596 	if (WARN(h == NULL,
4597 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4598 		return FAILED;
4599 
4600 	/* Check that controller supports some kind of task abort */
4601 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4602 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4603 		return FAILED;
4604 
4605 	memset(msg, 0, sizeof(msg));
4606 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4607 		h->scsi_host->host_no, sc->device->channel,
4608 		sc->device->id, sc->device->lun);
4609 
4610 	/* Find the device of the command to be aborted */
4611 	dev = sc->device->hostdata;
4612 	if (!dev) {
4613 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4614 				msg);
4615 		return FAILED;
4616 	}
4617 
4618 	/* Get SCSI command to be aborted */
4619 	abort = (struct CommandList *) sc->host_scribble;
4620 	if (abort == NULL) {
4621 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4622 				msg);
4623 		return FAILED;
4624 	}
4625 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4626 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4627 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4628 	if (as != NULL)
4629 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4630 			as->cmnd[0], as->serial_number);
4631 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4632 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4633 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4634 
4635 	/* Search reqQ to See if command is queued but not submitted,
4636 	 * if so, complete the command with aborted status and remove
4637 	 * it from the reqQ.
4638 	 */
4639 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4640 	if (found) {
4641 		found->err_info->CommandStatus = CMD_ABORTED;
4642 		finish_cmd(found);
4643 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4644 				msg);
4645 		return SUCCESS;
4646 	}
4647 
4648 	/* not in reqQ, if also not in cmpQ, must have already completed */
4649 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4650 	if (!found)  {
4651 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4652 				msg);
4653 		return SUCCESS;
4654 	}
4655 
4656 	/*
4657 	 * Command is in flight, or possibly already completed
4658 	 * by the firmware (but not to the scsi mid layer) but we can't
4659 	 * distinguish which.  Send the abort down.
4660 	 */
4661 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4662 	if (rc != 0) {
4663 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4664 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4665 			h->scsi_host->host_no,
4666 			dev->bus, dev->target, dev->lun);
4667 		return FAILED;
4668 	}
4669 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4670 
4671 	/* If the abort(s) above completed and actually aborted the
4672 	 * command, then the command to be aborted should already be
4673 	 * completed.  If not, wait around a bit more to see if they
4674 	 * manage to complete normally.
4675 	 */
4676 #define ABORT_COMPLETE_WAIT_SECS 30
4677 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4678 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4679 		if (!found)
4680 			return SUCCESS;
4681 		msleep(100);
4682 	}
4683 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4684 		msg, ABORT_COMPLETE_WAIT_SECS);
4685 	return FAILED;
4686 }
4687 
4688 
4689 /*
4690  * For operations that cannot sleep, a command block is allocated at init,
4691  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4692  * which ones are free or in use.  Lock must be held when calling this.
4693  * cmd_free() is the complement.
4694  */
4695 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4696 {
4697 	struct CommandList *c;
4698 	int i;
4699 	union u64bit temp64;
4700 	dma_addr_t cmd_dma_handle, err_dma_handle;
4701 	unsigned long flags;
4702 
4703 	spin_lock_irqsave(&h->lock, flags);
4704 	do {
4705 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4706 		if (i == h->nr_cmds) {
4707 			spin_unlock_irqrestore(&h->lock, flags);
4708 			return NULL;
4709 		}
4710 	} while (test_and_set_bit
4711 		 (i & (BITS_PER_LONG - 1),
4712 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4713 	spin_unlock_irqrestore(&h->lock, flags);
4714 
4715 	c = h->cmd_pool + i;
4716 	memset(c, 0, sizeof(*c));
4717 	cmd_dma_handle = h->cmd_pool_dhandle
4718 	    + i * sizeof(*c);
4719 	c->err_info = h->errinfo_pool + i;
4720 	memset(c->err_info, 0, sizeof(*c->err_info));
4721 	err_dma_handle = h->errinfo_pool_dhandle
4722 	    + i * sizeof(*c->err_info);
4723 
4724 	c->cmdindex = i;
4725 
4726 	INIT_LIST_HEAD(&c->list);
4727 	c->busaddr = (u32) cmd_dma_handle;
4728 	temp64.val = (u64) err_dma_handle;
4729 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4730 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4731 	c->ErrDesc.Len = sizeof(*c->err_info);
4732 
4733 	c->h = h;
4734 	return c;
4735 }
4736 
4737 /* For operations that can wait for kmalloc to possibly sleep,
4738  * this routine can be called. Lock need not be held to call
4739  * cmd_special_alloc. cmd_special_free() is the complement.
4740  */
4741 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4742 {
4743 	struct CommandList *c;
4744 	union u64bit temp64;
4745 	dma_addr_t cmd_dma_handle, err_dma_handle;
4746 
4747 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4748 	if (c == NULL)
4749 		return NULL;
4750 	memset(c, 0, sizeof(*c));
4751 
4752 	c->cmd_type = CMD_SCSI;
4753 	c->cmdindex = -1;
4754 
4755 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4756 		    &err_dma_handle);
4757 
4758 	if (c->err_info == NULL) {
4759 		pci_free_consistent(h->pdev,
4760 			sizeof(*c), c, cmd_dma_handle);
4761 		return NULL;
4762 	}
4763 	memset(c->err_info, 0, sizeof(*c->err_info));
4764 
4765 	INIT_LIST_HEAD(&c->list);
4766 	c->busaddr = (u32) cmd_dma_handle;
4767 	temp64.val = (u64) err_dma_handle;
4768 	c->ErrDesc.Addr.lower = temp64.val32.lower;
4769 	c->ErrDesc.Addr.upper = temp64.val32.upper;
4770 	c->ErrDesc.Len = sizeof(*c->err_info);
4771 
4772 	c->h = h;
4773 	return c;
4774 }
4775 
4776 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4777 {
4778 	int i;
4779 	unsigned long flags;
4780 
4781 	i = c - h->cmd_pool;
4782 	spin_lock_irqsave(&h->lock, flags);
4783 	clear_bit(i & (BITS_PER_LONG - 1),
4784 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4785 	spin_unlock_irqrestore(&h->lock, flags);
4786 }
4787 
4788 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4789 {
4790 	union u64bit temp64;
4791 
4792 	temp64.val32.lower = c->ErrDesc.Addr.lower;
4793 	temp64.val32.upper = c->ErrDesc.Addr.upper;
4794 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4795 			    c->err_info, (dma_addr_t) temp64.val);
4796 	pci_free_consistent(h->pdev, sizeof(*c),
4797 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4798 }
4799 
4800 #ifdef CONFIG_COMPAT
4801 
4802 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4803 {
4804 	IOCTL32_Command_struct __user *arg32 =
4805 	    (IOCTL32_Command_struct __user *) arg;
4806 	IOCTL_Command_struct arg64;
4807 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4808 	int err;
4809 	u32 cp;
4810 
4811 	memset(&arg64, 0, sizeof(arg64));
4812 	err = 0;
4813 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4814 			   sizeof(arg64.LUN_info));
4815 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4816 			   sizeof(arg64.Request));
4817 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4818 			   sizeof(arg64.error_info));
4819 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4820 	err |= get_user(cp, &arg32->buf);
4821 	arg64.buf = compat_ptr(cp);
4822 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4823 
4824 	if (err)
4825 		return -EFAULT;
4826 
4827 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4828 	if (err)
4829 		return err;
4830 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4831 			 sizeof(arg32->error_info));
4832 	if (err)
4833 		return -EFAULT;
4834 	return err;
4835 }
4836 
4837 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4838 	int cmd, void *arg)
4839 {
4840 	BIG_IOCTL32_Command_struct __user *arg32 =
4841 	    (BIG_IOCTL32_Command_struct __user *) arg;
4842 	BIG_IOCTL_Command_struct arg64;
4843 	BIG_IOCTL_Command_struct __user *p =
4844 	    compat_alloc_user_space(sizeof(arg64));
4845 	int err;
4846 	u32 cp;
4847 
4848 	memset(&arg64, 0, sizeof(arg64));
4849 	err = 0;
4850 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4851 			   sizeof(arg64.LUN_info));
4852 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4853 			   sizeof(arg64.Request));
4854 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4855 			   sizeof(arg64.error_info));
4856 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4857 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4858 	err |= get_user(cp, &arg32->buf);
4859 	arg64.buf = compat_ptr(cp);
4860 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4861 
4862 	if (err)
4863 		return -EFAULT;
4864 
4865 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4866 	if (err)
4867 		return err;
4868 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4869 			 sizeof(arg32->error_info));
4870 	if (err)
4871 		return -EFAULT;
4872 	return err;
4873 }
4874 
4875 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4876 {
4877 	switch (cmd) {
4878 	case CCISS_GETPCIINFO:
4879 	case CCISS_GETINTINFO:
4880 	case CCISS_SETINTINFO:
4881 	case CCISS_GETNODENAME:
4882 	case CCISS_SETNODENAME:
4883 	case CCISS_GETHEARTBEAT:
4884 	case CCISS_GETBUSTYPES:
4885 	case CCISS_GETFIRMVER:
4886 	case CCISS_GETDRIVVER:
4887 	case CCISS_REVALIDVOLS:
4888 	case CCISS_DEREGDISK:
4889 	case CCISS_REGNEWDISK:
4890 	case CCISS_REGNEWD:
4891 	case CCISS_RESCANDISK:
4892 	case CCISS_GETLUNINFO:
4893 		return hpsa_ioctl(dev, cmd, arg);
4894 
4895 	case CCISS_PASSTHRU32:
4896 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4897 	case CCISS_BIG_PASSTHRU32:
4898 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4899 
4900 	default:
4901 		return -ENOIOCTLCMD;
4902 	}
4903 }
4904 #endif
4905 
4906 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4907 {
4908 	struct hpsa_pci_info pciinfo;
4909 
4910 	if (!argp)
4911 		return -EINVAL;
4912 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4913 	pciinfo.bus = h->pdev->bus->number;
4914 	pciinfo.dev_fn = h->pdev->devfn;
4915 	pciinfo.board_id = h->board_id;
4916 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4917 		return -EFAULT;
4918 	return 0;
4919 }
4920 
4921 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4922 {
4923 	DriverVer_type DriverVer;
4924 	unsigned char vmaj, vmin, vsubmin;
4925 	int rc;
4926 
4927 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4928 		&vmaj, &vmin, &vsubmin);
4929 	if (rc != 3) {
4930 		dev_info(&h->pdev->dev, "driver version string '%s' "
4931 			"unrecognized.", HPSA_DRIVER_VERSION);
4932 		vmaj = 0;
4933 		vmin = 0;
4934 		vsubmin = 0;
4935 	}
4936 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4937 	if (!argp)
4938 		return -EINVAL;
4939 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4940 		return -EFAULT;
4941 	return 0;
4942 }
4943 
4944 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4945 {
4946 	IOCTL_Command_struct iocommand;
4947 	struct CommandList *c;
4948 	char *buff = NULL;
4949 	union u64bit temp64;
4950 	int rc = 0;
4951 
4952 	if (!argp)
4953 		return -EINVAL;
4954 	if (!capable(CAP_SYS_RAWIO))
4955 		return -EPERM;
4956 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4957 		return -EFAULT;
4958 	if ((iocommand.buf_size < 1) &&
4959 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4960 		return -EINVAL;
4961 	}
4962 	if (iocommand.buf_size > 0) {
4963 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4964 		if (buff == NULL)
4965 			return -EFAULT;
4966 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4967 			/* Copy the data into the buffer we created */
4968 			if (copy_from_user(buff, iocommand.buf,
4969 				iocommand.buf_size)) {
4970 				rc = -EFAULT;
4971 				goto out_kfree;
4972 			}
4973 		} else {
4974 			memset(buff, 0, iocommand.buf_size);
4975 		}
4976 	}
4977 	c = cmd_special_alloc(h);
4978 	if (c == NULL) {
4979 		rc = -ENOMEM;
4980 		goto out_kfree;
4981 	}
4982 	/* Fill in the command type */
4983 	c->cmd_type = CMD_IOCTL_PEND;
4984 	/* Fill in Command Header */
4985 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4986 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4987 		c->Header.SGList = 1;
4988 		c->Header.SGTotal = 1;
4989 	} else	{ /* no buffers to fill */
4990 		c->Header.SGList = 0;
4991 		c->Header.SGTotal = 0;
4992 	}
4993 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4994 	/* use the kernel address the cmd block for tag */
4995 	c->Header.Tag.lower = c->busaddr;
4996 
4997 	/* Fill in Request block */
4998 	memcpy(&c->Request, &iocommand.Request,
4999 		sizeof(c->Request));
5000 
5001 	/* Fill in the scatter gather information */
5002 	if (iocommand.buf_size > 0) {
5003 		temp64.val = pci_map_single(h->pdev, buff,
5004 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5005 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5006 			c->SG[0].Addr.lower = 0;
5007 			c->SG[0].Addr.upper = 0;
5008 			c->SG[0].Len = 0;
5009 			rc = -ENOMEM;
5010 			goto out;
5011 		}
5012 		c->SG[0].Addr.lower = temp64.val32.lower;
5013 		c->SG[0].Addr.upper = temp64.val32.upper;
5014 		c->SG[0].Len = iocommand.buf_size;
5015 		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
5016 	}
5017 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5018 	if (iocommand.buf_size > 0)
5019 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5020 	check_ioctl_unit_attention(h, c);
5021 
5022 	/* Copy the error information out */
5023 	memcpy(&iocommand.error_info, c->err_info,
5024 		sizeof(iocommand.error_info));
5025 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5026 		rc = -EFAULT;
5027 		goto out;
5028 	}
5029 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5030 		iocommand.buf_size > 0) {
5031 		/* Copy the data out of the buffer we created */
5032 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5033 			rc = -EFAULT;
5034 			goto out;
5035 		}
5036 	}
5037 out:
5038 	cmd_special_free(h, c);
5039 out_kfree:
5040 	kfree(buff);
5041 	return rc;
5042 }
5043 
5044 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5045 {
5046 	BIG_IOCTL_Command_struct *ioc;
5047 	struct CommandList *c;
5048 	unsigned char **buff = NULL;
5049 	int *buff_size = NULL;
5050 	union u64bit temp64;
5051 	BYTE sg_used = 0;
5052 	int status = 0;
5053 	int i;
5054 	u32 left;
5055 	u32 sz;
5056 	BYTE __user *data_ptr;
5057 
5058 	if (!argp)
5059 		return -EINVAL;
5060 	if (!capable(CAP_SYS_RAWIO))
5061 		return -EPERM;
5062 	ioc = (BIG_IOCTL_Command_struct *)
5063 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5064 	if (!ioc) {
5065 		status = -ENOMEM;
5066 		goto cleanup1;
5067 	}
5068 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5069 		status = -EFAULT;
5070 		goto cleanup1;
5071 	}
5072 	if ((ioc->buf_size < 1) &&
5073 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5074 		status = -EINVAL;
5075 		goto cleanup1;
5076 	}
5077 	/* Check kmalloc limits  using all SGs */
5078 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5079 		status = -EINVAL;
5080 		goto cleanup1;
5081 	}
5082 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5083 		status = -EINVAL;
5084 		goto cleanup1;
5085 	}
5086 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5087 	if (!buff) {
5088 		status = -ENOMEM;
5089 		goto cleanup1;
5090 	}
5091 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5092 	if (!buff_size) {
5093 		status = -ENOMEM;
5094 		goto cleanup1;
5095 	}
5096 	left = ioc->buf_size;
5097 	data_ptr = ioc->buf;
5098 	while (left) {
5099 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5100 		buff_size[sg_used] = sz;
5101 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5102 		if (buff[sg_used] == NULL) {
5103 			status = -ENOMEM;
5104 			goto cleanup1;
5105 		}
5106 		if (ioc->Request.Type.Direction & XFER_WRITE) {
5107 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5108 				status = -ENOMEM;
5109 				goto cleanup1;
5110 			}
5111 		} else
5112 			memset(buff[sg_used], 0, sz);
5113 		left -= sz;
5114 		data_ptr += sz;
5115 		sg_used++;
5116 	}
5117 	c = cmd_special_alloc(h);
5118 	if (c == NULL) {
5119 		status = -ENOMEM;
5120 		goto cleanup1;
5121 	}
5122 	c->cmd_type = CMD_IOCTL_PEND;
5123 	c->Header.ReplyQueue = 0;
5124 	c->Header.SGList = c->Header.SGTotal = sg_used;
5125 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5126 	c->Header.Tag.lower = c->busaddr;
5127 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5128 	if (ioc->buf_size > 0) {
5129 		int i;
5130 		for (i = 0; i < sg_used; i++) {
5131 			temp64.val = pci_map_single(h->pdev, buff[i],
5132 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5133 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5134 				c->SG[i].Addr.lower = 0;
5135 				c->SG[i].Addr.upper = 0;
5136 				c->SG[i].Len = 0;
5137 				hpsa_pci_unmap(h->pdev, c, i,
5138 					PCI_DMA_BIDIRECTIONAL);
5139 				status = -ENOMEM;
5140 				goto cleanup0;
5141 			}
5142 			c->SG[i].Addr.lower = temp64.val32.lower;
5143 			c->SG[i].Addr.upper = temp64.val32.upper;
5144 			c->SG[i].Len = buff_size[i];
5145 			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5146 		}
5147 	}
5148 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5149 	if (sg_used)
5150 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5151 	check_ioctl_unit_attention(h, c);
5152 	/* Copy the error information out */
5153 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5154 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5155 		status = -EFAULT;
5156 		goto cleanup0;
5157 	}
5158 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5159 		/* Copy the data out of the buffer we created */
5160 		BYTE __user *ptr = ioc->buf;
5161 		for (i = 0; i < sg_used; i++) {
5162 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5163 				status = -EFAULT;
5164 				goto cleanup0;
5165 			}
5166 			ptr += buff_size[i];
5167 		}
5168 	}
5169 	status = 0;
5170 cleanup0:
5171 	cmd_special_free(h, c);
5172 cleanup1:
5173 	if (buff) {
5174 		for (i = 0; i < sg_used; i++)
5175 			kfree(buff[i]);
5176 		kfree(buff);
5177 	}
5178 	kfree(buff_size);
5179 	kfree(ioc);
5180 	return status;
5181 }
5182 
5183 static void check_ioctl_unit_attention(struct ctlr_info *h,
5184 	struct CommandList *c)
5185 {
5186 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5187 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5188 		(void) check_for_unit_attention(h, c);
5189 }
5190 
5191 static int increment_passthru_count(struct ctlr_info *h)
5192 {
5193 	unsigned long flags;
5194 
5195 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5196 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5197 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5198 		return -1;
5199 	}
5200 	h->passthru_count++;
5201 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5202 	return 0;
5203 }
5204 
5205 static void decrement_passthru_count(struct ctlr_info *h)
5206 {
5207 	unsigned long flags;
5208 
5209 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5210 	if (h->passthru_count <= 0) {
5211 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5212 		/* not expecting to get here. */
5213 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5214 		return;
5215 	}
5216 	h->passthru_count--;
5217 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5218 }
5219 
5220 /*
5221  * ioctl
5222  */
5223 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5224 {
5225 	struct ctlr_info *h;
5226 	void __user *argp = (void __user *)arg;
5227 	int rc;
5228 
5229 	h = sdev_to_hba(dev);
5230 
5231 	switch (cmd) {
5232 	case CCISS_DEREGDISK:
5233 	case CCISS_REGNEWDISK:
5234 	case CCISS_REGNEWD:
5235 		hpsa_scan_start(h->scsi_host);
5236 		return 0;
5237 	case CCISS_GETPCIINFO:
5238 		return hpsa_getpciinfo_ioctl(h, argp);
5239 	case CCISS_GETDRIVVER:
5240 		return hpsa_getdrivver_ioctl(h, argp);
5241 	case CCISS_PASSTHRU:
5242 		if (increment_passthru_count(h))
5243 			return -EAGAIN;
5244 		rc = hpsa_passthru_ioctl(h, argp);
5245 		decrement_passthru_count(h);
5246 		return rc;
5247 	case CCISS_BIG_PASSTHRU:
5248 		if (increment_passthru_count(h))
5249 			return -EAGAIN;
5250 		rc = hpsa_big_passthru_ioctl(h, argp);
5251 		decrement_passthru_count(h);
5252 		return rc;
5253 	default:
5254 		return -ENOTTY;
5255 	}
5256 }
5257 
5258 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5259 				u8 reset_type)
5260 {
5261 	struct CommandList *c;
5262 
5263 	c = cmd_alloc(h);
5264 	if (!c)
5265 		return -ENOMEM;
5266 	/* fill_cmd can't fail here, no data buffer to map */
5267 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5268 		RAID_CTLR_LUNID, TYPE_MSG);
5269 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5270 	c->waiting = NULL;
5271 	enqueue_cmd_and_start_io(h, c);
5272 	/* Don't wait for completion, the reset won't complete.  Don't free
5273 	 * the command either.  This is the last command we will send before
5274 	 * re-initializing everything, so it doesn't matter and won't leak.
5275 	 */
5276 	return 0;
5277 }
5278 
5279 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5280 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5281 	int cmd_type)
5282 {
5283 	int pci_dir = XFER_NONE;
5284 	struct CommandList *a; /* for commands to be aborted */
5285 
5286 	c->cmd_type = CMD_IOCTL_PEND;
5287 	c->Header.ReplyQueue = 0;
5288 	if (buff != NULL && size > 0) {
5289 		c->Header.SGList = 1;
5290 		c->Header.SGTotal = 1;
5291 	} else {
5292 		c->Header.SGList = 0;
5293 		c->Header.SGTotal = 0;
5294 	}
5295 	c->Header.Tag.lower = c->busaddr;
5296 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5297 
5298 	c->Request.Type.Type = cmd_type;
5299 	if (cmd_type == TYPE_CMD) {
5300 		switch (cmd) {
5301 		case HPSA_INQUIRY:
5302 			/* are we trying to read a vital product page */
5303 			if (page_code & VPD_PAGE) {
5304 				c->Request.CDB[1] = 0x01;
5305 				c->Request.CDB[2] = (page_code & 0xff);
5306 			}
5307 			c->Request.CDBLen = 6;
5308 			c->Request.Type.Attribute = ATTR_SIMPLE;
5309 			c->Request.Type.Direction = XFER_READ;
5310 			c->Request.Timeout = 0;
5311 			c->Request.CDB[0] = HPSA_INQUIRY;
5312 			c->Request.CDB[4] = size & 0xFF;
5313 			break;
5314 		case HPSA_REPORT_LOG:
5315 		case HPSA_REPORT_PHYS:
5316 			/* Talking to controller so It's a physical command
5317 			   mode = 00 target = 0.  Nothing to write.
5318 			 */
5319 			c->Request.CDBLen = 12;
5320 			c->Request.Type.Attribute = ATTR_SIMPLE;
5321 			c->Request.Type.Direction = XFER_READ;
5322 			c->Request.Timeout = 0;
5323 			c->Request.CDB[0] = cmd;
5324 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5325 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5326 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5327 			c->Request.CDB[9] = size & 0xFF;
5328 			break;
5329 		case HPSA_CACHE_FLUSH:
5330 			c->Request.CDBLen = 12;
5331 			c->Request.Type.Attribute = ATTR_SIMPLE;
5332 			c->Request.Type.Direction = XFER_WRITE;
5333 			c->Request.Timeout = 0;
5334 			c->Request.CDB[0] = BMIC_WRITE;
5335 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5336 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5337 			c->Request.CDB[8] = size & 0xFF;
5338 			break;
5339 		case TEST_UNIT_READY:
5340 			c->Request.CDBLen = 6;
5341 			c->Request.Type.Attribute = ATTR_SIMPLE;
5342 			c->Request.Type.Direction = XFER_NONE;
5343 			c->Request.Timeout = 0;
5344 			break;
5345 		case HPSA_GET_RAID_MAP:
5346 			c->Request.CDBLen = 12;
5347 			c->Request.Type.Attribute = ATTR_SIMPLE;
5348 			c->Request.Type.Direction = XFER_READ;
5349 			c->Request.Timeout = 0;
5350 			c->Request.CDB[0] = HPSA_CISS_READ;
5351 			c->Request.CDB[1] = cmd;
5352 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5353 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5354 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5355 			c->Request.CDB[9] = size & 0xFF;
5356 			break;
5357 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5358 			c->Request.CDBLen = 10;
5359 			c->Request.Type.Attribute = ATTR_SIMPLE;
5360 			c->Request.Type.Direction = XFER_READ;
5361 			c->Request.Timeout = 0;
5362 			c->Request.CDB[0] = BMIC_READ;
5363 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5364 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5365 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5366 			break;
5367 		default:
5368 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5369 			BUG();
5370 			return -1;
5371 		}
5372 	} else if (cmd_type == TYPE_MSG) {
5373 		switch (cmd) {
5374 
5375 		case  HPSA_DEVICE_RESET_MSG:
5376 			c->Request.CDBLen = 16;
5377 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5378 			c->Request.Type.Attribute = ATTR_SIMPLE;
5379 			c->Request.Type.Direction = XFER_NONE;
5380 			c->Request.Timeout = 0; /* Don't time out */
5381 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5382 			c->Request.CDB[0] =  cmd;
5383 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5384 			/* If bytes 4-7 are zero, it means reset the */
5385 			/* LunID device */
5386 			c->Request.CDB[4] = 0x00;
5387 			c->Request.CDB[5] = 0x00;
5388 			c->Request.CDB[6] = 0x00;
5389 			c->Request.CDB[7] = 0x00;
5390 			break;
5391 		case  HPSA_ABORT_MSG:
5392 			a = buff;       /* point to command to be aborted */
5393 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5394 				a->Header.Tag.upper, a->Header.Tag.lower,
5395 				c->Header.Tag.upper, c->Header.Tag.lower);
5396 			c->Request.CDBLen = 16;
5397 			c->Request.Type.Type = TYPE_MSG;
5398 			c->Request.Type.Attribute = ATTR_SIMPLE;
5399 			c->Request.Type.Direction = XFER_WRITE;
5400 			c->Request.Timeout = 0; /* Don't time out */
5401 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5402 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5403 			c->Request.CDB[2] = 0x00; /* reserved */
5404 			c->Request.CDB[3] = 0x00; /* reserved */
5405 			/* Tag to abort goes in CDB[4]-CDB[11] */
5406 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5407 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5408 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5409 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5410 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5411 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5412 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5413 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5414 			c->Request.CDB[12] = 0x00; /* reserved */
5415 			c->Request.CDB[13] = 0x00; /* reserved */
5416 			c->Request.CDB[14] = 0x00; /* reserved */
5417 			c->Request.CDB[15] = 0x00; /* reserved */
5418 		break;
5419 		default:
5420 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5421 				cmd);
5422 			BUG();
5423 		}
5424 	} else {
5425 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5426 		BUG();
5427 	}
5428 
5429 	switch (c->Request.Type.Direction) {
5430 	case XFER_READ:
5431 		pci_dir = PCI_DMA_FROMDEVICE;
5432 		break;
5433 	case XFER_WRITE:
5434 		pci_dir = PCI_DMA_TODEVICE;
5435 		break;
5436 	case XFER_NONE:
5437 		pci_dir = PCI_DMA_NONE;
5438 		break;
5439 	default:
5440 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5441 	}
5442 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5443 		return -1;
5444 	return 0;
5445 }
5446 
5447 /*
5448  * Map (physical) PCI mem into (virtual) kernel space
5449  */
5450 static void __iomem *remap_pci_mem(ulong base, ulong size)
5451 {
5452 	ulong page_base = ((ulong) base) & PAGE_MASK;
5453 	ulong page_offs = ((ulong) base) - page_base;
5454 	void __iomem *page_remapped = ioremap_nocache(page_base,
5455 		page_offs + size);
5456 
5457 	return page_remapped ? (page_remapped + page_offs) : NULL;
5458 }
5459 
5460 /* Takes cmds off the submission queue and sends them to the hardware,
5461  * then puts them on the queue of cmds waiting for completion.
5462  */
5463 static void start_io(struct ctlr_info *h)
5464 {
5465 	struct CommandList *c;
5466 	unsigned long flags;
5467 
5468 	spin_lock_irqsave(&h->lock, flags);
5469 	while (!list_empty(&h->reqQ)) {
5470 		c = list_entry(h->reqQ.next, struct CommandList, list);
5471 		/* can't do anything if fifo is full */
5472 		if ((h->access.fifo_full(h))) {
5473 			h->fifo_recently_full = 1;
5474 			dev_warn(&h->pdev->dev, "fifo full\n");
5475 			break;
5476 		}
5477 		h->fifo_recently_full = 0;
5478 
5479 		/* Get the first entry from the Request Q */
5480 		removeQ(c);
5481 		h->Qdepth--;
5482 
5483 		/* Put job onto the completed Q */
5484 		addQ(&h->cmpQ, c);
5485 
5486 		/* Must increment commands_outstanding before unlocking
5487 		 * and submitting to avoid race checking for fifo full
5488 		 * condition.
5489 		 */
5490 		h->commands_outstanding++;
5491 
5492 		/* Tell the controller execute command */
5493 		spin_unlock_irqrestore(&h->lock, flags);
5494 		h->access.submit_command(h, c);
5495 		spin_lock_irqsave(&h->lock, flags);
5496 	}
5497 	spin_unlock_irqrestore(&h->lock, flags);
5498 }
5499 
5500 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5501 {
5502 	return h->access.command_completed(h, q);
5503 }
5504 
5505 static inline bool interrupt_pending(struct ctlr_info *h)
5506 {
5507 	return h->access.intr_pending(h);
5508 }
5509 
5510 static inline long interrupt_not_for_us(struct ctlr_info *h)
5511 {
5512 	return (h->access.intr_pending(h) == 0) ||
5513 		(h->interrupts_enabled == 0);
5514 }
5515 
5516 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5517 	u32 raw_tag)
5518 {
5519 	if (unlikely(tag_index >= h->nr_cmds)) {
5520 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5521 		return 1;
5522 	}
5523 	return 0;
5524 }
5525 
5526 static inline void finish_cmd(struct CommandList *c)
5527 {
5528 	unsigned long flags;
5529 	int io_may_be_stalled = 0;
5530 	struct ctlr_info *h = c->h;
5531 
5532 	spin_lock_irqsave(&h->lock, flags);
5533 	removeQ(c);
5534 
5535 	/*
5536 	 * Check for possibly stalled i/o.
5537 	 *
5538 	 * If a fifo_full condition is encountered, requests will back up
5539 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5540 	 * only called when a new i/o request comes in.  If no i/o's are
5541 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5542 	 * start_io from here if we detect such a danger.
5543 	 *
5544 	 * Normally, we shouldn't hit this case, but pounding on the
5545 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5546 	 * commands_outstanding is low.  We want to avoid calling
5547 	 * start_io from in here as much as possible, and esp. don't
5548 	 * want to get in a cycle where we call start_io every time
5549 	 * through here.
5550 	 */
5551 	if (unlikely(h->fifo_recently_full) &&
5552 		h->commands_outstanding < 5)
5553 		io_may_be_stalled = 1;
5554 
5555 	spin_unlock_irqrestore(&h->lock, flags);
5556 
5557 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5558 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5559 			|| c->cmd_type == CMD_IOACCEL2))
5560 		complete_scsi_command(c);
5561 	else if (c->cmd_type == CMD_IOCTL_PEND)
5562 		complete(c->waiting);
5563 	if (unlikely(io_may_be_stalled))
5564 		start_io(h);
5565 }
5566 
5567 static inline u32 hpsa_tag_contains_index(u32 tag)
5568 {
5569 	return tag & DIRECT_LOOKUP_BIT;
5570 }
5571 
5572 static inline u32 hpsa_tag_to_index(u32 tag)
5573 {
5574 	return tag >> DIRECT_LOOKUP_SHIFT;
5575 }
5576 
5577 
5578 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5579 {
5580 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5581 #define HPSA_SIMPLE_ERROR_BITS 0x03
5582 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5583 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5584 	return tag & ~HPSA_PERF_ERROR_BITS;
5585 }
5586 
5587 /* process completion of an indexed ("direct lookup") command */
5588 static inline void process_indexed_cmd(struct ctlr_info *h,
5589 	u32 raw_tag)
5590 {
5591 	u32 tag_index;
5592 	struct CommandList *c;
5593 
5594 	tag_index = hpsa_tag_to_index(raw_tag);
5595 	if (!bad_tag(h, tag_index, raw_tag)) {
5596 		c = h->cmd_pool + tag_index;
5597 		finish_cmd(c);
5598 	}
5599 }
5600 
5601 /* process completion of a non-indexed command */
5602 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5603 	u32 raw_tag)
5604 {
5605 	u32 tag;
5606 	struct CommandList *c = NULL;
5607 	unsigned long flags;
5608 
5609 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5610 	spin_lock_irqsave(&h->lock, flags);
5611 	list_for_each_entry(c, &h->cmpQ, list) {
5612 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5613 			spin_unlock_irqrestore(&h->lock, flags);
5614 			finish_cmd(c);
5615 			return;
5616 		}
5617 	}
5618 	spin_unlock_irqrestore(&h->lock, flags);
5619 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5620 }
5621 
5622 /* Some controllers, like p400, will give us one interrupt
5623  * after a soft reset, even if we turned interrupts off.
5624  * Only need to check for this in the hpsa_xxx_discard_completions
5625  * functions.
5626  */
5627 static int ignore_bogus_interrupt(struct ctlr_info *h)
5628 {
5629 	if (likely(!reset_devices))
5630 		return 0;
5631 
5632 	if (likely(h->interrupts_enabled))
5633 		return 0;
5634 
5635 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5636 		"(known firmware bug.)  Ignoring.\n");
5637 
5638 	return 1;
5639 }
5640 
5641 /*
5642  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5643  * Relies on (h-q[x] == x) being true for x such that
5644  * 0 <= x < MAX_REPLY_QUEUES.
5645  */
5646 static struct ctlr_info *queue_to_hba(u8 *queue)
5647 {
5648 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5649 }
5650 
5651 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5652 {
5653 	struct ctlr_info *h = queue_to_hba(queue);
5654 	u8 q = *(u8 *) queue;
5655 	u32 raw_tag;
5656 
5657 	if (ignore_bogus_interrupt(h))
5658 		return IRQ_NONE;
5659 
5660 	if (interrupt_not_for_us(h))
5661 		return IRQ_NONE;
5662 	h->last_intr_timestamp = get_jiffies_64();
5663 	while (interrupt_pending(h)) {
5664 		raw_tag = get_next_completion(h, q);
5665 		while (raw_tag != FIFO_EMPTY)
5666 			raw_tag = next_command(h, q);
5667 	}
5668 	return IRQ_HANDLED;
5669 }
5670 
5671 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5672 {
5673 	struct ctlr_info *h = queue_to_hba(queue);
5674 	u32 raw_tag;
5675 	u8 q = *(u8 *) queue;
5676 
5677 	if (ignore_bogus_interrupt(h))
5678 		return IRQ_NONE;
5679 
5680 	h->last_intr_timestamp = get_jiffies_64();
5681 	raw_tag = get_next_completion(h, q);
5682 	while (raw_tag != FIFO_EMPTY)
5683 		raw_tag = next_command(h, q);
5684 	return IRQ_HANDLED;
5685 }
5686 
5687 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5688 {
5689 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5690 	u32 raw_tag;
5691 	u8 q = *(u8 *) queue;
5692 
5693 	if (interrupt_not_for_us(h))
5694 		return IRQ_NONE;
5695 	h->last_intr_timestamp = get_jiffies_64();
5696 	while (interrupt_pending(h)) {
5697 		raw_tag = get_next_completion(h, q);
5698 		while (raw_tag != FIFO_EMPTY) {
5699 			if (likely(hpsa_tag_contains_index(raw_tag)))
5700 				process_indexed_cmd(h, raw_tag);
5701 			else
5702 				process_nonindexed_cmd(h, raw_tag);
5703 			raw_tag = next_command(h, q);
5704 		}
5705 	}
5706 	return IRQ_HANDLED;
5707 }
5708 
5709 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5710 {
5711 	struct ctlr_info *h = queue_to_hba(queue);
5712 	u32 raw_tag;
5713 	u8 q = *(u8 *) queue;
5714 
5715 	h->last_intr_timestamp = get_jiffies_64();
5716 	raw_tag = get_next_completion(h, q);
5717 	while (raw_tag != FIFO_EMPTY) {
5718 		if (likely(hpsa_tag_contains_index(raw_tag)))
5719 			process_indexed_cmd(h, raw_tag);
5720 		else
5721 			process_nonindexed_cmd(h, raw_tag);
5722 		raw_tag = next_command(h, q);
5723 	}
5724 	return IRQ_HANDLED;
5725 }
5726 
5727 /* Send a message CDB to the firmware. Careful, this only works
5728  * in simple mode, not performant mode due to the tag lookup.
5729  * We only ever use this immediately after a controller reset.
5730  */
5731 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5732 			unsigned char type)
5733 {
5734 	struct Command {
5735 		struct CommandListHeader CommandHeader;
5736 		struct RequestBlock Request;
5737 		struct ErrDescriptor ErrorDescriptor;
5738 	};
5739 	struct Command *cmd;
5740 	static const size_t cmd_sz = sizeof(*cmd) +
5741 					sizeof(cmd->ErrorDescriptor);
5742 	dma_addr_t paddr64;
5743 	uint32_t paddr32, tag;
5744 	void __iomem *vaddr;
5745 	int i, err;
5746 
5747 	vaddr = pci_ioremap_bar(pdev, 0);
5748 	if (vaddr == NULL)
5749 		return -ENOMEM;
5750 
5751 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5752 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5753 	 * memory.
5754 	 */
5755 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5756 	if (err) {
5757 		iounmap(vaddr);
5758 		return -ENOMEM;
5759 	}
5760 
5761 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5762 	if (cmd == NULL) {
5763 		iounmap(vaddr);
5764 		return -ENOMEM;
5765 	}
5766 
5767 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5768 	 * although there's no guarantee, we assume that the address is at
5769 	 * least 4-byte aligned (most likely, it's page-aligned).
5770 	 */
5771 	paddr32 = paddr64;
5772 
5773 	cmd->CommandHeader.ReplyQueue = 0;
5774 	cmd->CommandHeader.SGList = 0;
5775 	cmd->CommandHeader.SGTotal = 0;
5776 	cmd->CommandHeader.Tag.lower = paddr32;
5777 	cmd->CommandHeader.Tag.upper = 0;
5778 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5779 
5780 	cmd->Request.CDBLen = 16;
5781 	cmd->Request.Type.Type = TYPE_MSG;
5782 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5783 	cmd->Request.Type.Direction = XFER_NONE;
5784 	cmd->Request.Timeout = 0; /* Don't time out */
5785 	cmd->Request.CDB[0] = opcode;
5786 	cmd->Request.CDB[1] = type;
5787 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5788 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5789 	cmd->ErrorDescriptor.Addr.upper = 0;
5790 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5791 
5792 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5793 
5794 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5795 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5796 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5797 			break;
5798 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5799 	}
5800 
5801 	iounmap(vaddr);
5802 
5803 	/* we leak the DMA buffer here ... no choice since the controller could
5804 	 *  still complete the command.
5805 	 */
5806 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5807 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5808 			opcode, type);
5809 		return -ETIMEDOUT;
5810 	}
5811 
5812 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5813 
5814 	if (tag & HPSA_ERROR_BIT) {
5815 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5816 			opcode, type);
5817 		return -EIO;
5818 	}
5819 
5820 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5821 		opcode, type);
5822 	return 0;
5823 }
5824 
5825 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5826 
5827 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5828 	void * __iomem vaddr, u32 use_doorbell)
5829 {
5830 	u16 pmcsr;
5831 	int pos;
5832 
5833 	if (use_doorbell) {
5834 		/* For everything after the P600, the PCI power state method
5835 		 * of resetting the controller doesn't work, so we have this
5836 		 * other way using the doorbell register.
5837 		 */
5838 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5839 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5840 
5841 		/* PMC hardware guys tell us we need a 10 second delay after
5842 		 * doorbell reset and before any attempt to talk to the board
5843 		 * at all to ensure that this actually works and doesn't fall
5844 		 * over in some weird corner cases.
5845 		 */
5846 		msleep(10000);
5847 	} else { /* Try to do it the PCI power state way */
5848 
5849 		/* Quoting from the Open CISS Specification: "The Power
5850 		 * Management Control/Status Register (CSR) controls the power
5851 		 * state of the device.  The normal operating state is D0,
5852 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5853 		 * the controller, place the interface device in D3 then to D0,
5854 		 * this causes a secondary PCI reset which will reset the
5855 		 * controller." */
5856 
5857 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5858 		if (pos == 0) {
5859 			dev_err(&pdev->dev,
5860 				"hpsa_reset_controller: "
5861 				"PCI PM not supported\n");
5862 			return -ENODEV;
5863 		}
5864 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5865 		/* enter the D3hot power management state */
5866 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5867 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5868 		pmcsr |= PCI_D3hot;
5869 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5870 
5871 		msleep(500);
5872 
5873 		/* enter the D0 power management state */
5874 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5875 		pmcsr |= PCI_D0;
5876 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5877 
5878 		/*
5879 		 * The P600 requires a small delay when changing states.
5880 		 * Otherwise we may think the board did not reset and we bail.
5881 		 * This for kdump only and is particular to the P600.
5882 		 */
5883 		msleep(500);
5884 	}
5885 	return 0;
5886 }
5887 
5888 static void init_driver_version(char *driver_version, int len)
5889 {
5890 	memset(driver_version, 0, len);
5891 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5892 }
5893 
5894 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5895 {
5896 	char *driver_version;
5897 	int i, size = sizeof(cfgtable->driver_version);
5898 
5899 	driver_version = kmalloc(size, GFP_KERNEL);
5900 	if (!driver_version)
5901 		return -ENOMEM;
5902 
5903 	init_driver_version(driver_version, size);
5904 	for (i = 0; i < size; i++)
5905 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5906 	kfree(driver_version);
5907 	return 0;
5908 }
5909 
5910 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5911 					  unsigned char *driver_ver)
5912 {
5913 	int i;
5914 
5915 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5916 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5917 }
5918 
5919 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5920 {
5921 
5922 	char *driver_ver, *old_driver_ver;
5923 	int rc, size = sizeof(cfgtable->driver_version);
5924 
5925 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5926 	if (!old_driver_ver)
5927 		return -ENOMEM;
5928 	driver_ver = old_driver_ver + size;
5929 
5930 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5931 	 * should have been changed, otherwise we know the reset failed.
5932 	 */
5933 	init_driver_version(old_driver_ver, size);
5934 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5935 	rc = !memcmp(driver_ver, old_driver_ver, size);
5936 	kfree(old_driver_ver);
5937 	return rc;
5938 }
5939 /* This does a hard reset of the controller using PCI power management
5940  * states or the using the doorbell register.
5941  */
5942 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5943 {
5944 	u64 cfg_offset;
5945 	u32 cfg_base_addr;
5946 	u64 cfg_base_addr_index;
5947 	void __iomem *vaddr;
5948 	unsigned long paddr;
5949 	u32 misc_fw_support;
5950 	int rc;
5951 	struct CfgTable __iomem *cfgtable;
5952 	u32 use_doorbell;
5953 	u32 board_id;
5954 	u16 command_register;
5955 
5956 	/* For controllers as old as the P600, this is very nearly
5957 	 * the same thing as
5958 	 *
5959 	 * pci_save_state(pci_dev);
5960 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5961 	 * pci_set_power_state(pci_dev, PCI_D0);
5962 	 * pci_restore_state(pci_dev);
5963 	 *
5964 	 * For controllers newer than the P600, the pci power state
5965 	 * method of resetting doesn't work so we have another way
5966 	 * using the doorbell register.
5967 	 */
5968 
5969 	rc = hpsa_lookup_board_id(pdev, &board_id);
5970 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5971 		dev_warn(&pdev->dev, "Not resetting device.\n");
5972 		return -ENODEV;
5973 	}
5974 
5975 	/* if controller is soft- but not hard resettable... */
5976 	if (!ctlr_is_hard_resettable(board_id))
5977 		return -ENOTSUPP; /* try soft reset later. */
5978 
5979 	/* Save the PCI command register */
5980 	pci_read_config_word(pdev, 4, &command_register);
5981 	/* Turn the board off.  This is so that later pci_restore_state()
5982 	 * won't turn the board on before the rest of config space is ready.
5983 	 */
5984 	pci_disable_device(pdev);
5985 	pci_save_state(pdev);
5986 
5987 	/* find the first memory BAR, so we can find the cfg table */
5988 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5989 	if (rc)
5990 		return rc;
5991 	vaddr = remap_pci_mem(paddr, 0x250);
5992 	if (!vaddr)
5993 		return -ENOMEM;
5994 
5995 	/* find cfgtable in order to check if reset via doorbell is supported */
5996 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5997 					&cfg_base_addr_index, &cfg_offset);
5998 	if (rc)
5999 		goto unmap_vaddr;
6000 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
6001 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6002 	if (!cfgtable) {
6003 		rc = -ENOMEM;
6004 		goto unmap_vaddr;
6005 	}
6006 	rc = write_driver_ver_to_cfgtable(cfgtable);
6007 	if (rc)
6008 		goto unmap_vaddr;
6009 
6010 	/* If reset via doorbell register is supported, use that.
6011 	 * There are two such methods.  Favor the newest method.
6012 	 */
6013 	misc_fw_support = readl(&cfgtable->misc_fw_support);
6014 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6015 	if (use_doorbell) {
6016 		use_doorbell = DOORBELL_CTLR_RESET2;
6017 	} else {
6018 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6019 		if (use_doorbell) {
6020 			dev_warn(&pdev->dev, "Soft reset not supported. "
6021 				"Firmware update is required.\n");
6022 			rc = -ENOTSUPP; /* try soft reset */
6023 			goto unmap_cfgtable;
6024 		}
6025 	}
6026 
6027 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6028 	if (rc)
6029 		goto unmap_cfgtable;
6030 
6031 	pci_restore_state(pdev);
6032 	rc = pci_enable_device(pdev);
6033 	if (rc) {
6034 		dev_warn(&pdev->dev, "failed to enable device.\n");
6035 		goto unmap_cfgtable;
6036 	}
6037 	pci_write_config_word(pdev, 4, command_register);
6038 
6039 	/* Some devices (notably the HP Smart Array 5i Controller)
6040 	   need a little pause here */
6041 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6042 
6043 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6044 	if (rc) {
6045 		dev_warn(&pdev->dev,
6046 			"failed waiting for board to become ready "
6047 			"after hard reset\n");
6048 		goto unmap_cfgtable;
6049 	}
6050 
6051 	rc = controller_reset_failed(vaddr);
6052 	if (rc < 0)
6053 		goto unmap_cfgtable;
6054 	if (rc) {
6055 		dev_warn(&pdev->dev, "Unable to successfully reset "
6056 			"controller. Will try soft reset.\n");
6057 		rc = -ENOTSUPP;
6058 	} else {
6059 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6060 	}
6061 
6062 unmap_cfgtable:
6063 	iounmap(cfgtable);
6064 
6065 unmap_vaddr:
6066 	iounmap(vaddr);
6067 	return rc;
6068 }
6069 
6070 /*
6071  *  We cannot read the structure directly, for portability we must use
6072  *   the io functions.
6073  *   This is for debug only.
6074  */
6075 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6076 {
6077 #ifdef HPSA_DEBUG
6078 	int i;
6079 	char temp_name[17];
6080 
6081 	dev_info(dev, "Controller Configuration information\n");
6082 	dev_info(dev, "------------------------------------\n");
6083 	for (i = 0; i < 4; i++)
6084 		temp_name[i] = readb(&(tb->Signature[i]));
6085 	temp_name[4] = '\0';
6086 	dev_info(dev, "   Signature = %s\n", temp_name);
6087 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6088 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6089 	       readl(&(tb->TransportSupport)));
6090 	dev_info(dev, "   Transport methods active = 0x%x\n",
6091 	       readl(&(tb->TransportActive)));
6092 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6093 	       readl(&(tb->HostWrite.TransportRequest)));
6094 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6095 	       readl(&(tb->HostWrite.CoalIntDelay)));
6096 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6097 	       readl(&(tb->HostWrite.CoalIntCount)));
6098 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
6099 	       readl(&(tb->CmdsOutMax)));
6100 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6101 	for (i = 0; i < 16; i++)
6102 		temp_name[i] = readb(&(tb->ServerName[i]));
6103 	temp_name[16] = '\0';
6104 	dev_info(dev, "   Server Name = %s\n", temp_name);
6105 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6106 		readl(&(tb->HeartBeat)));
6107 #endif				/* HPSA_DEBUG */
6108 }
6109 
6110 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6111 {
6112 	int i, offset, mem_type, bar_type;
6113 
6114 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6115 		return 0;
6116 	offset = 0;
6117 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6118 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6119 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6120 			offset += 4;
6121 		else {
6122 			mem_type = pci_resource_flags(pdev, i) &
6123 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6124 			switch (mem_type) {
6125 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6126 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6127 				offset += 4;	/* 32 bit */
6128 				break;
6129 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6130 				offset += 8;
6131 				break;
6132 			default:	/* reserved in PCI 2.2 */
6133 				dev_warn(&pdev->dev,
6134 				       "base address is invalid\n");
6135 				return -1;
6136 				break;
6137 			}
6138 		}
6139 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6140 			return i + 1;
6141 	}
6142 	return -1;
6143 }
6144 
6145 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6146  * controllers that are capable. If not, we use IO-APIC mode.
6147  */
6148 
6149 static void hpsa_interrupt_mode(struct ctlr_info *h)
6150 {
6151 #ifdef CONFIG_PCI_MSI
6152 	int err, i;
6153 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6154 
6155 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6156 		hpsa_msix_entries[i].vector = 0;
6157 		hpsa_msix_entries[i].entry = i;
6158 	}
6159 
6160 	/* Some boards advertise MSI but don't really support it */
6161 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6162 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6163 		goto default_int_mode;
6164 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6165 		dev_info(&h->pdev->dev, "MSIX\n");
6166 		h->msix_vector = MAX_REPLY_QUEUES;
6167 		if (h->msix_vector > num_online_cpus())
6168 			h->msix_vector = num_online_cpus();
6169 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6170 				      h->msix_vector);
6171 		if (err > 0) {
6172 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6173 			       "available\n", err);
6174 			h->msix_vector = err;
6175 			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6176 					      h->msix_vector);
6177 		}
6178 		if (!err) {
6179 			for (i = 0; i < h->msix_vector; i++)
6180 				h->intr[i] = hpsa_msix_entries[i].vector;
6181 			return;
6182 		} else {
6183 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6184 			       err);
6185 			h->msix_vector = 0;
6186 			goto default_int_mode;
6187 		}
6188 	}
6189 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6190 		dev_info(&h->pdev->dev, "MSI\n");
6191 		if (!pci_enable_msi(h->pdev))
6192 			h->msi_vector = 1;
6193 		else
6194 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6195 	}
6196 default_int_mode:
6197 #endif				/* CONFIG_PCI_MSI */
6198 	/* if we get here we're going to use the default interrupt mode */
6199 	h->intr[h->intr_mode] = h->pdev->irq;
6200 }
6201 
6202 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6203 {
6204 	int i;
6205 	u32 subsystem_vendor_id, subsystem_device_id;
6206 
6207 	subsystem_vendor_id = pdev->subsystem_vendor;
6208 	subsystem_device_id = pdev->subsystem_device;
6209 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6210 		    subsystem_vendor_id;
6211 
6212 	for (i = 0; i < ARRAY_SIZE(products); i++)
6213 		if (*board_id == products[i].board_id)
6214 			return i;
6215 
6216 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6217 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6218 		!hpsa_allow_any) {
6219 		dev_warn(&pdev->dev, "unrecognized board ID: "
6220 			"0x%08x, ignoring.\n", *board_id);
6221 			return -ENODEV;
6222 	}
6223 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6224 }
6225 
6226 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6227 				    unsigned long *memory_bar)
6228 {
6229 	int i;
6230 
6231 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6232 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6233 			/* addressing mode bits already removed */
6234 			*memory_bar = pci_resource_start(pdev, i);
6235 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6236 				*memory_bar);
6237 			return 0;
6238 		}
6239 	dev_warn(&pdev->dev, "no memory BAR found\n");
6240 	return -ENODEV;
6241 }
6242 
6243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6244 				     int wait_for_ready)
6245 {
6246 	int i, iterations;
6247 	u32 scratchpad;
6248 	if (wait_for_ready)
6249 		iterations = HPSA_BOARD_READY_ITERATIONS;
6250 	else
6251 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6252 
6253 	for (i = 0; i < iterations; i++) {
6254 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6255 		if (wait_for_ready) {
6256 			if (scratchpad == HPSA_FIRMWARE_READY)
6257 				return 0;
6258 		} else {
6259 			if (scratchpad != HPSA_FIRMWARE_READY)
6260 				return 0;
6261 		}
6262 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6263 	}
6264 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6265 	return -ENODEV;
6266 }
6267 
6268 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6269 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6270 			       u64 *cfg_offset)
6271 {
6272 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6273 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6274 	*cfg_base_addr &= (u32) 0x0000ffff;
6275 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6276 	if (*cfg_base_addr_index == -1) {
6277 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6278 		return -ENODEV;
6279 	}
6280 	return 0;
6281 }
6282 
6283 static int hpsa_find_cfgtables(struct ctlr_info *h)
6284 {
6285 	u64 cfg_offset;
6286 	u32 cfg_base_addr;
6287 	u64 cfg_base_addr_index;
6288 	u32 trans_offset;
6289 	int rc;
6290 
6291 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6292 		&cfg_base_addr_index, &cfg_offset);
6293 	if (rc)
6294 		return rc;
6295 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6296 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6297 	if (!h->cfgtable)
6298 		return -ENOMEM;
6299 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6300 	if (rc)
6301 		return rc;
6302 	/* Find performant mode table. */
6303 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6304 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6305 				cfg_base_addr_index)+cfg_offset+trans_offset,
6306 				sizeof(*h->transtable));
6307 	if (!h->transtable)
6308 		return -ENOMEM;
6309 	return 0;
6310 }
6311 
6312 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6313 {
6314 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6315 
6316 	/* Limit commands in memory limited kdump scenario. */
6317 	if (reset_devices && h->max_commands > 32)
6318 		h->max_commands = 32;
6319 
6320 	if (h->max_commands < 16) {
6321 		dev_warn(&h->pdev->dev, "Controller reports "
6322 			"max supported commands of %d, an obvious lie. "
6323 			"Using 16.  Ensure that firmware is up to date.\n",
6324 			h->max_commands);
6325 		h->max_commands = 16;
6326 	}
6327 }
6328 
6329 /* Interrogate the hardware for some limits:
6330  * max commands, max SG elements without chaining, and with chaining,
6331  * SG chain block size, etc.
6332  */
6333 static void hpsa_find_board_params(struct ctlr_info *h)
6334 {
6335 	hpsa_get_max_perf_mode_cmds(h);
6336 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6337 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6338 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6339 	/*
6340 	 * Limit in-command s/g elements to 32 save dma'able memory.
6341 	 * Howvever spec says if 0, use 31
6342 	 */
6343 	h->max_cmd_sg_entries = 31;
6344 	if (h->maxsgentries > 512) {
6345 		h->max_cmd_sg_entries = 32;
6346 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6347 		h->maxsgentries--; /* save one for chain pointer */
6348 	} else {
6349 		h->maxsgentries = 31; /* default to traditional values */
6350 		h->chainsize = 0;
6351 	}
6352 
6353 	/* Find out what task management functions are supported and cache */
6354 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6355 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6356 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6357 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6358 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6359 }
6360 
6361 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6362 {
6363 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6364 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6365 		return false;
6366 	}
6367 	return true;
6368 }
6369 
6370 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6371 {
6372 	u32 driver_support;
6373 
6374 #ifdef CONFIG_X86
6375 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6376 	driver_support = readl(&(h->cfgtable->driver_support));
6377 	driver_support |= ENABLE_SCSI_PREFETCH;
6378 #endif
6379 	driver_support |= ENABLE_UNIT_ATTN;
6380 	writel(driver_support, &(h->cfgtable->driver_support));
6381 }
6382 
6383 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6384  * in a prefetch beyond physical memory.
6385  */
6386 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6387 {
6388 	u32 dma_prefetch;
6389 
6390 	if (h->board_id != 0x3225103C)
6391 		return;
6392 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6393 	dma_prefetch |= 0x8000;
6394 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6395 }
6396 
6397 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6398 {
6399 	int i;
6400 	u32 doorbell_value;
6401 	unsigned long flags;
6402 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6403 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6404 		spin_lock_irqsave(&h->lock, flags);
6405 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6406 		spin_unlock_irqrestore(&h->lock, flags);
6407 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6408 			break;
6409 		/* delay and try again */
6410 		msleep(20);
6411 	}
6412 }
6413 
6414 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6415 {
6416 	int i;
6417 	u32 doorbell_value;
6418 	unsigned long flags;
6419 
6420 	/* under certain very rare conditions, this can take awhile.
6421 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6422 	 * as we enter this code.)
6423 	 */
6424 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6425 		spin_lock_irqsave(&h->lock, flags);
6426 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6427 		spin_unlock_irqrestore(&h->lock, flags);
6428 		if (!(doorbell_value & CFGTBL_ChangeReq))
6429 			break;
6430 		/* delay and try again */
6431 		usleep_range(10000, 20000);
6432 	}
6433 }
6434 
6435 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6436 {
6437 	u32 trans_support;
6438 
6439 	trans_support = readl(&(h->cfgtable->TransportSupport));
6440 	if (!(trans_support & SIMPLE_MODE))
6441 		return -ENOTSUPP;
6442 
6443 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6444 
6445 	/* Update the field, and then ring the doorbell */
6446 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6447 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6448 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6449 	hpsa_wait_for_mode_change_ack(h);
6450 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6451 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6452 		goto error;
6453 	h->transMethod = CFGTBL_Trans_Simple;
6454 	return 0;
6455 error:
6456 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6457 	return -ENODEV;
6458 }
6459 
6460 static int hpsa_pci_init(struct ctlr_info *h)
6461 {
6462 	int prod_index, err;
6463 
6464 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6465 	if (prod_index < 0)
6466 		return -ENODEV;
6467 	h->product_name = products[prod_index].product_name;
6468 	h->access = *(products[prod_index].access);
6469 
6470 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6471 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6472 
6473 	err = pci_enable_device(h->pdev);
6474 	if (err) {
6475 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6476 		return err;
6477 	}
6478 
6479 	/* Enable bus mastering (pci_disable_device may disable this) */
6480 	pci_set_master(h->pdev);
6481 
6482 	err = pci_request_regions(h->pdev, HPSA);
6483 	if (err) {
6484 		dev_err(&h->pdev->dev,
6485 			"cannot obtain PCI resources, aborting\n");
6486 		return err;
6487 	}
6488 	hpsa_interrupt_mode(h);
6489 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6490 	if (err)
6491 		goto err_out_free_res;
6492 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6493 	if (!h->vaddr) {
6494 		err = -ENOMEM;
6495 		goto err_out_free_res;
6496 	}
6497 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6498 	if (err)
6499 		goto err_out_free_res;
6500 	err = hpsa_find_cfgtables(h);
6501 	if (err)
6502 		goto err_out_free_res;
6503 	hpsa_find_board_params(h);
6504 
6505 	if (!hpsa_CISS_signature_present(h)) {
6506 		err = -ENODEV;
6507 		goto err_out_free_res;
6508 	}
6509 	hpsa_set_driver_support_bits(h);
6510 	hpsa_p600_dma_prefetch_quirk(h);
6511 	err = hpsa_enter_simple_mode(h);
6512 	if (err)
6513 		goto err_out_free_res;
6514 	return 0;
6515 
6516 err_out_free_res:
6517 	if (h->transtable)
6518 		iounmap(h->transtable);
6519 	if (h->cfgtable)
6520 		iounmap(h->cfgtable);
6521 	if (h->vaddr)
6522 		iounmap(h->vaddr);
6523 	pci_disable_device(h->pdev);
6524 	pci_release_regions(h->pdev);
6525 	return err;
6526 }
6527 
6528 static void hpsa_hba_inquiry(struct ctlr_info *h)
6529 {
6530 	int rc;
6531 
6532 #define HBA_INQUIRY_BYTE_COUNT 64
6533 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6534 	if (!h->hba_inquiry_data)
6535 		return;
6536 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6537 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6538 	if (rc != 0) {
6539 		kfree(h->hba_inquiry_data);
6540 		h->hba_inquiry_data = NULL;
6541 	}
6542 }
6543 
6544 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6545 {
6546 	int rc, i;
6547 
6548 	if (!reset_devices)
6549 		return 0;
6550 
6551 	/* Reset the controller with a PCI power-cycle or via doorbell */
6552 	rc = hpsa_kdump_hard_reset_controller(pdev);
6553 
6554 	/* -ENOTSUPP here means we cannot reset the controller
6555 	 * but it's already (and still) up and running in
6556 	 * "performant mode".  Or, it might be 640x, which can't reset
6557 	 * due to concerns about shared bbwc between 6402/6404 pair.
6558 	 */
6559 	if (rc == -ENOTSUPP)
6560 		return rc; /* just try to do the kdump anyhow. */
6561 	if (rc)
6562 		return -ENODEV;
6563 
6564 	/* Now try to get the controller to respond to a no-op */
6565 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6566 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6567 		if (hpsa_noop(pdev) == 0)
6568 			break;
6569 		else
6570 			dev_warn(&pdev->dev, "no-op failed%s\n",
6571 					(i < 11 ? "; re-trying" : ""));
6572 	}
6573 	return 0;
6574 }
6575 
6576 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6577 {
6578 	h->cmd_pool_bits = kzalloc(
6579 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6580 		sizeof(unsigned long), GFP_KERNEL);
6581 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6582 		    h->nr_cmds * sizeof(*h->cmd_pool),
6583 		    &(h->cmd_pool_dhandle));
6584 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6585 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6586 		    &(h->errinfo_pool_dhandle));
6587 	if ((h->cmd_pool_bits == NULL)
6588 	    || (h->cmd_pool == NULL)
6589 	    || (h->errinfo_pool == NULL)) {
6590 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6591 		return -ENOMEM;
6592 	}
6593 	return 0;
6594 }
6595 
6596 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6597 {
6598 	kfree(h->cmd_pool_bits);
6599 	if (h->cmd_pool)
6600 		pci_free_consistent(h->pdev,
6601 			    h->nr_cmds * sizeof(struct CommandList),
6602 			    h->cmd_pool, h->cmd_pool_dhandle);
6603 	if (h->ioaccel2_cmd_pool)
6604 		pci_free_consistent(h->pdev,
6605 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6606 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6607 	if (h->errinfo_pool)
6608 		pci_free_consistent(h->pdev,
6609 			    h->nr_cmds * sizeof(struct ErrorInfo),
6610 			    h->errinfo_pool,
6611 			    h->errinfo_pool_dhandle);
6612 	if (h->ioaccel_cmd_pool)
6613 		pci_free_consistent(h->pdev,
6614 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6615 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6616 }
6617 
6618 static int hpsa_request_irq(struct ctlr_info *h,
6619 	irqreturn_t (*msixhandler)(int, void *),
6620 	irqreturn_t (*intxhandler)(int, void *))
6621 {
6622 	int rc, i;
6623 
6624 	/*
6625 	 * initialize h->q[x] = x so that interrupt handlers know which
6626 	 * queue to process.
6627 	 */
6628 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6629 		h->q[i] = (u8) i;
6630 
6631 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6632 		/* If performant mode and MSI-X, use multiple reply queues */
6633 		for (i = 0; i < h->msix_vector; i++)
6634 			rc = request_irq(h->intr[i], msixhandler,
6635 					0, h->devname,
6636 					&h->q[i]);
6637 	} else {
6638 		/* Use single reply pool */
6639 		if (h->msix_vector > 0 || h->msi_vector) {
6640 			rc = request_irq(h->intr[h->intr_mode],
6641 				msixhandler, 0, h->devname,
6642 				&h->q[h->intr_mode]);
6643 		} else {
6644 			rc = request_irq(h->intr[h->intr_mode],
6645 				intxhandler, IRQF_SHARED, h->devname,
6646 				&h->q[h->intr_mode]);
6647 		}
6648 	}
6649 	if (rc) {
6650 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6651 		       h->intr[h->intr_mode], h->devname);
6652 		return -ENODEV;
6653 	}
6654 	return 0;
6655 }
6656 
6657 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6658 {
6659 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6660 		HPSA_RESET_TYPE_CONTROLLER)) {
6661 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6662 		return -EIO;
6663 	}
6664 
6665 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6666 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6667 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6668 		return -1;
6669 	}
6670 
6671 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6672 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6673 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6674 			"after soft reset.\n");
6675 		return -1;
6676 	}
6677 
6678 	return 0;
6679 }
6680 
6681 static void free_irqs(struct ctlr_info *h)
6682 {
6683 	int i;
6684 
6685 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6686 		/* Single reply queue, only one irq to free */
6687 		i = h->intr_mode;
6688 		free_irq(h->intr[i], &h->q[i]);
6689 		return;
6690 	}
6691 
6692 	for (i = 0; i < h->msix_vector; i++)
6693 		free_irq(h->intr[i], &h->q[i]);
6694 }
6695 
6696 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6697 {
6698 	free_irqs(h);
6699 #ifdef CONFIG_PCI_MSI
6700 	if (h->msix_vector) {
6701 		if (h->pdev->msix_enabled)
6702 			pci_disable_msix(h->pdev);
6703 	} else if (h->msi_vector) {
6704 		if (h->pdev->msi_enabled)
6705 			pci_disable_msi(h->pdev);
6706 	}
6707 #endif /* CONFIG_PCI_MSI */
6708 }
6709 
6710 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6711 {
6712 	hpsa_free_irqs_and_disable_msix(h);
6713 	hpsa_free_sg_chain_blocks(h);
6714 	hpsa_free_cmd_pool(h);
6715 	kfree(h->ioaccel1_blockFetchTable);
6716 	kfree(h->blockFetchTable);
6717 	pci_free_consistent(h->pdev, h->reply_pool_size,
6718 		h->reply_pool, h->reply_pool_dhandle);
6719 	if (h->vaddr)
6720 		iounmap(h->vaddr);
6721 	if (h->transtable)
6722 		iounmap(h->transtable);
6723 	if (h->cfgtable)
6724 		iounmap(h->cfgtable);
6725 	pci_release_regions(h->pdev);
6726 	kfree(h);
6727 }
6728 
6729 /* Called when controller lockup detected. */
6730 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6731 {
6732 	struct CommandList *c = NULL;
6733 
6734 	assert_spin_locked(&h->lock);
6735 	/* Mark all outstanding commands as failed and complete them. */
6736 	while (!list_empty(list)) {
6737 		c = list_entry(list->next, struct CommandList, list);
6738 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6739 		finish_cmd(c);
6740 	}
6741 }
6742 
6743 static void controller_lockup_detected(struct ctlr_info *h)
6744 {
6745 	unsigned long flags;
6746 
6747 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6748 	spin_lock_irqsave(&h->lock, flags);
6749 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6750 	spin_unlock_irqrestore(&h->lock, flags);
6751 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6752 			h->lockup_detected);
6753 	pci_disable_device(h->pdev);
6754 	spin_lock_irqsave(&h->lock, flags);
6755 	fail_all_cmds_on_list(h, &h->cmpQ);
6756 	fail_all_cmds_on_list(h, &h->reqQ);
6757 	spin_unlock_irqrestore(&h->lock, flags);
6758 }
6759 
6760 static void detect_controller_lockup(struct ctlr_info *h)
6761 {
6762 	u64 now;
6763 	u32 heartbeat;
6764 	unsigned long flags;
6765 
6766 	now = get_jiffies_64();
6767 	/* If we've received an interrupt recently, we're ok. */
6768 	if (time_after64(h->last_intr_timestamp +
6769 				(h->heartbeat_sample_interval), now))
6770 		return;
6771 
6772 	/*
6773 	 * If we've already checked the heartbeat recently, we're ok.
6774 	 * This could happen if someone sends us a signal. We
6775 	 * otherwise don't care about signals in this thread.
6776 	 */
6777 	if (time_after64(h->last_heartbeat_timestamp +
6778 				(h->heartbeat_sample_interval), now))
6779 		return;
6780 
6781 	/* If heartbeat has not changed since we last looked, we're not ok. */
6782 	spin_lock_irqsave(&h->lock, flags);
6783 	heartbeat = readl(&h->cfgtable->HeartBeat);
6784 	spin_unlock_irqrestore(&h->lock, flags);
6785 	if (h->last_heartbeat == heartbeat) {
6786 		controller_lockup_detected(h);
6787 		return;
6788 	}
6789 
6790 	/* We're ok. */
6791 	h->last_heartbeat = heartbeat;
6792 	h->last_heartbeat_timestamp = now;
6793 }
6794 
6795 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6796 {
6797 	int i;
6798 	char *event_type;
6799 
6800 	/* Clear the driver-requested rescan flag */
6801 	h->drv_req_rescan = 0;
6802 
6803 	/* Ask the controller to clear the events we're handling. */
6804 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6805 			| CFGTBL_Trans_io_accel2)) &&
6806 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6807 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6808 
6809 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6810 			event_type = "state change";
6811 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6812 			event_type = "configuration change";
6813 		/* Stop sending new RAID offload reqs via the IO accelerator */
6814 		scsi_block_requests(h->scsi_host);
6815 		for (i = 0; i < h->ndevices; i++)
6816 			h->dev[i]->offload_enabled = 0;
6817 		hpsa_drain_accel_commands(h);
6818 		/* Set 'accelerator path config change' bit */
6819 		dev_warn(&h->pdev->dev,
6820 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6821 			h->events, event_type);
6822 		writel(h->events, &(h->cfgtable->clear_event_notify));
6823 		/* Set the "clear event notify field update" bit 6 */
6824 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6825 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6826 		hpsa_wait_for_clear_event_notify_ack(h);
6827 		scsi_unblock_requests(h->scsi_host);
6828 	} else {
6829 		/* Acknowledge controller notification events. */
6830 		writel(h->events, &(h->cfgtable->clear_event_notify));
6831 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6832 		hpsa_wait_for_clear_event_notify_ack(h);
6833 #if 0
6834 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6835 		hpsa_wait_for_mode_change_ack(h);
6836 #endif
6837 	}
6838 	return;
6839 }
6840 
6841 /* Check a register on the controller to see if there are configuration
6842  * changes (added/changed/removed logical drives, etc.) which mean that
6843  * we should rescan the controller for devices.
6844  * Also check flag for driver-initiated rescan.
6845  */
6846 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6847 {
6848 	if (h->drv_req_rescan)
6849 		return 1;
6850 
6851 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6852 		return 0;
6853 
6854 	h->events = readl(&(h->cfgtable->event_notify));
6855 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6856 }
6857 
6858 /*
6859  * Check if any of the offline devices have become ready
6860  */
6861 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6862 {
6863 	unsigned long flags;
6864 	struct offline_device_entry *d;
6865 	struct list_head *this, *tmp;
6866 
6867 	spin_lock_irqsave(&h->offline_device_lock, flags);
6868 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6869 		d = list_entry(this, struct offline_device_entry,
6870 				offline_list);
6871 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6872 		if (!hpsa_volume_offline(h, d->scsi3addr))
6873 			return 1;
6874 		spin_lock_irqsave(&h->offline_device_lock, flags);
6875 	}
6876 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6877 	return 0;
6878 }
6879 
6880 
6881 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6882 {
6883 	unsigned long flags;
6884 	struct ctlr_info *h = container_of(to_delayed_work(work),
6885 					struct ctlr_info, monitor_ctlr_work);
6886 	detect_controller_lockup(h);
6887 	if (h->lockup_detected)
6888 		return;
6889 
6890 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6891 		scsi_host_get(h->scsi_host);
6892 		h->drv_req_rescan = 0;
6893 		hpsa_ack_ctlr_events(h);
6894 		hpsa_scan_start(h->scsi_host);
6895 		scsi_host_put(h->scsi_host);
6896 	}
6897 
6898 	spin_lock_irqsave(&h->lock, flags);
6899 	if (h->remove_in_progress) {
6900 		spin_unlock_irqrestore(&h->lock, flags);
6901 		return;
6902 	}
6903 	schedule_delayed_work(&h->monitor_ctlr_work,
6904 				h->heartbeat_sample_interval);
6905 	spin_unlock_irqrestore(&h->lock, flags);
6906 }
6907 
6908 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6909 {
6910 	int dac, rc;
6911 	struct ctlr_info *h;
6912 	int try_soft_reset = 0;
6913 	unsigned long flags;
6914 
6915 	if (number_of_controllers == 0)
6916 		printk(KERN_INFO DRIVER_NAME "\n");
6917 
6918 	rc = hpsa_init_reset_devices(pdev);
6919 	if (rc) {
6920 		if (rc != -ENOTSUPP)
6921 			return rc;
6922 		/* If the reset fails in a particular way (it has no way to do
6923 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6924 		 * a soft reset once we get the controller configured up to the
6925 		 * point that it can accept a command.
6926 		 */
6927 		try_soft_reset = 1;
6928 		rc = 0;
6929 	}
6930 
6931 reinit_after_soft_reset:
6932 
6933 	/* Command structures must be aligned on a 32-byte boundary because
6934 	 * the 5 lower bits of the address are used by the hardware. and by
6935 	 * the driver.  See comments in hpsa.h for more info.
6936 	 */
6937 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6938 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6939 	if (!h)
6940 		return -ENOMEM;
6941 
6942 	h->pdev = pdev;
6943 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6944 	INIT_LIST_HEAD(&h->cmpQ);
6945 	INIT_LIST_HEAD(&h->reqQ);
6946 	INIT_LIST_HEAD(&h->offline_device_list);
6947 	spin_lock_init(&h->lock);
6948 	spin_lock_init(&h->offline_device_lock);
6949 	spin_lock_init(&h->scan_lock);
6950 	spin_lock_init(&h->passthru_count_lock);
6951 	rc = hpsa_pci_init(h);
6952 	if (rc != 0)
6953 		goto clean1;
6954 
6955 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6956 	h->ctlr = number_of_controllers;
6957 	number_of_controllers++;
6958 
6959 	/* configure PCI DMA stuff */
6960 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6961 	if (rc == 0) {
6962 		dac = 1;
6963 	} else {
6964 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6965 		if (rc == 0) {
6966 			dac = 0;
6967 		} else {
6968 			dev_err(&pdev->dev, "no suitable DMA available\n");
6969 			goto clean1;
6970 		}
6971 	}
6972 
6973 	/* make sure the board interrupts are off */
6974 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6975 
6976 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6977 		goto clean2;
6978 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6979 	       h->devname, pdev->device,
6980 	       h->intr[h->intr_mode], dac ? "" : " not");
6981 	if (hpsa_allocate_cmd_pool(h))
6982 		goto clean4;
6983 	if (hpsa_allocate_sg_chain_blocks(h))
6984 		goto clean4;
6985 	init_waitqueue_head(&h->scan_wait_queue);
6986 	h->scan_finished = 1; /* no scan currently in progress */
6987 
6988 	pci_set_drvdata(pdev, h);
6989 	h->ndevices = 0;
6990 	h->hba_mode_enabled = 0;
6991 	h->scsi_host = NULL;
6992 	spin_lock_init(&h->devlock);
6993 	hpsa_put_ctlr_into_performant_mode(h);
6994 
6995 	/* At this point, the controller is ready to take commands.
6996 	 * Now, if reset_devices and the hard reset didn't work, try
6997 	 * the soft reset and see if that works.
6998 	 */
6999 	if (try_soft_reset) {
7000 
7001 		/* This is kind of gross.  We may or may not get a completion
7002 		 * from the soft reset command, and if we do, then the value
7003 		 * from the fifo may or may not be valid.  So, we wait 10 secs
7004 		 * after the reset throwing away any completions we get during
7005 		 * that time.  Unregister the interrupt handler and register
7006 		 * fake ones to scoop up any residual completions.
7007 		 */
7008 		spin_lock_irqsave(&h->lock, flags);
7009 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7010 		spin_unlock_irqrestore(&h->lock, flags);
7011 		free_irqs(h);
7012 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
7013 					hpsa_intx_discard_completions);
7014 		if (rc) {
7015 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
7016 				"soft reset.\n");
7017 			goto clean4;
7018 		}
7019 
7020 		rc = hpsa_kdump_soft_reset(h);
7021 		if (rc)
7022 			/* Neither hard nor soft reset worked, we're hosed. */
7023 			goto clean4;
7024 
7025 		dev_info(&h->pdev->dev, "Board READY.\n");
7026 		dev_info(&h->pdev->dev,
7027 			"Waiting for stale completions to drain.\n");
7028 		h->access.set_intr_mask(h, HPSA_INTR_ON);
7029 		msleep(10000);
7030 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7031 
7032 		rc = controller_reset_failed(h->cfgtable);
7033 		if (rc)
7034 			dev_info(&h->pdev->dev,
7035 				"Soft reset appears to have failed.\n");
7036 
7037 		/* since the controller's reset, we have to go back and re-init
7038 		 * everything.  Easiest to just forget what we've done and do it
7039 		 * all over again.
7040 		 */
7041 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7042 		try_soft_reset = 0;
7043 		if (rc)
7044 			/* don't go to clean4, we already unallocated */
7045 			return -ENODEV;
7046 
7047 		goto reinit_after_soft_reset;
7048 	}
7049 
7050 		/* Enable Accelerated IO path at driver layer */
7051 		h->acciopath_status = 1;
7052 
7053 	h->drv_req_rescan = 0;
7054 
7055 	/* Turn the interrupts on so we can service requests */
7056 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7057 
7058 	hpsa_hba_inquiry(h);
7059 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7060 
7061 	/* Monitor the controller for firmware lockups */
7062 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7063 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7064 	schedule_delayed_work(&h->monitor_ctlr_work,
7065 				h->heartbeat_sample_interval);
7066 	return 0;
7067 
7068 clean4:
7069 	hpsa_free_sg_chain_blocks(h);
7070 	hpsa_free_cmd_pool(h);
7071 	free_irqs(h);
7072 clean2:
7073 clean1:
7074 	kfree(h);
7075 	return rc;
7076 }
7077 
7078 static void hpsa_flush_cache(struct ctlr_info *h)
7079 {
7080 	char *flush_buf;
7081 	struct CommandList *c;
7082 	unsigned long flags;
7083 
7084 	/* Don't bother trying to flush the cache if locked up */
7085 	spin_lock_irqsave(&h->lock, flags);
7086 	if (unlikely(h->lockup_detected)) {
7087 		spin_unlock_irqrestore(&h->lock, flags);
7088 		return;
7089 	}
7090 	spin_unlock_irqrestore(&h->lock, flags);
7091 
7092 	flush_buf = kzalloc(4, GFP_KERNEL);
7093 	if (!flush_buf)
7094 		return;
7095 
7096 	c = cmd_special_alloc(h);
7097 	if (!c) {
7098 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7099 		goto out_of_memory;
7100 	}
7101 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7102 		RAID_CTLR_LUNID, TYPE_CMD)) {
7103 		goto out;
7104 	}
7105 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7106 	if (c->err_info->CommandStatus != 0)
7107 out:
7108 		dev_warn(&h->pdev->dev,
7109 			"error flushing cache on controller\n");
7110 	cmd_special_free(h, c);
7111 out_of_memory:
7112 	kfree(flush_buf);
7113 }
7114 
7115 static void hpsa_shutdown(struct pci_dev *pdev)
7116 {
7117 	struct ctlr_info *h;
7118 
7119 	h = pci_get_drvdata(pdev);
7120 	/* Turn board interrupts off  and send the flush cache command
7121 	 * sendcmd will turn off interrupt, and send the flush...
7122 	 * To write all data in the battery backed cache to disks
7123 	 */
7124 	hpsa_flush_cache(h);
7125 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7126 	hpsa_free_irqs_and_disable_msix(h);
7127 }
7128 
7129 static void hpsa_free_device_info(struct ctlr_info *h)
7130 {
7131 	int i;
7132 
7133 	for (i = 0; i < h->ndevices; i++)
7134 		kfree(h->dev[i]);
7135 }
7136 
7137 static void hpsa_remove_one(struct pci_dev *pdev)
7138 {
7139 	struct ctlr_info *h;
7140 	unsigned long flags;
7141 
7142 	if (pci_get_drvdata(pdev) == NULL) {
7143 		dev_err(&pdev->dev, "unable to remove device\n");
7144 		return;
7145 	}
7146 	h = pci_get_drvdata(pdev);
7147 
7148 	/* Get rid of any controller monitoring work items */
7149 	spin_lock_irqsave(&h->lock, flags);
7150 	h->remove_in_progress = 1;
7151 	cancel_delayed_work(&h->monitor_ctlr_work);
7152 	spin_unlock_irqrestore(&h->lock, flags);
7153 
7154 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7155 	hpsa_shutdown(pdev);
7156 	iounmap(h->vaddr);
7157 	iounmap(h->transtable);
7158 	iounmap(h->cfgtable);
7159 	hpsa_free_device_info(h);
7160 	hpsa_free_sg_chain_blocks(h);
7161 	pci_free_consistent(h->pdev,
7162 		h->nr_cmds * sizeof(struct CommandList),
7163 		h->cmd_pool, h->cmd_pool_dhandle);
7164 	pci_free_consistent(h->pdev,
7165 		h->nr_cmds * sizeof(struct ErrorInfo),
7166 		h->errinfo_pool, h->errinfo_pool_dhandle);
7167 	pci_free_consistent(h->pdev, h->reply_pool_size,
7168 		h->reply_pool, h->reply_pool_dhandle);
7169 	kfree(h->cmd_pool_bits);
7170 	kfree(h->blockFetchTable);
7171 	kfree(h->ioaccel1_blockFetchTable);
7172 	kfree(h->ioaccel2_blockFetchTable);
7173 	kfree(h->hba_inquiry_data);
7174 	pci_disable_device(pdev);
7175 	pci_release_regions(pdev);
7176 	kfree(h);
7177 }
7178 
7179 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7180 	__attribute__((unused)) pm_message_t state)
7181 {
7182 	return -ENOSYS;
7183 }
7184 
7185 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7186 {
7187 	return -ENOSYS;
7188 }
7189 
7190 static struct pci_driver hpsa_pci_driver = {
7191 	.name = HPSA,
7192 	.probe = hpsa_init_one,
7193 	.remove = hpsa_remove_one,
7194 	.id_table = hpsa_pci_device_id,	/* id_table */
7195 	.shutdown = hpsa_shutdown,
7196 	.suspend = hpsa_suspend,
7197 	.resume = hpsa_resume,
7198 };
7199 
7200 /* Fill in bucket_map[], given nsgs (the max number of
7201  * scatter gather elements supported) and bucket[],
7202  * which is an array of 8 integers.  The bucket[] array
7203  * contains 8 different DMA transfer sizes (in 16
7204  * byte increments) which the controller uses to fetch
7205  * commands.  This function fills in bucket_map[], which
7206  * maps a given number of scatter gather elements to one of
7207  * the 8 DMA transfer sizes.  The point of it is to allow the
7208  * controller to only do as much DMA as needed to fetch the
7209  * command, with the DMA transfer size encoded in the lower
7210  * bits of the command address.
7211  */
7212 static void  calc_bucket_map(int bucket[], int num_buckets,
7213 	int nsgs, int min_blocks, int *bucket_map)
7214 {
7215 	int i, j, b, size;
7216 
7217 	/* Note, bucket_map must have nsgs+1 entries. */
7218 	for (i = 0; i <= nsgs; i++) {
7219 		/* Compute size of a command with i SG entries */
7220 		size = i + min_blocks;
7221 		b = num_buckets; /* Assume the biggest bucket */
7222 		/* Find the bucket that is just big enough */
7223 		for (j = 0; j < num_buckets; j++) {
7224 			if (bucket[j] >= size) {
7225 				b = j;
7226 				break;
7227 			}
7228 		}
7229 		/* for a command with i SG entries, use bucket b. */
7230 		bucket_map[i] = b;
7231 	}
7232 }
7233 
7234 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7235 {
7236 	int i;
7237 	unsigned long register_value;
7238 	unsigned long transMethod = CFGTBL_Trans_Performant |
7239 			(trans_support & CFGTBL_Trans_use_short_tags) |
7240 				CFGTBL_Trans_enable_directed_msix |
7241 			(trans_support & (CFGTBL_Trans_io_accel1 |
7242 				CFGTBL_Trans_io_accel2));
7243 	struct access_method access = SA5_performant_access;
7244 
7245 	/* This is a bit complicated.  There are 8 registers on
7246 	 * the controller which we write to to tell it 8 different
7247 	 * sizes of commands which there may be.  It's a way of
7248 	 * reducing the DMA done to fetch each command.  Encoded into
7249 	 * each command's tag are 3 bits which communicate to the controller
7250 	 * which of the eight sizes that command fits within.  The size of
7251 	 * each command depends on how many scatter gather entries there are.
7252 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7253 	 * with the number of 16-byte blocks a command of that size requires.
7254 	 * The smallest command possible requires 5 such 16 byte blocks.
7255 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7256 	 * blocks.  Note, this only extends to the SG entries contained
7257 	 * within the command block, and does not extend to chained blocks
7258 	 * of SG elements.   bft[] contains the eight values we write to
7259 	 * the registers.  They are not evenly distributed, but have more
7260 	 * sizes for small commands, and fewer sizes for larger commands.
7261 	 */
7262 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7263 #define MIN_IOACCEL2_BFT_ENTRY 5
7264 #define HPSA_IOACCEL2_HEADER_SZ 4
7265 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7266 			13, 14, 15, 16, 17, 18, 19,
7267 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7268 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7269 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7270 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7271 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7272 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7273 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7274 	/*  5 = 1 s/g entry or 4k
7275 	 *  6 = 2 s/g entry or 8k
7276 	 *  8 = 4 s/g entry or 16k
7277 	 * 10 = 6 s/g entry or 24k
7278 	 */
7279 
7280 	/* Controller spec: zero out this buffer. */
7281 	memset(h->reply_pool, 0, h->reply_pool_size);
7282 
7283 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7284 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7285 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7286 	for (i = 0; i < 8; i++)
7287 		writel(bft[i], &h->transtable->BlockFetch[i]);
7288 
7289 	/* size of controller ring buffer */
7290 	writel(h->max_commands, &h->transtable->RepQSize);
7291 	writel(h->nreply_queues, &h->transtable->RepQCount);
7292 	writel(0, &h->transtable->RepQCtrAddrLow32);
7293 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7294 
7295 	for (i = 0; i < h->nreply_queues; i++) {
7296 		writel(0, &h->transtable->RepQAddr[i].upper);
7297 		writel(h->reply_pool_dhandle +
7298 			(h->max_commands * sizeof(u64) * i),
7299 			&h->transtable->RepQAddr[i].lower);
7300 	}
7301 
7302 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7303 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7304 	/*
7305 	 * enable outbound interrupt coalescing in accelerator mode;
7306 	 */
7307 	if (trans_support & CFGTBL_Trans_io_accel1) {
7308 		access = SA5_ioaccel_mode1_access;
7309 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7310 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7311 	} else {
7312 		if (trans_support & CFGTBL_Trans_io_accel2) {
7313 			access = SA5_ioaccel_mode2_access;
7314 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7315 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7316 		}
7317 	}
7318 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7319 	hpsa_wait_for_mode_change_ack(h);
7320 	register_value = readl(&(h->cfgtable->TransportActive));
7321 	if (!(register_value & CFGTBL_Trans_Performant)) {
7322 		dev_warn(&h->pdev->dev, "unable to get board into"
7323 					" performant mode\n");
7324 		return;
7325 	}
7326 	/* Change the access methods to the performant access methods */
7327 	h->access = access;
7328 	h->transMethod = transMethod;
7329 
7330 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7331 		(trans_support & CFGTBL_Trans_io_accel2)))
7332 		return;
7333 
7334 	if (trans_support & CFGTBL_Trans_io_accel1) {
7335 		/* Set up I/O accelerator mode */
7336 		for (i = 0; i < h->nreply_queues; i++) {
7337 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7338 			h->reply_queue[i].current_entry =
7339 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7340 		}
7341 		bft[7] = h->ioaccel_maxsg + 8;
7342 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7343 				h->ioaccel1_blockFetchTable);
7344 
7345 		/* initialize all reply queue entries to unused */
7346 		memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
7347 				h->reply_pool_size);
7348 
7349 		/* set all the constant fields in the accelerator command
7350 		 * frames once at init time to save CPU cycles later.
7351 		 */
7352 		for (i = 0; i < h->nr_cmds; i++) {
7353 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7354 
7355 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7356 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7357 					(i * sizeof(struct ErrorInfo)));
7358 			cp->err_info_len = sizeof(struct ErrorInfo);
7359 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7360 			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7361 			cp->timeout_sec = 0;
7362 			cp->ReplyQueue = 0;
7363 			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7364 						DIRECT_LOOKUP_BIT;
7365 			cp->Tag.upper = 0;
7366 			cp->host_addr.lower =
7367 				(u32) (h->ioaccel_cmd_pool_dhandle +
7368 					(i * sizeof(struct io_accel1_cmd)));
7369 			cp->host_addr.upper = 0;
7370 		}
7371 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7372 		u64 cfg_offset, cfg_base_addr_index;
7373 		u32 bft2_offset, cfg_base_addr;
7374 		int rc;
7375 
7376 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7377 			&cfg_base_addr_index, &cfg_offset);
7378 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7379 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7380 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7381 				4, h->ioaccel2_blockFetchTable);
7382 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7383 		BUILD_BUG_ON(offsetof(struct CfgTable,
7384 				io_accel_request_size_offset) != 0xb8);
7385 		h->ioaccel2_bft2_regs =
7386 			remap_pci_mem(pci_resource_start(h->pdev,
7387 					cfg_base_addr_index) +
7388 					cfg_offset + bft2_offset,
7389 					ARRAY_SIZE(bft2) *
7390 					sizeof(*h->ioaccel2_bft2_regs));
7391 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7392 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7393 	}
7394 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7395 	hpsa_wait_for_mode_change_ack(h);
7396 }
7397 
7398 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7399 {
7400 	h->ioaccel_maxsg =
7401 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7402 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7403 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7404 
7405 	/* Command structures must be aligned on a 128-byte boundary
7406 	 * because the 7 lower bits of the address are used by the
7407 	 * hardware.
7408 	 */
7409 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7410 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7411 	h->ioaccel_cmd_pool =
7412 		pci_alloc_consistent(h->pdev,
7413 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7414 			&(h->ioaccel_cmd_pool_dhandle));
7415 
7416 	h->ioaccel1_blockFetchTable =
7417 		kmalloc(((h->ioaccel_maxsg + 1) *
7418 				sizeof(u32)), GFP_KERNEL);
7419 
7420 	if ((h->ioaccel_cmd_pool == NULL) ||
7421 		(h->ioaccel1_blockFetchTable == NULL))
7422 		goto clean_up;
7423 
7424 	memset(h->ioaccel_cmd_pool, 0,
7425 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7426 	return 0;
7427 
7428 clean_up:
7429 	if (h->ioaccel_cmd_pool)
7430 		pci_free_consistent(h->pdev,
7431 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7432 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7433 	kfree(h->ioaccel1_blockFetchTable);
7434 	return 1;
7435 }
7436 
7437 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7438 {
7439 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7440 
7441 	h->ioaccel_maxsg =
7442 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7443 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7444 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7445 
7446 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7447 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7448 	h->ioaccel2_cmd_pool =
7449 		pci_alloc_consistent(h->pdev,
7450 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7451 			&(h->ioaccel2_cmd_pool_dhandle));
7452 
7453 	h->ioaccel2_blockFetchTable =
7454 		kmalloc(((h->ioaccel_maxsg + 1) *
7455 				sizeof(u32)), GFP_KERNEL);
7456 
7457 	if ((h->ioaccel2_cmd_pool == NULL) ||
7458 		(h->ioaccel2_blockFetchTable == NULL))
7459 		goto clean_up;
7460 
7461 	memset(h->ioaccel2_cmd_pool, 0,
7462 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7463 	return 0;
7464 
7465 clean_up:
7466 	if (h->ioaccel2_cmd_pool)
7467 		pci_free_consistent(h->pdev,
7468 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7469 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7470 	kfree(h->ioaccel2_blockFetchTable);
7471 	return 1;
7472 }
7473 
7474 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7475 {
7476 	u32 trans_support;
7477 	unsigned long transMethod = CFGTBL_Trans_Performant |
7478 					CFGTBL_Trans_use_short_tags;
7479 	int i;
7480 
7481 	if (hpsa_simple_mode)
7482 		return;
7483 
7484 	trans_support = readl(&(h->cfgtable->TransportSupport));
7485 	if (!(trans_support & PERFORMANT_MODE))
7486 		return;
7487 
7488 	/* Check for I/O accelerator mode support */
7489 	if (trans_support & CFGTBL_Trans_io_accel1) {
7490 		transMethod |= CFGTBL_Trans_io_accel1 |
7491 				CFGTBL_Trans_enable_directed_msix;
7492 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7493 			goto clean_up;
7494 	} else {
7495 		if (trans_support & CFGTBL_Trans_io_accel2) {
7496 				transMethod |= CFGTBL_Trans_io_accel2 |
7497 				CFGTBL_Trans_enable_directed_msix;
7498 		if (ioaccel2_alloc_cmds_and_bft(h))
7499 			goto clean_up;
7500 		}
7501 	}
7502 
7503 	/* TODO, check that this next line h->nreply_queues is correct */
7504 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7505 	hpsa_get_max_perf_mode_cmds(h);
7506 	/* Performant mode ring buffer and supporting data structures */
7507 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
7508 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
7509 				&(h->reply_pool_dhandle));
7510 
7511 	for (i = 0; i < h->nreply_queues; i++) {
7512 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
7513 		h->reply_queue[i].size = h->max_commands;
7514 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7515 		h->reply_queue[i].current_entry = 0;
7516 	}
7517 
7518 	/* Need a block fetch table for performant mode */
7519 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7520 				sizeof(u32)), GFP_KERNEL);
7521 
7522 	if ((h->reply_pool == NULL)
7523 		|| (h->blockFetchTable == NULL))
7524 		goto clean_up;
7525 
7526 	hpsa_enter_performant_mode(h, trans_support);
7527 	return;
7528 
7529 clean_up:
7530 	if (h->reply_pool)
7531 		pci_free_consistent(h->pdev, h->reply_pool_size,
7532 			h->reply_pool, h->reply_pool_dhandle);
7533 	kfree(h->blockFetchTable);
7534 }
7535 
7536 static int is_accelerated_cmd(struct CommandList *c)
7537 {
7538 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7539 }
7540 
7541 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7542 {
7543 	struct CommandList *c = NULL;
7544 	unsigned long flags;
7545 	int accel_cmds_out;
7546 
7547 	do { /* wait for all outstanding commands to drain out */
7548 		accel_cmds_out = 0;
7549 		spin_lock_irqsave(&h->lock, flags);
7550 		list_for_each_entry(c, &h->cmpQ, list)
7551 			accel_cmds_out += is_accelerated_cmd(c);
7552 		list_for_each_entry(c, &h->reqQ, list)
7553 			accel_cmds_out += is_accelerated_cmd(c);
7554 		spin_unlock_irqrestore(&h->lock, flags);
7555 		if (accel_cmds_out <= 0)
7556 			break;
7557 		msleep(100);
7558 	} while (1);
7559 }
7560 
7561 /*
7562  *  This is it.  Register the PCI driver information for the cards we control
7563  *  the OS will call our registered routines when it finds one of our cards.
7564  */
7565 static int __init hpsa_init(void)
7566 {
7567 	return pci_register_driver(&hpsa_pci_driver);
7568 }
7569 
7570 static void __exit hpsa_cleanup(void)
7571 {
7572 	pci_unregister_driver(&hpsa_pci_driver);
7573 }
7574 
7575 static void __attribute__((unused)) verify_offsets(void)
7576 {
7577 #define VERIFY_OFFSET(member, offset) \
7578 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7579 
7580 	VERIFY_OFFSET(structure_size, 0);
7581 	VERIFY_OFFSET(volume_blk_size, 4);
7582 	VERIFY_OFFSET(volume_blk_cnt, 8);
7583 	VERIFY_OFFSET(phys_blk_shift, 16);
7584 	VERIFY_OFFSET(parity_rotation_shift, 17);
7585 	VERIFY_OFFSET(strip_size, 18);
7586 	VERIFY_OFFSET(disk_starting_blk, 20);
7587 	VERIFY_OFFSET(disk_blk_cnt, 28);
7588 	VERIFY_OFFSET(data_disks_per_row, 36);
7589 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7590 	VERIFY_OFFSET(row_cnt, 40);
7591 	VERIFY_OFFSET(layout_map_count, 42);
7592 	VERIFY_OFFSET(flags, 44);
7593 	VERIFY_OFFSET(dekindex, 46);
7594 	/* VERIFY_OFFSET(reserved, 48 */
7595 	VERIFY_OFFSET(data, 64);
7596 
7597 #undef VERIFY_OFFSET
7598 
7599 #define VERIFY_OFFSET(member, offset) \
7600 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7601 
7602 	VERIFY_OFFSET(IU_type, 0);
7603 	VERIFY_OFFSET(direction, 1);
7604 	VERIFY_OFFSET(reply_queue, 2);
7605 	/* VERIFY_OFFSET(reserved1, 3);  */
7606 	VERIFY_OFFSET(scsi_nexus, 4);
7607 	VERIFY_OFFSET(Tag, 8);
7608 	VERIFY_OFFSET(cdb, 16);
7609 	VERIFY_OFFSET(cciss_lun, 32);
7610 	VERIFY_OFFSET(data_len, 40);
7611 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7612 	VERIFY_OFFSET(sg_count, 45);
7613 	/* VERIFY_OFFSET(reserved3 */
7614 	VERIFY_OFFSET(err_ptr, 48);
7615 	VERIFY_OFFSET(err_len, 56);
7616 	/* VERIFY_OFFSET(reserved4  */
7617 	VERIFY_OFFSET(sg, 64);
7618 
7619 #undef VERIFY_OFFSET
7620 
7621 #define VERIFY_OFFSET(member, offset) \
7622 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7623 
7624 	VERIFY_OFFSET(dev_handle, 0x00);
7625 	VERIFY_OFFSET(reserved1, 0x02);
7626 	VERIFY_OFFSET(function, 0x03);
7627 	VERIFY_OFFSET(reserved2, 0x04);
7628 	VERIFY_OFFSET(err_info, 0x0C);
7629 	VERIFY_OFFSET(reserved3, 0x10);
7630 	VERIFY_OFFSET(err_info_len, 0x12);
7631 	VERIFY_OFFSET(reserved4, 0x13);
7632 	VERIFY_OFFSET(sgl_offset, 0x14);
7633 	VERIFY_OFFSET(reserved5, 0x15);
7634 	VERIFY_OFFSET(transfer_len, 0x1C);
7635 	VERIFY_OFFSET(reserved6, 0x20);
7636 	VERIFY_OFFSET(io_flags, 0x24);
7637 	VERIFY_OFFSET(reserved7, 0x26);
7638 	VERIFY_OFFSET(LUN, 0x34);
7639 	VERIFY_OFFSET(control, 0x3C);
7640 	VERIFY_OFFSET(CDB, 0x40);
7641 	VERIFY_OFFSET(reserved8, 0x50);
7642 	VERIFY_OFFSET(host_context_flags, 0x60);
7643 	VERIFY_OFFSET(timeout_sec, 0x62);
7644 	VERIFY_OFFSET(ReplyQueue, 0x64);
7645 	VERIFY_OFFSET(reserved9, 0x65);
7646 	VERIFY_OFFSET(Tag, 0x68);
7647 	VERIFY_OFFSET(host_addr, 0x70);
7648 	VERIFY_OFFSET(CISS_LUN, 0x78);
7649 	VERIFY_OFFSET(SG, 0x78 + 8);
7650 #undef VERIFY_OFFSET
7651 }
7652 
7653 module_init(hpsa_init);
7654 module_exit(hpsa_cleanup);
7655