xref: /openbmc/linux/drivers/scsi/hpsa.c (revision d2315ce6e3d09c8dbc9ee93ef6b3f5213e8325ac)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.18-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x3241103C, "Smart Array P212", &SA5_access},
162 	{0x3243103C, "Smart Array P410", &SA5_access},
163 	{0x3245103C, "Smart Array P410i", &SA5_access},
164 	{0x3247103C, "Smart Array P411", &SA5_access},
165 	{0x3249103C, "Smart Array P812", &SA5_access},
166 	{0x324A103C, "Smart Array P712m", &SA5_access},
167 	{0x324B103C, "Smart Array P711m", &SA5_access},
168 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169 	{0x3350103C, "Smart Array P222", &SA5_access},
170 	{0x3351103C, "Smart Array P420", &SA5_access},
171 	{0x3352103C, "Smart Array P421", &SA5_access},
172 	{0x3353103C, "Smart Array P822", &SA5_access},
173 	{0x3354103C, "Smart Array P420i", &SA5_access},
174 	{0x3355103C, "Smart Array P220i", &SA5_access},
175 	{0x3356103C, "Smart Array P721m", &SA5_access},
176 	{0x1920103C, "Smart Array P430i", &SA5_access},
177 	{0x1921103C, "Smart Array P830i", &SA5_access},
178 	{0x1922103C, "Smart Array P430", &SA5_access},
179 	{0x1923103C, "Smart Array P431", &SA5_access},
180 	{0x1924103C, "Smart Array P830", &SA5_access},
181 	{0x1925103C, "Smart Array P831", &SA5_access},
182 	{0x1926103C, "Smart Array P731m", &SA5_access},
183 	{0x1928103C, "Smart Array P230i", &SA5_access},
184 	{0x1929103C, "Smart Array P530", &SA5_access},
185 	{0x21BD103C, "Smart Array P244br", &SA5_access},
186 	{0x21BE103C, "Smart Array P741m", &SA5_access},
187 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
189 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
190 	{0x21C2103C, "Smart Array P440", &SA5_access},
191 	{0x21C3103C, "Smart Array P441", &SA5_access},
192 	{0x21C4103C, "Smart Array", &SA5_access},
193 	{0x21C5103C, "Smart Array P841", &SA5_access},
194 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
195 	{0x21C7103C, "Smart HBA H240", &SA5_access},
196 	{0x21C8103C, "Smart HBA H241", &SA5_access},
197 	{0x21C9103C, "Smart Array", &SA5_access},
198 	{0x21CA103C, "Smart Array P246br", &SA5_access},
199 	{0x21CB103C, "Smart Array P840", &SA5_access},
200 	{0x21CC103C, "Smart Array", &SA5_access},
201 	{0x21CD103C, "Smart Array", &SA5_access},
202 	{0x21CE103C, "Smart HBA", &SA5_access},
203 	{0x05809005, "SmartHBA-SA", &SA5_access},
204 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216 
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 			struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 		struct sas_rphy *rphy);
226 
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232 
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236 
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 	void __user *arg);
240 #endif
241 
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 					    struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249 	int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253 
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257 	unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259 
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
262 static int hpsa_slave_alloc(struct scsi_device *sdev);
263 static int hpsa_slave_configure(struct scsi_device *sdev);
264 static void hpsa_slave_destroy(struct scsi_device *sdev);
265 
266 static void hpsa_update_scsi_devices(struct ctlr_info *h);
267 static int check_for_unit_attention(struct ctlr_info *h,
268 	struct CommandList *c);
269 static void check_ioctl_unit_attention(struct ctlr_info *h,
270 	struct CommandList *c);
271 /* performant mode helper functions */
272 static void calc_bucket_map(int *bucket, int num_buckets,
273 	int nsgs, int min_blocks, u32 *bucket_map);
274 static void hpsa_free_performant_mode(struct ctlr_info *h);
275 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
276 static inline u32 next_command(struct ctlr_info *h, u8 q);
277 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279 			       u64 *cfg_offset);
280 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281 				    unsigned long *memory_bar);
282 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
284 					   unsigned char lunaddr[],
285 					   int reply_queue);
286 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287 				     int wait_for_ready);
288 static inline void finish_cmd(struct CommandList *c);
289 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
290 #define BOARD_NOT_READY 0
291 #define BOARD_READY 1
292 static void hpsa_drain_accel_commands(struct ctlr_info *h);
293 static void hpsa_flush_cache(struct ctlr_info *h);
294 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
296 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
297 static void hpsa_command_resubmit_worker(struct work_struct *work);
298 static u32 lockup_detected(struct ctlr_info *h);
299 static int detect_controller_lockup(struct ctlr_info *h);
300 static void hpsa_disable_rld_caching(struct ctlr_info *h);
301 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302 	struct ReportExtendedLUNdata *buf, int bufsize);
303 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304 	unsigned char scsi3addr[], u8 page);
305 static int hpsa_luns_changed(struct ctlr_info *h);
306 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307 			       struct hpsa_scsi_dev_t *dev,
308 			       unsigned char *scsi3addr);
309 
310 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311 {
312 	unsigned long *priv = shost_priv(sdev->host);
313 	return (struct ctlr_info *) *priv;
314 }
315 
316 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317 {
318 	unsigned long *priv = shost_priv(sh);
319 	return (struct ctlr_info *) *priv;
320 }
321 
322 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323 {
324 	return c->scsi_cmd == SCSI_CMD_IDLE;
325 }
326 
327 static inline bool hpsa_is_pending_event(struct CommandList *c)
328 {
329 	return c->abort_pending || c->reset_pending;
330 }
331 
332 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
333 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334 			u8 *sense_key, u8 *asc, u8 *ascq)
335 {
336 	struct scsi_sense_hdr sshdr;
337 	bool rc;
338 
339 	*sense_key = -1;
340 	*asc = -1;
341 	*ascq = -1;
342 
343 	if (sense_data_len < 1)
344 		return;
345 
346 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347 	if (rc) {
348 		*sense_key = sshdr.sense_key;
349 		*asc = sshdr.asc;
350 		*ascq = sshdr.ascq;
351 	}
352 }
353 
354 static int check_for_unit_attention(struct ctlr_info *h,
355 	struct CommandList *c)
356 {
357 	u8 sense_key, asc, ascq;
358 	int sense_len;
359 
360 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361 		sense_len = sizeof(c->err_info->SenseInfo);
362 	else
363 		sense_len = c->err_info->SenseLen;
364 
365 	decode_sense_data(c->err_info->SenseInfo, sense_len,
366 				&sense_key, &asc, &ascq);
367 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
368 		return 0;
369 
370 	switch (asc) {
371 	case STATE_CHANGED:
372 		dev_warn(&h->pdev->dev,
373 			"%s: a state change detected, command retried\n",
374 			h->devname);
375 		break;
376 	case LUN_FAILED:
377 		dev_warn(&h->pdev->dev,
378 			"%s: LUN failure detected\n", h->devname);
379 		break;
380 	case REPORT_LUNS_CHANGED:
381 		dev_warn(&h->pdev->dev,
382 			"%s: report LUN data changed\n", h->devname);
383 	/*
384 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385 	 * target (array) devices.
386 	 */
387 		break;
388 	case POWER_OR_RESET:
389 		dev_warn(&h->pdev->dev,
390 			"%s: a power on or device reset detected\n",
391 			h->devname);
392 		break;
393 	case UNIT_ATTENTION_CLEARED:
394 		dev_warn(&h->pdev->dev,
395 			"%s: unit attention cleared by another initiator\n",
396 			h->devname);
397 		break;
398 	default:
399 		dev_warn(&h->pdev->dev,
400 			"%s: unknown unit attention detected\n",
401 			h->devname);
402 		break;
403 	}
404 	return 1;
405 }
406 
407 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408 {
409 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412 		return 0;
413 	dev_warn(&h->pdev->dev, HPSA "device busy");
414 	return 1;
415 }
416 
417 static u32 lockup_detected(struct ctlr_info *h);
418 static ssize_t host_show_lockup_detected(struct device *dev,
419 		struct device_attribute *attr, char *buf)
420 {
421 	int ld;
422 	struct ctlr_info *h;
423 	struct Scsi_Host *shost = class_to_shost(dev);
424 
425 	h = shost_to_hba(shost);
426 	ld = lockup_detected(h);
427 
428 	return sprintf(buf, "ld=%d\n", ld);
429 }
430 
431 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432 					 struct device_attribute *attr,
433 					 const char *buf, size_t count)
434 {
435 	int status, len;
436 	struct ctlr_info *h;
437 	struct Scsi_Host *shost = class_to_shost(dev);
438 	char tmpbuf[10];
439 
440 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441 		return -EACCES;
442 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443 	strncpy(tmpbuf, buf, len);
444 	tmpbuf[len] = '\0';
445 	if (sscanf(tmpbuf, "%d", &status) != 1)
446 		return -EINVAL;
447 	h = shost_to_hba(shost);
448 	h->acciopath_status = !!status;
449 	dev_warn(&h->pdev->dev,
450 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
451 		h->acciopath_status ? "enabled" : "disabled");
452 	return count;
453 }
454 
455 static ssize_t host_store_raid_offload_debug(struct device *dev,
456 					 struct device_attribute *attr,
457 					 const char *buf, size_t count)
458 {
459 	int debug_level, len;
460 	struct ctlr_info *h;
461 	struct Scsi_Host *shost = class_to_shost(dev);
462 	char tmpbuf[10];
463 
464 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465 		return -EACCES;
466 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467 	strncpy(tmpbuf, buf, len);
468 	tmpbuf[len] = '\0';
469 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470 		return -EINVAL;
471 	if (debug_level < 0)
472 		debug_level = 0;
473 	h = shost_to_hba(shost);
474 	h->raid_offload_debug = debug_level;
475 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476 		h->raid_offload_debug);
477 	return count;
478 }
479 
480 static ssize_t host_store_rescan(struct device *dev,
481 				 struct device_attribute *attr,
482 				 const char *buf, size_t count)
483 {
484 	struct ctlr_info *h;
485 	struct Scsi_Host *shost = class_to_shost(dev);
486 	h = shost_to_hba(shost);
487 	hpsa_scan_start(h->scsi_host);
488 	return count;
489 }
490 
491 static ssize_t host_show_firmware_revision(struct device *dev,
492 	     struct device_attribute *attr, char *buf)
493 {
494 	struct ctlr_info *h;
495 	struct Scsi_Host *shost = class_to_shost(dev);
496 	unsigned char *fwrev;
497 
498 	h = shost_to_hba(shost);
499 	if (!h->hba_inquiry_data)
500 		return 0;
501 	fwrev = &h->hba_inquiry_data[32];
502 	return snprintf(buf, 20, "%c%c%c%c\n",
503 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504 }
505 
506 static ssize_t host_show_commands_outstanding(struct device *dev,
507 	     struct device_attribute *attr, char *buf)
508 {
509 	struct Scsi_Host *shost = class_to_shost(dev);
510 	struct ctlr_info *h = shost_to_hba(shost);
511 
512 	return snprintf(buf, 20, "%d\n",
513 			atomic_read(&h->commands_outstanding));
514 }
515 
516 static ssize_t host_show_transport_mode(struct device *dev,
517 	struct device_attribute *attr, char *buf)
518 {
519 	struct ctlr_info *h;
520 	struct Scsi_Host *shost = class_to_shost(dev);
521 
522 	h = shost_to_hba(shost);
523 	return snprintf(buf, 20, "%s\n",
524 		h->transMethod & CFGTBL_Trans_Performant ?
525 			"performant" : "simple");
526 }
527 
528 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529 	struct device_attribute *attr, char *buf)
530 {
531 	struct ctlr_info *h;
532 	struct Scsi_Host *shost = class_to_shost(dev);
533 
534 	h = shost_to_hba(shost);
535 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
537 }
538 
539 /* List of controllers which cannot be hard reset on kexec with reset_devices */
540 static u32 unresettable_controller[] = {
541 	0x324a103C, /* Smart Array P712m */
542 	0x324b103C, /* Smart Array P711m */
543 	0x3223103C, /* Smart Array P800 */
544 	0x3234103C, /* Smart Array P400 */
545 	0x3235103C, /* Smart Array P400i */
546 	0x3211103C, /* Smart Array E200i */
547 	0x3212103C, /* Smart Array E200 */
548 	0x3213103C, /* Smart Array E200i */
549 	0x3214103C, /* Smart Array E200i */
550 	0x3215103C, /* Smart Array E200i */
551 	0x3237103C, /* Smart Array E500 */
552 	0x323D103C, /* Smart Array P700m */
553 	0x40800E11, /* Smart Array 5i */
554 	0x409C0E11, /* Smart Array 6400 */
555 	0x409D0E11, /* Smart Array 6400 EM */
556 	0x40700E11, /* Smart Array 5300 */
557 	0x40820E11, /* Smart Array 532 */
558 	0x40830E11, /* Smart Array 5312 */
559 	0x409A0E11, /* Smart Array 641 */
560 	0x409B0E11, /* Smart Array 642 */
561 	0x40910E11, /* Smart Array 6i */
562 };
563 
564 /* List of controllers which cannot even be soft reset */
565 static u32 soft_unresettable_controller[] = {
566 	0x40800E11, /* Smart Array 5i */
567 	0x40700E11, /* Smart Array 5300 */
568 	0x40820E11, /* Smart Array 532 */
569 	0x40830E11, /* Smart Array 5312 */
570 	0x409A0E11, /* Smart Array 641 */
571 	0x409B0E11, /* Smart Array 642 */
572 	0x40910E11, /* Smart Array 6i */
573 	/* Exclude 640x boards.  These are two pci devices in one slot
574 	 * which share a battery backed cache module.  One controls the
575 	 * cache, the other accesses the cache through the one that controls
576 	 * it.  If we reset the one controlling the cache, the other will
577 	 * likely not be happy.  Just forbid resetting this conjoined mess.
578 	 * The 640x isn't really supported by hpsa anyway.
579 	 */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 };
583 
584 static u32 needs_abort_tags_swizzled[] = {
585 	0x323D103C, /* Smart Array P700m */
586 	0x324a103C, /* Smart Array P712m */
587 	0x324b103C, /* SmartArray P711m */
588 };
589 
590 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
591 {
592 	int i;
593 
594 	for (i = 0; i < nelems; i++)
595 		if (a[i] == board_id)
596 			return 1;
597 	return 0;
598 }
599 
600 static int ctlr_is_hard_resettable(u32 board_id)
601 {
602 	return !board_id_in_array(unresettable_controller,
603 			ARRAY_SIZE(unresettable_controller), board_id);
604 }
605 
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608 	return !board_id_in_array(soft_unresettable_controller,
609 			ARRAY_SIZE(soft_unresettable_controller), board_id);
610 }
611 
612 static int ctlr_is_resettable(u32 board_id)
613 {
614 	return ctlr_is_hard_resettable(board_id) ||
615 		ctlr_is_soft_resettable(board_id);
616 }
617 
618 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619 {
620 	return board_id_in_array(needs_abort_tags_swizzled,
621 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622 }
623 
624 static ssize_t host_show_resettable(struct device *dev,
625 	struct device_attribute *attr, char *buf)
626 {
627 	struct ctlr_info *h;
628 	struct Scsi_Host *shost = class_to_shost(dev);
629 
630 	h = shost_to_hba(shost);
631 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633 
634 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635 {
636 	return (scsi3addr[3] & 0xC0) == 0x40;
637 }
638 
639 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
640 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
641 };
642 #define HPSA_RAID_0	0
643 #define HPSA_RAID_4	1
644 #define HPSA_RAID_1	2	/* also used for RAID 10 */
645 #define HPSA_RAID_5	3	/* also used for RAID 50 */
646 #define HPSA_RAID_51	4
647 #define HPSA_RAID_6	5	/* also used for RAID 60 */
648 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
649 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
651 
652 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653 {
654 	return !device->physical_device;
655 }
656 
657 static ssize_t raid_level_show(struct device *dev,
658 	     struct device_attribute *attr, char *buf)
659 {
660 	ssize_t l = 0;
661 	unsigned char rlevel;
662 	struct ctlr_info *h;
663 	struct scsi_device *sdev;
664 	struct hpsa_scsi_dev_t *hdev;
665 	unsigned long flags;
666 
667 	sdev = to_scsi_device(dev);
668 	h = sdev_to_hba(sdev);
669 	spin_lock_irqsave(&h->lock, flags);
670 	hdev = sdev->hostdata;
671 	if (!hdev) {
672 		spin_unlock_irqrestore(&h->lock, flags);
673 		return -ENODEV;
674 	}
675 
676 	/* Is this even a logical drive? */
677 	if (!is_logical_device(hdev)) {
678 		spin_unlock_irqrestore(&h->lock, flags);
679 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
680 		return l;
681 	}
682 
683 	rlevel = hdev->raid_level;
684 	spin_unlock_irqrestore(&h->lock, flags);
685 	if (rlevel > RAID_UNKNOWN)
686 		rlevel = RAID_UNKNOWN;
687 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688 	return l;
689 }
690 
691 static ssize_t lunid_show(struct device *dev,
692 	     struct device_attribute *attr, char *buf)
693 {
694 	struct ctlr_info *h;
695 	struct scsi_device *sdev;
696 	struct hpsa_scsi_dev_t *hdev;
697 	unsigned long flags;
698 	unsigned char lunid[8];
699 
700 	sdev = to_scsi_device(dev);
701 	h = sdev_to_hba(sdev);
702 	spin_lock_irqsave(&h->lock, flags);
703 	hdev = sdev->hostdata;
704 	if (!hdev) {
705 		spin_unlock_irqrestore(&h->lock, flags);
706 		return -ENODEV;
707 	}
708 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709 	spin_unlock_irqrestore(&h->lock, flags);
710 	return snprintf(buf, 20, "0x%8phN\n", lunid);
711 }
712 
713 static ssize_t unique_id_show(struct device *dev,
714 	     struct device_attribute *attr, char *buf)
715 {
716 	struct ctlr_info *h;
717 	struct scsi_device *sdev;
718 	struct hpsa_scsi_dev_t *hdev;
719 	unsigned long flags;
720 	unsigned char sn[16];
721 
722 	sdev = to_scsi_device(dev);
723 	h = sdev_to_hba(sdev);
724 	spin_lock_irqsave(&h->lock, flags);
725 	hdev = sdev->hostdata;
726 	if (!hdev) {
727 		spin_unlock_irqrestore(&h->lock, flags);
728 		return -ENODEV;
729 	}
730 	memcpy(sn, hdev->device_id, sizeof(sn));
731 	spin_unlock_irqrestore(&h->lock, flags);
732 	return snprintf(buf, 16 * 2 + 2,
733 			"%02X%02X%02X%02X%02X%02X%02X%02X"
734 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
735 			sn[0], sn[1], sn[2], sn[3],
736 			sn[4], sn[5], sn[6], sn[7],
737 			sn[8], sn[9], sn[10], sn[11],
738 			sn[12], sn[13], sn[14], sn[15]);
739 }
740 
741 static ssize_t sas_address_show(struct device *dev,
742 	      struct device_attribute *attr, char *buf)
743 {
744 	struct ctlr_info *h;
745 	struct scsi_device *sdev;
746 	struct hpsa_scsi_dev_t *hdev;
747 	unsigned long flags;
748 	u64 sas_address;
749 
750 	sdev = to_scsi_device(dev);
751 	h = sdev_to_hba(sdev);
752 	spin_lock_irqsave(&h->lock, flags);
753 	hdev = sdev->hostdata;
754 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755 		spin_unlock_irqrestore(&h->lock, flags);
756 		return -ENODEV;
757 	}
758 	sas_address = hdev->sas_address;
759 	spin_unlock_irqrestore(&h->lock, flags);
760 
761 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762 }
763 
764 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765 	     struct device_attribute *attr, char *buf)
766 {
767 	struct ctlr_info *h;
768 	struct scsi_device *sdev;
769 	struct hpsa_scsi_dev_t *hdev;
770 	unsigned long flags;
771 	int offload_enabled;
772 
773 	sdev = to_scsi_device(dev);
774 	h = sdev_to_hba(sdev);
775 	spin_lock_irqsave(&h->lock, flags);
776 	hdev = sdev->hostdata;
777 	if (!hdev) {
778 		spin_unlock_irqrestore(&h->lock, flags);
779 		return -ENODEV;
780 	}
781 	offload_enabled = hdev->offload_enabled;
782 	spin_unlock_irqrestore(&h->lock, flags);
783 	return snprintf(buf, 20, "%d\n", offload_enabled);
784 }
785 
786 #define MAX_PATHS 8
787 static ssize_t path_info_show(struct device *dev,
788 	     struct device_attribute *attr, char *buf)
789 {
790 	struct ctlr_info *h;
791 	struct scsi_device *sdev;
792 	struct hpsa_scsi_dev_t *hdev;
793 	unsigned long flags;
794 	int i;
795 	int output_len = 0;
796 	u8 box;
797 	u8 bay;
798 	u8 path_map_index = 0;
799 	char *active;
800 	unsigned char phys_connector[2];
801 
802 	sdev = to_scsi_device(dev);
803 	h = sdev_to_hba(sdev);
804 	spin_lock_irqsave(&h->devlock, flags);
805 	hdev = sdev->hostdata;
806 	if (!hdev) {
807 		spin_unlock_irqrestore(&h->devlock, flags);
808 		return -ENODEV;
809 	}
810 
811 	bay = hdev->bay;
812 	for (i = 0; i < MAX_PATHS; i++) {
813 		path_map_index = 1<<i;
814 		if (i == hdev->active_path_index)
815 			active = "Active";
816 		else if (hdev->path_map & path_map_index)
817 			active = "Inactive";
818 		else
819 			continue;
820 
821 		output_len += scnprintf(buf + output_len,
822 				PAGE_SIZE - output_len,
823 				"[%d:%d:%d:%d] %20.20s ",
824 				h->scsi_host->host_no,
825 				hdev->bus, hdev->target, hdev->lun,
826 				scsi_device_type(hdev->devtype));
827 
828 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
829 			output_len += scnprintf(buf + output_len,
830 						PAGE_SIZE - output_len,
831 						"%s\n", active);
832 			continue;
833 		}
834 
835 		box = hdev->box[i];
836 		memcpy(&phys_connector, &hdev->phys_connector[i],
837 			sizeof(phys_connector));
838 		if (phys_connector[0] < '0')
839 			phys_connector[0] = '0';
840 		if (phys_connector[1] < '0')
841 			phys_connector[1] = '0';
842 		output_len += scnprintf(buf + output_len,
843 				PAGE_SIZE - output_len,
844 				"PORT: %.2s ",
845 				phys_connector);
846 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847 			hdev->expose_device) {
848 			if (box == 0 || box == 0xFF) {
849 				output_len += scnprintf(buf + output_len,
850 					PAGE_SIZE - output_len,
851 					"BAY: %hhu %s\n",
852 					bay, active);
853 			} else {
854 				output_len += scnprintf(buf + output_len,
855 					PAGE_SIZE - output_len,
856 					"BOX: %hhu BAY: %hhu %s\n",
857 					box, bay, active);
858 			}
859 		} else if (box != 0 && box != 0xFF) {
860 			output_len += scnprintf(buf + output_len,
861 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
862 				box, active);
863 		} else
864 			output_len += scnprintf(buf + output_len,
865 				PAGE_SIZE - output_len, "%s\n", active);
866 	}
867 
868 	spin_unlock_irqrestore(&h->devlock, flags);
869 	return output_len;
870 }
871 
872 static ssize_t host_show_ctlr_num(struct device *dev,
873 	struct device_attribute *attr, char *buf)
874 {
875 	struct ctlr_info *h;
876 	struct Scsi_Host *shost = class_to_shost(dev);
877 
878 	h = shost_to_hba(shost);
879 	return snprintf(buf, 20, "%d\n", h->ctlr);
880 }
881 
882 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
886 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
887 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888 			host_show_hp_ssd_smart_path_enabled, NULL);
889 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
890 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891 		host_show_hp_ssd_smart_path_status,
892 		host_store_hp_ssd_smart_path_status);
893 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894 			host_store_raid_offload_debug);
895 static DEVICE_ATTR(firmware_revision, S_IRUGO,
896 	host_show_firmware_revision, NULL);
897 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898 	host_show_commands_outstanding, NULL);
899 static DEVICE_ATTR(transport_mode, S_IRUGO,
900 	host_show_transport_mode, NULL);
901 static DEVICE_ATTR(resettable, S_IRUGO,
902 	host_show_resettable, NULL);
903 static DEVICE_ATTR(lockup_detected, S_IRUGO,
904 	host_show_lockup_detected, NULL);
905 static DEVICE_ATTR(ctlr_num, S_IRUGO,
906 	host_show_ctlr_num, NULL);
907 
908 static struct device_attribute *hpsa_sdev_attrs[] = {
909 	&dev_attr_raid_level,
910 	&dev_attr_lunid,
911 	&dev_attr_unique_id,
912 	&dev_attr_hp_ssd_smart_path_enabled,
913 	&dev_attr_path_info,
914 	&dev_attr_sas_address,
915 	NULL,
916 };
917 
918 static struct device_attribute *hpsa_shost_attrs[] = {
919 	&dev_attr_rescan,
920 	&dev_attr_firmware_revision,
921 	&dev_attr_commands_outstanding,
922 	&dev_attr_transport_mode,
923 	&dev_attr_resettable,
924 	&dev_attr_hp_ssd_smart_path_status,
925 	&dev_attr_raid_offload_debug,
926 	&dev_attr_lockup_detected,
927 	&dev_attr_ctlr_num,
928 	NULL,
929 };
930 
931 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
932 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933 
934 static struct scsi_host_template hpsa_driver_template = {
935 	.module			= THIS_MODULE,
936 	.name			= HPSA,
937 	.proc_name		= HPSA,
938 	.queuecommand		= hpsa_scsi_queue_command,
939 	.scan_start		= hpsa_scan_start,
940 	.scan_finished		= hpsa_scan_finished,
941 	.change_queue_depth	= hpsa_change_queue_depth,
942 	.this_id		= -1,
943 	.use_clustering		= ENABLE_CLUSTERING,
944 	.eh_abort_handler	= hpsa_eh_abort_handler,
945 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
946 	.ioctl			= hpsa_ioctl,
947 	.slave_alloc		= hpsa_slave_alloc,
948 	.slave_configure	= hpsa_slave_configure,
949 	.slave_destroy		= hpsa_slave_destroy,
950 #ifdef CONFIG_COMPAT
951 	.compat_ioctl		= hpsa_compat_ioctl,
952 #endif
953 	.sdev_attrs = hpsa_sdev_attrs,
954 	.shost_attrs = hpsa_shost_attrs,
955 	.max_sectors = 8192,
956 	.no_write_same = 1,
957 };
958 
959 static inline u32 next_command(struct ctlr_info *h, u8 q)
960 {
961 	u32 a;
962 	struct reply_queue_buffer *rq = &h->reply_queue[q];
963 
964 	if (h->transMethod & CFGTBL_Trans_io_accel1)
965 		return h->access.command_completed(h, q);
966 
967 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
968 		return h->access.command_completed(h, q);
969 
970 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971 		a = rq->head[rq->current_entry];
972 		rq->current_entry++;
973 		atomic_dec(&h->commands_outstanding);
974 	} else {
975 		a = FIFO_EMPTY;
976 	}
977 	/* Check for wraparound */
978 	if (rq->current_entry == h->max_commands) {
979 		rq->current_entry = 0;
980 		rq->wraparound ^= 1;
981 	}
982 	return a;
983 }
984 
985 /*
986  * There are some special bits in the bus address of the
987  * command that we have to set for the controller to know
988  * how to process the command:
989  *
990  * Normal performant mode:
991  * bit 0: 1 means performant mode, 0 means simple mode.
992  * bits 1-3 = block fetch table entry
993  * bits 4-6 = command type (== 0)
994  *
995  * ioaccel1 mode:
996  * bit 0 = "performant mode" bit.
997  * bits 1-3 = block fetch table entry
998  * bits 4-6 = command type (== 110)
999  * (command type is needed because ioaccel1 mode
1000  * commands are submitted through the same register as normal
1001  * mode commands, so this is how the controller knows whether
1002  * the command is normal mode or ioaccel1 mode.)
1003  *
1004  * ioaccel2 mode:
1005  * bit 0 = "performant mode" bit.
1006  * bits 1-4 = block fetch table entry (note extra bit)
1007  * bits 4-6 = not needed, because ioaccel2 mode has
1008  * a separate special register for submitting commands.
1009  */
1010 
1011 /*
1012  * set_performant_mode: Modify the tag for cciss performant
1013  * set bit 0 for pull model, bits 3-1 for block fetch
1014  * register number
1015  */
1016 #define DEFAULT_REPLY_QUEUE (-1)
1017 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018 					int reply_queue)
1019 {
1020 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1021 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1022 		if (unlikely(!h->msix_vectors))
1023 			return;
1024 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 			c->Header.ReplyQueue =
1026 				raw_smp_processor_id() % h->nreply_queues;
1027 		else
1028 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1029 	}
1030 }
1031 
1032 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1033 						struct CommandList *c,
1034 						int reply_queue)
1035 {
1036 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037 
1038 	/*
1039 	 * Tell the controller to post the reply to the queue for this
1040 	 * processor.  This seems to give the best I/O throughput.
1041 	 */
1042 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044 	else
1045 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1046 	/*
1047 	 * Set the bits in the address sent down to include:
1048 	 *  - performant mode bit (bit 0)
1049 	 *  - pull count (bits 1-3)
1050 	 *  - command type (bits 4-6)
1051 	 */
1052 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053 					IOACCEL1_BUSADDR_CMDTYPE;
1054 }
1055 
1056 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057 						struct CommandList *c,
1058 						int reply_queue)
1059 {
1060 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061 		&h->ioaccel2_cmd_pool[c->cmdindex];
1062 
1063 	/* Tell the controller to post the reply to the queue for this
1064 	 * processor.  This seems to give the best I/O throughput.
1065 	 */
1066 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068 	else
1069 		cp->reply_queue = reply_queue % h->nreply_queues;
1070 	/* Set the bits in the address sent down to include:
1071 	 *  - performant mode bit not used in ioaccel mode 2
1072 	 *  - pull count (bits 0-3)
1073 	 *  - command type isn't needed for ioaccel2
1074 	 */
1075 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076 }
1077 
1078 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1079 						struct CommandList *c,
1080 						int reply_queue)
1081 {
1082 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083 
1084 	/*
1085 	 * Tell the controller to post the reply to the queue for this
1086 	 * processor.  This seems to give the best I/O throughput.
1087 	 */
1088 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090 	else
1091 		cp->reply_queue = reply_queue % h->nreply_queues;
1092 	/*
1093 	 * Set the bits in the address sent down to include:
1094 	 *  - performant mode bit not used in ioaccel mode 2
1095 	 *  - pull count (bits 0-3)
1096 	 *  - command type isn't needed for ioaccel2
1097 	 */
1098 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099 }
1100 
1101 static int is_firmware_flash_cmd(u8 *cdb)
1102 {
1103 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104 }
1105 
1106 /*
1107  * During firmware flash, the heartbeat register may not update as frequently
1108  * as it should.  So we dial down lockup detection during firmware flash. and
1109  * dial it back up when firmware flash completes.
1110  */
1111 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1114 		struct CommandList *c)
1115 {
1116 	if (!is_firmware_flash_cmd(c->Request.CDB))
1117 		return;
1118 	atomic_inc(&h->firmware_flash_in_progress);
1119 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1120 }
1121 
1122 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1123 		struct CommandList *c)
1124 {
1125 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1126 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1127 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1128 }
1129 
1130 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1131 	struct CommandList *c, int reply_queue)
1132 {
1133 	dial_down_lockup_detection_during_fw_flash(h, c);
1134 	atomic_inc(&h->commands_outstanding);
1135 	switch (c->cmd_type) {
1136 	case CMD_IOACCEL1:
1137 		set_ioaccel1_performant_mode(h, c, reply_queue);
1138 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1139 		break;
1140 	case CMD_IOACCEL2:
1141 		set_ioaccel2_performant_mode(h, c, reply_queue);
1142 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1143 		break;
1144 	case IOACCEL2_TMF:
1145 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1146 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1147 		break;
1148 	default:
1149 		set_performant_mode(h, c, reply_queue);
1150 		h->access.submit_command(h, c);
1151 	}
1152 }
1153 
1154 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1155 {
1156 	if (unlikely(hpsa_is_pending_event(c)))
1157 		return finish_cmd(c);
1158 
1159 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1160 }
1161 
1162 static inline int is_hba_lunid(unsigned char scsi3addr[])
1163 {
1164 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1165 }
1166 
1167 static inline int is_scsi_rev_5(struct ctlr_info *h)
1168 {
1169 	if (!h->hba_inquiry_data)
1170 		return 0;
1171 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1172 		return 1;
1173 	return 0;
1174 }
1175 
1176 static int hpsa_find_target_lun(struct ctlr_info *h,
1177 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1178 {
1179 	/* finds an unused bus, target, lun for a new physical device
1180 	 * assumes h->devlock is held
1181 	 */
1182 	int i, found = 0;
1183 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1184 
1185 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1186 
1187 	for (i = 0; i < h->ndevices; i++) {
1188 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1189 			__set_bit(h->dev[i]->target, lun_taken);
1190 	}
1191 
1192 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1193 	if (i < HPSA_MAX_DEVICES) {
1194 		/* *bus = 1; */
1195 		*target = i;
1196 		*lun = 0;
1197 		found = 1;
1198 	}
1199 	return !found;
1200 }
1201 
1202 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1203 	struct hpsa_scsi_dev_t *dev, char *description)
1204 {
1205 #define LABEL_SIZE 25
1206 	char label[LABEL_SIZE];
1207 
1208 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1209 		return;
1210 
1211 	switch (dev->devtype) {
1212 	case TYPE_RAID:
1213 		snprintf(label, LABEL_SIZE, "controller");
1214 		break;
1215 	case TYPE_ENCLOSURE:
1216 		snprintf(label, LABEL_SIZE, "enclosure");
1217 		break;
1218 	case TYPE_DISK:
1219 	case TYPE_ZBC:
1220 		if (dev->external)
1221 			snprintf(label, LABEL_SIZE, "external");
1222 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1223 			snprintf(label, LABEL_SIZE, "%s",
1224 				raid_label[PHYSICAL_DRIVE]);
1225 		else
1226 			snprintf(label, LABEL_SIZE, "RAID-%s",
1227 				dev->raid_level > RAID_UNKNOWN ? "?" :
1228 				raid_label[dev->raid_level]);
1229 		break;
1230 	case TYPE_ROM:
1231 		snprintf(label, LABEL_SIZE, "rom");
1232 		break;
1233 	case TYPE_TAPE:
1234 		snprintf(label, LABEL_SIZE, "tape");
1235 		break;
1236 	case TYPE_MEDIUM_CHANGER:
1237 		snprintf(label, LABEL_SIZE, "changer");
1238 		break;
1239 	default:
1240 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1241 		break;
1242 	}
1243 
1244 	dev_printk(level, &h->pdev->dev,
1245 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1246 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1247 			description,
1248 			scsi_device_type(dev->devtype),
1249 			dev->vendor,
1250 			dev->model,
1251 			label,
1252 			dev->offload_config ? '+' : '-',
1253 			dev->offload_enabled ? '+' : '-',
1254 			dev->expose_device);
1255 }
1256 
1257 /* Add an entry into h->dev[] array. */
1258 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1259 		struct hpsa_scsi_dev_t *device,
1260 		struct hpsa_scsi_dev_t *added[], int *nadded)
1261 {
1262 	/* assumes h->devlock is held */
1263 	int n = h->ndevices;
1264 	int i;
1265 	unsigned char addr1[8], addr2[8];
1266 	struct hpsa_scsi_dev_t *sd;
1267 
1268 	if (n >= HPSA_MAX_DEVICES) {
1269 		dev_err(&h->pdev->dev, "too many devices, some will be "
1270 			"inaccessible.\n");
1271 		return -1;
1272 	}
1273 
1274 	/* physical devices do not have lun or target assigned until now. */
1275 	if (device->lun != -1)
1276 		/* Logical device, lun is already assigned. */
1277 		goto lun_assigned;
1278 
1279 	/* If this device a non-zero lun of a multi-lun device
1280 	 * byte 4 of the 8-byte LUN addr will contain the logical
1281 	 * unit no, zero otherwise.
1282 	 */
1283 	if (device->scsi3addr[4] == 0) {
1284 		/* This is not a non-zero lun of a multi-lun device */
1285 		if (hpsa_find_target_lun(h, device->scsi3addr,
1286 			device->bus, &device->target, &device->lun) != 0)
1287 			return -1;
1288 		goto lun_assigned;
1289 	}
1290 
1291 	/* This is a non-zero lun of a multi-lun device.
1292 	 * Search through our list and find the device which
1293 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1294 	 * Assign the same bus and target for this new LUN.
1295 	 * Use the logical unit number from the firmware.
1296 	 */
1297 	memcpy(addr1, device->scsi3addr, 8);
1298 	addr1[4] = 0;
1299 	addr1[5] = 0;
1300 	for (i = 0; i < n; i++) {
1301 		sd = h->dev[i];
1302 		memcpy(addr2, sd->scsi3addr, 8);
1303 		addr2[4] = 0;
1304 		addr2[5] = 0;
1305 		/* differ only in byte 4 and 5? */
1306 		if (memcmp(addr1, addr2, 8) == 0) {
1307 			device->bus = sd->bus;
1308 			device->target = sd->target;
1309 			device->lun = device->scsi3addr[4];
1310 			break;
1311 		}
1312 	}
1313 	if (device->lun == -1) {
1314 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1315 			" suspect firmware bug or unsupported hardware "
1316 			"configuration.\n");
1317 			return -1;
1318 	}
1319 
1320 lun_assigned:
1321 
1322 	h->dev[n] = device;
1323 	h->ndevices++;
1324 	added[*nadded] = device;
1325 	(*nadded)++;
1326 	hpsa_show_dev_msg(KERN_INFO, h, device,
1327 		device->expose_device ? "added" : "masked");
1328 	device->offload_to_be_enabled = device->offload_enabled;
1329 	device->offload_enabled = 0;
1330 	return 0;
1331 }
1332 
1333 /* Update an entry in h->dev[] array. */
1334 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1335 	int entry, struct hpsa_scsi_dev_t *new_entry)
1336 {
1337 	int offload_enabled;
1338 	/* assumes h->devlock is held */
1339 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1340 
1341 	/* Raid level changed. */
1342 	h->dev[entry]->raid_level = new_entry->raid_level;
1343 
1344 	/* Raid offload parameters changed.  Careful about the ordering. */
1345 	if (new_entry->offload_config && new_entry->offload_enabled) {
1346 		/*
1347 		 * if drive is newly offload_enabled, we want to copy the
1348 		 * raid map data first.  If previously offload_enabled and
1349 		 * offload_config were set, raid map data had better be
1350 		 * the same as it was before.  if raid map data is changed
1351 		 * then it had better be the case that
1352 		 * h->dev[entry]->offload_enabled is currently 0.
1353 		 */
1354 		h->dev[entry]->raid_map = new_entry->raid_map;
1355 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1356 	}
1357 	if (new_entry->hba_ioaccel_enabled) {
1358 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1359 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1360 	}
1361 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1362 	h->dev[entry]->offload_config = new_entry->offload_config;
1363 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1364 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1365 
1366 	/*
1367 	 * We can turn off ioaccel offload now, but need to delay turning
1368 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1369 	 * can't do that until all the devices are updated.
1370 	 */
1371 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1372 	if (!new_entry->offload_enabled)
1373 		h->dev[entry]->offload_enabled = 0;
1374 
1375 	offload_enabled = h->dev[entry]->offload_enabled;
1376 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1377 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1378 	h->dev[entry]->offload_enabled = offload_enabled;
1379 }
1380 
1381 /* Replace an entry from h->dev[] array. */
1382 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1383 	int entry, struct hpsa_scsi_dev_t *new_entry,
1384 	struct hpsa_scsi_dev_t *added[], int *nadded,
1385 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1386 {
1387 	/* assumes h->devlock is held */
1388 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1389 	removed[*nremoved] = h->dev[entry];
1390 	(*nremoved)++;
1391 
1392 	/*
1393 	 * New physical devices won't have target/lun assigned yet
1394 	 * so we need to preserve the values in the slot we are replacing.
1395 	 */
1396 	if (new_entry->target == -1) {
1397 		new_entry->target = h->dev[entry]->target;
1398 		new_entry->lun = h->dev[entry]->lun;
1399 	}
1400 
1401 	h->dev[entry] = new_entry;
1402 	added[*nadded] = new_entry;
1403 	(*nadded)++;
1404 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1405 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1406 	new_entry->offload_enabled = 0;
1407 }
1408 
1409 /* Remove an entry from h->dev[] array. */
1410 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1411 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1412 {
1413 	/* assumes h->devlock is held */
1414 	int i;
1415 	struct hpsa_scsi_dev_t *sd;
1416 
1417 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1418 
1419 	sd = h->dev[entry];
1420 	removed[*nremoved] = h->dev[entry];
1421 	(*nremoved)++;
1422 
1423 	for (i = entry; i < h->ndevices-1; i++)
1424 		h->dev[i] = h->dev[i+1];
1425 	h->ndevices--;
1426 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1427 }
1428 
1429 #define SCSI3ADDR_EQ(a, b) ( \
1430 	(a)[7] == (b)[7] && \
1431 	(a)[6] == (b)[6] && \
1432 	(a)[5] == (b)[5] && \
1433 	(a)[4] == (b)[4] && \
1434 	(a)[3] == (b)[3] && \
1435 	(a)[2] == (b)[2] && \
1436 	(a)[1] == (b)[1] && \
1437 	(a)[0] == (b)[0])
1438 
1439 static void fixup_botched_add(struct ctlr_info *h,
1440 	struct hpsa_scsi_dev_t *added)
1441 {
1442 	/* called when scsi_add_device fails in order to re-adjust
1443 	 * h->dev[] to match the mid layer's view.
1444 	 */
1445 	unsigned long flags;
1446 	int i, j;
1447 
1448 	spin_lock_irqsave(&h->lock, flags);
1449 	for (i = 0; i < h->ndevices; i++) {
1450 		if (h->dev[i] == added) {
1451 			for (j = i; j < h->ndevices-1; j++)
1452 				h->dev[j] = h->dev[j+1];
1453 			h->ndevices--;
1454 			break;
1455 		}
1456 	}
1457 	spin_unlock_irqrestore(&h->lock, flags);
1458 	kfree(added);
1459 }
1460 
1461 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1462 	struct hpsa_scsi_dev_t *dev2)
1463 {
1464 	/* we compare everything except lun and target as these
1465 	 * are not yet assigned.  Compare parts likely
1466 	 * to differ first
1467 	 */
1468 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1469 		sizeof(dev1->scsi3addr)) != 0)
1470 		return 0;
1471 	if (memcmp(dev1->device_id, dev2->device_id,
1472 		sizeof(dev1->device_id)) != 0)
1473 		return 0;
1474 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1475 		return 0;
1476 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1477 		return 0;
1478 	if (dev1->devtype != dev2->devtype)
1479 		return 0;
1480 	if (dev1->bus != dev2->bus)
1481 		return 0;
1482 	return 1;
1483 }
1484 
1485 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1486 	struct hpsa_scsi_dev_t *dev2)
1487 {
1488 	/* Device attributes that can change, but don't mean
1489 	 * that the device is a different device, nor that the OS
1490 	 * needs to be told anything about the change.
1491 	 */
1492 	if (dev1->raid_level != dev2->raid_level)
1493 		return 1;
1494 	if (dev1->offload_config != dev2->offload_config)
1495 		return 1;
1496 	if (dev1->offload_enabled != dev2->offload_enabled)
1497 		return 1;
1498 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1499 		if (dev1->queue_depth != dev2->queue_depth)
1500 			return 1;
1501 	return 0;
1502 }
1503 
1504 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1505  * and return needle location in *index.  If scsi3addr matches, but not
1506  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1507  * location in *index.
1508  * In the case of a minor device attribute change, such as RAID level, just
1509  * return DEVICE_UPDATED, along with the updated device's location in index.
1510  * If needle not found, return DEVICE_NOT_FOUND.
1511  */
1512 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1513 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1514 	int *index)
1515 {
1516 	int i;
1517 #define DEVICE_NOT_FOUND 0
1518 #define DEVICE_CHANGED 1
1519 #define DEVICE_SAME 2
1520 #define DEVICE_UPDATED 3
1521 	if (needle == NULL)
1522 		return DEVICE_NOT_FOUND;
1523 
1524 	for (i = 0; i < haystack_size; i++) {
1525 		if (haystack[i] == NULL) /* previously removed. */
1526 			continue;
1527 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1528 			*index = i;
1529 			if (device_is_the_same(needle, haystack[i])) {
1530 				if (device_updated(needle, haystack[i]))
1531 					return DEVICE_UPDATED;
1532 				return DEVICE_SAME;
1533 			} else {
1534 				/* Keep offline devices offline */
1535 				if (needle->volume_offline)
1536 					return DEVICE_NOT_FOUND;
1537 				return DEVICE_CHANGED;
1538 			}
1539 		}
1540 	}
1541 	*index = -1;
1542 	return DEVICE_NOT_FOUND;
1543 }
1544 
1545 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1546 					unsigned char scsi3addr[])
1547 {
1548 	struct offline_device_entry *device;
1549 	unsigned long flags;
1550 
1551 	/* Check to see if device is already on the list */
1552 	spin_lock_irqsave(&h->offline_device_lock, flags);
1553 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1554 		if (memcmp(device->scsi3addr, scsi3addr,
1555 			sizeof(device->scsi3addr)) == 0) {
1556 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1557 			return;
1558 		}
1559 	}
1560 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1561 
1562 	/* Device is not on the list, add it. */
1563 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1564 	if (!device)
1565 		return;
1566 
1567 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1568 	spin_lock_irqsave(&h->offline_device_lock, flags);
1569 	list_add_tail(&device->offline_list, &h->offline_device_list);
1570 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1571 }
1572 
1573 /* Print a message explaining various offline volume states */
1574 static void hpsa_show_volume_status(struct ctlr_info *h,
1575 	struct hpsa_scsi_dev_t *sd)
1576 {
1577 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1578 		dev_info(&h->pdev->dev,
1579 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1580 			h->scsi_host->host_no,
1581 			sd->bus, sd->target, sd->lun);
1582 	switch (sd->volume_offline) {
1583 	case HPSA_LV_OK:
1584 		break;
1585 	case HPSA_LV_UNDERGOING_ERASE:
1586 		dev_info(&h->pdev->dev,
1587 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1588 			h->scsi_host->host_no,
1589 			sd->bus, sd->target, sd->lun);
1590 		break;
1591 	case HPSA_LV_NOT_AVAILABLE:
1592 		dev_info(&h->pdev->dev,
1593 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1594 			h->scsi_host->host_no,
1595 			sd->bus, sd->target, sd->lun);
1596 		break;
1597 	case HPSA_LV_UNDERGOING_RPI:
1598 		dev_info(&h->pdev->dev,
1599 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1600 			h->scsi_host->host_no,
1601 			sd->bus, sd->target, sd->lun);
1602 		break;
1603 	case HPSA_LV_PENDING_RPI:
1604 		dev_info(&h->pdev->dev,
1605 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1606 			h->scsi_host->host_no,
1607 			sd->bus, sd->target, sd->lun);
1608 		break;
1609 	case HPSA_LV_ENCRYPTED_NO_KEY:
1610 		dev_info(&h->pdev->dev,
1611 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1612 			h->scsi_host->host_no,
1613 			sd->bus, sd->target, sd->lun);
1614 		break;
1615 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1616 		dev_info(&h->pdev->dev,
1617 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1618 			h->scsi_host->host_no,
1619 			sd->bus, sd->target, sd->lun);
1620 		break;
1621 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1622 		dev_info(&h->pdev->dev,
1623 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1624 			h->scsi_host->host_no,
1625 			sd->bus, sd->target, sd->lun);
1626 		break;
1627 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1628 		dev_info(&h->pdev->dev,
1629 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1630 			h->scsi_host->host_no,
1631 			sd->bus, sd->target, sd->lun);
1632 		break;
1633 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1634 		dev_info(&h->pdev->dev,
1635 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1636 			h->scsi_host->host_no,
1637 			sd->bus, sd->target, sd->lun);
1638 		break;
1639 	case HPSA_LV_PENDING_ENCRYPTION:
1640 		dev_info(&h->pdev->dev,
1641 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1642 			h->scsi_host->host_no,
1643 			sd->bus, sd->target, sd->lun);
1644 		break;
1645 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1646 		dev_info(&h->pdev->dev,
1647 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1648 			h->scsi_host->host_no,
1649 			sd->bus, sd->target, sd->lun);
1650 		break;
1651 	}
1652 }
1653 
1654 /*
1655  * Figure the list of physical drive pointers for a logical drive with
1656  * raid offload configured.
1657  */
1658 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1659 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1660 				struct hpsa_scsi_dev_t *logical_drive)
1661 {
1662 	struct raid_map_data *map = &logical_drive->raid_map;
1663 	struct raid_map_disk_data *dd = &map->data[0];
1664 	int i, j;
1665 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1666 				le16_to_cpu(map->metadata_disks_per_row);
1667 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1668 				le16_to_cpu(map->layout_map_count) *
1669 				total_disks_per_row;
1670 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1671 				total_disks_per_row;
1672 	int qdepth;
1673 
1674 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1675 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1676 
1677 	logical_drive->nphysical_disks = nraid_map_entries;
1678 
1679 	qdepth = 0;
1680 	for (i = 0; i < nraid_map_entries; i++) {
1681 		logical_drive->phys_disk[i] = NULL;
1682 		if (!logical_drive->offload_config)
1683 			continue;
1684 		for (j = 0; j < ndevices; j++) {
1685 			if (dev[j] == NULL)
1686 				continue;
1687 			if (dev[j]->devtype != TYPE_DISK &&
1688 			    dev[j]->devtype != TYPE_ZBC)
1689 				continue;
1690 			if (is_logical_device(dev[j]))
1691 				continue;
1692 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1693 				continue;
1694 
1695 			logical_drive->phys_disk[i] = dev[j];
1696 			if (i < nphys_disk)
1697 				qdepth = min(h->nr_cmds, qdepth +
1698 				    logical_drive->phys_disk[i]->queue_depth);
1699 			break;
1700 		}
1701 
1702 		/*
1703 		 * This can happen if a physical drive is removed and
1704 		 * the logical drive is degraded.  In that case, the RAID
1705 		 * map data will refer to a physical disk which isn't actually
1706 		 * present.  And in that case offload_enabled should already
1707 		 * be 0, but we'll turn it off here just in case
1708 		 */
1709 		if (!logical_drive->phys_disk[i]) {
1710 			logical_drive->offload_enabled = 0;
1711 			logical_drive->offload_to_be_enabled = 0;
1712 			logical_drive->queue_depth = 8;
1713 		}
1714 	}
1715 	if (nraid_map_entries)
1716 		/*
1717 		 * This is correct for reads, too high for full stripe writes,
1718 		 * way too high for partial stripe writes
1719 		 */
1720 		logical_drive->queue_depth = qdepth;
1721 	else
1722 		logical_drive->queue_depth = h->nr_cmds;
1723 }
1724 
1725 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1726 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1727 {
1728 	int i;
1729 
1730 	for (i = 0; i < ndevices; i++) {
1731 		if (dev[i] == NULL)
1732 			continue;
1733 		if (dev[i]->devtype != TYPE_DISK &&
1734 		    dev[i]->devtype != TYPE_ZBC)
1735 			continue;
1736 		if (!is_logical_device(dev[i]))
1737 			continue;
1738 
1739 		/*
1740 		 * If offload is currently enabled, the RAID map and
1741 		 * phys_disk[] assignment *better* not be changing
1742 		 * and since it isn't changing, we do not need to
1743 		 * update it.
1744 		 */
1745 		if (dev[i]->offload_enabled)
1746 			continue;
1747 
1748 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1749 	}
1750 }
1751 
1752 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1753 {
1754 	int rc = 0;
1755 
1756 	if (!h->scsi_host)
1757 		return 1;
1758 
1759 	if (is_logical_device(device)) /* RAID */
1760 		rc = scsi_add_device(h->scsi_host, device->bus,
1761 					device->target, device->lun);
1762 	else /* HBA */
1763 		rc = hpsa_add_sas_device(h->sas_host, device);
1764 
1765 	return rc;
1766 }
1767 
1768 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1769 						struct hpsa_scsi_dev_t *dev)
1770 {
1771 	int i;
1772 	int count = 0;
1773 
1774 	for (i = 0; i < h->nr_cmds; i++) {
1775 		struct CommandList *c = h->cmd_pool + i;
1776 		int refcount = atomic_inc_return(&c->refcount);
1777 
1778 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1779 				dev->scsi3addr)) {
1780 			unsigned long flags;
1781 
1782 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1783 			if (!hpsa_is_cmd_idle(c))
1784 				++count;
1785 			spin_unlock_irqrestore(&h->lock, flags);
1786 		}
1787 
1788 		cmd_free(h, c);
1789 	}
1790 
1791 	return count;
1792 }
1793 
1794 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1795 						struct hpsa_scsi_dev_t *device)
1796 {
1797 	int cmds = 0;
1798 	int waits = 0;
1799 
1800 	while (1) {
1801 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1802 		if (cmds == 0)
1803 			break;
1804 		if (++waits > 20)
1805 			break;
1806 		dev_warn(&h->pdev->dev,
1807 			"%s: removing device with %d outstanding commands!\n",
1808 			__func__, cmds);
1809 		msleep(1000);
1810 	}
1811 }
1812 
1813 static void hpsa_remove_device(struct ctlr_info *h,
1814 			struct hpsa_scsi_dev_t *device)
1815 {
1816 	struct scsi_device *sdev = NULL;
1817 
1818 	if (!h->scsi_host)
1819 		return;
1820 
1821 	if (is_logical_device(device)) { /* RAID */
1822 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1823 						device->target, device->lun);
1824 		if (sdev) {
1825 			scsi_remove_device(sdev);
1826 			scsi_device_put(sdev);
1827 		} else {
1828 			/*
1829 			 * We don't expect to get here.  Future commands
1830 			 * to this device will get a selection timeout as
1831 			 * if the device were gone.
1832 			 */
1833 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1834 					"didn't find device for removal.");
1835 		}
1836 	} else { /* HBA */
1837 
1838 		device->removed = 1;
1839 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1840 
1841 		hpsa_remove_sas_device(device);
1842 	}
1843 }
1844 
1845 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1846 	struct hpsa_scsi_dev_t *sd[], int nsds)
1847 {
1848 	/* sd contains scsi3 addresses and devtypes, and inquiry
1849 	 * data.  This function takes what's in sd to be the current
1850 	 * reality and updates h->dev[] to reflect that reality.
1851 	 */
1852 	int i, entry, device_change, changes = 0;
1853 	struct hpsa_scsi_dev_t *csd;
1854 	unsigned long flags;
1855 	struct hpsa_scsi_dev_t **added, **removed;
1856 	int nadded, nremoved;
1857 
1858 	/*
1859 	 * A reset can cause a device status to change
1860 	 * re-schedule the scan to see what happened.
1861 	 */
1862 	if (h->reset_in_progress) {
1863 		h->drv_req_rescan = 1;
1864 		return;
1865 	}
1866 
1867 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1868 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1869 
1870 	if (!added || !removed) {
1871 		dev_warn(&h->pdev->dev, "out of memory in "
1872 			"adjust_hpsa_scsi_table\n");
1873 		goto free_and_out;
1874 	}
1875 
1876 	spin_lock_irqsave(&h->devlock, flags);
1877 
1878 	/* find any devices in h->dev[] that are not in
1879 	 * sd[] and remove them from h->dev[], and for any
1880 	 * devices which have changed, remove the old device
1881 	 * info and add the new device info.
1882 	 * If minor device attributes change, just update
1883 	 * the existing device structure.
1884 	 */
1885 	i = 0;
1886 	nremoved = 0;
1887 	nadded = 0;
1888 	while (i < h->ndevices) {
1889 		csd = h->dev[i];
1890 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1891 		if (device_change == DEVICE_NOT_FOUND) {
1892 			changes++;
1893 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1894 			continue; /* remove ^^^, hence i not incremented */
1895 		} else if (device_change == DEVICE_CHANGED) {
1896 			changes++;
1897 			hpsa_scsi_replace_entry(h, i, sd[entry],
1898 				added, &nadded, removed, &nremoved);
1899 			/* Set it to NULL to prevent it from being freed
1900 			 * at the bottom of hpsa_update_scsi_devices()
1901 			 */
1902 			sd[entry] = NULL;
1903 		} else if (device_change == DEVICE_UPDATED) {
1904 			hpsa_scsi_update_entry(h, i, sd[entry]);
1905 		}
1906 		i++;
1907 	}
1908 
1909 	/* Now, make sure every device listed in sd[] is also
1910 	 * listed in h->dev[], adding them if they aren't found
1911 	 */
1912 
1913 	for (i = 0; i < nsds; i++) {
1914 		if (!sd[i]) /* if already added above. */
1915 			continue;
1916 
1917 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1918 		 * as the SCSI mid-layer does not handle such devices well.
1919 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1920 		 * at 160Hz, and prevents the system from coming up.
1921 		 */
1922 		if (sd[i]->volume_offline) {
1923 			hpsa_show_volume_status(h, sd[i]);
1924 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1925 			continue;
1926 		}
1927 
1928 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1929 					h->ndevices, &entry);
1930 		if (device_change == DEVICE_NOT_FOUND) {
1931 			changes++;
1932 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1933 				break;
1934 			sd[i] = NULL; /* prevent from being freed later. */
1935 		} else if (device_change == DEVICE_CHANGED) {
1936 			/* should never happen... */
1937 			changes++;
1938 			dev_warn(&h->pdev->dev,
1939 				"device unexpectedly changed.\n");
1940 			/* but if it does happen, we just ignore that device */
1941 		}
1942 	}
1943 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1944 
1945 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1946 	 * any logical drives that need it enabled.
1947 	 */
1948 	for (i = 0; i < h->ndevices; i++) {
1949 		if (h->dev[i] == NULL)
1950 			continue;
1951 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1952 	}
1953 
1954 	spin_unlock_irqrestore(&h->devlock, flags);
1955 
1956 	/* Monitor devices which are in one of several NOT READY states to be
1957 	 * brought online later. This must be done without holding h->devlock,
1958 	 * so don't touch h->dev[]
1959 	 */
1960 	for (i = 0; i < nsds; i++) {
1961 		if (!sd[i]) /* if already added above. */
1962 			continue;
1963 		if (sd[i]->volume_offline)
1964 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1965 	}
1966 
1967 	/* Don't notify scsi mid layer of any changes the first time through
1968 	 * (or if there are no changes) scsi_scan_host will do it later the
1969 	 * first time through.
1970 	 */
1971 	if (!changes)
1972 		goto free_and_out;
1973 
1974 	/* Notify scsi mid layer of any removed devices */
1975 	for (i = 0; i < nremoved; i++) {
1976 		if (removed[i] == NULL)
1977 			continue;
1978 		if (removed[i]->expose_device)
1979 			hpsa_remove_device(h, removed[i]);
1980 		kfree(removed[i]);
1981 		removed[i] = NULL;
1982 	}
1983 
1984 	/* Notify scsi mid layer of any added devices */
1985 	for (i = 0; i < nadded; i++) {
1986 		int rc = 0;
1987 
1988 		if (added[i] == NULL)
1989 			continue;
1990 		if (!(added[i]->expose_device))
1991 			continue;
1992 		rc = hpsa_add_device(h, added[i]);
1993 		if (!rc)
1994 			continue;
1995 		dev_warn(&h->pdev->dev,
1996 			"addition failed %d, device not added.", rc);
1997 		/* now we have to remove it from h->dev,
1998 		 * since it didn't get added to scsi mid layer
1999 		 */
2000 		fixup_botched_add(h, added[i]);
2001 		h->drv_req_rescan = 1;
2002 	}
2003 
2004 free_and_out:
2005 	kfree(added);
2006 	kfree(removed);
2007 }
2008 
2009 /*
2010  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2011  * Assume's h->devlock is held.
2012  */
2013 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2014 	int bus, int target, int lun)
2015 {
2016 	int i;
2017 	struct hpsa_scsi_dev_t *sd;
2018 
2019 	for (i = 0; i < h->ndevices; i++) {
2020 		sd = h->dev[i];
2021 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2022 			return sd;
2023 	}
2024 	return NULL;
2025 }
2026 
2027 static int hpsa_slave_alloc(struct scsi_device *sdev)
2028 {
2029 	struct hpsa_scsi_dev_t *sd = NULL;
2030 	unsigned long flags;
2031 	struct ctlr_info *h;
2032 
2033 	h = sdev_to_hba(sdev);
2034 	spin_lock_irqsave(&h->devlock, flags);
2035 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2036 		struct scsi_target *starget;
2037 		struct sas_rphy *rphy;
2038 
2039 		starget = scsi_target(sdev);
2040 		rphy = target_to_rphy(starget);
2041 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2042 		if (sd) {
2043 			sd->target = sdev_id(sdev);
2044 			sd->lun = sdev->lun;
2045 		}
2046 	}
2047 	if (!sd)
2048 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2049 					sdev_id(sdev), sdev->lun);
2050 
2051 	if (sd && sd->expose_device) {
2052 		atomic_set(&sd->ioaccel_cmds_out, 0);
2053 		sdev->hostdata = sd;
2054 	} else
2055 		sdev->hostdata = NULL;
2056 	spin_unlock_irqrestore(&h->devlock, flags);
2057 	return 0;
2058 }
2059 
2060 /* configure scsi device based on internal per-device structure */
2061 static int hpsa_slave_configure(struct scsi_device *sdev)
2062 {
2063 	struct hpsa_scsi_dev_t *sd;
2064 	int queue_depth;
2065 
2066 	sd = sdev->hostdata;
2067 	sdev->no_uld_attach = !sd || !sd->expose_device;
2068 
2069 	if (sd)
2070 		queue_depth = sd->queue_depth != 0 ?
2071 			sd->queue_depth : sdev->host->can_queue;
2072 	else
2073 		queue_depth = sdev->host->can_queue;
2074 
2075 	scsi_change_queue_depth(sdev, queue_depth);
2076 
2077 	return 0;
2078 }
2079 
2080 static void hpsa_slave_destroy(struct scsi_device *sdev)
2081 {
2082 	/* nothing to do. */
2083 }
2084 
2085 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2086 {
2087 	int i;
2088 
2089 	if (!h->ioaccel2_cmd_sg_list)
2090 		return;
2091 	for (i = 0; i < h->nr_cmds; i++) {
2092 		kfree(h->ioaccel2_cmd_sg_list[i]);
2093 		h->ioaccel2_cmd_sg_list[i] = NULL;
2094 	}
2095 	kfree(h->ioaccel2_cmd_sg_list);
2096 	h->ioaccel2_cmd_sg_list = NULL;
2097 }
2098 
2099 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2100 {
2101 	int i;
2102 
2103 	if (h->chainsize <= 0)
2104 		return 0;
2105 
2106 	h->ioaccel2_cmd_sg_list =
2107 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2108 					GFP_KERNEL);
2109 	if (!h->ioaccel2_cmd_sg_list)
2110 		return -ENOMEM;
2111 	for (i = 0; i < h->nr_cmds; i++) {
2112 		h->ioaccel2_cmd_sg_list[i] =
2113 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2114 					h->maxsgentries, GFP_KERNEL);
2115 		if (!h->ioaccel2_cmd_sg_list[i])
2116 			goto clean;
2117 	}
2118 	return 0;
2119 
2120 clean:
2121 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2122 	return -ENOMEM;
2123 }
2124 
2125 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 	int i;
2128 
2129 	if (!h->cmd_sg_list)
2130 		return;
2131 	for (i = 0; i < h->nr_cmds; i++) {
2132 		kfree(h->cmd_sg_list[i]);
2133 		h->cmd_sg_list[i] = NULL;
2134 	}
2135 	kfree(h->cmd_sg_list);
2136 	h->cmd_sg_list = NULL;
2137 }
2138 
2139 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2140 {
2141 	int i;
2142 
2143 	if (h->chainsize <= 0)
2144 		return 0;
2145 
2146 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2147 				GFP_KERNEL);
2148 	if (!h->cmd_sg_list)
2149 		return -ENOMEM;
2150 
2151 	for (i = 0; i < h->nr_cmds; i++) {
2152 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2153 						h->chainsize, GFP_KERNEL);
2154 		if (!h->cmd_sg_list[i])
2155 			goto clean;
2156 
2157 	}
2158 	return 0;
2159 
2160 clean:
2161 	hpsa_free_sg_chain_blocks(h);
2162 	return -ENOMEM;
2163 }
2164 
2165 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2166 	struct io_accel2_cmd *cp, struct CommandList *c)
2167 {
2168 	struct ioaccel2_sg_element *chain_block;
2169 	u64 temp64;
2170 	u32 chain_size;
2171 
2172 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2173 	chain_size = le32_to_cpu(cp->sg[0].length);
2174 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2175 				PCI_DMA_TODEVICE);
2176 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2177 		/* prevent subsequent unmapping */
2178 		cp->sg->address = 0;
2179 		return -1;
2180 	}
2181 	cp->sg->address = cpu_to_le64(temp64);
2182 	return 0;
2183 }
2184 
2185 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2186 	struct io_accel2_cmd *cp)
2187 {
2188 	struct ioaccel2_sg_element *chain_sg;
2189 	u64 temp64;
2190 	u32 chain_size;
2191 
2192 	chain_sg = cp->sg;
2193 	temp64 = le64_to_cpu(chain_sg->address);
2194 	chain_size = le32_to_cpu(cp->sg[0].length);
2195 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2196 }
2197 
2198 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2199 	struct CommandList *c)
2200 {
2201 	struct SGDescriptor *chain_sg, *chain_block;
2202 	u64 temp64;
2203 	u32 chain_len;
2204 
2205 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2206 	chain_block = h->cmd_sg_list[c->cmdindex];
2207 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2208 	chain_len = sizeof(*chain_sg) *
2209 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2210 	chain_sg->Len = cpu_to_le32(chain_len);
2211 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2212 				PCI_DMA_TODEVICE);
2213 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2214 		/* prevent subsequent unmapping */
2215 		chain_sg->Addr = cpu_to_le64(0);
2216 		return -1;
2217 	}
2218 	chain_sg->Addr = cpu_to_le64(temp64);
2219 	return 0;
2220 }
2221 
2222 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2223 	struct CommandList *c)
2224 {
2225 	struct SGDescriptor *chain_sg;
2226 
2227 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2228 		return;
2229 
2230 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2231 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2232 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2233 }
2234 
2235 
2236 /* Decode the various types of errors on ioaccel2 path.
2237  * Return 1 for any error that should generate a RAID path retry.
2238  * Return 0 for errors that don't require a RAID path retry.
2239  */
2240 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2241 					struct CommandList *c,
2242 					struct scsi_cmnd *cmd,
2243 					struct io_accel2_cmd *c2,
2244 					struct hpsa_scsi_dev_t *dev)
2245 {
2246 	int data_len;
2247 	int retry = 0;
2248 	u32 ioaccel2_resid = 0;
2249 
2250 	switch (c2->error_data.serv_response) {
2251 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2252 		switch (c2->error_data.status) {
2253 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2254 			break;
2255 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2256 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2257 			if (c2->error_data.data_present !=
2258 					IOACCEL2_SENSE_DATA_PRESENT) {
2259 				memset(cmd->sense_buffer, 0,
2260 					SCSI_SENSE_BUFFERSIZE);
2261 				break;
2262 			}
2263 			/* copy the sense data */
2264 			data_len = c2->error_data.sense_data_len;
2265 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2266 				data_len = SCSI_SENSE_BUFFERSIZE;
2267 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2268 				data_len =
2269 					sizeof(c2->error_data.sense_data_buff);
2270 			memcpy(cmd->sense_buffer,
2271 				c2->error_data.sense_data_buff, data_len);
2272 			retry = 1;
2273 			break;
2274 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2275 			retry = 1;
2276 			break;
2277 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2278 			retry = 1;
2279 			break;
2280 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2281 			retry = 1;
2282 			break;
2283 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2284 			retry = 1;
2285 			break;
2286 		default:
2287 			retry = 1;
2288 			break;
2289 		}
2290 		break;
2291 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2292 		switch (c2->error_data.status) {
2293 		case IOACCEL2_STATUS_SR_IO_ERROR:
2294 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2295 		case IOACCEL2_STATUS_SR_OVERRUN:
2296 			retry = 1;
2297 			break;
2298 		case IOACCEL2_STATUS_SR_UNDERRUN:
2299 			cmd->result = (DID_OK << 16);		/* host byte */
2300 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2301 			ioaccel2_resid = get_unaligned_le32(
2302 						&c2->error_data.resid_cnt[0]);
2303 			scsi_set_resid(cmd, ioaccel2_resid);
2304 			break;
2305 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2306 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2307 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2308 			/*
2309 			 * Did an HBA disk disappear? We will eventually
2310 			 * get a state change event from the controller but
2311 			 * in the meantime, we need to tell the OS that the
2312 			 * HBA disk is no longer there and stop I/O
2313 			 * from going down. This allows the potential re-insert
2314 			 * of the disk to get the same device node.
2315 			 */
2316 			if (dev->physical_device && dev->expose_device) {
2317 				cmd->result = DID_NO_CONNECT << 16;
2318 				dev->removed = 1;
2319 				h->drv_req_rescan = 1;
2320 				dev_warn(&h->pdev->dev,
2321 					"%s: device is gone!\n", __func__);
2322 			} else
2323 				/*
2324 				 * Retry by sending down the RAID path.
2325 				 * We will get an event from ctlr to
2326 				 * trigger rescan regardless.
2327 				 */
2328 				retry = 1;
2329 			break;
2330 		default:
2331 			retry = 1;
2332 		}
2333 		break;
2334 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2335 		break;
2336 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2337 		break;
2338 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2339 		retry = 1;
2340 		break;
2341 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2342 		break;
2343 	default:
2344 		retry = 1;
2345 		break;
2346 	}
2347 
2348 	return retry;	/* retry on raid path? */
2349 }
2350 
2351 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2352 		struct CommandList *c)
2353 {
2354 	bool do_wake = false;
2355 
2356 	/*
2357 	 * Prevent the following race in the abort handler:
2358 	 *
2359 	 * 1. LLD is requested to abort a SCSI command
2360 	 * 2. The SCSI command completes
2361 	 * 3. The struct CommandList associated with step 2 is made available
2362 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2363 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2364 	 *    finds struct CommandList and tries to aborts it
2365 	 * Now we have aborted the wrong command.
2366 	 *
2367 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2368 	 * this command has completed.  Then, check to see if the handler is
2369 	 * waiting for this command, and, if so, wake it.
2370 	 */
2371 	c->scsi_cmd = SCSI_CMD_IDLE;
2372 	mb();	/* Declare command idle before checking for pending events. */
2373 	if (c->abort_pending) {
2374 		do_wake = true;
2375 		c->abort_pending = false;
2376 	}
2377 	if (c->reset_pending) {
2378 		unsigned long flags;
2379 		struct hpsa_scsi_dev_t *dev;
2380 
2381 		/*
2382 		 * There appears to be a reset pending; lock the lock and
2383 		 * reconfirm.  If so, then decrement the count of outstanding
2384 		 * commands and wake the reset command if this is the last one.
2385 		 */
2386 		spin_lock_irqsave(&h->lock, flags);
2387 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2388 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2389 			do_wake = true;
2390 		c->reset_pending = NULL;
2391 		spin_unlock_irqrestore(&h->lock, flags);
2392 	}
2393 
2394 	if (do_wake)
2395 		wake_up_all(&h->event_sync_wait_queue);
2396 }
2397 
2398 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2399 				      struct CommandList *c)
2400 {
2401 	hpsa_cmd_resolve_events(h, c);
2402 	cmd_tagged_free(h, c);
2403 }
2404 
2405 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2406 		struct CommandList *c, struct scsi_cmnd *cmd)
2407 {
2408 	hpsa_cmd_resolve_and_free(h, c);
2409 	if (cmd && cmd->scsi_done)
2410 		cmd->scsi_done(cmd);
2411 }
2412 
2413 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2414 {
2415 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2416 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2417 }
2418 
2419 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2420 {
2421 	cmd->result = DID_ABORT << 16;
2422 }
2423 
2424 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2425 				    struct scsi_cmnd *cmd)
2426 {
2427 	hpsa_set_scsi_cmd_aborted(cmd);
2428 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2429 			 c->Request.CDB, c->err_info->ScsiStatus);
2430 	hpsa_cmd_resolve_and_free(h, c);
2431 }
2432 
2433 static void process_ioaccel2_completion(struct ctlr_info *h,
2434 		struct CommandList *c, struct scsi_cmnd *cmd,
2435 		struct hpsa_scsi_dev_t *dev)
2436 {
2437 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2438 
2439 	/* check for good status */
2440 	if (likely(c2->error_data.serv_response == 0 &&
2441 			c2->error_data.status == 0))
2442 		return hpsa_cmd_free_and_done(h, c, cmd);
2443 
2444 	/*
2445 	 * Any RAID offload error results in retry which will use
2446 	 * the normal I/O path so the controller can handle whatever's
2447 	 * wrong.
2448 	 */
2449 	if (is_logical_device(dev) &&
2450 		c2->error_data.serv_response ==
2451 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2452 		if (c2->error_data.status ==
2453 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2454 			dev->offload_enabled = 0;
2455 			dev->offload_to_be_enabled = 0;
2456 		}
2457 
2458 		return hpsa_retry_cmd(h, c);
2459 	}
2460 
2461 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2462 		return hpsa_retry_cmd(h, c);
2463 
2464 	return hpsa_cmd_free_and_done(h, c, cmd);
2465 }
2466 
2467 /* Returns 0 on success, < 0 otherwise. */
2468 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2469 					struct CommandList *cp)
2470 {
2471 	u8 tmf_status = cp->err_info->ScsiStatus;
2472 
2473 	switch (tmf_status) {
2474 	case CISS_TMF_COMPLETE:
2475 		/*
2476 		 * CISS_TMF_COMPLETE never happens, instead,
2477 		 * ei->CommandStatus == 0 for this case.
2478 		 */
2479 	case CISS_TMF_SUCCESS:
2480 		return 0;
2481 	case CISS_TMF_INVALID_FRAME:
2482 	case CISS_TMF_NOT_SUPPORTED:
2483 	case CISS_TMF_FAILED:
2484 	case CISS_TMF_WRONG_LUN:
2485 	case CISS_TMF_OVERLAPPED_TAG:
2486 		break;
2487 	default:
2488 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2489 				tmf_status);
2490 		break;
2491 	}
2492 	return -tmf_status;
2493 }
2494 
2495 static void complete_scsi_command(struct CommandList *cp)
2496 {
2497 	struct scsi_cmnd *cmd;
2498 	struct ctlr_info *h;
2499 	struct ErrorInfo *ei;
2500 	struct hpsa_scsi_dev_t *dev;
2501 	struct io_accel2_cmd *c2;
2502 
2503 	u8 sense_key;
2504 	u8 asc;      /* additional sense code */
2505 	u8 ascq;     /* additional sense code qualifier */
2506 	unsigned long sense_data_size;
2507 
2508 	ei = cp->err_info;
2509 	cmd = cp->scsi_cmd;
2510 	h = cp->h;
2511 
2512 	if (!cmd->device) {
2513 		cmd->result = DID_NO_CONNECT << 16;
2514 		return hpsa_cmd_free_and_done(h, cp, cmd);
2515 	}
2516 
2517 	dev = cmd->device->hostdata;
2518 	if (!dev) {
2519 		cmd->result = DID_NO_CONNECT << 16;
2520 		return hpsa_cmd_free_and_done(h, cp, cmd);
2521 	}
2522 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2523 
2524 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2525 	if ((cp->cmd_type == CMD_SCSI) &&
2526 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2527 		hpsa_unmap_sg_chain_block(h, cp);
2528 
2529 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2530 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2531 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2532 
2533 	cmd->result = (DID_OK << 16); 		/* host byte */
2534 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2535 
2536 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2537 		if (dev->physical_device && dev->expose_device &&
2538 			dev->removed) {
2539 			cmd->result = DID_NO_CONNECT << 16;
2540 			return hpsa_cmd_free_and_done(h, cp, cmd);
2541 		}
2542 		if (likely(cp->phys_disk != NULL))
2543 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2544 	}
2545 
2546 	/*
2547 	 * We check for lockup status here as it may be set for
2548 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2549 	 * fail_all_oustanding_cmds()
2550 	 */
2551 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2552 		/* DID_NO_CONNECT will prevent a retry */
2553 		cmd->result = DID_NO_CONNECT << 16;
2554 		return hpsa_cmd_free_and_done(h, cp, cmd);
2555 	}
2556 
2557 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2558 		if (cp->reset_pending)
2559 			return hpsa_cmd_free_and_done(h, cp, cmd);
2560 		if (cp->abort_pending)
2561 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2562 	}
2563 
2564 	if (cp->cmd_type == CMD_IOACCEL2)
2565 		return process_ioaccel2_completion(h, cp, cmd, dev);
2566 
2567 	scsi_set_resid(cmd, ei->ResidualCnt);
2568 	if (ei->CommandStatus == 0)
2569 		return hpsa_cmd_free_and_done(h, cp, cmd);
2570 
2571 	/* For I/O accelerator commands, copy over some fields to the normal
2572 	 * CISS header used below for error handling.
2573 	 */
2574 	if (cp->cmd_type == CMD_IOACCEL1) {
2575 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2576 		cp->Header.SGList = scsi_sg_count(cmd);
2577 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2578 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2579 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2580 		cp->Header.tag = c->tag;
2581 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2582 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2583 
2584 		/* Any RAID offload error results in retry which will use
2585 		 * the normal I/O path so the controller can handle whatever's
2586 		 * wrong.
2587 		 */
2588 		if (is_logical_device(dev)) {
2589 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2590 				dev->offload_enabled = 0;
2591 			return hpsa_retry_cmd(h, cp);
2592 		}
2593 	}
2594 
2595 	/* an error has occurred */
2596 	switch (ei->CommandStatus) {
2597 
2598 	case CMD_TARGET_STATUS:
2599 		cmd->result |= ei->ScsiStatus;
2600 		/* copy the sense data */
2601 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2602 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2603 		else
2604 			sense_data_size = sizeof(ei->SenseInfo);
2605 		if (ei->SenseLen < sense_data_size)
2606 			sense_data_size = ei->SenseLen;
2607 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2608 		if (ei->ScsiStatus)
2609 			decode_sense_data(ei->SenseInfo, sense_data_size,
2610 				&sense_key, &asc, &ascq);
2611 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2612 			if (sense_key == ABORTED_COMMAND) {
2613 				cmd->result |= DID_SOFT_ERROR << 16;
2614 				break;
2615 			}
2616 			break;
2617 		}
2618 		/* Problem was not a check condition
2619 		 * Pass it up to the upper layers...
2620 		 */
2621 		if (ei->ScsiStatus) {
2622 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2623 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2624 				"Returning result: 0x%x\n",
2625 				cp, ei->ScsiStatus,
2626 				sense_key, asc, ascq,
2627 				cmd->result);
2628 		} else {  /* scsi status is zero??? How??? */
2629 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2630 				"Returning no connection.\n", cp),
2631 
2632 			/* Ordinarily, this case should never happen,
2633 			 * but there is a bug in some released firmware
2634 			 * revisions that allows it to happen if, for
2635 			 * example, a 4100 backplane loses power and
2636 			 * the tape drive is in it.  We assume that
2637 			 * it's a fatal error of some kind because we
2638 			 * can't show that it wasn't. We will make it
2639 			 * look like selection timeout since that is
2640 			 * the most common reason for this to occur,
2641 			 * and it's severe enough.
2642 			 */
2643 
2644 			cmd->result = DID_NO_CONNECT << 16;
2645 		}
2646 		break;
2647 
2648 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2649 		break;
2650 	case CMD_DATA_OVERRUN:
2651 		dev_warn(&h->pdev->dev,
2652 			"CDB %16phN data overrun\n", cp->Request.CDB);
2653 		break;
2654 	case CMD_INVALID: {
2655 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2656 		print_cmd(cp); */
2657 		/* We get CMD_INVALID if you address a non-existent device
2658 		 * instead of a selection timeout (no response).  You will
2659 		 * see this if you yank out a drive, then try to access it.
2660 		 * This is kind of a shame because it means that any other
2661 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2662 		 * missing target. */
2663 		cmd->result = DID_NO_CONNECT << 16;
2664 	}
2665 		break;
2666 	case CMD_PROTOCOL_ERR:
2667 		cmd->result = DID_ERROR << 16;
2668 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2669 				cp->Request.CDB);
2670 		break;
2671 	case CMD_HARDWARE_ERR:
2672 		cmd->result = DID_ERROR << 16;
2673 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2674 			cp->Request.CDB);
2675 		break;
2676 	case CMD_CONNECTION_LOST:
2677 		cmd->result = DID_ERROR << 16;
2678 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2679 			cp->Request.CDB);
2680 		break;
2681 	case CMD_ABORTED:
2682 		/* Return now to avoid calling scsi_done(). */
2683 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2684 	case CMD_ABORT_FAILED:
2685 		cmd->result = DID_ERROR << 16;
2686 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2687 			cp->Request.CDB);
2688 		break;
2689 	case CMD_UNSOLICITED_ABORT:
2690 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2691 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2692 			cp->Request.CDB);
2693 		break;
2694 	case CMD_TIMEOUT:
2695 		cmd->result = DID_TIME_OUT << 16;
2696 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2697 			cp->Request.CDB);
2698 		break;
2699 	case CMD_UNABORTABLE:
2700 		cmd->result = DID_ERROR << 16;
2701 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2702 		break;
2703 	case CMD_TMF_STATUS:
2704 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2705 			cmd->result = DID_ERROR << 16;
2706 		break;
2707 	case CMD_IOACCEL_DISABLED:
2708 		/* This only handles the direct pass-through case since RAID
2709 		 * offload is handled above.  Just attempt a retry.
2710 		 */
2711 		cmd->result = DID_SOFT_ERROR << 16;
2712 		dev_warn(&h->pdev->dev,
2713 				"cp %p had HP SSD Smart Path error\n", cp);
2714 		break;
2715 	default:
2716 		cmd->result = DID_ERROR << 16;
2717 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2718 				cp, ei->CommandStatus);
2719 	}
2720 
2721 	return hpsa_cmd_free_and_done(h, cp, cmd);
2722 }
2723 
2724 static void hpsa_pci_unmap(struct pci_dev *pdev,
2725 	struct CommandList *c, int sg_used, int data_direction)
2726 {
2727 	int i;
2728 
2729 	for (i = 0; i < sg_used; i++)
2730 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2731 				le32_to_cpu(c->SG[i].Len),
2732 				data_direction);
2733 }
2734 
2735 static int hpsa_map_one(struct pci_dev *pdev,
2736 		struct CommandList *cp,
2737 		unsigned char *buf,
2738 		size_t buflen,
2739 		int data_direction)
2740 {
2741 	u64 addr64;
2742 
2743 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2744 		cp->Header.SGList = 0;
2745 		cp->Header.SGTotal = cpu_to_le16(0);
2746 		return 0;
2747 	}
2748 
2749 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2750 	if (dma_mapping_error(&pdev->dev, addr64)) {
2751 		/* Prevent subsequent unmap of something never mapped */
2752 		cp->Header.SGList = 0;
2753 		cp->Header.SGTotal = cpu_to_le16(0);
2754 		return -1;
2755 	}
2756 	cp->SG[0].Addr = cpu_to_le64(addr64);
2757 	cp->SG[0].Len = cpu_to_le32(buflen);
2758 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2759 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2760 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2761 	return 0;
2762 }
2763 
2764 #define NO_TIMEOUT ((unsigned long) -1)
2765 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2766 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2767 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2768 {
2769 	DECLARE_COMPLETION_ONSTACK(wait);
2770 
2771 	c->waiting = &wait;
2772 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2773 	if (timeout_msecs == NO_TIMEOUT) {
2774 		/* TODO: get rid of this no-timeout thing */
2775 		wait_for_completion_io(&wait);
2776 		return IO_OK;
2777 	}
2778 	if (!wait_for_completion_io_timeout(&wait,
2779 					msecs_to_jiffies(timeout_msecs))) {
2780 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2781 		return -ETIMEDOUT;
2782 	}
2783 	return IO_OK;
2784 }
2785 
2786 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2787 				   int reply_queue, unsigned long timeout_msecs)
2788 {
2789 	if (unlikely(lockup_detected(h))) {
2790 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2791 		return IO_OK;
2792 	}
2793 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2794 }
2795 
2796 static u32 lockup_detected(struct ctlr_info *h)
2797 {
2798 	int cpu;
2799 	u32 rc, *lockup_detected;
2800 
2801 	cpu = get_cpu();
2802 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2803 	rc = *lockup_detected;
2804 	put_cpu();
2805 	return rc;
2806 }
2807 
2808 #define MAX_DRIVER_CMD_RETRIES 25
2809 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2810 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2811 {
2812 	int backoff_time = 10, retry_count = 0;
2813 	int rc;
2814 
2815 	do {
2816 		memset(c->err_info, 0, sizeof(*c->err_info));
2817 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2818 						  timeout_msecs);
2819 		if (rc)
2820 			break;
2821 		retry_count++;
2822 		if (retry_count > 3) {
2823 			msleep(backoff_time);
2824 			if (backoff_time < 1000)
2825 				backoff_time *= 2;
2826 		}
2827 	} while ((check_for_unit_attention(h, c) ||
2828 			check_for_busy(h, c)) &&
2829 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2830 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2831 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2832 		rc = -EIO;
2833 	return rc;
2834 }
2835 
2836 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2837 				struct CommandList *c)
2838 {
2839 	const u8 *cdb = c->Request.CDB;
2840 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2841 
2842 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2843 		 txt, lun, cdb);
2844 }
2845 
2846 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2847 			struct CommandList *cp)
2848 {
2849 	const struct ErrorInfo *ei = cp->err_info;
2850 	struct device *d = &cp->h->pdev->dev;
2851 	u8 sense_key, asc, ascq;
2852 	int sense_len;
2853 
2854 	switch (ei->CommandStatus) {
2855 	case CMD_TARGET_STATUS:
2856 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2857 			sense_len = sizeof(ei->SenseInfo);
2858 		else
2859 			sense_len = ei->SenseLen;
2860 		decode_sense_data(ei->SenseInfo, sense_len,
2861 					&sense_key, &asc, &ascq);
2862 		hpsa_print_cmd(h, "SCSI status", cp);
2863 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2864 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2865 				sense_key, asc, ascq);
2866 		else
2867 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2868 		if (ei->ScsiStatus == 0)
2869 			dev_warn(d, "SCSI status is abnormally zero.  "
2870 			"(probably indicates selection timeout "
2871 			"reported incorrectly due to a known "
2872 			"firmware bug, circa July, 2001.)\n");
2873 		break;
2874 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2875 		break;
2876 	case CMD_DATA_OVERRUN:
2877 		hpsa_print_cmd(h, "overrun condition", cp);
2878 		break;
2879 	case CMD_INVALID: {
2880 		/* controller unfortunately reports SCSI passthru's
2881 		 * to non-existent targets as invalid commands.
2882 		 */
2883 		hpsa_print_cmd(h, "invalid command", cp);
2884 		dev_warn(d, "probably means device no longer present\n");
2885 		}
2886 		break;
2887 	case CMD_PROTOCOL_ERR:
2888 		hpsa_print_cmd(h, "protocol error", cp);
2889 		break;
2890 	case CMD_HARDWARE_ERR:
2891 		hpsa_print_cmd(h, "hardware error", cp);
2892 		break;
2893 	case CMD_CONNECTION_LOST:
2894 		hpsa_print_cmd(h, "connection lost", cp);
2895 		break;
2896 	case CMD_ABORTED:
2897 		hpsa_print_cmd(h, "aborted", cp);
2898 		break;
2899 	case CMD_ABORT_FAILED:
2900 		hpsa_print_cmd(h, "abort failed", cp);
2901 		break;
2902 	case CMD_UNSOLICITED_ABORT:
2903 		hpsa_print_cmd(h, "unsolicited abort", cp);
2904 		break;
2905 	case CMD_TIMEOUT:
2906 		hpsa_print_cmd(h, "timed out", cp);
2907 		break;
2908 	case CMD_UNABORTABLE:
2909 		hpsa_print_cmd(h, "unabortable", cp);
2910 		break;
2911 	case CMD_CTLR_LOCKUP:
2912 		hpsa_print_cmd(h, "controller lockup detected", cp);
2913 		break;
2914 	default:
2915 		hpsa_print_cmd(h, "unknown status", cp);
2916 		dev_warn(d, "Unknown command status %x\n",
2917 				ei->CommandStatus);
2918 	}
2919 }
2920 
2921 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2922 			u16 page, unsigned char *buf,
2923 			unsigned char bufsize)
2924 {
2925 	int rc = IO_OK;
2926 	struct CommandList *c;
2927 	struct ErrorInfo *ei;
2928 
2929 	c = cmd_alloc(h);
2930 
2931 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2932 			page, scsi3addr, TYPE_CMD)) {
2933 		rc = -1;
2934 		goto out;
2935 	}
2936 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2937 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2938 	if (rc)
2939 		goto out;
2940 	ei = c->err_info;
2941 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2942 		hpsa_scsi_interpret_error(h, c);
2943 		rc = -1;
2944 	}
2945 out:
2946 	cmd_free(h, c);
2947 	return rc;
2948 }
2949 
2950 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2951 	u8 reset_type, int reply_queue)
2952 {
2953 	int rc = IO_OK;
2954 	struct CommandList *c;
2955 	struct ErrorInfo *ei;
2956 
2957 	c = cmd_alloc(h);
2958 
2959 
2960 	/* fill_cmd can't fail here, no data buffer to map. */
2961 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2962 			scsi3addr, TYPE_MSG);
2963 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2964 	if (rc) {
2965 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2966 		goto out;
2967 	}
2968 	/* no unmap needed here because no data xfer. */
2969 
2970 	ei = c->err_info;
2971 	if (ei->CommandStatus != 0) {
2972 		hpsa_scsi_interpret_error(h, c);
2973 		rc = -1;
2974 	}
2975 out:
2976 	cmd_free(h, c);
2977 	return rc;
2978 }
2979 
2980 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2981 			       struct hpsa_scsi_dev_t *dev,
2982 			       unsigned char *scsi3addr)
2983 {
2984 	int i;
2985 	bool match = false;
2986 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2987 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2988 
2989 	if (hpsa_is_cmd_idle(c))
2990 		return false;
2991 
2992 	switch (c->cmd_type) {
2993 	case CMD_SCSI:
2994 	case CMD_IOCTL_PEND:
2995 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2996 				sizeof(c->Header.LUN.LunAddrBytes));
2997 		break;
2998 
2999 	case CMD_IOACCEL1:
3000 	case CMD_IOACCEL2:
3001 		if (c->phys_disk == dev) {
3002 			/* HBA mode match */
3003 			match = true;
3004 		} else {
3005 			/* Possible RAID mode -- check each phys dev. */
3006 			/* FIXME:  Do we need to take out a lock here?  If
3007 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3008 			 * instead. */
3009 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3010 				/* FIXME: an alternate test might be
3011 				 *
3012 				 * match = dev->phys_disk[i]->ioaccel_handle
3013 				 *              == c2->scsi_nexus;      */
3014 				match = dev->phys_disk[i] == c->phys_disk;
3015 			}
3016 		}
3017 		break;
3018 
3019 	case IOACCEL2_TMF:
3020 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3021 			match = dev->phys_disk[i]->ioaccel_handle ==
3022 					le32_to_cpu(ac->it_nexus);
3023 		}
3024 		break;
3025 
3026 	case 0:		/* The command is in the middle of being initialized. */
3027 		match = false;
3028 		break;
3029 
3030 	default:
3031 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3032 			c->cmd_type);
3033 		BUG();
3034 	}
3035 
3036 	return match;
3037 }
3038 
3039 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3040 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3041 {
3042 	int i;
3043 	int rc = 0;
3044 
3045 	/* We can really only handle one reset at a time */
3046 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3047 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3048 		return -EINTR;
3049 	}
3050 
3051 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3052 
3053 	for (i = 0; i < h->nr_cmds; i++) {
3054 		struct CommandList *c = h->cmd_pool + i;
3055 		int refcount = atomic_inc_return(&c->refcount);
3056 
3057 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3058 			unsigned long flags;
3059 
3060 			/*
3061 			 * Mark the target command as having a reset pending,
3062 			 * then lock a lock so that the command cannot complete
3063 			 * while we're considering it.  If the command is not
3064 			 * idle then count it; otherwise revoke the event.
3065 			 */
3066 			c->reset_pending = dev;
3067 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3068 			if (!hpsa_is_cmd_idle(c))
3069 				atomic_inc(&dev->reset_cmds_out);
3070 			else
3071 				c->reset_pending = NULL;
3072 			spin_unlock_irqrestore(&h->lock, flags);
3073 		}
3074 
3075 		cmd_free(h, c);
3076 	}
3077 
3078 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3079 	if (!rc)
3080 		wait_event(h->event_sync_wait_queue,
3081 			atomic_read(&dev->reset_cmds_out) == 0 ||
3082 			lockup_detected(h));
3083 
3084 	if (unlikely(lockup_detected(h))) {
3085 		dev_warn(&h->pdev->dev,
3086 			 "Controller lockup detected during reset wait\n");
3087 		rc = -ENODEV;
3088 	}
3089 
3090 	if (unlikely(rc))
3091 		atomic_set(&dev->reset_cmds_out, 0);
3092 	else
3093 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3094 
3095 	mutex_unlock(&h->reset_mutex);
3096 	return rc;
3097 }
3098 
3099 static void hpsa_get_raid_level(struct ctlr_info *h,
3100 	unsigned char *scsi3addr, unsigned char *raid_level)
3101 {
3102 	int rc;
3103 	unsigned char *buf;
3104 
3105 	*raid_level = RAID_UNKNOWN;
3106 	buf = kzalloc(64, GFP_KERNEL);
3107 	if (!buf)
3108 		return;
3109 
3110 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3111 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3112 		goto exit;
3113 
3114 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3115 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3116 
3117 	if (rc == 0)
3118 		*raid_level = buf[8];
3119 	if (*raid_level > RAID_UNKNOWN)
3120 		*raid_level = RAID_UNKNOWN;
3121 exit:
3122 	kfree(buf);
3123 	return;
3124 }
3125 
3126 #define HPSA_MAP_DEBUG
3127 #ifdef HPSA_MAP_DEBUG
3128 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3129 				struct raid_map_data *map_buff)
3130 {
3131 	struct raid_map_disk_data *dd = &map_buff->data[0];
3132 	int map, row, col;
3133 	u16 map_cnt, row_cnt, disks_per_row;
3134 
3135 	if (rc != 0)
3136 		return;
3137 
3138 	/* Show details only if debugging has been activated. */
3139 	if (h->raid_offload_debug < 2)
3140 		return;
3141 
3142 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3143 				le32_to_cpu(map_buff->structure_size));
3144 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3145 			le32_to_cpu(map_buff->volume_blk_size));
3146 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3147 			le64_to_cpu(map_buff->volume_blk_cnt));
3148 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3149 			map_buff->phys_blk_shift);
3150 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3151 			map_buff->parity_rotation_shift);
3152 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3153 			le16_to_cpu(map_buff->strip_size));
3154 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3155 			le64_to_cpu(map_buff->disk_starting_blk));
3156 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3157 			le64_to_cpu(map_buff->disk_blk_cnt));
3158 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3159 			le16_to_cpu(map_buff->data_disks_per_row));
3160 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3161 			le16_to_cpu(map_buff->metadata_disks_per_row));
3162 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3163 			le16_to_cpu(map_buff->row_cnt));
3164 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3165 			le16_to_cpu(map_buff->layout_map_count));
3166 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3167 			le16_to_cpu(map_buff->flags));
3168 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3169 			le16_to_cpu(map_buff->flags) &
3170 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3171 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3172 			le16_to_cpu(map_buff->dekindex));
3173 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3174 	for (map = 0; map < map_cnt; map++) {
3175 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3176 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3177 		for (row = 0; row < row_cnt; row++) {
3178 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3179 			disks_per_row =
3180 				le16_to_cpu(map_buff->data_disks_per_row);
3181 			for (col = 0; col < disks_per_row; col++, dd++)
3182 				dev_info(&h->pdev->dev,
3183 					"    D%02u: h=0x%04x xor=%u,%u\n",
3184 					col, dd->ioaccel_handle,
3185 					dd->xor_mult[0], dd->xor_mult[1]);
3186 			disks_per_row =
3187 				le16_to_cpu(map_buff->metadata_disks_per_row);
3188 			for (col = 0; col < disks_per_row; col++, dd++)
3189 				dev_info(&h->pdev->dev,
3190 					"    M%02u: h=0x%04x xor=%u,%u\n",
3191 					col, dd->ioaccel_handle,
3192 					dd->xor_mult[0], dd->xor_mult[1]);
3193 		}
3194 	}
3195 }
3196 #else
3197 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3198 			__attribute__((unused)) int rc,
3199 			__attribute__((unused)) struct raid_map_data *map_buff)
3200 {
3201 }
3202 #endif
3203 
3204 static int hpsa_get_raid_map(struct ctlr_info *h,
3205 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3206 {
3207 	int rc = 0;
3208 	struct CommandList *c;
3209 	struct ErrorInfo *ei;
3210 
3211 	c = cmd_alloc(h);
3212 
3213 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3214 			sizeof(this_device->raid_map), 0,
3215 			scsi3addr, TYPE_CMD)) {
3216 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3217 		cmd_free(h, c);
3218 		return -1;
3219 	}
3220 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3221 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3222 	if (rc)
3223 		goto out;
3224 	ei = c->err_info;
3225 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3226 		hpsa_scsi_interpret_error(h, c);
3227 		rc = -1;
3228 		goto out;
3229 	}
3230 	cmd_free(h, c);
3231 
3232 	/* @todo in the future, dynamically allocate RAID map memory */
3233 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3234 				sizeof(this_device->raid_map)) {
3235 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3236 		rc = -1;
3237 	}
3238 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3239 	return rc;
3240 out:
3241 	cmd_free(h, c);
3242 	return rc;
3243 }
3244 
3245 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3246 		unsigned char scsi3addr[], u16 bmic_device_index,
3247 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3248 {
3249 	int rc = IO_OK;
3250 	struct CommandList *c;
3251 	struct ErrorInfo *ei;
3252 
3253 	c = cmd_alloc(h);
3254 
3255 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3256 		0, RAID_CTLR_LUNID, TYPE_CMD);
3257 	if (rc)
3258 		goto out;
3259 
3260 	c->Request.CDB[2] = bmic_device_index & 0xff;
3261 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3262 
3263 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3264 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3265 	if (rc)
3266 		goto out;
3267 	ei = c->err_info;
3268 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3269 		hpsa_scsi_interpret_error(h, c);
3270 		rc = -1;
3271 	}
3272 out:
3273 	cmd_free(h, c);
3274 	return rc;
3275 }
3276 
3277 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3278 	struct bmic_identify_controller *buf, size_t bufsize)
3279 {
3280 	int rc = IO_OK;
3281 	struct CommandList *c;
3282 	struct ErrorInfo *ei;
3283 
3284 	c = cmd_alloc(h);
3285 
3286 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3287 		0, RAID_CTLR_LUNID, TYPE_CMD);
3288 	if (rc)
3289 		goto out;
3290 
3291 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3292 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3293 	if (rc)
3294 		goto out;
3295 	ei = c->err_info;
3296 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3297 		hpsa_scsi_interpret_error(h, c);
3298 		rc = -1;
3299 	}
3300 out:
3301 	cmd_free(h, c);
3302 	return rc;
3303 }
3304 
3305 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3306 		unsigned char scsi3addr[], u16 bmic_device_index,
3307 		struct bmic_identify_physical_device *buf, size_t bufsize)
3308 {
3309 	int rc = IO_OK;
3310 	struct CommandList *c;
3311 	struct ErrorInfo *ei;
3312 
3313 	c = cmd_alloc(h);
3314 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3315 		0, RAID_CTLR_LUNID, TYPE_CMD);
3316 	if (rc)
3317 		goto out;
3318 
3319 	c->Request.CDB[2] = bmic_device_index & 0xff;
3320 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3321 
3322 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3323 						DEFAULT_TIMEOUT);
3324 	ei = c->err_info;
3325 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3326 		hpsa_scsi_interpret_error(h, c);
3327 		rc = -1;
3328 	}
3329 out:
3330 	cmd_free(h, c);
3331 
3332 	return rc;
3333 }
3334 
3335 /*
3336  * get enclosure information
3337  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3338  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3339  * Uses id_physical_device to determine the box_index.
3340  */
3341 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3342 			unsigned char *scsi3addr,
3343 			struct ReportExtendedLUNdata *rlep, int rle_index,
3344 			struct hpsa_scsi_dev_t *encl_dev)
3345 {
3346 	int rc = -1;
3347 	struct CommandList *c = NULL;
3348 	struct ErrorInfo *ei = NULL;
3349 	struct bmic_sense_storage_box_params *bssbp = NULL;
3350 	struct bmic_identify_physical_device *id_phys = NULL;
3351 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3352 	u16 bmic_device_index = 0;
3353 
3354 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3355 
3356 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3357 		rc = IO_OK;
3358 		goto out;
3359 	}
3360 
3361 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3362 		rc = IO_OK;
3363 		goto out;
3364 	}
3365 
3366 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3367 	if (!bssbp)
3368 		goto out;
3369 
3370 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3371 	if (!id_phys)
3372 		goto out;
3373 
3374 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3375 						id_phys, sizeof(*id_phys));
3376 	if (rc) {
3377 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3378 			__func__, encl_dev->external, bmic_device_index);
3379 		goto out;
3380 	}
3381 
3382 	c = cmd_alloc(h);
3383 
3384 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3385 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3386 
3387 	if (rc)
3388 		goto out;
3389 
3390 	if (id_phys->phys_connector[1] == 'E')
3391 		c->Request.CDB[5] = id_phys->box_index;
3392 	else
3393 		c->Request.CDB[5] = 0;
3394 
3395 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3396 						DEFAULT_TIMEOUT);
3397 	if (rc)
3398 		goto out;
3399 
3400 	ei = c->err_info;
3401 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3402 		rc = -1;
3403 		goto out;
3404 	}
3405 
3406 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3407 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3408 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3409 
3410 	rc = IO_OK;
3411 out:
3412 	kfree(bssbp);
3413 	kfree(id_phys);
3414 
3415 	if (c)
3416 		cmd_free(h, c);
3417 
3418 	if (rc != IO_OK)
3419 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3420 			"Error, could not get enclosure information\n");
3421 }
3422 
3423 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3424 						unsigned char *scsi3addr)
3425 {
3426 	struct ReportExtendedLUNdata *physdev;
3427 	u32 nphysicals;
3428 	u64 sa = 0;
3429 	int i;
3430 
3431 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3432 	if (!physdev)
3433 		return 0;
3434 
3435 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3436 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3437 		kfree(physdev);
3438 		return 0;
3439 	}
3440 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3441 
3442 	for (i = 0; i < nphysicals; i++)
3443 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3444 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3445 			break;
3446 		}
3447 
3448 	kfree(physdev);
3449 
3450 	return sa;
3451 }
3452 
3453 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3454 					struct hpsa_scsi_dev_t *dev)
3455 {
3456 	int rc;
3457 	u64 sa = 0;
3458 
3459 	if (is_hba_lunid(scsi3addr)) {
3460 		struct bmic_sense_subsystem_info *ssi;
3461 
3462 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3463 		if (!ssi)
3464 			return;
3465 
3466 		rc = hpsa_bmic_sense_subsystem_information(h,
3467 					scsi3addr, 0, ssi, sizeof(*ssi));
3468 		if (rc == 0) {
3469 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3470 			h->sas_address = sa;
3471 		}
3472 
3473 		kfree(ssi);
3474 	} else
3475 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3476 
3477 	dev->sas_address = sa;
3478 }
3479 
3480 /* Get a device id from inquiry page 0x83 */
3481 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3482 	unsigned char scsi3addr[], u8 page)
3483 {
3484 	int rc;
3485 	int i;
3486 	int pages;
3487 	unsigned char *buf, bufsize;
3488 
3489 	buf = kzalloc(256, GFP_KERNEL);
3490 	if (!buf)
3491 		return false;
3492 
3493 	/* Get the size of the page list first */
3494 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3495 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3496 				buf, HPSA_VPD_HEADER_SZ);
3497 	if (rc != 0)
3498 		goto exit_unsupported;
3499 	pages = buf[3];
3500 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3501 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3502 	else
3503 		bufsize = 255;
3504 
3505 	/* Get the whole VPD page list */
3506 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3507 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3508 				buf, bufsize);
3509 	if (rc != 0)
3510 		goto exit_unsupported;
3511 
3512 	pages = buf[3];
3513 	for (i = 1; i <= pages; i++)
3514 		if (buf[3 + i] == page)
3515 			goto exit_supported;
3516 exit_unsupported:
3517 	kfree(buf);
3518 	return false;
3519 exit_supported:
3520 	kfree(buf);
3521 	return true;
3522 }
3523 
3524 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3525 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3526 {
3527 	int rc;
3528 	unsigned char *buf;
3529 	u8 ioaccel_status;
3530 
3531 	this_device->offload_config = 0;
3532 	this_device->offload_enabled = 0;
3533 	this_device->offload_to_be_enabled = 0;
3534 
3535 	buf = kzalloc(64, GFP_KERNEL);
3536 	if (!buf)
3537 		return;
3538 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3539 		goto out;
3540 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3541 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3542 	if (rc != 0)
3543 		goto out;
3544 
3545 #define IOACCEL_STATUS_BYTE 4
3546 #define OFFLOAD_CONFIGURED_BIT 0x01
3547 #define OFFLOAD_ENABLED_BIT 0x02
3548 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3549 	this_device->offload_config =
3550 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3551 	if (this_device->offload_config) {
3552 		this_device->offload_enabled =
3553 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3554 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3555 			this_device->offload_enabled = 0;
3556 	}
3557 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3558 out:
3559 	kfree(buf);
3560 	return;
3561 }
3562 
3563 /* Get the device id from inquiry page 0x83 */
3564 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3565 	unsigned char *device_id, int index, int buflen)
3566 {
3567 	int rc;
3568 	unsigned char *buf;
3569 
3570 	/* Does controller have VPD for device id? */
3571 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3572 		return 1; /* not supported */
3573 
3574 	buf = kzalloc(64, GFP_KERNEL);
3575 	if (!buf)
3576 		return -ENOMEM;
3577 
3578 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3579 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3580 	if (rc == 0) {
3581 		if (buflen > 16)
3582 			buflen = 16;
3583 		memcpy(device_id, &buf[8], buflen);
3584 	}
3585 
3586 	kfree(buf);
3587 
3588 	return rc; /*0 - got id,  otherwise, didn't */
3589 }
3590 
3591 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3592 		void *buf, int bufsize,
3593 		int extended_response)
3594 {
3595 	int rc = IO_OK;
3596 	struct CommandList *c;
3597 	unsigned char scsi3addr[8];
3598 	struct ErrorInfo *ei;
3599 
3600 	c = cmd_alloc(h);
3601 
3602 	/* address the controller */
3603 	memset(scsi3addr, 0, sizeof(scsi3addr));
3604 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3605 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3606 		rc = -1;
3607 		goto out;
3608 	}
3609 	if (extended_response)
3610 		c->Request.CDB[1] = extended_response;
3611 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3612 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3613 	if (rc)
3614 		goto out;
3615 	ei = c->err_info;
3616 	if (ei->CommandStatus != 0 &&
3617 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3618 		hpsa_scsi_interpret_error(h, c);
3619 		rc = -1;
3620 	} else {
3621 		struct ReportLUNdata *rld = buf;
3622 
3623 		if (rld->extended_response_flag != extended_response) {
3624 			dev_err(&h->pdev->dev,
3625 				"report luns requested format %u, got %u\n",
3626 				extended_response,
3627 				rld->extended_response_flag);
3628 			rc = -1;
3629 		}
3630 	}
3631 out:
3632 	cmd_free(h, c);
3633 	return rc;
3634 }
3635 
3636 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3637 		struct ReportExtendedLUNdata *buf, int bufsize)
3638 {
3639 	int rc;
3640 	struct ReportLUNdata *lbuf;
3641 
3642 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3643 				      HPSA_REPORT_PHYS_EXTENDED);
3644 	if (!rc || !hpsa_allow_any)
3645 		return rc;
3646 
3647 	/* REPORT PHYS EXTENDED is not supported */
3648 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3649 	if (!lbuf)
3650 		return -ENOMEM;
3651 
3652 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3653 	if (!rc) {
3654 		int i;
3655 		u32 nphys;
3656 
3657 		/* Copy ReportLUNdata header */
3658 		memcpy(buf, lbuf, 8);
3659 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3660 		for (i = 0; i < nphys; i++)
3661 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3662 	}
3663 	kfree(lbuf);
3664 	return rc;
3665 }
3666 
3667 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3668 		struct ReportLUNdata *buf, int bufsize)
3669 {
3670 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3671 }
3672 
3673 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3674 	int bus, int target, int lun)
3675 {
3676 	device->bus = bus;
3677 	device->target = target;
3678 	device->lun = lun;
3679 }
3680 
3681 /* Use VPD inquiry to get details of volume status */
3682 static int hpsa_get_volume_status(struct ctlr_info *h,
3683 					unsigned char scsi3addr[])
3684 {
3685 	int rc;
3686 	int status;
3687 	int size;
3688 	unsigned char *buf;
3689 
3690 	buf = kzalloc(64, GFP_KERNEL);
3691 	if (!buf)
3692 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3693 
3694 	/* Does controller have VPD for logical volume status? */
3695 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3696 		goto exit_failed;
3697 
3698 	/* Get the size of the VPD return buffer */
3699 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3700 					buf, HPSA_VPD_HEADER_SZ);
3701 	if (rc != 0)
3702 		goto exit_failed;
3703 	size = buf[3];
3704 
3705 	/* Now get the whole VPD buffer */
3706 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3707 					buf, size + HPSA_VPD_HEADER_SZ);
3708 	if (rc != 0)
3709 		goto exit_failed;
3710 	status = buf[4]; /* status byte */
3711 
3712 	kfree(buf);
3713 	return status;
3714 exit_failed:
3715 	kfree(buf);
3716 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3717 }
3718 
3719 /* Determine offline status of a volume.
3720  * Return either:
3721  *  0 (not offline)
3722  *  0xff (offline for unknown reasons)
3723  *  # (integer code indicating one of several NOT READY states
3724  *     describing why a volume is to be kept offline)
3725  */
3726 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3727 					unsigned char scsi3addr[])
3728 {
3729 	struct CommandList *c;
3730 	unsigned char *sense;
3731 	u8 sense_key, asc, ascq;
3732 	int sense_len;
3733 	int rc, ldstat = 0;
3734 	u16 cmd_status;
3735 	u8 scsi_status;
3736 #define ASC_LUN_NOT_READY 0x04
3737 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3738 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3739 
3740 	c = cmd_alloc(h);
3741 
3742 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3743 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3744 					DEFAULT_TIMEOUT);
3745 	if (rc) {
3746 		cmd_free(h, c);
3747 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3748 	}
3749 	sense = c->err_info->SenseInfo;
3750 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3751 		sense_len = sizeof(c->err_info->SenseInfo);
3752 	else
3753 		sense_len = c->err_info->SenseLen;
3754 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3755 	cmd_status = c->err_info->CommandStatus;
3756 	scsi_status = c->err_info->ScsiStatus;
3757 	cmd_free(h, c);
3758 
3759 	/* Determine the reason for not ready state */
3760 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3761 
3762 	/* Keep volume offline in certain cases: */
3763 	switch (ldstat) {
3764 	case HPSA_LV_FAILED:
3765 	case HPSA_LV_UNDERGOING_ERASE:
3766 	case HPSA_LV_NOT_AVAILABLE:
3767 	case HPSA_LV_UNDERGOING_RPI:
3768 	case HPSA_LV_PENDING_RPI:
3769 	case HPSA_LV_ENCRYPTED_NO_KEY:
3770 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3771 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3772 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3773 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3774 		return ldstat;
3775 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3776 		/* If VPD status page isn't available,
3777 		 * use ASC/ASCQ to determine state
3778 		 */
3779 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3780 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3781 			return ldstat;
3782 		break;
3783 	default:
3784 		break;
3785 	}
3786 	return HPSA_LV_OK;
3787 }
3788 
3789 /*
3790  * Find out if a logical device supports aborts by simply trying one.
3791  * Smart Array may claim not to support aborts on logical drives, but
3792  * if a MSA2000 * is connected, the drives on that will be presented
3793  * by the Smart Array as logical drives, and aborts may be sent to
3794  * those devices successfully.  So the simplest way to find out is
3795  * to simply try an abort and see how the device responds.
3796  */
3797 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3798 					unsigned char *scsi3addr)
3799 {
3800 	struct CommandList *c;
3801 	struct ErrorInfo *ei;
3802 	int rc = 0;
3803 
3804 	u64 tag = (u64) -1; /* bogus tag */
3805 
3806 	/* Assume that physical devices support aborts */
3807 	if (!is_logical_dev_addr_mode(scsi3addr))
3808 		return 1;
3809 
3810 	c = cmd_alloc(h);
3811 
3812 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3813 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3814 					DEFAULT_TIMEOUT);
3815 	/* no unmap needed here because no data xfer. */
3816 	ei = c->err_info;
3817 	switch (ei->CommandStatus) {
3818 	case CMD_INVALID:
3819 		rc = 0;
3820 		break;
3821 	case CMD_UNABORTABLE:
3822 	case CMD_ABORT_FAILED:
3823 		rc = 1;
3824 		break;
3825 	case CMD_TMF_STATUS:
3826 		rc = hpsa_evaluate_tmf_status(h, c);
3827 		break;
3828 	default:
3829 		rc = 0;
3830 		break;
3831 	}
3832 	cmd_free(h, c);
3833 	return rc;
3834 }
3835 
3836 static int hpsa_update_device_info(struct ctlr_info *h,
3837 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3838 	unsigned char *is_OBDR_device)
3839 {
3840 
3841 #define OBDR_SIG_OFFSET 43
3842 #define OBDR_TAPE_SIG "$DR-10"
3843 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3844 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3845 
3846 	unsigned char *inq_buff;
3847 	unsigned char *obdr_sig;
3848 	int rc = 0;
3849 
3850 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3851 	if (!inq_buff) {
3852 		rc = -ENOMEM;
3853 		goto bail_out;
3854 	}
3855 
3856 	/* Do an inquiry to the device to see what it is. */
3857 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3858 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3859 		dev_err(&h->pdev->dev,
3860 			"%s: inquiry failed, device will be skipped.\n",
3861 			__func__);
3862 		rc = HPSA_INQUIRY_FAILED;
3863 		goto bail_out;
3864 	}
3865 
3866 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3867 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3868 
3869 	this_device->devtype = (inq_buff[0] & 0x1f);
3870 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3871 	memcpy(this_device->vendor, &inq_buff[8],
3872 		sizeof(this_device->vendor));
3873 	memcpy(this_device->model, &inq_buff[16],
3874 		sizeof(this_device->model));
3875 	this_device->rev = inq_buff[2];
3876 	memset(this_device->device_id, 0,
3877 		sizeof(this_device->device_id));
3878 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3879 		sizeof(this_device->device_id)))
3880 		dev_err(&h->pdev->dev,
3881 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3882 			h->ctlr, __func__,
3883 			h->scsi_host->host_no,
3884 			this_device->target, this_device->lun,
3885 			scsi_device_type(this_device->devtype),
3886 			this_device->model);
3887 
3888 	if ((this_device->devtype == TYPE_DISK ||
3889 		this_device->devtype == TYPE_ZBC) &&
3890 		is_logical_dev_addr_mode(scsi3addr)) {
3891 		unsigned char volume_offline;
3892 
3893 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3894 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3895 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3896 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3897 		this_device->volume_offline = volume_offline;
3898 		if (volume_offline == HPSA_LV_FAILED) {
3899 			rc = HPSA_LV_FAILED;
3900 			dev_err(&h->pdev->dev,
3901 				"%s: LV failed, device will be skipped.\n",
3902 				__func__);
3903 			goto bail_out;
3904 		}
3905 	} else {
3906 		this_device->raid_level = RAID_UNKNOWN;
3907 		this_device->offload_config = 0;
3908 		this_device->offload_enabled = 0;
3909 		this_device->offload_to_be_enabled = 0;
3910 		this_device->hba_ioaccel_enabled = 0;
3911 		this_device->volume_offline = 0;
3912 		this_device->queue_depth = h->nr_cmds;
3913 	}
3914 
3915 	if (is_OBDR_device) {
3916 		/* See if this is a One-Button-Disaster-Recovery device
3917 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3918 		 */
3919 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3920 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3921 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3922 						OBDR_SIG_LEN) == 0);
3923 	}
3924 	kfree(inq_buff);
3925 	return 0;
3926 
3927 bail_out:
3928 	kfree(inq_buff);
3929 	return rc;
3930 }
3931 
3932 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3933 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3934 {
3935 	unsigned long flags;
3936 	int rc, entry;
3937 	/*
3938 	 * See if this device supports aborts.  If we already know
3939 	 * the device, we already know if it supports aborts, otherwise
3940 	 * we have to find out if it supports aborts by trying one.
3941 	 */
3942 	spin_lock_irqsave(&h->devlock, flags);
3943 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3944 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3945 		entry >= 0 && entry < h->ndevices) {
3946 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3947 		spin_unlock_irqrestore(&h->devlock, flags);
3948 	} else {
3949 		spin_unlock_irqrestore(&h->devlock, flags);
3950 		dev->supports_aborts =
3951 				hpsa_device_supports_aborts(h, scsi3addr);
3952 		if (dev->supports_aborts < 0)
3953 			dev->supports_aborts = 0;
3954 	}
3955 }
3956 
3957 /*
3958  * Helper function to assign bus, target, lun mapping of devices.
3959  * Logical drive target and lun are assigned at this time, but
3960  * physical device lun and target assignment are deferred (assigned
3961  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3962 */
3963 static void figure_bus_target_lun(struct ctlr_info *h,
3964 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3965 {
3966 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3967 
3968 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3969 		/* physical device, target and lun filled in later */
3970 		if (is_hba_lunid(lunaddrbytes)) {
3971 			int bus = HPSA_HBA_BUS;
3972 
3973 			if (!device->rev)
3974 				bus = HPSA_LEGACY_HBA_BUS;
3975 			hpsa_set_bus_target_lun(device,
3976 					bus, 0, lunid & 0x3fff);
3977 		} else
3978 			/* defer target, lun assignment for physical devices */
3979 			hpsa_set_bus_target_lun(device,
3980 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3981 		return;
3982 	}
3983 	/* It's a logical device */
3984 	if (device->external) {
3985 		hpsa_set_bus_target_lun(device,
3986 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3987 			lunid & 0x00ff);
3988 		return;
3989 	}
3990 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3991 				0, lunid & 0x3fff);
3992 }
3993 
3994 
3995 /*
3996  * Get address of physical disk used for an ioaccel2 mode command:
3997  *	1. Extract ioaccel2 handle from the command.
3998  *	2. Find a matching ioaccel2 handle from list of physical disks.
3999  *	3. Return:
4000  *		1 and set scsi3addr to address of matching physical
4001  *		0 if no matching physical disk was found.
4002  */
4003 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
4004 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4005 {
4006 	struct io_accel2_cmd *c2 =
4007 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4008 	unsigned long flags;
4009 	int i;
4010 
4011 	spin_lock_irqsave(&h->devlock, flags);
4012 	for (i = 0; i < h->ndevices; i++)
4013 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4014 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
4015 				sizeof(h->dev[i]->scsi3addr));
4016 			spin_unlock_irqrestore(&h->devlock, flags);
4017 			return 1;
4018 		}
4019 	spin_unlock_irqrestore(&h->devlock, flags);
4020 	return 0;
4021 }
4022 
4023 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4024 	int i, int nphysicals, int nlocal_logicals)
4025 {
4026 	/* In report logicals, local logicals are listed first,
4027 	* then any externals.
4028 	*/
4029 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4030 
4031 	if (i == raid_ctlr_position)
4032 		return 0;
4033 
4034 	if (i < logicals_start)
4035 		return 0;
4036 
4037 	/* i is in logicals range, but still within local logicals */
4038 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4039 		return 0;
4040 
4041 	return 1; /* it's an external lun */
4042 }
4043 
4044 /*
4045  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4046  * logdev.  The number of luns in physdev and logdev are returned in
4047  * *nphysicals and *nlogicals, respectively.
4048  * Returns 0 on success, -1 otherwise.
4049  */
4050 static int hpsa_gather_lun_info(struct ctlr_info *h,
4051 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4052 	struct ReportLUNdata *logdev, u32 *nlogicals)
4053 {
4054 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4055 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4056 		return -1;
4057 	}
4058 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4059 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4060 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4061 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4062 		*nphysicals = HPSA_MAX_PHYS_LUN;
4063 	}
4064 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4065 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4066 		return -1;
4067 	}
4068 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4069 	/* Reject Logicals in excess of our max capability. */
4070 	if (*nlogicals > HPSA_MAX_LUN) {
4071 		dev_warn(&h->pdev->dev,
4072 			"maximum logical LUNs (%d) exceeded.  "
4073 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4074 			*nlogicals - HPSA_MAX_LUN);
4075 			*nlogicals = HPSA_MAX_LUN;
4076 	}
4077 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4078 		dev_warn(&h->pdev->dev,
4079 			"maximum logical + physical LUNs (%d) exceeded. "
4080 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4081 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4082 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4083 	}
4084 	return 0;
4085 }
4086 
4087 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4088 	int i, int nphysicals, int nlogicals,
4089 	struct ReportExtendedLUNdata *physdev_list,
4090 	struct ReportLUNdata *logdev_list)
4091 {
4092 	/* Helper function, figure out where the LUN ID info is coming from
4093 	 * given index i, lists of physical and logical devices, where in
4094 	 * the list the raid controller is supposed to appear (first or last)
4095 	 */
4096 
4097 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4098 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4099 
4100 	if (i == raid_ctlr_position)
4101 		return RAID_CTLR_LUNID;
4102 
4103 	if (i < logicals_start)
4104 		return &physdev_list->LUN[i -
4105 				(raid_ctlr_position == 0)].lunid[0];
4106 
4107 	if (i < last_device)
4108 		return &logdev_list->LUN[i - nphysicals -
4109 			(raid_ctlr_position == 0)][0];
4110 	BUG();
4111 	return NULL;
4112 }
4113 
4114 /* get physical drive ioaccel handle and queue depth */
4115 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4116 		struct hpsa_scsi_dev_t *dev,
4117 		struct ReportExtendedLUNdata *rlep, int rle_index,
4118 		struct bmic_identify_physical_device *id_phys)
4119 {
4120 	int rc;
4121 	struct ext_report_lun_entry *rle;
4122 
4123 	/*
4124 	 * external targets don't support BMIC
4125 	 */
4126 	if (dev->external) {
4127 		dev->queue_depth = 7;
4128 		return;
4129 	}
4130 
4131 	rle = &rlep->LUN[rle_index];
4132 
4133 	dev->ioaccel_handle = rle->ioaccel_handle;
4134 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4135 		dev->hba_ioaccel_enabled = 1;
4136 	memset(id_phys, 0, sizeof(*id_phys));
4137 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4138 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4139 			sizeof(*id_phys));
4140 	if (!rc)
4141 		/* Reserve space for FW operations */
4142 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4143 #define DRIVE_QUEUE_DEPTH 7
4144 		dev->queue_depth =
4145 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4146 				DRIVE_CMDS_RESERVED_FOR_FW;
4147 	else
4148 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4149 }
4150 
4151 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4152 	struct ReportExtendedLUNdata *rlep, int rle_index,
4153 	struct bmic_identify_physical_device *id_phys)
4154 {
4155 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4156 
4157 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4158 		this_device->hba_ioaccel_enabled = 1;
4159 
4160 	memcpy(&this_device->active_path_index,
4161 		&id_phys->active_path_number,
4162 		sizeof(this_device->active_path_index));
4163 	memcpy(&this_device->path_map,
4164 		&id_phys->redundant_path_present_map,
4165 		sizeof(this_device->path_map));
4166 	memcpy(&this_device->box,
4167 		&id_phys->alternate_paths_phys_box_on_port,
4168 		sizeof(this_device->box));
4169 	memcpy(&this_device->phys_connector,
4170 		&id_phys->alternate_paths_phys_connector,
4171 		sizeof(this_device->phys_connector));
4172 	memcpy(&this_device->bay,
4173 		&id_phys->phys_bay_in_box,
4174 		sizeof(this_device->bay));
4175 }
4176 
4177 /* get number of local logical disks. */
4178 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4179 	struct bmic_identify_controller *id_ctlr,
4180 	u32 *nlocals)
4181 {
4182 	int rc;
4183 
4184 	if (!id_ctlr) {
4185 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4186 			__func__);
4187 		return -ENOMEM;
4188 	}
4189 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4190 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4191 	if (!rc)
4192 		if (id_ctlr->configured_logical_drive_count < 256)
4193 			*nlocals = id_ctlr->configured_logical_drive_count;
4194 		else
4195 			*nlocals = le16_to_cpu(
4196 					id_ctlr->extended_logical_unit_count);
4197 	else
4198 		*nlocals = -1;
4199 	return rc;
4200 }
4201 
4202 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4203 {
4204 	struct bmic_identify_physical_device *id_phys;
4205 	bool is_spare = false;
4206 	int rc;
4207 
4208 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4209 	if (!id_phys)
4210 		return false;
4211 
4212 	rc = hpsa_bmic_id_physical_device(h,
4213 					lunaddrbytes,
4214 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4215 					id_phys, sizeof(*id_phys));
4216 	if (rc == 0)
4217 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4218 
4219 	kfree(id_phys);
4220 	return is_spare;
4221 }
4222 
4223 #define RPL_DEV_FLAG_NON_DISK                           0x1
4224 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4225 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4226 
4227 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4228 
4229 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4230 				struct ext_report_lun_entry *rle)
4231 {
4232 	u8 device_flags;
4233 	u8 device_type;
4234 
4235 	if (!MASKED_DEVICE(lunaddrbytes))
4236 		return false;
4237 
4238 	device_flags = rle->device_flags;
4239 	device_type = rle->device_type;
4240 
4241 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4242 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4243 			return false;
4244 		return true;
4245 	}
4246 
4247 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4248 		return false;
4249 
4250 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4251 		return false;
4252 
4253 	/*
4254 	 * Spares may be spun down, we do not want to
4255 	 * do an Inquiry to a RAID set spare drive as
4256 	 * that would have them spun up, that is a
4257 	 * performance hit because I/O to the RAID device
4258 	 * stops while the spin up occurs which can take
4259 	 * over 50 seconds.
4260 	 */
4261 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4262 		return true;
4263 
4264 	return false;
4265 }
4266 
4267 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4268 {
4269 	/* the idea here is we could get notified
4270 	 * that some devices have changed, so we do a report
4271 	 * physical luns and report logical luns cmd, and adjust
4272 	 * our list of devices accordingly.
4273 	 *
4274 	 * The scsi3addr's of devices won't change so long as the
4275 	 * adapter is not reset.  That means we can rescan and
4276 	 * tell which devices we already know about, vs. new
4277 	 * devices, vs.  disappearing devices.
4278 	 */
4279 	struct ReportExtendedLUNdata *physdev_list = NULL;
4280 	struct ReportLUNdata *logdev_list = NULL;
4281 	struct bmic_identify_physical_device *id_phys = NULL;
4282 	struct bmic_identify_controller *id_ctlr = NULL;
4283 	u32 nphysicals = 0;
4284 	u32 nlogicals = 0;
4285 	u32 nlocal_logicals = 0;
4286 	u32 ndev_allocated = 0;
4287 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4288 	int ncurrent = 0;
4289 	int i, n_ext_target_devs, ndevs_to_allocate;
4290 	int raid_ctlr_position;
4291 	bool physical_device;
4292 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4293 
4294 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4295 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4296 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4297 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4298 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4299 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4300 
4301 	if (!currentsd || !physdev_list || !logdev_list ||
4302 		!tmpdevice || !id_phys || !id_ctlr) {
4303 		dev_err(&h->pdev->dev, "out of memory\n");
4304 		goto out;
4305 	}
4306 	memset(lunzerobits, 0, sizeof(lunzerobits));
4307 
4308 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4309 
4310 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4311 			logdev_list, &nlogicals)) {
4312 		h->drv_req_rescan = 1;
4313 		goto out;
4314 	}
4315 
4316 	/* Set number of local logicals (non PTRAID) */
4317 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4318 		dev_warn(&h->pdev->dev,
4319 			"%s: Can't determine number of local logical devices.\n",
4320 			__func__);
4321 	}
4322 
4323 	/* We might see up to the maximum number of logical and physical disks
4324 	 * plus external target devices, and a device for the local RAID
4325 	 * controller.
4326 	 */
4327 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4328 
4329 	/* Allocate the per device structures */
4330 	for (i = 0; i < ndevs_to_allocate; i++) {
4331 		if (i >= HPSA_MAX_DEVICES) {
4332 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4333 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4334 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4335 			break;
4336 		}
4337 
4338 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4339 		if (!currentsd[i]) {
4340 			h->drv_req_rescan = 1;
4341 			goto out;
4342 		}
4343 		ndev_allocated++;
4344 	}
4345 
4346 	if (is_scsi_rev_5(h))
4347 		raid_ctlr_position = 0;
4348 	else
4349 		raid_ctlr_position = nphysicals + nlogicals;
4350 
4351 	/* adjust our table of devices */
4352 	n_ext_target_devs = 0;
4353 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4354 		u8 *lunaddrbytes, is_OBDR = 0;
4355 		int rc = 0;
4356 		int phys_dev_index = i - (raid_ctlr_position == 0);
4357 		bool skip_device = false;
4358 
4359 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4360 
4361 		/* Figure out where the LUN ID info is coming from */
4362 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4363 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4364 
4365 		/* Determine if this is a lun from an external target array */
4366 		tmpdevice->external =
4367 			figure_external_status(h, raid_ctlr_position, i,
4368 						nphysicals, nlocal_logicals);
4369 
4370 		/*
4371 		 * Skip over some devices such as a spare.
4372 		 */
4373 		if (!tmpdevice->external && physical_device) {
4374 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4375 					&physdev_list->LUN[phys_dev_index]);
4376 			if (skip_device)
4377 				continue;
4378 		}
4379 
4380 		/* Get device type, vendor, model, device id */
4381 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4382 							&is_OBDR);
4383 		if (rc == -ENOMEM) {
4384 			dev_warn(&h->pdev->dev,
4385 				"Out of memory, rescan deferred.\n");
4386 			h->drv_req_rescan = 1;
4387 			goto out;
4388 		}
4389 		if (rc) {
4390 			h->drv_req_rescan = 1;
4391 			continue;
4392 		}
4393 
4394 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4395 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4396 		this_device = currentsd[ncurrent];
4397 
4398 		/* Turn on discovery_polling if there are ext target devices.
4399 		 * Event-based change notification is unreliable for those.
4400 		 */
4401 		if (!h->discovery_polling) {
4402 			if (tmpdevice->external) {
4403 				h->discovery_polling = 1;
4404 				dev_info(&h->pdev->dev,
4405 					"External target, activate discovery polling.\n");
4406 			}
4407 		}
4408 
4409 
4410 		*this_device = *tmpdevice;
4411 		this_device->physical_device = physical_device;
4412 
4413 		/*
4414 		 * Expose all devices except for physical devices that
4415 		 * are masked.
4416 		 */
4417 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4418 			this_device->expose_device = 0;
4419 		else
4420 			this_device->expose_device = 1;
4421 
4422 
4423 		/*
4424 		 * Get the SAS address for physical devices that are exposed.
4425 		 */
4426 		if (this_device->physical_device && this_device->expose_device)
4427 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4428 
4429 		switch (this_device->devtype) {
4430 		case TYPE_ROM:
4431 			/* We don't *really* support actual CD-ROM devices,
4432 			 * just "One Button Disaster Recovery" tape drive
4433 			 * which temporarily pretends to be a CD-ROM drive.
4434 			 * So we check that the device is really an OBDR tape
4435 			 * device by checking for "$DR-10" in bytes 43-48 of
4436 			 * the inquiry data.
4437 			 */
4438 			if (is_OBDR)
4439 				ncurrent++;
4440 			break;
4441 		case TYPE_DISK:
4442 		case TYPE_ZBC:
4443 			if (this_device->physical_device) {
4444 				/* The disk is in HBA mode. */
4445 				/* Never use RAID mapper in HBA mode. */
4446 				this_device->offload_enabled = 0;
4447 				hpsa_get_ioaccel_drive_info(h, this_device,
4448 					physdev_list, phys_dev_index, id_phys);
4449 				hpsa_get_path_info(this_device,
4450 					physdev_list, phys_dev_index, id_phys);
4451 			}
4452 			ncurrent++;
4453 			break;
4454 		case TYPE_TAPE:
4455 		case TYPE_MEDIUM_CHANGER:
4456 			ncurrent++;
4457 			break;
4458 		case TYPE_ENCLOSURE:
4459 			if (!this_device->external)
4460 				hpsa_get_enclosure_info(h, lunaddrbytes,
4461 						physdev_list, phys_dev_index,
4462 						this_device);
4463 			ncurrent++;
4464 			break;
4465 		case TYPE_RAID:
4466 			/* Only present the Smartarray HBA as a RAID controller.
4467 			 * If it's a RAID controller other than the HBA itself
4468 			 * (an external RAID controller, MSA500 or similar)
4469 			 * don't present it.
4470 			 */
4471 			if (!is_hba_lunid(lunaddrbytes))
4472 				break;
4473 			ncurrent++;
4474 			break;
4475 		default:
4476 			break;
4477 		}
4478 		if (ncurrent >= HPSA_MAX_DEVICES)
4479 			break;
4480 	}
4481 
4482 	if (h->sas_host == NULL) {
4483 		int rc = 0;
4484 
4485 		rc = hpsa_add_sas_host(h);
4486 		if (rc) {
4487 			dev_warn(&h->pdev->dev,
4488 				"Could not add sas host %d\n", rc);
4489 			goto out;
4490 		}
4491 	}
4492 
4493 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4494 out:
4495 	kfree(tmpdevice);
4496 	for (i = 0; i < ndev_allocated; i++)
4497 		kfree(currentsd[i]);
4498 	kfree(currentsd);
4499 	kfree(physdev_list);
4500 	kfree(logdev_list);
4501 	kfree(id_ctlr);
4502 	kfree(id_phys);
4503 }
4504 
4505 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4506 				   struct scatterlist *sg)
4507 {
4508 	u64 addr64 = (u64) sg_dma_address(sg);
4509 	unsigned int len = sg_dma_len(sg);
4510 
4511 	desc->Addr = cpu_to_le64(addr64);
4512 	desc->Len = cpu_to_le32(len);
4513 	desc->Ext = 0;
4514 }
4515 
4516 /*
4517  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4518  * dma mapping  and fills in the scatter gather entries of the
4519  * hpsa command, cp.
4520  */
4521 static int hpsa_scatter_gather(struct ctlr_info *h,
4522 		struct CommandList *cp,
4523 		struct scsi_cmnd *cmd)
4524 {
4525 	struct scatterlist *sg;
4526 	int use_sg, i, sg_limit, chained, last_sg;
4527 	struct SGDescriptor *curr_sg;
4528 
4529 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4530 
4531 	use_sg = scsi_dma_map(cmd);
4532 	if (use_sg < 0)
4533 		return use_sg;
4534 
4535 	if (!use_sg)
4536 		goto sglist_finished;
4537 
4538 	/*
4539 	 * If the number of entries is greater than the max for a single list,
4540 	 * then we have a chained list; we will set up all but one entry in the
4541 	 * first list (the last entry is saved for link information);
4542 	 * otherwise, we don't have a chained list and we'll set up at each of
4543 	 * the entries in the one list.
4544 	 */
4545 	curr_sg = cp->SG;
4546 	chained = use_sg > h->max_cmd_sg_entries;
4547 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4548 	last_sg = scsi_sg_count(cmd) - 1;
4549 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4550 		hpsa_set_sg_descriptor(curr_sg, sg);
4551 		curr_sg++;
4552 	}
4553 
4554 	if (chained) {
4555 		/*
4556 		 * Continue with the chained list.  Set curr_sg to the chained
4557 		 * list.  Modify the limit to the total count less the entries
4558 		 * we've already set up.  Resume the scan at the list entry
4559 		 * where the previous loop left off.
4560 		 */
4561 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4562 		sg_limit = use_sg - sg_limit;
4563 		for_each_sg(sg, sg, sg_limit, i) {
4564 			hpsa_set_sg_descriptor(curr_sg, sg);
4565 			curr_sg++;
4566 		}
4567 	}
4568 
4569 	/* Back the pointer up to the last entry and mark it as "last". */
4570 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4571 
4572 	if (use_sg + chained > h->maxSG)
4573 		h->maxSG = use_sg + chained;
4574 
4575 	if (chained) {
4576 		cp->Header.SGList = h->max_cmd_sg_entries;
4577 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4578 		if (hpsa_map_sg_chain_block(h, cp)) {
4579 			scsi_dma_unmap(cmd);
4580 			return -1;
4581 		}
4582 		return 0;
4583 	}
4584 
4585 sglist_finished:
4586 
4587 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4588 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4589 	return 0;
4590 }
4591 
4592 #define IO_ACCEL_INELIGIBLE (1)
4593 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4594 {
4595 	int is_write = 0;
4596 	u32 block;
4597 	u32 block_cnt;
4598 
4599 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4600 	switch (cdb[0]) {
4601 	case WRITE_6:
4602 	case WRITE_12:
4603 		is_write = 1;
4604 	case READ_6:
4605 	case READ_12:
4606 		if (*cdb_len == 6) {
4607 			block = (((cdb[1] & 0x1F) << 16) |
4608 				(cdb[2] << 8) |
4609 				cdb[3]);
4610 			block_cnt = cdb[4];
4611 			if (block_cnt == 0)
4612 				block_cnt = 256;
4613 		} else {
4614 			BUG_ON(*cdb_len != 12);
4615 			block = get_unaligned_be32(&cdb[2]);
4616 			block_cnt = get_unaligned_be32(&cdb[6]);
4617 		}
4618 		if (block_cnt > 0xffff)
4619 			return IO_ACCEL_INELIGIBLE;
4620 
4621 		cdb[0] = is_write ? WRITE_10 : READ_10;
4622 		cdb[1] = 0;
4623 		cdb[2] = (u8) (block >> 24);
4624 		cdb[3] = (u8) (block >> 16);
4625 		cdb[4] = (u8) (block >> 8);
4626 		cdb[5] = (u8) (block);
4627 		cdb[6] = 0;
4628 		cdb[7] = (u8) (block_cnt >> 8);
4629 		cdb[8] = (u8) (block_cnt);
4630 		cdb[9] = 0;
4631 		*cdb_len = 10;
4632 		break;
4633 	}
4634 	return 0;
4635 }
4636 
4637 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4638 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4639 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4640 {
4641 	struct scsi_cmnd *cmd = c->scsi_cmd;
4642 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4643 	unsigned int len;
4644 	unsigned int total_len = 0;
4645 	struct scatterlist *sg;
4646 	u64 addr64;
4647 	int use_sg, i;
4648 	struct SGDescriptor *curr_sg;
4649 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4650 
4651 	/* TODO: implement chaining support */
4652 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4653 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4654 		return IO_ACCEL_INELIGIBLE;
4655 	}
4656 
4657 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4658 
4659 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4660 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4661 		return IO_ACCEL_INELIGIBLE;
4662 	}
4663 
4664 	c->cmd_type = CMD_IOACCEL1;
4665 
4666 	/* Adjust the DMA address to point to the accelerated command buffer */
4667 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4668 				(c->cmdindex * sizeof(*cp));
4669 	BUG_ON(c->busaddr & 0x0000007F);
4670 
4671 	use_sg = scsi_dma_map(cmd);
4672 	if (use_sg < 0) {
4673 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4674 		return use_sg;
4675 	}
4676 
4677 	if (use_sg) {
4678 		curr_sg = cp->SG;
4679 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4680 			addr64 = (u64) sg_dma_address(sg);
4681 			len  = sg_dma_len(sg);
4682 			total_len += len;
4683 			curr_sg->Addr = cpu_to_le64(addr64);
4684 			curr_sg->Len = cpu_to_le32(len);
4685 			curr_sg->Ext = cpu_to_le32(0);
4686 			curr_sg++;
4687 		}
4688 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4689 
4690 		switch (cmd->sc_data_direction) {
4691 		case DMA_TO_DEVICE:
4692 			control |= IOACCEL1_CONTROL_DATA_OUT;
4693 			break;
4694 		case DMA_FROM_DEVICE:
4695 			control |= IOACCEL1_CONTROL_DATA_IN;
4696 			break;
4697 		case DMA_NONE:
4698 			control |= IOACCEL1_CONTROL_NODATAXFER;
4699 			break;
4700 		default:
4701 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4702 			cmd->sc_data_direction);
4703 			BUG();
4704 			break;
4705 		}
4706 	} else {
4707 		control |= IOACCEL1_CONTROL_NODATAXFER;
4708 	}
4709 
4710 	c->Header.SGList = use_sg;
4711 	/* Fill out the command structure to submit */
4712 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4713 	cp->transfer_len = cpu_to_le32(total_len);
4714 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4715 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4716 	cp->control = cpu_to_le32(control);
4717 	memcpy(cp->CDB, cdb, cdb_len);
4718 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4719 	/* Tag was already set at init time. */
4720 	enqueue_cmd_and_start_io(h, c);
4721 	return 0;
4722 }
4723 
4724 /*
4725  * Queue a command directly to a device behind the controller using the
4726  * I/O accelerator path.
4727  */
4728 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4729 	struct CommandList *c)
4730 {
4731 	struct scsi_cmnd *cmd = c->scsi_cmd;
4732 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4733 
4734 	if (!dev)
4735 		return -1;
4736 
4737 	c->phys_disk = dev;
4738 
4739 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4740 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4741 }
4742 
4743 /*
4744  * Set encryption parameters for the ioaccel2 request
4745  */
4746 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4747 	struct CommandList *c, struct io_accel2_cmd *cp)
4748 {
4749 	struct scsi_cmnd *cmd = c->scsi_cmd;
4750 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4751 	struct raid_map_data *map = &dev->raid_map;
4752 	u64 first_block;
4753 
4754 	/* Are we doing encryption on this device */
4755 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4756 		return;
4757 	/* Set the data encryption key index. */
4758 	cp->dekindex = map->dekindex;
4759 
4760 	/* Set the encryption enable flag, encoded into direction field. */
4761 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4762 
4763 	/* Set encryption tweak values based on logical block address
4764 	 * If block size is 512, tweak value is LBA.
4765 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4766 	 */
4767 	switch (cmd->cmnd[0]) {
4768 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4769 	case READ_6:
4770 	case WRITE_6:
4771 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4772 				(cmd->cmnd[2] << 8) |
4773 				cmd->cmnd[3]);
4774 		break;
4775 	case WRITE_10:
4776 	case READ_10:
4777 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4778 	case WRITE_12:
4779 	case READ_12:
4780 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4781 		break;
4782 	case WRITE_16:
4783 	case READ_16:
4784 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4785 		break;
4786 	default:
4787 		dev_err(&h->pdev->dev,
4788 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4789 			__func__, cmd->cmnd[0]);
4790 		BUG();
4791 		break;
4792 	}
4793 
4794 	if (le32_to_cpu(map->volume_blk_size) != 512)
4795 		first_block = first_block *
4796 				le32_to_cpu(map->volume_blk_size)/512;
4797 
4798 	cp->tweak_lower = cpu_to_le32(first_block);
4799 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4800 }
4801 
4802 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4803 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4804 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4805 {
4806 	struct scsi_cmnd *cmd = c->scsi_cmd;
4807 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4808 	struct ioaccel2_sg_element *curr_sg;
4809 	int use_sg, i;
4810 	struct scatterlist *sg;
4811 	u64 addr64;
4812 	u32 len;
4813 	u32 total_len = 0;
4814 
4815 	if (!cmd->device)
4816 		return -1;
4817 
4818 	if (!cmd->device->hostdata)
4819 		return -1;
4820 
4821 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4822 
4823 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4824 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4825 		return IO_ACCEL_INELIGIBLE;
4826 	}
4827 
4828 	c->cmd_type = CMD_IOACCEL2;
4829 	/* Adjust the DMA address to point to the accelerated command buffer */
4830 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4831 				(c->cmdindex * sizeof(*cp));
4832 	BUG_ON(c->busaddr & 0x0000007F);
4833 
4834 	memset(cp, 0, sizeof(*cp));
4835 	cp->IU_type = IOACCEL2_IU_TYPE;
4836 
4837 	use_sg = scsi_dma_map(cmd);
4838 	if (use_sg < 0) {
4839 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4840 		return use_sg;
4841 	}
4842 
4843 	if (use_sg) {
4844 		curr_sg = cp->sg;
4845 		if (use_sg > h->ioaccel_maxsg) {
4846 			addr64 = le64_to_cpu(
4847 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4848 			curr_sg->address = cpu_to_le64(addr64);
4849 			curr_sg->length = 0;
4850 			curr_sg->reserved[0] = 0;
4851 			curr_sg->reserved[1] = 0;
4852 			curr_sg->reserved[2] = 0;
4853 			curr_sg->chain_indicator = 0x80;
4854 
4855 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4856 		}
4857 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4858 			addr64 = (u64) sg_dma_address(sg);
4859 			len  = sg_dma_len(sg);
4860 			total_len += len;
4861 			curr_sg->address = cpu_to_le64(addr64);
4862 			curr_sg->length = cpu_to_le32(len);
4863 			curr_sg->reserved[0] = 0;
4864 			curr_sg->reserved[1] = 0;
4865 			curr_sg->reserved[2] = 0;
4866 			curr_sg->chain_indicator = 0;
4867 			curr_sg++;
4868 		}
4869 
4870 		switch (cmd->sc_data_direction) {
4871 		case DMA_TO_DEVICE:
4872 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4873 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4874 			break;
4875 		case DMA_FROM_DEVICE:
4876 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4877 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4878 			break;
4879 		case DMA_NONE:
4880 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4881 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4882 			break;
4883 		default:
4884 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4885 				cmd->sc_data_direction);
4886 			BUG();
4887 			break;
4888 		}
4889 	} else {
4890 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4891 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4892 	}
4893 
4894 	/* Set encryption parameters, if necessary */
4895 	set_encrypt_ioaccel2(h, c, cp);
4896 
4897 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4898 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4899 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4900 
4901 	cp->data_len = cpu_to_le32(total_len);
4902 	cp->err_ptr = cpu_to_le64(c->busaddr +
4903 			offsetof(struct io_accel2_cmd, error_data));
4904 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4905 
4906 	/* fill in sg elements */
4907 	if (use_sg > h->ioaccel_maxsg) {
4908 		cp->sg_count = 1;
4909 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4910 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4911 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4912 			scsi_dma_unmap(cmd);
4913 			return -1;
4914 		}
4915 	} else
4916 		cp->sg_count = (u8) use_sg;
4917 
4918 	enqueue_cmd_and_start_io(h, c);
4919 	return 0;
4920 }
4921 
4922 /*
4923  * Queue a command to the correct I/O accelerator path.
4924  */
4925 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4926 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4927 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4928 {
4929 	if (!c->scsi_cmd->device)
4930 		return -1;
4931 
4932 	if (!c->scsi_cmd->device->hostdata)
4933 		return -1;
4934 
4935 	/* Try to honor the device's queue depth */
4936 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4937 					phys_disk->queue_depth) {
4938 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4939 		return IO_ACCEL_INELIGIBLE;
4940 	}
4941 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4942 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4943 						cdb, cdb_len, scsi3addr,
4944 						phys_disk);
4945 	else
4946 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4947 						cdb, cdb_len, scsi3addr,
4948 						phys_disk);
4949 }
4950 
4951 static void raid_map_helper(struct raid_map_data *map,
4952 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4953 {
4954 	if (offload_to_mirror == 0)  {
4955 		/* use physical disk in the first mirrored group. */
4956 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4957 		return;
4958 	}
4959 	do {
4960 		/* determine mirror group that *map_index indicates */
4961 		*current_group = *map_index /
4962 			le16_to_cpu(map->data_disks_per_row);
4963 		if (offload_to_mirror == *current_group)
4964 			continue;
4965 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4966 			/* select map index from next group */
4967 			*map_index += le16_to_cpu(map->data_disks_per_row);
4968 			(*current_group)++;
4969 		} else {
4970 			/* select map index from first group */
4971 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4972 			*current_group = 0;
4973 		}
4974 	} while (offload_to_mirror != *current_group);
4975 }
4976 
4977 /*
4978  * Attempt to perform offload RAID mapping for a logical volume I/O.
4979  */
4980 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4981 	struct CommandList *c)
4982 {
4983 	struct scsi_cmnd *cmd = c->scsi_cmd;
4984 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4985 	struct raid_map_data *map = &dev->raid_map;
4986 	struct raid_map_disk_data *dd = &map->data[0];
4987 	int is_write = 0;
4988 	u32 map_index;
4989 	u64 first_block, last_block;
4990 	u32 block_cnt;
4991 	u32 blocks_per_row;
4992 	u64 first_row, last_row;
4993 	u32 first_row_offset, last_row_offset;
4994 	u32 first_column, last_column;
4995 	u64 r0_first_row, r0_last_row;
4996 	u32 r5or6_blocks_per_row;
4997 	u64 r5or6_first_row, r5or6_last_row;
4998 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4999 	u32 r5or6_first_column, r5or6_last_column;
5000 	u32 total_disks_per_row;
5001 	u32 stripesize;
5002 	u32 first_group, last_group, current_group;
5003 	u32 map_row;
5004 	u32 disk_handle;
5005 	u64 disk_block;
5006 	u32 disk_block_cnt;
5007 	u8 cdb[16];
5008 	u8 cdb_len;
5009 	u16 strip_size;
5010 #if BITS_PER_LONG == 32
5011 	u64 tmpdiv;
5012 #endif
5013 	int offload_to_mirror;
5014 
5015 	if (!dev)
5016 		return -1;
5017 
5018 	/* check for valid opcode, get LBA and block count */
5019 	switch (cmd->cmnd[0]) {
5020 	case WRITE_6:
5021 		is_write = 1;
5022 	case READ_6:
5023 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5024 				(cmd->cmnd[2] << 8) |
5025 				cmd->cmnd[3]);
5026 		block_cnt = cmd->cmnd[4];
5027 		if (block_cnt == 0)
5028 			block_cnt = 256;
5029 		break;
5030 	case WRITE_10:
5031 		is_write = 1;
5032 	case READ_10:
5033 		first_block =
5034 			(((u64) cmd->cmnd[2]) << 24) |
5035 			(((u64) cmd->cmnd[3]) << 16) |
5036 			(((u64) cmd->cmnd[4]) << 8) |
5037 			cmd->cmnd[5];
5038 		block_cnt =
5039 			(((u32) cmd->cmnd[7]) << 8) |
5040 			cmd->cmnd[8];
5041 		break;
5042 	case WRITE_12:
5043 		is_write = 1;
5044 	case READ_12:
5045 		first_block =
5046 			(((u64) cmd->cmnd[2]) << 24) |
5047 			(((u64) cmd->cmnd[3]) << 16) |
5048 			(((u64) cmd->cmnd[4]) << 8) |
5049 			cmd->cmnd[5];
5050 		block_cnt =
5051 			(((u32) cmd->cmnd[6]) << 24) |
5052 			(((u32) cmd->cmnd[7]) << 16) |
5053 			(((u32) cmd->cmnd[8]) << 8) |
5054 		cmd->cmnd[9];
5055 		break;
5056 	case WRITE_16:
5057 		is_write = 1;
5058 	case READ_16:
5059 		first_block =
5060 			(((u64) cmd->cmnd[2]) << 56) |
5061 			(((u64) cmd->cmnd[3]) << 48) |
5062 			(((u64) cmd->cmnd[4]) << 40) |
5063 			(((u64) cmd->cmnd[5]) << 32) |
5064 			(((u64) cmd->cmnd[6]) << 24) |
5065 			(((u64) cmd->cmnd[7]) << 16) |
5066 			(((u64) cmd->cmnd[8]) << 8) |
5067 			cmd->cmnd[9];
5068 		block_cnt =
5069 			(((u32) cmd->cmnd[10]) << 24) |
5070 			(((u32) cmd->cmnd[11]) << 16) |
5071 			(((u32) cmd->cmnd[12]) << 8) |
5072 			cmd->cmnd[13];
5073 		break;
5074 	default:
5075 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5076 	}
5077 	last_block = first_block + block_cnt - 1;
5078 
5079 	/* check for write to non-RAID-0 */
5080 	if (is_write && dev->raid_level != 0)
5081 		return IO_ACCEL_INELIGIBLE;
5082 
5083 	/* check for invalid block or wraparound */
5084 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5085 		last_block < first_block)
5086 		return IO_ACCEL_INELIGIBLE;
5087 
5088 	/* calculate stripe information for the request */
5089 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5090 				le16_to_cpu(map->strip_size);
5091 	strip_size = le16_to_cpu(map->strip_size);
5092 #if BITS_PER_LONG == 32
5093 	tmpdiv = first_block;
5094 	(void) do_div(tmpdiv, blocks_per_row);
5095 	first_row = tmpdiv;
5096 	tmpdiv = last_block;
5097 	(void) do_div(tmpdiv, blocks_per_row);
5098 	last_row = tmpdiv;
5099 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5100 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5101 	tmpdiv = first_row_offset;
5102 	(void) do_div(tmpdiv, strip_size);
5103 	first_column = tmpdiv;
5104 	tmpdiv = last_row_offset;
5105 	(void) do_div(tmpdiv, strip_size);
5106 	last_column = tmpdiv;
5107 #else
5108 	first_row = first_block / blocks_per_row;
5109 	last_row = last_block / blocks_per_row;
5110 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5111 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5112 	first_column = first_row_offset / strip_size;
5113 	last_column = last_row_offset / strip_size;
5114 #endif
5115 
5116 	/* if this isn't a single row/column then give to the controller */
5117 	if ((first_row != last_row) || (first_column != last_column))
5118 		return IO_ACCEL_INELIGIBLE;
5119 
5120 	/* proceeding with driver mapping */
5121 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5122 				le16_to_cpu(map->metadata_disks_per_row);
5123 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5124 				le16_to_cpu(map->row_cnt);
5125 	map_index = (map_row * total_disks_per_row) + first_column;
5126 
5127 	switch (dev->raid_level) {
5128 	case HPSA_RAID_0:
5129 		break; /* nothing special to do */
5130 	case HPSA_RAID_1:
5131 		/* Handles load balance across RAID 1 members.
5132 		 * (2-drive R1 and R10 with even # of drives.)
5133 		 * Appropriate for SSDs, not optimal for HDDs
5134 		 */
5135 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5136 		if (dev->offload_to_mirror)
5137 			map_index += le16_to_cpu(map->data_disks_per_row);
5138 		dev->offload_to_mirror = !dev->offload_to_mirror;
5139 		break;
5140 	case HPSA_RAID_ADM:
5141 		/* Handles N-way mirrors  (R1-ADM)
5142 		 * and R10 with # of drives divisible by 3.)
5143 		 */
5144 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5145 
5146 		offload_to_mirror = dev->offload_to_mirror;
5147 		raid_map_helper(map, offload_to_mirror,
5148 				&map_index, &current_group);
5149 		/* set mirror group to use next time */
5150 		offload_to_mirror =
5151 			(offload_to_mirror >=
5152 			le16_to_cpu(map->layout_map_count) - 1)
5153 			? 0 : offload_to_mirror + 1;
5154 		dev->offload_to_mirror = offload_to_mirror;
5155 		/* Avoid direct use of dev->offload_to_mirror within this
5156 		 * function since multiple threads might simultaneously
5157 		 * increment it beyond the range of dev->layout_map_count -1.
5158 		 */
5159 		break;
5160 	case HPSA_RAID_5:
5161 	case HPSA_RAID_6:
5162 		if (le16_to_cpu(map->layout_map_count) <= 1)
5163 			break;
5164 
5165 		/* Verify first and last block are in same RAID group */
5166 		r5or6_blocks_per_row =
5167 			le16_to_cpu(map->strip_size) *
5168 			le16_to_cpu(map->data_disks_per_row);
5169 		BUG_ON(r5or6_blocks_per_row == 0);
5170 		stripesize = r5or6_blocks_per_row *
5171 			le16_to_cpu(map->layout_map_count);
5172 #if BITS_PER_LONG == 32
5173 		tmpdiv = first_block;
5174 		first_group = do_div(tmpdiv, stripesize);
5175 		tmpdiv = first_group;
5176 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5177 		first_group = tmpdiv;
5178 		tmpdiv = last_block;
5179 		last_group = do_div(tmpdiv, stripesize);
5180 		tmpdiv = last_group;
5181 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5182 		last_group = tmpdiv;
5183 #else
5184 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5185 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5186 #endif
5187 		if (first_group != last_group)
5188 			return IO_ACCEL_INELIGIBLE;
5189 
5190 		/* Verify request is in a single row of RAID 5/6 */
5191 #if BITS_PER_LONG == 32
5192 		tmpdiv = first_block;
5193 		(void) do_div(tmpdiv, stripesize);
5194 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5195 		tmpdiv = last_block;
5196 		(void) do_div(tmpdiv, stripesize);
5197 		r5or6_last_row = r0_last_row = tmpdiv;
5198 #else
5199 		first_row = r5or6_first_row = r0_first_row =
5200 						first_block / stripesize;
5201 		r5or6_last_row = r0_last_row = last_block / stripesize;
5202 #endif
5203 		if (r5or6_first_row != r5or6_last_row)
5204 			return IO_ACCEL_INELIGIBLE;
5205 
5206 
5207 		/* Verify request is in a single column */
5208 #if BITS_PER_LONG == 32
5209 		tmpdiv = first_block;
5210 		first_row_offset = do_div(tmpdiv, stripesize);
5211 		tmpdiv = first_row_offset;
5212 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5213 		r5or6_first_row_offset = first_row_offset;
5214 		tmpdiv = last_block;
5215 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5216 		tmpdiv = r5or6_last_row_offset;
5217 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5218 		tmpdiv = r5or6_first_row_offset;
5219 		(void) do_div(tmpdiv, map->strip_size);
5220 		first_column = r5or6_first_column = tmpdiv;
5221 		tmpdiv = r5or6_last_row_offset;
5222 		(void) do_div(tmpdiv, map->strip_size);
5223 		r5or6_last_column = tmpdiv;
5224 #else
5225 		first_row_offset = r5or6_first_row_offset =
5226 			(u32)((first_block % stripesize) %
5227 						r5or6_blocks_per_row);
5228 
5229 		r5or6_last_row_offset =
5230 			(u32)((last_block % stripesize) %
5231 						r5or6_blocks_per_row);
5232 
5233 		first_column = r5or6_first_column =
5234 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5235 		r5or6_last_column =
5236 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5237 #endif
5238 		if (r5or6_first_column != r5or6_last_column)
5239 			return IO_ACCEL_INELIGIBLE;
5240 
5241 		/* Request is eligible */
5242 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5243 			le16_to_cpu(map->row_cnt);
5244 
5245 		map_index = (first_group *
5246 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5247 			(map_row * total_disks_per_row) + first_column;
5248 		break;
5249 	default:
5250 		return IO_ACCEL_INELIGIBLE;
5251 	}
5252 
5253 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5254 		return IO_ACCEL_INELIGIBLE;
5255 
5256 	c->phys_disk = dev->phys_disk[map_index];
5257 	if (!c->phys_disk)
5258 		return IO_ACCEL_INELIGIBLE;
5259 
5260 	disk_handle = dd[map_index].ioaccel_handle;
5261 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5262 			first_row * le16_to_cpu(map->strip_size) +
5263 			(first_row_offset - first_column *
5264 			le16_to_cpu(map->strip_size));
5265 	disk_block_cnt = block_cnt;
5266 
5267 	/* handle differing logical/physical block sizes */
5268 	if (map->phys_blk_shift) {
5269 		disk_block <<= map->phys_blk_shift;
5270 		disk_block_cnt <<= map->phys_blk_shift;
5271 	}
5272 	BUG_ON(disk_block_cnt > 0xffff);
5273 
5274 	/* build the new CDB for the physical disk I/O */
5275 	if (disk_block > 0xffffffff) {
5276 		cdb[0] = is_write ? WRITE_16 : READ_16;
5277 		cdb[1] = 0;
5278 		cdb[2] = (u8) (disk_block >> 56);
5279 		cdb[3] = (u8) (disk_block >> 48);
5280 		cdb[4] = (u8) (disk_block >> 40);
5281 		cdb[5] = (u8) (disk_block >> 32);
5282 		cdb[6] = (u8) (disk_block >> 24);
5283 		cdb[7] = (u8) (disk_block >> 16);
5284 		cdb[8] = (u8) (disk_block >> 8);
5285 		cdb[9] = (u8) (disk_block);
5286 		cdb[10] = (u8) (disk_block_cnt >> 24);
5287 		cdb[11] = (u8) (disk_block_cnt >> 16);
5288 		cdb[12] = (u8) (disk_block_cnt >> 8);
5289 		cdb[13] = (u8) (disk_block_cnt);
5290 		cdb[14] = 0;
5291 		cdb[15] = 0;
5292 		cdb_len = 16;
5293 	} else {
5294 		cdb[0] = is_write ? WRITE_10 : READ_10;
5295 		cdb[1] = 0;
5296 		cdb[2] = (u8) (disk_block >> 24);
5297 		cdb[3] = (u8) (disk_block >> 16);
5298 		cdb[4] = (u8) (disk_block >> 8);
5299 		cdb[5] = (u8) (disk_block);
5300 		cdb[6] = 0;
5301 		cdb[7] = (u8) (disk_block_cnt >> 8);
5302 		cdb[8] = (u8) (disk_block_cnt);
5303 		cdb[9] = 0;
5304 		cdb_len = 10;
5305 	}
5306 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5307 						dev->scsi3addr,
5308 						dev->phys_disk[map_index]);
5309 }
5310 
5311 /*
5312  * Submit commands down the "normal" RAID stack path
5313  * All callers to hpsa_ciss_submit must check lockup_detected
5314  * beforehand, before (opt.) and after calling cmd_alloc
5315  */
5316 static int hpsa_ciss_submit(struct ctlr_info *h,
5317 	struct CommandList *c, struct scsi_cmnd *cmd,
5318 	unsigned char scsi3addr[])
5319 {
5320 	cmd->host_scribble = (unsigned char *) c;
5321 	c->cmd_type = CMD_SCSI;
5322 	c->scsi_cmd = cmd;
5323 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5324 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5325 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5326 
5327 	/* Fill in the request block... */
5328 
5329 	c->Request.Timeout = 0;
5330 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5331 	c->Request.CDBLen = cmd->cmd_len;
5332 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5333 	switch (cmd->sc_data_direction) {
5334 	case DMA_TO_DEVICE:
5335 		c->Request.type_attr_dir =
5336 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5337 		break;
5338 	case DMA_FROM_DEVICE:
5339 		c->Request.type_attr_dir =
5340 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5341 		break;
5342 	case DMA_NONE:
5343 		c->Request.type_attr_dir =
5344 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5345 		break;
5346 	case DMA_BIDIRECTIONAL:
5347 		/* This can happen if a buggy application does a scsi passthru
5348 		 * and sets both inlen and outlen to non-zero. ( see
5349 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5350 		 */
5351 
5352 		c->Request.type_attr_dir =
5353 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5354 		/* This is technically wrong, and hpsa controllers should
5355 		 * reject it with CMD_INVALID, which is the most correct
5356 		 * response, but non-fibre backends appear to let it
5357 		 * slide by, and give the same results as if this field
5358 		 * were set correctly.  Either way is acceptable for
5359 		 * our purposes here.
5360 		 */
5361 
5362 		break;
5363 
5364 	default:
5365 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5366 			cmd->sc_data_direction);
5367 		BUG();
5368 		break;
5369 	}
5370 
5371 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5372 		hpsa_cmd_resolve_and_free(h, c);
5373 		return SCSI_MLQUEUE_HOST_BUSY;
5374 	}
5375 	enqueue_cmd_and_start_io(h, c);
5376 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5377 	return 0;
5378 }
5379 
5380 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5381 				struct CommandList *c)
5382 {
5383 	dma_addr_t cmd_dma_handle, err_dma_handle;
5384 
5385 	/* Zero out all of commandlist except the last field, refcount */
5386 	memset(c, 0, offsetof(struct CommandList, refcount));
5387 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5388 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5389 	c->err_info = h->errinfo_pool + index;
5390 	memset(c->err_info, 0, sizeof(*c->err_info));
5391 	err_dma_handle = h->errinfo_pool_dhandle
5392 	    + index * sizeof(*c->err_info);
5393 	c->cmdindex = index;
5394 	c->busaddr = (u32) cmd_dma_handle;
5395 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5396 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5397 	c->h = h;
5398 	c->scsi_cmd = SCSI_CMD_IDLE;
5399 }
5400 
5401 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5402 {
5403 	int i;
5404 
5405 	for (i = 0; i < h->nr_cmds; i++) {
5406 		struct CommandList *c = h->cmd_pool + i;
5407 
5408 		hpsa_cmd_init(h, i, c);
5409 		atomic_set(&c->refcount, 0);
5410 	}
5411 }
5412 
5413 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5414 				struct CommandList *c)
5415 {
5416 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5417 
5418 	BUG_ON(c->cmdindex != index);
5419 
5420 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5421 	memset(c->err_info, 0, sizeof(*c->err_info));
5422 	c->busaddr = (u32) cmd_dma_handle;
5423 }
5424 
5425 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5426 		struct CommandList *c, struct scsi_cmnd *cmd,
5427 		unsigned char *scsi3addr)
5428 {
5429 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5430 	int rc = IO_ACCEL_INELIGIBLE;
5431 
5432 	if (!dev)
5433 		return SCSI_MLQUEUE_HOST_BUSY;
5434 
5435 	cmd->host_scribble = (unsigned char *) c;
5436 
5437 	if (dev->offload_enabled) {
5438 		hpsa_cmd_init(h, c->cmdindex, c);
5439 		c->cmd_type = CMD_SCSI;
5440 		c->scsi_cmd = cmd;
5441 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5442 		if (rc < 0)     /* scsi_dma_map failed. */
5443 			rc = SCSI_MLQUEUE_HOST_BUSY;
5444 	} else if (dev->hba_ioaccel_enabled) {
5445 		hpsa_cmd_init(h, c->cmdindex, c);
5446 		c->cmd_type = CMD_SCSI;
5447 		c->scsi_cmd = cmd;
5448 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5449 		if (rc < 0)     /* scsi_dma_map failed. */
5450 			rc = SCSI_MLQUEUE_HOST_BUSY;
5451 	}
5452 	return rc;
5453 }
5454 
5455 static void hpsa_command_resubmit_worker(struct work_struct *work)
5456 {
5457 	struct scsi_cmnd *cmd;
5458 	struct hpsa_scsi_dev_t *dev;
5459 	struct CommandList *c = container_of(work, struct CommandList, work);
5460 
5461 	cmd = c->scsi_cmd;
5462 	dev = cmd->device->hostdata;
5463 	if (!dev) {
5464 		cmd->result = DID_NO_CONNECT << 16;
5465 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5466 	}
5467 	if (c->reset_pending)
5468 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5469 	if (c->abort_pending)
5470 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5471 	if (c->cmd_type == CMD_IOACCEL2) {
5472 		struct ctlr_info *h = c->h;
5473 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5474 		int rc;
5475 
5476 		if (c2->error_data.serv_response ==
5477 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5478 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5479 			if (rc == 0)
5480 				return;
5481 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5482 				/*
5483 				 * If we get here, it means dma mapping failed.
5484 				 * Try again via scsi mid layer, which will
5485 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5486 				 */
5487 				cmd->result = DID_IMM_RETRY << 16;
5488 				return hpsa_cmd_free_and_done(h, c, cmd);
5489 			}
5490 			/* else, fall thru and resubmit down CISS path */
5491 		}
5492 	}
5493 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5494 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5495 		/*
5496 		 * If we get here, it means dma mapping failed. Try
5497 		 * again via scsi mid layer, which will then get
5498 		 * SCSI_MLQUEUE_HOST_BUSY.
5499 		 *
5500 		 * hpsa_ciss_submit will have already freed c
5501 		 * if it encountered a dma mapping failure.
5502 		 */
5503 		cmd->result = DID_IMM_RETRY << 16;
5504 		cmd->scsi_done(cmd);
5505 	}
5506 }
5507 
5508 /* Running in struct Scsi_Host->host_lock less mode */
5509 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5510 {
5511 	struct ctlr_info *h;
5512 	struct hpsa_scsi_dev_t *dev;
5513 	unsigned char scsi3addr[8];
5514 	struct CommandList *c;
5515 	int rc = 0;
5516 
5517 	/* Get the ptr to our adapter structure out of cmd->host. */
5518 	h = sdev_to_hba(cmd->device);
5519 
5520 	BUG_ON(cmd->request->tag < 0);
5521 
5522 	dev = cmd->device->hostdata;
5523 	if (!dev) {
5524 		cmd->result = DID_NO_CONNECT << 16;
5525 		cmd->scsi_done(cmd);
5526 		return 0;
5527 	}
5528 
5529 	if (dev->removed) {
5530 		cmd->result = DID_NO_CONNECT << 16;
5531 		cmd->scsi_done(cmd);
5532 		return 0;
5533 	}
5534 
5535 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5536 
5537 	if (unlikely(lockup_detected(h))) {
5538 		cmd->result = DID_NO_CONNECT << 16;
5539 		cmd->scsi_done(cmd);
5540 		return 0;
5541 	}
5542 	c = cmd_tagged_alloc(h, cmd);
5543 
5544 	/*
5545 	 * Call alternate submit routine for I/O accelerated commands.
5546 	 * Retries always go down the normal I/O path.
5547 	 */
5548 	if (likely(cmd->retries == 0 &&
5549 			!blk_rq_is_passthrough(cmd->request) &&
5550 			h->acciopath_status)) {
5551 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5552 		if (rc == 0)
5553 			return 0;
5554 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5555 			hpsa_cmd_resolve_and_free(h, c);
5556 			return SCSI_MLQUEUE_HOST_BUSY;
5557 		}
5558 	}
5559 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5560 }
5561 
5562 static void hpsa_scan_complete(struct ctlr_info *h)
5563 {
5564 	unsigned long flags;
5565 
5566 	spin_lock_irqsave(&h->scan_lock, flags);
5567 	h->scan_finished = 1;
5568 	wake_up(&h->scan_wait_queue);
5569 	spin_unlock_irqrestore(&h->scan_lock, flags);
5570 }
5571 
5572 static void hpsa_scan_start(struct Scsi_Host *sh)
5573 {
5574 	struct ctlr_info *h = shost_to_hba(sh);
5575 	unsigned long flags;
5576 
5577 	/*
5578 	 * Don't let rescans be initiated on a controller known to be locked
5579 	 * up.  If the controller locks up *during* a rescan, that thread is
5580 	 * probably hosed, but at least we can prevent new rescan threads from
5581 	 * piling up on a locked up controller.
5582 	 */
5583 	if (unlikely(lockup_detected(h)))
5584 		return hpsa_scan_complete(h);
5585 
5586 	/*
5587 	 * If a scan is already waiting to run, no need to add another
5588 	 */
5589 	spin_lock_irqsave(&h->scan_lock, flags);
5590 	if (h->scan_waiting) {
5591 		spin_unlock_irqrestore(&h->scan_lock, flags);
5592 		return;
5593 	}
5594 
5595 	spin_unlock_irqrestore(&h->scan_lock, flags);
5596 
5597 	/* wait until any scan already in progress is finished. */
5598 	while (1) {
5599 		spin_lock_irqsave(&h->scan_lock, flags);
5600 		if (h->scan_finished)
5601 			break;
5602 		h->scan_waiting = 1;
5603 		spin_unlock_irqrestore(&h->scan_lock, flags);
5604 		wait_event(h->scan_wait_queue, h->scan_finished);
5605 		/* Note: We don't need to worry about a race between this
5606 		 * thread and driver unload because the midlayer will
5607 		 * have incremented the reference count, so unload won't
5608 		 * happen if we're in here.
5609 		 */
5610 	}
5611 	h->scan_finished = 0; /* mark scan as in progress */
5612 	h->scan_waiting = 0;
5613 	spin_unlock_irqrestore(&h->scan_lock, flags);
5614 
5615 	if (unlikely(lockup_detected(h)))
5616 		return hpsa_scan_complete(h);
5617 
5618 	/*
5619 	 * Do the scan after a reset completion
5620 	 */
5621 	if (h->reset_in_progress) {
5622 		h->drv_req_rescan = 1;
5623 		hpsa_scan_complete(h);
5624 		return;
5625 	}
5626 
5627 	hpsa_update_scsi_devices(h);
5628 
5629 	hpsa_scan_complete(h);
5630 }
5631 
5632 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5633 {
5634 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5635 
5636 	if (!logical_drive)
5637 		return -ENODEV;
5638 
5639 	if (qdepth < 1)
5640 		qdepth = 1;
5641 	else if (qdepth > logical_drive->queue_depth)
5642 		qdepth = logical_drive->queue_depth;
5643 
5644 	return scsi_change_queue_depth(sdev, qdepth);
5645 }
5646 
5647 static int hpsa_scan_finished(struct Scsi_Host *sh,
5648 	unsigned long elapsed_time)
5649 {
5650 	struct ctlr_info *h = shost_to_hba(sh);
5651 	unsigned long flags;
5652 	int finished;
5653 
5654 	spin_lock_irqsave(&h->scan_lock, flags);
5655 	finished = h->scan_finished;
5656 	spin_unlock_irqrestore(&h->scan_lock, flags);
5657 	return finished;
5658 }
5659 
5660 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5661 {
5662 	struct Scsi_Host *sh;
5663 
5664 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5665 	if (sh == NULL) {
5666 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5667 		return -ENOMEM;
5668 	}
5669 
5670 	sh->io_port = 0;
5671 	sh->n_io_port = 0;
5672 	sh->this_id = -1;
5673 	sh->max_channel = 3;
5674 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5675 	sh->max_lun = HPSA_MAX_LUN;
5676 	sh->max_id = HPSA_MAX_LUN;
5677 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5678 	sh->cmd_per_lun = sh->can_queue;
5679 	sh->sg_tablesize = h->maxsgentries;
5680 	sh->transportt = hpsa_sas_transport_template;
5681 	sh->hostdata[0] = (unsigned long) h;
5682 	sh->irq = pci_irq_vector(h->pdev, 0);
5683 	sh->unique_id = sh->irq;
5684 
5685 	h->scsi_host = sh;
5686 	return 0;
5687 }
5688 
5689 static int hpsa_scsi_add_host(struct ctlr_info *h)
5690 {
5691 	int rv;
5692 
5693 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5694 	if (rv) {
5695 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5696 		return rv;
5697 	}
5698 	scsi_scan_host(h->scsi_host);
5699 	return 0;
5700 }
5701 
5702 /*
5703  * The block layer has already gone to the trouble of picking out a unique,
5704  * small-integer tag for this request.  We use an offset from that value as
5705  * an index to select our command block.  (The offset allows us to reserve the
5706  * low-numbered entries for our own uses.)
5707  */
5708 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5709 {
5710 	int idx = scmd->request->tag;
5711 
5712 	if (idx < 0)
5713 		return idx;
5714 
5715 	/* Offset to leave space for internal cmds. */
5716 	return idx += HPSA_NRESERVED_CMDS;
5717 }
5718 
5719 /*
5720  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5721  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5722  */
5723 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5724 				struct CommandList *c, unsigned char lunaddr[],
5725 				int reply_queue)
5726 {
5727 	int rc;
5728 
5729 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5730 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5731 			NULL, 0, 0, lunaddr, TYPE_CMD);
5732 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5733 	if (rc)
5734 		return rc;
5735 	/* no unmap needed here because no data xfer. */
5736 
5737 	/* Check if the unit is already ready. */
5738 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5739 		return 0;
5740 
5741 	/*
5742 	 * The first command sent after reset will receive "unit attention" to
5743 	 * indicate that the LUN has been reset...this is actually what we're
5744 	 * looking for (but, success is good too).
5745 	 */
5746 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5747 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5748 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5749 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5750 		return 0;
5751 
5752 	return 1;
5753 }
5754 
5755 /*
5756  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5757  * returns zero when the unit is ready, and non-zero when giving up.
5758  */
5759 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5760 				struct CommandList *c,
5761 				unsigned char lunaddr[], int reply_queue)
5762 {
5763 	int rc;
5764 	int count = 0;
5765 	int waittime = 1; /* seconds */
5766 
5767 	/* Send test unit ready until device ready, or give up. */
5768 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5769 
5770 		/*
5771 		 * Wait for a bit.  do this first, because if we send
5772 		 * the TUR right away, the reset will just abort it.
5773 		 */
5774 		msleep(1000 * waittime);
5775 
5776 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5777 		if (!rc)
5778 			break;
5779 
5780 		/* Increase wait time with each try, up to a point. */
5781 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5782 			waittime *= 2;
5783 
5784 		dev_warn(&h->pdev->dev,
5785 			 "waiting %d secs for device to become ready.\n",
5786 			 waittime);
5787 	}
5788 
5789 	return rc;
5790 }
5791 
5792 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5793 					   unsigned char lunaddr[],
5794 					   int reply_queue)
5795 {
5796 	int first_queue;
5797 	int last_queue;
5798 	int rq;
5799 	int rc = 0;
5800 	struct CommandList *c;
5801 
5802 	c = cmd_alloc(h);
5803 
5804 	/*
5805 	 * If no specific reply queue was requested, then send the TUR
5806 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5807 	 * the loop exactly once using only the specified queue.
5808 	 */
5809 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5810 		first_queue = 0;
5811 		last_queue = h->nreply_queues - 1;
5812 	} else {
5813 		first_queue = reply_queue;
5814 		last_queue = reply_queue;
5815 	}
5816 
5817 	for (rq = first_queue; rq <= last_queue; rq++) {
5818 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5819 		if (rc)
5820 			break;
5821 	}
5822 
5823 	if (rc)
5824 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5825 	else
5826 		dev_warn(&h->pdev->dev, "device is ready.\n");
5827 
5828 	cmd_free(h, c);
5829 	return rc;
5830 }
5831 
5832 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5833  * complaining.  Doing a host- or bus-reset can't do anything good here.
5834  */
5835 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5836 {
5837 	int rc;
5838 	struct ctlr_info *h;
5839 	struct hpsa_scsi_dev_t *dev;
5840 	u8 reset_type;
5841 	char msg[48];
5842 
5843 	/* find the controller to which the command to be aborted was sent */
5844 	h = sdev_to_hba(scsicmd->device);
5845 	if (h == NULL) /* paranoia */
5846 		return FAILED;
5847 
5848 	if (lockup_detected(h))
5849 		return FAILED;
5850 
5851 	dev = scsicmd->device->hostdata;
5852 	if (!dev) {
5853 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5854 		return FAILED;
5855 	}
5856 
5857 	if (dev->devtype == TYPE_ENCLOSURE)
5858 		return SUCCESS;
5859 
5860 	/* if controller locked up, we can guarantee command won't complete */
5861 	if (lockup_detected(h)) {
5862 		snprintf(msg, sizeof(msg),
5863 			 "cmd %d RESET FAILED, lockup detected",
5864 			 hpsa_get_cmd_index(scsicmd));
5865 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5866 		return FAILED;
5867 	}
5868 
5869 	/* this reset request might be the result of a lockup; check */
5870 	if (detect_controller_lockup(h)) {
5871 		snprintf(msg, sizeof(msg),
5872 			 "cmd %d RESET FAILED, new lockup detected",
5873 			 hpsa_get_cmd_index(scsicmd));
5874 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5875 		return FAILED;
5876 	}
5877 
5878 	/* Do not attempt on controller */
5879 	if (is_hba_lunid(dev->scsi3addr))
5880 		return SUCCESS;
5881 
5882 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5883 		reset_type = HPSA_DEVICE_RESET_MSG;
5884 	else
5885 		reset_type = HPSA_PHYS_TARGET_RESET;
5886 
5887 	sprintf(msg, "resetting %s",
5888 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5889 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5890 
5891 	h->reset_in_progress = 1;
5892 
5893 	/* send a reset to the SCSI LUN which the command was sent to */
5894 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5895 			   DEFAULT_REPLY_QUEUE);
5896 	sprintf(msg, "reset %s %s",
5897 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5898 		rc == 0 ? "completed successfully" : "failed");
5899 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5900 	h->reset_in_progress = 0;
5901 	return rc == 0 ? SUCCESS : FAILED;
5902 }
5903 
5904 static void swizzle_abort_tag(u8 *tag)
5905 {
5906 	u8 original_tag[8];
5907 
5908 	memcpy(original_tag, tag, 8);
5909 	tag[0] = original_tag[3];
5910 	tag[1] = original_tag[2];
5911 	tag[2] = original_tag[1];
5912 	tag[3] = original_tag[0];
5913 	tag[4] = original_tag[7];
5914 	tag[5] = original_tag[6];
5915 	tag[6] = original_tag[5];
5916 	tag[7] = original_tag[4];
5917 }
5918 
5919 static void hpsa_get_tag(struct ctlr_info *h,
5920 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5921 {
5922 	u64 tag;
5923 	if (c->cmd_type == CMD_IOACCEL1) {
5924 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5925 			&h->ioaccel_cmd_pool[c->cmdindex];
5926 		tag = le64_to_cpu(cm1->tag);
5927 		*tagupper = cpu_to_le32(tag >> 32);
5928 		*taglower = cpu_to_le32(tag);
5929 		return;
5930 	}
5931 	if (c->cmd_type == CMD_IOACCEL2) {
5932 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5933 			&h->ioaccel2_cmd_pool[c->cmdindex];
5934 		/* upper tag not used in ioaccel2 mode */
5935 		memset(tagupper, 0, sizeof(*tagupper));
5936 		*taglower = cm2->Tag;
5937 		return;
5938 	}
5939 	tag = le64_to_cpu(c->Header.tag);
5940 	*tagupper = cpu_to_le32(tag >> 32);
5941 	*taglower = cpu_to_le32(tag);
5942 }
5943 
5944 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5945 	struct CommandList *abort, int reply_queue)
5946 {
5947 	int rc = IO_OK;
5948 	struct CommandList *c;
5949 	struct ErrorInfo *ei;
5950 	__le32 tagupper, taglower;
5951 
5952 	c = cmd_alloc(h);
5953 
5954 	/* fill_cmd can't fail here, no buffer to map */
5955 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5956 		0, 0, scsi3addr, TYPE_MSG);
5957 	if (h->needs_abort_tags_swizzled)
5958 		swizzle_abort_tag(&c->Request.CDB[4]);
5959 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5960 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5961 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5962 		__func__, tagupper, taglower);
5963 	/* no unmap needed here because no data xfer. */
5964 
5965 	ei = c->err_info;
5966 	switch (ei->CommandStatus) {
5967 	case CMD_SUCCESS:
5968 		break;
5969 	case CMD_TMF_STATUS:
5970 		rc = hpsa_evaluate_tmf_status(h, c);
5971 		break;
5972 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5973 		rc = -1;
5974 		break;
5975 	default:
5976 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5977 			__func__, tagupper, taglower);
5978 		hpsa_scsi_interpret_error(h, c);
5979 		rc = -1;
5980 		break;
5981 	}
5982 	cmd_free(h, c);
5983 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5984 		__func__, tagupper, taglower);
5985 	return rc;
5986 }
5987 
5988 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5989 	struct CommandList *command_to_abort, int reply_queue)
5990 {
5991 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5992 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5993 	struct io_accel2_cmd *c2a =
5994 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5995 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5996 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5997 
5998 	if (!dev)
5999 		return;
6000 
6001 	/*
6002 	 * We're overlaying struct hpsa_tmf_struct on top of something which
6003 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
6004 	 * actually fits, and doesn't overrun the error info space.
6005 	 */
6006 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
6007 			sizeof(struct io_accel2_cmd));
6008 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6009 			offsetof(struct hpsa_tmf_struct, error_len) +
6010 				sizeof(ac->error_len));
6011 
6012 	c->cmd_type = IOACCEL2_TMF;
6013 	c->scsi_cmd = SCSI_CMD_BUSY;
6014 
6015 	/* Adjust the DMA address to point to the accelerated command buffer */
6016 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6017 				(c->cmdindex * sizeof(struct io_accel2_cmd));
6018 	BUG_ON(c->busaddr & 0x0000007F);
6019 
6020 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6021 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6022 	ac->reply_queue = reply_queue;
6023 	ac->tmf = IOACCEL2_TMF_ABORT;
6024 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6025 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
6026 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6027 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6028 	ac->error_ptr = cpu_to_le64(c->busaddr +
6029 			offsetof(struct io_accel2_cmd, error_data));
6030 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6031 }
6032 
6033 /* ioaccel2 path firmware cannot handle abort task requests.
6034  * Change abort requests to physical target reset, and send to the
6035  * address of the physical disk used for the ioaccel 2 command.
6036  * Return 0 on success (IO_OK)
6037  *	 -1 on failure
6038  */
6039 
6040 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6041 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6042 {
6043 	int rc = IO_OK;
6044 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6045 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6046 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6047 	unsigned char *psa = &phys_scsi3addr[0];
6048 
6049 	/* Get a pointer to the hpsa logical device. */
6050 	scmd = abort->scsi_cmd;
6051 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6052 	if (dev == NULL) {
6053 		dev_warn(&h->pdev->dev,
6054 			"Cannot abort: no device pointer for command.\n");
6055 			return -1; /* not abortable */
6056 	}
6057 
6058 	if (h->raid_offload_debug > 0)
6059 		dev_info(&h->pdev->dev,
6060 			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6061 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6062 			"Reset as abort", scsi3addr);
6063 
6064 	if (!dev->offload_enabled) {
6065 		dev_warn(&h->pdev->dev,
6066 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6067 		return -1; /* not abortable */
6068 	}
6069 
6070 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6071 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6072 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6073 		return -1; /* not abortable */
6074 	}
6075 
6076 	/* send the reset */
6077 	if (h->raid_offload_debug > 0)
6078 		dev_info(&h->pdev->dev,
6079 			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6080 			psa);
6081 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6082 	if (rc != 0) {
6083 		dev_warn(&h->pdev->dev,
6084 			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6085 			psa);
6086 		return rc; /* failed to reset */
6087 	}
6088 
6089 	/* wait for device to recover */
6090 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6091 		dev_warn(&h->pdev->dev,
6092 			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6093 			psa);
6094 		return -1;  /* failed to recover */
6095 	}
6096 
6097 	/* device recovered */
6098 	dev_info(&h->pdev->dev,
6099 		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6100 		psa);
6101 
6102 	return rc; /* success */
6103 }
6104 
6105 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6106 	struct CommandList *abort, int reply_queue)
6107 {
6108 	int rc = IO_OK;
6109 	struct CommandList *c;
6110 	__le32 taglower, tagupper;
6111 	struct hpsa_scsi_dev_t *dev;
6112 	struct io_accel2_cmd *c2;
6113 
6114 	dev = abort->scsi_cmd->device->hostdata;
6115 	if (!dev)
6116 		return -1;
6117 
6118 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6119 		return -1;
6120 
6121 	c = cmd_alloc(h);
6122 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6123 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6124 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6125 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6126 	dev_dbg(&h->pdev->dev,
6127 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6128 		__func__, tagupper, taglower);
6129 	/* no unmap needed here because no data xfer. */
6130 
6131 	dev_dbg(&h->pdev->dev,
6132 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6133 		__func__, tagupper, taglower, c2->error_data.serv_response);
6134 	switch (c2->error_data.serv_response) {
6135 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6136 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6137 		rc = 0;
6138 		break;
6139 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6140 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6141 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6142 		rc = -1;
6143 		break;
6144 	default:
6145 		dev_warn(&h->pdev->dev,
6146 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6147 			__func__, tagupper, taglower,
6148 			c2->error_data.serv_response);
6149 		rc = -1;
6150 	}
6151 	cmd_free(h, c);
6152 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6153 		tagupper, taglower);
6154 	return rc;
6155 }
6156 
6157 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6158 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6159 {
6160 	/*
6161 	 * ioccelerator mode 2 commands should be aborted via the
6162 	 * accelerated path, since RAID path is unaware of these commands,
6163 	 * but not all underlying firmware can handle abort TMF.
6164 	 * Change abort to physical device reset when abort TMF is unsupported.
6165 	 */
6166 	if (abort->cmd_type == CMD_IOACCEL2) {
6167 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6168 			dev->physical_device)
6169 			return hpsa_send_abort_ioaccel2(h, abort,
6170 						reply_queue);
6171 		else
6172 			return hpsa_send_reset_as_abort_ioaccel2(h,
6173 							dev->scsi3addr,
6174 							abort, reply_queue);
6175 	}
6176 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6177 }
6178 
6179 /* Find out which reply queue a command was meant to return on */
6180 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6181 					struct CommandList *c)
6182 {
6183 	if (c->cmd_type == CMD_IOACCEL2)
6184 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6185 	return c->Header.ReplyQueue;
6186 }
6187 
6188 /*
6189  * Limit concurrency of abort commands to prevent
6190  * over-subscription of commands
6191  */
6192 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6193 {
6194 #define ABORT_CMD_WAIT_MSECS 5000
6195 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6196 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6197 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6198 }
6199 
6200 /* Send an abort for the specified command.
6201  *	If the device and controller support it,
6202  *		send a task abort request.
6203  */
6204 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6205 {
6206 
6207 	int rc;
6208 	struct ctlr_info *h;
6209 	struct hpsa_scsi_dev_t *dev;
6210 	struct CommandList *abort; /* pointer to command to be aborted */
6211 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6212 	char msg[256];		/* For debug messaging. */
6213 	int ml = 0;
6214 	__le32 tagupper, taglower;
6215 	int refcount, reply_queue;
6216 
6217 	if (sc == NULL)
6218 		return FAILED;
6219 
6220 	if (sc->device == NULL)
6221 		return FAILED;
6222 
6223 	/* Find the controller of the command to be aborted */
6224 	h = sdev_to_hba(sc->device);
6225 	if (h == NULL)
6226 		return FAILED;
6227 
6228 	/* Find the device of the command to be aborted */
6229 	dev = sc->device->hostdata;
6230 	if (!dev) {
6231 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6232 				msg);
6233 		return FAILED;
6234 	}
6235 
6236 	/* If controller locked up, we can guarantee command won't complete */
6237 	if (lockup_detected(h)) {
6238 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6239 					"ABORT FAILED, lockup detected");
6240 		return FAILED;
6241 	}
6242 
6243 	/* This is a good time to check if controller lockup has occurred */
6244 	if (detect_controller_lockup(h)) {
6245 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6246 					"ABORT FAILED, new lockup detected");
6247 		return FAILED;
6248 	}
6249 
6250 	/* Check that controller supports some kind of task abort */
6251 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6252 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6253 		return FAILED;
6254 
6255 	memset(msg, 0, sizeof(msg));
6256 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6257 		h->scsi_host->host_no, sc->device->channel,
6258 		sc->device->id, sc->device->lun,
6259 		"Aborting command", sc);
6260 
6261 	/* Get SCSI command to be aborted */
6262 	abort = (struct CommandList *) sc->host_scribble;
6263 	if (abort == NULL) {
6264 		/* This can happen if the command already completed. */
6265 		return SUCCESS;
6266 	}
6267 	refcount = atomic_inc_return(&abort->refcount);
6268 	if (refcount == 1) { /* Command is done already. */
6269 		cmd_free(h, abort);
6270 		return SUCCESS;
6271 	}
6272 
6273 	/* Don't bother trying the abort if we know it won't work. */
6274 	if (abort->cmd_type != CMD_IOACCEL2 &&
6275 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6276 		cmd_free(h, abort);
6277 		return FAILED;
6278 	}
6279 
6280 	/*
6281 	 * Check that we're aborting the right command.
6282 	 * It's possible the CommandList already completed and got re-used.
6283 	 */
6284 	if (abort->scsi_cmd != sc) {
6285 		cmd_free(h, abort);
6286 		return SUCCESS;
6287 	}
6288 
6289 	abort->abort_pending = true;
6290 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6291 	reply_queue = hpsa_extract_reply_queue(h, abort);
6292 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6293 	as  = abort->scsi_cmd;
6294 	if (as != NULL)
6295 		ml += sprintf(msg+ml,
6296 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6297 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6298 			as->serial_number);
6299 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6300 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6301 
6302 	/*
6303 	 * Command is in flight, or possibly already completed
6304 	 * by the firmware (but not to the scsi mid layer) but we can't
6305 	 * distinguish which.  Send the abort down.
6306 	 */
6307 	if (wait_for_available_abort_cmd(h)) {
6308 		dev_warn(&h->pdev->dev,
6309 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6310 			msg);
6311 		cmd_free(h, abort);
6312 		return FAILED;
6313 	}
6314 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6315 	atomic_inc(&h->abort_cmds_available);
6316 	wake_up_all(&h->abort_cmd_wait_queue);
6317 	if (rc != 0) {
6318 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6319 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6320 				"FAILED to abort command");
6321 		cmd_free(h, abort);
6322 		return FAILED;
6323 	}
6324 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6325 	wait_event(h->event_sync_wait_queue,
6326 		   abort->scsi_cmd != sc || lockup_detected(h));
6327 	cmd_free(h, abort);
6328 	return !lockup_detected(h) ? SUCCESS : FAILED;
6329 }
6330 
6331 /*
6332  * For operations with an associated SCSI command, a command block is allocated
6333  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6334  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6335  * the complement, although cmd_free() may be called instead.
6336  */
6337 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6338 					    struct scsi_cmnd *scmd)
6339 {
6340 	int idx = hpsa_get_cmd_index(scmd);
6341 	struct CommandList *c = h->cmd_pool + idx;
6342 
6343 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6344 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6345 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6346 		/* The index value comes from the block layer, so if it's out of
6347 		 * bounds, it's probably not our bug.
6348 		 */
6349 		BUG();
6350 	}
6351 
6352 	atomic_inc(&c->refcount);
6353 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6354 		/*
6355 		 * We expect that the SCSI layer will hand us a unique tag
6356 		 * value.  Thus, there should never be a collision here between
6357 		 * two requests...because if the selected command isn't idle
6358 		 * then someone is going to be very disappointed.
6359 		 */
6360 		dev_err(&h->pdev->dev,
6361 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6362 			idx);
6363 		if (c->scsi_cmd != NULL)
6364 			scsi_print_command(c->scsi_cmd);
6365 		scsi_print_command(scmd);
6366 	}
6367 
6368 	hpsa_cmd_partial_init(h, idx, c);
6369 	return c;
6370 }
6371 
6372 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6373 {
6374 	/*
6375 	 * Release our reference to the block.  We don't need to do anything
6376 	 * else to free it, because it is accessed by index.  (There's no point
6377 	 * in checking the result of the decrement, since we cannot guarantee
6378 	 * that there isn't a concurrent abort which is also accessing it.)
6379 	 */
6380 	(void)atomic_dec(&c->refcount);
6381 }
6382 
6383 /*
6384  * For operations that cannot sleep, a command block is allocated at init,
6385  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6386  * which ones are free or in use.  Lock must be held when calling this.
6387  * cmd_free() is the complement.
6388  * This function never gives up and returns NULL.  If it hangs,
6389  * another thread must call cmd_free() to free some tags.
6390  */
6391 
6392 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6393 {
6394 	struct CommandList *c;
6395 	int refcount, i;
6396 	int offset = 0;
6397 
6398 	/*
6399 	 * There is some *extremely* small but non-zero chance that that
6400 	 * multiple threads could get in here, and one thread could
6401 	 * be scanning through the list of bits looking for a free
6402 	 * one, but the free ones are always behind him, and other
6403 	 * threads sneak in behind him and eat them before he can
6404 	 * get to them, so that while there is always a free one, a
6405 	 * very unlucky thread might be starved anyway, never able to
6406 	 * beat the other threads.  In reality, this happens so
6407 	 * infrequently as to be indistinguishable from never.
6408 	 *
6409 	 * Note that we start allocating commands before the SCSI host structure
6410 	 * is initialized.  Since the search starts at bit zero, this
6411 	 * all works, since we have at least one command structure available;
6412 	 * however, it means that the structures with the low indexes have to be
6413 	 * reserved for driver-initiated requests, while requests from the block
6414 	 * layer will use the higher indexes.
6415 	 */
6416 
6417 	for (;;) {
6418 		i = find_next_zero_bit(h->cmd_pool_bits,
6419 					HPSA_NRESERVED_CMDS,
6420 					offset);
6421 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6422 			offset = 0;
6423 			continue;
6424 		}
6425 		c = h->cmd_pool + i;
6426 		refcount = atomic_inc_return(&c->refcount);
6427 		if (unlikely(refcount > 1)) {
6428 			cmd_free(h, c); /* already in use */
6429 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6430 			continue;
6431 		}
6432 		set_bit(i & (BITS_PER_LONG - 1),
6433 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6434 		break; /* it's ours now. */
6435 	}
6436 	hpsa_cmd_partial_init(h, i, c);
6437 	return c;
6438 }
6439 
6440 /*
6441  * This is the complementary operation to cmd_alloc().  Note, however, in some
6442  * corner cases it may also be used to free blocks allocated by
6443  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6444  * the clear-bit is harmless.
6445  */
6446 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6447 {
6448 	if (atomic_dec_and_test(&c->refcount)) {
6449 		int i;
6450 
6451 		i = c - h->cmd_pool;
6452 		clear_bit(i & (BITS_PER_LONG - 1),
6453 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6454 	}
6455 }
6456 
6457 #ifdef CONFIG_COMPAT
6458 
6459 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6460 	void __user *arg)
6461 {
6462 	IOCTL32_Command_struct __user *arg32 =
6463 	    (IOCTL32_Command_struct __user *) arg;
6464 	IOCTL_Command_struct arg64;
6465 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6466 	int err;
6467 	u32 cp;
6468 
6469 	memset(&arg64, 0, sizeof(arg64));
6470 	err = 0;
6471 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6472 			   sizeof(arg64.LUN_info));
6473 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6474 			   sizeof(arg64.Request));
6475 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6476 			   sizeof(arg64.error_info));
6477 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6478 	err |= get_user(cp, &arg32->buf);
6479 	arg64.buf = compat_ptr(cp);
6480 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6481 
6482 	if (err)
6483 		return -EFAULT;
6484 
6485 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6486 	if (err)
6487 		return err;
6488 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6489 			 sizeof(arg32->error_info));
6490 	if (err)
6491 		return -EFAULT;
6492 	return err;
6493 }
6494 
6495 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6496 	int cmd, void __user *arg)
6497 {
6498 	BIG_IOCTL32_Command_struct __user *arg32 =
6499 	    (BIG_IOCTL32_Command_struct __user *) arg;
6500 	BIG_IOCTL_Command_struct arg64;
6501 	BIG_IOCTL_Command_struct __user *p =
6502 	    compat_alloc_user_space(sizeof(arg64));
6503 	int err;
6504 	u32 cp;
6505 
6506 	memset(&arg64, 0, sizeof(arg64));
6507 	err = 0;
6508 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6509 			   sizeof(arg64.LUN_info));
6510 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6511 			   sizeof(arg64.Request));
6512 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6513 			   sizeof(arg64.error_info));
6514 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6515 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6516 	err |= get_user(cp, &arg32->buf);
6517 	arg64.buf = compat_ptr(cp);
6518 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6519 
6520 	if (err)
6521 		return -EFAULT;
6522 
6523 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6524 	if (err)
6525 		return err;
6526 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6527 			 sizeof(arg32->error_info));
6528 	if (err)
6529 		return -EFAULT;
6530 	return err;
6531 }
6532 
6533 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6534 {
6535 	switch (cmd) {
6536 	case CCISS_GETPCIINFO:
6537 	case CCISS_GETINTINFO:
6538 	case CCISS_SETINTINFO:
6539 	case CCISS_GETNODENAME:
6540 	case CCISS_SETNODENAME:
6541 	case CCISS_GETHEARTBEAT:
6542 	case CCISS_GETBUSTYPES:
6543 	case CCISS_GETFIRMVER:
6544 	case CCISS_GETDRIVVER:
6545 	case CCISS_REVALIDVOLS:
6546 	case CCISS_DEREGDISK:
6547 	case CCISS_REGNEWDISK:
6548 	case CCISS_REGNEWD:
6549 	case CCISS_RESCANDISK:
6550 	case CCISS_GETLUNINFO:
6551 		return hpsa_ioctl(dev, cmd, arg);
6552 
6553 	case CCISS_PASSTHRU32:
6554 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6555 	case CCISS_BIG_PASSTHRU32:
6556 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6557 
6558 	default:
6559 		return -ENOIOCTLCMD;
6560 	}
6561 }
6562 #endif
6563 
6564 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6565 {
6566 	struct hpsa_pci_info pciinfo;
6567 
6568 	if (!argp)
6569 		return -EINVAL;
6570 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6571 	pciinfo.bus = h->pdev->bus->number;
6572 	pciinfo.dev_fn = h->pdev->devfn;
6573 	pciinfo.board_id = h->board_id;
6574 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6575 		return -EFAULT;
6576 	return 0;
6577 }
6578 
6579 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6580 {
6581 	DriverVer_type DriverVer;
6582 	unsigned char vmaj, vmin, vsubmin;
6583 	int rc;
6584 
6585 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6586 		&vmaj, &vmin, &vsubmin);
6587 	if (rc != 3) {
6588 		dev_info(&h->pdev->dev, "driver version string '%s' "
6589 			"unrecognized.", HPSA_DRIVER_VERSION);
6590 		vmaj = 0;
6591 		vmin = 0;
6592 		vsubmin = 0;
6593 	}
6594 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6595 	if (!argp)
6596 		return -EINVAL;
6597 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6598 		return -EFAULT;
6599 	return 0;
6600 }
6601 
6602 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6603 {
6604 	IOCTL_Command_struct iocommand;
6605 	struct CommandList *c;
6606 	char *buff = NULL;
6607 	u64 temp64;
6608 	int rc = 0;
6609 
6610 	if (!argp)
6611 		return -EINVAL;
6612 	if (!capable(CAP_SYS_RAWIO))
6613 		return -EPERM;
6614 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6615 		return -EFAULT;
6616 	if ((iocommand.buf_size < 1) &&
6617 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6618 		return -EINVAL;
6619 	}
6620 	if (iocommand.buf_size > 0) {
6621 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6622 		if (buff == NULL)
6623 			return -ENOMEM;
6624 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6625 			/* Copy the data into the buffer we created */
6626 			if (copy_from_user(buff, iocommand.buf,
6627 				iocommand.buf_size)) {
6628 				rc = -EFAULT;
6629 				goto out_kfree;
6630 			}
6631 		} else {
6632 			memset(buff, 0, iocommand.buf_size);
6633 		}
6634 	}
6635 	c = cmd_alloc(h);
6636 
6637 	/* Fill in the command type */
6638 	c->cmd_type = CMD_IOCTL_PEND;
6639 	c->scsi_cmd = SCSI_CMD_BUSY;
6640 	/* Fill in Command Header */
6641 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6642 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6643 		c->Header.SGList = 1;
6644 		c->Header.SGTotal = cpu_to_le16(1);
6645 	} else	{ /* no buffers to fill */
6646 		c->Header.SGList = 0;
6647 		c->Header.SGTotal = cpu_to_le16(0);
6648 	}
6649 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6650 
6651 	/* Fill in Request block */
6652 	memcpy(&c->Request, &iocommand.Request,
6653 		sizeof(c->Request));
6654 
6655 	/* Fill in the scatter gather information */
6656 	if (iocommand.buf_size > 0) {
6657 		temp64 = pci_map_single(h->pdev, buff,
6658 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6659 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6660 			c->SG[0].Addr = cpu_to_le64(0);
6661 			c->SG[0].Len = cpu_to_le32(0);
6662 			rc = -ENOMEM;
6663 			goto out;
6664 		}
6665 		c->SG[0].Addr = cpu_to_le64(temp64);
6666 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6667 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6668 	}
6669 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6670 					NO_TIMEOUT);
6671 	if (iocommand.buf_size > 0)
6672 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6673 	check_ioctl_unit_attention(h, c);
6674 	if (rc) {
6675 		rc = -EIO;
6676 		goto out;
6677 	}
6678 
6679 	/* Copy the error information out */
6680 	memcpy(&iocommand.error_info, c->err_info,
6681 		sizeof(iocommand.error_info));
6682 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6683 		rc = -EFAULT;
6684 		goto out;
6685 	}
6686 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6687 		iocommand.buf_size > 0) {
6688 		/* Copy the data out of the buffer we created */
6689 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6690 			rc = -EFAULT;
6691 			goto out;
6692 		}
6693 	}
6694 out:
6695 	cmd_free(h, c);
6696 out_kfree:
6697 	kfree(buff);
6698 	return rc;
6699 }
6700 
6701 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6702 {
6703 	BIG_IOCTL_Command_struct *ioc;
6704 	struct CommandList *c;
6705 	unsigned char **buff = NULL;
6706 	int *buff_size = NULL;
6707 	u64 temp64;
6708 	BYTE sg_used = 0;
6709 	int status = 0;
6710 	u32 left;
6711 	u32 sz;
6712 	BYTE __user *data_ptr;
6713 
6714 	if (!argp)
6715 		return -EINVAL;
6716 	if (!capable(CAP_SYS_RAWIO))
6717 		return -EPERM;
6718 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6719 	if (!ioc) {
6720 		status = -ENOMEM;
6721 		goto cleanup1;
6722 	}
6723 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6724 		status = -EFAULT;
6725 		goto cleanup1;
6726 	}
6727 	if ((ioc->buf_size < 1) &&
6728 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6729 		status = -EINVAL;
6730 		goto cleanup1;
6731 	}
6732 	/* Check kmalloc limits  using all SGs */
6733 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6734 		status = -EINVAL;
6735 		goto cleanup1;
6736 	}
6737 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6738 		status = -EINVAL;
6739 		goto cleanup1;
6740 	}
6741 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6742 	if (!buff) {
6743 		status = -ENOMEM;
6744 		goto cleanup1;
6745 	}
6746 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6747 	if (!buff_size) {
6748 		status = -ENOMEM;
6749 		goto cleanup1;
6750 	}
6751 	left = ioc->buf_size;
6752 	data_ptr = ioc->buf;
6753 	while (left) {
6754 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6755 		buff_size[sg_used] = sz;
6756 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6757 		if (buff[sg_used] == NULL) {
6758 			status = -ENOMEM;
6759 			goto cleanup1;
6760 		}
6761 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6762 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6763 				status = -EFAULT;
6764 				goto cleanup1;
6765 			}
6766 		} else
6767 			memset(buff[sg_used], 0, sz);
6768 		left -= sz;
6769 		data_ptr += sz;
6770 		sg_used++;
6771 	}
6772 	c = cmd_alloc(h);
6773 
6774 	c->cmd_type = CMD_IOCTL_PEND;
6775 	c->scsi_cmd = SCSI_CMD_BUSY;
6776 	c->Header.ReplyQueue = 0;
6777 	c->Header.SGList = (u8) sg_used;
6778 	c->Header.SGTotal = cpu_to_le16(sg_used);
6779 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6780 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6781 	if (ioc->buf_size > 0) {
6782 		int i;
6783 		for (i = 0; i < sg_used; i++) {
6784 			temp64 = pci_map_single(h->pdev, buff[i],
6785 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6786 			if (dma_mapping_error(&h->pdev->dev,
6787 							(dma_addr_t) temp64)) {
6788 				c->SG[i].Addr = cpu_to_le64(0);
6789 				c->SG[i].Len = cpu_to_le32(0);
6790 				hpsa_pci_unmap(h->pdev, c, i,
6791 					PCI_DMA_BIDIRECTIONAL);
6792 				status = -ENOMEM;
6793 				goto cleanup0;
6794 			}
6795 			c->SG[i].Addr = cpu_to_le64(temp64);
6796 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6797 			c->SG[i].Ext = cpu_to_le32(0);
6798 		}
6799 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6800 	}
6801 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6802 						NO_TIMEOUT);
6803 	if (sg_used)
6804 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6805 	check_ioctl_unit_attention(h, c);
6806 	if (status) {
6807 		status = -EIO;
6808 		goto cleanup0;
6809 	}
6810 
6811 	/* Copy the error information out */
6812 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6813 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6814 		status = -EFAULT;
6815 		goto cleanup0;
6816 	}
6817 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6818 		int i;
6819 
6820 		/* Copy the data out of the buffer we created */
6821 		BYTE __user *ptr = ioc->buf;
6822 		for (i = 0; i < sg_used; i++) {
6823 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6824 				status = -EFAULT;
6825 				goto cleanup0;
6826 			}
6827 			ptr += buff_size[i];
6828 		}
6829 	}
6830 	status = 0;
6831 cleanup0:
6832 	cmd_free(h, c);
6833 cleanup1:
6834 	if (buff) {
6835 		int i;
6836 
6837 		for (i = 0; i < sg_used; i++)
6838 			kfree(buff[i]);
6839 		kfree(buff);
6840 	}
6841 	kfree(buff_size);
6842 	kfree(ioc);
6843 	return status;
6844 }
6845 
6846 static void check_ioctl_unit_attention(struct ctlr_info *h,
6847 	struct CommandList *c)
6848 {
6849 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6850 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6851 		(void) check_for_unit_attention(h, c);
6852 }
6853 
6854 /*
6855  * ioctl
6856  */
6857 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6858 {
6859 	struct ctlr_info *h;
6860 	void __user *argp = (void __user *)arg;
6861 	int rc;
6862 
6863 	h = sdev_to_hba(dev);
6864 
6865 	switch (cmd) {
6866 	case CCISS_DEREGDISK:
6867 	case CCISS_REGNEWDISK:
6868 	case CCISS_REGNEWD:
6869 		hpsa_scan_start(h->scsi_host);
6870 		return 0;
6871 	case CCISS_GETPCIINFO:
6872 		return hpsa_getpciinfo_ioctl(h, argp);
6873 	case CCISS_GETDRIVVER:
6874 		return hpsa_getdrivver_ioctl(h, argp);
6875 	case CCISS_PASSTHRU:
6876 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6877 			return -EAGAIN;
6878 		rc = hpsa_passthru_ioctl(h, argp);
6879 		atomic_inc(&h->passthru_cmds_avail);
6880 		return rc;
6881 	case CCISS_BIG_PASSTHRU:
6882 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6883 			return -EAGAIN;
6884 		rc = hpsa_big_passthru_ioctl(h, argp);
6885 		atomic_inc(&h->passthru_cmds_avail);
6886 		return rc;
6887 	default:
6888 		return -ENOTTY;
6889 	}
6890 }
6891 
6892 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6893 				u8 reset_type)
6894 {
6895 	struct CommandList *c;
6896 
6897 	c = cmd_alloc(h);
6898 
6899 	/* fill_cmd can't fail here, no data buffer to map */
6900 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6901 		RAID_CTLR_LUNID, TYPE_MSG);
6902 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6903 	c->waiting = NULL;
6904 	enqueue_cmd_and_start_io(h, c);
6905 	/* Don't wait for completion, the reset won't complete.  Don't free
6906 	 * the command either.  This is the last command we will send before
6907 	 * re-initializing everything, so it doesn't matter and won't leak.
6908 	 */
6909 	return;
6910 }
6911 
6912 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6913 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6914 	int cmd_type)
6915 {
6916 	int pci_dir = XFER_NONE;
6917 	u64 tag; /* for commands to be aborted */
6918 
6919 	c->cmd_type = CMD_IOCTL_PEND;
6920 	c->scsi_cmd = SCSI_CMD_BUSY;
6921 	c->Header.ReplyQueue = 0;
6922 	if (buff != NULL && size > 0) {
6923 		c->Header.SGList = 1;
6924 		c->Header.SGTotal = cpu_to_le16(1);
6925 	} else {
6926 		c->Header.SGList = 0;
6927 		c->Header.SGTotal = cpu_to_le16(0);
6928 	}
6929 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6930 
6931 	if (cmd_type == TYPE_CMD) {
6932 		switch (cmd) {
6933 		case HPSA_INQUIRY:
6934 			/* are we trying to read a vital product page */
6935 			if (page_code & VPD_PAGE) {
6936 				c->Request.CDB[1] = 0x01;
6937 				c->Request.CDB[2] = (page_code & 0xff);
6938 			}
6939 			c->Request.CDBLen = 6;
6940 			c->Request.type_attr_dir =
6941 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6942 			c->Request.Timeout = 0;
6943 			c->Request.CDB[0] = HPSA_INQUIRY;
6944 			c->Request.CDB[4] = size & 0xFF;
6945 			break;
6946 		case HPSA_REPORT_LOG:
6947 		case HPSA_REPORT_PHYS:
6948 			/* Talking to controller so It's a physical command
6949 			   mode = 00 target = 0.  Nothing to write.
6950 			 */
6951 			c->Request.CDBLen = 12;
6952 			c->Request.type_attr_dir =
6953 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6954 			c->Request.Timeout = 0;
6955 			c->Request.CDB[0] = cmd;
6956 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6957 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6958 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6959 			c->Request.CDB[9] = size & 0xFF;
6960 			break;
6961 		case BMIC_SENSE_DIAG_OPTIONS:
6962 			c->Request.CDBLen = 16;
6963 			c->Request.type_attr_dir =
6964 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6965 			c->Request.Timeout = 0;
6966 			/* Spec says this should be BMIC_WRITE */
6967 			c->Request.CDB[0] = BMIC_READ;
6968 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6969 			break;
6970 		case BMIC_SET_DIAG_OPTIONS:
6971 			c->Request.CDBLen = 16;
6972 			c->Request.type_attr_dir =
6973 					TYPE_ATTR_DIR(cmd_type,
6974 						ATTR_SIMPLE, XFER_WRITE);
6975 			c->Request.Timeout = 0;
6976 			c->Request.CDB[0] = BMIC_WRITE;
6977 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6978 			break;
6979 		case HPSA_CACHE_FLUSH:
6980 			c->Request.CDBLen = 12;
6981 			c->Request.type_attr_dir =
6982 					TYPE_ATTR_DIR(cmd_type,
6983 						ATTR_SIMPLE, XFER_WRITE);
6984 			c->Request.Timeout = 0;
6985 			c->Request.CDB[0] = BMIC_WRITE;
6986 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6987 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6988 			c->Request.CDB[8] = size & 0xFF;
6989 			break;
6990 		case TEST_UNIT_READY:
6991 			c->Request.CDBLen = 6;
6992 			c->Request.type_attr_dir =
6993 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6994 			c->Request.Timeout = 0;
6995 			break;
6996 		case HPSA_GET_RAID_MAP:
6997 			c->Request.CDBLen = 12;
6998 			c->Request.type_attr_dir =
6999 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7000 			c->Request.Timeout = 0;
7001 			c->Request.CDB[0] = HPSA_CISS_READ;
7002 			c->Request.CDB[1] = cmd;
7003 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
7004 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7005 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7006 			c->Request.CDB[9] = size & 0xFF;
7007 			break;
7008 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
7009 			c->Request.CDBLen = 10;
7010 			c->Request.type_attr_dir =
7011 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7012 			c->Request.Timeout = 0;
7013 			c->Request.CDB[0] = BMIC_READ;
7014 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7015 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7016 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7017 			break;
7018 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7019 			c->Request.CDBLen = 10;
7020 			c->Request.type_attr_dir =
7021 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7022 			c->Request.Timeout = 0;
7023 			c->Request.CDB[0] = BMIC_READ;
7024 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7025 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7026 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7027 			break;
7028 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7029 			c->Request.CDBLen = 10;
7030 			c->Request.type_attr_dir =
7031 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7032 			c->Request.Timeout = 0;
7033 			c->Request.CDB[0] = BMIC_READ;
7034 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7035 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7036 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7037 			break;
7038 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
7039 			c->Request.CDBLen = 10;
7040 			c->Request.type_attr_dir =
7041 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7042 			c->Request.Timeout = 0;
7043 			c->Request.CDB[0] = BMIC_READ;
7044 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7045 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7046 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7047 			break;
7048 		case BMIC_IDENTIFY_CONTROLLER:
7049 			c->Request.CDBLen = 10;
7050 			c->Request.type_attr_dir =
7051 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7052 			c->Request.Timeout = 0;
7053 			c->Request.CDB[0] = BMIC_READ;
7054 			c->Request.CDB[1] = 0;
7055 			c->Request.CDB[2] = 0;
7056 			c->Request.CDB[3] = 0;
7057 			c->Request.CDB[4] = 0;
7058 			c->Request.CDB[5] = 0;
7059 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7060 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7061 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7062 			c->Request.CDB[9] = 0;
7063 			break;
7064 		default:
7065 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7066 			BUG();
7067 			return -1;
7068 		}
7069 	} else if (cmd_type == TYPE_MSG) {
7070 		switch (cmd) {
7071 
7072 		case  HPSA_PHYS_TARGET_RESET:
7073 			c->Request.CDBLen = 16;
7074 			c->Request.type_attr_dir =
7075 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7076 			c->Request.Timeout = 0; /* Don't time out */
7077 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7078 			c->Request.CDB[0] = HPSA_RESET;
7079 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7080 			/* Physical target reset needs no control bytes 4-7*/
7081 			c->Request.CDB[4] = 0x00;
7082 			c->Request.CDB[5] = 0x00;
7083 			c->Request.CDB[6] = 0x00;
7084 			c->Request.CDB[7] = 0x00;
7085 			break;
7086 		case  HPSA_DEVICE_RESET_MSG:
7087 			c->Request.CDBLen = 16;
7088 			c->Request.type_attr_dir =
7089 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7090 			c->Request.Timeout = 0; /* Don't time out */
7091 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7092 			c->Request.CDB[0] =  cmd;
7093 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7094 			/* If bytes 4-7 are zero, it means reset the */
7095 			/* LunID device */
7096 			c->Request.CDB[4] = 0x00;
7097 			c->Request.CDB[5] = 0x00;
7098 			c->Request.CDB[6] = 0x00;
7099 			c->Request.CDB[7] = 0x00;
7100 			break;
7101 		case  HPSA_ABORT_MSG:
7102 			memcpy(&tag, buff, sizeof(tag));
7103 			dev_dbg(&h->pdev->dev,
7104 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7105 				tag, c->Header.tag);
7106 			c->Request.CDBLen = 16;
7107 			c->Request.type_attr_dir =
7108 					TYPE_ATTR_DIR(cmd_type,
7109 						ATTR_SIMPLE, XFER_WRITE);
7110 			c->Request.Timeout = 0; /* Don't time out */
7111 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7112 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7113 			c->Request.CDB[2] = 0x00; /* reserved */
7114 			c->Request.CDB[3] = 0x00; /* reserved */
7115 			/* Tag to abort goes in CDB[4]-CDB[11] */
7116 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7117 			c->Request.CDB[12] = 0x00; /* reserved */
7118 			c->Request.CDB[13] = 0x00; /* reserved */
7119 			c->Request.CDB[14] = 0x00; /* reserved */
7120 			c->Request.CDB[15] = 0x00; /* reserved */
7121 		break;
7122 		default:
7123 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7124 				cmd);
7125 			BUG();
7126 		}
7127 	} else {
7128 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7129 		BUG();
7130 	}
7131 
7132 	switch (GET_DIR(c->Request.type_attr_dir)) {
7133 	case XFER_READ:
7134 		pci_dir = PCI_DMA_FROMDEVICE;
7135 		break;
7136 	case XFER_WRITE:
7137 		pci_dir = PCI_DMA_TODEVICE;
7138 		break;
7139 	case XFER_NONE:
7140 		pci_dir = PCI_DMA_NONE;
7141 		break;
7142 	default:
7143 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7144 	}
7145 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7146 		return -1;
7147 	return 0;
7148 }
7149 
7150 /*
7151  * Map (physical) PCI mem into (virtual) kernel space
7152  */
7153 static void __iomem *remap_pci_mem(ulong base, ulong size)
7154 {
7155 	ulong page_base = ((ulong) base) & PAGE_MASK;
7156 	ulong page_offs = ((ulong) base) - page_base;
7157 	void __iomem *page_remapped = ioremap_nocache(page_base,
7158 		page_offs + size);
7159 
7160 	return page_remapped ? (page_remapped + page_offs) : NULL;
7161 }
7162 
7163 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7164 {
7165 	return h->access.command_completed(h, q);
7166 }
7167 
7168 static inline bool interrupt_pending(struct ctlr_info *h)
7169 {
7170 	return h->access.intr_pending(h);
7171 }
7172 
7173 static inline long interrupt_not_for_us(struct ctlr_info *h)
7174 {
7175 	return (h->access.intr_pending(h) == 0) ||
7176 		(h->interrupts_enabled == 0);
7177 }
7178 
7179 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7180 	u32 raw_tag)
7181 {
7182 	if (unlikely(tag_index >= h->nr_cmds)) {
7183 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7184 		return 1;
7185 	}
7186 	return 0;
7187 }
7188 
7189 static inline void finish_cmd(struct CommandList *c)
7190 {
7191 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7192 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7193 			|| c->cmd_type == CMD_IOACCEL2))
7194 		complete_scsi_command(c);
7195 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7196 		complete(c->waiting);
7197 }
7198 
7199 /* process completion of an indexed ("direct lookup") command */
7200 static inline void process_indexed_cmd(struct ctlr_info *h,
7201 	u32 raw_tag)
7202 {
7203 	u32 tag_index;
7204 	struct CommandList *c;
7205 
7206 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7207 	if (!bad_tag(h, tag_index, raw_tag)) {
7208 		c = h->cmd_pool + tag_index;
7209 		finish_cmd(c);
7210 	}
7211 }
7212 
7213 /* Some controllers, like p400, will give us one interrupt
7214  * after a soft reset, even if we turned interrupts off.
7215  * Only need to check for this in the hpsa_xxx_discard_completions
7216  * functions.
7217  */
7218 static int ignore_bogus_interrupt(struct ctlr_info *h)
7219 {
7220 	if (likely(!reset_devices))
7221 		return 0;
7222 
7223 	if (likely(h->interrupts_enabled))
7224 		return 0;
7225 
7226 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7227 		"(known firmware bug.)  Ignoring.\n");
7228 
7229 	return 1;
7230 }
7231 
7232 /*
7233  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7234  * Relies on (h-q[x] == x) being true for x such that
7235  * 0 <= x < MAX_REPLY_QUEUES.
7236  */
7237 static struct ctlr_info *queue_to_hba(u8 *queue)
7238 {
7239 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7240 }
7241 
7242 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7243 {
7244 	struct ctlr_info *h = queue_to_hba(queue);
7245 	u8 q = *(u8 *) queue;
7246 	u32 raw_tag;
7247 
7248 	if (ignore_bogus_interrupt(h))
7249 		return IRQ_NONE;
7250 
7251 	if (interrupt_not_for_us(h))
7252 		return IRQ_NONE;
7253 	h->last_intr_timestamp = get_jiffies_64();
7254 	while (interrupt_pending(h)) {
7255 		raw_tag = get_next_completion(h, q);
7256 		while (raw_tag != FIFO_EMPTY)
7257 			raw_tag = next_command(h, q);
7258 	}
7259 	return IRQ_HANDLED;
7260 }
7261 
7262 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7263 {
7264 	struct ctlr_info *h = queue_to_hba(queue);
7265 	u32 raw_tag;
7266 	u8 q = *(u8 *) queue;
7267 
7268 	if (ignore_bogus_interrupt(h))
7269 		return IRQ_NONE;
7270 
7271 	h->last_intr_timestamp = get_jiffies_64();
7272 	raw_tag = get_next_completion(h, q);
7273 	while (raw_tag != FIFO_EMPTY)
7274 		raw_tag = next_command(h, q);
7275 	return IRQ_HANDLED;
7276 }
7277 
7278 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7279 {
7280 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7281 	u32 raw_tag;
7282 	u8 q = *(u8 *) queue;
7283 
7284 	if (interrupt_not_for_us(h))
7285 		return IRQ_NONE;
7286 	h->last_intr_timestamp = get_jiffies_64();
7287 	while (interrupt_pending(h)) {
7288 		raw_tag = get_next_completion(h, q);
7289 		while (raw_tag != FIFO_EMPTY) {
7290 			process_indexed_cmd(h, raw_tag);
7291 			raw_tag = next_command(h, q);
7292 		}
7293 	}
7294 	return IRQ_HANDLED;
7295 }
7296 
7297 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7298 {
7299 	struct ctlr_info *h = queue_to_hba(queue);
7300 	u32 raw_tag;
7301 	u8 q = *(u8 *) queue;
7302 
7303 	h->last_intr_timestamp = get_jiffies_64();
7304 	raw_tag = get_next_completion(h, q);
7305 	while (raw_tag != FIFO_EMPTY) {
7306 		process_indexed_cmd(h, raw_tag);
7307 		raw_tag = next_command(h, q);
7308 	}
7309 	return IRQ_HANDLED;
7310 }
7311 
7312 /* Send a message CDB to the firmware. Careful, this only works
7313  * in simple mode, not performant mode due to the tag lookup.
7314  * We only ever use this immediately after a controller reset.
7315  */
7316 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7317 			unsigned char type)
7318 {
7319 	struct Command {
7320 		struct CommandListHeader CommandHeader;
7321 		struct RequestBlock Request;
7322 		struct ErrDescriptor ErrorDescriptor;
7323 	};
7324 	struct Command *cmd;
7325 	static const size_t cmd_sz = sizeof(*cmd) +
7326 					sizeof(cmd->ErrorDescriptor);
7327 	dma_addr_t paddr64;
7328 	__le32 paddr32;
7329 	u32 tag;
7330 	void __iomem *vaddr;
7331 	int i, err;
7332 
7333 	vaddr = pci_ioremap_bar(pdev, 0);
7334 	if (vaddr == NULL)
7335 		return -ENOMEM;
7336 
7337 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7338 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7339 	 * memory.
7340 	 */
7341 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7342 	if (err) {
7343 		iounmap(vaddr);
7344 		return err;
7345 	}
7346 
7347 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7348 	if (cmd == NULL) {
7349 		iounmap(vaddr);
7350 		return -ENOMEM;
7351 	}
7352 
7353 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7354 	 * although there's no guarantee, we assume that the address is at
7355 	 * least 4-byte aligned (most likely, it's page-aligned).
7356 	 */
7357 	paddr32 = cpu_to_le32(paddr64);
7358 
7359 	cmd->CommandHeader.ReplyQueue = 0;
7360 	cmd->CommandHeader.SGList = 0;
7361 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7362 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7363 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7364 
7365 	cmd->Request.CDBLen = 16;
7366 	cmd->Request.type_attr_dir =
7367 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7368 	cmd->Request.Timeout = 0; /* Don't time out */
7369 	cmd->Request.CDB[0] = opcode;
7370 	cmd->Request.CDB[1] = type;
7371 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7372 	cmd->ErrorDescriptor.Addr =
7373 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7374 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7375 
7376 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7377 
7378 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7379 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7380 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7381 			break;
7382 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7383 	}
7384 
7385 	iounmap(vaddr);
7386 
7387 	/* we leak the DMA buffer here ... no choice since the controller could
7388 	 *  still complete the command.
7389 	 */
7390 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7391 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7392 			opcode, type);
7393 		return -ETIMEDOUT;
7394 	}
7395 
7396 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7397 
7398 	if (tag & HPSA_ERROR_BIT) {
7399 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7400 			opcode, type);
7401 		return -EIO;
7402 	}
7403 
7404 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7405 		opcode, type);
7406 	return 0;
7407 }
7408 
7409 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7410 
7411 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7412 	void __iomem *vaddr, u32 use_doorbell)
7413 {
7414 
7415 	if (use_doorbell) {
7416 		/* For everything after the P600, the PCI power state method
7417 		 * of resetting the controller doesn't work, so we have this
7418 		 * other way using the doorbell register.
7419 		 */
7420 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7421 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7422 
7423 		/* PMC hardware guys tell us we need a 10 second delay after
7424 		 * doorbell reset and before any attempt to talk to the board
7425 		 * at all to ensure that this actually works and doesn't fall
7426 		 * over in some weird corner cases.
7427 		 */
7428 		msleep(10000);
7429 	} else { /* Try to do it the PCI power state way */
7430 
7431 		/* Quoting from the Open CISS Specification: "The Power
7432 		 * Management Control/Status Register (CSR) controls the power
7433 		 * state of the device.  The normal operating state is D0,
7434 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7435 		 * the controller, place the interface device in D3 then to D0,
7436 		 * this causes a secondary PCI reset which will reset the
7437 		 * controller." */
7438 
7439 		int rc = 0;
7440 
7441 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7442 
7443 		/* enter the D3hot power management state */
7444 		rc = pci_set_power_state(pdev, PCI_D3hot);
7445 		if (rc)
7446 			return rc;
7447 
7448 		msleep(500);
7449 
7450 		/* enter the D0 power management state */
7451 		rc = pci_set_power_state(pdev, PCI_D0);
7452 		if (rc)
7453 			return rc;
7454 
7455 		/*
7456 		 * The P600 requires a small delay when changing states.
7457 		 * Otherwise we may think the board did not reset and we bail.
7458 		 * This for kdump only and is particular to the P600.
7459 		 */
7460 		msleep(500);
7461 	}
7462 	return 0;
7463 }
7464 
7465 static void init_driver_version(char *driver_version, int len)
7466 {
7467 	memset(driver_version, 0, len);
7468 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7469 }
7470 
7471 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7472 {
7473 	char *driver_version;
7474 	int i, size = sizeof(cfgtable->driver_version);
7475 
7476 	driver_version = kmalloc(size, GFP_KERNEL);
7477 	if (!driver_version)
7478 		return -ENOMEM;
7479 
7480 	init_driver_version(driver_version, size);
7481 	for (i = 0; i < size; i++)
7482 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7483 	kfree(driver_version);
7484 	return 0;
7485 }
7486 
7487 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7488 					  unsigned char *driver_ver)
7489 {
7490 	int i;
7491 
7492 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7493 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7494 }
7495 
7496 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7497 {
7498 
7499 	char *driver_ver, *old_driver_ver;
7500 	int rc, size = sizeof(cfgtable->driver_version);
7501 
7502 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7503 	if (!old_driver_ver)
7504 		return -ENOMEM;
7505 	driver_ver = old_driver_ver + size;
7506 
7507 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7508 	 * should have been changed, otherwise we know the reset failed.
7509 	 */
7510 	init_driver_version(old_driver_ver, size);
7511 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7512 	rc = !memcmp(driver_ver, old_driver_ver, size);
7513 	kfree(old_driver_ver);
7514 	return rc;
7515 }
7516 /* This does a hard reset of the controller using PCI power management
7517  * states or the using the doorbell register.
7518  */
7519 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7520 {
7521 	u64 cfg_offset;
7522 	u32 cfg_base_addr;
7523 	u64 cfg_base_addr_index;
7524 	void __iomem *vaddr;
7525 	unsigned long paddr;
7526 	u32 misc_fw_support;
7527 	int rc;
7528 	struct CfgTable __iomem *cfgtable;
7529 	u32 use_doorbell;
7530 	u16 command_register;
7531 
7532 	/* For controllers as old as the P600, this is very nearly
7533 	 * the same thing as
7534 	 *
7535 	 * pci_save_state(pci_dev);
7536 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7537 	 * pci_set_power_state(pci_dev, PCI_D0);
7538 	 * pci_restore_state(pci_dev);
7539 	 *
7540 	 * For controllers newer than the P600, the pci power state
7541 	 * method of resetting doesn't work so we have another way
7542 	 * using the doorbell register.
7543 	 */
7544 
7545 	if (!ctlr_is_resettable(board_id)) {
7546 		dev_warn(&pdev->dev, "Controller not resettable\n");
7547 		return -ENODEV;
7548 	}
7549 
7550 	/* if controller is soft- but not hard resettable... */
7551 	if (!ctlr_is_hard_resettable(board_id))
7552 		return -ENOTSUPP; /* try soft reset later. */
7553 
7554 	/* Save the PCI command register */
7555 	pci_read_config_word(pdev, 4, &command_register);
7556 	pci_save_state(pdev);
7557 
7558 	/* find the first memory BAR, so we can find the cfg table */
7559 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7560 	if (rc)
7561 		return rc;
7562 	vaddr = remap_pci_mem(paddr, 0x250);
7563 	if (!vaddr)
7564 		return -ENOMEM;
7565 
7566 	/* find cfgtable in order to check if reset via doorbell is supported */
7567 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7568 					&cfg_base_addr_index, &cfg_offset);
7569 	if (rc)
7570 		goto unmap_vaddr;
7571 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7572 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7573 	if (!cfgtable) {
7574 		rc = -ENOMEM;
7575 		goto unmap_vaddr;
7576 	}
7577 	rc = write_driver_ver_to_cfgtable(cfgtable);
7578 	if (rc)
7579 		goto unmap_cfgtable;
7580 
7581 	/* If reset via doorbell register is supported, use that.
7582 	 * There are two such methods.  Favor the newest method.
7583 	 */
7584 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7585 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7586 	if (use_doorbell) {
7587 		use_doorbell = DOORBELL_CTLR_RESET2;
7588 	} else {
7589 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7590 		if (use_doorbell) {
7591 			dev_warn(&pdev->dev,
7592 				"Soft reset not supported. Firmware update is required.\n");
7593 			rc = -ENOTSUPP; /* try soft reset */
7594 			goto unmap_cfgtable;
7595 		}
7596 	}
7597 
7598 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7599 	if (rc)
7600 		goto unmap_cfgtable;
7601 
7602 	pci_restore_state(pdev);
7603 	pci_write_config_word(pdev, 4, command_register);
7604 
7605 	/* Some devices (notably the HP Smart Array 5i Controller)
7606 	   need a little pause here */
7607 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7608 
7609 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7610 	if (rc) {
7611 		dev_warn(&pdev->dev,
7612 			"Failed waiting for board to become ready after hard reset\n");
7613 		goto unmap_cfgtable;
7614 	}
7615 
7616 	rc = controller_reset_failed(vaddr);
7617 	if (rc < 0)
7618 		goto unmap_cfgtable;
7619 	if (rc) {
7620 		dev_warn(&pdev->dev, "Unable to successfully reset "
7621 			"controller. Will try soft reset.\n");
7622 		rc = -ENOTSUPP;
7623 	} else {
7624 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7625 	}
7626 
7627 unmap_cfgtable:
7628 	iounmap(cfgtable);
7629 
7630 unmap_vaddr:
7631 	iounmap(vaddr);
7632 	return rc;
7633 }
7634 
7635 /*
7636  *  We cannot read the structure directly, for portability we must use
7637  *   the io functions.
7638  *   This is for debug only.
7639  */
7640 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7641 {
7642 #ifdef HPSA_DEBUG
7643 	int i;
7644 	char temp_name[17];
7645 
7646 	dev_info(dev, "Controller Configuration information\n");
7647 	dev_info(dev, "------------------------------------\n");
7648 	for (i = 0; i < 4; i++)
7649 		temp_name[i] = readb(&(tb->Signature[i]));
7650 	temp_name[4] = '\0';
7651 	dev_info(dev, "   Signature = %s\n", temp_name);
7652 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7653 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7654 	       readl(&(tb->TransportSupport)));
7655 	dev_info(dev, "   Transport methods active = 0x%x\n",
7656 	       readl(&(tb->TransportActive)));
7657 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7658 	       readl(&(tb->HostWrite.TransportRequest)));
7659 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7660 	       readl(&(tb->HostWrite.CoalIntDelay)));
7661 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7662 	       readl(&(tb->HostWrite.CoalIntCount)));
7663 	dev_info(dev, "   Max outstanding commands = %d\n",
7664 	       readl(&(tb->CmdsOutMax)));
7665 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7666 	for (i = 0; i < 16; i++)
7667 		temp_name[i] = readb(&(tb->ServerName[i]));
7668 	temp_name[16] = '\0';
7669 	dev_info(dev, "   Server Name = %s\n", temp_name);
7670 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7671 		readl(&(tb->HeartBeat)));
7672 #endif				/* HPSA_DEBUG */
7673 }
7674 
7675 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7676 {
7677 	int i, offset, mem_type, bar_type;
7678 
7679 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7680 		return 0;
7681 	offset = 0;
7682 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7683 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7684 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7685 			offset += 4;
7686 		else {
7687 			mem_type = pci_resource_flags(pdev, i) &
7688 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7689 			switch (mem_type) {
7690 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7691 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7692 				offset += 4;	/* 32 bit */
7693 				break;
7694 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7695 				offset += 8;
7696 				break;
7697 			default:	/* reserved in PCI 2.2 */
7698 				dev_warn(&pdev->dev,
7699 				       "base address is invalid\n");
7700 				return -1;
7701 				break;
7702 			}
7703 		}
7704 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7705 			return i + 1;
7706 	}
7707 	return -1;
7708 }
7709 
7710 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7711 {
7712 	pci_free_irq_vectors(h->pdev);
7713 	h->msix_vectors = 0;
7714 }
7715 
7716 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7717  * controllers that are capable. If not, we use legacy INTx mode.
7718  */
7719 static int hpsa_interrupt_mode(struct ctlr_info *h)
7720 {
7721 	unsigned int flags = PCI_IRQ_LEGACY;
7722 	int ret;
7723 
7724 	/* Some boards advertise MSI but don't really support it */
7725 	switch (h->board_id) {
7726 	case 0x40700E11:
7727 	case 0x40800E11:
7728 	case 0x40820E11:
7729 	case 0x40830E11:
7730 		break;
7731 	default:
7732 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7733 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7734 		if (ret > 0) {
7735 			h->msix_vectors = ret;
7736 			return 0;
7737 		}
7738 
7739 		flags |= PCI_IRQ_MSI;
7740 		break;
7741 	}
7742 
7743 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7744 	if (ret < 0)
7745 		return ret;
7746 	return 0;
7747 }
7748 
7749 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7750 {
7751 	int i;
7752 	u32 subsystem_vendor_id, subsystem_device_id;
7753 
7754 	subsystem_vendor_id = pdev->subsystem_vendor;
7755 	subsystem_device_id = pdev->subsystem_device;
7756 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7757 		    subsystem_vendor_id;
7758 
7759 	for (i = 0; i < ARRAY_SIZE(products); i++)
7760 		if (*board_id == products[i].board_id)
7761 			return i;
7762 
7763 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7764 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7765 		!hpsa_allow_any) {
7766 		dev_warn(&pdev->dev, "unrecognized board ID: "
7767 			"0x%08x, ignoring.\n", *board_id);
7768 			return -ENODEV;
7769 	}
7770 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7771 }
7772 
7773 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7774 				    unsigned long *memory_bar)
7775 {
7776 	int i;
7777 
7778 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7779 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7780 			/* addressing mode bits already removed */
7781 			*memory_bar = pci_resource_start(pdev, i);
7782 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7783 				*memory_bar);
7784 			return 0;
7785 		}
7786 	dev_warn(&pdev->dev, "no memory BAR found\n");
7787 	return -ENODEV;
7788 }
7789 
7790 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7791 				     int wait_for_ready)
7792 {
7793 	int i, iterations;
7794 	u32 scratchpad;
7795 	if (wait_for_ready)
7796 		iterations = HPSA_BOARD_READY_ITERATIONS;
7797 	else
7798 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7799 
7800 	for (i = 0; i < iterations; i++) {
7801 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7802 		if (wait_for_ready) {
7803 			if (scratchpad == HPSA_FIRMWARE_READY)
7804 				return 0;
7805 		} else {
7806 			if (scratchpad != HPSA_FIRMWARE_READY)
7807 				return 0;
7808 		}
7809 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7810 	}
7811 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7812 	return -ENODEV;
7813 }
7814 
7815 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7816 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7817 			       u64 *cfg_offset)
7818 {
7819 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7820 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7821 	*cfg_base_addr &= (u32) 0x0000ffff;
7822 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7823 	if (*cfg_base_addr_index == -1) {
7824 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7825 		return -ENODEV;
7826 	}
7827 	return 0;
7828 }
7829 
7830 static void hpsa_free_cfgtables(struct ctlr_info *h)
7831 {
7832 	if (h->transtable) {
7833 		iounmap(h->transtable);
7834 		h->transtable = NULL;
7835 	}
7836 	if (h->cfgtable) {
7837 		iounmap(h->cfgtable);
7838 		h->cfgtable = NULL;
7839 	}
7840 }
7841 
7842 /* Find and map CISS config table and transfer table
7843 + * several items must be unmapped (freed) later
7844 + * */
7845 static int hpsa_find_cfgtables(struct ctlr_info *h)
7846 {
7847 	u64 cfg_offset;
7848 	u32 cfg_base_addr;
7849 	u64 cfg_base_addr_index;
7850 	u32 trans_offset;
7851 	int rc;
7852 
7853 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7854 		&cfg_base_addr_index, &cfg_offset);
7855 	if (rc)
7856 		return rc;
7857 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7858 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7859 	if (!h->cfgtable) {
7860 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7861 		return -ENOMEM;
7862 	}
7863 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7864 	if (rc)
7865 		return rc;
7866 	/* Find performant mode table. */
7867 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7868 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7869 				cfg_base_addr_index)+cfg_offset+trans_offset,
7870 				sizeof(*h->transtable));
7871 	if (!h->transtable) {
7872 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7873 		hpsa_free_cfgtables(h);
7874 		return -ENOMEM;
7875 	}
7876 	return 0;
7877 }
7878 
7879 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7880 {
7881 #define MIN_MAX_COMMANDS 16
7882 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7883 
7884 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7885 
7886 	/* Limit commands in memory limited kdump scenario. */
7887 	if (reset_devices && h->max_commands > 32)
7888 		h->max_commands = 32;
7889 
7890 	if (h->max_commands < MIN_MAX_COMMANDS) {
7891 		dev_warn(&h->pdev->dev,
7892 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7893 			h->max_commands,
7894 			MIN_MAX_COMMANDS);
7895 		h->max_commands = MIN_MAX_COMMANDS;
7896 	}
7897 }
7898 
7899 /* If the controller reports that the total max sg entries is greater than 512,
7900  * then we know that chained SG blocks work.  (Original smart arrays did not
7901  * support chained SG blocks and would return zero for max sg entries.)
7902  */
7903 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7904 {
7905 	return h->maxsgentries > 512;
7906 }
7907 
7908 /* Interrogate the hardware for some limits:
7909  * max commands, max SG elements without chaining, and with chaining,
7910  * SG chain block size, etc.
7911  */
7912 static void hpsa_find_board_params(struct ctlr_info *h)
7913 {
7914 	hpsa_get_max_perf_mode_cmds(h);
7915 	h->nr_cmds = h->max_commands;
7916 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7917 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7918 	if (hpsa_supports_chained_sg_blocks(h)) {
7919 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7920 		h->max_cmd_sg_entries = 32;
7921 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7922 		h->maxsgentries--; /* save one for chain pointer */
7923 	} else {
7924 		/*
7925 		 * Original smart arrays supported at most 31 s/g entries
7926 		 * embedded inline in the command (trying to use more
7927 		 * would lock up the controller)
7928 		 */
7929 		h->max_cmd_sg_entries = 31;
7930 		h->maxsgentries = 31; /* default to traditional values */
7931 		h->chainsize = 0;
7932 	}
7933 
7934 	/* Find out what task management functions are supported and cache */
7935 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7936 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7937 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7938 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7939 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7940 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7941 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7942 }
7943 
7944 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7945 {
7946 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7947 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7948 		return false;
7949 	}
7950 	return true;
7951 }
7952 
7953 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7954 {
7955 	u32 driver_support;
7956 
7957 	driver_support = readl(&(h->cfgtable->driver_support));
7958 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7959 #ifdef CONFIG_X86
7960 	driver_support |= ENABLE_SCSI_PREFETCH;
7961 #endif
7962 	driver_support |= ENABLE_UNIT_ATTN;
7963 	writel(driver_support, &(h->cfgtable->driver_support));
7964 }
7965 
7966 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7967  * in a prefetch beyond physical memory.
7968  */
7969 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7970 {
7971 	u32 dma_prefetch;
7972 
7973 	if (h->board_id != 0x3225103C)
7974 		return;
7975 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7976 	dma_prefetch |= 0x8000;
7977 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7978 }
7979 
7980 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7981 {
7982 	int i;
7983 	u32 doorbell_value;
7984 	unsigned long flags;
7985 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7986 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7987 		spin_lock_irqsave(&h->lock, flags);
7988 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7989 		spin_unlock_irqrestore(&h->lock, flags);
7990 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7991 			goto done;
7992 		/* delay and try again */
7993 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7994 	}
7995 	return -ENODEV;
7996 done:
7997 	return 0;
7998 }
7999 
8000 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
8001 {
8002 	int i;
8003 	u32 doorbell_value;
8004 	unsigned long flags;
8005 
8006 	/* under certain very rare conditions, this can take awhile.
8007 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
8008 	 * as we enter this code.)
8009 	 */
8010 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8011 		if (h->remove_in_progress)
8012 			goto done;
8013 		spin_lock_irqsave(&h->lock, flags);
8014 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8015 		spin_unlock_irqrestore(&h->lock, flags);
8016 		if (!(doorbell_value & CFGTBL_ChangeReq))
8017 			goto done;
8018 		/* delay and try again */
8019 		msleep(MODE_CHANGE_WAIT_INTERVAL);
8020 	}
8021 	return -ENODEV;
8022 done:
8023 	return 0;
8024 }
8025 
8026 /* return -ENODEV or other reason on error, 0 on success */
8027 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8028 {
8029 	u32 trans_support;
8030 
8031 	trans_support = readl(&(h->cfgtable->TransportSupport));
8032 	if (!(trans_support & SIMPLE_MODE))
8033 		return -ENOTSUPP;
8034 
8035 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8036 
8037 	/* Update the field, and then ring the doorbell */
8038 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8039 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8040 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8041 	if (hpsa_wait_for_mode_change_ack(h))
8042 		goto error;
8043 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8044 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8045 		goto error;
8046 	h->transMethod = CFGTBL_Trans_Simple;
8047 	return 0;
8048 error:
8049 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8050 	return -ENODEV;
8051 }
8052 
8053 /* free items allocated or mapped by hpsa_pci_init */
8054 static void hpsa_free_pci_init(struct ctlr_info *h)
8055 {
8056 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8057 	iounmap(h->vaddr);			/* pci_init 3 */
8058 	h->vaddr = NULL;
8059 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8060 	/*
8061 	 * call pci_disable_device before pci_release_regions per
8062 	 * Documentation/PCI/pci.txt
8063 	 */
8064 	pci_disable_device(h->pdev);		/* pci_init 1 */
8065 	pci_release_regions(h->pdev);		/* pci_init 2 */
8066 }
8067 
8068 /* several items must be freed later */
8069 static int hpsa_pci_init(struct ctlr_info *h)
8070 {
8071 	int prod_index, err;
8072 
8073 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8074 	if (prod_index < 0)
8075 		return prod_index;
8076 	h->product_name = products[prod_index].product_name;
8077 	h->access = *(products[prod_index].access);
8078 
8079 	h->needs_abort_tags_swizzled =
8080 		ctlr_needs_abort_tags_swizzled(h->board_id);
8081 
8082 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8083 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8084 
8085 	err = pci_enable_device(h->pdev);
8086 	if (err) {
8087 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8088 		pci_disable_device(h->pdev);
8089 		return err;
8090 	}
8091 
8092 	err = pci_request_regions(h->pdev, HPSA);
8093 	if (err) {
8094 		dev_err(&h->pdev->dev,
8095 			"failed to obtain PCI resources\n");
8096 		pci_disable_device(h->pdev);
8097 		return err;
8098 	}
8099 
8100 	pci_set_master(h->pdev);
8101 
8102 	err = hpsa_interrupt_mode(h);
8103 	if (err)
8104 		goto clean1;
8105 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8106 	if (err)
8107 		goto clean2;	/* intmode+region, pci */
8108 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8109 	if (!h->vaddr) {
8110 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8111 		err = -ENOMEM;
8112 		goto clean2;	/* intmode+region, pci */
8113 	}
8114 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8115 	if (err)
8116 		goto clean3;	/* vaddr, intmode+region, pci */
8117 	err = hpsa_find_cfgtables(h);
8118 	if (err)
8119 		goto clean3;	/* vaddr, intmode+region, pci */
8120 	hpsa_find_board_params(h);
8121 
8122 	if (!hpsa_CISS_signature_present(h)) {
8123 		err = -ENODEV;
8124 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8125 	}
8126 	hpsa_set_driver_support_bits(h);
8127 	hpsa_p600_dma_prefetch_quirk(h);
8128 	err = hpsa_enter_simple_mode(h);
8129 	if (err)
8130 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8131 	return 0;
8132 
8133 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8134 	hpsa_free_cfgtables(h);
8135 clean3:	/* vaddr, intmode+region, pci */
8136 	iounmap(h->vaddr);
8137 	h->vaddr = NULL;
8138 clean2:	/* intmode+region, pci */
8139 	hpsa_disable_interrupt_mode(h);
8140 clean1:
8141 	/*
8142 	 * call pci_disable_device before pci_release_regions per
8143 	 * Documentation/PCI/pci.txt
8144 	 */
8145 	pci_disable_device(h->pdev);
8146 	pci_release_regions(h->pdev);
8147 	return err;
8148 }
8149 
8150 static void hpsa_hba_inquiry(struct ctlr_info *h)
8151 {
8152 	int rc;
8153 
8154 #define HBA_INQUIRY_BYTE_COUNT 64
8155 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8156 	if (!h->hba_inquiry_data)
8157 		return;
8158 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8159 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8160 	if (rc != 0) {
8161 		kfree(h->hba_inquiry_data);
8162 		h->hba_inquiry_data = NULL;
8163 	}
8164 }
8165 
8166 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8167 {
8168 	int rc, i;
8169 	void __iomem *vaddr;
8170 
8171 	if (!reset_devices)
8172 		return 0;
8173 
8174 	/* kdump kernel is loading, we don't know in which state is
8175 	 * the pci interface. The dev->enable_cnt is equal zero
8176 	 * so we call enable+disable, wait a while and switch it on.
8177 	 */
8178 	rc = pci_enable_device(pdev);
8179 	if (rc) {
8180 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8181 		return -ENODEV;
8182 	}
8183 	pci_disable_device(pdev);
8184 	msleep(260);			/* a randomly chosen number */
8185 	rc = pci_enable_device(pdev);
8186 	if (rc) {
8187 		dev_warn(&pdev->dev, "failed to enable device.\n");
8188 		return -ENODEV;
8189 	}
8190 
8191 	pci_set_master(pdev);
8192 
8193 	vaddr = pci_ioremap_bar(pdev, 0);
8194 	if (vaddr == NULL) {
8195 		rc = -ENOMEM;
8196 		goto out_disable;
8197 	}
8198 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8199 	iounmap(vaddr);
8200 
8201 	/* Reset the controller with a PCI power-cycle or via doorbell */
8202 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8203 
8204 	/* -ENOTSUPP here means we cannot reset the controller
8205 	 * but it's already (and still) up and running in
8206 	 * "performant mode".  Or, it might be 640x, which can't reset
8207 	 * due to concerns about shared bbwc between 6402/6404 pair.
8208 	 */
8209 	if (rc)
8210 		goto out_disable;
8211 
8212 	/* Now try to get the controller to respond to a no-op */
8213 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8214 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8215 		if (hpsa_noop(pdev) == 0)
8216 			break;
8217 		else
8218 			dev_warn(&pdev->dev, "no-op failed%s\n",
8219 					(i < 11 ? "; re-trying" : ""));
8220 	}
8221 
8222 out_disable:
8223 
8224 	pci_disable_device(pdev);
8225 	return rc;
8226 }
8227 
8228 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8229 {
8230 	kfree(h->cmd_pool_bits);
8231 	h->cmd_pool_bits = NULL;
8232 	if (h->cmd_pool) {
8233 		pci_free_consistent(h->pdev,
8234 				h->nr_cmds * sizeof(struct CommandList),
8235 				h->cmd_pool,
8236 				h->cmd_pool_dhandle);
8237 		h->cmd_pool = NULL;
8238 		h->cmd_pool_dhandle = 0;
8239 	}
8240 	if (h->errinfo_pool) {
8241 		pci_free_consistent(h->pdev,
8242 				h->nr_cmds * sizeof(struct ErrorInfo),
8243 				h->errinfo_pool,
8244 				h->errinfo_pool_dhandle);
8245 		h->errinfo_pool = NULL;
8246 		h->errinfo_pool_dhandle = 0;
8247 	}
8248 }
8249 
8250 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8251 {
8252 	h->cmd_pool_bits = kzalloc(
8253 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8254 		sizeof(unsigned long), GFP_KERNEL);
8255 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8256 		    h->nr_cmds * sizeof(*h->cmd_pool),
8257 		    &(h->cmd_pool_dhandle));
8258 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8259 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8260 		    &(h->errinfo_pool_dhandle));
8261 	if ((h->cmd_pool_bits == NULL)
8262 	    || (h->cmd_pool == NULL)
8263 	    || (h->errinfo_pool == NULL)) {
8264 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8265 		goto clean_up;
8266 	}
8267 	hpsa_preinitialize_commands(h);
8268 	return 0;
8269 clean_up:
8270 	hpsa_free_cmd_pool(h);
8271 	return -ENOMEM;
8272 }
8273 
8274 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8275 static void hpsa_free_irqs(struct ctlr_info *h)
8276 {
8277 	int i;
8278 
8279 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8280 		/* Single reply queue, only one irq to free */
8281 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8282 		h->q[h->intr_mode] = 0;
8283 		return;
8284 	}
8285 
8286 	for (i = 0; i < h->msix_vectors; i++) {
8287 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8288 		h->q[i] = 0;
8289 	}
8290 	for (; i < MAX_REPLY_QUEUES; i++)
8291 		h->q[i] = 0;
8292 }
8293 
8294 /* returns 0 on success; cleans up and returns -Enn on error */
8295 static int hpsa_request_irqs(struct ctlr_info *h,
8296 	irqreturn_t (*msixhandler)(int, void *),
8297 	irqreturn_t (*intxhandler)(int, void *))
8298 {
8299 	int rc, i;
8300 
8301 	/*
8302 	 * initialize h->q[x] = x so that interrupt handlers know which
8303 	 * queue to process.
8304 	 */
8305 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8306 		h->q[i] = (u8) i;
8307 
8308 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8309 		/* If performant mode and MSI-X, use multiple reply queues */
8310 		for (i = 0; i < h->msix_vectors; i++) {
8311 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8312 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8313 					0, h->intrname[i],
8314 					&h->q[i]);
8315 			if (rc) {
8316 				int j;
8317 
8318 				dev_err(&h->pdev->dev,
8319 					"failed to get irq %d for %s\n",
8320 				       pci_irq_vector(h->pdev, i), h->devname);
8321 				for (j = 0; j < i; j++) {
8322 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8323 					h->q[j] = 0;
8324 				}
8325 				for (; j < MAX_REPLY_QUEUES; j++)
8326 					h->q[j] = 0;
8327 				return rc;
8328 			}
8329 		}
8330 	} else {
8331 		/* Use single reply pool */
8332 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8333 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8334 				h->msix_vectors ? "x" : "");
8335 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8336 				msixhandler, 0,
8337 				h->intrname[0],
8338 				&h->q[h->intr_mode]);
8339 		} else {
8340 			sprintf(h->intrname[h->intr_mode],
8341 				"%s-intx", h->devname);
8342 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8343 				intxhandler, IRQF_SHARED,
8344 				h->intrname[0],
8345 				&h->q[h->intr_mode]);
8346 		}
8347 	}
8348 	if (rc) {
8349 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8350 		       pci_irq_vector(h->pdev, 0), h->devname);
8351 		hpsa_free_irqs(h);
8352 		return -ENODEV;
8353 	}
8354 	return 0;
8355 }
8356 
8357 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8358 {
8359 	int rc;
8360 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8361 
8362 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8363 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8364 	if (rc) {
8365 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8366 		return rc;
8367 	}
8368 
8369 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8370 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8371 	if (rc) {
8372 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8373 			"after soft reset.\n");
8374 		return rc;
8375 	}
8376 
8377 	return 0;
8378 }
8379 
8380 static void hpsa_free_reply_queues(struct ctlr_info *h)
8381 {
8382 	int i;
8383 
8384 	for (i = 0; i < h->nreply_queues; i++) {
8385 		if (!h->reply_queue[i].head)
8386 			continue;
8387 		pci_free_consistent(h->pdev,
8388 					h->reply_queue_size,
8389 					h->reply_queue[i].head,
8390 					h->reply_queue[i].busaddr);
8391 		h->reply_queue[i].head = NULL;
8392 		h->reply_queue[i].busaddr = 0;
8393 	}
8394 	h->reply_queue_size = 0;
8395 }
8396 
8397 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8398 {
8399 	hpsa_free_performant_mode(h);		/* init_one 7 */
8400 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8401 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8402 	hpsa_free_irqs(h);			/* init_one 4 */
8403 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8404 	h->scsi_host = NULL;			/* init_one 3 */
8405 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8406 	free_percpu(h->lockup_detected);	/* init_one 2 */
8407 	h->lockup_detected = NULL;		/* init_one 2 */
8408 	if (h->resubmit_wq) {
8409 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8410 		h->resubmit_wq = NULL;
8411 	}
8412 	if (h->rescan_ctlr_wq) {
8413 		destroy_workqueue(h->rescan_ctlr_wq);
8414 		h->rescan_ctlr_wq = NULL;
8415 	}
8416 	kfree(h);				/* init_one 1 */
8417 }
8418 
8419 /* Called when controller lockup detected. */
8420 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8421 {
8422 	int i, refcount;
8423 	struct CommandList *c;
8424 	int failcount = 0;
8425 
8426 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8427 	for (i = 0; i < h->nr_cmds; i++) {
8428 		c = h->cmd_pool + i;
8429 		refcount = atomic_inc_return(&c->refcount);
8430 		if (refcount > 1) {
8431 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8432 			finish_cmd(c);
8433 			atomic_dec(&h->commands_outstanding);
8434 			failcount++;
8435 		}
8436 		cmd_free(h, c);
8437 	}
8438 	dev_warn(&h->pdev->dev,
8439 		"failed %d commands in fail_all\n", failcount);
8440 }
8441 
8442 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8443 {
8444 	int cpu;
8445 
8446 	for_each_online_cpu(cpu) {
8447 		u32 *lockup_detected;
8448 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8449 		*lockup_detected = value;
8450 	}
8451 	wmb(); /* be sure the per-cpu variables are out to memory */
8452 }
8453 
8454 static void controller_lockup_detected(struct ctlr_info *h)
8455 {
8456 	unsigned long flags;
8457 	u32 lockup_detected;
8458 
8459 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8460 	spin_lock_irqsave(&h->lock, flags);
8461 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8462 	if (!lockup_detected) {
8463 		/* no heartbeat, but controller gave us a zero. */
8464 		dev_warn(&h->pdev->dev,
8465 			"lockup detected after %d but scratchpad register is zero\n",
8466 			h->heartbeat_sample_interval / HZ);
8467 		lockup_detected = 0xffffffff;
8468 	}
8469 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8470 	spin_unlock_irqrestore(&h->lock, flags);
8471 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8472 			lockup_detected, h->heartbeat_sample_interval / HZ);
8473 	pci_disable_device(h->pdev);
8474 	fail_all_outstanding_cmds(h);
8475 }
8476 
8477 static int detect_controller_lockup(struct ctlr_info *h)
8478 {
8479 	u64 now;
8480 	u32 heartbeat;
8481 	unsigned long flags;
8482 
8483 	now = get_jiffies_64();
8484 	/* If we've received an interrupt recently, we're ok. */
8485 	if (time_after64(h->last_intr_timestamp +
8486 				(h->heartbeat_sample_interval), now))
8487 		return false;
8488 
8489 	/*
8490 	 * If we've already checked the heartbeat recently, we're ok.
8491 	 * This could happen if someone sends us a signal. We
8492 	 * otherwise don't care about signals in this thread.
8493 	 */
8494 	if (time_after64(h->last_heartbeat_timestamp +
8495 				(h->heartbeat_sample_interval), now))
8496 		return false;
8497 
8498 	/* If heartbeat has not changed since we last looked, we're not ok. */
8499 	spin_lock_irqsave(&h->lock, flags);
8500 	heartbeat = readl(&h->cfgtable->HeartBeat);
8501 	spin_unlock_irqrestore(&h->lock, flags);
8502 	if (h->last_heartbeat == heartbeat) {
8503 		controller_lockup_detected(h);
8504 		return true;
8505 	}
8506 
8507 	/* We're ok. */
8508 	h->last_heartbeat = heartbeat;
8509 	h->last_heartbeat_timestamp = now;
8510 	return false;
8511 }
8512 
8513 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8514 {
8515 	int i;
8516 	char *event_type;
8517 
8518 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8519 		return;
8520 
8521 	/* Ask the controller to clear the events we're handling. */
8522 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8523 			| CFGTBL_Trans_io_accel2)) &&
8524 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8525 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8526 
8527 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8528 			event_type = "state change";
8529 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8530 			event_type = "configuration change";
8531 		/* Stop sending new RAID offload reqs via the IO accelerator */
8532 		scsi_block_requests(h->scsi_host);
8533 		for (i = 0; i < h->ndevices; i++) {
8534 			h->dev[i]->offload_enabled = 0;
8535 			h->dev[i]->offload_to_be_enabled = 0;
8536 		}
8537 		hpsa_drain_accel_commands(h);
8538 		/* Set 'accelerator path config change' bit */
8539 		dev_warn(&h->pdev->dev,
8540 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8541 			h->events, event_type);
8542 		writel(h->events, &(h->cfgtable->clear_event_notify));
8543 		/* Set the "clear event notify field update" bit 6 */
8544 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8545 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8546 		hpsa_wait_for_clear_event_notify_ack(h);
8547 		scsi_unblock_requests(h->scsi_host);
8548 	} else {
8549 		/* Acknowledge controller notification events. */
8550 		writel(h->events, &(h->cfgtable->clear_event_notify));
8551 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8552 		hpsa_wait_for_clear_event_notify_ack(h);
8553 #if 0
8554 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8555 		hpsa_wait_for_mode_change_ack(h);
8556 #endif
8557 	}
8558 	return;
8559 }
8560 
8561 /* Check a register on the controller to see if there are configuration
8562  * changes (added/changed/removed logical drives, etc.) which mean that
8563  * we should rescan the controller for devices.
8564  * Also check flag for driver-initiated rescan.
8565  */
8566 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8567 {
8568 	if (h->drv_req_rescan) {
8569 		h->drv_req_rescan = 0;
8570 		return 1;
8571 	}
8572 
8573 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8574 		return 0;
8575 
8576 	h->events = readl(&(h->cfgtable->event_notify));
8577 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8578 }
8579 
8580 /*
8581  * Check if any of the offline devices have become ready
8582  */
8583 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8584 {
8585 	unsigned long flags;
8586 	struct offline_device_entry *d;
8587 	struct list_head *this, *tmp;
8588 
8589 	spin_lock_irqsave(&h->offline_device_lock, flags);
8590 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8591 		d = list_entry(this, struct offline_device_entry,
8592 				offline_list);
8593 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8594 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8595 			spin_lock_irqsave(&h->offline_device_lock, flags);
8596 			list_del(&d->offline_list);
8597 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8598 			return 1;
8599 		}
8600 		spin_lock_irqsave(&h->offline_device_lock, flags);
8601 	}
8602 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8603 	return 0;
8604 }
8605 
8606 static int hpsa_luns_changed(struct ctlr_info *h)
8607 {
8608 	int rc = 1; /* assume there are changes */
8609 	struct ReportLUNdata *logdev = NULL;
8610 
8611 	/* if we can't find out if lun data has changed,
8612 	 * assume that it has.
8613 	 */
8614 
8615 	if (!h->lastlogicals)
8616 		return rc;
8617 
8618 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8619 	if (!logdev)
8620 		return rc;
8621 
8622 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8623 		dev_warn(&h->pdev->dev,
8624 			"report luns failed, can't track lun changes.\n");
8625 		goto out;
8626 	}
8627 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8628 		dev_info(&h->pdev->dev,
8629 			"Lun changes detected.\n");
8630 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8631 		goto out;
8632 	} else
8633 		rc = 0; /* no changes detected. */
8634 out:
8635 	kfree(logdev);
8636 	return rc;
8637 }
8638 
8639 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8640 {
8641 	unsigned long flags;
8642 	struct ctlr_info *h = container_of(to_delayed_work(work),
8643 					struct ctlr_info, rescan_ctlr_work);
8644 
8645 
8646 	if (h->remove_in_progress)
8647 		return;
8648 
8649 	/*
8650 	 * Do the scan after the reset
8651 	 */
8652 	if (h->reset_in_progress) {
8653 		h->drv_req_rescan = 1;
8654 		return;
8655 	}
8656 
8657 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8658 		scsi_host_get(h->scsi_host);
8659 		hpsa_ack_ctlr_events(h);
8660 		hpsa_scan_start(h->scsi_host);
8661 		scsi_host_put(h->scsi_host);
8662 	} else if (h->discovery_polling) {
8663 		hpsa_disable_rld_caching(h);
8664 		if (hpsa_luns_changed(h)) {
8665 			struct Scsi_Host *sh = NULL;
8666 
8667 			dev_info(&h->pdev->dev,
8668 				"driver discovery polling rescan.\n");
8669 			sh = scsi_host_get(h->scsi_host);
8670 			if (sh != NULL) {
8671 				hpsa_scan_start(sh);
8672 				scsi_host_put(sh);
8673 			}
8674 		}
8675 	}
8676 	spin_lock_irqsave(&h->lock, flags);
8677 	if (!h->remove_in_progress)
8678 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8679 				h->heartbeat_sample_interval);
8680 	spin_unlock_irqrestore(&h->lock, flags);
8681 }
8682 
8683 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8684 {
8685 	unsigned long flags;
8686 	struct ctlr_info *h = container_of(to_delayed_work(work),
8687 					struct ctlr_info, monitor_ctlr_work);
8688 
8689 	detect_controller_lockup(h);
8690 	if (lockup_detected(h))
8691 		return;
8692 
8693 	spin_lock_irqsave(&h->lock, flags);
8694 	if (!h->remove_in_progress)
8695 		schedule_delayed_work(&h->monitor_ctlr_work,
8696 				h->heartbeat_sample_interval);
8697 	spin_unlock_irqrestore(&h->lock, flags);
8698 }
8699 
8700 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8701 						char *name)
8702 {
8703 	struct workqueue_struct *wq = NULL;
8704 
8705 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8706 	if (!wq)
8707 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8708 
8709 	return wq;
8710 }
8711 
8712 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8713 {
8714 	int dac, rc;
8715 	struct ctlr_info *h;
8716 	int try_soft_reset = 0;
8717 	unsigned long flags;
8718 	u32 board_id;
8719 
8720 	if (number_of_controllers == 0)
8721 		printk(KERN_INFO DRIVER_NAME "\n");
8722 
8723 	rc = hpsa_lookup_board_id(pdev, &board_id);
8724 	if (rc < 0) {
8725 		dev_warn(&pdev->dev, "Board ID not found\n");
8726 		return rc;
8727 	}
8728 
8729 	rc = hpsa_init_reset_devices(pdev, board_id);
8730 	if (rc) {
8731 		if (rc != -ENOTSUPP)
8732 			return rc;
8733 		/* If the reset fails in a particular way (it has no way to do
8734 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8735 		 * a soft reset once we get the controller configured up to the
8736 		 * point that it can accept a command.
8737 		 */
8738 		try_soft_reset = 1;
8739 		rc = 0;
8740 	}
8741 
8742 reinit_after_soft_reset:
8743 
8744 	/* Command structures must be aligned on a 32-byte boundary because
8745 	 * the 5 lower bits of the address are used by the hardware. and by
8746 	 * the driver.  See comments in hpsa.h for more info.
8747 	 */
8748 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8749 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8750 	if (!h) {
8751 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8752 		return -ENOMEM;
8753 	}
8754 
8755 	h->pdev = pdev;
8756 
8757 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8758 	INIT_LIST_HEAD(&h->offline_device_list);
8759 	spin_lock_init(&h->lock);
8760 	spin_lock_init(&h->offline_device_lock);
8761 	spin_lock_init(&h->scan_lock);
8762 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8763 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8764 
8765 	/* Allocate and clear per-cpu variable lockup_detected */
8766 	h->lockup_detected = alloc_percpu(u32);
8767 	if (!h->lockup_detected) {
8768 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8769 		rc = -ENOMEM;
8770 		goto clean1;	/* aer/h */
8771 	}
8772 	set_lockup_detected_for_all_cpus(h, 0);
8773 
8774 	rc = hpsa_pci_init(h);
8775 	if (rc)
8776 		goto clean2;	/* lu, aer/h */
8777 
8778 	/* relies on h-> settings made by hpsa_pci_init, including
8779 	 * interrupt_mode h->intr */
8780 	rc = hpsa_scsi_host_alloc(h);
8781 	if (rc)
8782 		goto clean2_5;	/* pci, lu, aer/h */
8783 
8784 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8785 	h->ctlr = number_of_controllers;
8786 	number_of_controllers++;
8787 
8788 	/* configure PCI DMA stuff */
8789 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8790 	if (rc == 0) {
8791 		dac = 1;
8792 	} else {
8793 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8794 		if (rc == 0) {
8795 			dac = 0;
8796 		} else {
8797 			dev_err(&pdev->dev, "no suitable DMA available\n");
8798 			goto clean3;	/* shost, pci, lu, aer/h */
8799 		}
8800 	}
8801 
8802 	/* make sure the board interrupts are off */
8803 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8804 
8805 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8806 	if (rc)
8807 		goto clean3;	/* shost, pci, lu, aer/h */
8808 	rc = hpsa_alloc_cmd_pool(h);
8809 	if (rc)
8810 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8811 	rc = hpsa_alloc_sg_chain_blocks(h);
8812 	if (rc)
8813 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8814 	init_waitqueue_head(&h->scan_wait_queue);
8815 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8816 	init_waitqueue_head(&h->event_sync_wait_queue);
8817 	mutex_init(&h->reset_mutex);
8818 	h->scan_finished = 1; /* no scan currently in progress */
8819 	h->scan_waiting = 0;
8820 
8821 	pci_set_drvdata(pdev, h);
8822 	h->ndevices = 0;
8823 
8824 	spin_lock_init(&h->devlock);
8825 	rc = hpsa_put_ctlr_into_performant_mode(h);
8826 	if (rc)
8827 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8828 
8829 	/* create the resubmit workqueue */
8830 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8831 	if (!h->rescan_ctlr_wq) {
8832 		rc = -ENOMEM;
8833 		goto clean7;
8834 	}
8835 
8836 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8837 	if (!h->resubmit_wq) {
8838 		rc = -ENOMEM;
8839 		goto clean7;	/* aer/h */
8840 	}
8841 
8842 	/*
8843 	 * At this point, the controller is ready to take commands.
8844 	 * Now, if reset_devices and the hard reset didn't work, try
8845 	 * the soft reset and see if that works.
8846 	 */
8847 	if (try_soft_reset) {
8848 
8849 		/* This is kind of gross.  We may or may not get a completion
8850 		 * from the soft reset command, and if we do, then the value
8851 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8852 		 * after the reset throwing away any completions we get during
8853 		 * that time.  Unregister the interrupt handler and register
8854 		 * fake ones to scoop up any residual completions.
8855 		 */
8856 		spin_lock_irqsave(&h->lock, flags);
8857 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8858 		spin_unlock_irqrestore(&h->lock, flags);
8859 		hpsa_free_irqs(h);
8860 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8861 					hpsa_intx_discard_completions);
8862 		if (rc) {
8863 			dev_warn(&h->pdev->dev,
8864 				"Failed to request_irq after soft reset.\n");
8865 			/*
8866 			 * cannot goto clean7 or free_irqs will be called
8867 			 * again. Instead, do its work
8868 			 */
8869 			hpsa_free_performant_mode(h);	/* clean7 */
8870 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8871 			hpsa_free_cmd_pool(h);		/* clean5 */
8872 			/*
8873 			 * skip hpsa_free_irqs(h) clean4 since that
8874 			 * was just called before request_irqs failed
8875 			 */
8876 			goto clean3;
8877 		}
8878 
8879 		rc = hpsa_kdump_soft_reset(h);
8880 		if (rc)
8881 			/* Neither hard nor soft reset worked, we're hosed. */
8882 			goto clean7;
8883 
8884 		dev_info(&h->pdev->dev, "Board READY.\n");
8885 		dev_info(&h->pdev->dev,
8886 			"Waiting for stale completions to drain.\n");
8887 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8888 		msleep(10000);
8889 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8890 
8891 		rc = controller_reset_failed(h->cfgtable);
8892 		if (rc)
8893 			dev_info(&h->pdev->dev,
8894 				"Soft reset appears to have failed.\n");
8895 
8896 		/* since the controller's reset, we have to go back and re-init
8897 		 * everything.  Easiest to just forget what we've done and do it
8898 		 * all over again.
8899 		 */
8900 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8901 		try_soft_reset = 0;
8902 		if (rc)
8903 			/* don't goto clean, we already unallocated */
8904 			return -ENODEV;
8905 
8906 		goto reinit_after_soft_reset;
8907 	}
8908 
8909 	/* Enable Accelerated IO path at driver layer */
8910 	h->acciopath_status = 1;
8911 	/* Disable discovery polling.*/
8912 	h->discovery_polling = 0;
8913 
8914 
8915 	/* Turn the interrupts on so we can service requests */
8916 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8917 
8918 	hpsa_hba_inquiry(h);
8919 
8920 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8921 	if (!h->lastlogicals)
8922 		dev_info(&h->pdev->dev,
8923 			"Can't track change to report lun data\n");
8924 
8925 	/* hook into SCSI subsystem */
8926 	rc = hpsa_scsi_add_host(h);
8927 	if (rc)
8928 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8929 
8930 	/* Monitor the controller for firmware lockups */
8931 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8932 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8933 	schedule_delayed_work(&h->monitor_ctlr_work,
8934 				h->heartbeat_sample_interval);
8935 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8936 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8937 				h->heartbeat_sample_interval);
8938 	return 0;
8939 
8940 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8941 	hpsa_free_performant_mode(h);
8942 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8943 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8944 	hpsa_free_sg_chain_blocks(h);
8945 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8946 	hpsa_free_cmd_pool(h);
8947 clean4: /* irq, shost, pci, lu, aer/h */
8948 	hpsa_free_irqs(h);
8949 clean3: /* shost, pci, lu, aer/h */
8950 	scsi_host_put(h->scsi_host);
8951 	h->scsi_host = NULL;
8952 clean2_5: /* pci, lu, aer/h */
8953 	hpsa_free_pci_init(h);
8954 clean2: /* lu, aer/h */
8955 	if (h->lockup_detected) {
8956 		free_percpu(h->lockup_detected);
8957 		h->lockup_detected = NULL;
8958 	}
8959 clean1:	/* wq/aer/h */
8960 	if (h->resubmit_wq) {
8961 		destroy_workqueue(h->resubmit_wq);
8962 		h->resubmit_wq = NULL;
8963 	}
8964 	if (h->rescan_ctlr_wq) {
8965 		destroy_workqueue(h->rescan_ctlr_wq);
8966 		h->rescan_ctlr_wq = NULL;
8967 	}
8968 	kfree(h);
8969 	return rc;
8970 }
8971 
8972 static void hpsa_flush_cache(struct ctlr_info *h)
8973 {
8974 	char *flush_buf;
8975 	struct CommandList *c;
8976 	int rc;
8977 
8978 	if (unlikely(lockup_detected(h)))
8979 		return;
8980 	flush_buf = kzalloc(4, GFP_KERNEL);
8981 	if (!flush_buf)
8982 		return;
8983 
8984 	c = cmd_alloc(h);
8985 
8986 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8987 		RAID_CTLR_LUNID, TYPE_CMD)) {
8988 		goto out;
8989 	}
8990 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8991 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8992 	if (rc)
8993 		goto out;
8994 	if (c->err_info->CommandStatus != 0)
8995 out:
8996 		dev_warn(&h->pdev->dev,
8997 			"error flushing cache on controller\n");
8998 	cmd_free(h, c);
8999 	kfree(flush_buf);
9000 }
9001 
9002 /* Make controller gather fresh report lun data each time we
9003  * send down a report luns request
9004  */
9005 static void hpsa_disable_rld_caching(struct ctlr_info *h)
9006 {
9007 	u32 *options;
9008 	struct CommandList *c;
9009 	int rc;
9010 
9011 	/* Don't bother trying to set diag options if locked up */
9012 	if (unlikely(h->lockup_detected))
9013 		return;
9014 
9015 	options = kzalloc(sizeof(*options), GFP_KERNEL);
9016 	if (!options)
9017 		return;
9018 
9019 	c = cmd_alloc(h);
9020 
9021 	/* first, get the current diag options settings */
9022 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9023 		RAID_CTLR_LUNID, TYPE_CMD))
9024 		goto errout;
9025 
9026 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9027 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9028 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9029 		goto errout;
9030 
9031 	/* Now, set the bit for disabling the RLD caching */
9032 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9033 
9034 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9035 		RAID_CTLR_LUNID, TYPE_CMD))
9036 		goto errout;
9037 
9038 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9039 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9040 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9041 		goto errout;
9042 
9043 	/* Now verify that it got set: */
9044 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9045 		RAID_CTLR_LUNID, TYPE_CMD))
9046 		goto errout;
9047 
9048 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9049 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9050 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9051 		goto errout;
9052 
9053 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9054 		goto out;
9055 
9056 errout:
9057 	dev_err(&h->pdev->dev,
9058 			"Error: failed to disable report lun data caching.\n");
9059 out:
9060 	cmd_free(h, c);
9061 	kfree(options);
9062 }
9063 
9064 static void hpsa_shutdown(struct pci_dev *pdev)
9065 {
9066 	struct ctlr_info *h;
9067 
9068 	h = pci_get_drvdata(pdev);
9069 	/* Turn board interrupts off  and send the flush cache command
9070 	 * sendcmd will turn off interrupt, and send the flush...
9071 	 * To write all data in the battery backed cache to disks
9072 	 */
9073 	hpsa_flush_cache(h);
9074 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9075 	hpsa_free_irqs(h);			/* init_one 4 */
9076 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9077 }
9078 
9079 static void hpsa_free_device_info(struct ctlr_info *h)
9080 {
9081 	int i;
9082 
9083 	for (i = 0; i < h->ndevices; i++) {
9084 		kfree(h->dev[i]);
9085 		h->dev[i] = NULL;
9086 	}
9087 }
9088 
9089 static void hpsa_remove_one(struct pci_dev *pdev)
9090 {
9091 	struct ctlr_info *h;
9092 	unsigned long flags;
9093 
9094 	if (pci_get_drvdata(pdev) == NULL) {
9095 		dev_err(&pdev->dev, "unable to remove device\n");
9096 		return;
9097 	}
9098 	h = pci_get_drvdata(pdev);
9099 
9100 	/* Get rid of any controller monitoring work items */
9101 	spin_lock_irqsave(&h->lock, flags);
9102 	h->remove_in_progress = 1;
9103 	spin_unlock_irqrestore(&h->lock, flags);
9104 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9105 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9106 	destroy_workqueue(h->rescan_ctlr_wq);
9107 	destroy_workqueue(h->resubmit_wq);
9108 
9109 	/*
9110 	 * Call before disabling interrupts.
9111 	 * scsi_remove_host can trigger I/O operations especially
9112 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9113 	 * operations which cannot complete and will hang the system.
9114 	 */
9115 	if (h->scsi_host)
9116 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9117 	/* includes hpsa_free_irqs - init_one 4 */
9118 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9119 	hpsa_shutdown(pdev);
9120 
9121 	hpsa_free_device_info(h);		/* scan */
9122 
9123 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9124 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9125 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9126 	hpsa_free_performant_mode(h);			/* init_one 7 */
9127 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9128 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9129 	kfree(h->lastlogicals);
9130 
9131 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9132 
9133 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9134 	h->scsi_host = NULL;				/* init_one 3 */
9135 
9136 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9137 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9138 
9139 	free_percpu(h->lockup_detected);		/* init_one 2 */
9140 	h->lockup_detected = NULL;			/* init_one 2 */
9141 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9142 
9143 	hpsa_delete_sas_host(h);
9144 
9145 	kfree(h);					/* init_one 1 */
9146 }
9147 
9148 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9149 	__attribute__((unused)) pm_message_t state)
9150 {
9151 	return -ENOSYS;
9152 }
9153 
9154 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9155 {
9156 	return -ENOSYS;
9157 }
9158 
9159 static struct pci_driver hpsa_pci_driver = {
9160 	.name = HPSA,
9161 	.probe = hpsa_init_one,
9162 	.remove = hpsa_remove_one,
9163 	.id_table = hpsa_pci_device_id,	/* id_table */
9164 	.shutdown = hpsa_shutdown,
9165 	.suspend = hpsa_suspend,
9166 	.resume = hpsa_resume,
9167 };
9168 
9169 /* Fill in bucket_map[], given nsgs (the max number of
9170  * scatter gather elements supported) and bucket[],
9171  * which is an array of 8 integers.  The bucket[] array
9172  * contains 8 different DMA transfer sizes (in 16
9173  * byte increments) which the controller uses to fetch
9174  * commands.  This function fills in bucket_map[], which
9175  * maps a given number of scatter gather elements to one of
9176  * the 8 DMA transfer sizes.  The point of it is to allow the
9177  * controller to only do as much DMA as needed to fetch the
9178  * command, with the DMA transfer size encoded in the lower
9179  * bits of the command address.
9180  */
9181 static void  calc_bucket_map(int bucket[], int num_buckets,
9182 	int nsgs, int min_blocks, u32 *bucket_map)
9183 {
9184 	int i, j, b, size;
9185 
9186 	/* Note, bucket_map must have nsgs+1 entries. */
9187 	for (i = 0; i <= nsgs; i++) {
9188 		/* Compute size of a command with i SG entries */
9189 		size = i + min_blocks;
9190 		b = num_buckets; /* Assume the biggest bucket */
9191 		/* Find the bucket that is just big enough */
9192 		for (j = 0; j < num_buckets; j++) {
9193 			if (bucket[j] >= size) {
9194 				b = j;
9195 				break;
9196 			}
9197 		}
9198 		/* for a command with i SG entries, use bucket b. */
9199 		bucket_map[i] = b;
9200 	}
9201 }
9202 
9203 /*
9204  * return -ENODEV on err, 0 on success (or no action)
9205  * allocates numerous items that must be freed later
9206  */
9207 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9208 {
9209 	int i;
9210 	unsigned long register_value;
9211 	unsigned long transMethod = CFGTBL_Trans_Performant |
9212 			(trans_support & CFGTBL_Trans_use_short_tags) |
9213 				CFGTBL_Trans_enable_directed_msix |
9214 			(trans_support & (CFGTBL_Trans_io_accel1 |
9215 				CFGTBL_Trans_io_accel2));
9216 	struct access_method access = SA5_performant_access;
9217 
9218 	/* This is a bit complicated.  There are 8 registers on
9219 	 * the controller which we write to to tell it 8 different
9220 	 * sizes of commands which there may be.  It's a way of
9221 	 * reducing the DMA done to fetch each command.  Encoded into
9222 	 * each command's tag are 3 bits which communicate to the controller
9223 	 * which of the eight sizes that command fits within.  The size of
9224 	 * each command depends on how many scatter gather entries there are.
9225 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9226 	 * with the number of 16-byte blocks a command of that size requires.
9227 	 * The smallest command possible requires 5 such 16 byte blocks.
9228 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9229 	 * blocks.  Note, this only extends to the SG entries contained
9230 	 * within the command block, and does not extend to chained blocks
9231 	 * of SG elements.   bft[] contains the eight values we write to
9232 	 * the registers.  They are not evenly distributed, but have more
9233 	 * sizes for small commands, and fewer sizes for larger commands.
9234 	 */
9235 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9236 #define MIN_IOACCEL2_BFT_ENTRY 5
9237 #define HPSA_IOACCEL2_HEADER_SZ 4
9238 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9239 			13, 14, 15, 16, 17, 18, 19,
9240 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9241 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9242 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9243 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9244 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9245 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9246 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9247 	/*  5 = 1 s/g entry or 4k
9248 	 *  6 = 2 s/g entry or 8k
9249 	 *  8 = 4 s/g entry or 16k
9250 	 * 10 = 6 s/g entry or 24k
9251 	 */
9252 
9253 	/* If the controller supports either ioaccel method then
9254 	 * we can also use the RAID stack submit path that does not
9255 	 * perform the superfluous readl() after each command submission.
9256 	 */
9257 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9258 		access = SA5_performant_access_no_read;
9259 
9260 	/* Controller spec: zero out this buffer. */
9261 	for (i = 0; i < h->nreply_queues; i++)
9262 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9263 
9264 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9265 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9266 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9267 	for (i = 0; i < 8; i++)
9268 		writel(bft[i], &h->transtable->BlockFetch[i]);
9269 
9270 	/* size of controller ring buffer */
9271 	writel(h->max_commands, &h->transtable->RepQSize);
9272 	writel(h->nreply_queues, &h->transtable->RepQCount);
9273 	writel(0, &h->transtable->RepQCtrAddrLow32);
9274 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9275 
9276 	for (i = 0; i < h->nreply_queues; i++) {
9277 		writel(0, &h->transtable->RepQAddr[i].upper);
9278 		writel(h->reply_queue[i].busaddr,
9279 			&h->transtable->RepQAddr[i].lower);
9280 	}
9281 
9282 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9283 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9284 	/*
9285 	 * enable outbound interrupt coalescing in accelerator mode;
9286 	 */
9287 	if (trans_support & CFGTBL_Trans_io_accel1) {
9288 		access = SA5_ioaccel_mode1_access;
9289 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9290 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9291 	} else
9292 		if (trans_support & CFGTBL_Trans_io_accel2)
9293 			access = SA5_ioaccel_mode2_access;
9294 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9295 	if (hpsa_wait_for_mode_change_ack(h)) {
9296 		dev_err(&h->pdev->dev,
9297 			"performant mode problem - doorbell timeout\n");
9298 		return -ENODEV;
9299 	}
9300 	register_value = readl(&(h->cfgtable->TransportActive));
9301 	if (!(register_value & CFGTBL_Trans_Performant)) {
9302 		dev_err(&h->pdev->dev,
9303 			"performant mode problem - transport not active\n");
9304 		return -ENODEV;
9305 	}
9306 	/* Change the access methods to the performant access methods */
9307 	h->access = access;
9308 	h->transMethod = transMethod;
9309 
9310 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9311 		(trans_support & CFGTBL_Trans_io_accel2)))
9312 		return 0;
9313 
9314 	if (trans_support & CFGTBL_Trans_io_accel1) {
9315 		/* Set up I/O accelerator mode */
9316 		for (i = 0; i < h->nreply_queues; i++) {
9317 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9318 			h->reply_queue[i].current_entry =
9319 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9320 		}
9321 		bft[7] = h->ioaccel_maxsg + 8;
9322 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9323 				h->ioaccel1_blockFetchTable);
9324 
9325 		/* initialize all reply queue entries to unused */
9326 		for (i = 0; i < h->nreply_queues; i++)
9327 			memset(h->reply_queue[i].head,
9328 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9329 				h->reply_queue_size);
9330 
9331 		/* set all the constant fields in the accelerator command
9332 		 * frames once at init time to save CPU cycles later.
9333 		 */
9334 		for (i = 0; i < h->nr_cmds; i++) {
9335 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9336 
9337 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9338 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9339 					(i * sizeof(struct ErrorInfo)));
9340 			cp->err_info_len = sizeof(struct ErrorInfo);
9341 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9342 			cp->host_context_flags =
9343 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9344 			cp->timeout_sec = 0;
9345 			cp->ReplyQueue = 0;
9346 			cp->tag =
9347 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9348 			cp->host_addr =
9349 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9350 					(i * sizeof(struct io_accel1_cmd)));
9351 		}
9352 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9353 		u64 cfg_offset, cfg_base_addr_index;
9354 		u32 bft2_offset, cfg_base_addr;
9355 		int rc;
9356 
9357 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9358 			&cfg_base_addr_index, &cfg_offset);
9359 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9360 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9361 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9362 				4, h->ioaccel2_blockFetchTable);
9363 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9364 		BUILD_BUG_ON(offsetof(struct CfgTable,
9365 				io_accel_request_size_offset) != 0xb8);
9366 		h->ioaccel2_bft2_regs =
9367 			remap_pci_mem(pci_resource_start(h->pdev,
9368 					cfg_base_addr_index) +
9369 					cfg_offset + bft2_offset,
9370 					ARRAY_SIZE(bft2) *
9371 					sizeof(*h->ioaccel2_bft2_regs));
9372 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9373 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9374 	}
9375 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9376 	if (hpsa_wait_for_mode_change_ack(h)) {
9377 		dev_err(&h->pdev->dev,
9378 			"performant mode problem - enabling ioaccel mode\n");
9379 		return -ENODEV;
9380 	}
9381 	return 0;
9382 }
9383 
9384 /* Free ioaccel1 mode command blocks and block fetch table */
9385 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9386 {
9387 	if (h->ioaccel_cmd_pool) {
9388 		pci_free_consistent(h->pdev,
9389 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9390 			h->ioaccel_cmd_pool,
9391 			h->ioaccel_cmd_pool_dhandle);
9392 		h->ioaccel_cmd_pool = NULL;
9393 		h->ioaccel_cmd_pool_dhandle = 0;
9394 	}
9395 	kfree(h->ioaccel1_blockFetchTable);
9396 	h->ioaccel1_blockFetchTable = NULL;
9397 }
9398 
9399 /* Allocate ioaccel1 mode command blocks and block fetch table */
9400 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9401 {
9402 	h->ioaccel_maxsg =
9403 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9404 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9405 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9406 
9407 	/* Command structures must be aligned on a 128-byte boundary
9408 	 * because the 7 lower bits of the address are used by the
9409 	 * hardware.
9410 	 */
9411 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9412 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9413 	h->ioaccel_cmd_pool =
9414 		pci_alloc_consistent(h->pdev,
9415 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9416 			&(h->ioaccel_cmd_pool_dhandle));
9417 
9418 	h->ioaccel1_blockFetchTable =
9419 		kmalloc(((h->ioaccel_maxsg + 1) *
9420 				sizeof(u32)), GFP_KERNEL);
9421 
9422 	if ((h->ioaccel_cmd_pool == NULL) ||
9423 		(h->ioaccel1_blockFetchTable == NULL))
9424 		goto clean_up;
9425 
9426 	memset(h->ioaccel_cmd_pool, 0,
9427 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9428 	return 0;
9429 
9430 clean_up:
9431 	hpsa_free_ioaccel1_cmd_and_bft(h);
9432 	return -ENOMEM;
9433 }
9434 
9435 /* Free ioaccel2 mode command blocks and block fetch table */
9436 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9437 {
9438 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9439 
9440 	if (h->ioaccel2_cmd_pool) {
9441 		pci_free_consistent(h->pdev,
9442 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9443 			h->ioaccel2_cmd_pool,
9444 			h->ioaccel2_cmd_pool_dhandle);
9445 		h->ioaccel2_cmd_pool = NULL;
9446 		h->ioaccel2_cmd_pool_dhandle = 0;
9447 	}
9448 	kfree(h->ioaccel2_blockFetchTable);
9449 	h->ioaccel2_blockFetchTable = NULL;
9450 }
9451 
9452 /* Allocate ioaccel2 mode command blocks and block fetch table */
9453 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9454 {
9455 	int rc;
9456 
9457 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9458 
9459 	h->ioaccel_maxsg =
9460 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9461 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9462 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9463 
9464 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9465 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9466 	h->ioaccel2_cmd_pool =
9467 		pci_alloc_consistent(h->pdev,
9468 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9469 			&(h->ioaccel2_cmd_pool_dhandle));
9470 
9471 	h->ioaccel2_blockFetchTable =
9472 		kmalloc(((h->ioaccel_maxsg + 1) *
9473 				sizeof(u32)), GFP_KERNEL);
9474 
9475 	if ((h->ioaccel2_cmd_pool == NULL) ||
9476 		(h->ioaccel2_blockFetchTable == NULL)) {
9477 		rc = -ENOMEM;
9478 		goto clean_up;
9479 	}
9480 
9481 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9482 	if (rc)
9483 		goto clean_up;
9484 
9485 	memset(h->ioaccel2_cmd_pool, 0,
9486 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9487 	return 0;
9488 
9489 clean_up:
9490 	hpsa_free_ioaccel2_cmd_and_bft(h);
9491 	return rc;
9492 }
9493 
9494 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9495 static void hpsa_free_performant_mode(struct ctlr_info *h)
9496 {
9497 	kfree(h->blockFetchTable);
9498 	h->blockFetchTable = NULL;
9499 	hpsa_free_reply_queues(h);
9500 	hpsa_free_ioaccel1_cmd_and_bft(h);
9501 	hpsa_free_ioaccel2_cmd_and_bft(h);
9502 }
9503 
9504 /* return -ENODEV on error, 0 on success (or no action)
9505  * allocates numerous items that must be freed later
9506  */
9507 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9508 {
9509 	u32 trans_support;
9510 	unsigned long transMethod = CFGTBL_Trans_Performant |
9511 					CFGTBL_Trans_use_short_tags;
9512 	int i, rc;
9513 
9514 	if (hpsa_simple_mode)
9515 		return 0;
9516 
9517 	trans_support = readl(&(h->cfgtable->TransportSupport));
9518 	if (!(trans_support & PERFORMANT_MODE))
9519 		return 0;
9520 
9521 	/* Check for I/O accelerator mode support */
9522 	if (trans_support & CFGTBL_Trans_io_accel1) {
9523 		transMethod |= CFGTBL_Trans_io_accel1 |
9524 				CFGTBL_Trans_enable_directed_msix;
9525 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9526 		if (rc)
9527 			return rc;
9528 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9529 		transMethod |= CFGTBL_Trans_io_accel2 |
9530 				CFGTBL_Trans_enable_directed_msix;
9531 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9532 		if (rc)
9533 			return rc;
9534 	}
9535 
9536 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9537 	hpsa_get_max_perf_mode_cmds(h);
9538 	/* Performant mode ring buffer and supporting data structures */
9539 	h->reply_queue_size = h->max_commands * sizeof(u64);
9540 
9541 	for (i = 0; i < h->nreply_queues; i++) {
9542 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9543 						h->reply_queue_size,
9544 						&(h->reply_queue[i].busaddr));
9545 		if (!h->reply_queue[i].head) {
9546 			rc = -ENOMEM;
9547 			goto clean1;	/* rq, ioaccel */
9548 		}
9549 		h->reply_queue[i].size = h->max_commands;
9550 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9551 		h->reply_queue[i].current_entry = 0;
9552 	}
9553 
9554 	/* Need a block fetch table for performant mode */
9555 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9556 				sizeof(u32)), GFP_KERNEL);
9557 	if (!h->blockFetchTable) {
9558 		rc = -ENOMEM;
9559 		goto clean1;	/* rq, ioaccel */
9560 	}
9561 
9562 	rc = hpsa_enter_performant_mode(h, trans_support);
9563 	if (rc)
9564 		goto clean2;	/* bft, rq, ioaccel */
9565 	return 0;
9566 
9567 clean2:	/* bft, rq, ioaccel */
9568 	kfree(h->blockFetchTable);
9569 	h->blockFetchTable = NULL;
9570 clean1:	/* rq, ioaccel */
9571 	hpsa_free_reply_queues(h);
9572 	hpsa_free_ioaccel1_cmd_and_bft(h);
9573 	hpsa_free_ioaccel2_cmd_and_bft(h);
9574 	return rc;
9575 }
9576 
9577 static int is_accelerated_cmd(struct CommandList *c)
9578 {
9579 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9580 }
9581 
9582 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9583 {
9584 	struct CommandList *c = NULL;
9585 	int i, accel_cmds_out;
9586 	int refcount;
9587 
9588 	do { /* wait for all outstanding ioaccel commands to drain out */
9589 		accel_cmds_out = 0;
9590 		for (i = 0; i < h->nr_cmds; i++) {
9591 			c = h->cmd_pool + i;
9592 			refcount = atomic_inc_return(&c->refcount);
9593 			if (refcount > 1) /* Command is allocated */
9594 				accel_cmds_out += is_accelerated_cmd(c);
9595 			cmd_free(h, c);
9596 		}
9597 		if (accel_cmds_out <= 0)
9598 			break;
9599 		msleep(100);
9600 	} while (1);
9601 }
9602 
9603 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9604 				struct hpsa_sas_port *hpsa_sas_port)
9605 {
9606 	struct hpsa_sas_phy *hpsa_sas_phy;
9607 	struct sas_phy *phy;
9608 
9609 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9610 	if (!hpsa_sas_phy)
9611 		return NULL;
9612 
9613 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9614 		hpsa_sas_port->next_phy_index);
9615 	if (!phy) {
9616 		kfree(hpsa_sas_phy);
9617 		return NULL;
9618 	}
9619 
9620 	hpsa_sas_port->next_phy_index++;
9621 	hpsa_sas_phy->phy = phy;
9622 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9623 
9624 	return hpsa_sas_phy;
9625 }
9626 
9627 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9628 {
9629 	struct sas_phy *phy = hpsa_sas_phy->phy;
9630 
9631 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9632 	sas_phy_free(phy);
9633 	if (hpsa_sas_phy->added_to_port)
9634 		list_del(&hpsa_sas_phy->phy_list_entry);
9635 	kfree(hpsa_sas_phy);
9636 }
9637 
9638 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9639 {
9640 	int rc;
9641 	struct hpsa_sas_port *hpsa_sas_port;
9642 	struct sas_phy *phy;
9643 	struct sas_identify *identify;
9644 
9645 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9646 	phy = hpsa_sas_phy->phy;
9647 
9648 	identify = &phy->identify;
9649 	memset(identify, 0, sizeof(*identify));
9650 	identify->sas_address = hpsa_sas_port->sas_address;
9651 	identify->device_type = SAS_END_DEVICE;
9652 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9653 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9654 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9655 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9656 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9657 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9658 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9659 
9660 	rc = sas_phy_add(hpsa_sas_phy->phy);
9661 	if (rc)
9662 		return rc;
9663 
9664 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9665 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9666 			&hpsa_sas_port->phy_list_head);
9667 	hpsa_sas_phy->added_to_port = true;
9668 
9669 	return 0;
9670 }
9671 
9672 static int
9673 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9674 				struct sas_rphy *rphy)
9675 {
9676 	struct sas_identify *identify;
9677 
9678 	identify = &rphy->identify;
9679 	identify->sas_address = hpsa_sas_port->sas_address;
9680 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9681 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9682 
9683 	return sas_rphy_add(rphy);
9684 }
9685 
9686 static struct hpsa_sas_port
9687 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9688 				u64 sas_address)
9689 {
9690 	int rc;
9691 	struct hpsa_sas_port *hpsa_sas_port;
9692 	struct sas_port *port;
9693 
9694 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9695 	if (!hpsa_sas_port)
9696 		return NULL;
9697 
9698 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9699 	hpsa_sas_port->parent_node = hpsa_sas_node;
9700 
9701 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9702 	if (!port)
9703 		goto free_hpsa_port;
9704 
9705 	rc = sas_port_add(port);
9706 	if (rc)
9707 		goto free_sas_port;
9708 
9709 	hpsa_sas_port->port = port;
9710 	hpsa_sas_port->sas_address = sas_address;
9711 	list_add_tail(&hpsa_sas_port->port_list_entry,
9712 			&hpsa_sas_node->port_list_head);
9713 
9714 	return hpsa_sas_port;
9715 
9716 free_sas_port:
9717 	sas_port_free(port);
9718 free_hpsa_port:
9719 	kfree(hpsa_sas_port);
9720 
9721 	return NULL;
9722 }
9723 
9724 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9725 {
9726 	struct hpsa_sas_phy *hpsa_sas_phy;
9727 	struct hpsa_sas_phy *next;
9728 
9729 	list_for_each_entry_safe(hpsa_sas_phy, next,
9730 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9731 		hpsa_free_sas_phy(hpsa_sas_phy);
9732 
9733 	sas_port_delete(hpsa_sas_port->port);
9734 	list_del(&hpsa_sas_port->port_list_entry);
9735 	kfree(hpsa_sas_port);
9736 }
9737 
9738 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9739 {
9740 	struct hpsa_sas_node *hpsa_sas_node;
9741 
9742 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9743 	if (hpsa_sas_node) {
9744 		hpsa_sas_node->parent_dev = parent_dev;
9745 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9746 	}
9747 
9748 	return hpsa_sas_node;
9749 }
9750 
9751 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9752 {
9753 	struct hpsa_sas_port *hpsa_sas_port;
9754 	struct hpsa_sas_port *next;
9755 
9756 	if (!hpsa_sas_node)
9757 		return;
9758 
9759 	list_for_each_entry_safe(hpsa_sas_port, next,
9760 			&hpsa_sas_node->port_list_head, port_list_entry)
9761 		hpsa_free_sas_port(hpsa_sas_port);
9762 
9763 	kfree(hpsa_sas_node);
9764 }
9765 
9766 static struct hpsa_scsi_dev_t
9767 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9768 					struct sas_rphy *rphy)
9769 {
9770 	int i;
9771 	struct hpsa_scsi_dev_t *device;
9772 
9773 	for (i = 0; i < h->ndevices; i++) {
9774 		device = h->dev[i];
9775 		if (!device->sas_port)
9776 			continue;
9777 		if (device->sas_port->rphy == rphy)
9778 			return device;
9779 	}
9780 
9781 	return NULL;
9782 }
9783 
9784 static int hpsa_add_sas_host(struct ctlr_info *h)
9785 {
9786 	int rc;
9787 	struct device *parent_dev;
9788 	struct hpsa_sas_node *hpsa_sas_node;
9789 	struct hpsa_sas_port *hpsa_sas_port;
9790 	struct hpsa_sas_phy *hpsa_sas_phy;
9791 
9792 	parent_dev = &h->scsi_host->shost_gendev;
9793 
9794 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9795 	if (!hpsa_sas_node)
9796 		return -ENOMEM;
9797 
9798 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9799 	if (!hpsa_sas_port) {
9800 		rc = -ENODEV;
9801 		goto free_sas_node;
9802 	}
9803 
9804 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9805 	if (!hpsa_sas_phy) {
9806 		rc = -ENODEV;
9807 		goto free_sas_port;
9808 	}
9809 
9810 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9811 	if (rc)
9812 		goto free_sas_phy;
9813 
9814 	h->sas_host = hpsa_sas_node;
9815 
9816 	return 0;
9817 
9818 free_sas_phy:
9819 	hpsa_free_sas_phy(hpsa_sas_phy);
9820 free_sas_port:
9821 	hpsa_free_sas_port(hpsa_sas_port);
9822 free_sas_node:
9823 	hpsa_free_sas_node(hpsa_sas_node);
9824 
9825 	return rc;
9826 }
9827 
9828 static void hpsa_delete_sas_host(struct ctlr_info *h)
9829 {
9830 	hpsa_free_sas_node(h->sas_host);
9831 }
9832 
9833 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9834 				struct hpsa_scsi_dev_t *device)
9835 {
9836 	int rc;
9837 	struct hpsa_sas_port *hpsa_sas_port;
9838 	struct sas_rphy *rphy;
9839 
9840 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9841 	if (!hpsa_sas_port)
9842 		return -ENOMEM;
9843 
9844 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9845 	if (!rphy) {
9846 		rc = -ENODEV;
9847 		goto free_sas_port;
9848 	}
9849 
9850 	hpsa_sas_port->rphy = rphy;
9851 	device->sas_port = hpsa_sas_port;
9852 
9853 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9854 	if (rc)
9855 		goto free_sas_port;
9856 
9857 	return 0;
9858 
9859 free_sas_port:
9860 	hpsa_free_sas_port(hpsa_sas_port);
9861 	device->sas_port = NULL;
9862 
9863 	return rc;
9864 }
9865 
9866 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9867 {
9868 	if (device->sas_port) {
9869 		hpsa_free_sas_port(device->sas_port);
9870 		device->sas_port = NULL;
9871 	}
9872 }
9873 
9874 static int
9875 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9876 {
9877 	return 0;
9878 }
9879 
9880 static int
9881 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9882 {
9883 	*identifier = 0;
9884 	return 0;
9885 }
9886 
9887 static int
9888 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9889 {
9890 	return -ENXIO;
9891 }
9892 
9893 static int
9894 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9895 {
9896 	return 0;
9897 }
9898 
9899 static int
9900 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9901 {
9902 	return 0;
9903 }
9904 
9905 static int
9906 hpsa_sas_phy_setup(struct sas_phy *phy)
9907 {
9908 	return 0;
9909 }
9910 
9911 static void
9912 hpsa_sas_phy_release(struct sas_phy *phy)
9913 {
9914 }
9915 
9916 static int
9917 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9918 {
9919 	return -EINVAL;
9920 }
9921 
9922 /* SMP = Serial Management Protocol */
9923 static int
9924 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9925 struct request *req)
9926 {
9927 	return -EINVAL;
9928 }
9929 
9930 static struct sas_function_template hpsa_sas_transport_functions = {
9931 	.get_linkerrors = hpsa_sas_get_linkerrors,
9932 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9933 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9934 	.phy_reset = hpsa_sas_phy_reset,
9935 	.phy_enable = hpsa_sas_phy_enable,
9936 	.phy_setup = hpsa_sas_phy_setup,
9937 	.phy_release = hpsa_sas_phy_release,
9938 	.set_phy_speed = hpsa_sas_phy_speed,
9939 	.smp_handler = hpsa_sas_smp_handler,
9940 };
9941 
9942 /*
9943  *  This is it.  Register the PCI driver information for the cards we control
9944  *  the OS will call our registered routines when it finds one of our cards.
9945  */
9946 static int __init hpsa_init(void)
9947 {
9948 	int rc;
9949 
9950 	hpsa_sas_transport_template =
9951 		sas_attach_transport(&hpsa_sas_transport_functions);
9952 	if (!hpsa_sas_transport_template)
9953 		return -ENODEV;
9954 
9955 	rc = pci_register_driver(&hpsa_pci_driver);
9956 
9957 	if (rc)
9958 		sas_release_transport(hpsa_sas_transport_template);
9959 
9960 	return rc;
9961 }
9962 
9963 static void __exit hpsa_cleanup(void)
9964 {
9965 	pci_unregister_driver(&hpsa_pci_driver);
9966 	sas_release_transport(hpsa_sas_transport_template);
9967 }
9968 
9969 static void __attribute__((unused)) verify_offsets(void)
9970 {
9971 #define VERIFY_OFFSET(member, offset) \
9972 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9973 
9974 	VERIFY_OFFSET(structure_size, 0);
9975 	VERIFY_OFFSET(volume_blk_size, 4);
9976 	VERIFY_OFFSET(volume_blk_cnt, 8);
9977 	VERIFY_OFFSET(phys_blk_shift, 16);
9978 	VERIFY_OFFSET(parity_rotation_shift, 17);
9979 	VERIFY_OFFSET(strip_size, 18);
9980 	VERIFY_OFFSET(disk_starting_blk, 20);
9981 	VERIFY_OFFSET(disk_blk_cnt, 28);
9982 	VERIFY_OFFSET(data_disks_per_row, 36);
9983 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9984 	VERIFY_OFFSET(row_cnt, 40);
9985 	VERIFY_OFFSET(layout_map_count, 42);
9986 	VERIFY_OFFSET(flags, 44);
9987 	VERIFY_OFFSET(dekindex, 46);
9988 	/* VERIFY_OFFSET(reserved, 48 */
9989 	VERIFY_OFFSET(data, 64);
9990 
9991 #undef VERIFY_OFFSET
9992 
9993 #define VERIFY_OFFSET(member, offset) \
9994 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9995 
9996 	VERIFY_OFFSET(IU_type, 0);
9997 	VERIFY_OFFSET(direction, 1);
9998 	VERIFY_OFFSET(reply_queue, 2);
9999 	/* VERIFY_OFFSET(reserved1, 3);  */
10000 	VERIFY_OFFSET(scsi_nexus, 4);
10001 	VERIFY_OFFSET(Tag, 8);
10002 	VERIFY_OFFSET(cdb, 16);
10003 	VERIFY_OFFSET(cciss_lun, 32);
10004 	VERIFY_OFFSET(data_len, 40);
10005 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
10006 	VERIFY_OFFSET(sg_count, 45);
10007 	/* VERIFY_OFFSET(reserved3 */
10008 	VERIFY_OFFSET(err_ptr, 48);
10009 	VERIFY_OFFSET(err_len, 56);
10010 	/* VERIFY_OFFSET(reserved4  */
10011 	VERIFY_OFFSET(sg, 64);
10012 
10013 #undef VERIFY_OFFSET
10014 
10015 #define VERIFY_OFFSET(member, offset) \
10016 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10017 
10018 	VERIFY_OFFSET(dev_handle, 0x00);
10019 	VERIFY_OFFSET(reserved1, 0x02);
10020 	VERIFY_OFFSET(function, 0x03);
10021 	VERIFY_OFFSET(reserved2, 0x04);
10022 	VERIFY_OFFSET(err_info, 0x0C);
10023 	VERIFY_OFFSET(reserved3, 0x10);
10024 	VERIFY_OFFSET(err_info_len, 0x12);
10025 	VERIFY_OFFSET(reserved4, 0x13);
10026 	VERIFY_OFFSET(sgl_offset, 0x14);
10027 	VERIFY_OFFSET(reserved5, 0x15);
10028 	VERIFY_OFFSET(transfer_len, 0x1C);
10029 	VERIFY_OFFSET(reserved6, 0x20);
10030 	VERIFY_OFFSET(io_flags, 0x24);
10031 	VERIFY_OFFSET(reserved7, 0x26);
10032 	VERIFY_OFFSET(LUN, 0x34);
10033 	VERIFY_OFFSET(control, 0x3C);
10034 	VERIFY_OFFSET(CDB, 0x40);
10035 	VERIFY_OFFSET(reserved8, 0x50);
10036 	VERIFY_OFFSET(host_context_flags, 0x60);
10037 	VERIFY_OFFSET(timeout_sec, 0x62);
10038 	VERIFY_OFFSET(ReplyQueue, 0x64);
10039 	VERIFY_OFFSET(reserved9, 0x65);
10040 	VERIFY_OFFSET(tag, 0x68);
10041 	VERIFY_OFFSET(host_addr, 0x70);
10042 	VERIFY_OFFSET(CISS_LUN, 0x78);
10043 	VERIFY_OFFSET(SG, 0x78 + 8);
10044 #undef VERIFY_OFFSET
10045 }
10046 
10047 module_init(hpsa_init);
10048 module_exit(hpsa_cleanup);
10049