xref: /openbmc/linux/drivers/scsi/hpsa.c (revision ecd9aad402765abce04a96b8d1ed15163ca6c8a1)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53 
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "1.0.0"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57 
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61 
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64 
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 	HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72 
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 		"Allow hpsa driver to access unknown HP Smart Array hardware");
77 
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
90 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92 	{0,}
93 };
94 
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96 
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102 	{0x3223103C, "Smart Array P800", &SA5_access},
103 	{0x3234103C, "Smart Array P400", &SA5_access},
104 	{0x323d103c, "Smart Array P700M", &SA5_access},
105 	{0x3241103C, "Smart Array P212", &SA5_access},
106 	{0x3243103C, "Smart Array P410", &SA5_access},
107 	{0x3245103C, "Smart Array P410i", &SA5_access},
108 	{0x3247103C, "Smart Array P411", &SA5_access},
109 	{0x3249103C, "Smart Array P812", &SA5_access},
110 	{0x324a103C, "Smart Array P712m", &SA5_access},
111 	{0x324b103C, "Smart Array P711m", &SA5_access},
112 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114 
115 static int number_of_controllers;
116 
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120 
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124 
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
131 	int cmd_type);
132 
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134 		void (*done)(struct scsi_cmnd *));
135 
136 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
137 static int hpsa_slave_alloc(struct scsi_device *sdev);
138 static void hpsa_slave_destroy(struct scsi_device *sdev);
139 
140 static ssize_t raid_level_show(struct device *dev,
141 	struct device_attribute *attr, char *buf);
142 static ssize_t lunid_show(struct device *dev,
143 	struct device_attribute *attr, char *buf);
144 static ssize_t unique_id_show(struct device *dev,
145 	struct device_attribute *attr, char *buf);
146 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
147 static ssize_t host_store_rescan(struct device *dev,
148 	 struct device_attribute *attr, const char *buf, size_t count);
149 static int check_for_unit_attention(struct ctlr_info *h,
150 	struct CommandList *c);
151 static void check_ioctl_unit_attention(struct ctlr_info *h,
152 	struct CommandList *c);
153 
154 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
155 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
156 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
157 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
158 
159 static struct device_attribute *hpsa_sdev_attrs[] = {
160 	&dev_attr_raid_level,
161 	&dev_attr_lunid,
162 	&dev_attr_unique_id,
163 	NULL,
164 };
165 
166 static struct device_attribute *hpsa_shost_attrs[] = {
167 	&dev_attr_rescan,
168 	NULL,
169 };
170 
171 static struct scsi_host_template hpsa_driver_template = {
172 	.module			= THIS_MODULE,
173 	.name			= "hpsa",
174 	.proc_name		= "hpsa",
175 	.queuecommand		= hpsa_scsi_queue_command,
176 	.can_queue		= 512,
177 	.this_id		= -1,
178 	.sg_tablesize		= MAXSGENTRIES,
179 	.cmd_per_lun		= 512,
180 	.use_clustering		= ENABLE_CLUSTERING,
181 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
182 	.ioctl			= hpsa_ioctl,
183 	.slave_alloc		= hpsa_slave_alloc,
184 	.slave_destroy		= hpsa_slave_destroy,
185 #ifdef CONFIG_COMPAT
186 	.compat_ioctl		= hpsa_compat_ioctl,
187 #endif
188 	.sdev_attrs = hpsa_sdev_attrs,
189 	.shost_attrs = hpsa_shost_attrs,
190 };
191 
192 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
193 {
194 	unsigned long *priv = shost_priv(sdev->host);
195 	return (struct ctlr_info *) *priv;
196 }
197 
198 static struct task_struct *hpsa_scan_thread;
199 static DEFINE_MUTEX(hpsa_scan_mutex);
200 static LIST_HEAD(hpsa_scan_q);
201 static int hpsa_scan_func(void *data);
202 
203 /**
204  * add_to_scan_list() - add controller to rescan queue
205  * @h:		      Pointer to the controller.
206  *
207  * Adds the controller to the rescan queue if not already on the queue.
208  *
209  * returns 1 if added to the queue, 0 if skipped (could be on the
210  * queue already, or the controller could be initializing or shutting
211  * down).
212  **/
213 static int add_to_scan_list(struct ctlr_info *h)
214 {
215 	struct ctlr_info *test_h;
216 	int found = 0;
217 	int ret = 0;
218 
219 	if (h->busy_initializing)
220 		return 0;
221 
222 	/*
223 	 * If we don't get the lock, it means the driver is unloading
224 	 * and there's no point in scheduling a new scan.
225 	 */
226 	if (!mutex_trylock(&h->busy_shutting_down))
227 		return 0;
228 
229 	mutex_lock(&hpsa_scan_mutex);
230 	list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
231 		if (test_h == h) {
232 			found = 1;
233 			break;
234 		}
235 	}
236 	if (!found && !h->busy_scanning) {
237 		INIT_COMPLETION(h->scan_wait);
238 		list_add_tail(&h->scan_list, &hpsa_scan_q);
239 		ret = 1;
240 	}
241 	mutex_unlock(&hpsa_scan_mutex);
242 	mutex_unlock(&h->busy_shutting_down);
243 
244 	return ret;
245 }
246 
247 /**
248  * remove_from_scan_list() - remove controller from rescan queue
249  * @h:			   Pointer to the controller.
250  *
251  * Removes the controller from the rescan queue if present. Blocks if
252  * the controller is currently conducting a rescan.  The controller
253  * can be in one of three states:
254  * 1. Doesn't need a scan
255  * 2. On the scan list, but not scanning yet (we remove it)
256  * 3. Busy scanning (and not on the list). In this case we want to wait for
257  *    the scan to complete to make sure the scanning thread for this
258  *    controller is completely idle.
259  **/
260 static void remove_from_scan_list(struct ctlr_info *h)
261 {
262 	struct ctlr_info *test_h, *tmp_h;
263 
264 	mutex_lock(&hpsa_scan_mutex);
265 	list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
266 		if (test_h == h) { /* state 2. */
267 			list_del(&h->scan_list);
268 			complete_all(&h->scan_wait);
269 			mutex_unlock(&hpsa_scan_mutex);
270 			return;
271 		}
272 	}
273 	if (h->busy_scanning) { /* state 3. */
274 		mutex_unlock(&hpsa_scan_mutex);
275 		wait_for_completion(&h->scan_wait);
276 	} else { /* state 1, nothing to do. */
277 		mutex_unlock(&hpsa_scan_mutex);
278 	}
279 }
280 
281 /* hpsa_scan_func() - kernel thread used to rescan controllers
282  * @data:	 Ignored.
283  *
284  * A kernel thread used scan for drive topology changes on
285  * controllers. The thread processes only one controller at a time
286  * using a queue.  Controllers are added to the queue using
287  * add_to_scan_list() and removed from the queue either after done
288  * processing or using remove_from_scan_list().
289  *
290  * returns 0.
291  **/
292 static int hpsa_scan_func(__attribute__((unused)) void *data)
293 {
294 	struct ctlr_info *h;
295 	int host_no;
296 
297 	while (1) {
298 		set_current_state(TASK_INTERRUPTIBLE);
299 		schedule();
300 		if (kthread_should_stop())
301 			break;
302 
303 		while (1) {
304 			mutex_lock(&hpsa_scan_mutex);
305 			if (list_empty(&hpsa_scan_q)) {
306 				mutex_unlock(&hpsa_scan_mutex);
307 				break;
308 			}
309 			h = list_entry(hpsa_scan_q.next, struct ctlr_info,
310 					scan_list);
311 			list_del(&h->scan_list);
312 			h->busy_scanning = 1;
313 			mutex_unlock(&hpsa_scan_mutex);
314 			host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
315 			hpsa_update_scsi_devices(h, host_no);
316 			complete_all(&h->scan_wait);
317 			mutex_lock(&hpsa_scan_mutex);
318 			h->busy_scanning = 0;
319 			mutex_unlock(&hpsa_scan_mutex);
320 		}
321 	}
322 	return 0;
323 }
324 
325 static int check_for_unit_attention(struct ctlr_info *h,
326 	struct CommandList *c)
327 {
328 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
329 		return 0;
330 
331 	switch (c->err_info->SenseInfo[12]) {
332 	case STATE_CHANGED:
333 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
334 			"detected, command retried\n", h->ctlr);
335 		break;
336 	case LUN_FAILED:
337 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
338 			"detected, action required\n", h->ctlr);
339 		break;
340 	case REPORT_LUNS_CHANGED:
341 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
342 			"changed\n", h->ctlr);
343 	/*
344 	 * Here, we could call add_to_scan_list and wake up the scan thread,
345 	 * except that it's quite likely that we will get more than one
346 	 * REPORT_LUNS_CHANGED condition in quick succession, which means
347 	 * that those which occur after the first one will likely happen
348 	 * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
349 	 * robust enough to restart in the middle, undoing what it has already
350 	 * done, and it's not clear that it's even possible to do this, since
351 	 * part of what it does is notify the SCSI mid layer, which starts
352 	 * doing it's own i/o to read partition tables and so on, and the
353 	 * driver doesn't have visibility to know what might need undoing.
354 	 * In any event, if possible, it is horribly complicated to get right
355 	 * so we just don't do it for now.
356 	 *
357 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
358 	 */
359 		break;
360 	case POWER_OR_RESET:
361 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
362 			"or device reset detected\n", h->ctlr);
363 		break;
364 	case UNIT_ATTENTION_CLEARED:
365 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
366 		    "cleared by another initiator\n", h->ctlr);
367 		break;
368 	default:
369 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
370 			"unit attention detected\n", h->ctlr);
371 		break;
372 	}
373 	return 1;
374 }
375 
376 static ssize_t host_store_rescan(struct device *dev,
377 				 struct device_attribute *attr,
378 				 const char *buf, size_t count)
379 {
380 	struct ctlr_info *h;
381 	struct Scsi_Host *shost = class_to_shost(dev);
382 	unsigned long *priv = shost_priv(shost);
383 	h = (struct ctlr_info *) *priv;
384 	if (add_to_scan_list(h)) {
385 		wake_up_process(hpsa_scan_thread);
386 		wait_for_completion_interruptible(&h->scan_wait);
387 	}
388 	return count;
389 }
390 
391 /* Enqueuing and dequeuing functions for cmdlists. */
392 static inline void addQ(struct hlist_head *list, struct CommandList *c)
393 {
394 	hlist_add_head(&c->list, list);
395 }
396 
397 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
398 	struct CommandList *c)
399 {
400 	unsigned long flags;
401 	spin_lock_irqsave(&h->lock, flags);
402 	addQ(&h->reqQ, c);
403 	h->Qdepth++;
404 	start_io(h);
405 	spin_unlock_irqrestore(&h->lock, flags);
406 }
407 
408 static inline void removeQ(struct CommandList *c)
409 {
410 	if (WARN_ON(hlist_unhashed(&c->list)))
411 		return;
412 	hlist_del_init(&c->list);
413 }
414 
415 static inline int is_hba_lunid(unsigned char scsi3addr[])
416 {
417 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
418 }
419 
420 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
421 {
422 	return (scsi3addr[3] & 0xC0) == 0x40;
423 }
424 
425 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
426 	"UNKNOWN"
427 };
428 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
429 
430 static ssize_t raid_level_show(struct device *dev,
431 	     struct device_attribute *attr, char *buf)
432 {
433 	ssize_t l = 0;
434 	unsigned char rlevel;
435 	struct ctlr_info *h;
436 	struct scsi_device *sdev;
437 	struct hpsa_scsi_dev_t *hdev;
438 	unsigned long flags;
439 
440 	sdev = to_scsi_device(dev);
441 	h = sdev_to_hba(sdev);
442 	spin_lock_irqsave(&h->lock, flags);
443 	hdev = sdev->hostdata;
444 	if (!hdev) {
445 		spin_unlock_irqrestore(&h->lock, flags);
446 		return -ENODEV;
447 	}
448 
449 	/* Is this even a logical drive? */
450 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
451 		spin_unlock_irqrestore(&h->lock, flags);
452 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
453 		return l;
454 	}
455 
456 	rlevel = hdev->raid_level;
457 	spin_unlock_irqrestore(&h->lock, flags);
458 	if (rlevel > RAID_UNKNOWN)
459 		rlevel = RAID_UNKNOWN;
460 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
461 	return l;
462 }
463 
464 static ssize_t lunid_show(struct device *dev,
465 	     struct device_attribute *attr, char *buf)
466 {
467 	struct ctlr_info *h;
468 	struct scsi_device *sdev;
469 	struct hpsa_scsi_dev_t *hdev;
470 	unsigned long flags;
471 	unsigned char lunid[8];
472 
473 	sdev = to_scsi_device(dev);
474 	h = sdev_to_hba(sdev);
475 	spin_lock_irqsave(&h->lock, flags);
476 	hdev = sdev->hostdata;
477 	if (!hdev) {
478 		spin_unlock_irqrestore(&h->lock, flags);
479 		return -ENODEV;
480 	}
481 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
482 	spin_unlock_irqrestore(&h->lock, flags);
483 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
484 		lunid[0], lunid[1], lunid[2], lunid[3],
485 		lunid[4], lunid[5], lunid[6], lunid[7]);
486 }
487 
488 static ssize_t unique_id_show(struct device *dev,
489 	     struct device_attribute *attr, char *buf)
490 {
491 	struct ctlr_info *h;
492 	struct scsi_device *sdev;
493 	struct hpsa_scsi_dev_t *hdev;
494 	unsigned long flags;
495 	unsigned char sn[16];
496 
497 	sdev = to_scsi_device(dev);
498 	h = sdev_to_hba(sdev);
499 	spin_lock_irqsave(&h->lock, flags);
500 	hdev = sdev->hostdata;
501 	if (!hdev) {
502 		spin_unlock_irqrestore(&h->lock, flags);
503 		return -ENODEV;
504 	}
505 	memcpy(sn, hdev->device_id, sizeof(sn));
506 	spin_unlock_irqrestore(&h->lock, flags);
507 	return snprintf(buf, 16 * 2 + 2,
508 			"%02X%02X%02X%02X%02X%02X%02X%02X"
509 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
510 			sn[0], sn[1], sn[2], sn[3],
511 			sn[4], sn[5], sn[6], sn[7],
512 			sn[8], sn[9], sn[10], sn[11],
513 			sn[12], sn[13], sn[14], sn[15]);
514 }
515 
516 static int hpsa_find_target_lun(struct ctlr_info *h,
517 	unsigned char scsi3addr[], int bus, int *target, int *lun)
518 {
519 	/* finds an unused bus, target, lun for a new physical device
520 	 * assumes h->devlock is held
521 	 */
522 	int i, found = 0;
523 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
524 
525 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
526 
527 	for (i = 0; i < h->ndevices; i++) {
528 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
529 			set_bit(h->dev[i]->target, lun_taken);
530 	}
531 
532 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
533 		if (!test_bit(i, lun_taken)) {
534 			/* *bus = 1; */
535 			*target = i;
536 			*lun = 0;
537 			found = 1;
538 			break;
539 		}
540 	}
541 	return !found;
542 }
543 
544 /* Add an entry into h->dev[] array. */
545 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
546 		struct hpsa_scsi_dev_t *device,
547 		struct hpsa_scsi_dev_t *added[], int *nadded)
548 {
549 	/* assumes h->devlock is held */
550 	int n = h->ndevices;
551 	int i;
552 	unsigned char addr1[8], addr2[8];
553 	struct hpsa_scsi_dev_t *sd;
554 
555 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
556 		dev_err(&h->pdev->dev, "too many devices, some will be "
557 			"inaccessible.\n");
558 		return -1;
559 	}
560 
561 	/* physical devices do not have lun or target assigned until now. */
562 	if (device->lun != -1)
563 		/* Logical device, lun is already assigned. */
564 		goto lun_assigned;
565 
566 	/* If this device a non-zero lun of a multi-lun device
567 	 * byte 4 of the 8-byte LUN addr will contain the logical
568 	 * unit no, zero otherise.
569 	 */
570 	if (device->scsi3addr[4] == 0) {
571 		/* This is not a non-zero lun of a multi-lun device */
572 		if (hpsa_find_target_lun(h, device->scsi3addr,
573 			device->bus, &device->target, &device->lun) != 0)
574 			return -1;
575 		goto lun_assigned;
576 	}
577 
578 	/* This is a non-zero lun of a multi-lun device.
579 	 * Search through our list and find the device which
580 	 * has the same 8 byte LUN address, excepting byte 4.
581 	 * Assign the same bus and target for this new LUN.
582 	 * Use the logical unit number from the firmware.
583 	 */
584 	memcpy(addr1, device->scsi3addr, 8);
585 	addr1[4] = 0;
586 	for (i = 0; i < n; i++) {
587 		sd = h->dev[i];
588 		memcpy(addr2, sd->scsi3addr, 8);
589 		addr2[4] = 0;
590 		/* differ only in byte 4? */
591 		if (memcmp(addr1, addr2, 8) == 0) {
592 			device->bus = sd->bus;
593 			device->target = sd->target;
594 			device->lun = device->scsi3addr[4];
595 			break;
596 		}
597 	}
598 	if (device->lun == -1) {
599 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
600 			" suspect firmware bug or unsupported hardware "
601 			"configuration.\n");
602 			return -1;
603 	}
604 
605 lun_assigned:
606 
607 	h->dev[n] = device;
608 	h->ndevices++;
609 	added[*nadded] = device;
610 	(*nadded)++;
611 
612 	/* initially, (before registering with scsi layer) we don't
613 	 * know our hostno and we don't want to print anything first
614 	 * time anyway (the scsi layer's inquiries will show that info)
615 	 */
616 	/* if (hostno != -1) */
617 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
618 			scsi_device_type(device->devtype), hostno,
619 			device->bus, device->target, device->lun);
620 	return 0;
621 }
622 
623 /* Remove an entry from h->dev[] array. */
624 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
625 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
626 {
627 	/* assumes h->devlock is held */
628 	int i;
629 	struct hpsa_scsi_dev_t *sd;
630 
631 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
632 
633 	sd = h->dev[entry];
634 	removed[*nremoved] = h->dev[entry];
635 	(*nremoved)++;
636 
637 	for (i = entry; i < h->ndevices-1; i++)
638 		h->dev[i] = h->dev[i+1];
639 	h->ndevices--;
640 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
641 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
642 		sd->lun);
643 }
644 
645 #define SCSI3ADDR_EQ(a, b) ( \
646 	(a)[7] == (b)[7] && \
647 	(a)[6] == (b)[6] && \
648 	(a)[5] == (b)[5] && \
649 	(a)[4] == (b)[4] && \
650 	(a)[3] == (b)[3] && \
651 	(a)[2] == (b)[2] && \
652 	(a)[1] == (b)[1] && \
653 	(a)[0] == (b)[0])
654 
655 static void fixup_botched_add(struct ctlr_info *h,
656 	struct hpsa_scsi_dev_t *added)
657 {
658 	/* called when scsi_add_device fails in order to re-adjust
659 	 * h->dev[] to match the mid layer's view.
660 	 */
661 	unsigned long flags;
662 	int i, j;
663 
664 	spin_lock_irqsave(&h->lock, flags);
665 	for (i = 0; i < h->ndevices; i++) {
666 		if (h->dev[i] == added) {
667 			for (j = i; j < h->ndevices-1; j++)
668 				h->dev[j] = h->dev[j+1];
669 			h->ndevices--;
670 			break;
671 		}
672 	}
673 	spin_unlock_irqrestore(&h->lock, flags);
674 	kfree(added);
675 }
676 
677 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
678 	struct hpsa_scsi_dev_t *dev2)
679 {
680 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
681 		(dev1->lun != -1 && dev2->lun != -1)) &&
682 		dev1->devtype != 0x0C)
683 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
684 
685 	/* we compare everything except lun and target as these
686 	 * are not yet assigned.  Compare parts likely
687 	 * to differ first
688 	 */
689 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
690 		sizeof(dev1->scsi3addr)) != 0)
691 		return 0;
692 	if (memcmp(dev1->device_id, dev2->device_id,
693 		sizeof(dev1->device_id)) != 0)
694 		return 0;
695 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
696 		return 0;
697 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
698 		return 0;
699 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
700 		return 0;
701 	if (dev1->devtype != dev2->devtype)
702 		return 0;
703 	if (dev1->raid_level != dev2->raid_level)
704 		return 0;
705 	if (dev1->bus != dev2->bus)
706 		return 0;
707 	return 1;
708 }
709 
710 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
711  * and return needle location in *index.  If scsi3addr matches, but not
712  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
713  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
714  */
715 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
716 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
717 	int *index)
718 {
719 	int i;
720 #define DEVICE_NOT_FOUND 0
721 #define DEVICE_CHANGED 1
722 #define DEVICE_SAME 2
723 	for (i = 0; i < haystack_size; i++) {
724 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
725 			*index = i;
726 			if (device_is_the_same(needle, haystack[i]))
727 				return DEVICE_SAME;
728 			else
729 				return DEVICE_CHANGED;
730 		}
731 	}
732 	*index = -1;
733 	return DEVICE_NOT_FOUND;
734 }
735 
736 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
737 	struct hpsa_scsi_dev_t *sd[], int nsds)
738 {
739 	/* sd contains scsi3 addresses and devtypes, and inquiry
740 	 * data.  This function takes what's in sd to be the current
741 	 * reality and updates h->dev[] to reflect that reality.
742 	 */
743 	int i, entry, device_change, changes = 0;
744 	struct hpsa_scsi_dev_t *csd;
745 	unsigned long flags;
746 	struct hpsa_scsi_dev_t **added, **removed;
747 	int nadded, nremoved;
748 	struct Scsi_Host *sh = NULL;
749 
750 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
751 		GFP_KERNEL);
752 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
753 		GFP_KERNEL);
754 
755 	if (!added || !removed) {
756 		dev_warn(&h->pdev->dev, "out of memory in "
757 			"adjust_hpsa_scsi_table\n");
758 		goto free_and_out;
759 	}
760 
761 	spin_lock_irqsave(&h->devlock, flags);
762 
763 	/* find any devices in h->dev[] that are not in
764 	 * sd[] and remove them from h->dev[], and for any
765 	 * devices which have changed, remove the old device
766 	 * info and add the new device info.
767 	 */
768 	i = 0;
769 	nremoved = 0;
770 	nadded = 0;
771 	while (i < h->ndevices) {
772 		csd = h->dev[i];
773 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
774 		if (device_change == DEVICE_NOT_FOUND) {
775 			changes++;
776 			hpsa_scsi_remove_entry(h, hostno, i,
777 				removed, &nremoved);
778 			continue; /* remove ^^^, hence i not incremented */
779 		} else if (device_change == DEVICE_CHANGED) {
780 			changes++;
781 			hpsa_scsi_remove_entry(h, hostno, i,
782 				removed, &nremoved);
783 			(void) hpsa_scsi_add_entry(h, hostno, sd[entry],
784 				added, &nadded);
785 			/* add can't fail, we just removed one. */
786 			sd[entry] = NULL; /* prevent it from being freed */
787 		}
788 		i++;
789 	}
790 
791 	/* Now, make sure every device listed in sd[] is also
792 	 * listed in h->dev[], adding them if they aren't found
793 	 */
794 
795 	for (i = 0; i < nsds; i++) {
796 		if (!sd[i]) /* if already added above. */
797 			continue;
798 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
799 					h->ndevices, &entry);
800 		if (device_change == DEVICE_NOT_FOUND) {
801 			changes++;
802 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
803 				added, &nadded) != 0)
804 				break;
805 			sd[i] = NULL; /* prevent from being freed later. */
806 		} else if (device_change == DEVICE_CHANGED) {
807 			/* should never happen... */
808 			changes++;
809 			dev_warn(&h->pdev->dev,
810 				"device unexpectedly changed.\n");
811 			/* but if it does happen, we just ignore that device */
812 		}
813 	}
814 	spin_unlock_irqrestore(&h->devlock, flags);
815 
816 	/* Don't notify scsi mid layer of any changes the first time through
817 	 * (or if there are no changes) scsi_scan_host will do it later the
818 	 * first time through.
819 	 */
820 	if (hostno == -1 || !changes)
821 		goto free_and_out;
822 
823 	sh = h->scsi_host;
824 	/* Notify scsi mid layer of any removed devices */
825 	for (i = 0; i < nremoved; i++) {
826 		struct scsi_device *sdev =
827 			scsi_device_lookup(sh, removed[i]->bus,
828 				removed[i]->target, removed[i]->lun);
829 		if (sdev != NULL) {
830 			scsi_remove_device(sdev);
831 			scsi_device_put(sdev);
832 		} else {
833 			/* We don't expect to get here.
834 			 * future cmds to this device will get selection
835 			 * timeout as if the device was gone.
836 			 */
837 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
838 				" for removal.", hostno, removed[i]->bus,
839 				removed[i]->target, removed[i]->lun);
840 		}
841 		kfree(removed[i]);
842 		removed[i] = NULL;
843 	}
844 
845 	/* Notify scsi mid layer of any added devices */
846 	for (i = 0; i < nadded; i++) {
847 		if (scsi_add_device(sh, added[i]->bus,
848 			added[i]->target, added[i]->lun) == 0)
849 			continue;
850 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
851 			"device not added.\n", hostno, added[i]->bus,
852 			added[i]->target, added[i]->lun);
853 		/* now we have to remove it from h->dev,
854 		 * since it didn't get added to scsi mid layer
855 		 */
856 		fixup_botched_add(h, added[i]);
857 	}
858 
859 free_and_out:
860 	kfree(added);
861 	kfree(removed);
862 }
863 
864 /*
865  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
866  * Assume's h->devlock is held.
867  */
868 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
869 	int bus, int target, int lun)
870 {
871 	int i;
872 	struct hpsa_scsi_dev_t *sd;
873 
874 	for (i = 0; i < h->ndevices; i++) {
875 		sd = h->dev[i];
876 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
877 			return sd;
878 	}
879 	return NULL;
880 }
881 
882 /* link sdev->hostdata to our per-device structure. */
883 static int hpsa_slave_alloc(struct scsi_device *sdev)
884 {
885 	struct hpsa_scsi_dev_t *sd;
886 	unsigned long flags;
887 	struct ctlr_info *h;
888 
889 	h = sdev_to_hba(sdev);
890 	spin_lock_irqsave(&h->devlock, flags);
891 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
892 		sdev_id(sdev), sdev->lun);
893 	if (sd != NULL)
894 		sdev->hostdata = sd;
895 	spin_unlock_irqrestore(&h->devlock, flags);
896 	return 0;
897 }
898 
899 static void hpsa_slave_destroy(struct scsi_device *sdev)
900 {
901 	/* nothing to do. */
902 }
903 
904 static void hpsa_scsi_setup(struct ctlr_info *h)
905 {
906 	h->ndevices = 0;
907 	h->scsi_host = NULL;
908 	spin_lock_init(&h->devlock);
909 }
910 
911 static void complete_scsi_command(struct CommandList *cp,
912 	int timeout, u32 tag)
913 {
914 	struct scsi_cmnd *cmd;
915 	struct ctlr_info *h;
916 	struct ErrorInfo *ei;
917 
918 	unsigned char sense_key;
919 	unsigned char asc;      /* additional sense code */
920 	unsigned char ascq;     /* additional sense code qualifier */
921 
922 	ei = cp->err_info;
923 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
924 	h = cp->h;
925 
926 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
927 
928 	cmd->result = (DID_OK << 16); 		/* host byte */
929 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
930 	cmd->result |= (ei->ScsiStatus << 1);
931 
932 	/* copy the sense data whether we need to or not. */
933 	memcpy(cmd->sense_buffer, ei->SenseInfo,
934 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
935 			SCSI_SENSE_BUFFERSIZE :
936 			ei->SenseLen);
937 	scsi_set_resid(cmd, ei->ResidualCnt);
938 
939 	if (ei->CommandStatus == 0) {
940 		cmd->scsi_done(cmd);
941 		cmd_free(h, cp);
942 		return;
943 	}
944 
945 	/* an error has occurred */
946 	switch (ei->CommandStatus) {
947 
948 	case CMD_TARGET_STATUS:
949 		if (ei->ScsiStatus) {
950 			/* Get sense key */
951 			sense_key = 0xf & ei->SenseInfo[2];
952 			/* Get additional sense code */
953 			asc = ei->SenseInfo[12];
954 			/* Get addition sense code qualifier */
955 			ascq = ei->SenseInfo[13];
956 		}
957 
958 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
959 			if (check_for_unit_attention(h, cp)) {
960 				cmd->result = DID_SOFT_ERROR << 16;
961 				break;
962 			}
963 			if (sense_key == ILLEGAL_REQUEST) {
964 				/*
965 				 * SCSI REPORT_LUNS is commonly unsupported on
966 				 * Smart Array.  Suppress noisy complaint.
967 				 */
968 				if (cp->Request.CDB[0] == REPORT_LUNS)
969 					break;
970 
971 				/* If ASC/ASCQ indicate Logical Unit
972 				 * Not Supported condition,
973 				 */
974 				if ((asc == 0x25) && (ascq == 0x0)) {
975 					dev_warn(&h->pdev->dev, "cp %p "
976 						"has check condition\n", cp);
977 					break;
978 				}
979 			}
980 
981 			if (sense_key == NOT_READY) {
982 				/* If Sense is Not Ready, Logical Unit
983 				 * Not ready, Manual Intervention
984 				 * required
985 				 */
986 				if ((asc == 0x04) && (ascq == 0x03)) {
987 					cmd->result = DID_NO_CONNECT << 16;
988 					dev_warn(&h->pdev->dev, "cp %p "
989 						"has check condition: unit "
990 						"not ready, manual "
991 						"intervention required\n", cp);
992 					break;
993 				}
994 			}
995 
996 
997 			/* Must be some other type of check condition */
998 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
999 					"unknown type: "
1000 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1001 					"Returning result: 0x%x, "
1002 					"cmd=[%02x %02x %02x %02x %02x "
1003 					"%02x %02x %02x %02x %02x]\n",
1004 					cp, sense_key, asc, ascq,
1005 					cmd->result,
1006 					cmd->cmnd[0], cmd->cmnd[1],
1007 					cmd->cmnd[2], cmd->cmnd[3],
1008 					cmd->cmnd[4], cmd->cmnd[5],
1009 					cmd->cmnd[6], cmd->cmnd[7],
1010 					cmd->cmnd[8], cmd->cmnd[9]);
1011 			break;
1012 		}
1013 
1014 
1015 		/* Problem was not a check condition
1016 		 * Pass it up to the upper layers...
1017 		 */
1018 		if (ei->ScsiStatus) {
1019 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1020 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1021 				"Returning result: 0x%x\n",
1022 				cp, ei->ScsiStatus,
1023 				sense_key, asc, ascq,
1024 				cmd->result);
1025 		} else {  /* scsi status is zero??? How??? */
1026 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1027 				"Returning no connection.\n", cp),
1028 
1029 			/* Ordinarily, this case should never happen,
1030 			 * but there is a bug in some released firmware
1031 			 * revisions that allows it to happen if, for
1032 			 * example, a 4100 backplane loses power and
1033 			 * the tape drive is in it.  We assume that
1034 			 * it's a fatal error of some kind because we
1035 			 * can't show that it wasn't. We will make it
1036 			 * look like selection timeout since that is
1037 			 * the most common reason for this to occur,
1038 			 * and it's severe enough.
1039 			 */
1040 
1041 			cmd->result = DID_NO_CONNECT << 16;
1042 		}
1043 		break;
1044 
1045 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1046 		break;
1047 	case CMD_DATA_OVERRUN:
1048 		dev_warn(&h->pdev->dev, "cp %p has"
1049 			" completed with data overrun "
1050 			"reported\n", cp);
1051 		break;
1052 	case CMD_INVALID: {
1053 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1054 		print_cmd(cp); */
1055 		/* We get CMD_INVALID if you address a non-existent device
1056 		 * instead of a selection timeout (no response).  You will
1057 		 * see this if you yank out a drive, then try to access it.
1058 		 * This is kind of a shame because it means that any other
1059 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1060 		 * missing target. */
1061 		cmd->result = DID_NO_CONNECT << 16;
1062 	}
1063 		break;
1064 	case CMD_PROTOCOL_ERR:
1065 		dev_warn(&h->pdev->dev, "cp %p has "
1066 			"protocol error \n", cp);
1067 		break;
1068 	case CMD_HARDWARE_ERR:
1069 		cmd->result = DID_ERROR << 16;
1070 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1071 		break;
1072 	case CMD_CONNECTION_LOST:
1073 		cmd->result = DID_ERROR << 16;
1074 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1075 		break;
1076 	case CMD_ABORTED:
1077 		cmd->result = DID_ABORT << 16;
1078 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1079 				cp, ei->ScsiStatus);
1080 		break;
1081 	case CMD_ABORT_FAILED:
1082 		cmd->result = DID_ERROR << 16;
1083 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1084 		break;
1085 	case CMD_UNSOLICITED_ABORT:
1086 		cmd->result = DID_ABORT << 16;
1087 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1088 			"abort\n", cp);
1089 		break;
1090 	case CMD_TIMEOUT:
1091 		cmd->result = DID_TIME_OUT << 16;
1092 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1093 		break;
1094 	default:
1095 		cmd->result = DID_ERROR << 16;
1096 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1097 				cp, ei->CommandStatus);
1098 	}
1099 	cmd->scsi_done(cmd);
1100 	cmd_free(h, cp);
1101 }
1102 
1103 static int hpsa_scsi_detect(struct ctlr_info *h)
1104 {
1105 	struct Scsi_Host *sh;
1106 	int error;
1107 
1108 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1109 	if (sh == NULL)
1110 		goto fail;
1111 
1112 	sh->io_port = 0;
1113 	sh->n_io_port = 0;
1114 	sh->this_id = -1;
1115 	sh->max_channel = 3;
1116 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1117 	sh->max_lun = HPSA_MAX_LUN;
1118 	sh->max_id = HPSA_MAX_LUN;
1119 	h->scsi_host = sh;
1120 	sh->hostdata[0] = (unsigned long) h;
1121 	sh->irq = h->intr[SIMPLE_MODE_INT];
1122 	sh->unique_id = sh->irq;
1123 	error = scsi_add_host(sh, &h->pdev->dev);
1124 	if (error)
1125 		goto fail_host_put;
1126 	scsi_scan_host(sh);
1127 	return 0;
1128 
1129  fail_host_put:
1130 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1131 		" failed for controller %d\n", h->ctlr);
1132 	scsi_host_put(sh);
1133 	return error;
1134  fail:
1135 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1136 		" failed for controller %d\n", h->ctlr);
1137 	return -ENOMEM;
1138 }
1139 
1140 static void hpsa_pci_unmap(struct pci_dev *pdev,
1141 	struct CommandList *c, int sg_used, int data_direction)
1142 {
1143 	int i;
1144 	union u64bit addr64;
1145 
1146 	for (i = 0; i < sg_used; i++) {
1147 		addr64.val32.lower = c->SG[i].Addr.lower;
1148 		addr64.val32.upper = c->SG[i].Addr.upper;
1149 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1150 			data_direction);
1151 	}
1152 }
1153 
1154 static void hpsa_map_one(struct pci_dev *pdev,
1155 		struct CommandList *cp,
1156 		unsigned char *buf,
1157 		size_t buflen,
1158 		int data_direction)
1159 {
1160 	u64 addr64;
1161 
1162 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1163 		cp->Header.SGList = 0;
1164 		cp->Header.SGTotal = 0;
1165 		return;
1166 	}
1167 
1168 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1169 	cp->SG[0].Addr.lower =
1170 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1171 	cp->SG[0].Addr.upper =
1172 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1173 	cp->SG[0].Len = buflen;
1174 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1175 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1176 }
1177 
1178 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1179 	struct CommandList *c)
1180 {
1181 	DECLARE_COMPLETION_ONSTACK(wait);
1182 
1183 	c->waiting = &wait;
1184 	enqueue_cmd_and_start_io(h, c);
1185 	wait_for_completion(&wait);
1186 }
1187 
1188 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1189 	struct CommandList *c, int data_direction)
1190 {
1191 	int retry_count = 0;
1192 
1193 	do {
1194 		memset(c->err_info, 0, sizeof(c->err_info));
1195 		hpsa_scsi_do_simple_cmd_core(h, c);
1196 		retry_count++;
1197 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1198 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1199 }
1200 
1201 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1202 {
1203 	struct ErrorInfo *ei;
1204 	struct device *d = &cp->h->pdev->dev;
1205 
1206 	ei = cp->err_info;
1207 	switch (ei->CommandStatus) {
1208 	case CMD_TARGET_STATUS:
1209 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1210 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1211 				ei->ScsiStatus);
1212 		if (ei->ScsiStatus == 0)
1213 			dev_warn(d, "SCSI status is abnormally zero.  "
1214 			"(probably indicates selection timeout "
1215 			"reported incorrectly due to a known "
1216 			"firmware bug, circa July, 2001.)\n");
1217 		break;
1218 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1219 			dev_info(d, "UNDERRUN\n");
1220 		break;
1221 	case CMD_DATA_OVERRUN:
1222 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1223 		break;
1224 	case CMD_INVALID: {
1225 		/* controller unfortunately reports SCSI passthru's
1226 		 * to non-existent targets as invalid commands.
1227 		 */
1228 		dev_warn(d, "cp %p is reported invalid (probably means "
1229 			"target device no longer present)\n", cp);
1230 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1231 		print_cmd(cp);  */
1232 		}
1233 		break;
1234 	case CMD_PROTOCOL_ERR:
1235 		dev_warn(d, "cp %p has protocol error \n", cp);
1236 		break;
1237 	case CMD_HARDWARE_ERR:
1238 		/* cmd->result = DID_ERROR << 16; */
1239 		dev_warn(d, "cp %p had hardware error\n", cp);
1240 		break;
1241 	case CMD_CONNECTION_LOST:
1242 		dev_warn(d, "cp %p had connection lost\n", cp);
1243 		break;
1244 	case CMD_ABORTED:
1245 		dev_warn(d, "cp %p was aborted\n", cp);
1246 		break;
1247 	case CMD_ABORT_FAILED:
1248 		dev_warn(d, "cp %p reports abort failed\n", cp);
1249 		break;
1250 	case CMD_UNSOLICITED_ABORT:
1251 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1252 		break;
1253 	case CMD_TIMEOUT:
1254 		dev_warn(d, "cp %p timed out\n", cp);
1255 		break;
1256 	default:
1257 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1258 				ei->CommandStatus);
1259 	}
1260 }
1261 
1262 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1263 			unsigned char page, unsigned char *buf,
1264 			unsigned char bufsize)
1265 {
1266 	int rc = IO_OK;
1267 	struct CommandList *c;
1268 	struct ErrorInfo *ei;
1269 
1270 	c = cmd_special_alloc(h);
1271 
1272 	if (c == NULL) {			/* trouble... */
1273 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1274 		return -ENOMEM;
1275 	}
1276 
1277 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1278 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1279 	ei = c->err_info;
1280 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1281 		hpsa_scsi_interpret_error(c);
1282 		rc = -1;
1283 	}
1284 	cmd_special_free(h, c);
1285 	return rc;
1286 }
1287 
1288 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1289 {
1290 	int rc = IO_OK;
1291 	struct CommandList *c;
1292 	struct ErrorInfo *ei;
1293 
1294 	c = cmd_special_alloc(h);
1295 
1296 	if (c == NULL) {			/* trouble... */
1297 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1298 		return -1;
1299 	}
1300 
1301 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1302 	hpsa_scsi_do_simple_cmd_core(h, c);
1303 	/* no unmap needed here because no data xfer. */
1304 
1305 	ei = c->err_info;
1306 	if (ei->CommandStatus != 0) {
1307 		hpsa_scsi_interpret_error(c);
1308 		rc = -1;
1309 	}
1310 	cmd_special_free(h, c);
1311 	return rc;
1312 }
1313 
1314 static void hpsa_get_raid_level(struct ctlr_info *h,
1315 	unsigned char *scsi3addr, unsigned char *raid_level)
1316 {
1317 	int rc;
1318 	unsigned char *buf;
1319 
1320 	*raid_level = RAID_UNKNOWN;
1321 	buf = kzalloc(64, GFP_KERNEL);
1322 	if (!buf)
1323 		return;
1324 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1325 	if (rc == 0)
1326 		*raid_level = buf[8];
1327 	if (*raid_level > RAID_UNKNOWN)
1328 		*raid_level = RAID_UNKNOWN;
1329 	kfree(buf);
1330 	return;
1331 }
1332 
1333 /* Get the device id from inquiry page 0x83 */
1334 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1335 	unsigned char *device_id, int buflen)
1336 {
1337 	int rc;
1338 	unsigned char *buf;
1339 
1340 	if (buflen > 16)
1341 		buflen = 16;
1342 	buf = kzalloc(64, GFP_KERNEL);
1343 	if (!buf)
1344 		return -1;
1345 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1346 	if (rc == 0)
1347 		memcpy(device_id, &buf[8], buflen);
1348 	kfree(buf);
1349 	return rc != 0;
1350 }
1351 
1352 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1353 		struct ReportLUNdata *buf, int bufsize,
1354 		int extended_response)
1355 {
1356 	int rc = IO_OK;
1357 	struct CommandList *c;
1358 	unsigned char scsi3addr[8];
1359 	struct ErrorInfo *ei;
1360 
1361 	c = cmd_special_alloc(h);
1362 	if (c == NULL) {			/* trouble... */
1363 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1364 		return -1;
1365 	}
1366 
1367 	memset(&scsi3addr[0], 0, 8); /* address the controller */
1368 
1369 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1370 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1371 	if (extended_response)
1372 		c->Request.CDB[1] = extended_response;
1373 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1374 	ei = c->err_info;
1375 	if (ei->CommandStatus != 0 &&
1376 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1377 		hpsa_scsi_interpret_error(c);
1378 		rc = -1;
1379 	}
1380 	cmd_special_free(h, c);
1381 	return rc;
1382 }
1383 
1384 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1385 		struct ReportLUNdata *buf,
1386 		int bufsize, int extended_response)
1387 {
1388 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1389 }
1390 
1391 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1392 		struct ReportLUNdata *buf, int bufsize)
1393 {
1394 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1395 }
1396 
1397 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1398 	int bus, int target, int lun)
1399 {
1400 	device->bus = bus;
1401 	device->target = target;
1402 	device->lun = lun;
1403 }
1404 
1405 static int hpsa_update_device_info(struct ctlr_info *h,
1406 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1407 {
1408 #define OBDR_TAPE_INQ_SIZE 49
1409 	unsigned char *inq_buff = NULL;
1410 
1411 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1412 	if (!inq_buff)
1413 		goto bail_out;
1414 
1415 	memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE);
1416 	/* Do an inquiry to the device to see what it is. */
1417 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1418 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1419 		/* Inquiry failed (msg printed already) */
1420 		dev_err(&h->pdev->dev,
1421 			"hpsa_update_device_info: inquiry failed\n");
1422 		goto bail_out;
1423 	}
1424 
1425 	/* As a side effect, record the firmware version number
1426 	 * if we happen to be talking to the RAID controller.
1427 	 */
1428 	if (is_hba_lunid(scsi3addr))
1429 		memcpy(h->firm_ver, &inq_buff[32], 4);
1430 
1431 	this_device->devtype = (inq_buff[0] & 0x1f);
1432 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1433 	memcpy(this_device->vendor, &inq_buff[8],
1434 		sizeof(this_device->vendor));
1435 	memcpy(this_device->model, &inq_buff[16],
1436 		sizeof(this_device->model));
1437 	memcpy(this_device->revision, &inq_buff[32],
1438 		sizeof(this_device->revision));
1439 	memset(this_device->device_id, 0,
1440 		sizeof(this_device->device_id));
1441 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1442 		sizeof(this_device->device_id));
1443 
1444 	if (this_device->devtype == TYPE_DISK &&
1445 		is_logical_dev_addr_mode(scsi3addr))
1446 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1447 	else
1448 		this_device->raid_level = RAID_UNKNOWN;
1449 
1450 	kfree(inq_buff);
1451 	return 0;
1452 
1453 bail_out:
1454 	kfree(inq_buff);
1455 	return 1;
1456 }
1457 
1458 static unsigned char *msa2xxx_model[] = {
1459 	"MSA2012",
1460 	"MSA2024",
1461 	"MSA2312",
1462 	"MSA2324",
1463 	NULL,
1464 };
1465 
1466 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1467 {
1468 	int i;
1469 
1470 	for (i = 0; msa2xxx_model[i]; i++)
1471 		if (strncmp(device->model, msa2xxx_model[i],
1472 			strlen(msa2xxx_model[i])) == 0)
1473 			return 1;
1474 	return 0;
1475 }
1476 
1477 /* Helper function to assign bus, target, lun mapping of devices.
1478  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1479  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1480  * Logical drive target and lun are assigned at this time, but
1481  * physical device lun and target assignment are deferred (assigned
1482  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1483  */
1484 static void figure_bus_target_lun(struct ctlr_info *h,
1485 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1486 	struct hpsa_scsi_dev_t *device)
1487 {
1488 
1489 	u32 lunid;
1490 
1491 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1492 		/* logical device */
1493 		memcpy(&lunid, lunaddrbytes, sizeof(lunid));
1494 		lunid = le32_to_cpu(lunid);
1495 
1496 		if (is_msa2xxx(h, device)) {
1497 			*bus = 1;
1498 			*target = (lunid >> 16) & 0x3fff;
1499 			*lun = lunid & 0x00ff;
1500 		} else {
1501 			*bus = 0;
1502 			*lun = 0;
1503 			*target = lunid & 0x3fff;
1504 		}
1505 	} else {
1506 		/* physical device */
1507 		if (is_hba_lunid(lunaddrbytes))
1508 			*bus = 3;
1509 		else
1510 			*bus = 2;
1511 		*target = -1;
1512 		*lun = -1; /* we will fill these in later. */
1513 	}
1514 }
1515 
1516 /*
1517  * If there is no lun 0 on a target, linux won't find any devices.
1518  * For the MSA2xxx boxes, we have to manually detect the enclosure
1519  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1520  * it for some reason.  *tmpdevice is the target we're adding,
1521  * this_device is a pointer into the current element of currentsd[]
1522  * that we're building up in update_scsi_devices(), below.
1523  * lunzerobits is a bitmap that tracks which targets already have a
1524  * lun 0 assigned.
1525  * Returns 1 if an enclosure was added, 0 if not.
1526  */
1527 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1528 	struct hpsa_scsi_dev_t *tmpdevice,
1529 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1530 	int bus, int target, int lun, unsigned long lunzerobits[],
1531 	int *nmsa2xxx_enclosures)
1532 {
1533 	unsigned char scsi3addr[8];
1534 
1535 	if (test_bit(target, lunzerobits))
1536 		return 0; /* There is already a lun 0 on this target. */
1537 
1538 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1539 		return 0; /* It's the logical targets that may lack lun 0. */
1540 
1541 	if (!is_msa2xxx(h, tmpdevice))
1542 		return 0; /* It's only the MSA2xxx that have this problem. */
1543 
1544 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1545 		return 0;
1546 
1547 	if (is_hba_lunid(scsi3addr))
1548 		return 0; /* Don't add the RAID controller here. */
1549 
1550 #define MAX_MSA2XXX_ENCLOSURES 32
1551 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1552 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1553 			"enclosures exceeded.  Check your hardware "
1554 			"configuration.");
1555 		return 0;
1556 	}
1557 
1558 	memset(scsi3addr, 0, 8);
1559 	scsi3addr[3] = target;
1560 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1561 		return 0;
1562 	(*nmsa2xxx_enclosures)++;
1563 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1564 	set_bit(target, lunzerobits);
1565 	return 1;
1566 }
1567 
1568 /*
1569  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1570  * logdev.  The number of luns in physdev and logdev are returned in
1571  * *nphysicals and *nlogicals, respectively.
1572  * Returns 0 on success, -1 otherwise.
1573  */
1574 static int hpsa_gather_lun_info(struct ctlr_info *h,
1575 	int reportlunsize,
1576 	struct ReportLUNdata *physdev, u32 *nphysicals,
1577 	struct ReportLUNdata *logdev, u32 *nlogicals)
1578 {
1579 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1580 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1581 		return -1;
1582 	}
1583 	memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals));
1584 	*nphysicals = be32_to_cpu(*nphysicals) / 8;
1585 #ifdef DEBUG
1586 	dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals);
1587 #endif
1588 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1589 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1590 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1591 			*nphysicals - HPSA_MAX_PHYS_LUN);
1592 		*nphysicals = HPSA_MAX_PHYS_LUN;
1593 	}
1594 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1595 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1596 		return -1;
1597 	}
1598 	memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals));
1599 	*nlogicals = be32_to_cpu(*nlogicals) / 8;
1600 #ifdef DEBUG
1601 	dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals);
1602 #endif
1603 	/* Reject Logicals in excess of our max capability. */
1604 	if (*nlogicals > HPSA_MAX_LUN) {
1605 		dev_warn(&h->pdev->dev,
1606 			"maximum logical LUNs (%d) exceeded.  "
1607 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1608 			*nlogicals - HPSA_MAX_LUN);
1609 			*nlogicals = HPSA_MAX_LUN;
1610 	}
1611 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1612 		dev_warn(&h->pdev->dev,
1613 			"maximum logical + physical LUNs (%d) exceeded. "
1614 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1615 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1616 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1617 	}
1618 	return 0;
1619 }
1620 
1621 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1622 {
1623 	/* the idea here is we could get notified
1624 	 * that some devices have changed, so we do a report
1625 	 * physical luns and report logical luns cmd, and adjust
1626 	 * our list of devices accordingly.
1627 	 *
1628 	 * The scsi3addr's of devices won't change so long as the
1629 	 * adapter is not reset.  That means we can rescan and
1630 	 * tell which devices we already know about, vs. new
1631 	 * devices, vs.  disappearing devices.
1632 	 */
1633 	struct ReportLUNdata *physdev_list = NULL;
1634 	struct ReportLUNdata *logdev_list = NULL;
1635 	unsigned char *inq_buff = NULL;
1636 	u32 nphysicals = 0;
1637 	u32 nlogicals = 0;
1638 	u32 ndev_allocated = 0;
1639 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1640 	int ncurrent = 0;
1641 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1642 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1643 	int bus, target, lun;
1644 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1645 
1646 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1647 		GFP_KERNEL);
1648 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1649 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1650 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1651 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1652 
1653 	if (!currentsd || !physdev_list || !logdev_list ||
1654 		!inq_buff || !tmpdevice) {
1655 		dev_err(&h->pdev->dev, "out of memory\n");
1656 		goto out;
1657 	}
1658 	memset(lunzerobits, 0, sizeof(lunzerobits));
1659 
1660 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1661 			logdev_list, &nlogicals))
1662 		goto out;
1663 
1664 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1665 	 * but each of them 4 times through different paths.  The plus 1
1666 	 * is for the RAID controller.
1667 	 */
1668 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1669 
1670 	/* Allocate the per device structures */
1671 	for (i = 0; i < ndevs_to_allocate; i++) {
1672 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1673 		if (!currentsd[i]) {
1674 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1675 				__FILE__, __LINE__);
1676 			goto out;
1677 		}
1678 		ndev_allocated++;
1679 	}
1680 
1681 	/* adjust our table of devices */
1682 	nmsa2xxx_enclosures = 0;
1683 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1684 		u8 *lunaddrbytes;
1685 
1686 		/* Figure out where the LUN ID info is coming from */
1687 		if (i < nphysicals)
1688 			lunaddrbytes = &physdev_list->LUN[i][0];
1689 		else
1690 			if (i < nphysicals + nlogicals)
1691 				lunaddrbytes =
1692 					&logdev_list->LUN[i-nphysicals][0];
1693 			else /* jam in the RAID controller at the end */
1694 				lunaddrbytes = RAID_CTLR_LUNID;
1695 
1696 		/* skip masked physical devices. */
1697 		if (lunaddrbytes[3] & 0xC0 && i < nphysicals)
1698 			continue;
1699 
1700 		/* Get device type, vendor, model, device id */
1701 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1702 			continue; /* skip it if we can't talk to it. */
1703 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1704 			tmpdevice);
1705 		this_device = currentsd[ncurrent];
1706 
1707 		/*
1708 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1709 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1710 		 * is nonetheless an enclosure device there.  We have to
1711 		 * present that otherwise linux won't find anything if
1712 		 * there is no lun 0.
1713 		 */
1714 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1715 				lunaddrbytes, bus, target, lun, lunzerobits,
1716 				&nmsa2xxx_enclosures)) {
1717 			ncurrent++;
1718 			this_device = currentsd[ncurrent];
1719 		}
1720 
1721 		*this_device = *tmpdevice;
1722 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1723 
1724 		switch (this_device->devtype) {
1725 		case TYPE_ROM: {
1726 			/* We don't *really* support actual CD-ROM devices,
1727 			 * just "One Button Disaster Recovery" tape drive
1728 			 * which temporarily pretends to be a CD-ROM drive.
1729 			 * So we check that the device is really an OBDR tape
1730 			 * device by checking for "$DR-10" in bytes 43-48 of
1731 			 * the inquiry data.
1732 			 */
1733 				char obdr_sig[7];
1734 #define OBDR_TAPE_SIG "$DR-10"
1735 				strncpy(obdr_sig, &inq_buff[43], 6);
1736 				obdr_sig[6] = '\0';
1737 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1738 					/* Not OBDR device, ignore it. */
1739 					break;
1740 			}
1741 			ncurrent++;
1742 			break;
1743 		case TYPE_DISK:
1744 			if (i < nphysicals)
1745 				break;
1746 			ncurrent++;
1747 			break;
1748 		case TYPE_TAPE:
1749 		case TYPE_MEDIUM_CHANGER:
1750 			ncurrent++;
1751 			break;
1752 		case TYPE_RAID:
1753 			/* Only present the Smartarray HBA as a RAID controller.
1754 			 * If it's a RAID controller other than the HBA itself
1755 			 * (an external RAID controller, MSA500 or similar)
1756 			 * don't present it.
1757 			 */
1758 			if (!is_hba_lunid(lunaddrbytes))
1759 				break;
1760 			ncurrent++;
1761 			break;
1762 		default:
1763 			break;
1764 		}
1765 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1766 			break;
1767 	}
1768 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1769 out:
1770 	kfree(tmpdevice);
1771 	for (i = 0; i < ndev_allocated; i++)
1772 		kfree(currentsd[i]);
1773 	kfree(currentsd);
1774 	kfree(inq_buff);
1775 	kfree(physdev_list);
1776 	kfree(logdev_list);
1777 }
1778 
1779 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1780  * dma mapping  and fills in the scatter gather entries of the
1781  * hpsa command, cp.
1782  */
1783 static int hpsa_scatter_gather(struct pci_dev *pdev,
1784 		struct CommandList *cp,
1785 		struct scsi_cmnd *cmd)
1786 {
1787 	unsigned int len;
1788 	struct scatterlist *sg;
1789 	u64 addr64;
1790 	int use_sg, i;
1791 
1792 	BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1793 
1794 	use_sg = scsi_dma_map(cmd);
1795 	if (use_sg < 0)
1796 		return use_sg;
1797 
1798 	if (!use_sg)
1799 		goto sglist_finished;
1800 
1801 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1802 		addr64 = (u64) sg_dma_address(sg);
1803 		len  = sg_dma_len(sg);
1804 		cp->SG[i].Addr.lower =
1805 			(u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1806 		cp->SG[i].Addr.upper =
1807 			(u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1808 		cp->SG[i].Len = len;
1809 		cp->SG[i].Ext = 0;  /* we are not chaining */
1810 	}
1811 
1812 sglist_finished:
1813 
1814 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1815 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1816 	return 0;
1817 }
1818 
1819 
1820 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1821 	void (*done)(struct scsi_cmnd *))
1822 {
1823 	struct ctlr_info *h;
1824 	struct hpsa_scsi_dev_t *dev;
1825 	unsigned char scsi3addr[8];
1826 	struct CommandList *c;
1827 	unsigned long flags;
1828 
1829 	/* Get the ptr to our adapter structure out of cmd->host. */
1830 	h = sdev_to_hba(cmd->device);
1831 	dev = cmd->device->hostdata;
1832 	if (!dev) {
1833 		cmd->result = DID_NO_CONNECT << 16;
1834 		done(cmd);
1835 		return 0;
1836 	}
1837 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1838 
1839 	/* Need a lock as this is being allocated from the pool */
1840 	spin_lock_irqsave(&h->lock, flags);
1841 	c = cmd_alloc(h);
1842 	spin_unlock_irqrestore(&h->lock, flags);
1843 	if (c == NULL) {			/* trouble... */
1844 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1845 		return SCSI_MLQUEUE_HOST_BUSY;
1846 	}
1847 
1848 	/* Fill in the command list header */
1849 
1850 	cmd->scsi_done = done;    /* save this for use by completion code */
1851 
1852 	/* save c in case we have to abort it  */
1853 	cmd->host_scribble = (unsigned char *) c;
1854 
1855 	c->cmd_type = CMD_SCSI;
1856 	c->scsi_cmd = cmd;
1857 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1858 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1859 	c->Header.Tag.lower = c->busaddr;  /* Use k. address of cmd as tag */
1860 
1861 	/* Fill in the request block... */
1862 
1863 	c->Request.Timeout = 0;
1864 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1865 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1866 	c->Request.CDBLen = cmd->cmd_len;
1867 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1868 	c->Request.Type.Type = TYPE_CMD;
1869 	c->Request.Type.Attribute = ATTR_SIMPLE;
1870 	switch (cmd->sc_data_direction) {
1871 	case DMA_TO_DEVICE:
1872 		c->Request.Type.Direction = XFER_WRITE;
1873 		break;
1874 	case DMA_FROM_DEVICE:
1875 		c->Request.Type.Direction = XFER_READ;
1876 		break;
1877 	case DMA_NONE:
1878 		c->Request.Type.Direction = XFER_NONE;
1879 		break;
1880 	case DMA_BIDIRECTIONAL:
1881 		/* This can happen if a buggy application does a scsi passthru
1882 		 * and sets both inlen and outlen to non-zero. ( see
1883 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1884 		 */
1885 
1886 		c->Request.Type.Direction = XFER_RSVD;
1887 		/* This is technically wrong, and hpsa controllers should
1888 		 * reject it with CMD_INVALID, which is the most correct
1889 		 * response, but non-fibre backends appear to let it
1890 		 * slide by, and give the same results as if this field
1891 		 * were set correctly.  Either way is acceptable for
1892 		 * our purposes here.
1893 		 */
1894 
1895 		break;
1896 
1897 	default:
1898 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1899 			cmd->sc_data_direction);
1900 		BUG();
1901 		break;
1902 	}
1903 
1904 	if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
1905 		cmd_free(h, c);
1906 		return SCSI_MLQUEUE_HOST_BUSY;
1907 	}
1908 	enqueue_cmd_and_start_io(h, c);
1909 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
1910 	return 0;
1911 }
1912 
1913 static void hpsa_unregister_scsi(struct ctlr_info *h)
1914 {
1915 	/* we are being forcibly unloaded, and may not refuse. */
1916 	scsi_remove_host(h->scsi_host);
1917 	scsi_host_put(h->scsi_host);
1918 	h->scsi_host = NULL;
1919 }
1920 
1921 static int hpsa_register_scsi(struct ctlr_info *h)
1922 {
1923 	int rc;
1924 
1925 	hpsa_update_scsi_devices(h, -1);
1926 	rc = hpsa_scsi_detect(h);
1927 	if (rc != 0)
1928 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
1929 			" hpsa_scsi_detect(), rc is %d\n", rc);
1930 	return rc;
1931 }
1932 
1933 static int wait_for_device_to_become_ready(struct ctlr_info *h,
1934 	unsigned char lunaddr[])
1935 {
1936 	int rc = 0;
1937 	int count = 0;
1938 	int waittime = 1; /* seconds */
1939 	struct CommandList *c;
1940 
1941 	c = cmd_special_alloc(h);
1942 	if (!c) {
1943 		dev_warn(&h->pdev->dev, "out of memory in "
1944 			"wait_for_device_to_become_ready.\n");
1945 		return IO_ERROR;
1946 	}
1947 
1948 	/* Send test unit ready until device ready, or give up. */
1949 	while (count < HPSA_TUR_RETRY_LIMIT) {
1950 
1951 		/* Wait for a bit.  do this first, because if we send
1952 		 * the TUR right away, the reset will just abort it.
1953 		 */
1954 		msleep(1000 * waittime);
1955 		count++;
1956 
1957 		/* Increase wait time with each try, up to a point. */
1958 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
1959 			waittime = waittime * 2;
1960 
1961 		/* Send the Test Unit Ready */
1962 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
1963 		hpsa_scsi_do_simple_cmd_core(h, c);
1964 		/* no unmap needed here because no data xfer. */
1965 
1966 		if (c->err_info->CommandStatus == CMD_SUCCESS)
1967 			break;
1968 
1969 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1970 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
1971 			(c->err_info->SenseInfo[2] == NO_SENSE ||
1972 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
1973 			break;
1974 
1975 		dev_warn(&h->pdev->dev, "waiting %d secs "
1976 			"for device to become ready.\n", waittime);
1977 		rc = 1; /* device not ready. */
1978 	}
1979 
1980 	if (rc)
1981 		dev_warn(&h->pdev->dev, "giving up on device.\n");
1982 	else
1983 		dev_warn(&h->pdev->dev, "device is ready.\n");
1984 
1985 	cmd_special_free(h, c);
1986 	return rc;
1987 }
1988 
1989 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
1990  * complaining.  Doing a host- or bus-reset can't do anything good here.
1991  */
1992 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
1993 {
1994 	int rc;
1995 	struct ctlr_info *h;
1996 	struct hpsa_scsi_dev_t *dev;
1997 
1998 	/* find the controller to which the command to be aborted was sent */
1999 	h = sdev_to_hba(scsicmd->device);
2000 	if (h == NULL) /* paranoia */
2001 		return FAILED;
2002 	dev_warn(&h->pdev->dev, "resetting drive\n");
2003 
2004 	dev = scsicmd->device->hostdata;
2005 	if (!dev) {
2006 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2007 			"device lookup failed.\n");
2008 		return FAILED;
2009 	}
2010 	/* send a reset to the SCSI LUN which the command was sent to */
2011 	rc = hpsa_send_reset(h, dev->scsi3addr);
2012 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2013 		return SUCCESS;
2014 
2015 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2016 	return FAILED;
2017 }
2018 
2019 /*
2020  * For operations that cannot sleep, a command block is allocated at init,
2021  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2022  * which ones are free or in use.  Lock must be held when calling this.
2023  * cmd_free() is the complement.
2024  */
2025 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2026 {
2027 	struct CommandList *c;
2028 	int i;
2029 	union u64bit temp64;
2030 	dma_addr_t cmd_dma_handle, err_dma_handle;
2031 
2032 	do {
2033 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2034 		if (i == h->nr_cmds)
2035 			return NULL;
2036 	} while (test_and_set_bit
2037 		 (i & (BITS_PER_LONG - 1),
2038 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2039 	c = h->cmd_pool + i;
2040 	memset(c, 0, sizeof(*c));
2041 	cmd_dma_handle = h->cmd_pool_dhandle
2042 	    + i * sizeof(*c);
2043 	c->err_info = h->errinfo_pool + i;
2044 	memset(c->err_info, 0, sizeof(*c->err_info));
2045 	err_dma_handle = h->errinfo_pool_dhandle
2046 	    + i * sizeof(*c->err_info);
2047 	h->nr_allocs++;
2048 
2049 	c->cmdindex = i;
2050 
2051 	INIT_HLIST_NODE(&c->list);
2052 	c->busaddr = (u32) cmd_dma_handle;
2053 	temp64.val = (u64) err_dma_handle;
2054 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2055 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2056 	c->ErrDesc.Len = sizeof(*c->err_info);
2057 
2058 	c->h = h;
2059 	return c;
2060 }
2061 
2062 /* For operations that can wait for kmalloc to possibly sleep,
2063  * this routine can be called. Lock need not be held to call
2064  * cmd_special_alloc. cmd_special_free() is the complement.
2065  */
2066 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2067 {
2068 	struct CommandList *c;
2069 	union u64bit temp64;
2070 	dma_addr_t cmd_dma_handle, err_dma_handle;
2071 
2072 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2073 	if (c == NULL)
2074 		return NULL;
2075 	memset(c, 0, sizeof(*c));
2076 
2077 	c->cmdindex = -1;
2078 
2079 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2080 		    &err_dma_handle);
2081 
2082 	if (c->err_info == NULL) {
2083 		pci_free_consistent(h->pdev,
2084 			sizeof(*c), c, cmd_dma_handle);
2085 		return NULL;
2086 	}
2087 	memset(c->err_info, 0, sizeof(*c->err_info));
2088 
2089 	INIT_HLIST_NODE(&c->list);
2090 	c->busaddr = (u32) cmd_dma_handle;
2091 	temp64.val = (u64) err_dma_handle;
2092 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2093 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2094 	c->ErrDesc.Len = sizeof(*c->err_info);
2095 
2096 	c->h = h;
2097 	return c;
2098 }
2099 
2100 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2101 {
2102 	int i;
2103 
2104 	i = c - h->cmd_pool;
2105 	clear_bit(i & (BITS_PER_LONG - 1),
2106 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2107 	h->nr_frees++;
2108 }
2109 
2110 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2111 {
2112 	union u64bit temp64;
2113 
2114 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2115 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2116 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2117 			    c->err_info, (dma_addr_t) temp64.val);
2118 	pci_free_consistent(h->pdev, sizeof(*c),
2119 			    c, (dma_addr_t) c->busaddr);
2120 }
2121 
2122 #ifdef CONFIG_COMPAT
2123 
2124 static int do_ioctl(struct scsi_device *dev, int cmd, void *arg)
2125 {
2126 	int ret;
2127 
2128 	lock_kernel();
2129 	ret = hpsa_ioctl(dev, cmd, arg);
2130 	unlock_kernel();
2131 	return ret;
2132 }
2133 
2134 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg);
2135 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2136 	int cmd, void *arg);
2137 
2138 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2139 {
2140 	switch (cmd) {
2141 	case CCISS_GETPCIINFO:
2142 	case CCISS_GETINTINFO:
2143 	case CCISS_SETINTINFO:
2144 	case CCISS_GETNODENAME:
2145 	case CCISS_SETNODENAME:
2146 	case CCISS_GETHEARTBEAT:
2147 	case CCISS_GETBUSTYPES:
2148 	case CCISS_GETFIRMVER:
2149 	case CCISS_GETDRIVVER:
2150 	case CCISS_REVALIDVOLS:
2151 	case CCISS_DEREGDISK:
2152 	case CCISS_REGNEWDISK:
2153 	case CCISS_REGNEWD:
2154 	case CCISS_RESCANDISK:
2155 	case CCISS_GETLUNINFO:
2156 		return do_ioctl(dev, cmd, arg);
2157 
2158 	case CCISS_PASSTHRU32:
2159 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2160 	case CCISS_BIG_PASSTHRU32:
2161 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2162 
2163 	default:
2164 		return -ENOIOCTLCMD;
2165 	}
2166 }
2167 
2168 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2169 {
2170 	IOCTL32_Command_struct __user *arg32 =
2171 	    (IOCTL32_Command_struct __user *) arg;
2172 	IOCTL_Command_struct arg64;
2173 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2174 	int err;
2175 	u32 cp;
2176 
2177 	err = 0;
2178 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2179 			   sizeof(arg64.LUN_info));
2180 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2181 			   sizeof(arg64.Request));
2182 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2183 			   sizeof(arg64.error_info));
2184 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2185 	err |= get_user(cp, &arg32->buf);
2186 	arg64.buf = compat_ptr(cp);
2187 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2188 
2189 	if (err)
2190 		return -EFAULT;
2191 
2192 	err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2193 	if (err)
2194 		return err;
2195 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2196 			 sizeof(arg32->error_info));
2197 	if (err)
2198 		return -EFAULT;
2199 	return err;
2200 }
2201 
2202 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2203 	int cmd, void *arg)
2204 {
2205 	BIG_IOCTL32_Command_struct __user *arg32 =
2206 	    (BIG_IOCTL32_Command_struct __user *) arg;
2207 	BIG_IOCTL_Command_struct arg64;
2208 	BIG_IOCTL_Command_struct __user *p =
2209 	    compat_alloc_user_space(sizeof(arg64));
2210 	int err;
2211 	u32 cp;
2212 
2213 	err = 0;
2214 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2215 			   sizeof(arg64.LUN_info));
2216 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2217 			   sizeof(arg64.Request));
2218 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2219 			   sizeof(arg64.error_info));
2220 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2221 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2222 	err |= get_user(cp, &arg32->buf);
2223 	arg64.buf = compat_ptr(cp);
2224 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2225 
2226 	if (err)
2227 		return -EFAULT;
2228 
2229 	err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2230 	if (err)
2231 		return err;
2232 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2233 			 sizeof(arg32->error_info));
2234 	if (err)
2235 		return -EFAULT;
2236 	return err;
2237 }
2238 #endif
2239 
2240 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2241 {
2242 	struct hpsa_pci_info pciinfo;
2243 
2244 	if (!argp)
2245 		return -EINVAL;
2246 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2247 	pciinfo.bus = h->pdev->bus->number;
2248 	pciinfo.dev_fn = h->pdev->devfn;
2249 	pciinfo.board_id = h->board_id;
2250 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2251 		return -EFAULT;
2252 	return 0;
2253 }
2254 
2255 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2256 {
2257 	DriverVer_type DriverVer;
2258 	unsigned char vmaj, vmin, vsubmin;
2259 	int rc;
2260 
2261 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2262 		&vmaj, &vmin, &vsubmin);
2263 	if (rc != 3) {
2264 		dev_info(&h->pdev->dev, "driver version string '%s' "
2265 			"unrecognized.", HPSA_DRIVER_VERSION);
2266 		vmaj = 0;
2267 		vmin = 0;
2268 		vsubmin = 0;
2269 	}
2270 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2271 	if (!argp)
2272 		return -EINVAL;
2273 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2274 		return -EFAULT;
2275 	return 0;
2276 }
2277 
2278 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2279 {
2280 	IOCTL_Command_struct iocommand;
2281 	struct CommandList *c;
2282 	char *buff = NULL;
2283 	union u64bit temp64;
2284 
2285 	if (!argp)
2286 		return -EINVAL;
2287 	if (!capable(CAP_SYS_RAWIO))
2288 		return -EPERM;
2289 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2290 		return -EFAULT;
2291 	if ((iocommand.buf_size < 1) &&
2292 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2293 		return -EINVAL;
2294 	}
2295 	if (iocommand.buf_size > 0) {
2296 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2297 		if (buff == NULL)
2298 			return -EFAULT;
2299 	}
2300 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2301 		/* Copy the data into the buffer we created */
2302 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2303 			kfree(buff);
2304 			return -EFAULT;
2305 		}
2306 	} else
2307 		memset(buff, 0, iocommand.buf_size);
2308 	c = cmd_special_alloc(h);
2309 	if (c == NULL) {
2310 		kfree(buff);
2311 		return -ENOMEM;
2312 	}
2313 	/* Fill in the command type */
2314 	c->cmd_type = CMD_IOCTL_PEND;
2315 	/* Fill in Command Header */
2316 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2317 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2318 		c->Header.SGList = 1;
2319 		c->Header.SGTotal = 1;
2320 	} else	{ /* no buffers to fill */
2321 		c->Header.SGList = 0;
2322 		c->Header.SGTotal = 0;
2323 	}
2324 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2325 	/* use the kernel address the cmd block for tag */
2326 	c->Header.Tag.lower = c->busaddr;
2327 
2328 	/* Fill in Request block */
2329 	memcpy(&c->Request, &iocommand.Request,
2330 		sizeof(c->Request));
2331 
2332 	/* Fill in the scatter gather information */
2333 	if (iocommand.buf_size > 0) {
2334 		temp64.val = pci_map_single(h->pdev, buff,
2335 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2336 		c->SG[0].Addr.lower = temp64.val32.lower;
2337 		c->SG[0].Addr.upper = temp64.val32.upper;
2338 		c->SG[0].Len = iocommand.buf_size;
2339 		c->SG[0].Ext = 0; /* we are not chaining*/
2340 	}
2341 	hpsa_scsi_do_simple_cmd_core(h, c);
2342 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2343 	check_ioctl_unit_attention(h, c);
2344 
2345 	/* Copy the error information out */
2346 	memcpy(&iocommand.error_info, c->err_info,
2347 		sizeof(iocommand.error_info));
2348 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2349 		kfree(buff);
2350 		cmd_special_free(h, c);
2351 		return -EFAULT;
2352 	}
2353 
2354 	if (iocommand.Request.Type.Direction == XFER_READ) {
2355 		/* Copy the data out of the buffer we created */
2356 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2357 			kfree(buff);
2358 			cmd_special_free(h, c);
2359 			return -EFAULT;
2360 		}
2361 	}
2362 	kfree(buff);
2363 	cmd_special_free(h, c);
2364 	return 0;
2365 }
2366 
2367 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2368 {
2369 	BIG_IOCTL_Command_struct *ioc;
2370 	struct CommandList *c;
2371 	unsigned char **buff = NULL;
2372 	int *buff_size = NULL;
2373 	union u64bit temp64;
2374 	BYTE sg_used = 0;
2375 	int status = 0;
2376 	int i;
2377 	u32 left;
2378 	u32 sz;
2379 	BYTE __user *data_ptr;
2380 
2381 	if (!argp)
2382 		return -EINVAL;
2383 	if (!capable(CAP_SYS_RAWIO))
2384 		return -EPERM;
2385 	ioc = (BIG_IOCTL_Command_struct *)
2386 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2387 	if (!ioc) {
2388 		status = -ENOMEM;
2389 		goto cleanup1;
2390 	}
2391 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2392 		status = -EFAULT;
2393 		goto cleanup1;
2394 	}
2395 	if ((ioc->buf_size < 1) &&
2396 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2397 		status = -EINVAL;
2398 		goto cleanup1;
2399 	}
2400 	/* Check kmalloc limits  using all SGs */
2401 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2402 		status = -EINVAL;
2403 		goto cleanup1;
2404 	}
2405 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2406 		status = -EINVAL;
2407 		goto cleanup1;
2408 	}
2409 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2410 	if (!buff) {
2411 		status = -ENOMEM;
2412 		goto cleanup1;
2413 	}
2414 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2415 	if (!buff_size) {
2416 		status = -ENOMEM;
2417 		goto cleanup1;
2418 	}
2419 	left = ioc->buf_size;
2420 	data_ptr = ioc->buf;
2421 	while (left) {
2422 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2423 		buff_size[sg_used] = sz;
2424 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2425 		if (buff[sg_used] == NULL) {
2426 			status = -ENOMEM;
2427 			goto cleanup1;
2428 		}
2429 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2430 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2431 				status = -ENOMEM;
2432 				goto cleanup1;
2433 			}
2434 		} else
2435 			memset(buff[sg_used], 0, sz);
2436 		left -= sz;
2437 		data_ptr += sz;
2438 		sg_used++;
2439 	}
2440 	c = cmd_special_alloc(h);
2441 	if (c == NULL) {
2442 		status = -ENOMEM;
2443 		goto cleanup1;
2444 	}
2445 	c->cmd_type = CMD_IOCTL_PEND;
2446 	c->Header.ReplyQueue = 0;
2447 
2448 	if (ioc->buf_size > 0) {
2449 		c->Header.SGList = sg_used;
2450 		c->Header.SGTotal = sg_used;
2451 	} else {
2452 		c->Header.SGList = 0;
2453 		c->Header.SGTotal = 0;
2454 	}
2455 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2456 	c->Header.Tag.lower = c->busaddr;
2457 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2458 	if (ioc->buf_size > 0) {
2459 		int i;
2460 		for (i = 0; i < sg_used; i++) {
2461 			temp64.val = pci_map_single(h->pdev, buff[i],
2462 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2463 			c->SG[i].Addr.lower = temp64.val32.lower;
2464 			c->SG[i].Addr.upper = temp64.val32.upper;
2465 			c->SG[i].Len = buff_size[i];
2466 			/* we are not chaining */
2467 			c->SG[i].Ext = 0;
2468 		}
2469 	}
2470 	hpsa_scsi_do_simple_cmd_core(h, c);
2471 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2472 	check_ioctl_unit_attention(h, c);
2473 	/* Copy the error information out */
2474 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2475 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2476 		cmd_special_free(h, c);
2477 		status = -EFAULT;
2478 		goto cleanup1;
2479 	}
2480 	if (ioc->Request.Type.Direction == XFER_READ) {
2481 		/* Copy the data out of the buffer we created */
2482 		BYTE __user *ptr = ioc->buf;
2483 		for (i = 0; i < sg_used; i++) {
2484 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2485 				cmd_special_free(h, c);
2486 				status = -EFAULT;
2487 				goto cleanup1;
2488 			}
2489 			ptr += buff_size[i];
2490 		}
2491 	}
2492 	cmd_special_free(h, c);
2493 	status = 0;
2494 cleanup1:
2495 	if (buff) {
2496 		for (i = 0; i < sg_used; i++)
2497 			kfree(buff[i]);
2498 		kfree(buff);
2499 	}
2500 	kfree(buff_size);
2501 	kfree(ioc);
2502 	return status;
2503 }
2504 
2505 static void check_ioctl_unit_attention(struct ctlr_info *h,
2506 	struct CommandList *c)
2507 {
2508 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2509 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2510 		(void) check_for_unit_attention(h, c);
2511 }
2512 /*
2513  * ioctl
2514  */
2515 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2516 {
2517 	struct ctlr_info *h;
2518 	void __user *argp = (void __user *)arg;
2519 
2520 	h = sdev_to_hba(dev);
2521 
2522 	switch (cmd) {
2523 	case CCISS_DEREGDISK:
2524 	case CCISS_REGNEWDISK:
2525 	case CCISS_REGNEWD:
2526 		hpsa_update_scsi_devices(h, dev->host->host_no);
2527 		return 0;
2528 	case CCISS_GETPCIINFO:
2529 		return hpsa_getpciinfo_ioctl(h, argp);
2530 	case CCISS_GETDRIVVER:
2531 		return hpsa_getdrivver_ioctl(h, argp);
2532 	case CCISS_PASSTHRU:
2533 		return hpsa_passthru_ioctl(h, argp);
2534 	case CCISS_BIG_PASSTHRU:
2535 		return hpsa_big_passthru_ioctl(h, argp);
2536 	default:
2537 		return -ENOTTY;
2538 	}
2539 }
2540 
2541 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2542 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2543 	int cmd_type)
2544 {
2545 	int pci_dir = XFER_NONE;
2546 
2547 	c->cmd_type = CMD_IOCTL_PEND;
2548 	c->Header.ReplyQueue = 0;
2549 	if (buff != NULL && size > 0) {
2550 		c->Header.SGList = 1;
2551 		c->Header.SGTotal = 1;
2552 	} else {
2553 		c->Header.SGList = 0;
2554 		c->Header.SGTotal = 0;
2555 	}
2556 	c->Header.Tag.lower = c->busaddr;
2557 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2558 
2559 	c->Request.Type.Type = cmd_type;
2560 	if (cmd_type == TYPE_CMD) {
2561 		switch (cmd) {
2562 		case HPSA_INQUIRY:
2563 			/* are we trying to read a vital product page */
2564 			if (page_code != 0) {
2565 				c->Request.CDB[1] = 0x01;
2566 				c->Request.CDB[2] = page_code;
2567 			}
2568 			c->Request.CDBLen = 6;
2569 			c->Request.Type.Attribute = ATTR_SIMPLE;
2570 			c->Request.Type.Direction = XFER_READ;
2571 			c->Request.Timeout = 0;
2572 			c->Request.CDB[0] = HPSA_INQUIRY;
2573 			c->Request.CDB[4] = size & 0xFF;
2574 			break;
2575 		case HPSA_REPORT_LOG:
2576 		case HPSA_REPORT_PHYS:
2577 			/* Talking to controller so It's a physical command
2578 			   mode = 00 target = 0.  Nothing to write.
2579 			 */
2580 			c->Request.CDBLen = 12;
2581 			c->Request.Type.Attribute = ATTR_SIMPLE;
2582 			c->Request.Type.Direction = XFER_READ;
2583 			c->Request.Timeout = 0;
2584 			c->Request.CDB[0] = cmd;
2585 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2586 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2587 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2588 			c->Request.CDB[9] = size & 0xFF;
2589 			break;
2590 
2591 		case HPSA_READ_CAPACITY:
2592 			c->Request.CDBLen = 10;
2593 			c->Request.Type.Attribute = ATTR_SIMPLE;
2594 			c->Request.Type.Direction = XFER_READ;
2595 			c->Request.Timeout = 0;
2596 			c->Request.CDB[0] = cmd;
2597 			break;
2598 		case HPSA_CACHE_FLUSH:
2599 			c->Request.CDBLen = 12;
2600 			c->Request.Type.Attribute = ATTR_SIMPLE;
2601 			c->Request.Type.Direction = XFER_WRITE;
2602 			c->Request.Timeout = 0;
2603 			c->Request.CDB[0] = BMIC_WRITE;
2604 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2605 			break;
2606 		case TEST_UNIT_READY:
2607 			c->Request.CDBLen = 6;
2608 			c->Request.Type.Attribute = ATTR_SIMPLE;
2609 			c->Request.Type.Direction = XFER_NONE;
2610 			c->Request.Timeout = 0;
2611 			break;
2612 		default:
2613 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2614 			BUG();
2615 			return;
2616 		}
2617 	} else if (cmd_type == TYPE_MSG) {
2618 		switch (cmd) {
2619 
2620 		case  HPSA_DEVICE_RESET_MSG:
2621 			c->Request.CDBLen = 16;
2622 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2623 			c->Request.Type.Attribute = ATTR_SIMPLE;
2624 			c->Request.Type.Direction = XFER_NONE;
2625 			c->Request.Timeout = 0; /* Don't time out */
2626 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2627 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2628 			/* If bytes 4-7 are zero, it means reset the */
2629 			/* LunID device */
2630 			c->Request.CDB[4] = 0x00;
2631 			c->Request.CDB[5] = 0x00;
2632 			c->Request.CDB[6] = 0x00;
2633 			c->Request.CDB[7] = 0x00;
2634 		break;
2635 
2636 		default:
2637 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2638 				cmd);
2639 			BUG();
2640 		}
2641 	} else {
2642 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2643 		BUG();
2644 	}
2645 
2646 	switch (c->Request.Type.Direction) {
2647 	case XFER_READ:
2648 		pci_dir = PCI_DMA_FROMDEVICE;
2649 		break;
2650 	case XFER_WRITE:
2651 		pci_dir = PCI_DMA_TODEVICE;
2652 		break;
2653 	case XFER_NONE:
2654 		pci_dir = PCI_DMA_NONE;
2655 		break;
2656 	default:
2657 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2658 	}
2659 
2660 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2661 
2662 	return;
2663 }
2664 
2665 /*
2666  * Map (physical) PCI mem into (virtual) kernel space
2667  */
2668 static void __iomem *remap_pci_mem(ulong base, ulong size)
2669 {
2670 	ulong page_base = ((ulong) base) & PAGE_MASK;
2671 	ulong page_offs = ((ulong) base) - page_base;
2672 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2673 
2674 	return page_remapped ? (page_remapped + page_offs) : NULL;
2675 }
2676 
2677 /* Takes cmds off the submission queue and sends them to the hardware,
2678  * then puts them on the queue of cmds waiting for completion.
2679  */
2680 static void start_io(struct ctlr_info *h)
2681 {
2682 	struct CommandList *c;
2683 
2684 	while (!hlist_empty(&h->reqQ)) {
2685 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2686 		/* can't do anything if fifo is full */
2687 		if ((h->access.fifo_full(h))) {
2688 			dev_warn(&h->pdev->dev, "fifo full\n");
2689 			break;
2690 		}
2691 
2692 		/* Get the first entry from the Request Q */
2693 		removeQ(c);
2694 		h->Qdepth--;
2695 
2696 		/* Tell the controller execute command */
2697 		h->access.submit_command(h, c);
2698 
2699 		/* Put job onto the completed Q */
2700 		addQ(&h->cmpQ, c);
2701 	}
2702 }
2703 
2704 static inline unsigned long get_next_completion(struct ctlr_info *h)
2705 {
2706 	return h->access.command_completed(h);
2707 }
2708 
2709 static inline int interrupt_pending(struct ctlr_info *h)
2710 {
2711 	return h->access.intr_pending(h);
2712 }
2713 
2714 static inline long interrupt_not_for_us(struct ctlr_info *h)
2715 {
2716 	return ((h->access.intr_pending(h) == 0) ||
2717 		 (h->interrupts_enabled == 0));
2718 }
2719 
2720 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2721 	u32 raw_tag)
2722 {
2723 	if (unlikely(tag_index >= h->nr_cmds)) {
2724 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2725 		return 1;
2726 	}
2727 	return 0;
2728 }
2729 
2730 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2731 {
2732 	removeQ(c);
2733 	if (likely(c->cmd_type == CMD_SCSI))
2734 		complete_scsi_command(c, 0, raw_tag);
2735 	else if (c->cmd_type == CMD_IOCTL_PEND)
2736 		complete(c->waiting);
2737 }
2738 
2739 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2740 {
2741 	struct ctlr_info *h = dev_id;
2742 	struct CommandList *c;
2743 	unsigned long flags;
2744 	u32 raw_tag, tag, tag_index;
2745 	struct hlist_node *tmp;
2746 
2747 	if (interrupt_not_for_us(h))
2748 		return IRQ_NONE;
2749 	spin_lock_irqsave(&h->lock, flags);
2750 	while (interrupt_pending(h)) {
2751 		while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) {
2752 			if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) {
2753 				tag_index = HPSA_TAG_TO_INDEX(raw_tag);
2754 				if (bad_tag(h, tag_index, raw_tag))
2755 					return IRQ_HANDLED;
2756 				c = h->cmd_pool + tag_index;
2757 				finish_cmd(c, raw_tag);
2758 				continue;
2759 			}
2760 			tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag);
2761 			c = NULL;
2762 			hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2763 				if (c->busaddr == tag) {
2764 					finish_cmd(c, raw_tag);
2765 					break;
2766 				}
2767 			}
2768 		}
2769 	}
2770 	spin_unlock_irqrestore(&h->lock, flags);
2771 	return IRQ_HANDLED;
2772 }
2773 
2774 /* Send a message CDB to the firmware. */
2775 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2776 						unsigned char type)
2777 {
2778 	struct Command {
2779 		struct CommandListHeader CommandHeader;
2780 		struct RequestBlock Request;
2781 		struct ErrDescriptor ErrorDescriptor;
2782 	};
2783 	struct Command *cmd;
2784 	static const size_t cmd_sz = sizeof(*cmd) +
2785 					sizeof(cmd->ErrorDescriptor);
2786 	dma_addr_t paddr64;
2787 	uint32_t paddr32, tag;
2788 	void __iomem *vaddr;
2789 	int i, err;
2790 
2791 	vaddr = pci_ioremap_bar(pdev, 0);
2792 	if (vaddr == NULL)
2793 		return -ENOMEM;
2794 
2795 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2796 	 * CCISS commands, so they must be allocated from the lower 4GiB of
2797 	 * memory.
2798 	 */
2799 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2800 	if (err) {
2801 		iounmap(vaddr);
2802 		return -ENOMEM;
2803 	}
2804 
2805 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2806 	if (cmd == NULL) {
2807 		iounmap(vaddr);
2808 		return -ENOMEM;
2809 	}
2810 
2811 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
2812 	 * although there's no guarantee, we assume that the address is at
2813 	 * least 4-byte aligned (most likely, it's page-aligned).
2814 	 */
2815 	paddr32 = paddr64;
2816 
2817 	cmd->CommandHeader.ReplyQueue = 0;
2818 	cmd->CommandHeader.SGList = 0;
2819 	cmd->CommandHeader.SGTotal = 0;
2820 	cmd->CommandHeader.Tag.lower = paddr32;
2821 	cmd->CommandHeader.Tag.upper = 0;
2822 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2823 
2824 	cmd->Request.CDBLen = 16;
2825 	cmd->Request.Type.Type = TYPE_MSG;
2826 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2827 	cmd->Request.Type.Direction = XFER_NONE;
2828 	cmd->Request.Timeout = 0; /* Don't time out */
2829 	cmd->Request.CDB[0] = opcode;
2830 	cmd->Request.CDB[1] = type;
2831 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2832 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2833 	cmd->ErrorDescriptor.Addr.upper = 0;
2834 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2835 
2836 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2837 
2838 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2839 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2840 		if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32)
2841 			break;
2842 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2843 	}
2844 
2845 	iounmap(vaddr);
2846 
2847 	/* we leak the DMA buffer here ... no choice since the controller could
2848 	 *  still complete the command.
2849 	 */
2850 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
2851 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
2852 			opcode, type);
2853 		return -ETIMEDOUT;
2854 	}
2855 
2856 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
2857 
2858 	if (tag & HPSA_ERROR_BIT) {
2859 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
2860 			opcode, type);
2861 		return -EIO;
2862 	}
2863 
2864 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
2865 		opcode, type);
2866 	return 0;
2867 }
2868 
2869 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
2870 #define hpsa_noop(p) hpsa_message(p, 3, 0)
2871 
2872 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
2873 {
2874 /* the #defines are stolen from drivers/pci/msi.h. */
2875 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
2876 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
2877 
2878 	int pos;
2879 	u16 control = 0;
2880 
2881 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
2882 	if (pos) {
2883 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
2884 		if (control & PCI_MSI_FLAGS_ENABLE) {
2885 			dev_info(&pdev->dev, "resetting MSI\n");
2886 			pci_write_config_word(pdev, msi_control_reg(pos),
2887 					control & ~PCI_MSI_FLAGS_ENABLE);
2888 		}
2889 	}
2890 
2891 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
2892 	if (pos) {
2893 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
2894 		if (control & PCI_MSIX_FLAGS_ENABLE) {
2895 			dev_info(&pdev->dev, "resetting MSI-X\n");
2896 			pci_write_config_word(pdev, msi_control_reg(pos),
2897 					control & ~PCI_MSIX_FLAGS_ENABLE);
2898 		}
2899 	}
2900 
2901 	return 0;
2902 }
2903 
2904 /* This does a hard reset of the controller using PCI power management
2905  * states.
2906  */
2907 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
2908 {
2909 	u16 pmcsr, saved_config_space[32];
2910 	int i, pos;
2911 
2912 	dev_info(&pdev->dev, "using PCI PM to reset controller\n");
2913 
2914 	/* This is very nearly the same thing as
2915 	 *
2916 	 * pci_save_state(pci_dev);
2917 	 * pci_set_power_state(pci_dev, PCI_D3hot);
2918 	 * pci_set_power_state(pci_dev, PCI_D0);
2919 	 * pci_restore_state(pci_dev);
2920 	 *
2921 	 * but we can't use these nice canned kernel routines on
2922 	 * kexec, because they also check the MSI/MSI-X state in PCI
2923 	 * configuration space and do the wrong thing when it is
2924 	 * set/cleared.  Also, the pci_save/restore_state functions
2925 	 * violate the ordering requirements for restoring the
2926 	 * configuration space from the CCISS document (see the
2927 	 * comment below).  So we roll our own ....
2928 	 */
2929 
2930 	for (i = 0; i < 32; i++)
2931 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
2932 
2933 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
2934 	if (pos == 0) {
2935 		dev_err(&pdev->dev,
2936 			"hpsa_reset_controller: PCI PM not supported\n");
2937 		return -ENODEV;
2938 	}
2939 
2940 	/* Quoting from the Open CISS Specification: "The Power
2941 	 * Management Control/Status Register (CSR) controls the power
2942 	 * state of the device.  The normal operating state is D0,
2943 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
2944 	 * the controller, place the interface device in D3 then to
2945 	 * D0, this causes a secondary PCI reset which will reset the
2946 	 * controller."
2947 	 */
2948 
2949 	/* enter the D3hot power management state */
2950 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
2951 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2952 	pmcsr |= PCI_D3hot;
2953 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2954 
2955 	msleep(500);
2956 
2957 	/* enter the D0 power management state */
2958 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2959 	pmcsr |= PCI_D0;
2960 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
2961 
2962 	msleep(500);
2963 
2964 	/* Restore the PCI configuration space.  The Open CISS
2965 	 * Specification says, "Restore the PCI Configuration
2966 	 * Registers, offsets 00h through 60h. It is important to
2967 	 * restore the command register, 16-bits at offset 04h,
2968 	 * last. Do not restore the configuration status register,
2969 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
2970 	 */
2971 	for (i = 0; i < 32; i++) {
2972 		if (i == 2 || i == 3)
2973 			continue;
2974 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
2975 	}
2976 	wmb();
2977 	pci_write_config_word(pdev, 4, saved_config_space[2]);
2978 
2979 	return 0;
2980 }
2981 
2982 /*
2983  *  We cannot read the structure directly, for portability we must use
2984  *   the io functions.
2985  *   This is for debug only.
2986  */
2987 #ifdef HPSA_DEBUG
2988 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
2989 {
2990 	int i;
2991 	char temp_name[17];
2992 
2993 	dev_info(dev, "Controller Configuration information\n");
2994 	dev_info(dev, "------------------------------------\n");
2995 	for (i = 0; i < 4; i++)
2996 		temp_name[i] = readb(&(tb->Signature[i]));
2997 	temp_name[4] = '\0';
2998 	dev_info(dev, "   Signature = %s\n", temp_name);
2999 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3000 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3001 	       readl(&(tb->TransportSupport)));
3002 	dev_info(dev, "   Transport methods active = 0x%x\n",
3003 	       readl(&(tb->TransportActive)));
3004 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3005 	       readl(&(tb->HostWrite.TransportRequest)));
3006 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3007 	       readl(&(tb->HostWrite.CoalIntDelay)));
3008 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3009 	       readl(&(tb->HostWrite.CoalIntCount)));
3010 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3011 	       readl(&(tb->CmdsOutMax)));
3012 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3013 	for (i = 0; i < 16; i++)
3014 		temp_name[i] = readb(&(tb->ServerName[i]));
3015 	temp_name[16] = '\0';
3016 	dev_info(dev, "   Server Name = %s\n", temp_name);
3017 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3018 		readl(&(tb->HeartBeat)));
3019 }
3020 #endif				/* HPSA_DEBUG */
3021 
3022 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3023 {
3024 	int i, offset, mem_type, bar_type;
3025 
3026 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3027 		return 0;
3028 	offset = 0;
3029 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3030 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3031 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3032 			offset += 4;
3033 		else {
3034 			mem_type = pci_resource_flags(pdev, i) &
3035 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3036 			switch (mem_type) {
3037 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3038 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3039 				offset += 4;	/* 32 bit */
3040 				break;
3041 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3042 				offset += 8;
3043 				break;
3044 			default:	/* reserved in PCI 2.2 */
3045 				dev_warn(&pdev->dev,
3046 				       "base address is invalid\n");
3047 				return -1;
3048 				break;
3049 			}
3050 		}
3051 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3052 			return i + 1;
3053 	}
3054 	return -1;
3055 }
3056 
3057 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3058  * controllers that are capable. If not, we use IO-APIC mode.
3059  */
3060 
3061 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3062 					   struct pci_dev *pdev, u32 board_id)
3063 {
3064 #ifdef CONFIG_PCI_MSI
3065 	int err;
3066 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3067 	{0, 2}, {0, 3}
3068 	};
3069 
3070 	/* Some boards advertise MSI but don't really support it */
3071 	if ((board_id == 0x40700E11) ||
3072 	    (board_id == 0x40800E11) ||
3073 	    (board_id == 0x40820E11) || (board_id == 0x40830E11))
3074 		goto default_int_mode;
3075 	if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3076 		dev_info(&pdev->dev, "MSIX\n");
3077 		err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3078 		if (!err) {
3079 			h->intr[0] = hpsa_msix_entries[0].vector;
3080 			h->intr[1] = hpsa_msix_entries[1].vector;
3081 			h->intr[2] = hpsa_msix_entries[2].vector;
3082 			h->intr[3] = hpsa_msix_entries[3].vector;
3083 			h->msix_vector = 1;
3084 			return;
3085 		}
3086 		if (err > 0) {
3087 			dev_warn(&pdev->dev, "only %d MSI-X vectors "
3088 			       "available\n", err);
3089 			goto default_int_mode;
3090 		} else {
3091 			dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3092 			       err);
3093 			goto default_int_mode;
3094 		}
3095 	}
3096 	if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3097 		dev_info(&pdev->dev, "MSI\n");
3098 		if (!pci_enable_msi(pdev))
3099 			h->msi_vector = 1;
3100 		else
3101 			dev_warn(&pdev->dev, "MSI init failed\n");
3102 	}
3103 default_int_mode:
3104 #endif				/* CONFIG_PCI_MSI */
3105 	/* if we get here we're going to use the default interrupt mode */
3106 	h->intr[SIMPLE_MODE_INT] = pdev->irq;
3107 }
3108 
3109 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3110 {
3111 	ushort subsystem_vendor_id, subsystem_device_id, command;
3112 	u32 board_id, scratchpad = 0;
3113 	u64 cfg_offset;
3114 	u32 cfg_base_addr;
3115 	u64 cfg_base_addr_index;
3116 	int i, prod_index, err;
3117 
3118 	subsystem_vendor_id = pdev->subsystem_vendor;
3119 	subsystem_device_id = pdev->subsystem_device;
3120 	board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3121 		    subsystem_vendor_id);
3122 
3123 	for (i = 0; i < ARRAY_SIZE(products); i++)
3124 		if (board_id == products[i].board_id)
3125 			break;
3126 
3127 	prod_index = i;
3128 
3129 	if (prod_index == ARRAY_SIZE(products)) {
3130 		prod_index--;
3131 		if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3132 				!hpsa_allow_any) {
3133 			dev_warn(&pdev->dev, "unrecognized board ID:"
3134 				" 0x%08lx, ignoring.\n",
3135 				(unsigned long) board_id);
3136 			return -ENODEV;
3137 		}
3138 	}
3139 	/* check to see if controller has been disabled
3140 	 * BEFORE trying to enable it
3141 	 */
3142 	(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3143 	if (!(command & 0x02)) {
3144 		dev_warn(&pdev->dev, "controller appears to be disabled\n");
3145 		return -ENODEV;
3146 	}
3147 
3148 	err = pci_enable_device(pdev);
3149 	if (err) {
3150 		dev_warn(&pdev->dev, "unable to enable PCI device\n");
3151 		return err;
3152 	}
3153 
3154 	err = pci_request_regions(pdev, "hpsa");
3155 	if (err) {
3156 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3157 		return err;
3158 	}
3159 
3160 	/* If the kernel supports MSI/MSI-X we will try to enable that,
3161 	 * else we use the IO-APIC interrupt assigned to us by system ROM.
3162 	 */
3163 	hpsa_interrupt_mode(h, pdev, board_id);
3164 
3165 	/* find the memory BAR */
3166 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3167 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3168 			break;
3169 	}
3170 	if (i == DEVICE_COUNT_RESOURCE) {
3171 		dev_warn(&pdev->dev, "no memory BAR found\n");
3172 		err = -ENODEV;
3173 		goto err_out_free_res;
3174 	}
3175 
3176 	h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3177 						 * already removed
3178 						 */
3179 
3180 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3181 
3182 	/* Wait for the board to become ready.  */
3183 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3184 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3185 		if (scratchpad == HPSA_FIRMWARE_READY)
3186 			break;
3187 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3188 	}
3189 	if (scratchpad != HPSA_FIRMWARE_READY) {
3190 		dev_warn(&pdev->dev, "board not ready, timed out.\n");
3191 		err = -ENODEV;
3192 		goto err_out_free_res;
3193 	}
3194 
3195 	/* get the address index number */
3196 	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3197 	cfg_base_addr &= (u32) 0x0000ffff;
3198 	cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3199 	if (cfg_base_addr_index == -1) {
3200 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3201 		err = -ENODEV;
3202 		goto err_out_free_res;
3203 	}
3204 
3205 	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3206 	h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3207 			       cfg_base_addr_index) + cfg_offset,
3208 				sizeof(h->cfgtable));
3209 	h->board_id = board_id;
3210 
3211 	/* Query controller for max supported commands: */
3212 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3213 
3214 	h->product_name = products[prod_index].product_name;
3215 	h->access = *(products[prod_index].access);
3216 	/* Allow room for some ioctls */
3217 	h->nr_cmds = h->max_commands - 4;
3218 
3219 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3220 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3221 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3222 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3223 		dev_warn(&pdev->dev, "not a valid CISS config table\n");
3224 		err = -ENODEV;
3225 		goto err_out_free_res;
3226 	}
3227 #ifdef CONFIG_X86
3228 	{
3229 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3230 		u32 prefetch;
3231 		prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3232 		prefetch |= 0x100;
3233 		writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3234 	}
3235 #endif
3236 
3237 	/* Disabling DMA prefetch for the P600
3238 	 * An ASIC bug may result in a prefetch beyond
3239 	 * physical memory.
3240 	 */
3241 	if (board_id == 0x3225103C) {
3242 		u32 dma_prefetch;
3243 		dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3244 		dma_prefetch |= 0x8000;
3245 		writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3246 	}
3247 
3248 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3249 	/* Update the field, and then ring the doorbell */
3250 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3251 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3252 
3253 	/* under certain very rare conditions, this can take awhile.
3254 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3255 	 * as we enter this code.)
3256 	 */
3257 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3258 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3259 			break;
3260 		/* delay and try again */
3261 		msleep(10);
3262 	}
3263 
3264 #ifdef HPSA_DEBUG
3265 	print_cfg_table(&pdev->dev, h->cfgtable);
3266 #endif				/* HPSA_DEBUG */
3267 
3268 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3269 		dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3270 		err = -ENODEV;
3271 		goto err_out_free_res;
3272 	}
3273 	return 0;
3274 
3275 err_out_free_res:
3276 	/*
3277 	 * Deliberately omit pci_disable_device(): it does something nasty to
3278 	 * Smart Array controllers that pci_enable_device does not undo
3279 	 */
3280 	pci_release_regions(pdev);
3281 	return err;
3282 }
3283 
3284 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3285 				    const struct pci_device_id *ent)
3286 {
3287 	int i, rc;
3288 	int dac;
3289 	struct ctlr_info *h;
3290 
3291 	if (number_of_controllers == 0)
3292 		printk(KERN_INFO DRIVER_NAME "\n");
3293 	if (reset_devices) {
3294 		/* Reset the controller with a PCI power-cycle */
3295 		if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3296 			return -ENODEV;
3297 
3298 		/* Some devices (notably the HP Smart Array 5i Controller)
3299 		   need a little pause here */
3300 		msleep(HPSA_POST_RESET_PAUSE_MSECS);
3301 
3302 		/* Now try to get the controller to respond to a no-op */
3303 		for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3304 			if (hpsa_noop(pdev) == 0)
3305 				break;
3306 			else
3307 				dev_warn(&pdev->dev, "no-op failed%s\n",
3308 						(i < 11 ? "; re-trying" : ""));
3309 		}
3310 	}
3311 
3312 	BUILD_BUG_ON(sizeof(struct CommandList) % 8);
3313 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3314 	if (!h)
3315 		return -ENOMEM;
3316 
3317 	h->busy_initializing = 1;
3318 	INIT_HLIST_HEAD(&h->cmpQ);
3319 	INIT_HLIST_HEAD(&h->reqQ);
3320 	mutex_init(&h->busy_shutting_down);
3321 	init_completion(&h->scan_wait);
3322 	rc = hpsa_pci_init(h, pdev);
3323 	if (rc != 0)
3324 		goto clean1;
3325 
3326 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3327 	h->ctlr = number_of_controllers;
3328 	number_of_controllers++;
3329 	h->pdev = pdev;
3330 
3331 	/* configure PCI DMA stuff */
3332 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3333 	if (rc == 0) {
3334 		dac = 1;
3335 	} else {
3336 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3337 		if (rc == 0) {
3338 			dac = 0;
3339 		} else {
3340 			dev_err(&pdev->dev, "no suitable DMA available\n");
3341 			goto clean1;
3342 		}
3343 	}
3344 
3345 	/* make sure the board interrupts are off */
3346 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3347 	rc = request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr,
3348 			IRQF_DISABLED | IRQF_SHARED, h->devname, h);
3349 	if (rc) {
3350 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3351 		       h->intr[SIMPLE_MODE_INT], h->devname);
3352 		goto clean2;
3353 	}
3354 
3355 	dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3356 	       h->devname, pdev->device, pci_name(pdev),
3357 	       h->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3358 
3359 	h->cmd_pool_bits =
3360 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3361 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3362 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3363 		    h->nr_cmds * sizeof(*h->cmd_pool),
3364 		    &(h->cmd_pool_dhandle));
3365 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3366 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3367 		    &(h->errinfo_pool_dhandle));
3368 	if ((h->cmd_pool_bits == NULL)
3369 	    || (h->cmd_pool == NULL)
3370 	    || (h->errinfo_pool == NULL)) {
3371 		dev_err(&pdev->dev, "out of memory");
3372 		rc = -ENOMEM;
3373 		goto clean4;
3374 	}
3375 	spin_lock_init(&h->lock);
3376 
3377 	pci_set_drvdata(pdev, h);
3378 	memset(h->cmd_pool_bits, 0,
3379 	       ((h->nr_cmds + BITS_PER_LONG -
3380 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3381 
3382 	hpsa_scsi_setup(h);
3383 
3384 	/* Turn the interrupts on so we can service requests */
3385 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3386 
3387 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3388 	h->busy_initializing = 0;
3389 	return 1;
3390 
3391 clean4:
3392 	kfree(h->cmd_pool_bits);
3393 	if (h->cmd_pool)
3394 		pci_free_consistent(h->pdev,
3395 			    h->nr_cmds * sizeof(struct CommandList),
3396 			    h->cmd_pool, h->cmd_pool_dhandle);
3397 	if (h->errinfo_pool)
3398 		pci_free_consistent(h->pdev,
3399 			    h->nr_cmds * sizeof(struct ErrorInfo),
3400 			    h->errinfo_pool,
3401 			    h->errinfo_pool_dhandle);
3402 	free_irq(h->intr[SIMPLE_MODE_INT], h);
3403 clean2:
3404 clean1:
3405 	h->busy_initializing = 0;
3406 	kfree(h);
3407 	return rc;
3408 }
3409 
3410 static void hpsa_flush_cache(struct ctlr_info *h)
3411 {
3412 	char *flush_buf;
3413 	struct CommandList *c;
3414 
3415 	flush_buf = kzalloc(4, GFP_KERNEL);
3416 	if (!flush_buf)
3417 		return;
3418 
3419 	c = cmd_special_alloc(h);
3420 	if (!c) {
3421 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3422 		goto out_of_memory;
3423 	}
3424 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3425 		RAID_CTLR_LUNID, TYPE_CMD);
3426 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3427 	if (c->err_info->CommandStatus != 0)
3428 		dev_warn(&h->pdev->dev,
3429 			"error flushing cache on controller\n");
3430 	cmd_special_free(h, c);
3431 out_of_memory:
3432 	kfree(flush_buf);
3433 }
3434 
3435 static void hpsa_shutdown(struct pci_dev *pdev)
3436 {
3437 	struct ctlr_info *h;
3438 
3439 	h = pci_get_drvdata(pdev);
3440 	/* Turn board interrupts off  and send the flush cache command
3441 	 * sendcmd will turn off interrupt, and send the flush...
3442 	 * To write all data in the battery backed cache to disks
3443 	 */
3444 	hpsa_flush_cache(h);
3445 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3446 	free_irq(h->intr[2], h);
3447 #ifdef CONFIG_PCI_MSI
3448 	if (h->msix_vector)
3449 		pci_disable_msix(h->pdev);
3450 	else if (h->msi_vector)
3451 		pci_disable_msi(h->pdev);
3452 #endif				/* CONFIG_PCI_MSI */
3453 }
3454 
3455 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3456 {
3457 	struct ctlr_info *h;
3458 
3459 	if (pci_get_drvdata(pdev) == NULL) {
3460 		dev_err(&pdev->dev, "unable to remove device \n");
3461 		return;
3462 	}
3463 	h = pci_get_drvdata(pdev);
3464 	mutex_lock(&h->busy_shutting_down);
3465 	remove_from_scan_list(h);
3466 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3467 	hpsa_shutdown(pdev);
3468 	iounmap(h->vaddr);
3469 	pci_free_consistent(h->pdev,
3470 		h->nr_cmds * sizeof(struct CommandList),
3471 		h->cmd_pool, h->cmd_pool_dhandle);
3472 	pci_free_consistent(h->pdev,
3473 		h->nr_cmds * sizeof(struct ErrorInfo),
3474 		h->errinfo_pool, h->errinfo_pool_dhandle);
3475 	kfree(h->cmd_pool_bits);
3476 	/*
3477 	 * Deliberately omit pci_disable_device(): it does something nasty to
3478 	 * Smart Array controllers that pci_enable_device does not undo
3479 	 */
3480 	pci_release_regions(pdev);
3481 	pci_set_drvdata(pdev, NULL);
3482 	mutex_unlock(&h->busy_shutting_down);
3483 	kfree(h);
3484 }
3485 
3486 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3487 	__attribute__((unused)) pm_message_t state)
3488 {
3489 	return -ENOSYS;
3490 }
3491 
3492 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3493 {
3494 	return -ENOSYS;
3495 }
3496 
3497 static struct pci_driver hpsa_pci_driver = {
3498 	.name = "hpsa",
3499 	.probe = hpsa_init_one,
3500 	.remove = __devexit_p(hpsa_remove_one),
3501 	.id_table = hpsa_pci_device_id,	/* id_table */
3502 	.shutdown = hpsa_shutdown,
3503 	.suspend = hpsa_suspend,
3504 	.resume = hpsa_resume,
3505 };
3506 
3507 /*
3508  *  This is it.  Register the PCI driver information for the cards we control
3509  *  the OS will call our registered routines when it finds one of our cards.
3510  */
3511 static int __init hpsa_init(void)
3512 {
3513 	int err;
3514 	/* Start the scan thread */
3515 	hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3516 	if (IS_ERR(hpsa_scan_thread)) {
3517 		err = PTR_ERR(hpsa_scan_thread);
3518 		return -ENODEV;
3519 	}
3520 	err = pci_register_driver(&hpsa_pci_driver);
3521 	if (err)
3522 		kthread_stop(hpsa_scan_thread);
3523 	return err;
3524 }
3525 
3526 static void __exit hpsa_cleanup(void)
3527 {
3528 	pci_unregister_driver(&hpsa_pci_driver);
3529 	kthread_stop(hpsa_scan_thread);
3530 }
3531 
3532 module_init(hpsa_init);
3533 module_exit(hpsa_cleanup);
3534