xref: /openbmc/linux/drivers/scsi/hpsa.c (revision f66c83d059d1ed90968caa81d401f160912b063a)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
112 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113 	{0,}
114 };
115 
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117 
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123 	{0x3241103C, "Smart Array P212", &SA5_access},
124 	{0x3243103C, "Smart Array P410", &SA5_access},
125 	{0x3245103C, "Smart Array P410i", &SA5_access},
126 	{0x3247103C, "Smart Array P411", &SA5_access},
127 	{0x3249103C, "Smart Array P812", &SA5_access},
128 	{0x324a103C, "Smart Array P712m", &SA5_access},
129 	{0x324b103C, "Smart Array P711m", &SA5_access},
130 	{0x3350103C, "Smart Array P222", &SA5_access},
131 	{0x3351103C, "Smart Array P420", &SA5_access},
132 	{0x3352103C, "Smart Array P421", &SA5_access},
133 	{0x3353103C, "Smart Array P822", &SA5_access},
134 	{0x3354103C, "Smart Array P420i", &SA5_access},
135 	{0x3355103C, "Smart Array P220i", &SA5_access},
136 	{0x3356103C, "Smart Array P721m", &SA5_access},
137 	{0x1920103C, "Smart Array", &SA5_access},
138 	{0x1921103C, "Smart Array", &SA5_access},
139 	{0x1922103C, "Smart Array", &SA5_access},
140 	{0x1923103C, "Smart Array", &SA5_access},
141 	{0x1924103C, "Smart Array", &SA5_access},
142 	{0x1925103C, "Smart Array", &SA5_access},
143 	{0x1926103C, "Smart Array", &SA5_access},
144 	{0x1928103C, "Smart Array", &SA5_access},
145 	{0x334d103C, "Smart Array P822se", &SA5_access},
146 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148 
149 static int number_of_controllers;
150 
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154 
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159 
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163 
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170 	int cmd_type);
171 
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175 	unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177 	int qdepth, int reason);
178 
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183 
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186 	struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188 	struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191 	int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196 			       u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198 				    unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201 				     int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205 
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208 	unsigned long *priv = shost_priv(sdev->host);
209 	return (struct ctlr_info *) *priv;
210 }
211 
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214 	unsigned long *priv = shost_priv(sh);
215 	return (struct ctlr_info *) *priv;
216 }
217 
218 static int check_for_unit_attention(struct ctlr_info *h,
219 	struct CommandList *c)
220 {
221 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222 		return 0;
223 
224 	switch (c->err_info->SenseInfo[12]) {
225 	case STATE_CHANGED:
226 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227 			"detected, command retried\n", h->ctlr);
228 		break;
229 	case LUN_FAILED:
230 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231 			"detected, action required\n", h->ctlr);
232 		break;
233 	case REPORT_LUNS_CHANGED:
234 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235 			"changed, action required\n", h->ctlr);
236 	/*
237 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238 	 * target (array) devices.
239 	 */
240 		break;
241 	case POWER_OR_RESET:
242 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243 			"or device reset detected\n", h->ctlr);
244 		break;
245 	case UNIT_ATTENTION_CLEARED:
246 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247 		    "cleared by another initiator\n", h->ctlr);
248 		break;
249 	default:
250 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251 			"unit attention detected\n", h->ctlr);
252 		break;
253 	}
254 	return 1;
255 }
256 
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262 		return 0;
263 	dev_warn(&h->pdev->dev, HPSA "device busy");
264 	return 1;
265 }
266 
267 static ssize_t host_store_rescan(struct device *dev,
268 				 struct device_attribute *attr,
269 				 const char *buf, size_t count)
270 {
271 	struct ctlr_info *h;
272 	struct Scsi_Host *shost = class_to_shost(dev);
273 	h = shost_to_hba(shost);
274 	hpsa_scan_start(h->scsi_host);
275 	return count;
276 }
277 
278 static ssize_t host_show_firmware_revision(struct device *dev,
279 	     struct device_attribute *attr, char *buf)
280 {
281 	struct ctlr_info *h;
282 	struct Scsi_Host *shost = class_to_shost(dev);
283 	unsigned char *fwrev;
284 
285 	h = shost_to_hba(shost);
286 	if (!h->hba_inquiry_data)
287 		return 0;
288 	fwrev = &h->hba_inquiry_data[32];
289 	return snprintf(buf, 20, "%c%c%c%c\n",
290 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292 
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294 	     struct device_attribute *attr, char *buf)
295 {
296 	struct Scsi_Host *shost = class_to_shost(dev);
297 	struct ctlr_info *h = shost_to_hba(shost);
298 
299 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301 
302 static ssize_t host_show_transport_mode(struct device *dev,
303 	struct device_attribute *attr, char *buf)
304 {
305 	struct ctlr_info *h;
306 	struct Scsi_Host *shost = class_to_shost(dev);
307 
308 	h = shost_to_hba(shost);
309 	return snprintf(buf, 20, "%s\n",
310 		h->transMethod & CFGTBL_Trans_Performant ?
311 			"performant" : "simple");
312 }
313 
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316 	0x324a103C, /* Smart Array P712m */
317 	0x324b103C, /* SmartArray P711m */
318 	0x3223103C, /* Smart Array P800 */
319 	0x3234103C, /* Smart Array P400 */
320 	0x3235103C, /* Smart Array P400i */
321 	0x3211103C, /* Smart Array E200i */
322 	0x3212103C, /* Smart Array E200 */
323 	0x3213103C, /* Smart Array E200i */
324 	0x3214103C, /* Smart Array E200i */
325 	0x3215103C, /* Smart Array E200i */
326 	0x3237103C, /* Smart Array E500 */
327 	0x323D103C, /* Smart Array P700m */
328 	0x40800E11, /* Smart Array 5i */
329 	0x409C0E11, /* Smart Array 6400 */
330 	0x409D0E11, /* Smart Array 6400 EM */
331 	0x40700E11, /* Smart Array 5300 */
332 	0x40820E11, /* Smart Array 532 */
333 	0x40830E11, /* Smart Array 5312 */
334 	0x409A0E11, /* Smart Array 641 */
335 	0x409B0E11, /* Smart Array 642 */
336 	0x40910E11, /* Smart Array 6i */
337 };
338 
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341 	0x40800E11, /* Smart Array 5i */
342 	0x40700E11, /* Smart Array 5300 */
343 	0x40820E11, /* Smart Array 532 */
344 	0x40830E11, /* Smart Array 5312 */
345 	0x409A0E11, /* Smart Array 641 */
346 	0x409B0E11, /* Smart Array 642 */
347 	0x40910E11, /* Smart Array 6i */
348 	/* Exclude 640x boards.  These are two pci devices in one slot
349 	 * which share a battery backed cache module.  One controls the
350 	 * cache, the other accesses the cache through the one that controls
351 	 * it.  If we reset the one controlling the cache, the other will
352 	 * likely not be happy.  Just forbid resetting this conjoined mess.
353 	 * The 640x isn't really supported by hpsa anyway.
354 	 */
355 	0x409C0E11, /* Smart Array 6400 */
356 	0x409D0E11, /* Smart Array 6400 EM */
357 };
358 
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361 	int i;
362 
363 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364 		if (unresettable_controller[i] == board_id)
365 			return 0;
366 	return 1;
367 }
368 
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371 	int i;
372 
373 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374 		if (soft_unresettable_controller[i] == board_id)
375 			return 0;
376 	return 1;
377 }
378 
379 static int ctlr_is_resettable(u32 board_id)
380 {
381 	return ctlr_is_hard_resettable(board_id) ||
382 		ctlr_is_soft_resettable(board_id);
383 }
384 
385 static ssize_t host_show_resettable(struct device *dev,
386 	struct device_attribute *attr, char *buf)
387 {
388 	struct ctlr_info *h;
389 	struct Scsi_Host *shost = class_to_shost(dev);
390 
391 	h = shost_to_hba(shost);
392 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394 
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397 	return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399 
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401 	"1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404 
405 static ssize_t raid_level_show(struct device *dev,
406 	     struct device_attribute *attr, char *buf)
407 {
408 	ssize_t l = 0;
409 	unsigned char rlevel;
410 	struct ctlr_info *h;
411 	struct scsi_device *sdev;
412 	struct hpsa_scsi_dev_t *hdev;
413 	unsigned long flags;
414 
415 	sdev = to_scsi_device(dev);
416 	h = sdev_to_hba(sdev);
417 	spin_lock_irqsave(&h->lock, flags);
418 	hdev = sdev->hostdata;
419 	if (!hdev) {
420 		spin_unlock_irqrestore(&h->lock, flags);
421 		return -ENODEV;
422 	}
423 
424 	/* Is this even a logical drive? */
425 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426 		spin_unlock_irqrestore(&h->lock, flags);
427 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
428 		return l;
429 	}
430 
431 	rlevel = hdev->raid_level;
432 	spin_unlock_irqrestore(&h->lock, flags);
433 	if (rlevel > RAID_UNKNOWN)
434 		rlevel = RAID_UNKNOWN;
435 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436 	return l;
437 }
438 
439 static ssize_t lunid_show(struct device *dev,
440 	     struct device_attribute *attr, char *buf)
441 {
442 	struct ctlr_info *h;
443 	struct scsi_device *sdev;
444 	struct hpsa_scsi_dev_t *hdev;
445 	unsigned long flags;
446 	unsigned char lunid[8];
447 
448 	sdev = to_scsi_device(dev);
449 	h = sdev_to_hba(sdev);
450 	spin_lock_irqsave(&h->lock, flags);
451 	hdev = sdev->hostdata;
452 	if (!hdev) {
453 		spin_unlock_irqrestore(&h->lock, flags);
454 		return -ENODEV;
455 	}
456 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457 	spin_unlock_irqrestore(&h->lock, flags);
458 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459 		lunid[0], lunid[1], lunid[2], lunid[3],
460 		lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462 
463 static ssize_t unique_id_show(struct device *dev,
464 	     struct device_attribute *attr, char *buf)
465 {
466 	struct ctlr_info *h;
467 	struct scsi_device *sdev;
468 	struct hpsa_scsi_dev_t *hdev;
469 	unsigned long flags;
470 	unsigned char sn[16];
471 
472 	sdev = to_scsi_device(dev);
473 	h = sdev_to_hba(sdev);
474 	spin_lock_irqsave(&h->lock, flags);
475 	hdev = sdev->hostdata;
476 	if (!hdev) {
477 		spin_unlock_irqrestore(&h->lock, flags);
478 		return -ENODEV;
479 	}
480 	memcpy(sn, hdev->device_id, sizeof(sn));
481 	spin_unlock_irqrestore(&h->lock, flags);
482 	return snprintf(buf, 16 * 2 + 2,
483 			"%02X%02X%02X%02X%02X%02X%02X%02X"
484 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
485 			sn[0], sn[1], sn[2], sn[3],
486 			sn[4], sn[5], sn[6], sn[7],
487 			sn[8], sn[9], sn[10], sn[11],
488 			sn[12], sn[13], sn[14], sn[15]);
489 }
490 
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496 	host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498 	host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500 	host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502 	host_show_resettable, NULL);
503 
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505 	&dev_attr_raid_level,
506 	&dev_attr_lunid,
507 	&dev_attr_unique_id,
508 	NULL,
509 };
510 
511 static struct device_attribute *hpsa_shost_attrs[] = {
512 	&dev_attr_rescan,
513 	&dev_attr_firmware_revision,
514 	&dev_attr_commands_outstanding,
515 	&dev_attr_transport_mode,
516 	&dev_attr_resettable,
517 	NULL,
518 };
519 
520 static struct scsi_host_template hpsa_driver_template = {
521 	.module			= THIS_MODULE,
522 	.name			= HPSA,
523 	.proc_name		= HPSA,
524 	.queuecommand		= hpsa_scsi_queue_command,
525 	.scan_start		= hpsa_scan_start,
526 	.scan_finished		= hpsa_scan_finished,
527 	.change_queue_depth	= hpsa_change_queue_depth,
528 	.this_id		= -1,
529 	.use_clustering		= ENABLE_CLUSTERING,
530 	.eh_abort_handler	= hpsa_eh_abort_handler,
531 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
532 	.ioctl			= hpsa_ioctl,
533 	.slave_alloc		= hpsa_slave_alloc,
534 	.slave_destroy		= hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536 	.compat_ioctl		= hpsa_compat_ioctl,
537 #endif
538 	.sdev_attrs = hpsa_sdev_attrs,
539 	.shost_attrs = hpsa_shost_attrs,
540 	.max_sectors = 8192,
541 };
542 
543 
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547 	list_add_tail(&c->list, list);
548 }
549 
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552 	u32 a;
553 	struct reply_pool *rq = &h->reply_queue[q];
554 	unsigned long flags;
555 
556 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557 		return h->access.command_completed(h, q);
558 
559 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560 		a = rq->head[rq->current_entry];
561 		rq->current_entry++;
562 		spin_lock_irqsave(&h->lock, flags);
563 		h->commands_outstanding--;
564 		spin_unlock_irqrestore(&h->lock, flags);
565 	} else {
566 		a = FIFO_EMPTY;
567 	}
568 	/* Check for wraparound */
569 	if (rq->current_entry == h->max_commands) {
570 		rq->current_entry = 0;
571 		rq->wraparound ^= 1;
572 	}
573 	return a;
574 }
575 
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584 		if (likely(h->msix_vector))
585 			c->Header.ReplyQueue =
586 				raw_smp_processor_id() % h->nreply_queues;
587 	}
588 }
589 
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594 
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603 		struct CommandList *c)
604 {
605 	if (!is_firmware_flash_cmd(c->Request.CDB))
606 		return;
607 	atomic_inc(&h->firmware_flash_in_progress);
608 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610 
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612 		struct CommandList *c)
613 {
614 	if (is_firmware_flash_cmd(c->Request.CDB) &&
615 		atomic_dec_and_test(&h->firmware_flash_in_progress))
616 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618 
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620 	struct CommandList *c)
621 {
622 	unsigned long flags;
623 
624 	set_performant_mode(h, c);
625 	dial_down_lockup_detection_during_fw_flash(h, c);
626 	spin_lock_irqsave(&h->lock, flags);
627 	addQ(&h->reqQ, c);
628 	h->Qdepth++;
629 	spin_unlock_irqrestore(&h->lock, flags);
630 	start_io(h);
631 }
632 
633 static inline void removeQ(struct CommandList *c)
634 {
635 	if (WARN_ON(list_empty(&c->list)))
636 		return;
637 	list_del_init(&c->list);
638 }
639 
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644 
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647 	if (!h->hba_inquiry_data)
648 		return 0;
649 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
650 		return 1;
651 	return 0;
652 }
653 
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655 	unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657 	/* finds an unused bus, target, lun for a new physical device
658 	 * assumes h->devlock is held
659 	 */
660 	int i, found = 0;
661 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662 
663 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664 
665 	for (i = 0; i < h->ndevices; i++) {
666 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667 			__set_bit(h->dev[i]->target, lun_taken);
668 	}
669 
670 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671 	if (i < HPSA_MAX_DEVICES) {
672 		/* *bus = 1; */
673 		*target = i;
674 		*lun = 0;
675 		found = 1;
676 	}
677 	return !found;
678 }
679 
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682 		struct hpsa_scsi_dev_t *device,
683 		struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685 	/* assumes h->devlock is held */
686 	int n = h->ndevices;
687 	int i;
688 	unsigned char addr1[8], addr2[8];
689 	struct hpsa_scsi_dev_t *sd;
690 
691 	if (n >= HPSA_MAX_DEVICES) {
692 		dev_err(&h->pdev->dev, "too many devices, some will be "
693 			"inaccessible.\n");
694 		return -1;
695 	}
696 
697 	/* physical devices do not have lun or target assigned until now. */
698 	if (device->lun != -1)
699 		/* Logical device, lun is already assigned. */
700 		goto lun_assigned;
701 
702 	/* If this device a non-zero lun of a multi-lun device
703 	 * byte 4 of the 8-byte LUN addr will contain the logical
704 	 * unit no, zero otherise.
705 	 */
706 	if (device->scsi3addr[4] == 0) {
707 		/* This is not a non-zero lun of a multi-lun device */
708 		if (hpsa_find_target_lun(h, device->scsi3addr,
709 			device->bus, &device->target, &device->lun) != 0)
710 			return -1;
711 		goto lun_assigned;
712 	}
713 
714 	/* This is a non-zero lun of a multi-lun device.
715 	 * Search through our list and find the device which
716 	 * has the same 8 byte LUN address, excepting byte 4.
717 	 * Assign the same bus and target for this new LUN.
718 	 * Use the logical unit number from the firmware.
719 	 */
720 	memcpy(addr1, device->scsi3addr, 8);
721 	addr1[4] = 0;
722 	for (i = 0; i < n; i++) {
723 		sd = h->dev[i];
724 		memcpy(addr2, sd->scsi3addr, 8);
725 		addr2[4] = 0;
726 		/* differ only in byte 4? */
727 		if (memcmp(addr1, addr2, 8) == 0) {
728 			device->bus = sd->bus;
729 			device->target = sd->target;
730 			device->lun = device->scsi3addr[4];
731 			break;
732 		}
733 	}
734 	if (device->lun == -1) {
735 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736 			" suspect firmware bug or unsupported hardware "
737 			"configuration.\n");
738 			return -1;
739 	}
740 
741 lun_assigned:
742 
743 	h->dev[n] = device;
744 	h->ndevices++;
745 	added[*nadded] = device;
746 	(*nadded)++;
747 
748 	/* initially, (before registering with scsi layer) we don't
749 	 * know our hostno and we don't want to print anything first
750 	 * time anyway (the scsi layer's inquiries will show that info)
751 	 */
752 	/* if (hostno != -1) */
753 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754 			scsi_device_type(device->devtype), hostno,
755 			device->bus, device->target, device->lun);
756 	return 0;
757 }
758 
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761 	int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763 	/* assumes h->devlock is held */
764 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765 
766 	/* Raid level changed. */
767 	h->dev[entry]->raid_level = new_entry->raid_level;
768 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770 		new_entry->target, new_entry->lun);
771 }
772 
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775 	int entry, struct hpsa_scsi_dev_t *new_entry,
776 	struct hpsa_scsi_dev_t *added[], int *nadded,
777 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779 	/* assumes h->devlock is held */
780 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781 	removed[*nremoved] = h->dev[entry];
782 	(*nremoved)++;
783 
784 	/*
785 	 * New physical devices won't have target/lun assigned yet
786 	 * so we need to preserve the values in the slot we are replacing.
787 	 */
788 	if (new_entry->target == -1) {
789 		new_entry->target = h->dev[entry]->target;
790 		new_entry->lun = h->dev[entry]->lun;
791 	}
792 
793 	h->dev[entry] = new_entry;
794 	added[*nadded] = new_entry;
795 	(*nadded)++;
796 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798 			new_entry->target, new_entry->lun);
799 }
800 
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805 	/* assumes h->devlock is held */
806 	int i;
807 	struct hpsa_scsi_dev_t *sd;
808 
809 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810 
811 	sd = h->dev[entry];
812 	removed[*nremoved] = h->dev[entry];
813 	(*nremoved)++;
814 
815 	for (i = entry; i < h->ndevices-1; i++)
816 		h->dev[i] = h->dev[i+1];
817 	h->ndevices--;
818 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820 		sd->lun);
821 }
822 
823 #define SCSI3ADDR_EQ(a, b) ( \
824 	(a)[7] == (b)[7] && \
825 	(a)[6] == (b)[6] && \
826 	(a)[5] == (b)[5] && \
827 	(a)[4] == (b)[4] && \
828 	(a)[3] == (b)[3] && \
829 	(a)[2] == (b)[2] && \
830 	(a)[1] == (b)[1] && \
831 	(a)[0] == (b)[0])
832 
833 static void fixup_botched_add(struct ctlr_info *h,
834 	struct hpsa_scsi_dev_t *added)
835 {
836 	/* called when scsi_add_device fails in order to re-adjust
837 	 * h->dev[] to match the mid layer's view.
838 	 */
839 	unsigned long flags;
840 	int i, j;
841 
842 	spin_lock_irqsave(&h->lock, flags);
843 	for (i = 0; i < h->ndevices; i++) {
844 		if (h->dev[i] == added) {
845 			for (j = i; j < h->ndevices-1; j++)
846 				h->dev[j] = h->dev[j+1];
847 			h->ndevices--;
848 			break;
849 		}
850 	}
851 	spin_unlock_irqrestore(&h->lock, flags);
852 	kfree(added);
853 }
854 
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856 	struct hpsa_scsi_dev_t *dev2)
857 {
858 	/* we compare everything except lun and target as these
859 	 * are not yet assigned.  Compare parts likely
860 	 * to differ first
861 	 */
862 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863 		sizeof(dev1->scsi3addr)) != 0)
864 		return 0;
865 	if (memcmp(dev1->device_id, dev2->device_id,
866 		sizeof(dev1->device_id)) != 0)
867 		return 0;
868 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869 		return 0;
870 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871 		return 0;
872 	if (dev1->devtype != dev2->devtype)
873 		return 0;
874 	if (dev1->bus != dev2->bus)
875 		return 0;
876 	return 1;
877 }
878 
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880 	struct hpsa_scsi_dev_t *dev2)
881 {
882 	/* Device attributes that can change, but don't mean
883 	 * that the device is a different device, nor that the OS
884 	 * needs to be told anything about the change.
885 	 */
886 	if (dev1->raid_level != dev2->raid_level)
887 		return 1;
888 	return 0;
889 }
890 
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901 	int *index)
902 {
903 	int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908 	for (i = 0; i < haystack_size; i++) {
909 		if (haystack[i] == NULL) /* previously removed. */
910 			continue;
911 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912 			*index = i;
913 			if (device_is_the_same(needle, haystack[i])) {
914 				if (device_updated(needle, haystack[i]))
915 					return DEVICE_UPDATED;
916 				return DEVICE_SAME;
917 			} else {
918 				return DEVICE_CHANGED;
919 			}
920 		}
921 	}
922 	*index = -1;
923 	return DEVICE_NOT_FOUND;
924 }
925 
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927 	struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929 	/* sd contains scsi3 addresses and devtypes, and inquiry
930 	 * data.  This function takes what's in sd to be the current
931 	 * reality and updates h->dev[] to reflect that reality.
932 	 */
933 	int i, entry, device_change, changes = 0;
934 	struct hpsa_scsi_dev_t *csd;
935 	unsigned long flags;
936 	struct hpsa_scsi_dev_t **added, **removed;
937 	int nadded, nremoved;
938 	struct Scsi_Host *sh = NULL;
939 
940 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942 
943 	if (!added || !removed) {
944 		dev_warn(&h->pdev->dev, "out of memory in "
945 			"adjust_hpsa_scsi_table\n");
946 		goto free_and_out;
947 	}
948 
949 	spin_lock_irqsave(&h->devlock, flags);
950 
951 	/* find any devices in h->dev[] that are not in
952 	 * sd[] and remove them from h->dev[], and for any
953 	 * devices which have changed, remove the old device
954 	 * info and add the new device info.
955 	 * If minor device attributes change, just update
956 	 * the existing device structure.
957 	 */
958 	i = 0;
959 	nremoved = 0;
960 	nadded = 0;
961 	while (i < h->ndevices) {
962 		csd = h->dev[i];
963 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964 		if (device_change == DEVICE_NOT_FOUND) {
965 			changes++;
966 			hpsa_scsi_remove_entry(h, hostno, i,
967 				removed, &nremoved);
968 			continue; /* remove ^^^, hence i not incremented */
969 		} else if (device_change == DEVICE_CHANGED) {
970 			changes++;
971 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972 				added, &nadded, removed, &nremoved);
973 			/* Set it to NULL to prevent it from being freed
974 			 * at the bottom of hpsa_update_scsi_devices()
975 			 */
976 			sd[entry] = NULL;
977 		} else if (device_change == DEVICE_UPDATED) {
978 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979 		}
980 		i++;
981 	}
982 
983 	/* Now, make sure every device listed in sd[] is also
984 	 * listed in h->dev[], adding them if they aren't found
985 	 */
986 
987 	for (i = 0; i < nsds; i++) {
988 		if (!sd[i]) /* if already added above. */
989 			continue;
990 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991 					h->ndevices, &entry);
992 		if (device_change == DEVICE_NOT_FOUND) {
993 			changes++;
994 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
995 				added, &nadded) != 0)
996 				break;
997 			sd[i] = NULL; /* prevent from being freed later. */
998 		} else if (device_change == DEVICE_CHANGED) {
999 			/* should never happen... */
1000 			changes++;
1001 			dev_warn(&h->pdev->dev,
1002 				"device unexpectedly changed.\n");
1003 			/* but if it does happen, we just ignore that device */
1004 		}
1005 	}
1006 	spin_unlock_irqrestore(&h->devlock, flags);
1007 
1008 	/* Don't notify scsi mid layer of any changes the first time through
1009 	 * (or if there are no changes) scsi_scan_host will do it later the
1010 	 * first time through.
1011 	 */
1012 	if (hostno == -1 || !changes)
1013 		goto free_and_out;
1014 
1015 	sh = h->scsi_host;
1016 	/* Notify scsi mid layer of any removed devices */
1017 	for (i = 0; i < nremoved; i++) {
1018 		struct scsi_device *sdev =
1019 			scsi_device_lookup(sh, removed[i]->bus,
1020 				removed[i]->target, removed[i]->lun);
1021 		if (sdev != NULL) {
1022 			scsi_remove_device(sdev);
1023 			scsi_device_put(sdev);
1024 		} else {
1025 			/* We don't expect to get here.
1026 			 * future cmds to this device will get selection
1027 			 * timeout as if the device was gone.
1028 			 */
1029 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030 				" for removal.", hostno, removed[i]->bus,
1031 				removed[i]->target, removed[i]->lun);
1032 		}
1033 		kfree(removed[i]);
1034 		removed[i] = NULL;
1035 	}
1036 
1037 	/* Notify scsi mid layer of any added devices */
1038 	for (i = 0; i < nadded; i++) {
1039 		if (scsi_add_device(sh, added[i]->bus,
1040 			added[i]->target, added[i]->lun) == 0)
1041 			continue;
1042 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043 			"device not added.\n", hostno, added[i]->bus,
1044 			added[i]->target, added[i]->lun);
1045 		/* now we have to remove it from h->dev,
1046 		 * since it didn't get added to scsi mid layer
1047 		 */
1048 		fixup_botched_add(h, added[i]);
1049 	}
1050 
1051 free_and_out:
1052 	kfree(added);
1053 	kfree(removed);
1054 }
1055 
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061 	int bus, int target, int lun)
1062 {
1063 	int i;
1064 	struct hpsa_scsi_dev_t *sd;
1065 
1066 	for (i = 0; i < h->ndevices; i++) {
1067 		sd = h->dev[i];
1068 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069 			return sd;
1070 	}
1071 	return NULL;
1072 }
1073 
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077 	struct hpsa_scsi_dev_t *sd;
1078 	unsigned long flags;
1079 	struct ctlr_info *h;
1080 
1081 	h = sdev_to_hba(sdev);
1082 	spin_lock_irqsave(&h->devlock, flags);
1083 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084 		sdev_id(sdev), sdev->lun);
1085 	if (sd != NULL)
1086 		sdev->hostdata = sd;
1087 	spin_unlock_irqrestore(&h->devlock, flags);
1088 	return 0;
1089 }
1090 
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093 	/* nothing to do. */
1094 }
1095 
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098 	int i;
1099 
1100 	if (!h->cmd_sg_list)
1101 		return;
1102 	for (i = 0; i < h->nr_cmds; i++) {
1103 		kfree(h->cmd_sg_list[i]);
1104 		h->cmd_sg_list[i] = NULL;
1105 	}
1106 	kfree(h->cmd_sg_list);
1107 	h->cmd_sg_list = NULL;
1108 }
1109 
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112 	int i;
1113 
1114 	if (h->chainsize <= 0)
1115 		return 0;
1116 
1117 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118 				GFP_KERNEL);
1119 	if (!h->cmd_sg_list)
1120 		return -ENOMEM;
1121 	for (i = 0; i < h->nr_cmds; i++) {
1122 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123 						h->chainsize, GFP_KERNEL);
1124 		if (!h->cmd_sg_list[i])
1125 			goto clean;
1126 	}
1127 	return 0;
1128 
1129 clean:
1130 	hpsa_free_sg_chain_blocks(h);
1131 	return -ENOMEM;
1132 }
1133 
1134 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1135 	struct CommandList *c)
1136 {
1137 	struct SGDescriptor *chain_sg, *chain_block;
1138 	u64 temp64;
1139 
1140 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141 	chain_block = h->cmd_sg_list[c->cmdindex];
1142 	chain_sg->Ext = HPSA_SG_CHAIN;
1143 	chain_sg->Len = sizeof(*chain_sg) *
1144 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1145 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146 				PCI_DMA_TODEVICE);
1147 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1148 		/* prevent subsequent unmapping */
1149 		chain_sg->Addr.lower = 0;
1150 		chain_sg->Addr.upper = 0;
1151 		return -1;
1152 	}
1153 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1154 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1155 	return 0;
1156 }
1157 
1158 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1159 	struct CommandList *c)
1160 {
1161 	struct SGDescriptor *chain_sg;
1162 	union u64bit temp64;
1163 
1164 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1165 		return;
1166 
1167 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1168 	temp64.val32.lower = chain_sg->Addr.lower;
1169 	temp64.val32.upper = chain_sg->Addr.upper;
1170 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1171 }
1172 
1173 static void complete_scsi_command(struct CommandList *cp)
1174 {
1175 	struct scsi_cmnd *cmd;
1176 	struct ctlr_info *h;
1177 	struct ErrorInfo *ei;
1178 
1179 	unsigned char sense_key;
1180 	unsigned char asc;      /* additional sense code */
1181 	unsigned char ascq;     /* additional sense code qualifier */
1182 	unsigned long sense_data_size;
1183 
1184 	ei = cp->err_info;
1185 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1186 	h = cp->h;
1187 
1188 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1189 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1190 		hpsa_unmap_sg_chain_block(h, cp);
1191 
1192 	cmd->result = (DID_OK << 16); 		/* host byte */
1193 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1194 	cmd->result |= ei->ScsiStatus;
1195 
1196 	/* copy the sense data whether we need to or not. */
1197 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1198 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1199 	else
1200 		sense_data_size = sizeof(ei->SenseInfo);
1201 	if (ei->SenseLen < sense_data_size)
1202 		sense_data_size = ei->SenseLen;
1203 
1204 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1205 	scsi_set_resid(cmd, ei->ResidualCnt);
1206 
1207 	if (ei->CommandStatus == 0) {
1208 		cmd_free(h, cp);
1209 		cmd->scsi_done(cmd);
1210 		return;
1211 	}
1212 
1213 	/* an error has occurred */
1214 	switch (ei->CommandStatus) {
1215 
1216 	case CMD_TARGET_STATUS:
1217 		if (ei->ScsiStatus) {
1218 			/* Get sense key */
1219 			sense_key = 0xf & ei->SenseInfo[2];
1220 			/* Get additional sense code */
1221 			asc = ei->SenseInfo[12];
1222 			/* Get addition sense code qualifier */
1223 			ascq = ei->SenseInfo[13];
1224 		}
1225 
1226 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1227 			if (check_for_unit_attention(h, cp)) {
1228 				cmd->result = DID_SOFT_ERROR << 16;
1229 				break;
1230 			}
1231 			if (sense_key == ILLEGAL_REQUEST) {
1232 				/*
1233 				 * SCSI REPORT_LUNS is commonly unsupported on
1234 				 * Smart Array.  Suppress noisy complaint.
1235 				 */
1236 				if (cp->Request.CDB[0] == REPORT_LUNS)
1237 					break;
1238 
1239 				/* If ASC/ASCQ indicate Logical Unit
1240 				 * Not Supported condition,
1241 				 */
1242 				if ((asc == 0x25) && (ascq == 0x0)) {
1243 					dev_warn(&h->pdev->dev, "cp %p "
1244 						"has check condition\n", cp);
1245 					break;
1246 				}
1247 			}
1248 
1249 			if (sense_key == NOT_READY) {
1250 				/* If Sense is Not Ready, Logical Unit
1251 				 * Not ready, Manual Intervention
1252 				 * required
1253 				 */
1254 				if ((asc == 0x04) && (ascq == 0x03)) {
1255 					dev_warn(&h->pdev->dev, "cp %p "
1256 						"has check condition: unit "
1257 						"not ready, manual "
1258 						"intervention required\n", cp);
1259 					break;
1260 				}
1261 			}
1262 			if (sense_key == ABORTED_COMMAND) {
1263 				/* Aborted command is retryable */
1264 				dev_warn(&h->pdev->dev, "cp %p "
1265 					"has check condition: aborted command: "
1266 					"ASC: 0x%x, ASCQ: 0x%x\n",
1267 					cp, asc, ascq);
1268 				cmd->result = DID_SOFT_ERROR << 16;
1269 				break;
1270 			}
1271 			/* Must be some other type of check condition */
1272 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1273 					"unknown type: "
1274 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1275 					"Returning result: 0x%x, "
1276 					"cmd=[%02x %02x %02x %02x %02x "
1277 					"%02x %02x %02x %02x %02x %02x "
1278 					"%02x %02x %02x %02x %02x]\n",
1279 					cp, sense_key, asc, ascq,
1280 					cmd->result,
1281 					cmd->cmnd[0], cmd->cmnd[1],
1282 					cmd->cmnd[2], cmd->cmnd[3],
1283 					cmd->cmnd[4], cmd->cmnd[5],
1284 					cmd->cmnd[6], cmd->cmnd[7],
1285 					cmd->cmnd[8], cmd->cmnd[9],
1286 					cmd->cmnd[10], cmd->cmnd[11],
1287 					cmd->cmnd[12], cmd->cmnd[13],
1288 					cmd->cmnd[14], cmd->cmnd[15]);
1289 			break;
1290 		}
1291 
1292 
1293 		/* Problem was not a check condition
1294 		 * Pass it up to the upper layers...
1295 		 */
1296 		if (ei->ScsiStatus) {
1297 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1298 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299 				"Returning result: 0x%x\n",
1300 				cp, ei->ScsiStatus,
1301 				sense_key, asc, ascq,
1302 				cmd->result);
1303 		} else {  /* scsi status is zero??? How??? */
1304 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1305 				"Returning no connection.\n", cp),
1306 
1307 			/* Ordinarily, this case should never happen,
1308 			 * but there is a bug in some released firmware
1309 			 * revisions that allows it to happen if, for
1310 			 * example, a 4100 backplane loses power and
1311 			 * the tape drive is in it.  We assume that
1312 			 * it's a fatal error of some kind because we
1313 			 * can't show that it wasn't. We will make it
1314 			 * look like selection timeout since that is
1315 			 * the most common reason for this to occur,
1316 			 * and it's severe enough.
1317 			 */
1318 
1319 			cmd->result = DID_NO_CONNECT << 16;
1320 		}
1321 		break;
1322 
1323 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1324 		break;
1325 	case CMD_DATA_OVERRUN:
1326 		dev_warn(&h->pdev->dev, "cp %p has"
1327 			" completed with data overrun "
1328 			"reported\n", cp);
1329 		break;
1330 	case CMD_INVALID: {
1331 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1332 		print_cmd(cp); */
1333 		/* We get CMD_INVALID if you address a non-existent device
1334 		 * instead of a selection timeout (no response).  You will
1335 		 * see this if you yank out a drive, then try to access it.
1336 		 * This is kind of a shame because it means that any other
1337 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1338 		 * missing target. */
1339 		cmd->result = DID_NO_CONNECT << 16;
1340 	}
1341 		break;
1342 	case CMD_PROTOCOL_ERR:
1343 		cmd->result = DID_ERROR << 16;
1344 		dev_warn(&h->pdev->dev, "cp %p has "
1345 			"protocol error\n", cp);
1346 		break;
1347 	case CMD_HARDWARE_ERR:
1348 		cmd->result = DID_ERROR << 16;
1349 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1350 		break;
1351 	case CMD_CONNECTION_LOST:
1352 		cmd->result = DID_ERROR << 16;
1353 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1354 		break;
1355 	case CMD_ABORTED:
1356 		cmd->result = DID_ABORT << 16;
1357 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1358 				cp, ei->ScsiStatus);
1359 		break;
1360 	case CMD_ABORT_FAILED:
1361 		cmd->result = DID_ERROR << 16;
1362 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1363 		break;
1364 	case CMD_UNSOLICITED_ABORT:
1365 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1366 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1367 			"abort\n", cp);
1368 		break;
1369 	case CMD_TIMEOUT:
1370 		cmd->result = DID_TIME_OUT << 16;
1371 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1372 		break;
1373 	case CMD_UNABORTABLE:
1374 		cmd->result = DID_ERROR << 16;
1375 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1376 		break;
1377 	default:
1378 		cmd->result = DID_ERROR << 16;
1379 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1380 				cp, ei->CommandStatus);
1381 	}
1382 	cmd_free(h, cp);
1383 	cmd->scsi_done(cmd);
1384 }
1385 
1386 static void hpsa_pci_unmap(struct pci_dev *pdev,
1387 	struct CommandList *c, int sg_used, int data_direction)
1388 {
1389 	int i;
1390 	union u64bit addr64;
1391 
1392 	for (i = 0; i < sg_used; i++) {
1393 		addr64.val32.lower = c->SG[i].Addr.lower;
1394 		addr64.val32.upper = c->SG[i].Addr.upper;
1395 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1396 			data_direction);
1397 	}
1398 }
1399 
1400 static int hpsa_map_one(struct pci_dev *pdev,
1401 		struct CommandList *cp,
1402 		unsigned char *buf,
1403 		size_t buflen,
1404 		int data_direction)
1405 {
1406 	u64 addr64;
1407 
1408 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1409 		cp->Header.SGList = 0;
1410 		cp->Header.SGTotal = 0;
1411 		return 0;
1412 	}
1413 
1414 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1415 	if (dma_mapping_error(&pdev->dev, addr64)) {
1416 		/* Prevent subsequent unmap of something never mapped */
1417 		cp->Header.SGList = 0;
1418 		cp->Header.SGTotal = 0;
1419 		return -1;
1420 	}
1421 	cp->SG[0].Addr.lower =
1422 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1423 	cp->SG[0].Addr.upper =
1424 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1425 	cp->SG[0].Len = buflen;
1426 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1427 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1428 	return 0;
1429 }
1430 
1431 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1432 	struct CommandList *c)
1433 {
1434 	DECLARE_COMPLETION_ONSTACK(wait);
1435 
1436 	c->waiting = &wait;
1437 	enqueue_cmd_and_start_io(h, c);
1438 	wait_for_completion(&wait);
1439 }
1440 
1441 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1442 	struct CommandList *c)
1443 {
1444 	unsigned long flags;
1445 
1446 	/* If controller lockup detected, fake a hardware error. */
1447 	spin_lock_irqsave(&h->lock, flags);
1448 	if (unlikely(h->lockup_detected)) {
1449 		spin_unlock_irqrestore(&h->lock, flags);
1450 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1451 	} else {
1452 		spin_unlock_irqrestore(&h->lock, flags);
1453 		hpsa_scsi_do_simple_cmd_core(h, c);
1454 	}
1455 }
1456 
1457 #define MAX_DRIVER_CMD_RETRIES 25
1458 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1459 	struct CommandList *c, int data_direction)
1460 {
1461 	int backoff_time = 10, retry_count = 0;
1462 
1463 	do {
1464 		memset(c->err_info, 0, sizeof(*c->err_info));
1465 		hpsa_scsi_do_simple_cmd_core(h, c);
1466 		retry_count++;
1467 		if (retry_count > 3) {
1468 			msleep(backoff_time);
1469 			if (backoff_time < 1000)
1470 				backoff_time *= 2;
1471 		}
1472 	} while ((check_for_unit_attention(h, c) ||
1473 			check_for_busy(h, c)) &&
1474 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1475 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1476 }
1477 
1478 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1479 {
1480 	struct ErrorInfo *ei;
1481 	struct device *d = &cp->h->pdev->dev;
1482 
1483 	ei = cp->err_info;
1484 	switch (ei->CommandStatus) {
1485 	case CMD_TARGET_STATUS:
1486 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1487 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1488 				ei->ScsiStatus);
1489 		if (ei->ScsiStatus == 0)
1490 			dev_warn(d, "SCSI status is abnormally zero.  "
1491 			"(probably indicates selection timeout "
1492 			"reported incorrectly due to a known "
1493 			"firmware bug, circa July, 2001.)\n");
1494 		break;
1495 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1496 			dev_info(d, "UNDERRUN\n");
1497 		break;
1498 	case CMD_DATA_OVERRUN:
1499 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1500 		break;
1501 	case CMD_INVALID: {
1502 		/* controller unfortunately reports SCSI passthru's
1503 		 * to non-existent targets as invalid commands.
1504 		 */
1505 		dev_warn(d, "cp %p is reported invalid (probably means "
1506 			"target device no longer present)\n", cp);
1507 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1508 		print_cmd(cp);  */
1509 		}
1510 		break;
1511 	case CMD_PROTOCOL_ERR:
1512 		dev_warn(d, "cp %p has protocol error \n", cp);
1513 		break;
1514 	case CMD_HARDWARE_ERR:
1515 		/* cmd->result = DID_ERROR << 16; */
1516 		dev_warn(d, "cp %p had hardware error\n", cp);
1517 		break;
1518 	case CMD_CONNECTION_LOST:
1519 		dev_warn(d, "cp %p had connection lost\n", cp);
1520 		break;
1521 	case CMD_ABORTED:
1522 		dev_warn(d, "cp %p was aborted\n", cp);
1523 		break;
1524 	case CMD_ABORT_FAILED:
1525 		dev_warn(d, "cp %p reports abort failed\n", cp);
1526 		break;
1527 	case CMD_UNSOLICITED_ABORT:
1528 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1529 		break;
1530 	case CMD_TIMEOUT:
1531 		dev_warn(d, "cp %p timed out\n", cp);
1532 		break;
1533 	case CMD_UNABORTABLE:
1534 		dev_warn(d, "Command unabortable\n");
1535 		break;
1536 	default:
1537 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1538 				ei->CommandStatus);
1539 	}
1540 }
1541 
1542 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1543 			unsigned char page, unsigned char *buf,
1544 			unsigned char bufsize)
1545 {
1546 	int rc = IO_OK;
1547 	struct CommandList *c;
1548 	struct ErrorInfo *ei;
1549 
1550 	c = cmd_special_alloc(h);
1551 
1552 	if (c == NULL) {			/* trouble... */
1553 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1554 		return -ENOMEM;
1555 	}
1556 
1557 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1558 			page, scsi3addr, TYPE_CMD)) {
1559 		rc = -1;
1560 		goto out;
1561 	}
1562 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1563 	ei = c->err_info;
1564 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1565 		hpsa_scsi_interpret_error(c);
1566 		rc = -1;
1567 	}
1568 out:
1569 	cmd_special_free(h, c);
1570 	return rc;
1571 }
1572 
1573 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1574 {
1575 	int rc = IO_OK;
1576 	struct CommandList *c;
1577 	struct ErrorInfo *ei;
1578 
1579 	c = cmd_special_alloc(h);
1580 
1581 	if (c == NULL) {			/* trouble... */
1582 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1583 		return -ENOMEM;
1584 	}
1585 
1586 	/* fill_cmd can't fail here, no data buffer to map. */
1587 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1588 			NULL, 0, 0, scsi3addr, TYPE_MSG);
1589 	hpsa_scsi_do_simple_cmd_core(h, c);
1590 	/* no unmap needed here because no data xfer. */
1591 
1592 	ei = c->err_info;
1593 	if (ei->CommandStatus != 0) {
1594 		hpsa_scsi_interpret_error(c);
1595 		rc = -1;
1596 	}
1597 	cmd_special_free(h, c);
1598 	return rc;
1599 }
1600 
1601 static void hpsa_get_raid_level(struct ctlr_info *h,
1602 	unsigned char *scsi3addr, unsigned char *raid_level)
1603 {
1604 	int rc;
1605 	unsigned char *buf;
1606 
1607 	*raid_level = RAID_UNKNOWN;
1608 	buf = kzalloc(64, GFP_KERNEL);
1609 	if (!buf)
1610 		return;
1611 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1612 	if (rc == 0)
1613 		*raid_level = buf[8];
1614 	if (*raid_level > RAID_UNKNOWN)
1615 		*raid_level = RAID_UNKNOWN;
1616 	kfree(buf);
1617 	return;
1618 }
1619 
1620 /* Get the device id from inquiry page 0x83 */
1621 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1622 	unsigned char *device_id, int buflen)
1623 {
1624 	int rc;
1625 	unsigned char *buf;
1626 
1627 	if (buflen > 16)
1628 		buflen = 16;
1629 	buf = kzalloc(64, GFP_KERNEL);
1630 	if (!buf)
1631 		return -1;
1632 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1633 	if (rc == 0)
1634 		memcpy(device_id, &buf[8], buflen);
1635 	kfree(buf);
1636 	return rc != 0;
1637 }
1638 
1639 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1640 		struct ReportLUNdata *buf, int bufsize,
1641 		int extended_response)
1642 {
1643 	int rc = IO_OK;
1644 	struct CommandList *c;
1645 	unsigned char scsi3addr[8];
1646 	struct ErrorInfo *ei;
1647 
1648 	c = cmd_special_alloc(h);
1649 	if (c == NULL) {			/* trouble... */
1650 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1651 		return -1;
1652 	}
1653 	/* address the controller */
1654 	memset(scsi3addr, 0, sizeof(scsi3addr));
1655 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1656 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1657 		rc = -1;
1658 		goto out;
1659 	}
1660 	if (extended_response)
1661 		c->Request.CDB[1] = extended_response;
1662 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1663 	ei = c->err_info;
1664 	if (ei->CommandStatus != 0 &&
1665 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1666 		hpsa_scsi_interpret_error(c);
1667 		rc = -1;
1668 	}
1669 out:
1670 	cmd_special_free(h, c);
1671 	return rc;
1672 }
1673 
1674 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1675 		struct ReportLUNdata *buf,
1676 		int bufsize, int extended_response)
1677 {
1678 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1679 }
1680 
1681 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1682 		struct ReportLUNdata *buf, int bufsize)
1683 {
1684 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1685 }
1686 
1687 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1688 	int bus, int target, int lun)
1689 {
1690 	device->bus = bus;
1691 	device->target = target;
1692 	device->lun = lun;
1693 }
1694 
1695 static int hpsa_update_device_info(struct ctlr_info *h,
1696 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1697 	unsigned char *is_OBDR_device)
1698 {
1699 
1700 #define OBDR_SIG_OFFSET 43
1701 #define OBDR_TAPE_SIG "$DR-10"
1702 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1703 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1704 
1705 	unsigned char *inq_buff;
1706 	unsigned char *obdr_sig;
1707 
1708 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1709 	if (!inq_buff)
1710 		goto bail_out;
1711 
1712 	/* Do an inquiry to the device to see what it is. */
1713 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1714 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1715 		/* Inquiry failed (msg printed already) */
1716 		dev_err(&h->pdev->dev,
1717 			"hpsa_update_device_info: inquiry failed\n");
1718 		goto bail_out;
1719 	}
1720 
1721 	this_device->devtype = (inq_buff[0] & 0x1f);
1722 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1723 	memcpy(this_device->vendor, &inq_buff[8],
1724 		sizeof(this_device->vendor));
1725 	memcpy(this_device->model, &inq_buff[16],
1726 		sizeof(this_device->model));
1727 	memset(this_device->device_id, 0,
1728 		sizeof(this_device->device_id));
1729 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1730 		sizeof(this_device->device_id));
1731 
1732 	if (this_device->devtype == TYPE_DISK &&
1733 		is_logical_dev_addr_mode(scsi3addr))
1734 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1735 	else
1736 		this_device->raid_level = RAID_UNKNOWN;
1737 
1738 	if (is_OBDR_device) {
1739 		/* See if this is a One-Button-Disaster-Recovery device
1740 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1741 		 */
1742 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1743 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1744 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1745 						OBDR_SIG_LEN) == 0);
1746 	}
1747 
1748 	kfree(inq_buff);
1749 	return 0;
1750 
1751 bail_out:
1752 	kfree(inq_buff);
1753 	return 1;
1754 }
1755 
1756 static unsigned char *ext_target_model[] = {
1757 	"MSA2012",
1758 	"MSA2024",
1759 	"MSA2312",
1760 	"MSA2324",
1761 	"P2000 G3 SAS",
1762 	NULL,
1763 };
1764 
1765 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1766 {
1767 	int i;
1768 
1769 	for (i = 0; ext_target_model[i]; i++)
1770 		if (strncmp(device->model, ext_target_model[i],
1771 			strlen(ext_target_model[i])) == 0)
1772 			return 1;
1773 	return 0;
1774 }
1775 
1776 /* Helper function to assign bus, target, lun mapping of devices.
1777  * Puts non-external target logical volumes on bus 0, external target logical
1778  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1779  * Logical drive target and lun are assigned at this time, but
1780  * physical device lun and target assignment are deferred (assigned
1781  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1782  */
1783 static void figure_bus_target_lun(struct ctlr_info *h,
1784 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1785 {
1786 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1787 
1788 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1789 		/* physical device, target and lun filled in later */
1790 		if (is_hba_lunid(lunaddrbytes))
1791 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1792 		else
1793 			/* defer target, lun assignment for physical devices */
1794 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1795 		return;
1796 	}
1797 	/* It's a logical device */
1798 	if (is_ext_target(h, device)) {
1799 		/* external target way, put logicals on bus 1
1800 		 * and match target/lun numbers box
1801 		 * reports, other smart array, bus 0, target 0, match lunid
1802 		 */
1803 		hpsa_set_bus_target_lun(device,
1804 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1805 		return;
1806 	}
1807 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1808 }
1809 
1810 /*
1811  * If there is no lun 0 on a target, linux won't find any devices.
1812  * For the external targets (arrays), we have to manually detect the enclosure
1813  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1814  * it for some reason.  *tmpdevice is the target we're adding,
1815  * this_device is a pointer into the current element of currentsd[]
1816  * that we're building up in update_scsi_devices(), below.
1817  * lunzerobits is a bitmap that tracks which targets already have a
1818  * lun 0 assigned.
1819  * Returns 1 if an enclosure was added, 0 if not.
1820  */
1821 static int add_ext_target_dev(struct ctlr_info *h,
1822 	struct hpsa_scsi_dev_t *tmpdevice,
1823 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1824 	unsigned long lunzerobits[], int *n_ext_target_devs)
1825 {
1826 	unsigned char scsi3addr[8];
1827 
1828 	if (test_bit(tmpdevice->target, lunzerobits))
1829 		return 0; /* There is already a lun 0 on this target. */
1830 
1831 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1832 		return 0; /* It's the logical targets that may lack lun 0. */
1833 
1834 	if (!is_ext_target(h, tmpdevice))
1835 		return 0; /* Only external target devices have this problem. */
1836 
1837 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1838 		return 0;
1839 
1840 	memset(scsi3addr, 0, 8);
1841 	scsi3addr[3] = tmpdevice->target;
1842 	if (is_hba_lunid(scsi3addr))
1843 		return 0; /* Don't add the RAID controller here. */
1844 
1845 	if (is_scsi_rev_5(h))
1846 		return 0; /* p1210m doesn't need to do this. */
1847 
1848 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1849 		dev_warn(&h->pdev->dev, "Maximum number of external "
1850 			"target devices exceeded.  Check your hardware "
1851 			"configuration.");
1852 		return 0;
1853 	}
1854 
1855 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1856 		return 0;
1857 	(*n_ext_target_devs)++;
1858 	hpsa_set_bus_target_lun(this_device,
1859 				tmpdevice->bus, tmpdevice->target, 0);
1860 	set_bit(tmpdevice->target, lunzerobits);
1861 	return 1;
1862 }
1863 
1864 /*
1865  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1866  * logdev.  The number of luns in physdev and logdev are returned in
1867  * *nphysicals and *nlogicals, respectively.
1868  * Returns 0 on success, -1 otherwise.
1869  */
1870 static int hpsa_gather_lun_info(struct ctlr_info *h,
1871 	int reportlunsize,
1872 	struct ReportLUNdata *physdev, u32 *nphysicals,
1873 	struct ReportLUNdata *logdev, u32 *nlogicals)
1874 {
1875 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1876 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1877 		return -1;
1878 	}
1879 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1880 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1881 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1882 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1883 			*nphysicals - HPSA_MAX_PHYS_LUN);
1884 		*nphysicals = HPSA_MAX_PHYS_LUN;
1885 	}
1886 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1887 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1888 		return -1;
1889 	}
1890 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1891 	/* Reject Logicals in excess of our max capability. */
1892 	if (*nlogicals > HPSA_MAX_LUN) {
1893 		dev_warn(&h->pdev->dev,
1894 			"maximum logical LUNs (%d) exceeded.  "
1895 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1896 			*nlogicals - HPSA_MAX_LUN);
1897 			*nlogicals = HPSA_MAX_LUN;
1898 	}
1899 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1900 		dev_warn(&h->pdev->dev,
1901 			"maximum logical + physical LUNs (%d) exceeded. "
1902 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1903 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1904 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1905 	}
1906 	return 0;
1907 }
1908 
1909 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1910 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1911 	struct ReportLUNdata *logdev_list)
1912 {
1913 	/* Helper function, figure out where the LUN ID info is coming from
1914 	 * given index i, lists of physical and logical devices, where in
1915 	 * the list the raid controller is supposed to appear (first or last)
1916 	 */
1917 
1918 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1919 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1920 
1921 	if (i == raid_ctlr_position)
1922 		return RAID_CTLR_LUNID;
1923 
1924 	if (i < logicals_start)
1925 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1926 
1927 	if (i < last_device)
1928 		return &logdev_list->LUN[i - nphysicals -
1929 			(raid_ctlr_position == 0)][0];
1930 	BUG();
1931 	return NULL;
1932 }
1933 
1934 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1935 {
1936 	/* the idea here is we could get notified
1937 	 * that some devices have changed, so we do a report
1938 	 * physical luns and report logical luns cmd, and adjust
1939 	 * our list of devices accordingly.
1940 	 *
1941 	 * The scsi3addr's of devices won't change so long as the
1942 	 * adapter is not reset.  That means we can rescan and
1943 	 * tell which devices we already know about, vs. new
1944 	 * devices, vs.  disappearing devices.
1945 	 */
1946 	struct ReportLUNdata *physdev_list = NULL;
1947 	struct ReportLUNdata *logdev_list = NULL;
1948 	u32 nphysicals = 0;
1949 	u32 nlogicals = 0;
1950 	u32 ndev_allocated = 0;
1951 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1952 	int ncurrent = 0;
1953 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1954 	int i, n_ext_target_devs, ndevs_to_allocate;
1955 	int raid_ctlr_position;
1956 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1957 
1958 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1959 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1960 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1961 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1962 
1963 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1964 		dev_err(&h->pdev->dev, "out of memory\n");
1965 		goto out;
1966 	}
1967 	memset(lunzerobits, 0, sizeof(lunzerobits));
1968 
1969 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1970 			logdev_list, &nlogicals))
1971 		goto out;
1972 
1973 	/* We might see up to the maximum number of logical and physical disks
1974 	 * plus external target devices, and a device for the local RAID
1975 	 * controller.
1976 	 */
1977 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1978 
1979 	/* Allocate the per device structures */
1980 	for (i = 0; i < ndevs_to_allocate; i++) {
1981 		if (i >= HPSA_MAX_DEVICES) {
1982 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1983 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1984 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1985 			break;
1986 		}
1987 
1988 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1989 		if (!currentsd[i]) {
1990 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1991 				__FILE__, __LINE__);
1992 			goto out;
1993 		}
1994 		ndev_allocated++;
1995 	}
1996 
1997 	if (unlikely(is_scsi_rev_5(h)))
1998 		raid_ctlr_position = 0;
1999 	else
2000 		raid_ctlr_position = nphysicals + nlogicals;
2001 
2002 	/* adjust our table of devices */
2003 	n_ext_target_devs = 0;
2004 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2005 		u8 *lunaddrbytes, is_OBDR = 0;
2006 
2007 		/* Figure out where the LUN ID info is coming from */
2008 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2009 			i, nphysicals, nlogicals, physdev_list, logdev_list);
2010 		/* skip masked physical devices. */
2011 		if (lunaddrbytes[3] & 0xC0 &&
2012 			i < nphysicals + (raid_ctlr_position == 0))
2013 			continue;
2014 
2015 		/* Get device type, vendor, model, device id */
2016 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2017 							&is_OBDR))
2018 			continue; /* skip it if we can't talk to it. */
2019 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2020 		this_device = currentsd[ncurrent];
2021 
2022 		/*
2023 		 * For external target devices, we have to insert a LUN 0 which
2024 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2025 		 * is nonetheless an enclosure device there.  We have to
2026 		 * present that otherwise linux won't find anything if
2027 		 * there is no lun 0.
2028 		 */
2029 		if (add_ext_target_dev(h, tmpdevice, this_device,
2030 				lunaddrbytes, lunzerobits,
2031 				&n_ext_target_devs)) {
2032 			ncurrent++;
2033 			this_device = currentsd[ncurrent];
2034 		}
2035 
2036 		*this_device = *tmpdevice;
2037 
2038 		switch (this_device->devtype) {
2039 		case TYPE_ROM:
2040 			/* We don't *really* support actual CD-ROM devices,
2041 			 * just "One Button Disaster Recovery" tape drive
2042 			 * which temporarily pretends to be a CD-ROM drive.
2043 			 * So we check that the device is really an OBDR tape
2044 			 * device by checking for "$DR-10" in bytes 43-48 of
2045 			 * the inquiry data.
2046 			 */
2047 			if (is_OBDR)
2048 				ncurrent++;
2049 			break;
2050 		case TYPE_DISK:
2051 			if (i < nphysicals)
2052 				break;
2053 			ncurrent++;
2054 			break;
2055 		case TYPE_TAPE:
2056 		case TYPE_MEDIUM_CHANGER:
2057 			ncurrent++;
2058 			break;
2059 		case TYPE_RAID:
2060 			/* Only present the Smartarray HBA as a RAID controller.
2061 			 * If it's a RAID controller other than the HBA itself
2062 			 * (an external RAID controller, MSA500 or similar)
2063 			 * don't present it.
2064 			 */
2065 			if (!is_hba_lunid(lunaddrbytes))
2066 				break;
2067 			ncurrent++;
2068 			break;
2069 		default:
2070 			break;
2071 		}
2072 		if (ncurrent >= HPSA_MAX_DEVICES)
2073 			break;
2074 	}
2075 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2076 out:
2077 	kfree(tmpdevice);
2078 	for (i = 0; i < ndev_allocated; i++)
2079 		kfree(currentsd[i]);
2080 	kfree(currentsd);
2081 	kfree(physdev_list);
2082 	kfree(logdev_list);
2083 }
2084 
2085 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2086  * dma mapping  and fills in the scatter gather entries of the
2087  * hpsa command, cp.
2088  */
2089 static int hpsa_scatter_gather(struct ctlr_info *h,
2090 		struct CommandList *cp,
2091 		struct scsi_cmnd *cmd)
2092 {
2093 	unsigned int len;
2094 	struct scatterlist *sg;
2095 	u64 addr64;
2096 	int use_sg, i, sg_index, chained;
2097 	struct SGDescriptor *curr_sg;
2098 
2099 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2100 
2101 	use_sg = scsi_dma_map(cmd);
2102 	if (use_sg < 0)
2103 		return use_sg;
2104 
2105 	if (!use_sg)
2106 		goto sglist_finished;
2107 
2108 	curr_sg = cp->SG;
2109 	chained = 0;
2110 	sg_index = 0;
2111 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2112 		if (i == h->max_cmd_sg_entries - 1 &&
2113 			use_sg > h->max_cmd_sg_entries) {
2114 			chained = 1;
2115 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2116 			sg_index = 0;
2117 		}
2118 		addr64 = (u64) sg_dma_address(sg);
2119 		len  = sg_dma_len(sg);
2120 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2121 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2122 		curr_sg->Len = len;
2123 		curr_sg->Ext = 0;  /* we are not chaining */
2124 		curr_sg++;
2125 	}
2126 
2127 	if (use_sg + chained > h->maxSG)
2128 		h->maxSG = use_sg + chained;
2129 
2130 	if (chained) {
2131 		cp->Header.SGList = h->max_cmd_sg_entries;
2132 		cp->Header.SGTotal = (u16) (use_sg + 1);
2133 		if (hpsa_map_sg_chain_block(h, cp)) {
2134 			scsi_dma_unmap(cmd);
2135 			return -1;
2136 		}
2137 		return 0;
2138 	}
2139 
2140 sglist_finished:
2141 
2142 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2143 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2144 	return 0;
2145 }
2146 
2147 
2148 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2149 	void (*done)(struct scsi_cmnd *))
2150 {
2151 	struct ctlr_info *h;
2152 	struct hpsa_scsi_dev_t *dev;
2153 	unsigned char scsi3addr[8];
2154 	struct CommandList *c;
2155 	unsigned long flags;
2156 
2157 	/* Get the ptr to our adapter structure out of cmd->host. */
2158 	h = sdev_to_hba(cmd->device);
2159 	dev = cmd->device->hostdata;
2160 	if (!dev) {
2161 		cmd->result = DID_NO_CONNECT << 16;
2162 		done(cmd);
2163 		return 0;
2164 	}
2165 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2166 
2167 	spin_lock_irqsave(&h->lock, flags);
2168 	if (unlikely(h->lockup_detected)) {
2169 		spin_unlock_irqrestore(&h->lock, flags);
2170 		cmd->result = DID_ERROR << 16;
2171 		done(cmd);
2172 		return 0;
2173 	}
2174 	spin_unlock_irqrestore(&h->lock, flags);
2175 	c = cmd_alloc(h);
2176 	if (c == NULL) {			/* trouble... */
2177 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2178 		return SCSI_MLQUEUE_HOST_BUSY;
2179 	}
2180 
2181 	/* Fill in the command list header */
2182 
2183 	cmd->scsi_done = done;    /* save this for use by completion code */
2184 
2185 	/* save c in case we have to abort it  */
2186 	cmd->host_scribble = (unsigned char *) c;
2187 
2188 	c->cmd_type = CMD_SCSI;
2189 	c->scsi_cmd = cmd;
2190 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2191 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2192 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2193 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2194 
2195 	/* Fill in the request block... */
2196 
2197 	c->Request.Timeout = 0;
2198 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2199 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2200 	c->Request.CDBLen = cmd->cmd_len;
2201 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2202 	c->Request.Type.Type = TYPE_CMD;
2203 	c->Request.Type.Attribute = ATTR_SIMPLE;
2204 	switch (cmd->sc_data_direction) {
2205 	case DMA_TO_DEVICE:
2206 		c->Request.Type.Direction = XFER_WRITE;
2207 		break;
2208 	case DMA_FROM_DEVICE:
2209 		c->Request.Type.Direction = XFER_READ;
2210 		break;
2211 	case DMA_NONE:
2212 		c->Request.Type.Direction = XFER_NONE;
2213 		break;
2214 	case DMA_BIDIRECTIONAL:
2215 		/* This can happen if a buggy application does a scsi passthru
2216 		 * and sets both inlen and outlen to non-zero. ( see
2217 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2218 		 */
2219 
2220 		c->Request.Type.Direction = XFER_RSVD;
2221 		/* This is technically wrong, and hpsa controllers should
2222 		 * reject it with CMD_INVALID, which is the most correct
2223 		 * response, but non-fibre backends appear to let it
2224 		 * slide by, and give the same results as if this field
2225 		 * were set correctly.  Either way is acceptable for
2226 		 * our purposes here.
2227 		 */
2228 
2229 		break;
2230 
2231 	default:
2232 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2233 			cmd->sc_data_direction);
2234 		BUG();
2235 		break;
2236 	}
2237 
2238 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2239 		cmd_free(h, c);
2240 		return SCSI_MLQUEUE_HOST_BUSY;
2241 	}
2242 	enqueue_cmd_and_start_io(h, c);
2243 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2244 	return 0;
2245 }
2246 
2247 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2248 
2249 static void hpsa_scan_start(struct Scsi_Host *sh)
2250 {
2251 	struct ctlr_info *h = shost_to_hba(sh);
2252 	unsigned long flags;
2253 
2254 	/* wait until any scan already in progress is finished. */
2255 	while (1) {
2256 		spin_lock_irqsave(&h->scan_lock, flags);
2257 		if (h->scan_finished)
2258 			break;
2259 		spin_unlock_irqrestore(&h->scan_lock, flags);
2260 		wait_event(h->scan_wait_queue, h->scan_finished);
2261 		/* Note: We don't need to worry about a race between this
2262 		 * thread and driver unload because the midlayer will
2263 		 * have incremented the reference count, so unload won't
2264 		 * happen if we're in here.
2265 		 */
2266 	}
2267 	h->scan_finished = 0; /* mark scan as in progress */
2268 	spin_unlock_irqrestore(&h->scan_lock, flags);
2269 
2270 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2271 
2272 	spin_lock_irqsave(&h->scan_lock, flags);
2273 	h->scan_finished = 1; /* mark scan as finished. */
2274 	wake_up_all(&h->scan_wait_queue);
2275 	spin_unlock_irqrestore(&h->scan_lock, flags);
2276 }
2277 
2278 static int hpsa_scan_finished(struct Scsi_Host *sh,
2279 	unsigned long elapsed_time)
2280 {
2281 	struct ctlr_info *h = shost_to_hba(sh);
2282 	unsigned long flags;
2283 	int finished;
2284 
2285 	spin_lock_irqsave(&h->scan_lock, flags);
2286 	finished = h->scan_finished;
2287 	spin_unlock_irqrestore(&h->scan_lock, flags);
2288 	return finished;
2289 }
2290 
2291 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2292 	int qdepth, int reason)
2293 {
2294 	struct ctlr_info *h = sdev_to_hba(sdev);
2295 
2296 	if (reason != SCSI_QDEPTH_DEFAULT)
2297 		return -ENOTSUPP;
2298 
2299 	if (qdepth < 1)
2300 		qdepth = 1;
2301 	else
2302 		if (qdepth > h->nr_cmds)
2303 			qdepth = h->nr_cmds;
2304 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2305 	return sdev->queue_depth;
2306 }
2307 
2308 static void hpsa_unregister_scsi(struct ctlr_info *h)
2309 {
2310 	/* we are being forcibly unloaded, and may not refuse. */
2311 	scsi_remove_host(h->scsi_host);
2312 	scsi_host_put(h->scsi_host);
2313 	h->scsi_host = NULL;
2314 }
2315 
2316 static int hpsa_register_scsi(struct ctlr_info *h)
2317 {
2318 	struct Scsi_Host *sh;
2319 	int error;
2320 
2321 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2322 	if (sh == NULL)
2323 		goto fail;
2324 
2325 	sh->io_port = 0;
2326 	sh->n_io_port = 0;
2327 	sh->this_id = -1;
2328 	sh->max_channel = 3;
2329 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2330 	sh->max_lun = HPSA_MAX_LUN;
2331 	sh->max_id = HPSA_MAX_LUN;
2332 	sh->can_queue = h->nr_cmds;
2333 	sh->cmd_per_lun = h->nr_cmds;
2334 	sh->sg_tablesize = h->maxsgentries;
2335 	h->scsi_host = sh;
2336 	sh->hostdata[0] = (unsigned long) h;
2337 	sh->irq = h->intr[h->intr_mode];
2338 	sh->unique_id = sh->irq;
2339 	error = scsi_add_host(sh, &h->pdev->dev);
2340 	if (error)
2341 		goto fail_host_put;
2342 	scsi_scan_host(sh);
2343 	return 0;
2344 
2345  fail_host_put:
2346 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2347 		" failed for controller %d\n", __func__, h->ctlr);
2348 	scsi_host_put(sh);
2349 	return error;
2350  fail:
2351 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2352 		" failed for controller %d\n", __func__, h->ctlr);
2353 	return -ENOMEM;
2354 }
2355 
2356 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2357 	unsigned char lunaddr[])
2358 {
2359 	int rc = 0;
2360 	int count = 0;
2361 	int waittime = 1; /* seconds */
2362 	struct CommandList *c;
2363 
2364 	c = cmd_special_alloc(h);
2365 	if (!c) {
2366 		dev_warn(&h->pdev->dev, "out of memory in "
2367 			"wait_for_device_to_become_ready.\n");
2368 		return IO_ERROR;
2369 	}
2370 
2371 	/* Send test unit ready until device ready, or give up. */
2372 	while (count < HPSA_TUR_RETRY_LIMIT) {
2373 
2374 		/* Wait for a bit.  do this first, because if we send
2375 		 * the TUR right away, the reset will just abort it.
2376 		 */
2377 		msleep(1000 * waittime);
2378 		count++;
2379 
2380 		/* Increase wait time with each try, up to a point. */
2381 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2382 			waittime = waittime * 2;
2383 
2384 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2385 		(void) fill_cmd(c, TEST_UNIT_READY, h,
2386 				NULL, 0, 0, lunaddr, TYPE_CMD);
2387 		hpsa_scsi_do_simple_cmd_core(h, c);
2388 		/* no unmap needed here because no data xfer. */
2389 
2390 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2391 			break;
2392 
2393 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2394 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2395 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2396 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2397 			break;
2398 
2399 		dev_warn(&h->pdev->dev, "waiting %d secs "
2400 			"for device to become ready.\n", waittime);
2401 		rc = 1; /* device not ready. */
2402 	}
2403 
2404 	if (rc)
2405 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2406 	else
2407 		dev_warn(&h->pdev->dev, "device is ready.\n");
2408 
2409 	cmd_special_free(h, c);
2410 	return rc;
2411 }
2412 
2413 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2414  * complaining.  Doing a host- or bus-reset can't do anything good here.
2415  */
2416 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2417 {
2418 	int rc;
2419 	struct ctlr_info *h;
2420 	struct hpsa_scsi_dev_t *dev;
2421 
2422 	/* find the controller to which the command to be aborted was sent */
2423 	h = sdev_to_hba(scsicmd->device);
2424 	if (h == NULL) /* paranoia */
2425 		return FAILED;
2426 	dev = scsicmd->device->hostdata;
2427 	if (!dev) {
2428 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2429 			"device lookup failed.\n");
2430 		return FAILED;
2431 	}
2432 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2433 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2434 	/* send a reset to the SCSI LUN which the command was sent to */
2435 	rc = hpsa_send_reset(h, dev->scsi3addr);
2436 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2437 		return SUCCESS;
2438 
2439 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2440 	return FAILED;
2441 }
2442 
2443 static void swizzle_abort_tag(u8 *tag)
2444 {
2445 	u8 original_tag[8];
2446 
2447 	memcpy(original_tag, tag, 8);
2448 	tag[0] = original_tag[3];
2449 	tag[1] = original_tag[2];
2450 	tag[2] = original_tag[1];
2451 	tag[3] = original_tag[0];
2452 	tag[4] = original_tag[7];
2453 	tag[5] = original_tag[6];
2454 	tag[6] = original_tag[5];
2455 	tag[7] = original_tag[4];
2456 }
2457 
2458 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2459 	struct CommandList *abort, int swizzle)
2460 {
2461 	int rc = IO_OK;
2462 	struct CommandList *c;
2463 	struct ErrorInfo *ei;
2464 
2465 	c = cmd_special_alloc(h);
2466 	if (c == NULL) {	/* trouble... */
2467 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2468 		return -ENOMEM;
2469 	}
2470 
2471 	/* fill_cmd can't fail here, no buffer to map */
2472 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2473 		0, 0, scsi3addr, TYPE_MSG);
2474 	if (swizzle)
2475 		swizzle_abort_tag(&c->Request.CDB[4]);
2476 	hpsa_scsi_do_simple_cmd_core(h, c);
2477 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2478 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2479 	/* no unmap needed here because no data xfer. */
2480 
2481 	ei = c->err_info;
2482 	switch (ei->CommandStatus) {
2483 	case CMD_SUCCESS:
2484 		break;
2485 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2486 		rc = -1;
2487 		break;
2488 	default:
2489 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2490 			__func__, abort->Header.Tag.upper,
2491 			abort->Header.Tag.lower);
2492 		hpsa_scsi_interpret_error(c);
2493 		rc = -1;
2494 		break;
2495 	}
2496 	cmd_special_free(h, c);
2497 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2498 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2499 	return rc;
2500 }
2501 
2502 /*
2503  * hpsa_find_cmd_in_queue
2504  *
2505  * Used to determine whether a command (find) is still present
2506  * in queue_head.   Optionally excludes the last element of queue_head.
2507  *
2508  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2509  * not yet been submitted, and so can be aborted by the driver without
2510  * sending an abort to the hardware.
2511  *
2512  * Returns pointer to command if found in queue, NULL otherwise.
2513  */
2514 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2515 			struct scsi_cmnd *find, struct list_head *queue_head)
2516 {
2517 	unsigned long flags;
2518 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2519 
2520 	if (!find)
2521 		return 0;
2522 	spin_lock_irqsave(&h->lock, flags);
2523 	list_for_each_entry(c, queue_head, list) {
2524 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2525 			continue;
2526 		if (c->scsi_cmd == find) {
2527 			spin_unlock_irqrestore(&h->lock, flags);
2528 			return c;
2529 		}
2530 	}
2531 	spin_unlock_irqrestore(&h->lock, flags);
2532 	return NULL;
2533 }
2534 
2535 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2536 					u8 *tag, struct list_head *queue_head)
2537 {
2538 	unsigned long flags;
2539 	struct CommandList *c;
2540 
2541 	spin_lock_irqsave(&h->lock, flags);
2542 	list_for_each_entry(c, queue_head, list) {
2543 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2544 			continue;
2545 		spin_unlock_irqrestore(&h->lock, flags);
2546 		return c;
2547 	}
2548 	spin_unlock_irqrestore(&h->lock, flags);
2549 	return NULL;
2550 }
2551 
2552 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2553  * tell which kind we're dealing with, so we send the abort both ways.  There
2554  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2555  * way we construct our tags but we check anyway in case the assumptions which
2556  * make this true someday become false.
2557  */
2558 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2559 	unsigned char *scsi3addr, struct CommandList *abort)
2560 {
2561 	u8 swizzled_tag[8];
2562 	struct CommandList *c;
2563 	int rc = 0, rc2 = 0;
2564 
2565 	/* we do not expect to find the swizzled tag in our queue, but
2566 	 * check anyway just to be sure the assumptions which make this
2567 	 * the case haven't become wrong.
2568 	 */
2569 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2570 	swizzle_abort_tag(swizzled_tag);
2571 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2572 	if (c != NULL) {
2573 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2574 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2575 	}
2576 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2577 
2578 	/* if the command is still in our queue, we can't conclude that it was
2579 	 * aborted (it might have just completed normally) but in any case
2580 	 * we don't need to try to abort it another way.
2581 	 */
2582 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2583 	if (c)
2584 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2585 	return rc && rc2;
2586 }
2587 
2588 /* Send an abort for the specified command.
2589  *	If the device and controller support it,
2590  *		send a task abort request.
2591  */
2592 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2593 {
2594 
2595 	int i, rc;
2596 	struct ctlr_info *h;
2597 	struct hpsa_scsi_dev_t *dev;
2598 	struct CommandList *abort; /* pointer to command to be aborted */
2599 	struct CommandList *found;
2600 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2601 	char msg[256];		/* For debug messaging. */
2602 	int ml = 0;
2603 
2604 	/* Find the controller of the command to be aborted */
2605 	h = sdev_to_hba(sc->device);
2606 	if (WARN(h == NULL,
2607 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2608 		return FAILED;
2609 
2610 	/* Check that controller supports some kind of task abort */
2611 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2612 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2613 		return FAILED;
2614 
2615 	memset(msg, 0, sizeof(msg));
2616 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2617 		h->scsi_host->host_no, sc->device->channel,
2618 		sc->device->id, sc->device->lun);
2619 
2620 	/* Find the device of the command to be aborted */
2621 	dev = sc->device->hostdata;
2622 	if (!dev) {
2623 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2624 				msg);
2625 		return FAILED;
2626 	}
2627 
2628 	/* Get SCSI command to be aborted */
2629 	abort = (struct CommandList *) sc->host_scribble;
2630 	if (abort == NULL) {
2631 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2632 				msg);
2633 		return FAILED;
2634 	}
2635 
2636 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2637 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2638 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2639 	if (as != NULL)
2640 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2641 			as->cmnd[0], as->serial_number);
2642 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2643 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2644 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2645 
2646 	/* Search reqQ to See if command is queued but not submitted,
2647 	 * if so, complete the command with aborted status and remove
2648 	 * it from the reqQ.
2649 	 */
2650 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2651 	if (found) {
2652 		found->err_info->CommandStatus = CMD_ABORTED;
2653 		finish_cmd(found);
2654 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2655 				msg);
2656 		return SUCCESS;
2657 	}
2658 
2659 	/* not in reqQ, if also not in cmpQ, must have already completed */
2660 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2661 	if (!found)  {
2662 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2663 				msg);
2664 		return SUCCESS;
2665 	}
2666 
2667 	/*
2668 	 * Command is in flight, or possibly already completed
2669 	 * by the firmware (but not to the scsi mid layer) but we can't
2670 	 * distinguish which.  Send the abort down.
2671 	 */
2672 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2673 	if (rc != 0) {
2674 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2675 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2676 			h->scsi_host->host_no,
2677 			dev->bus, dev->target, dev->lun);
2678 		return FAILED;
2679 	}
2680 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2681 
2682 	/* If the abort(s) above completed and actually aborted the
2683 	 * command, then the command to be aborted should already be
2684 	 * completed.  If not, wait around a bit more to see if they
2685 	 * manage to complete normally.
2686 	 */
2687 #define ABORT_COMPLETE_WAIT_SECS 30
2688 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2689 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2690 		if (!found)
2691 			return SUCCESS;
2692 		msleep(100);
2693 	}
2694 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2695 		msg, ABORT_COMPLETE_WAIT_SECS);
2696 	return FAILED;
2697 }
2698 
2699 
2700 /*
2701  * For operations that cannot sleep, a command block is allocated at init,
2702  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2703  * which ones are free or in use.  Lock must be held when calling this.
2704  * cmd_free() is the complement.
2705  */
2706 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2707 {
2708 	struct CommandList *c;
2709 	int i;
2710 	union u64bit temp64;
2711 	dma_addr_t cmd_dma_handle, err_dma_handle;
2712 	unsigned long flags;
2713 
2714 	spin_lock_irqsave(&h->lock, flags);
2715 	do {
2716 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2717 		if (i == h->nr_cmds) {
2718 			spin_unlock_irqrestore(&h->lock, flags);
2719 			return NULL;
2720 		}
2721 	} while (test_and_set_bit
2722 		 (i & (BITS_PER_LONG - 1),
2723 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2724 	spin_unlock_irqrestore(&h->lock, flags);
2725 
2726 	c = h->cmd_pool + i;
2727 	memset(c, 0, sizeof(*c));
2728 	cmd_dma_handle = h->cmd_pool_dhandle
2729 	    + i * sizeof(*c);
2730 	c->err_info = h->errinfo_pool + i;
2731 	memset(c->err_info, 0, sizeof(*c->err_info));
2732 	err_dma_handle = h->errinfo_pool_dhandle
2733 	    + i * sizeof(*c->err_info);
2734 
2735 	c->cmdindex = i;
2736 
2737 	INIT_LIST_HEAD(&c->list);
2738 	c->busaddr = (u32) cmd_dma_handle;
2739 	temp64.val = (u64) err_dma_handle;
2740 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2741 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2742 	c->ErrDesc.Len = sizeof(*c->err_info);
2743 
2744 	c->h = h;
2745 	return c;
2746 }
2747 
2748 /* For operations that can wait for kmalloc to possibly sleep,
2749  * this routine can be called. Lock need not be held to call
2750  * cmd_special_alloc. cmd_special_free() is the complement.
2751  */
2752 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2753 {
2754 	struct CommandList *c;
2755 	union u64bit temp64;
2756 	dma_addr_t cmd_dma_handle, err_dma_handle;
2757 
2758 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2759 	if (c == NULL)
2760 		return NULL;
2761 	memset(c, 0, sizeof(*c));
2762 
2763 	c->cmdindex = -1;
2764 
2765 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2766 		    &err_dma_handle);
2767 
2768 	if (c->err_info == NULL) {
2769 		pci_free_consistent(h->pdev,
2770 			sizeof(*c), c, cmd_dma_handle);
2771 		return NULL;
2772 	}
2773 	memset(c->err_info, 0, sizeof(*c->err_info));
2774 
2775 	INIT_LIST_HEAD(&c->list);
2776 	c->busaddr = (u32) cmd_dma_handle;
2777 	temp64.val = (u64) err_dma_handle;
2778 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2779 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2780 	c->ErrDesc.Len = sizeof(*c->err_info);
2781 
2782 	c->h = h;
2783 	return c;
2784 }
2785 
2786 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2787 {
2788 	int i;
2789 	unsigned long flags;
2790 
2791 	i = c - h->cmd_pool;
2792 	spin_lock_irqsave(&h->lock, flags);
2793 	clear_bit(i & (BITS_PER_LONG - 1),
2794 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2795 	spin_unlock_irqrestore(&h->lock, flags);
2796 }
2797 
2798 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2799 {
2800 	union u64bit temp64;
2801 
2802 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2803 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2804 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2805 			    c->err_info, (dma_addr_t) temp64.val);
2806 	pci_free_consistent(h->pdev, sizeof(*c),
2807 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2808 }
2809 
2810 #ifdef CONFIG_COMPAT
2811 
2812 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2813 {
2814 	IOCTL32_Command_struct __user *arg32 =
2815 	    (IOCTL32_Command_struct __user *) arg;
2816 	IOCTL_Command_struct arg64;
2817 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2818 	int err;
2819 	u32 cp;
2820 
2821 	memset(&arg64, 0, sizeof(arg64));
2822 	err = 0;
2823 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2824 			   sizeof(arg64.LUN_info));
2825 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2826 			   sizeof(arg64.Request));
2827 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2828 			   sizeof(arg64.error_info));
2829 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2830 	err |= get_user(cp, &arg32->buf);
2831 	arg64.buf = compat_ptr(cp);
2832 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2833 
2834 	if (err)
2835 		return -EFAULT;
2836 
2837 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2838 	if (err)
2839 		return err;
2840 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2841 			 sizeof(arg32->error_info));
2842 	if (err)
2843 		return -EFAULT;
2844 	return err;
2845 }
2846 
2847 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2848 	int cmd, void *arg)
2849 {
2850 	BIG_IOCTL32_Command_struct __user *arg32 =
2851 	    (BIG_IOCTL32_Command_struct __user *) arg;
2852 	BIG_IOCTL_Command_struct arg64;
2853 	BIG_IOCTL_Command_struct __user *p =
2854 	    compat_alloc_user_space(sizeof(arg64));
2855 	int err;
2856 	u32 cp;
2857 
2858 	memset(&arg64, 0, sizeof(arg64));
2859 	err = 0;
2860 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2861 			   sizeof(arg64.LUN_info));
2862 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2863 			   sizeof(arg64.Request));
2864 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2865 			   sizeof(arg64.error_info));
2866 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2867 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2868 	err |= get_user(cp, &arg32->buf);
2869 	arg64.buf = compat_ptr(cp);
2870 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2871 
2872 	if (err)
2873 		return -EFAULT;
2874 
2875 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2876 	if (err)
2877 		return err;
2878 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2879 			 sizeof(arg32->error_info));
2880 	if (err)
2881 		return -EFAULT;
2882 	return err;
2883 }
2884 
2885 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2886 {
2887 	switch (cmd) {
2888 	case CCISS_GETPCIINFO:
2889 	case CCISS_GETINTINFO:
2890 	case CCISS_SETINTINFO:
2891 	case CCISS_GETNODENAME:
2892 	case CCISS_SETNODENAME:
2893 	case CCISS_GETHEARTBEAT:
2894 	case CCISS_GETBUSTYPES:
2895 	case CCISS_GETFIRMVER:
2896 	case CCISS_GETDRIVVER:
2897 	case CCISS_REVALIDVOLS:
2898 	case CCISS_DEREGDISK:
2899 	case CCISS_REGNEWDISK:
2900 	case CCISS_REGNEWD:
2901 	case CCISS_RESCANDISK:
2902 	case CCISS_GETLUNINFO:
2903 		return hpsa_ioctl(dev, cmd, arg);
2904 
2905 	case CCISS_PASSTHRU32:
2906 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2907 	case CCISS_BIG_PASSTHRU32:
2908 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2909 
2910 	default:
2911 		return -ENOIOCTLCMD;
2912 	}
2913 }
2914 #endif
2915 
2916 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2917 {
2918 	struct hpsa_pci_info pciinfo;
2919 
2920 	if (!argp)
2921 		return -EINVAL;
2922 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2923 	pciinfo.bus = h->pdev->bus->number;
2924 	pciinfo.dev_fn = h->pdev->devfn;
2925 	pciinfo.board_id = h->board_id;
2926 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2927 		return -EFAULT;
2928 	return 0;
2929 }
2930 
2931 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2932 {
2933 	DriverVer_type DriverVer;
2934 	unsigned char vmaj, vmin, vsubmin;
2935 	int rc;
2936 
2937 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2938 		&vmaj, &vmin, &vsubmin);
2939 	if (rc != 3) {
2940 		dev_info(&h->pdev->dev, "driver version string '%s' "
2941 			"unrecognized.", HPSA_DRIVER_VERSION);
2942 		vmaj = 0;
2943 		vmin = 0;
2944 		vsubmin = 0;
2945 	}
2946 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2947 	if (!argp)
2948 		return -EINVAL;
2949 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2950 		return -EFAULT;
2951 	return 0;
2952 }
2953 
2954 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2955 {
2956 	IOCTL_Command_struct iocommand;
2957 	struct CommandList *c;
2958 	char *buff = NULL;
2959 	union u64bit temp64;
2960 	int rc = 0;
2961 
2962 	if (!argp)
2963 		return -EINVAL;
2964 	if (!capable(CAP_SYS_RAWIO))
2965 		return -EPERM;
2966 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2967 		return -EFAULT;
2968 	if ((iocommand.buf_size < 1) &&
2969 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2970 		return -EINVAL;
2971 	}
2972 	if (iocommand.buf_size > 0) {
2973 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2974 		if (buff == NULL)
2975 			return -EFAULT;
2976 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2977 			/* Copy the data into the buffer we created */
2978 			if (copy_from_user(buff, iocommand.buf,
2979 				iocommand.buf_size)) {
2980 				rc = -EFAULT;
2981 				goto out_kfree;
2982 			}
2983 		} else {
2984 			memset(buff, 0, iocommand.buf_size);
2985 		}
2986 	}
2987 	c = cmd_special_alloc(h);
2988 	if (c == NULL) {
2989 		rc = -ENOMEM;
2990 		goto out_kfree;
2991 	}
2992 	/* Fill in the command type */
2993 	c->cmd_type = CMD_IOCTL_PEND;
2994 	/* Fill in Command Header */
2995 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2996 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2997 		c->Header.SGList = 1;
2998 		c->Header.SGTotal = 1;
2999 	} else	{ /* no buffers to fill */
3000 		c->Header.SGList = 0;
3001 		c->Header.SGTotal = 0;
3002 	}
3003 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3004 	/* use the kernel address the cmd block for tag */
3005 	c->Header.Tag.lower = c->busaddr;
3006 
3007 	/* Fill in Request block */
3008 	memcpy(&c->Request, &iocommand.Request,
3009 		sizeof(c->Request));
3010 
3011 	/* Fill in the scatter gather information */
3012 	if (iocommand.buf_size > 0) {
3013 		temp64.val = pci_map_single(h->pdev, buff,
3014 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3015 		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3016 			c->SG[0].Addr.lower = 0;
3017 			c->SG[0].Addr.upper = 0;
3018 			c->SG[0].Len = 0;
3019 			rc = -ENOMEM;
3020 			goto out;
3021 		}
3022 		c->SG[0].Addr.lower = temp64.val32.lower;
3023 		c->SG[0].Addr.upper = temp64.val32.upper;
3024 		c->SG[0].Len = iocommand.buf_size;
3025 		c->SG[0].Ext = 0; /* we are not chaining*/
3026 	}
3027 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3028 	if (iocommand.buf_size > 0)
3029 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3030 	check_ioctl_unit_attention(h, c);
3031 
3032 	/* Copy the error information out */
3033 	memcpy(&iocommand.error_info, c->err_info,
3034 		sizeof(iocommand.error_info));
3035 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3036 		rc = -EFAULT;
3037 		goto out;
3038 	}
3039 	if (iocommand.Request.Type.Direction == XFER_READ &&
3040 		iocommand.buf_size > 0) {
3041 		/* Copy the data out of the buffer we created */
3042 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3043 			rc = -EFAULT;
3044 			goto out;
3045 		}
3046 	}
3047 out:
3048 	cmd_special_free(h, c);
3049 out_kfree:
3050 	kfree(buff);
3051 	return rc;
3052 }
3053 
3054 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3055 {
3056 	BIG_IOCTL_Command_struct *ioc;
3057 	struct CommandList *c;
3058 	unsigned char **buff = NULL;
3059 	int *buff_size = NULL;
3060 	union u64bit temp64;
3061 	BYTE sg_used = 0;
3062 	int status = 0;
3063 	int i;
3064 	u32 left;
3065 	u32 sz;
3066 	BYTE __user *data_ptr;
3067 
3068 	if (!argp)
3069 		return -EINVAL;
3070 	if (!capable(CAP_SYS_RAWIO))
3071 		return -EPERM;
3072 	ioc = (BIG_IOCTL_Command_struct *)
3073 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
3074 	if (!ioc) {
3075 		status = -ENOMEM;
3076 		goto cleanup1;
3077 	}
3078 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3079 		status = -EFAULT;
3080 		goto cleanup1;
3081 	}
3082 	if ((ioc->buf_size < 1) &&
3083 	    (ioc->Request.Type.Direction != XFER_NONE)) {
3084 		status = -EINVAL;
3085 		goto cleanup1;
3086 	}
3087 	/* Check kmalloc limits  using all SGs */
3088 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3089 		status = -EINVAL;
3090 		goto cleanup1;
3091 	}
3092 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3093 		status = -EINVAL;
3094 		goto cleanup1;
3095 	}
3096 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3097 	if (!buff) {
3098 		status = -ENOMEM;
3099 		goto cleanup1;
3100 	}
3101 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3102 	if (!buff_size) {
3103 		status = -ENOMEM;
3104 		goto cleanup1;
3105 	}
3106 	left = ioc->buf_size;
3107 	data_ptr = ioc->buf;
3108 	while (left) {
3109 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3110 		buff_size[sg_used] = sz;
3111 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3112 		if (buff[sg_used] == NULL) {
3113 			status = -ENOMEM;
3114 			goto cleanup1;
3115 		}
3116 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3117 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3118 				status = -ENOMEM;
3119 				goto cleanup1;
3120 			}
3121 		} else
3122 			memset(buff[sg_used], 0, sz);
3123 		left -= sz;
3124 		data_ptr += sz;
3125 		sg_used++;
3126 	}
3127 	c = cmd_special_alloc(h);
3128 	if (c == NULL) {
3129 		status = -ENOMEM;
3130 		goto cleanup1;
3131 	}
3132 	c->cmd_type = CMD_IOCTL_PEND;
3133 	c->Header.ReplyQueue = 0;
3134 	c->Header.SGList = c->Header.SGTotal = sg_used;
3135 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3136 	c->Header.Tag.lower = c->busaddr;
3137 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3138 	if (ioc->buf_size > 0) {
3139 		int i;
3140 		for (i = 0; i < sg_used; i++) {
3141 			temp64.val = pci_map_single(h->pdev, buff[i],
3142 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3143 			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3144 				c->SG[i].Addr.lower = 0;
3145 				c->SG[i].Addr.upper = 0;
3146 				c->SG[i].Len = 0;
3147 				hpsa_pci_unmap(h->pdev, c, i,
3148 					PCI_DMA_BIDIRECTIONAL);
3149 				status = -ENOMEM;
3150 				goto cleanup1;
3151 			}
3152 			c->SG[i].Addr.lower = temp64.val32.lower;
3153 			c->SG[i].Addr.upper = temp64.val32.upper;
3154 			c->SG[i].Len = buff_size[i];
3155 			/* we are not chaining */
3156 			c->SG[i].Ext = 0;
3157 		}
3158 	}
3159 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3160 	if (sg_used)
3161 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3162 	check_ioctl_unit_attention(h, c);
3163 	/* Copy the error information out */
3164 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3165 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3166 		cmd_special_free(h, c);
3167 		status = -EFAULT;
3168 		goto cleanup1;
3169 	}
3170 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3171 		/* Copy the data out of the buffer we created */
3172 		BYTE __user *ptr = ioc->buf;
3173 		for (i = 0; i < sg_used; i++) {
3174 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3175 				cmd_special_free(h, c);
3176 				status = -EFAULT;
3177 				goto cleanup1;
3178 			}
3179 			ptr += buff_size[i];
3180 		}
3181 	}
3182 	cmd_special_free(h, c);
3183 	status = 0;
3184 cleanup1:
3185 	if (buff) {
3186 		for (i = 0; i < sg_used; i++)
3187 			kfree(buff[i]);
3188 		kfree(buff);
3189 	}
3190 	kfree(buff_size);
3191 	kfree(ioc);
3192 	return status;
3193 }
3194 
3195 static void check_ioctl_unit_attention(struct ctlr_info *h,
3196 	struct CommandList *c)
3197 {
3198 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3199 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3200 		(void) check_for_unit_attention(h, c);
3201 }
3202 /*
3203  * ioctl
3204  */
3205 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3206 {
3207 	struct ctlr_info *h;
3208 	void __user *argp = (void __user *)arg;
3209 
3210 	h = sdev_to_hba(dev);
3211 
3212 	switch (cmd) {
3213 	case CCISS_DEREGDISK:
3214 	case CCISS_REGNEWDISK:
3215 	case CCISS_REGNEWD:
3216 		hpsa_scan_start(h->scsi_host);
3217 		return 0;
3218 	case CCISS_GETPCIINFO:
3219 		return hpsa_getpciinfo_ioctl(h, argp);
3220 	case CCISS_GETDRIVVER:
3221 		return hpsa_getdrivver_ioctl(h, argp);
3222 	case CCISS_PASSTHRU:
3223 		return hpsa_passthru_ioctl(h, argp);
3224 	case CCISS_BIG_PASSTHRU:
3225 		return hpsa_big_passthru_ioctl(h, argp);
3226 	default:
3227 		return -ENOTTY;
3228 	}
3229 }
3230 
3231 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3232 				u8 reset_type)
3233 {
3234 	struct CommandList *c;
3235 
3236 	c = cmd_alloc(h);
3237 	if (!c)
3238 		return -ENOMEM;
3239 	/* fill_cmd can't fail here, no data buffer to map */
3240 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3241 		RAID_CTLR_LUNID, TYPE_MSG);
3242 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3243 	c->waiting = NULL;
3244 	enqueue_cmd_and_start_io(h, c);
3245 	/* Don't wait for completion, the reset won't complete.  Don't free
3246 	 * the command either.  This is the last command we will send before
3247 	 * re-initializing everything, so it doesn't matter and won't leak.
3248 	 */
3249 	return 0;
3250 }
3251 
3252 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3253 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3254 	int cmd_type)
3255 {
3256 	int pci_dir = XFER_NONE;
3257 	struct CommandList *a; /* for commands to be aborted */
3258 
3259 	c->cmd_type = CMD_IOCTL_PEND;
3260 	c->Header.ReplyQueue = 0;
3261 	if (buff != NULL && size > 0) {
3262 		c->Header.SGList = 1;
3263 		c->Header.SGTotal = 1;
3264 	} else {
3265 		c->Header.SGList = 0;
3266 		c->Header.SGTotal = 0;
3267 	}
3268 	c->Header.Tag.lower = c->busaddr;
3269 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3270 
3271 	c->Request.Type.Type = cmd_type;
3272 	if (cmd_type == TYPE_CMD) {
3273 		switch (cmd) {
3274 		case HPSA_INQUIRY:
3275 			/* are we trying to read a vital product page */
3276 			if (page_code != 0) {
3277 				c->Request.CDB[1] = 0x01;
3278 				c->Request.CDB[2] = page_code;
3279 			}
3280 			c->Request.CDBLen = 6;
3281 			c->Request.Type.Attribute = ATTR_SIMPLE;
3282 			c->Request.Type.Direction = XFER_READ;
3283 			c->Request.Timeout = 0;
3284 			c->Request.CDB[0] = HPSA_INQUIRY;
3285 			c->Request.CDB[4] = size & 0xFF;
3286 			break;
3287 		case HPSA_REPORT_LOG:
3288 		case HPSA_REPORT_PHYS:
3289 			/* Talking to controller so It's a physical command
3290 			   mode = 00 target = 0.  Nothing to write.
3291 			 */
3292 			c->Request.CDBLen = 12;
3293 			c->Request.Type.Attribute = ATTR_SIMPLE;
3294 			c->Request.Type.Direction = XFER_READ;
3295 			c->Request.Timeout = 0;
3296 			c->Request.CDB[0] = cmd;
3297 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3298 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3299 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3300 			c->Request.CDB[9] = size & 0xFF;
3301 			break;
3302 		case HPSA_CACHE_FLUSH:
3303 			c->Request.CDBLen = 12;
3304 			c->Request.Type.Attribute = ATTR_SIMPLE;
3305 			c->Request.Type.Direction = XFER_WRITE;
3306 			c->Request.Timeout = 0;
3307 			c->Request.CDB[0] = BMIC_WRITE;
3308 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3309 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3310 			c->Request.CDB[8] = size & 0xFF;
3311 			break;
3312 		case TEST_UNIT_READY:
3313 			c->Request.CDBLen = 6;
3314 			c->Request.Type.Attribute = ATTR_SIMPLE;
3315 			c->Request.Type.Direction = XFER_NONE;
3316 			c->Request.Timeout = 0;
3317 			break;
3318 		default:
3319 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3320 			BUG();
3321 			return -1;
3322 		}
3323 	} else if (cmd_type == TYPE_MSG) {
3324 		switch (cmd) {
3325 
3326 		case  HPSA_DEVICE_RESET_MSG:
3327 			c->Request.CDBLen = 16;
3328 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3329 			c->Request.Type.Attribute = ATTR_SIMPLE;
3330 			c->Request.Type.Direction = XFER_NONE;
3331 			c->Request.Timeout = 0; /* Don't time out */
3332 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3333 			c->Request.CDB[0] =  cmd;
3334 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3335 			/* If bytes 4-7 are zero, it means reset the */
3336 			/* LunID device */
3337 			c->Request.CDB[4] = 0x00;
3338 			c->Request.CDB[5] = 0x00;
3339 			c->Request.CDB[6] = 0x00;
3340 			c->Request.CDB[7] = 0x00;
3341 			break;
3342 		case  HPSA_ABORT_MSG:
3343 			a = buff;       /* point to command to be aborted */
3344 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3345 				a->Header.Tag.upper, a->Header.Tag.lower,
3346 				c->Header.Tag.upper, c->Header.Tag.lower);
3347 			c->Request.CDBLen = 16;
3348 			c->Request.Type.Type = TYPE_MSG;
3349 			c->Request.Type.Attribute = ATTR_SIMPLE;
3350 			c->Request.Type.Direction = XFER_WRITE;
3351 			c->Request.Timeout = 0; /* Don't time out */
3352 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3353 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3354 			c->Request.CDB[2] = 0x00; /* reserved */
3355 			c->Request.CDB[3] = 0x00; /* reserved */
3356 			/* Tag to abort goes in CDB[4]-CDB[11] */
3357 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3358 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3359 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3360 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3361 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3362 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3363 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3364 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3365 			c->Request.CDB[12] = 0x00; /* reserved */
3366 			c->Request.CDB[13] = 0x00; /* reserved */
3367 			c->Request.CDB[14] = 0x00; /* reserved */
3368 			c->Request.CDB[15] = 0x00; /* reserved */
3369 		break;
3370 		default:
3371 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3372 				cmd);
3373 			BUG();
3374 		}
3375 	} else {
3376 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3377 		BUG();
3378 	}
3379 
3380 	switch (c->Request.Type.Direction) {
3381 	case XFER_READ:
3382 		pci_dir = PCI_DMA_FROMDEVICE;
3383 		break;
3384 	case XFER_WRITE:
3385 		pci_dir = PCI_DMA_TODEVICE;
3386 		break;
3387 	case XFER_NONE:
3388 		pci_dir = PCI_DMA_NONE;
3389 		break;
3390 	default:
3391 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3392 	}
3393 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3394 		return -1;
3395 	return 0;
3396 }
3397 
3398 /*
3399  * Map (physical) PCI mem into (virtual) kernel space
3400  */
3401 static void __iomem *remap_pci_mem(ulong base, ulong size)
3402 {
3403 	ulong page_base = ((ulong) base) & PAGE_MASK;
3404 	ulong page_offs = ((ulong) base) - page_base;
3405 	void __iomem *page_remapped = ioremap_nocache(page_base,
3406 		page_offs + size);
3407 
3408 	return page_remapped ? (page_remapped + page_offs) : NULL;
3409 }
3410 
3411 /* Takes cmds off the submission queue and sends them to the hardware,
3412  * then puts them on the queue of cmds waiting for completion.
3413  */
3414 static void start_io(struct ctlr_info *h)
3415 {
3416 	struct CommandList *c;
3417 	unsigned long flags;
3418 
3419 	spin_lock_irqsave(&h->lock, flags);
3420 	while (!list_empty(&h->reqQ)) {
3421 		c = list_entry(h->reqQ.next, struct CommandList, list);
3422 		/* can't do anything if fifo is full */
3423 		if ((h->access.fifo_full(h))) {
3424 			dev_warn(&h->pdev->dev, "fifo full\n");
3425 			break;
3426 		}
3427 
3428 		/* Get the first entry from the Request Q */
3429 		removeQ(c);
3430 		h->Qdepth--;
3431 
3432 		/* Put job onto the completed Q */
3433 		addQ(&h->cmpQ, c);
3434 
3435 		/* Must increment commands_outstanding before unlocking
3436 		 * and submitting to avoid race checking for fifo full
3437 		 * condition.
3438 		 */
3439 		h->commands_outstanding++;
3440 		if (h->commands_outstanding > h->max_outstanding)
3441 			h->max_outstanding = h->commands_outstanding;
3442 
3443 		/* Tell the controller execute command */
3444 		spin_unlock_irqrestore(&h->lock, flags);
3445 		h->access.submit_command(h, c);
3446 		spin_lock_irqsave(&h->lock, flags);
3447 	}
3448 	spin_unlock_irqrestore(&h->lock, flags);
3449 }
3450 
3451 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3452 {
3453 	return h->access.command_completed(h, q);
3454 }
3455 
3456 static inline bool interrupt_pending(struct ctlr_info *h)
3457 {
3458 	return h->access.intr_pending(h);
3459 }
3460 
3461 static inline long interrupt_not_for_us(struct ctlr_info *h)
3462 {
3463 	return (h->access.intr_pending(h) == 0) ||
3464 		(h->interrupts_enabled == 0);
3465 }
3466 
3467 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3468 	u32 raw_tag)
3469 {
3470 	if (unlikely(tag_index >= h->nr_cmds)) {
3471 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3472 		return 1;
3473 	}
3474 	return 0;
3475 }
3476 
3477 static inline void finish_cmd(struct CommandList *c)
3478 {
3479 	unsigned long flags;
3480 
3481 	spin_lock_irqsave(&c->h->lock, flags);
3482 	removeQ(c);
3483 	spin_unlock_irqrestore(&c->h->lock, flags);
3484 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3485 	if (likely(c->cmd_type == CMD_SCSI))
3486 		complete_scsi_command(c);
3487 	else if (c->cmd_type == CMD_IOCTL_PEND)
3488 		complete(c->waiting);
3489 }
3490 
3491 static inline u32 hpsa_tag_contains_index(u32 tag)
3492 {
3493 	return tag & DIRECT_LOOKUP_BIT;
3494 }
3495 
3496 static inline u32 hpsa_tag_to_index(u32 tag)
3497 {
3498 	return tag >> DIRECT_LOOKUP_SHIFT;
3499 }
3500 
3501 
3502 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3503 {
3504 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3505 #define HPSA_SIMPLE_ERROR_BITS 0x03
3506 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3507 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3508 	return tag & ~HPSA_PERF_ERROR_BITS;
3509 }
3510 
3511 /* process completion of an indexed ("direct lookup") command */
3512 static inline void process_indexed_cmd(struct ctlr_info *h,
3513 	u32 raw_tag)
3514 {
3515 	u32 tag_index;
3516 	struct CommandList *c;
3517 
3518 	tag_index = hpsa_tag_to_index(raw_tag);
3519 	if (!bad_tag(h, tag_index, raw_tag)) {
3520 		c = h->cmd_pool + tag_index;
3521 		finish_cmd(c);
3522 	}
3523 }
3524 
3525 /* process completion of a non-indexed command */
3526 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3527 	u32 raw_tag)
3528 {
3529 	u32 tag;
3530 	struct CommandList *c = NULL;
3531 	unsigned long flags;
3532 
3533 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3534 	spin_lock_irqsave(&h->lock, flags);
3535 	list_for_each_entry(c, &h->cmpQ, list) {
3536 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3537 			spin_unlock_irqrestore(&h->lock, flags);
3538 			finish_cmd(c);
3539 			return;
3540 		}
3541 	}
3542 	spin_unlock_irqrestore(&h->lock, flags);
3543 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3544 }
3545 
3546 /* Some controllers, like p400, will give us one interrupt
3547  * after a soft reset, even if we turned interrupts off.
3548  * Only need to check for this in the hpsa_xxx_discard_completions
3549  * functions.
3550  */
3551 static int ignore_bogus_interrupt(struct ctlr_info *h)
3552 {
3553 	if (likely(!reset_devices))
3554 		return 0;
3555 
3556 	if (likely(h->interrupts_enabled))
3557 		return 0;
3558 
3559 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3560 		"(known firmware bug.)  Ignoring.\n");
3561 
3562 	return 1;
3563 }
3564 
3565 /*
3566  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3567  * Relies on (h-q[x] == x) being true for x such that
3568  * 0 <= x < MAX_REPLY_QUEUES.
3569  */
3570 static struct ctlr_info *queue_to_hba(u8 *queue)
3571 {
3572 	return container_of((queue - *queue), struct ctlr_info, q[0]);
3573 }
3574 
3575 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3576 {
3577 	struct ctlr_info *h = queue_to_hba(queue);
3578 	u8 q = *(u8 *) queue;
3579 	u32 raw_tag;
3580 
3581 	if (ignore_bogus_interrupt(h))
3582 		return IRQ_NONE;
3583 
3584 	if (interrupt_not_for_us(h))
3585 		return IRQ_NONE;
3586 	h->last_intr_timestamp = get_jiffies_64();
3587 	while (interrupt_pending(h)) {
3588 		raw_tag = get_next_completion(h, q);
3589 		while (raw_tag != FIFO_EMPTY)
3590 			raw_tag = next_command(h, q);
3591 	}
3592 	return IRQ_HANDLED;
3593 }
3594 
3595 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3596 {
3597 	struct ctlr_info *h = queue_to_hba(queue);
3598 	u32 raw_tag;
3599 	u8 q = *(u8 *) queue;
3600 
3601 	if (ignore_bogus_interrupt(h))
3602 		return IRQ_NONE;
3603 
3604 	h->last_intr_timestamp = get_jiffies_64();
3605 	raw_tag = get_next_completion(h, q);
3606 	while (raw_tag != FIFO_EMPTY)
3607 		raw_tag = next_command(h, q);
3608 	return IRQ_HANDLED;
3609 }
3610 
3611 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3612 {
3613 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3614 	u32 raw_tag;
3615 	u8 q = *(u8 *) queue;
3616 
3617 	if (interrupt_not_for_us(h))
3618 		return IRQ_NONE;
3619 	h->last_intr_timestamp = get_jiffies_64();
3620 	while (interrupt_pending(h)) {
3621 		raw_tag = get_next_completion(h, q);
3622 		while (raw_tag != FIFO_EMPTY) {
3623 			if (likely(hpsa_tag_contains_index(raw_tag)))
3624 				process_indexed_cmd(h, raw_tag);
3625 			else
3626 				process_nonindexed_cmd(h, raw_tag);
3627 			raw_tag = next_command(h, q);
3628 		}
3629 	}
3630 	return IRQ_HANDLED;
3631 }
3632 
3633 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3634 {
3635 	struct ctlr_info *h = queue_to_hba(queue);
3636 	u32 raw_tag;
3637 	u8 q = *(u8 *) queue;
3638 
3639 	h->last_intr_timestamp = get_jiffies_64();
3640 	raw_tag = get_next_completion(h, q);
3641 	while (raw_tag != FIFO_EMPTY) {
3642 		if (likely(hpsa_tag_contains_index(raw_tag)))
3643 			process_indexed_cmd(h, raw_tag);
3644 		else
3645 			process_nonindexed_cmd(h, raw_tag);
3646 		raw_tag = next_command(h, q);
3647 	}
3648 	return IRQ_HANDLED;
3649 }
3650 
3651 /* Send a message CDB to the firmware. Careful, this only works
3652  * in simple mode, not performant mode due to the tag lookup.
3653  * We only ever use this immediately after a controller reset.
3654  */
3655 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3656 			unsigned char type)
3657 {
3658 	struct Command {
3659 		struct CommandListHeader CommandHeader;
3660 		struct RequestBlock Request;
3661 		struct ErrDescriptor ErrorDescriptor;
3662 	};
3663 	struct Command *cmd;
3664 	static const size_t cmd_sz = sizeof(*cmd) +
3665 					sizeof(cmd->ErrorDescriptor);
3666 	dma_addr_t paddr64;
3667 	uint32_t paddr32, tag;
3668 	void __iomem *vaddr;
3669 	int i, err;
3670 
3671 	vaddr = pci_ioremap_bar(pdev, 0);
3672 	if (vaddr == NULL)
3673 		return -ENOMEM;
3674 
3675 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3676 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3677 	 * memory.
3678 	 */
3679 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3680 	if (err) {
3681 		iounmap(vaddr);
3682 		return -ENOMEM;
3683 	}
3684 
3685 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3686 	if (cmd == NULL) {
3687 		iounmap(vaddr);
3688 		return -ENOMEM;
3689 	}
3690 
3691 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3692 	 * although there's no guarantee, we assume that the address is at
3693 	 * least 4-byte aligned (most likely, it's page-aligned).
3694 	 */
3695 	paddr32 = paddr64;
3696 
3697 	cmd->CommandHeader.ReplyQueue = 0;
3698 	cmd->CommandHeader.SGList = 0;
3699 	cmd->CommandHeader.SGTotal = 0;
3700 	cmd->CommandHeader.Tag.lower = paddr32;
3701 	cmd->CommandHeader.Tag.upper = 0;
3702 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3703 
3704 	cmd->Request.CDBLen = 16;
3705 	cmd->Request.Type.Type = TYPE_MSG;
3706 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3707 	cmd->Request.Type.Direction = XFER_NONE;
3708 	cmd->Request.Timeout = 0; /* Don't time out */
3709 	cmd->Request.CDB[0] = opcode;
3710 	cmd->Request.CDB[1] = type;
3711 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3712 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3713 	cmd->ErrorDescriptor.Addr.upper = 0;
3714 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3715 
3716 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3717 
3718 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3719 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3720 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3721 			break;
3722 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3723 	}
3724 
3725 	iounmap(vaddr);
3726 
3727 	/* we leak the DMA buffer here ... no choice since the controller could
3728 	 *  still complete the command.
3729 	 */
3730 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3731 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3732 			opcode, type);
3733 		return -ETIMEDOUT;
3734 	}
3735 
3736 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3737 
3738 	if (tag & HPSA_ERROR_BIT) {
3739 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3740 			opcode, type);
3741 		return -EIO;
3742 	}
3743 
3744 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3745 		opcode, type);
3746 	return 0;
3747 }
3748 
3749 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3750 
3751 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3752 	void * __iomem vaddr, u32 use_doorbell)
3753 {
3754 	u16 pmcsr;
3755 	int pos;
3756 
3757 	if (use_doorbell) {
3758 		/* For everything after the P600, the PCI power state method
3759 		 * of resetting the controller doesn't work, so we have this
3760 		 * other way using the doorbell register.
3761 		 */
3762 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3763 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3764 	} else { /* Try to do it the PCI power state way */
3765 
3766 		/* Quoting from the Open CISS Specification: "The Power
3767 		 * Management Control/Status Register (CSR) controls the power
3768 		 * state of the device.  The normal operating state is D0,
3769 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3770 		 * the controller, place the interface device in D3 then to D0,
3771 		 * this causes a secondary PCI reset which will reset the
3772 		 * controller." */
3773 
3774 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3775 		if (pos == 0) {
3776 			dev_err(&pdev->dev,
3777 				"hpsa_reset_controller: "
3778 				"PCI PM not supported\n");
3779 			return -ENODEV;
3780 		}
3781 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3782 		/* enter the D3hot power management state */
3783 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3784 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3785 		pmcsr |= PCI_D3hot;
3786 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3787 
3788 		msleep(500);
3789 
3790 		/* enter the D0 power management state */
3791 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3792 		pmcsr |= PCI_D0;
3793 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3794 
3795 		/*
3796 		 * The P600 requires a small delay when changing states.
3797 		 * Otherwise we may think the board did not reset and we bail.
3798 		 * This for kdump only and is particular to the P600.
3799 		 */
3800 		msleep(500);
3801 	}
3802 	return 0;
3803 }
3804 
3805 static void init_driver_version(char *driver_version, int len)
3806 {
3807 	memset(driver_version, 0, len);
3808 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3809 }
3810 
3811 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3812 {
3813 	char *driver_version;
3814 	int i, size = sizeof(cfgtable->driver_version);
3815 
3816 	driver_version = kmalloc(size, GFP_KERNEL);
3817 	if (!driver_version)
3818 		return -ENOMEM;
3819 
3820 	init_driver_version(driver_version, size);
3821 	for (i = 0; i < size; i++)
3822 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3823 	kfree(driver_version);
3824 	return 0;
3825 }
3826 
3827 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3828 					  unsigned char *driver_ver)
3829 {
3830 	int i;
3831 
3832 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3833 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3834 }
3835 
3836 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3837 {
3838 
3839 	char *driver_ver, *old_driver_ver;
3840 	int rc, size = sizeof(cfgtable->driver_version);
3841 
3842 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3843 	if (!old_driver_ver)
3844 		return -ENOMEM;
3845 	driver_ver = old_driver_ver + size;
3846 
3847 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3848 	 * should have been changed, otherwise we know the reset failed.
3849 	 */
3850 	init_driver_version(old_driver_ver, size);
3851 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3852 	rc = !memcmp(driver_ver, old_driver_ver, size);
3853 	kfree(old_driver_ver);
3854 	return rc;
3855 }
3856 /* This does a hard reset of the controller using PCI power management
3857  * states or the using the doorbell register.
3858  */
3859 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3860 {
3861 	u64 cfg_offset;
3862 	u32 cfg_base_addr;
3863 	u64 cfg_base_addr_index;
3864 	void __iomem *vaddr;
3865 	unsigned long paddr;
3866 	u32 misc_fw_support;
3867 	int rc;
3868 	struct CfgTable __iomem *cfgtable;
3869 	u32 use_doorbell;
3870 	u32 board_id;
3871 	u16 command_register;
3872 
3873 	/* For controllers as old as the P600, this is very nearly
3874 	 * the same thing as
3875 	 *
3876 	 * pci_save_state(pci_dev);
3877 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3878 	 * pci_set_power_state(pci_dev, PCI_D0);
3879 	 * pci_restore_state(pci_dev);
3880 	 *
3881 	 * For controllers newer than the P600, the pci power state
3882 	 * method of resetting doesn't work so we have another way
3883 	 * using the doorbell register.
3884 	 */
3885 
3886 	rc = hpsa_lookup_board_id(pdev, &board_id);
3887 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3888 		dev_warn(&pdev->dev, "Not resetting device.\n");
3889 		return -ENODEV;
3890 	}
3891 
3892 	/* if controller is soft- but not hard resettable... */
3893 	if (!ctlr_is_hard_resettable(board_id))
3894 		return -ENOTSUPP; /* try soft reset later. */
3895 
3896 	/* Save the PCI command register */
3897 	pci_read_config_word(pdev, 4, &command_register);
3898 	/* Turn the board off.  This is so that later pci_restore_state()
3899 	 * won't turn the board on before the rest of config space is ready.
3900 	 */
3901 	pci_disable_device(pdev);
3902 	pci_save_state(pdev);
3903 
3904 	/* find the first memory BAR, so we can find the cfg table */
3905 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3906 	if (rc)
3907 		return rc;
3908 	vaddr = remap_pci_mem(paddr, 0x250);
3909 	if (!vaddr)
3910 		return -ENOMEM;
3911 
3912 	/* find cfgtable in order to check if reset via doorbell is supported */
3913 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3914 					&cfg_base_addr_index, &cfg_offset);
3915 	if (rc)
3916 		goto unmap_vaddr;
3917 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3918 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3919 	if (!cfgtable) {
3920 		rc = -ENOMEM;
3921 		goto unmap_vaddr;
3922 	}
3923 	rc = write_driver_ver_to_cfgtable(cfgtable);
3924 	if (rc)
3925 		goto unmap_vaddr;
3926 
3927 	/* If reset via doorbell register is supported, use that.
3928 	 * There are two such methods.  Favor the newest method.
3929 	 */
3930 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3931 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3932 	if (use_doorbell) {
3933 		use_doorbell = DOORBELL_CTLR_RESET2;
3934 	} else {
3935 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3936 		if (use_doorbell) {
3937 			dev_warn(&pdev->dev, "Soft reset not supported. "
3938 				"Firmware update is required.\n");
3939 			rc = -ENOTSUPP; /* try soft reset */
3940 			goto unmap_cfgtable;
3941 		}
3942 	}
3943 
3944 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3945 	if (rc)
3946 		goto unmap_cfgtable;
3947 
3948 	pci_restore_state(pdev);
3949 	rc = pci_enable_device(pdev);
3950 	if (rc) {
3951 		dev_warn(&pdev->dev, "failed to enable device.\n");
3952 		goto unmap_cfgtable;
3953 	}
3954 	pci_write_config_word(pdev, 4, command_register);
3955 
3956 	/* Some devices (notably the HP Smart Array 5i Controller)
3957 	   need a little pause here */
3958 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3959 
3960 	/* Wait for board to become not ready, then ready. */
3961 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3962 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3963 	if (rc) {
3964 		dev_warn(&pdev->dev,
3965 			"failed waiting for board to reset."
3966 			" Will try soft reset.\n");
3967 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3968 		goto unmap_cfgtable;
3969 	}
3970 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3971 	if (rc) {
3972 		dev_warn(&pdev->dev,
3973 			"failed waiting for board to become ready "
3974 			"after hard reset\n");
3975 		goto unmap_cfgtable;
3976 	}
3977 
3978 	rc = controller_reset_failed(vaddr);
3979 	if (rc < 0)
3980 		goto unmap_cfgtable;
3981 	if (rc) {
3982 		dev_warn(&pdev->dev, "Unable to successfully reset "
3983 			"controller. Will try soft reset.\n");
3984 		rc = -ENOTSUPP;
3985 	} else {
3986 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3987 	}
3988 
3989 unmap_cfgtable:
3990 	iounmap(cfgtable);
3991 
3992 unmap_vaddr:
3993 	iounmap(vaddr);
3994 	return rc;
3995 }
3996 
3997 /*
3998  *  We cannot read the structure directly, for portability we must use
3999  *   the io functions.
4000  *   This is for debug only.
4001  */
4002 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4003 {
4004 #ifdef HPSA_DEBUG
4005 	int i;
4006 	char temp_name[17];
4007 
4008 	dev_info(dev, "Controller Configuration information\n");
4009 	dev_info(dev, "------------------------------------\n");
4010 	for (i = 0; i < 4; i++)
4011 		temp_name[i] = readb(&(tb->Signature[i]));
4012 	temp_name[4] = '\0';
4013 	dev_info(dev, "   Signature = %s\n", temp_name);
4014 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4015 	dev_info(dev, "   Transport methods supported = 0x%x\n",
4016 	       readl(&(tb->TransportSupport)));
4017 	dev_info(dev, "   Transport methods active = 0x%x\n",
4018 	       readl(&(tb->TransportActive)));
4019 	dev_info(dev, "   Requested transport Method = 0x%x\n",
4020 	       readl(&(tb->HostWrite.TransportRequest)));
4021 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4022 	       readl(&(tb->HostWrite.CoalIntDelay)));
4023 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4024 	       readl(&(tb->HostWrite.CoalIntCount)));
4025 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
4026 	       readl(&(tb->CmdsOutMax)));
4027 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4028 	for (i = 0; i < 16; i++)
4029 		temp_name[i] = readb(&(tb->ServerName[i]));
4030 	temp_name[16] = '\0';
4031 	dev_info(dev, "   Server Name = %s\n", temp_name);
4032 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4033 		readl(&(tb->HeartBeat)));
4034 #endif				/* HPSA_DEBUG */
4035 }
4036 
4037 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4038 {
4039 	int i, offset, mem_type, bar_type;
4040 
4041 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
4042 		return 0;
4043 	offset = 0;
4044 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4045 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4046 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4047 			offset += 4;
4048 		else {
4049 			mem_type = pci_resource_flags(pdev, i) &
4050 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4051 			switch (mem_type) {
4052 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
4053 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4054 				offset += 4;	/* 32 bit */
4055 				break;
4056 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
4057 				offset += 8;
4058 				break;
4059 			default:	/* reserved in PCI 2.2 */
4060 				dev_warn(&pdev->dev,
4061 				       "base address is invalid\n");
4062 				return -1;
4063 				break;
4064 			}
4065 		}
4066 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4067 			return i + 1;
4068 	}
4069 	return -1;
4070 }
4071 
4072 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4073  * controllers that are capable. If not, we use IO-APIC mode.
4074  */
4075 
4076 static void hpsa_interrupt_mode(struct ctlr_info *h)
4077 {
4078 #ifdef CONFIG_PCI_MSI
4079 	int err, i;
4080 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4081 
4082 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4083 		hpsa_msix_entries[i].vector = 0;
4084 		hpsa_msix_entries[i].entry = i;
4085 	}
4086 
4087 	/* Some boards advertise MSI but don't really support it */
4088 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4089 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4090 		goto default_int_mode;
4091 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4092 		dev_info(&h->pdev->dev, "MSIX\n");
4093 		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4094 						MAX_REPLY_QUEUES);
4095 		if (!err) {
4096 			for (i = 0; i < MAX_REPLY_QUEUES; i++)
4097 				h->intr[i] = hpsa_msix_entries[i].vector;
4098 			h->msix_vector = 1;
4099 			return;
4100 		}
4101 		if (err > 0) {
4102 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4103 			       "available\n", err);
4104 			goto default_int_mode;
4105 		} else {
4106 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4107 			       err);
4108 			goto default_int_mode;
4109 		}
4110 	}
4111 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4112 		dev_info(&h->pdev->dev, "MSI\n");
4113 		if (!pci_enable_msi(h->pdev))
4114 			h->msi_vector = 1;
4115 		else
4116 			dev_warn(&h->pdev->dev, "MSI init failed\n");
4117 	}
4118 default_int_mode:
4119 #endif				/* CONFIG_PCI_MSI */
4120 	/* if we get here we're going to use the default interrupt mode */
4121 	h->intr[h->intr_mode] = h->pdev->irq;
4122 }
4123 
4124 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4125 {
4126 	int i;
4127 	u32 subsystem_vendor_id, subsystem_device_id;
4128 
4129 	subsystem_vendor_id = pdev->subsystem_vendor;
4130 	subsystem_device_id = pdev->subsystem_device;
4131 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4132 		    subsystem_vendor_id;
4133 
4134 	for (i = 0; i < ARRAY_SIZE(products); i++)
4135 		if (*board_id == products[i].board_id)
4136 			return i;
4137 
4138 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4139 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4140 		!hpsa_allow_any) {
4141 		dev_warn(&pdev->dev, "unrecognized board ID: "
4142 			"0x%08x, ignoring.\n", *board_id);
4143 			return -ENODEV;
4144 	}
4145 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4146 }
4147 
4148 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4149 				    unsigned long *memory_bar)
4150 {
4151 	int i;
4152 
4153 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4154 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4155 			/* addressing mode bits already removed */
4156 			*memory_bar = pci_resource_start(pdev, i);
4157 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4158 				*memory_bar);
4159 			return 0;
4160 		}
4161 	dev_warn(&pdev->dev, "no memory BAR found\n");
4162 	return -ENODEV;
4163 }
4164 
4165 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4166 				     int wait_for_ready)
4167 {
4168 	int i, iterations;
4169 	u32 scratchpad;
4170 	if (wait_for_ready)
4171 		iterations = HPSA_BOARD_READY_ITERATIONS;
4172 	else
4173 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4174 
4175 	for (i = 0; i < iterations; i++) {
4176 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4177 		if (wait_for_ready) {
4178 			if (scratchpad == HPSA_FIRMWARE_READY)
4179 				return 0;
4180 		} else {
4181 			if (scratchpad != HPSA_FIRMWARE_READY)
4182 				return 0;
4183 		}
4184 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4185 	}
4186 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4187 	return -ENODEV;
4188 }
4189 
4190 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4191 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4192 			       u64 *cfg_offset)
4193 {
4194 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4195 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4196 	*cfg_base_addr &= (u32) 0x0000ffff;
4197 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4198 	if (*cfg_base_addr_index == -1) {
4199 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4200 		return -ENODEV;
4201 	}
4202 	return 0;
4203 }
4204 
4205 static int hpsa_find_cfgtables(struct ctlr_info *h)
4206 {
4207 	u64 cfg_offset;
4208 	u32 cfg_base_addr;
4209 	u64 cfg_base_addr_index;
4210 	u32 trans_offset;
4211 	int rc;
4212 
4213 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4214 		&cfg_base_addr_index, &cfg_offset);
4215 	if (rc)
4216 		return rc;
4217 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4218 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4219 	if (!h->cfgtable)
4220 		return -ENOMEM;
4221 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4222 	if (rc)
4223 		return rc;
4224 	/* Find performant mode table. */
4225 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4226 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4227 				cfg_base_addr_index)+cfg_offset+trans_offset,
4228 				sizeof(*h->transtable));
4229 	if (!h->transtable)
4230 		return -ENOMEM;
4231 	return 0;
4232 }
4233 
4234 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4235 {
4236 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4237 
4238 	/* Limit commands in memory limited kdump scenario. */
4239 	if (reset_devices && h->max_commands > 32)
4240 		h->max_commands = 32;
4241 
4242 	if (h->max_commands < 16) {
4243 		dev_warn(&h->pdev->dev, "Controller reports "
4244 			"max supported commands of %d, an obvious lie. "
4245 			"Using 16.  Ensure that firmware is up to date.\n",
4246 			h->max_commands);
4247 		h->max_commands = 16;
4248 	}
4249 }
4250 
4251 /* Interrogate the hardware for some limits:
4252  * max commands, max SG elements without chaining, and with chaining,
4253  * SG chain block size, etc.
4254  */
4255 static void hpsa_find_board_params(struct ctlr_info *h)
4256 {
4257 	hpsa_get_max_perf_mode_cmds(h);
4258 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4259 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4260 	/*
4261 	 * Limit in-command s/g elements to 32 save dma'able memory.
4262 	 * Howvever spec says if 0, use 31
4263 	 */
4264 	h->max_cmd_sg_entries = 31;
4265 	if (h->maxsgentries > 512) {
4266 		h->max_cmd_sg_entries = 32;
4267 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4268 		h->maxsgentries--; /* save one for chain pointer */
4269 	} else {
4270 		h->maxsgentries = 31; /* default to traditional values */
4271 		h->chainsize = 0;
4272 	}
4273 
4274 	/* Find out what task management functions are supported and cache */
4275 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4276 }
4277 
4278 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4279 {
4280 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4281 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4282 		return false;
4283 	}
4284 	return true;
4285 }
4286 
4287 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4288 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4289 {
4290 #ifdef CONFIG_X86
4291 	u32 prefetch;
4292 
4293 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4294 	prefetch |= 0x100;
4295 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4296 #endif
4297 }
4298 
4299 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4300  * in a prefetch beyond physical memory.
4301  */
4302 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4303 {
4304 	u32 dma_prefetch;
4305 
4306 	if (h->board_id != 0x3225103C)
4307 		return;
4308 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4309 	dma_prefetch |= 0x8000;
4310 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4311 }
4312 
4313 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4314 {
4315 	int i;
4316 	u32 doorbell_value;
4317 	unsigned long flags;
4318 
4319 	/* under certain very rare conditions, this can take awhile.
4320 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4321 	 * as we enter this code.)
4322 	 */
4323 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4324 		spin_lock_irqsave(&h->lock, flags);
4325 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4326 		spin_unlock_irqrestore(&h->lock, flags);
4327 		if (!(doorbell_value & CFGTBL_ChangeReq))
4328 			break;
4329 		/* delay and try again */
4330 		usleep_range(10000, 20000);
4331 	}
4332 }
4333 
4334 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4335 {
4336 	u32 trans_support;
4337 
4338 	trans_support = readl(&(h->cfgtable->TransportSupport));
4339 	if (!(trans_support & SIMPLE_MODE))
4340 		return -ENOTSUPP;
4341 
4342 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4343 	/* Update the field, and then ring the doorbell */
4344 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4345 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4346 	hpsa_wait_for_mode_change_ack(h);
4347 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4348 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4349 		dev_warn(&h->pdev->dev,
4350 			"unable to get board into simple mode\n");
4351 		return -ENODEV;
4352 	}
4353 	h->transMethod = CFGTBL_Trans_Simple;
4354 	return 0;
4355 }
4356 
4357 static int hpsa_pci_init(struct ctlr_info *h)
4358 {
4359 	int prod_index, err;
4360 
4361 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4362 	if (prod_index < 0)
4363 		return -ENODEV;
4364 	h->product_name = products[prod_index].product_name;
4365 	h->access = *(products[prod_index].access);
4366 
4367 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4368 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4369 
4370 	err = pci_enable_device(h->pdev);
4371 	if (err) {
4372 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4373 		return err;
4374 	}
4375 
4376 	/* Enable bus mastering (pci_disable_device may disable this) */
4377 	pci_set_master(h->pdev);
4378 
4379 	err = pci_request_regions(h->pdev, HPSA);
4380 	if (err) {
4381 		dev_err(&h->pdev->dev,
4382 			"cannot obtain PCI resources, aborting\n");
4383 		return err;
4384 	}
4385 	hpsa_interrupt_mode(h);
4386 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4387 	if (err)
4388 		goto err_out_free_res;
4389 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4390 	if (!h->vaddr) {
4391 		err = -ENOMEM;
4392 		goto err_out_free_res;
4393 	}
4394 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4395 	if (err)
4396 		goto err_out_free_res;
4397 	err = hpsa_find_cfgtables(h);
4398 	if (err)
4399 		goto err_out_free_res;
4400 	hpsa_find_board_params(h);
4401 
4402 	if (!hpsa_CISS_signature_present(h)) {
4403 		err = -ENODEV;
4404 		goto err_out_free_res;
4405 	}
4406 	hpsa_enable_scsi_prefetch(h);
4407 	hpsa_p600_dma_prefetch_quirk(h);
4408 	err = hpsa_enter_simple_mode(h);
4409 	if (err)
4410 		goto err_out_free_res;
4411 	return 0;
4412 
4413 err_out_free_res:
4414 	if (h->transtable)
4415 		iounmap(h->transtable);
4416 	if (h->cfgtable)
4417 		iounmap(h->cfgtable);
4418 	if (h->vaddr)
4419 		iounmap(h->vaddr);
4420 	pci_disable_device(h->pdev);
4421 	pci_release_regions(h->pdev);
4422 	return err;
4423 }
4424 
4425 static void hpsa_hba_inquiry(struct ctlr_info *h)
4426 {
4427 	int rc;
4428 
4429 #define HBA_INQUIRY_BYTE_COUNT 64
4430 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4431 	if (!h->hba_inquiry_data)
4432 		return;
4433 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4434 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4435 	if (rc != 0) {
4436 		kfree(h->hba_inquiry_data);
4437 		h->hba_inquiry_data = NULL;
4438 	}
4439 }
4440 
4441 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4442 {
4443 	int rc, i;
4444 
4445 	if (!reset_devices)
4446 		return 0;
4447 
4448 	/* Reset the controller with a PCI power-cycle or via doorbell */
4449 	rc = hpsa_kdump_hard_reset_controller(pdev);
4450 
4451 	/* -ENOTSUPP here means we cannot reset the controller
4452 	 * but it's already (and still) up and running in
4453 	 * "performant mode".  Or, it might be 640x, which can't reset
4454 	 * due to concerns about shared bbwc between 6402/6404 pair.
4455 	 */
4456 	if (rc == -ENOTSUPP)
4457 		return rc; /* just try to do the kdump anyhow. */
4458 	if (rc)
4459 		return -ENODEV;
4460 
4461 	/* Now try to get the controller to respond to a no-op */
4462 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4463 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4464 		if (hpsa_noop(pdev) == 0)
4465 			break;
4466 		else
4467 			dev_warn(&pdev->dev, "no-op failed%s\n",
4468 					(i < 11 ? "; re-trying" : ""));
4469 	}
4470 	return 0;
4471 }
4472 
4473 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4474 {
4475 	h->cmd_pool_bits = kzalloc(
4476 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4477 		sizeof(unsigned long), GFP_KERNEL);
4478 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4479 		    h->nr_cmds * sizeof(*h->cmd_pool),
4480 		    &(h->cmd_pool_dhandle));
4481 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4482 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4483 		    &(h->errinfo_pool_dhandle));
4484 	if ((h->cmd_pool_bits == NULL)
4485 	    || (h->cmd_pool == NULL)
4486 	    || (h->errinfo_pool == NULL)) {
4487 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4488 		return -ENOMEM;
4489 	}
4490 	return 0;
4491 }
4492 
4493 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4494 {
4495 	kfree(h->cmd_pool_bits);
4496 	if (h->cmd_pool)
4497 		pci_free_consistent(h->pdev,
4498 			    h->nr_cmds * sizeof(struct CommandList),
4499 			    h->cmd_pool, h->cmd_pool_dhandle);
4500 	if (h->errinfo_pool)
4501 		pci_free_consistent(h->pdev,
4502 			    h->nr_cmds * sizeof(struct ErrorInfo),
4503 			    h->errinfo_pool,
4504 			    h->errinfo_pool_dhandle);
4505 }
4506 
4507 static int hpsa_request_irq(struct ctlr_info *h,
4508 	irqreturn_t (*msixhandler)(int, void *),
4509 	irqreturn_t (*intxhandler)(int, void *))
4510 {
4511 	int rc, i;
4512 
4513 	/*
4514 	 * initialize h->q[x] = x so that interrupt handlers know which
4515 	 * queue to process.
4516 	 */
4517 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4518 		h->q[i] = (u8) i;
4519 
4520 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4521 		/* If performant mode and MSI-X, use multiple reply queues */
4522 		for (i = 0; i < MAX_REPLY_QUEUES; i++)
4523 			rc = request_irq(h->intr[i], msixhandler,
4524 					0, h->devname,
4525 					&h->q[i]);
4526 	} else {
4527 		/* Use single reply pool */
4528 		if (h->msix_vector || h->msi_vector) {
4529 			rc = request_irq(h->intr[h->intr_mode],
4530 				msixhandler, 0, h->devname,
4531 				&h->q[h->intr_mode]);
4532 		} else {
4533 			rc = request_irq(h->intr[h->intr_mode],
4534 				intxhandler, IRQF_SHARED, h->devname,
4535 				&h->q[h->intr_mode]);
4536 		}
4537 	}
4538 	if (rc) {
4539 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4540 		       h->intr[h->intr_mode], h->devname);
4541 		return -ENODEV;
4542 	}
4543 	return 0;
4544 }
4545 
4546 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4547 {
4548 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4549 		HPSA_RESET_TYPE_CONTROLLER)) {
4550 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4551 		return -EIO;
4552 	}
4553 
4554 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4555 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4556 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4557 		return -1;
4558 	}
4559 
4560 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4561 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4562 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4563 			"after soft reset.\n");
4564 		return -1;
4565 	}
4566 
4567 	return 0;
4568 }
4569 
4570 static void free_irqs(struct ctlr_info *h)
4571 {
4572 	int i;
4573 
4574 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4575 		/* Single reply queue, only one irq to free */
4576 		i = h->intr_mode;
4577 		free_irq(h->intr[i], &h->q[i]);
4578 		return;
4579 	}
4580 
4581 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
4582 		free_irq(h->intr[i], &h->q[i]);
4583 }
4584 
4585 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4586 {
4587 	free_irqs(h);
4588 #ifdef CONFIG_PCI_MSI
4589 	if (h->msix_vector) {
4590 		if (h->pdev->msix_enabled)
4591 			pci_disable_msix(h->pdev);
4592 	} else if (h->msi_vector) {
4593 		if (h->pdev->msi_enabled)
4594 			pci_disable_msi(h->pdev);
4595 	}
4596 #endif /* CONFIG_PCI_MSI */
4597 }
4598 
4599 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4600 {
4601 	hpsa_free_irqs_and_disable_msix(h);
4602 	hpsa_free_sg_chain_blocks(h);
4603 	hpsa_free_cmd_pool(h);
4604 	kfree(h->blockFetchTable);
4605 	pci_free_consistent(h->pdev, h->reply_pool_size,
4606 		h->reply_pool, h->reply_pool_dhandle);
4607 	if (h->vaddr)
4608 		iounmap(h->vaddr);
4609 	if (h->transtable)
4610 		iounmap(h->transtable);
4611 	if (h->cfgtable)
4612 		iounmap(h->cfgtable);
4613 	pci_release_regions(h->pdev);
4614 	kfree(h);
4615 }
4616 
4617 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4618 {
4619 	assert_spin_locked(&lockup_detector_lock);
4620 	if (!hpsa_lockup_detector)
4621 		return;
4622 	if (h->lockup_detected)
4623 		return; /* already stopped the lockup detector */
4624 	list_del(&h->lockup_list);
4625 }
4626 
4627 /* Called when controller lockup detected. */
4628 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4629 {
4630 	struct CommandList *c = NULL;
4631 
4632 	assert_spin_locked(&h->lock);
4633 	/* Mark all outstanding commands as failed and complete them. */
4634 	while (!list_empty(list)) {
4635 		c = list_entry(list->next, struct CommandList, list);
4636 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4637 		finish_cmd(c);
4638 	}
4639 }
4640 
4641 static void controller_lockup_detected(struct ctlr_info *h)
4642 {
4643 	unsigned long flags;
4644 
4645 	assert_spin_locked(&lockup_detector_lock);
4646 	remove_ctlr_from_lockup_detector_list(h);
4647 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4648 	spin_lock_irqsave(&h->lock, flags);
4649 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4650 	spin_unlock_irqrestore(&h->lock, flags);
4651 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4652 			h->lockup_detected);
4653 	pci_disable_device(h->pdev);
4654 	spin_lock_irqsave(&h->lock, flags);
4655 	fail_all_cmds_on_list(h, &h->cmpQ);
4656 	fail_all_cmds_on_list(h, &h->reqQ);
4657 	spin_unlock_irqrestore(&h->lock, flags);
4658 }
4659 
4660 static void detect_controller_lockup(struct ctlr_info *h)
4661 {
4662 	u64 now;
4663 	u32 heartbeat;
4664 	unsigned long flags;
4665 
4666 	assert_spin_locked(&lockup_detector_lock);
4667 	now = get_jiffies_64();
4668 	/* If we've received an interrupt recently, we're ok. */
4669 	if (time_after64(h->last_intr_timestamp +
4670 				(h->heartbeat_sample_interval), now))
4671 		return;
4672 
4673 	/*
4674 	 * If we've already checked the heartbeat recently, we're ok.
4675 	 * This could happen if someone sends us a signal. We
4676 	 * otherwise don't care about signals in this thread.
4677 	 */
4678 	if (time_after64(h->last_heartbeat_timestamp +
4679 				(h->heartbeat_sample_interval), now))
4680 		return;
4681 
4682 	/* If heartbeat has not changed since we last looked, we're not ok. */
4683 	spin_lock_irqsave(&h->lock, flags);
4684 	heartbeat = readl(&h->cfgtable->HeartBeat);
4685 	spin_unlock_irqrestore(&h->lock, flags);
4686 	if (h->last_heartbeat == heartbeat) {
4687 		controller_lockup_detected(h);
4688 		return;
4689 	}
4690 
4691 	/* We're ok. */
4692 	h->last_heartbeat = heartbeat;
4693 	h->last_heartbeat_timestamp = now;
4694 }
4695 
4696 static int detect_controller_lockup_thread(void *notused)
4697 {
4698 	struct ctlr_info *h;
4699 	unsigned long flags;
4700 
4701 	while (1) {
4702 		struct list_head *this, *tmp;
4703 
4704 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4705 		if (kthread_should_stop())
4706 			break;
4707 		spin_lock_irqsave(&lockup_detector_lock, flags);
4708 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4709 			h = list_entry(this, struct ctlr_info, lockup_list);
4710 			detect_controller_lockup(h);
4711 		}
4712 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4713 	}
4714 	return 0;
4715 }
4716 
4717 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4718 {
4719 	unsigned long flags;
4720 
4721 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4722 	spin_lock_irqsave(&lockup_detector_lock, flags);
4723 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4724 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4725 }
4726 
4727 static void start_controller_lockup_detector(struct ctlr_info *h)
4728 {
4729 	/* Start the lockup detector thread if not already started */
4730 	if (!hpsa_lockup_detector) {
4731 		spin_lock_init(&lockup_detector_lock);
4732 		hpsa_lockup_detector =
4733 			kthread_run(detect_controller_lockup_thread,
4734 						NULL, HPSA);
4735 	}
4736 	if (!hpsa_lockup_detector) {
4737 		dev_warn(&h->pdev->dev,
4738 			"Could not start lockup detector thread\n");
4739 		return;
4740 	}
4741 	add_ctlr_to_lockup_detector_list(h);
4742 }
4743 
4744 static void stop_controller_lockup_detector(struct ctlr_info *h)
4745 {
4746 	unsigned long flags;
4747 
4748 	spin_lock_irqsave(&lockup_detector_lock, flags);
4749 	remove_ctlr_from_lockup_detector_list(h);
4750 	/* If the list of ctlr's to monitor is empty, stop the thread */
4751 	if (list_empty(&hpsa_ctlr_list)) {
4752 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4753 		kthread_stop(hpsa_lockup_detector);
4754 		spin_lock_irqsave(&lockup_detector_lock, flags);
4755 		hpsa_lockup_detector = NULL;
4756 	}
4757 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4758 }
4759 
4760 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4761 {
4762 	int dac, rc;
4763 	struct ctlr_info *h;
4764 	int try_soft_reset = 0;
4765 	unsigned long flags;
4766 
4767 	if (number_of_controllers == 0)
4768 		printk(KERN_INFO DRIVER_NAME "\n");
4769 
4770 	rc = hpsa_init_reset_devices(pdev);
4771 	if (rc) {
4772 		if (rc != -ENOTSUPP)
4773 			return rc;
4774 		/* If the reset fails in a particular way (it has no way to do
4775 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4776 		 * a soft reset once we get the controller configured up to the
4777 		 * point that it can accept a command.
4778 		 */
4779 		try_soft_reset = 1;
4780 		rc = 0;
4781 	}
4782 
4783 reinit_after_soft_reset:
4784 
4785 	/* Command structures must be aligned on a 32-byte boundary because
4786 	 * the 5 lower bits of the address are used by the hardware. and by
4787 	 * the driver.  See comments in hpsa.h for more info.
4788 	 */
4789 #define COMMANDLIST_ALIGNMENT 32
4790 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4791 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4792 	if (!h)
4793 		return -ENOMEM;
4794 
4795 	h->pdev = pdev;
4796 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4797 	INIT_LIST_HEAD(&h->cmpQ);
4798 	INIT_LIST_HEAD(&h->reqQ);
4799 	spin_lock_init(&h->lock);
4800 	spin_lock_init(&h->scan_lock);
4801 	rc = hpsa_pci_init(h);
4802 	if (rc != 0)
4803 		goto clean1;
4804 
4805 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4806 	h->ctlr = number_of_controllers;
4807 	number_of_controllers++;
4808 
4809 	/* configure PCI DMA stuff */
4810 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4811 	if (rc == 0) {
4812 		dac = 1;
4813 	} else {
4814 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4815 		if (rc == 0) {
4816 			dac = 0;
4817 		} else {
4818 			dev_err(&pdev->dev, "no suitable DMA available\n");
4819 			goto clean1;
4820 		}
4821 	}
4822 
4823 	/* make sure the board interrupts are off */
4824 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4825 
4826 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4827 		goto clean2;
4828 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4829 	       h->devname, pdev->device,
4830 	       h->intr[h->intr_mode], dac ? "" : " not");
4831 	if (hpsa_allocate_cmd_pool(h))
4832 		goto clean4;
4833 	if (hpsa_allocate_sg_chain_blocks(h))
4834 		goto clean4;
4835 	init_waitqueue_head(&h->scan_wait_queue);
4836 	h->scan_finished = 1; /* no scan currently in progress */
4837 
4838 	pci_set_drvdata(pdev, h);
4839 	h->ndevices = 0;
4840 	h->scsi_host = NULL;
4841 	spin_lock_init(&h->devlock);
4842 	hpsa_put_ctlr_into_performant_mode(h);
4843 
4844 	/* At this point, the controller is ready to take commands.
4845 	 * Now, if reset_devices and the hard reset didn't work, try
4846 	 * the soft reset and see if that works.
4847 	 */
4848 	if (try_soft_reset) {
4849 
4850 		/* This is kind of gross.  We may or may not get a completion
4851 		 * from the soft reset command, and if we do, then the value
4852 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4853 		 * after the reset throwing away any completions we get during
4854 		 * that time.  Unregister the interrupt handler and register
4855 		 * fake ones to scoop up any residual completions.
4856 		 */
4857 		spin_lock_irqsave(&h->lock, flags);
4858 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4859 		spin_unlock_irqrestore(&h->lock, flags);
4860 		free_irqs(h);
4861 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4862 					hpsa_intx_discard_completions);
4863 		if (rc) {
4864 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4865 				"soft reset.\n");
4866 			goto clean4;
4867 		}
4868 
4869 		rc = hpsa_kdump_soft_reset(h);
4870 		if (rc)
4871 			/* Neither hard nor soft reset worked, we're hosed. */
4872 			goto clean4;
4873 
4874 		dev_info(&h->pdev->dev, "Board READY.\n");
4875 		dev_info(&h->pdev->dev,
4876 			"Waiting for stale completions to drain.\n");
4877 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4878 		msleep(10000);
4879 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4880 
4881 		rc = controller_reset_failed(h->cfgtable);
4882 		if (rc)
4883 			dev_info(&h->pdev->dev,
4884 				"Soft reset appears to have failed.\n");
4885 
4886 		/* since the controller's reset, we have to go back and re-init
4887 		 * everything.  Easiest to just forget what we've done and do it
4888 		 * all over again.
4889 		 */
4890 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4891 		try_soft_reset = 0;
4892 		if (rc)
4893 			/* don't go to clean4, we already unallocated */
4894 			return -ENODEV;
4895 
4896 		goto reinit_after_soft_reset;
4897 	}
4898 
4899 	/* Turn the interrupts on so we can service requests */
4900 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4901 
4902 	hpsa_hba_inquiry(h);
4903 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4904 	start_controller_lockup_detector(h);
4905 	return 1;
4906 
4907 clean4:
4908 	hpsa_free_sg_chain_blocks(h);
4909 	hpsa_free_cmd_pool(h);
4910 	free_irqs(h);
4911 clean2:
4912 clean1:
4913 	kfree(h);
4914 	return rc;
4915 }
4916 
4917 static void hpsa_flush_cache(struct ctlr_info *h)
4918 {
4919 	char *flush_buf;
4920 	struct CommandList *c;
4921 
4922 	flush_buf = kzalloc(4, GFP_KERNEL);
4923 	if (!flush_buf)
4924 		return;
4925 
4926 	c = cmd_special_alloc(h);
4927 	if (!c) {
4928 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4929 		goto out_of_memory;
4930 	}
4931 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4932 		RAID_CTLR_LUNID, TYPE_CMD)) {
4933 		goto out;
4934 	}
4935 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4936 	if (c->err_info->CommandStatus != 0)
4937 out:
4938 		dev_warn(&h->pdev->dev,
4939 			"error flushing cache on controller\n");
4940 	cmd_special_free(h, c);
4941 out_of_memory:
4942 	kfree(flush_buf);
4943 }
4944 
4945 static void hpsa_shutdown(struct pci_dev *pdev)
4946 {
4947 	struct ctlr_info *h;
4948 
4949 	h = pci_get_drvdata(pdev);
4950 	/* Turn board interrupts off  and send the flush cache command
4951 	 * sendcmd will turn off interrupt, and send the flush...
4952 	 * To write all data in the battery backed cache to disks
4953 	 */
4954 	hpsa_flush_cache(h);
4955 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4956 	hpsa_free_irqs_and_disable_msix(h);
4957 }
4958 
4959 static void hpsa_free_device_info(struct ctlr_info *h)
4960 {
4961 	int i;
4962 
4963 	for (i = 0; i < h->ndevices; i++)
4964 		kfree(h->dev[i]);
4965 }
4966 
4967 static void hpsa_remove_one(struct pci_dev *pdev)
4968 {
4969 	struct ctlr_info *h;
4970 
4971 	if (pci_get_drvdata(pdev) == NULL) {
4972 		dev_err(&pdev->dev, "unable to remove device\n");
4973 		return;
4974 	}
4975 	h = pci_get_drvdata(pdev);
4976 	stop_controller_lockup_detector(h);
4977 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4978 	hpsa_shutdown(pdev);
4979 	iounmap(h->vaddr);
4980 	iounmap(h->transtable);
4981 	iounmap(h->cfgtable);
4982 	hpsa_free_device_info(h);
4983 	hpsa_free_sg_chain_blocks(h);
4984 	pci_free_consistent(h->pdev,
4985 		h->nr_cmds * sizeof(struct CommandList),
4986 		h->cmd_pool, h->cmd_pool_dhandle);
4987 	pci_free_consistent(h->pdev,
4988 		h->nr_cmds * sizeof(struct ErrorInfo),
4989 		h->errinfo_pool, h->errinfo_pool_dhandle);
4990 	pci_free_consistent(h->pdev, h->reply_pool_size,
4991 		h->reply_pool, h->reply_pool_dhandle);
4992 	kfree(h->cmd_pool_bits);
4993 	kfree(h->blockFetchTable);
4994 	kfree(h->hba_inquiry_data);
4995 	pci_disable_device(pdev);
4996 	pci_release_regions(pdev);
4997 	pci_set_drvdata(pdev, NULL);
4998 	kfree(h);
4999 }
5000 
5001 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5002 	__attribute__((unused)) pm_message_t state)
5003 {
5004 	return -ENOSYS;
5005 }
5006 
5007 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5008 {
5009 	return -ENOSYS;
5010 }
5011 
5012 static struct pci_driver hpsa_pci_driver = {
5013 	.name = HPSA,
5014 	.probe = hpsa_init_one,
5015 	.remove = hpsa_remove_one,
5016 	.id_table = hpsa_pci_device_id,	/* id_table */
5017 	.shutdown = hpsa_shutdown,
5018 	.suspend = hpsa_suspend,
5019 	.resume = hpsa_resume,
5020 };
5021 
5022 /* Fill in bucket_map[], given nsgs (the max number of
5023  * scatter gather elements supported) and bucket[],
5024  * which is an array of 8 integers.  The bucket[] array
5025  * contains 8 different DMA transfer sizes (in 16
5026  * byte increments) which the controller uses to fetch
5027  * commands.  This function fills in bucket_map[], which
5028  * maps a given number of scatter gather elements to one of
5029  * the 8 DMA transfer sizes.  The point of it is to allow the
5030  * controller to only do as much DMA as needed to fetch the
5031  * command, with the DMA transfer size encoded in the lower
5032  * bits of the command address.
5033  */
5034 static void  calc_bucket_map(int bucket[], int num_buckets,
5035 	int nsgs, int *bucket_map)
5036 {
5037 	int i, j, b, size;
5038 
5039 	/* even a command with 0 SGs requires 4 blocks */
5040 #define MINIMUM_TRANSFER_BLOCKS 4
5041 #define NUM_BUCKETS 8
5042 	/* Note, bucket_map must have nsgs+1 entries. */
5043 	for (i = 0; i <= nsgs; i++) {
5044 		/* Compute size of a command with i SG entries */
5045 		size = i + MINIMUM_TRANSFER_BLOCKS;
5046 		b = num_buckets; /* Assume the biggest bucket */
5047 		/* Find the bucket that is just big enough */
5048 		for (j = 0; j < 8; j++) {
5049 			if (bucket[j] >= size) {
5050 				b = j;
5051 				break;
5052 			}
5053 		}
5054 		/* for a command with i SG entries, use bucket b. */
5055 		bucket_map[i] = b;
5056 	}
5057 }
5058 
5059 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5060 {
5061 	int i;
5062 	unsigned long register_value;
5063 
5064 	/* This is a bit complicated.  There are 8 registers on
5065 	 * the controller which we write to to tell it 8 different
5066 	 * sizes of commands which there may be.  It's a way of
5067 	 * reducing the DMA done to fetch each command.  Encoded into
5068 	 * each command's tag are 3 bits which communicate to the controller
5069 	 * which of the eight sizes that command fits within.  The size of
5070 	 * each command depends on how many scatter gather entries there are.
5071 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
5072 	 * with the number of 16-byte blocks a command of that size requires.
5073 	 * The smallest command possible requires 5 such 16 byte blocks.
5074 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5075 	 * blocks.  Note, this only extends to the SG entries contained
5076 	 * within the command block, and does not extend to chained blocks
5077 	 * of SG elements.   bft[] contains the eight values we write to
5078 	 * the registers.  They are not evenly distributed, but have more
5079 	 * sizes for small commands, and fewer sizes for larger commands.
5080 	 */
5081 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5082 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5083 	/*  5 = 1 s/g entry or 4k
5084 	 *  6 = 2 s/g entry or 8k
5085 	 *  8 = 4 s/g entry or 16k
5086 	 * 10 = 6 s/g entry or 24k
5087 	 */
5088 
5089 	/* Controller spec: zero out this buffer. */
5090 	memset(h->reply_pool, 0, h->reply_pool_size);
5091 
5092 	bft[7] = SG_ENTRIES_IN_CMD + 4;
5093 	calc_bucket_map(bft, ARRAY_SIZE(bft),
5094 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
5095 	for (i = 0; i < 8; i++)
5096 		writel(bft[i], &h->transtable->BlockFetch[i]);
5097 
5098 	/* size of controller ring buffer */
5099 	writel(h->max_commands, &h->transtable->RepQSize);
5100 	writel(h->nreply_queues, &h->transtable->RepQCount);
5101 	writel(0, &h->transtable->RepQCtrAddrLow32);
5102 	writel(0, &h->transtable->RepQCtrAddrHigh32);
5103 
5104 	for (i = 0; i < h->nreply_queues; i++) {
5105 		writel(0, &h->transtable->RepQAddr[i].upper);
5106 		writel(h->reply_pool_dhandle +
5107 			(h->max_commands * sizeof(u64) * i),
5108 			&h->transtable->RepQAddr[i].lower);
5109 	}
5110 
5111 	writel(CFGTBL_Trans_Performant | use_short_tags |
5112 		CFGTBL_Trans_enable_directed_msix,
5113 		&(h->cfgtable->HostWrite.TransportRequest));
5114 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5115 	hpsa_wait_for_mode_change_ack(h);
5116 	register_value = readl(&(h->cfgtable->TransportActive));
5117 	if (!(register_value & CFGTBL_Trans_Performant)) {
5118 		dev_warn(&h->pdev->dev, "unable to get board into"
5119 					" performant mode\n");
5120 		return;
5121 	}
5122 	/* Change the access methods to the performant access methods */
5123 	h->access = SA5_performant_access;
5124 	h->transMethod = CFGTBL_Trans_Performant;
5125 }
5126 
5127 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5128 {
5129 	u32 trans_support;
5130 	int i;
5131 
5132 	if (hpsa_simple_mode)
5133 		return;
5134 
5135 	trans_support = readl(&(h->cfgtable->TransportSupport));
5136 	if (!(trans_support & PERFORMANT_MODE))
5137 		return;
5138 
5139 	h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5140 	hpsa_get_max_perf_mode_cmds(h);
5141 	/* Performant mode ring buffer and supporting data structures */
5142 	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5143 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5144 				&(h->reply_pool_dhandle));
5145 
5146 	for (i = 0; i < h->nreply_queues; i++) {
5147 		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5148 		h->reply_queue[i].size = h->max_commands;
5149 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5150 		h->reply_queue[i].current_entry = 0;
5151 	}
5152 
5153 	/* Need a block fetch table for performant mode */
5154 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5155 				sizeof(u32)), GFP_KERNEL);
5156 
5157 	if ((h->reply_pool == NULL)
5158 		|| (h->blockFetchTable == NULL))
5159 		goto clean_up;
5160 
5161 	hpsa_enter_performant_mode(h,
5162 		trans_support & CFGTBL_Trans_use_short_tags);
5163 
5164 	return;
5165 
5166 clean_up:
5167 	if (h->reply_pool)
5168 		pci_free_consistent(h->pdev, h->reply_pool_size,
5169 			h->reply_pool, h->reply_pool_dhandle);
5170 	kfree(h->blockFetchTable);
5171 }
5172 
5173 /*
5174  *  This is it.  Register the PCI driver information for the cards we control
5175  *  the OS will call our registered routines when it finds one of our cards.
5176  */
5177 static int __init hpsa_init(void)
5178 {
5179 	return pci_register_driver(&hpsa_pci_driver);
5180 }
5181 
5182 static void __exit hpsa_cleanup(void)
5183 {
5184 	pci_unregister_driver(&hpsa_pci_driver);
5185 }
5186 
5187 module_init(hpsa_init);
5188 module_exit(hpsa_cleanup);
5189