1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/compat.h> 35 #include <linux/blktrace_api.h> 36 #include <linux/uaccess.h> 37 #include <linux/io.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/completion.h> 40 #include <linux/moduleparam.h> 41 #include <scsi/scsi.h> 42 #include <scsi/scsi_cmnd.h> 43 #include <scsi/scsi_device.h> 44 #include <scsi/scsi_host.h> 45 #include <scsi/scsi_tcq.h> 46 #include <linux/cciss_ioctl.h> 47 #include <linux/string.h> 48 #include <linux/bitmap.h> 49 #include <asm/atomic.h> 50 #include <linux/kthread.h> 51 #include "hpsa_cmd.h" 52 #include "hpsa.h" 53 54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 55 #define HPSA_DRIVER_VERSION "2.0.2-1" 56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 57 58 /* How long to wait (in milliseconds) for board to go into simple mode */ 59 #define MAX_CONFIG_WAIT 30000 60 #define MAX_IOCTL_CONFIG_WAIT 1000 61 62 /*define how many times we will try a command because of bus resets */ 63 #define MAX_CMD_RETRIES 3 64 65 /* Embedded module documentation macros - see modules.h */ 66 MODULE_AUTHOR("Hewlett-Packard Company"); 67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 68 HPSA_DRIVER_VERSION); 69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 70 MODULE_VERSION(HPSA_DRIVER_VERSION); 71 MODULE_LICENSE("GPL"); 72 73 static int hpsa_allow_any; 74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 75 MODULE_PARM_DESC(hpsa_allow_any, 76 "Allow hpsa driver to access unknown HP Smart Array hardware"); 77 78 /* define the PCI info for the cards we can control */ 79 static const struct pci_device_id hpsa_pci_device_id[] = { 80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254}, 93 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 94 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 95 {0,} 96 }; 97 98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 99 100 /* board_id = Subsystem Device ID & Vendor ID 101 * product = Marketing Name for the board 102 * access = Address of the struct of function pointers 103 */ 104 static struct board_type products[] = { 105 {0x3241103C, "Smart Array P212", &SA5_access}, 106 {0x3243103C, "Smart Array P410", &SA5_access}, 107 {0x3245103C, "Smart Array P410i", &SA5_access}, 108 {0x3247103C, "Smart Array P411", &SA5_access}, 109 {0x3249103C, "Smart Array P812", &SA5_access}, 110 {0x324a103C, "Smart Array P712m", &SA5_access}, 111 {0x324b103C, "Smart Array P711m", &SA5_access}, 112 {0x3250103C, "Smart Array", &SA5_access}, 113 {0x3250113C, "Smart Array", &SA5_access}, 114 {0x3250123C, "Smart Array", &SA5_access}, 115 {0x3250133C, "Smart Array", &SA5_access}, 116 {0x3250143C, "Smart Array", &SA5_access}, 117 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 118 }; 119 120 static int number_of_controllers; 121 122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 125 static void start_io(struct ctlr_info *h); 126 127 #ifdef CONFIG_COMPAT 128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 129 #endif 130 131 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 133 static struct CommandList *cmd_alloc(struct ctlr_info *h); 134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 136 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 137 int cmd_type); 138 139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 140 static void hpsa_scan_start(struct Scsi_Host *); 141 static int hpsa_scan_finished(struct Scsi_Host *sh, 142 unsigned long elapsed_time); 143 static int hpsa_change_queue_depth(struct scsi_device *sdev, 144 int qdepth, int reason); 145 146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 147 static int hpsa_slave_alloc(struct scsi_device *sdev); 148 static void hpsa_slave_destroy(struct scsi_device *sdev); 149 150 static ssize_t raid_level_show(struct device *dev, 151 struct device_attribute *attr, char *buf); 152 static ssize_t lunid_show(struct device *dev, 153 struct device_attribute *attr, char *buf); 154 static ssize_t unique_id_show(struct device *dev, 155 struct device_attribute *attr, char *buf); 156 static ssize_t host_show_firmware_revision(struct device *dev, 157 struct device_attribute *attr, char *buf); 158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 159 static ssize_t host_store_rescan(struct device *dev, 160 struct device_attribute *attr, const char *buf, size_t count); 161 static int check_for_unit_attention(struct ctlr_info *h, 162 struct CommandList *c); 163 static void check_ioctl_unit_attention(struct ctlr_info *h, 164 struct CommandList *c); 165 /* performant mode helper functions */ 166 static void calc_bucket_map(int *bucket, int num_buckets, 167 int nsgs, int *bucket_map); 168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 169 static inline u32 next_command(struct ctlr_info *h); 170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 171 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 172 u64 *cfg_offset); 173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 174 unsigned long *memory_bar); 175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 176 177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 181 static DEVICE_ATTR(firmware_revision, S_IRUGO, 182 host_show_firmware_revision, NULL); 183 184 static struct device_attribute *hpsa_sdev_attrs[] = { 185 &dev_attr_raid_level, 186 &dev_attr_lunid, 187 &dev_attr_unique_id, 188 NULL, 189 }; 190 191 static struct device_attribute *hpsa_shost_attrs[] = { 192 &dev_attr_rescan, 193 &dev_attr_firmware_revision, 194 NULL, 195 }; 196 197 static struct scsi_host_template hpsa_driver_template = { 198 .module = THIS_MODULE, 199 .name = "hpsa", 200 .proc_name = "hpsa", 201 .queuecommand = hpsa_scsi_queue_command, 202 .scan_start = hpsa_scan_start, 203 .scan_finished = hpsa_scan_finished, 204 .change_queue_depth = hpsa_change_queue_depth, 205 .this_id = -1, 206 .use_clustering = ENABLE_CLUSTERING, 207 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 208 .ioctl = hpsa_ioctl, 209 .slave_alloc = hpsa_slave_alloc, 210 .slave_destroy = hpsa_slave_destroy, 211 #ifdef CONFIG_COMPAT 212 .compat_ioctl = hpsa_compat_ioctl, 213 #endif 214 .sdev_attrs = hpsa_sdev_attrs, 215 .shost_attrs = hpsa_shost_attrs, 216 }; 217 218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 219 { 220 unsigned long *priv = shost_priv(sdev->host); 221 return (struct ctlr_info *) *priv; 222 } 223 224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 225 { 226 unsigned long *priv = shost_priv(sh); 227 return (struct ctlr_info *) *priv; 228 } 229 230 static int check_for_unit_attention(struct ctlr_info *h, 231 struct CommandList *c) 232 { 233 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 234 return 0; 235 236 switch (c->err_info->SenseInfo[12]) { 237 case STATE_CHANGED: 238 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 239 "detected, command retried\n", h->ctlr); 240 break; 241 case LUN_FAILED: 242 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 243 "detected, action required\n", h->ctlr); 244 break; 245 case REPORT_LUNS_CHANGED: 246 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 247 "changed, action required\n", h->ctlr); 248 /* 249 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 250 */ 251 break; 252 case POWER_OR_RESET: 253 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 254 "or device reset detected\n", h->ctlr); 255 break; 256 case UNIT_ATTENTION_CLEARED: 257 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 258 "cleared by another initiator\n", h->ctlr); 259 break; 260 default: 261 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 262 "unit attention detected\n", h->ctlr); 263 break; 264 } 265 return 1; 266 } 267 268 static ssize_t host_store_rescan(struct device *dev, 269 struct device_attribute *attr, 270 const char *buf, size_t count) 271 { 272 struct ctlr_info *h; 273 struct Scsi_Host *shost = class_to_shost(dev); 274 h = shost_to_hba(shost); 275 hpsa_scan_start(h->scsi_host); 276 return count; 277 } 278 279 static ssize_t host_show_firmware_revision(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct ctlr_info *h; 283 struct Scsi_Host *shost = class_to_shost(dev); 284 unsigned char *fwrev; 285 286 h = shost_to_hba(shost); 287 if (!h->hba_inquiry_data) 288 return 0; 289 fwrev = &h->hba_inquiry_data[32]; 290 return snprintf(buf, 20, "%c%c%c%c\n", 291 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 292 } 293 294 /* Enqueuing and dequeuing functions for cmdlists. */ 295 static inline void addQ(struct hlist_head *list, struct CommandList *c) 296 { 297 hlist_add_head(&c->list, list); 298 } 299 300 static inline u32 next_command(struct ctlr_info *h) 301 { 302 u32 a; 303 304 if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) 305 return h->access.command_completed(h); 306 307 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 308 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 309 (h->reply_pool_head)++; 310 h->commands_outstanding--; 311 } else { 312 a = FIFO_EMPTY; 313 } 314 /* Check for wraparound */ 315 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 316 h->reply_pool_head = h->reply_pool; 317 h->reply_pool_wraparound ^= 1; 318 } 319 return a; 320 } 321 322 /* set_performant_mode: Modify the tag for cciss performant 323 * set bit 0 for pull model, bits 3-1 for block fetch 324 * register number 325 */ 326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 327 { 328 if (likely(h->transMethod == CFGTBL_Trans_Performant)) 329 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 330 } 331 332 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 333 struct CommandList *c) 334 { 335 unsigned long flags; 336 337 set_performant_mode(h, c); 338 spin_lock_irqsave(&h->lock, flags); 339 addQ(&h->reqQ, c); 340 h->Qdepth++; 341 start_io(h); 342 spin_unlock_irqrestore(&h->lock, flags); 343 } 344 345 static inline void removeQ(struct CommandList *c) 346 { 347 if (WARN_ON(hlist_unhashed(&c->list))) 348 return; 349 hlist_del_init(&c->list); 350 } 351 352 static inline int is_hba_lunid(unsigned char scsi3addr[]) 353 { 354 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 355 } 356 357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 358 { 359 return (scsi3addr[3] & 0xC0) == 0x40; 360 } 361 362 static inline int is_scsi_rev_5(struct ctlr_info *h) 363 { 364 if (!h->hba_inquiry_data) 365 return 0; 366 if ((h->hba_inquiry_data[2] & 0x07) == 5) 367 return 1; 368 return 0; 369 } 370 371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 372 "UNKNOWN" 373 }; 374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 375 376 static ssize_t raid_level_show(struct device *dev, 377 struct device_attribute *attr, char *buf) 378 { 379 ssize_t l = 0; 380 unsigned char rlevel; 381 struct ctlr_info *h; 382 struct scsi_device *sdev; 383 struct hpsa_scsi_dev_t *hdev; 384 unsigned long flags; 385 386 sdev = to_scsi_device(dev); 387 h = sdev_to_hba(sdev); 388 spin_lock_irqsave(&h->lock, flags); 389 hdev = sdev->hostdata; 390 if (!hdev) { 391 spin_unlock_irqrestore(&h->lock, flags); 392 return -ENODEV; 393 } 394 395 /* Is this even a logical drive? */ 396 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 397 spin_unlock_irqrestore(&h->lock, flags); 398 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 399 return l; 400 } 401 402 rlevel = hdev->raid_level; 403 spin_unlock_irqrestore(&h->lock, flags); 404 if (rlevel > RAID_UNKNOWN) 405 rlevel = RAID_UNKNOWN; 406 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 407 return l; 408 } 409 410 static ssize_t lunid_show(struct device *dev, 411 struct device_attribute *attr, char *buf) 412 { 413 struct ctlr_info *h; 414 struct scsi_device *sdev; 415 struct hpsa_scsi_dev_t *hdev; 416 unsigned long flags; 417 unsigned char lunid[8]; 418 419 sdev = to_scsi_device(dev); 420 h = sdev_to_hba(sdev); 421 spin_lock_irqsave(&h->lock, flags); 422 hdev = sdev->hostdata; 423 if (!hdev) { 424 spin_unlock_irqrestore(&h->lock, flags); 425 return -ENODEV; 426 } 427 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 428 spin_unlock_irqrestore(&h->lock, flags); 429 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 430 lunid[0], lunid[1], lunid[2], lunid[3], 431 lunid[4], lunid[5], lunid[6], lunid[7]); 432 } 433 434 static ssize_t unique_id_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 struct ctlr_info *h; 438 struct scsi_device *sdev; 439 struct hpsa_scsi_dev_t *hdev; 440 unsigned long flags; 441 unsigned char sn[16]; 442 443 sdev = to_scsi_device(dev); 444 h = sdev_to_hba(sdev); 445 spin_lock_irqsave(&h->lock, flags); 446 hdev = sdev->hostdata; 447 if (!hdev) { 448 spin_unlock_irqrestore(&h->lock, flags); 449 return -ENODEV; 450 } 451 memcpy(sn, hdev->device_id, sizeof(sn)); 452 spin_unlock_irqrestore(&h->lock, flags); 453 return snprintf(buf, 16 * 2 + 2, 454 "%02X%02X%02X%02X%02X%02X%02X%02X" 455 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 456 sn[0], sn[1], sn[2], sn[3], 457 sn[4], sn[5], sn[6], sn[7], 458 sn[8], sn[9], sn[10], sn[11], 459 sn[12], sn[13], sn[14], sn[15]); 460 } 461 462 static int hpsa_find_target_lun(struct ctlr_info *h, 463 unsigned char scsi3addr[], int bus, int *target, int *lun) 464 { 465 /* finds an unused bus, target, lun for a new physical device 466 * assumes h->devlock is held 467 */ 468 int i, found = 0; 469 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 470 471 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 472 473 for (i = 0; i < h->ndevices; i++) { 474 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 475 set_bit(h->dev[i]->target, lun_taken); 476 } 477 478 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 479 if (!test_bit(i, lun_taken)) { 480 /* *bus = 1; */ 481 *target = i; 482 *lun = 0; 483 found = 1; 484 break; 485 } 486 } 487 return !found; 488 } 489 490 /* Add an entry into h->dev[] array. */ 491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 492 struct hpsa_scsi_dev_t *device, 493 struct hpsa_scsi_dev_t *added[], int *nadded) 494 { 495 /* assumes h->devlock is held */ 496 int n = h->ndevices; 497 int i; 498 unsigned char addr1[8], addr2[8]; 499 struct hpsa_scsi_dev_t *sd; 500 501 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 502 dev_err(&h->pdev->dev, "too many devices, some will be " 503 "inaccessible.\n"); 504 return -1; 505 } 506 507 /* physical devices do not have lun or target assigned until now. */ 508 if (device->lun != -1) 509 /* Logical device, lun is already assigned. */ 510 goto lun_assigned; 511 512 /* If this device a non-zero lun of a multi-lun device 513 * byte 4 of the 8-byte LUN addr will contain the logical 514 * unit no, zero otherise. 515 */ 516 if (device->scsi3addr[4] == 0) { 517 /* This is not a non-zero lun of a multi-lun device */ 518 if (hpsa_find_target_lun(h, device->scsi3addr, 519 device->bus, &device->target, &device->lun) != 0) 520 return -1; 521 goto lun_assigned; 522 } 523 524 /* This is a non-zero lun of a multi-lun device. 525 * Search through our list and find the device which 526 * has the same 8 byte LUN address, excepting byte 4. 527 * Assign the same bus and target for this new LUN. 528 * Use the logical unit number from the firmware. 529 */ 530 memcpy(addr1, device->scsi3addr, 8); 531 addr1[4] = 0; 532 for (i = 0; i < n; i++) { 533 sd = h->dev[i]; 534 memcpy(addr2, sd->scsi3addr, 8); 535 addr2[4] = 0; 536 /* differ only in byte 4? */ 537 if (memcmp(addr1, addr2, 8) == 0) { 538 device->bus = sd->bus; 539 device->target = sd->target; 540 device->lun = device->scsi3addr[4]; 541 break; 542 } 543 } 544 if (device->lun == -1) { 545 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 546 " suspect firmware bug or unsupported hardware " 547 "configuration.\n"); 548 return -1; 549 } 550 551 lun_assigned: 552 553 h->dev[n] = device; 554 h->ndevices++; 555 added[*nadded] = device; 556 (*nadded)++; 557 558 /* initially, (before registering with scsi layer) we don't 559 * know our hostno and we don't want to print anything first 560 * time anyway (the scsi layer's inquiries will show that info) 561 */ 562 /* if (hostno != -1) */ 563 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 564 scsi_device_type(device->devtype), hostno, 565 device->bus, device->target, device->lun); 566 return 0; 567 } 568 569 /* Replace an entry from h->dev[] array. */ 570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 571 int entry, struct hpsa_scsi_dev_t *new_entry, 572 struct hpsa_scsi_dev_t *added[], int *nadded, 573 struct hpsa_scsi_dev_t *removed[], int *nremoved) 574 { 575 /* assumes h->devlock is held */ 576 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 577 removed[*nremoved] = h->dev[entry]; 578 (*nremoved)++; 579 h->dev[entry] = new_entry; 580 added[*nadded] = new_entry; 581 (*nadded)++; 582 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 583 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 584 new_entry->target, new_entry->lun); 585 } 586 587 /* Remove an entry from h->dev[] array. */ 588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 589 struct hpsa_scsi_dev_t *removed[], int *nremoved) 590 { 591 /* assumes h->devlock is held */ 592 int i; 593 struct hpsa_scsi_dev_t *sd; 594 595 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 596 597 sd = h->dev[entry]; 598 removed[*nremoved] = h->dev[entry]; 599 (*nremoved)++; 600 601 for (i = entry; i < h->ndevices-1; i++) 602 h->dev[i] = h->dev[i+1]; 603 h->ndevices--; 604 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 605 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 606 sd->lun); 607 } 608 609 #define SCSI3ADDR_EQ(a, b) ( \ 610 (a)[7] == (b)[7] && \ 611 (a)[6] == (b)[6] && \ 612 (a)[5] == (b)[5] && \ 613 (a)[4] == (b)[4] && \ 614 (a)[3] == (b)[3] && \ 615 (a)[2] == (b)[2] && \ 616 (a)[1] == (b)[1] && \ 617 (a)[0] == (b)[0]) 618 619 static void fixup_botched_add(struct ctlr_info *h, 620 struct hpsa_scsi_dev_t *added) 621 { 622 /* called when scsi_add_device fails in order to re-adjust 623 * h->dev[] to match the mid layer's view. 624 */ 625 unsigned long flags; 626 int i, j; 627 628 spin_lock_irqsave(&h->lock, flags); 629 for (i = 0; i < h->ndevices; i++) { 630 if (h->dev[i] == added) { 631 for (j = i; j < h->ndevices-1; j++) 632 h->dev[j] = h->dev[j+1]; 633 h->ndevices--; 634 break; 635 } 636 } 637 spin_unlock_irqrestore(&h->lock, flags); 638 kfree(added); 639 } 640 641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 642 struct hpsa_scsi_dev_t *dev2) 643 { 644 /* we compare everything except lun and target as these 645 * are not yet assigned. Compare parts likely 646 * to differ first 647 */ 648 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 649 sizeof(dev1->scsi3addr)) != 0) 650 return 0; 651 if (memcmp(dev1->device_id, dev2->device_id, 652 sizeof(dev1->device_id)) != 0) 653 return 0; 654 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 655 return 0; 656 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 657 return 0; 658 if (dev1->devtype != dev2->devtype) 659 return 0; 660 if (dev1->bus != dev2->bus) 661 return 0; 662 return 1; 663 } 664 665 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 666 * and return needle location in *index. If scsi3addr matches, but not 667 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 668 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 669 */ 670 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 671 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 672 int *index) 673 { 674 int i; 675 #define DEVICE_NOT_FOUND 0 676 #define DEVICE_CHANGED 1 677 #define DEVICE_SAME 2 678 for (i = 0; i < haystack_size; i++) { 679 if (haystack[i] == NULL) /* previously removed. */ 680 continue; 681 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 682 *index = i; 683 if (device_is_the_same(needle, haystack[i])) 684 return DEVICE_SAME; 685 else 686 return DEVICE_CHANGED; 687 } 688 } 689 *index = -1; 690 return DEVICE_NOT_FOUND; 691 } 692 693 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 694 struct hpsa_scsi_dev_t *sd[], int nsds) 695 { 696 /* sd contains scsi3 addresses and devtypes, and inquiry 697 * data. This function takes what's in sd to be the current 698 * reality and updates h->dev[] to reflect that reality. 699 */ 700 int i, entry, device_change, changes = 0; 701 struct hpsa_scsi_dev_t *csd; 702 unsigned long flags; 703 struct hpsa_scsi_dev_t **added, **removed; 704 int nadded, nremoved; 705 struct Scsi_Host *sh = NULL; 706 707 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 708 GFP_KERNEL); 709 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 710 GFP_KERNEL); 711 712 if (!added || !removed) { 713 dev_warn(&h->pdev->dev, "out of memory in " 714 "adjust_hpsa_scsi_table\n"); 715 goto free_and_out; 716 } 717 718 spin_lock_irqsave(&h->devlock, flags); 719 720 /* find any devices in h->dev[] that are not in 721 * sd[] and remove them from h->dev[], and for any 722 * devices which have changed, remove the old device 723 * info and add the new device info. 724 */ 725 i = 0; 726 nremoved = 0; 727 nadded = 0; 728 while (i < h->ndevices) { 729 csd = h->dev[i]; 730 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 731 if (device_change == DEVICE_NOT_FOUND) { 732 changes++; 733 hpsa_scsi_remove_entry(h, hostno, i, 734 removed, &nremoved); 735 continue; /* remove ^^^, hence i not incremented */ 736 } else if (device_change == DEVICE_CHANGED) { 737 changes++; 738 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 739 added, &nadded, removed, &nremoved); 740 /* Set it to NULL to prevent it from being freed 741 * at the bottom of hpsa_update_scsi_devices() 742 */ 743 sd[entry] = NULL; 744 } 745 i++; 746 } 747 748 /* Now, make sure every device listed in sd[] is also 749 * listed in h->dev[], adding them if they aren't found 750 */ 751 752 for (i = 0; i < nsds; i++) { 753 if (!sd[i]) /* if already added above. */ 754 continue; 755 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 756 h->ndevices, &entry); 757 if (device_change == DEVICE_NOT_FOUND) { 758 changes++; 759 if (hpsa_scsi_add_entry(h, hostno, sd[i], 760 added, &nadded) != 0) 761 break; 762 sd[i] = NULL; /* prevent from being freed later. */ 763 } else if (device_change == DEVICE_CHANGED) { 764 /* should never happen... */ 765 changes++; 766 dev_warn(&h->pdev->dev, 767 "device unexpectedly changed.\n"); 768 /* but if it does happen, we just ignore that device */ 769 } 770 } 771 spin_unlock_irqrestore(&h->devlock, flags); 772 773 /* Don't notify scsi mid layer of any changes the first time through 774 * (or if there are no changes) scsi_scan_host will do it later the 775 * first time through. 776 */ 777 if (hostno == -1 || !changes) 778 goto free_and_out; 779 780 sh = h->scsi_host; 781 /* Notify scsi mid layer of any removed devices */ 782 for (i = 0; i < nremoved; i++) { 783 struct scsi_device *sdev = 784 scsi_device_lookup(sh, removed[i]->bus, 785 removed[i]->target, removed[i]->lun); 786 if (sdev != NULL) { 787 scsi_remove_device(sdev); 788 scsi_device_put(sdev); 789 } else { 790 /* We don't expect to get here. 791 * future cmds to this device will get selection 792 * timeout as if the device was gone. 793 */ 794 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 795 " for removal.", hostno, removed[i]->bus, 796 removed[i]->target, removed[i]->lun); 797 } 798 kfree(removed[i]); 799 removed[i] = NULL; 800 } 801 802 /* Notify scsi mid layer of any added devices */ 803 for (i = 0; i < nadded; i++) { 804 if (scsi_add_device(sh, added[i]->bus, 805 added[i]->target, added[i]->lun) == 0) 806 continue; 807 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 808 "device not added.\n", hostno, added[i]->bus, 809 added[i]->target, added[i]->lun); 810 /* now we have to remove it from h->dev, 811 * since it didn't get added to scsi mid layer 812 */ 813 fixup_botched_add(h, added[i]); 814 } 815 816 free_and_out: 817 kfree(added); 818 kfree(removed); 819 } 820 821 /* 822 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 823 * Assume's h->devlock is held. 824 */ 825 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 826 int bus, int target, int lun) 827 { 828 int i; 829 struct hpsa_scsi_dev_t *sd; 830 831 for (i = 0; i < h->ndevices; i++) { 832 sd = h->dev[i]; 833 if (sd->bus == bus && sd->target == target && sd->lun == lun) 834 return sd; 835 } 836 return NULL; 837 } 838 839 /* link sdev->hostdata to our per-device structure. */ 840 static int hpsa_slave_alloc(struct scsi_device *sdev) 841 { 842 struct hpsa_scsi_dev_t *sd; 843 unsigned long flags; 844 struct ctlr_info *h; 845 846 h = sdev_to_hba(sdev); 847 spin_lock_irqsave(&h->devlock, flags); 848 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 849 sdev_id(sdev), sdev->lun); 850 if (sd != NULL) 851 sdev->hostdata = sd; 852 spin_unlock_irqrestore(&h->devlock, flags); 853 return 0; 854 } 855 856 static void hpsa_slave_destroy(struct scsi_device *sdev) 857 { 858 /* nothing to do. */ 859 } 860 861 static void hpsa_scsi_setup(struct ctlr_info *h) 862 { 863 h->ndevices = 0; 864 h->scsi_host = NULL; 865 spin_lock_init(&h->devlock); 866 } 867 868 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 869 { 870 int i; 871 872 if (!h->cmd_sg_list) 873 return; 874 for (i = 0; i < h->nr_cmds; i++) { 875 kfree(h->cmd_sg_list[i]); 876 h->cmd_sg_list[i] = NULL; 877 } 878 kfree(h->cmd_sg_list); 879 h->cmd_sg_list = NULL; 880 } 881 882 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 883 { 884 int i; 885 886 if (h->chainsize <= 0) 887 return 0; 888 889 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 890 GFP_KERNEL); 891 if (!h->cmd_sg_list) 892 return -ENOMEM; 893 for (i = 0; i < h->nr_cmds; i++) { 894 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 895 h->chainsize, GFP_KERNEL); 896 if (!h->cmd_sg_list[i]) 897 goto clean; 898 } 899 return 0; 900 901 clean: 902 hpsa_free_sg_chain_blocks(h); 903 return -ENOMEM; 904 } 905 906 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 907 struct CommandList *c) 908 { 909 struct SGDescriptor *chain_sg, *chain_block; 910 u64 temp64; 911 912 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 913 chain_block = h->cmd_sg_list[c->cmdindex]; 914 chain_sg->Ext = HPSA_SG_CHAIN; 915 chain_sg->Len = sizeof(*chain_sg) * 916 (c->Header.SGTotal - h->max_cmd_sg_entries); 917 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 918 PCI_DMA_TODEVICE); 919 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 920 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 921 } 922 923 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 924 struct CommandList *c) 925 { 926 struct SGDescriptor *chain_sg; 927 union u64bit temp64; 928 929 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 930 return; 931 932 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 933 temp64.val32.lower = chain_sg->Addr.lower; 934 temp64.val32.upper = chain_sg->Addr.upper; 935 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 936 } 937 938 static void complete_scsi_command(struct CommandList *cp, 939 int timeout, u32 tag) 940 { 941 struct scsi_cmnd *cmd; 942 struct ctlr_info *h; 943 struct ErrorInfo *ei; 944 945 unsigned char sense_key; 946 unsigned char asc; /* additional sense code */ 947 unsigned char ascq; /* additional sense code qualifier */ 948 949 ei = cp->err_info; 950 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 951 h = cp->h; 952 953 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 954 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 955 hpsa_unmap_sg_chain_block(h, cp); 956 957 cmd->result = (DID_OK << 16); /* host byte */ 958 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 959 cmd->result |= ei->ScsiStatus; 960 961 /* copy the sense data whether we need to or not. */ 962 memcpy(cmd->sense_buffer, ei->SenseInfo, 963 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 964 SCSI_SENSE_BUFFERSIZE : 965 ei->SenseLen); 966 scsi_set_resid(cmd, ei->ResidualCnt); 967 968 if (ei->CommandStatus == 0) { 969 cmd->scsi_done(cmd); 970 cmd_free(h, cp); 971 return; 972 } 973 974 /* an error has occurred */ 975 switch (ei->CommandStatus) { 976 977 case CMD_TARGET_STATUS: 978 if (ei->ScsiStatus) { 979 /* Get sense key */ 980 sense_key = 0xf & ei->SenseInfo[2]; 981 /* Get additional sense code */ 982 asc = ei->SenseInfo[12]; 983 /* Get addition sense code qualifier */ 984 ascq = ei->SenseInfo[13]; 985 } 986 987 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 988 if (check_for_unit_attention(h, cp)) { 989 cmd->result = DID_SOFT_ERROR << 16; 990 break; 991 } 992 if (sense_key == ILLEGAL_REQUEST) { 993 /* 994 * SCSI REPORT_LUNS is commonly unsupported on 995 * Smart Array. Suppress noisy complaint. 996 */ 997 if (cp->Request.CDB[0] == REPORT_LUNS) 998 break; 999 1000 /* If ASC/ASCQ indicate Logical Unit 1001 * Not Supported condition, 1002 */ 1003 if ((asc == 0x25) && (ascq == 0x0)) { 1004 dev_warn(&h->pdev->dev, "cp %p " 1005 "has check condition\n", cp); 1006 break; 1007 } 1008 } 1009 1010 if (sense_key == NOT_READY) { 1011 /* If Sense is Not Ready, Logical Unit 1012 * Not ready, Manual Intervention 1013 * required 1014 */ 1015 if ((asc == 0x04) && (ascq == 0x03)) { 1016 dev_warn(&h->pdev->dev, "cp %p " 1017 "has check condition: unit " 1018 "not ready, manual " 1019 "intervention required\n", cp); 1020 break; 1021 } 1022 } 1023 if (sense_key == ABORTED_COMMAND) { 1024 /* Aborted command is retryable */ 1025 dev_warn(&h->pdev->dev, "cp %p " 1026 "has check condition: aborted command: " 1027 "ASC: 0x%x, ASCQ: 0x%x\n", 1028 cp, asc, ascq); 1029 cmd->result = DID_SOFT_ERROR << 16; 1030 break; 1031 } 1032 /* Must be some other type of check condition */ 1033 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1034 "unknown type: " 1035 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1036 "Returning result: 0x%x, " 1037 "cmd=[%02x %02x %02x %02x %02x " 1038 "%02x %02x %02x %02x %02x %02x " 1039 "%02x %02x %02x %02x %02x]\n", 1040 cp, sense_key, asc, ascq, 1041 cmd->result, 1042 cmd->cmnd[0], cmd->cmnd[1], 1043 cmd->cmnd[2], cmd->cmnd[3], 1044 cmd->cmnd[4], cmd->cmnd[5], 1045 cmd->cmnd[6], cmd->cmnd[7], 1046 cmd->cmnd[8], cmd->cmnd[9], 1047 cmd->cmnd[10], cmd->cmnd[11], 1048 cmd->cmnd[12], cmd->cmnd[13], 1049 cmd->cmnd[14], cmd->cmnd[15]); 1050 break; 1051 } 1052 1053 1054 /* Problem was not a check condition 1055 * Pass it up to the upper layers... 1056 */ 1057 if (ei->ScsiStatus) { 1058 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1059 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1060 "Returning result: 0x%x\n", 1061 cp, ei->ScsiStatus, 1062 sense_key, asc, ascq, 1063 cmd->result); 1064 } else { /* scsi status is zero??? How??? */ 1065 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1066 "Returning no connection.\n", cp), 1067 1068 /* Ordinarily, this case should never happen, 1069 * but there is a bug in some released firmware 1070 * revisions that allows it to happen if, for 1071 * example, a 4100 backplane loses power and 1072 * the tape drive is in it. We assume that 1073 * it's a fatal error of some kind because we 1074 * can't show that it wasn't. We will make it 1075 * look like selection timeout since that is 1076 * the most common reason for this to occur, 1077 * and it's severe enough. 1078 */ 1079 1080 cmd->result = DID_NO_CONNECT << 16; 1081 } 1082 break; 1083 1084 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1085 break; 1086 case CMD_DATA_OVERRUN: 1087 dev_warn(&h->pdev->dev, "cp %p has" 1088 " completed with data overrun " 1089 "reported\n", cp); 1090 break; 1091 case CMD_INVALID: { 1092 /* print_bytes(cp, sizeof(*cp), 1, 0); 1093 print_cmd(cp); */ 1094 /* We get CMD_INVALID if you address a non-existent device 1095 * instead of a selection timeout (no response). You will 1096 * see this if you yank out a drive, then try to access it. 1097 * This is kind of a shame because it means that any other 1098 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1099 * missing target. */ 1100 cmd->result = DID_NO_CONNECT << 16; 1101 } 1102 break; 1103 case CMD_PROTOCOL_ERR: 1104 dev_warn(&h->pdev->dev, "cp %p has " 1105 "protocol error \n", cp); 1106 break; 1107 case CMD_HARDWARE_ERR: 1108 cmd->result = DID_ERROR << 16; 1109 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1110 break; 1111 case CMD_CONNECTION_LOST: 1112 cmd->result = DID_ERROR << 16; 1113 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1114 break; 1115 case CMD_ABORTED: 1116 cmd->result = DID_ABORT << 16; 1117 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1118 cp, ei->ScsiStatus); 1119 break; 1120 case CMD_ABORT_FAILED: 1121 cmd->result = DID_ERROR << 16; 1122 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1123 break; 1124 case CMD_UNSOLICITED_ABORT: 1125 cmd->result = DID_RESET << 16; 1126 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1127 "abort\n", cp); 1128 break; 1129 case CMD_TIMEOUT: 1130 cmd->result = DID_TIME_OUT << 16; 1131 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1132 break; 1133 default: 1134 cmd->result = DID_ERROR << 16; 1135 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1136 cp, ei->CommandStatus); 1137 } 1138 cmd->scsi_done(cmd); 1139 cmd_free(h, cp); 1140 } 1141 1142 static int hpsa_scsi_detect(struct ctlr_info *h) 1143 { 1144 struct Scsi_Host *sh; 1145 int error; 1146 1147 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1148 if (sh == NULL) 1149 goto fail; 1150 1151 sh->io_port = 0; 1152 sh->n_io_port = 0; 1153 sh->this_id = -1; 1154 sh->max_channel = 3; 1155 sh->max_cmd_len = MAX_COMMAND_SIZE; 1156 sh->max_lun = HPSA_MAX_LUN; 1157 sh->max_id = HPSA_MAX_LUN; 1158 sh->can_queue = h->nr_cmds; 1159 sh->cmd_per_lun = h->nr_cmds; 1160 sh->sg_tablesize = h->maxsgentries; 1161 h->scsi_host = sh; 1162 sh->hostdata[0] = (unsigned long) h; 1163 sh->irq = h->intr[PERF_MODE_INT]; 1164 sh->unique_id = sh->irq; 1165 error = scsi_add_host(sh, &h->pdev->dev); 1166 if (error) 1167 goto fail_host_put; 1168 scsi_scan_host(sh); 1169 return 0; 1170 1171 fail_host_put: 1172 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1173 " failed for controller %d\n", h->ctlr); 1174 scsi_host_put(sh); 1175 return error; 1176 fail: 1177 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1178 " failed for controller %d\n", h->ctlr); 1179 return -ENOMEM; 1180 } 1181 1182 static void hpsa_pci_unmap(struct pci_dev *pdev, 1183 struct CommandList *c, int sg_used, int data_direction) 1184 { 1185 int i; 1186 union u64bit addr64; 1187 1188 for (i = 0; i < sg_used; i++) { 1189 addr64.val32.lower = c->SG[i].Addr.lower; 1190 addr64.val32.upper = c->SG[i].Addr.upper; 1191 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1192 data_direction); 1193 } 1194 } 1195 1196 static void hpsa_map_one(struct pci_dev *pdev, 1197 struct CommandList *cp, 1198 unsigned char *buf, 1199 size_t buflen, 1200 int data_direction) 1201 { 1202 u64 addr64; 1203 1204 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1205 cp->Header.SGList = 0; 1206 cp->Header.SGTotal = 0; 1207 return; 1208 } 1209 1210 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1211 cp->SG[0].Addr.lower = 1212 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1213 cp->SG[0].Addr.upper = 1214 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1215 cp->SG[0].Len = buflen; 1216 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1217 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1218 } 1219 1220 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1221 struct CommandList *c) 1222 { 1223 DECLARE_COMPLETION_ONSTACK(wait); 1224 1225 c->waiting = &wait; 1226 enqueue_cmd_and_start_io(h, c); 1227 wait_for_completion(&wait); 1228 } 1229 1230 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1231 struct CommandList *c, int data_direction) 1232 { 1233 int retry_count = 0; 1234 1235 do { 1236 memset(c->err_info, 0, sizeof(c->err_info)); 1237 hpsa_scsi_do_simple_cmd_core(h, c); 1238 retry_count++; 1239 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1240 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1241 } 1242 1243 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1244 { 1245 struct ErrorInfo *ei; 1246 struct device *d = &cp->h->pdev->dev; 1247 1248 ei = cp->err_info; 1249 switch (ei->CommandStatus) { 1250 case CMD_TARGET_STATUS: 1251 dev_warn(d, "cmd %p has completed with errors\n", cp); 1252 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1253 ei->ScsiStatus); 1254 if (ei->ScsiStatus == 0) 1255 dev_warn(d, "SCSI status is abnormally zero. " 1256 "(probably indicates selection timeout " 1257 "reported incorrectly due to a known " 1258 "firmware bug, circa July, 2001.)\n"); 1259 break; 1260 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1261 dev_info(d, "UNDERRUN\n"); 1262 break; 1263 case CMD_DATA_OVERRUN: 1264 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1265 break; 1266 case CMD_INVALID: { 1267 /* controller unfortunately reports SCSI passthru's 1268 * to non-existent targets as invalid commands. 1269 */ 1270 dev_warn(d, "cp %p is reported invalid (probably means " 1271 "target device no longer present)\n", cp); 1272 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1273 print_cmd(cp); */ 1274 } 1275 break; 1276 case CMD_PROTOCOL_ERR: 1277 dev_warn(d, "cp %p has protocol error \n", cp); 1278 break; 1279 case CMD_HARDWARE_ERR: 1280 /* cmd->result = DID_ERROR << 16; */ 1281 dev_warn(d, "cp %p had hardware error\n", cp); 1282 break; 1283 case CMD_CONNECTION_LOST: 1284 dev_warn(d, "cp %p had connection lost\n", cp); 1285 break; 1286 case CMD_ABORTED: 1287 dev_warn(d, "cp %p was aborted\n", cp); 1288 break; 1289 case CMD_ABORT_FAILED: 1290 dev_warn(d, "cp %p reports abort failed\n", cp); 1291 break; 1292 case CMD_UNSOLICITED_ABORT: 1293 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1294 break; 1295 case CMD_TIMEOUT: 1296 dev_warn(d, "cp %p timed out\n", cp); 1297 break; 1298 default: 1299 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1300 ei->CommandStatus); 1301 } 1302 } 1303 1304 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1305 unsigned char page, unsigned char *buf, 1306 unsigned char bufsize) 1307 { 1308 int rc = IO_OK; 1309 struct CommandList *c; 1310 struct ErrorInfo *ei; 1311 1312 c = cmd_special_alloc(h); 1313 1314 if (c == NULL) { /* trouble... */ 1315 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1316 return -ENOMEM; 1317 } 1318 1319 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1320 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1321 ei = c->err_info; 1322 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1323 hpsa_scsi_interpret_error(c); 1324 rc = -1; 1325 } 1326 cmd_special_free(h, c); 1327 return rc; 1328 } 1329 1330 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1331 { 1332 int rc = IO_OK; 1333 struct CommandList *c; 1334 struct ErrorInfo *ei; 1335 1336 c = cmd_special_alloc(h); 1337 1338 if (c == NULL) { /* trouble... */ 1339 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1340 return -ENOMEM; 1341 } 1342 1343 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1344 hpsa_scsi_do_simple_cmd_core(h, c); 1345 /* no unmap needed here because no data xfer. */ 1346 1347 ei = c->err_info; 1348 if (ei->CommandStatus != 0) { 1349 hpsa_scsi_interpret_error(c); 1350 rc = -1; 1351 } 1352 cmd_special_free(h, c); 1353 return rc; 1354 } 1355 1356 static void hpsa_get_raid_level(struct ctlr_info *h, 1357 unsigned char *scsi3addr, unsigned char *raid_level) 1358 { 1359 int rc; 1360 unsigned char *buf; 1361 1362 *raid_level = RAID_UNKNOWN; 1363 buf = kzalloc(64, GFP_KERNEL); 1364 if (!buf) 1365 return; 1366 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1367 if (rc == 0) 1368 *raid_level = buf[8]; 1369 if (*raid_level > RAID_UNKNOWN) 1370 *raid_level = RAID_UNKNOWN; 1371 kfree(buf); 1372 return; 1373 } 1374 1375 /* Get the device id from inquiry page 0x83 */ 1376 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1377 unsigned char *device_id, int buflen) 1378 { 1379 int rc; 1380 unsigned char *buf; 1381 1382 if (buflen > 16) 1383 buflen = 16; 1384 buf = kzalloc(64, GFP_KERNEL); 1385 if (!buf) 1386 return -1; 1387 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1388 if (rc == 0) 1389 memcpy(device_id, &buf[8], buflen); 1390 kfree(buf); 1391 return rc != 0; 1392 } 1393 1394 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1395 struct ReportLUNdata *buf, int bufsize, 1396 int extended_response) 1397 { 1398 int rc = IO_OK; 1399 struct CommandList *c; 1400 unsigned char scsi3addr[8]; 1401 struct ErrorInfo *ei; 1402 1403 c = cmd_special_alloc(h); 1404 if (c == NULL) { /* trouble... */ 1405 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1406 return -1; 1407 } 1408 /* address the controller */ 1409 memset(scsi3addr, 0, sizeof(scsi3addr)); 1410 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1411 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1412 if (extended_response) 1413 c->Request.CDB[1] = extended_response; 1414 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1415 ei = c->err_info; 1416 if (ei->CommandStatus != 0 && 1417 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1418 hpsa_scsi_interpret_error(c); 1419 rc = -1; 1420 } 1421 cmd_special_free(h, c); 1422 return rc; 1423 } 1424 1425 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1426 struct ReportLUNdata *buf, 1427 int bufsize, int extended_response) 1428 { 1429 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1430 } 1431 1432 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1433 struct ReportLUNdata *buf, int bufsize) 1434 { 1435 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1436 } 1437 1438 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1439 int bus, int target, int lun) 1440 { 1441 device->bus = bus; 1442 device->target = target; 1443 device->lun = lun; 1444 } 1445 1446 static int hpsa_update_device_info(struct ctlr_info *h, 1447 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1448 { 1449 #define OBDR_TAPE_INQ_SIZE 49 1450 unsigned char *inq_buff; 1451 1452 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1453 if (!inq_buff) 1454 goto bail_out; 1455 1456 /* Do an inquiry to the device to see what it is. */ 1457 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1458 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1459 /* Inquiry failed (msg printed already) */ 1460 dev_err(&h->pdev->dev, 1461 "hpsa_update_device_info: inquiry failed\n"); 1462 goto bail_out; 1463 } 1464 1465 this_device->devtype = (inq_buff[0] & 0x1f); 1466 memcpy(this_device->scsi3addr, scsi3addr, 8); 1467 memcpy(this_device->vendor, &inq_buff[8], 1468 sizeof(this_device->vendor)); 1469 memcpy(this_device->model, &inq_buff[16], 1470 sizeof(this_device->model)); 1471 memset(this_device->device_id, 0, 1472 sizeof(this_device->device_id)); 1473 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1474 sizeof(this_device->device_id)); 1475 1476 if (this_device->devtype == TYPE_DISK && 1477 is_logical_dev_addr_mode(scsi3addr)) 1478 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1479 else 1480 this_device->raid_level = RAID_UNKNOWN; 1481 1482 kfree(inq_buff); 1483 return 0; 1484 1485 bail_out: 1486 kfree(inq_buff); 1487 return 1; 1488 } 1489 1490 static unsigned char *msa2xxx_model[] = { 1491 "MSA2012", 1492 "MSA2024", 1493 "MSA2312", 1494 "MSA2324", 1495 NULL, 1496 }; 1497 1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1499 { 1500 int i; 1501 1502 for (i = 0; msa2xxx_model[i]; i++) 1503 if (strncmp(device->model, msa2xxx_model[i], 1504 strlen(msa2xxx_model[i])) == 0) 1505 return 1; 1506 return 0; 1507 } 1508 1509 /* Helper function to assign bus, target, lun mapping of devices. 1510 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1511 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1512 * Logical drive target and lun are assigned at this time, but 1513 * physical device lun and target assignment are deferred (assigned 1514 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1515 */ 1516 static void figure_bus_target_lun(struct ctlr_info *h, 1517 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1518 struct hpsa_scsi_dev_t *device) 1519 { 1520 u32 lunid; 1521 1522 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1523 /* logical device */ 1524 if (unlikely(is_scsi_rev_5(h))) { 1525 /* p1210m, logical drives lun assignments 1526 * match SCSI REPORT LUNS data. 1527 */ 1528 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1529 *bus = 0; 1530 *target = 0; 1531 *lun = (lunid & 0x3fff) + 1; 1532 } else { 1533 /* not p1210m... */ 1534 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1535 if (is_msa2xxx(h, device)) { 1536 /* msa2xxx way, put logicals on bus 1 1537 * and match target/lun numbers box 1538 * reports. 1539 */ 1540 *bus = 1; 1541 *target = (lunid >> 16) & 0x3fff; 1542 *lun = lunid & 0x00ff; 1543 } else { 1544 /* Traditional smart array way. */ 1545 *bus = 0; 1546 *lun = 0; 1547 *target = lunid & 0x3fff; 1548 } 1549 } 1550 } else { 1551 /* physical device */ 1552 if (is_hba_lunid(lunaddrbytes)) 1553 if (unlikely(is_scsi_rev_5(h))) { 1554 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1555 *target = 0; 1556 *lun = 0; 1557 return; 1558 } else 1559 *bus = 3; /* traditional smartarray */ 1560 else 1561 *bus = 2; /* physical disk */ 1562 *target = -1; 1563 *lun = -1; /* we will fill these in later. */ 1564 } 1565 } 1566 1567 /* 1568 * If there is no lun 0 on a target, linux won't find any devices. 1569 * For the MSA2xxx boxes, we have to manually detect the enclosure 1570 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1571 * it for some reason. *tmpdevice is the target we're adding, 1572 * this_device is a pointer into the current element of currentsd[] 1573 * that we're building up in update_scsi_devices(), below. 1574 * lunzerobits is a bitmap that tracks which targets already have a 1575 * lun 0 assigned. 1576 * Returns 1 if an enclosure was added, 0 if not. 1577 */ 1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1579 struct hpsa_scsi_dev_t *tmpdevice, 1580 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1581 int bus, int target, int lun, unsigned long lunzerobits[], 1582 int *nmsa2xxx_enclosures) 1583 { 1584 unsigned char scsi3addr[8]; 1585 1586 if (test_bit(target, lunzerobits)) 1587 return 0; /* There is already a lun 0 on this target. */ 1588 1589 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1590 return 0; /* It's the logical targets that may lack lun 0. */ 1591 1592 if (!is_msa2xxx(h, tmpdevice)) 1593 return 0; /* It's only the MSA2xxx that have this problem. */ 1594 1595 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1596 return 0; 1597 1598 if (is_hba_lunid(scsi3addr)) 1599 return 0; /* Don't add the RAID controller here. */ 1600 1601 if (is_scsi_rev_5(h)) 1602 return 0; /* p1210m doesn't need to do this. */ 1603 1604 #define MAX_MSA2XXX_ENCLOSURES 32 1605 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1606 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1607 "enclosures exceeded. Check your hardware " 1608 "configuration."); 1609 return 0; 1610 } 1611 1612 memset(scsi3addr, 0, 8); 1613 scsi3addr[3] = target; 1614 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1615 return 0; 1616 (*nmsa2xxx_enclosures)++; 1617 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1618 set_bit(target, lunzerobits); 1619 return 1; 1620 } 1621 1622 /* 1623 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1624 * logdev. The number of luns in physdev and logdev are returned in 1625 * *nphysicals and *nlogicals, respectively. 1626 * Returns 0 on success, -1 otherwise. 1627 */ 1628 static int hpsa_gather_lun_info(struct ctlr_info *h, 1629 int reportlunsize, 1630 struct ReportLUNdata *physdev, u32 *nphysicals, 1631 struct ReportLUNdata *logdev, u32 *nlogicals) 1632 { 1633 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1634 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1635 return -1; 1636 } 1637 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1638 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1639 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1640 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1641 *nphysicals - HPSA_MAX_PHYS_LUN); 1642 *nphysicals = HPSA_MAX_PHYS_LUN; 1643 } 1644 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1645 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1646 return -1; 1647 } 1648 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1649 /* Reject Logicals in excess of our max capability. */ 1650 if (*nlogicals > HPSA_MAX_LUN) { 1651 dev_warn(&h->pdev->dev, 1652 "maximum logical LUNs (%d) exceeded. " 1653 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1654 *nlogicals - HPSA_MAX_LUN); 1655 *nlogicals = HPSA_MAX_LUN; 1656 } 1657 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1658 dev_warn(&h->pdev->dev, 1659 "maximum logical + physical LUNs (%d) exceeded. " 1660 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1661 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1662 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1663 } 1664 return 0; 1665 } 1666 1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1668 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1669 struct ReportLUNdata *logdev_list) 1670 { 1671 /* Helper function, figure out where the LUN ID info is coming from 1672 * given index i, lists of physical and logical devices, where in 1673 * the list the raid controller is supposed to appear (first or last) 1674 */ 1675 1676 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1677 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1678 1679 if (i == raid_ctlr_position) 1680 return RAID_CTLR_LUNID; 1681 1682 if (i < logicals_start) 1683 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1684 1685 if (i < last_device) 1686 return &logdev_list->LUN[i - nphysicals - 1687 (raid_ctlr_position == 0)][0]; 1688 BUG(); 1689 return NULL; 1690 } 1691 1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1693 { 1694 /* the idea here is we could get notified 1695 * that some devices have changed, so we do a report 1696 * physical luns and report logical luns cmd, and adjust 1697 * our list of devices accordingly. 1698 * 1699 * The scsi3addr's of devices won't change so long as the 1700 * adapter is not reset. That means we can rescan and 1701 * tell which devices we already know about, vs. new 1702 * devices, vs. disappearing devices. 1703 */ 1704 struct ReportLUNdata *physdev_list = NULL; 1705 struct ReportLUNdata *logdev_list = NULL; 1706 unsigned char *inq_buff = NULL; 1707 u32 nphysicals = 0; 1708 u32 nlogicals = 0; 1709 u32 ndev_allocated = 0; 1710 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1711 int ncurrent = 0; 1712 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1713 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1714 int bus, target, lun; 1715 int raid_ctlr_position; 1716 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1717 1718 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1719 GFP_KERNEL); 1720 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1721 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1722 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1723 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1724 1725 if (!currentsd || !physdev_list || !logdev_list || 1726 !inq_buff || !tmpdevice) { 1727 dev_err(&h->pdev->dev, "out of memory\n"); 1728 goto out; 1729 } 1730 memset(lunzerobits, 0, sizeof(lunzerobits)); 1731 1732 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1733 logdev_list, &nlogicals)) 1734 goto out; 1735 1736 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1737 * but each of them 4 times through different paths. The plus 1 1738 * is for the RAID controller. 1739 */ 1740 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1741 1742 /* Allocate the per device structures */ 1743 for (i = 0; i < ndevs_to_allocate; i++) { 1744 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1745 if (!currentsd[i]) { 1746 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1747 __FILE__, __LINE__); 1748 goto out; 1749 } 1750 ndev_allocated++; 1751 } 1752 1753 if (unlikely(is_scsi_rev_5(h))) 1754 raid_ctlr_position = 0; 1755 else 1756 raid_ctlr_position = nphysicals + nlogicals; 1757 1758 /* adjust our table of devices */ 1759 nmsa2xxx_enclosures = 0; 1760 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1761 u8 *lunaddrbytes; 1762 1763 /* Figure out where the LUN ID info is coming from */ 1764 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1765 i, nphysicals, nlogicals, physdev_list, logdev_list); 1766 /* skip masked physical devices. */ 1767 if (lunaddrbytes[3] & 0xC0 && 1768 i < nphysicals + (raid_ctlr_position == 0)) 1769 continue; 1770 1771 /* Get device type, vendor, model, device id */ 1772 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1773 continue; /* skip it if we can't talk to it. */ 1774 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1775 tmpdevice); 1776 this_device = currentsd[ncurrent]; 1777 1778 /* 1779 * For the msa2xxx boxes, we have to insert a LUN 0 which 1780 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1781 * is nonetheless an enclosure device there. We have to 1782 * present that otherwise linux won't find anything if 1783 * there is no lun 0. 1784 */ 1785 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1786 lunaddrbytes, bus, target, lun, lunzerobits, 1787 &nmsa2xxx_enclosures)) { 1788 ncurrent++; 1789 this_device = currentsd[ncurrent]; 1790 } 1791 1792 *this_device = *tmpdevice; 1793 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1794 1795 switch (this_device->devtype) { 1796 case TYPE_ROM: { 1797 /* We don't *really* support actual CD-ROM devices, 1798 * just "One Button Disaster Recovery" tape drive 1799 * which temporarily pretends to be a CD-ROM drive. 1800 * So we check that the device is really an OBDR tape 1801 * device by checking for "$DR-10" in bytes 43-48 of 1802 * the inquiry data. 1803 */ 1804 char obdr_sig[7]; 1805 #define OBDR_TAPE_SIG "$DR-10" 1806 strncpy(obdr_sig, &inq_buff[43], 6); 1807 obdr_sig[6] = '\0'; 1808 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1809 /* Not OBDR device, ignore it. */ 1810 break; 1811 } 1812 ncurrent++; 1813 break; 1814 case TYPE_DISK: 1815 if (i < nphysicals) 1816 break; 1817 ncurrent++; 1818 break; 1819 case TYPE_TAPE: 1820 case TYPE_MEDIUM_CHANGER: 1821 ncurrent++; 1822 break; 1823 case TYPE_RAID: 1824 /* Only present the Smartarray HBA as a RAID controller. 1825 * If it's a RAID controller other than the HBA itself 1826 * (an external RAID controller, MSA500 or similar) 1827 * don't present it. 1828 */ 1829 if (!is_hba_lunid(lunaddrbytes)) 1830 break; 1831 ncurrent++; 1832 break; 1833 default: 1834 break; 1835 } 1836 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1837 break; 1838 } 1839 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1840 out: 1841 kfree(tmpdevice); 1842 for (i = 0; i < ndev_allocated; i++) 1843 kfree(currentsd[i]); 1844 kfree(currentsd); 1845 kfree(inq_buff); 1846 kfree(physdev_list); 1847 kfree(logdev_list); 1848 } 1849 1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1851 * dma mapping and fills in the scatter gather entries of the 1852 * hpsa command, cp. 1853 */ 1854 static int hpsa_scatter_gather(struct ctlr_info *h, 1855 struct CommandList *cp, 1856 struct scsi_cmnd *cmd) 1857 { 1858 unsigned int len; 1859 struct scatterlist *sg; 1860 u64 addr64; 1861 int use_sg, i, sg_index, chained; 1862 struct SGDescriptor *curr_sg; 1863 1864 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 1865 1866 use_sg = scsi_dma_map(cmd); 1867 if (use_sg < 0) 1868 return use_sg; 1869 1870 if (!use_sg) 1871 goto sglist_finished; 1872 1873 curr_sg = cp->SG; 1874 chained = 0; 1875 sg_index = 0; 1876 scsi_for_each_sg(cmd, sg, use_sg, i) { 1877 if (i == h->max_cmd_sg_entries - 1 && 1878 use_sg > h->max_cmd_sg_entries) { 1879 chained = 1; 1880 curr_sg = h->cmd_sg_list[cp->cmdindex]; 1881 sg_index = 0; 1882 } 1883 addr64 = (u64) sg_dma_address(sg); 1884 len = sg_dma_len(sg); 1885 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 1886 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 1887 curr_sg->Len = len; 1888 curr_sg->Ext = 0; /* we are not chaining */ 1889 curr_sg++; 1890 } 1891 1892 if (use_sg + chained > h->maxSG) 1893 h->maxSG = use_sg + chained; 1894 1895 if (chained) { 1896 cp->Header.SGList = h->max_cmd_sg_entries; 1897 cp->Header.SGTotal = (u16) (use_sg + 1); 1898 hpsa_map_sg_chain_block(h, cp); 1899 return 0; 1900 } 1901 1902 sglist_finished: 1903 1904 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 1905 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 1906 return 0; 1907 } 1908 1909 1910 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 1911 void (*done)(struct scsi_cmnd *)) 1912 { 1913 struct ctlr_info *h; 1914 struct hpsa_scsi_dev_t *dev; 1915 unsigned char scsi3addr[8]; 1916 struct CommandList *c; 1917 unsigned long flags; 1918 1919 /* Get the ptr to our adapter structure out of cmd->host. */ 1920 h = sdev_to_hba(cmd->device); 1921 dev = cmd->device->hostdata; 1922 if (!dev) { 1923 cmd->result = DID_NO_CONNECT << 16; 1924 done(cmd); 1925 return 0; 1926 } 1927 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 1928 1929 /* Need a lock as this is being allocated from the pool */ 1930 spin_lock_irqsave(&h->lock, flags); 1931 c = cmd_alloc(h); 1932 spin_unlock_irqrestore(&h->lock, flags); 1933 if (c == NULL) { /* trouble... */ 1934 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 1935 return SCSI_MLQUEUE_HOST_BUSY; 1936 } 1937 1938 /* Fill in the command list header */ 1939 1940 cmd->scsi_done = done; /* save this for use by completion code */ 1941 1942 /* save c in case we have to abort it */ 1943 cmd->host_scribble = (unsigned char *) c; 1944 1945 c->cmd_type = CMD_SCSI; 1946 c->scsi_cmd = cmd; 1947 c->Header.ReplyQueue = 0; /* unused in simple mode */ 1948 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 1949 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 1950 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 1951 1952 /* Fill in the request block... */ 1953 1954 c->Request.Timeout = 0; 1955 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 1956 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 1957 c->Request.CDBLen = cmd->cmd_len; 1958 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 1959 c->Request.Type.Type = TYPE_CMD; 1960 c->Request.Type.Attribute = ATTR_SIMPLE; 1961 switch (cmd->sc_data_direction) { 1962 case DMA_TO_DEVICE: 1963 c->Request.Type.Direction = XFER_WRITE; 1964 break; 1965 case DMA_FROM_DEVICE: 1966 c->Request.Type.Direction = XFER_READ; 1967 break; 1968 case DMA_NONE: 1969 c->Request.Type.Direction = XFER_NONE; 1970 break; 1971 case DMA_BIDIRECTIONAL: 1972 /* This can happen if a buggy application does a scsi passthru 1973 * and sets both inlen and outlen to non-zero. ( see 1974 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 1975 */ 1976 1977 c->Request.Type.Direction = XFER_RSVD; 1978 /* This is technically wrong, and hpsa controllers should 1979 * reject it with CMD_INVALID, which is the most correct 1980 * response, but non-fibre backends appear to let it 1981 * slide by, and give the same results as if this field 1982 * were set correctly. Either way is acceptable for 1983 * our purposes here. 1984 */ 1985 1986 break; 1987 1988 default: 1989 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 1990 cmd->sc_data_direction); 1991 BUG(); 1992 break; 1993 } 1994 1995 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 1996 cmd_free(h, c); 1997 return SCSI_MLQUEUE_HOST_BUSY; 1998 } 1999 enqueue_cmd_and_start_io(h, c); 2000 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2001 return 0; 2002 } 2003 2004 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2005 2006 static void hpsa_scan_start(struct Scsi_Host *sh) 2007 { 2008 struct ctlr_info *h = shost_to_hba(sh); 2009 unsigned long flags; 2010 2011 /* wait until any scan already in progress is finished. */ 2012 while (1) { 2013 spin_lock_irqsave(&h->scan_lock, flags); 2014 if (h->scan_finished) 2015 break; 2016 spin_unlock_irqrestore(&h->scan_lock, flags); 2017 wait_event(h->scan_wait_queue, h->scan_finished); 2018 /* Note: We don't need to worry about a race between this 2019 * thread and driver unload because the midlayer will 2020 * have incremented the reference count, so unload won't 2021 * happen if we're in here. 2022 */ 2023 } 2024 h->scan_finished = 0; /* mark scan as in progress */ 2025 spin_unlock_irqrestore(&h->scan_lock, flags); 2026 2027 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2028 2029 spin_lock_irqsave(&h->scan_lock, flags); 2030 h->scan_finished = 1; /* mark scan as finished. */ 2031 wake_up_all(&h->scan_wait_queue); 2032 spin_unlock_irqrestore(&h->scan_lock, flags); 2033 } 2034 2035 static int hpsa_scan_finished(struct Scsi_Host *sh, 2036 unsigned long elapsed_time) 2037 { 2038 struct ctlr_info *h = shost_to_hba(sh); 2039 unsigned long flags; 2040 int finished; 2041 2042 spin_lock_irqsave(&h->scan_lock, flags); 2043 finished = h->scan_finished; 2044 spin_unlock_irqrestore(&h->scan_lock, flags); 2045 return finished; 2046 } 2047 2048 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2049 int qdepth, int reason) 2050 { 2051 struct ctlr_info *h = sdev_to_hba(sdev); 2052 2053 if (reason != SCSI_QDEPTH_DEFAULT) 2054 return -ENOTSUPP; 2055 2056 if (qdepth < 1) 2057 qdepth = 1; 2058 else 2059 if (qdepth > h->nr_cmds) 2060 qdepth = h->nr_cmds; 2061 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2062 return sdev->queue_depth; 2063 } 2064 2065 static void hpsa_unregister_scsi(struct ctlr_info *h) 2066 { 2067 /* we are being forcibly unloaded, and may not refuse. */ 2068 scsi_remove_host(h->scsi_host); 2069 scsi_host_put(h->scsi_host); 2070 h->scsi_host = NULL; 2071 } 2072 2073 static int hpsa_register_scsi(struct ctlr_info *h) 2074 { 2075 int rc; 2076 2077 rc = hpsa_scsi_detect(h); 2078 if (rc != 0) 2079 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2080 " hpsa_scsi_detect(), rc is %d\n", rc); 2081 return rc; 2082 } 2083 2084 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2085 unsigned char lunaddr[]) 2086 { 2087 int rc = 0; 2088 int count = 0; 2089 int waittime = 1; /* seconds */ 2090 struct CommandList *c; 2091 2092 c = cmd_special_alloc(h); 2093 if (!c) { 2094 dev_warn(&h->pdev->dev, "out of memory in " 2095 "wait_for_device_to_become_ready.\n"); 2096 return IO_ERROR; 2097 } 2098 2099 /* Send test unit ready until device ready, or give up. */ 2100 while (count < HPSA_TUR_RETRY_LIMIT) { 2101 2102 /* Wait for a bit. do this first, because if we send 2103 * the TUR right away, the reset will just abort it. 2104 */ 2105 msleep(1000 * waittime); 2106 count++; 2107 2108 /* Increase wait time with each try, up to a point. */ 2109 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2110 waittime = waittime * 2; 2111 2112 /* Send the Test Unit Ready */ 2113 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2114 hpsa_scsi_do_simple_cmd_core(h, c); 2115 /* no unmap needed here because no data xfer. */ 2116 2117 if (c->err_info->CommandStatus == CMD_SUCCESS) 2118 break; 2119 2120 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2121 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2122 (c->err_info->SenseInfo[2] == NO_SENSE || 2123 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2124 break; 2125 2126 dev_warn(&h->pdev->dev, "waiting %d secs " 2127 "for device to become ready.\n", waittime); 2128 rc = 1; /* device not ready. */ 2129 } 2130 2131 if (rc) 2132 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2133 else 2134 dev_warn(&h->pdev->dev, "device is ready.\n"); 2135 2136 cmd_special_free(h, c); 2137 return rc; 2138 } 2139 2140 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2141 * complaining. Doing a host- or bus-reset can't do anything good here. 2142 */ 2143 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2144 { 2145 int rc; 2146 struct ctlr_info *h; 2147 struct hpsa_scsi_dev_t *dev; 2148 2149 /* find the controller to which the command to be aborted was sent */ 2150 h = sdev_to_hba(scsicmd->device); 2151 if (h == NULL) /* paranoia */ 2152 return FAILED; 2153 dev = scsicmd->device->hostdata; 2154 if (!dev) { 2155 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2156 "device lookup failed.\n"); 2157 return FAILED; 2158 } 2159 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2160 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2161 /* send a reset to the SCSI LUN which the command was sent to */ 2162 rc = hpsa_send_reset(h, dev->scsi3addr); 2163 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2164 return SUCCESS; 2165 2166 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2167 return FAILED; 2168 } 2169 2170 /* 2171 * For operations that cannot sleep, a command block is allocated at init, 2172 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2173 * which ones are free or in use. Lock must be held when calling this. 2174 * cmd_free() is the complement. 2175 */ 2176 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2177 { 2178 struct CommandList *c; 2179 int i; 2180 union u64bit temp64; 2181 dma_addr_t cmd_dma_handle, err_dma_handle; 2182 2183 do { 2184 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2185 if (i == h->nr_cmds) 2186 return NULL; 2187 } while (test_and_set_bit 2188 (i & (BITS_PER_LONG - 1), 2189 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2190 c = h->cmd_pool + i; 2191 memset(c, 0, sizeof(*c)); 2192 cmd_dma_handle = h->cmd_pool_dhandle 2193 + i * sizeof(*c); 2194 c->err_info = h->errinfo_pool + i; 2195 memset(c->err_info, 0, sizeof(*c->err_info)); 2196 err_dma_handle = h->errinfo_pool_dhandle 2197 + i * sizeof(*c->err_info); 2198 h->nr_allocs++; 2199 2200 c->cmdindex = i; 2201 2202 INIT_HLIST_NODE(&c->list); 2203 c->busaddr = (u32) cmd_dma_handle; 2204 temp64.val = (u64) err_dma_handle; 2205 c->ErrDesc.Addr.lower = temp64.val32.lower; 2206 c->ErrDesc.Addr.upper = temp64.val32.upper; 2207 c->ErrDesc.Len = sizeof(*c->err_info); 2208 2209 c->h = h; 2210 return c; 2211 } 2212 2213 /* For operations that can wait for kmalloc to possibly sleep, 2214 * this routine can be called. Lock need not be held to call 2215 * cmd_special_alloc. cmd_special_free() is the complement. 2216 */ 2217 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2218 { 2219 struct CommandList *c; 2220 union u64bit temp64; 2221 dma_addr_t cmd_dma_handle, err_dma_handle; 2222 2223 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2224 if (c == NULL) 2225 return NULL; 2226 memset(c, 0, sizeof(*c)); 2227 2228 c->cmdindex = -1; 2229 2230 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2231 &err_dma_handle); 2232 2233 if (c->err_info == NULL) { 2234 pci_free_consistent(h->pdev, 2235 sizeof(*c), c, cmd_dma_handle); 2236 return NULL; 2237 } 2238 memset(c->err_info, 0, sizeof(*c->err_info)); 2239 2240 INIT_HLIST_NODE(&c->list); 2241 c->busaddr = (u32) cmd_dma_handle; 2242 temp64.val = (u64) err_dma_handle; 2243 c->ErrDesc.Addr.lower = temp64.val32.lower; 2244 c->ErrDesc.Addr.upper = temp64.val32.upper; 2245 c->ErrDesc.Len = sizeof(*c->err_info); 2246 2247 c->h = h; 2248 return c; 2249 } 2250 2251 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2252 { 2253 int i; 2254 2255 i = c - h->cmd_pool; 2256 clear_bit(i & (BITS_PER_LONG - 1), 2257 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2258 h->nr_frees++; 2259 } 2260 2261 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2262 { 2263 union u64bit temp64; 2264 2265 temp64.val32.lower = c->ErrDesc.Addr.lower; 2266 temp64.val32.upper = c->ErrDesc.Addr.upper; 2267 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2268 c->err_info, (dma_addr_t) temp64.val); 2269 pci_free_consistent(h->pdev, sizeof(*c), 2270 c, (dma_addr_t) c->busaddr); 2271 } 2272 2273 #ifdef CONFIG_COMPAT 2274 2275 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2276 { 2277 IOCTL32_Command_struct __user *arg32 = 2278 (IOCTL32_Command_struct __user *) arg; 2279 IOCTL_Command_struct arg64; 2280 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2281 int err; 2282 u32 cp; 2283 2284 err = 0; 2285 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2286 sizeof(arg64.LUN_info)); 2287 err |= copy_from_user(&arg64.Request, &arg32->Request, 2288 sizeof(arg64.Request)); 2289 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2290 sizeof(arg64.error_info)); 2291 err |= get_user(arg64.buf_size, &arg32->buf_size); 2292 err |= get_user(cp, &arg32->buf); 2293 arg64.buf = compat_ptr(cp); 2294 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2295 2296 if (err) 2297 return -EFAULT; 2298 2299 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2300 if (err) 2301 return err; 2302 err |= copy_in_user(&arg32->error_info, &p->error_info, 2303 sizeof(arg32->error_info)); 2304 if (err) 2305 return -EFAULT; 2306 return err; 2307 } 2308 2309 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2310 int cmd, void *arg) 2311 { 2312 BIG_IOCTL32_Command_struct __user *arg32 = 2313 (BIG_IOCTL32_Command_struct __user *) arg; 2314 BIG_IOCTL_Command_struct arg64; 2315 BIG_IOCTL_Command_struct __user *p = 2316 compat_alloc_user_space(sizeof(arg64)); 2317 int err; 2318 u32 cp; 2319 2320 err = 0; 2321 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2322 sizeof(arg64.LUN_info)); 2323 err |= copy_from_user(&arg64.Request, &arg32->Request, 2324 sizeof(arg64.Request)); 2325 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2326 sizeof(arg64.error_info)); 2327 err |= get_user(arg64.buf_size, &arg32->buf_size); 2328 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2329 err |= get_user(cp, &arg32->buf); 2330 arg64.buf = compat_ptr(cp); 2331 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2332 2333 if (err) 2334 return -EFAULT; 2335 2336 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2337 if (err) 2338 return err; 2339 err |= copy_in_user(&arg32->error_info, &p->error_info, 2340 sizeof(arg32->error_info)); 2341 if (err) 2342 return -EFAULT; 2343 return err; 2344 } 2345 2346 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2347 { 2348 switch (cmd) { 2349 case CCISS_GETPCIINFO: 2350 case CCISS_GETINTINFO: 2351 case CCISS_SETINTINFO: 2352 case CCISS_GETNODENAME: 2353 case CCISS_SETNODENAME: 2354 case CCISS_GETHEARTBEAT: 2355 case CCISS_GETBUSTYPES: 2356 case CCISS_GETFIRMVER: 2357 case CCISS_GETDRIVVER: 2358 case CCISS_REVALIDVOLS: 2359 case CCISS_DEREGDISK: 2360 case CCISS_REGNEWDISK: 2361 case CCISS_REGNEWD: 2362 case CCISS_RESCANDISK: 2363 case CCISS_GETLUNINFO: 2364 return hpsa_ioctl(dev, cmd, arg); 2365 2366 case CCISS_PASSTHRU32: 2367 return hpsa_ioctl32_passthru(dev, cmd, arg); 2368 case CCISS_BIG_PASSTHRU32: 2369 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2370 2371 default: 2372 return -ENOIOCTLCMD; 2373 } 2374 } 2375 #endif 2376 2377 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2378 { 2379 struct hpsa_pci_info pciinfo; 2380 2381 if (!argp) 2382 return -EINVAL; 2383 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2384 pciinfo.bus = h->pdev->bus->number; 2385 pciinfo.dev_fn = h->pdev->devfn; 2386 pciinfo.board_id = h->board_id; 2387 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2388 return -EFAULT; 2389 return 0; 2390 } 2391 2392 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2393 { 2394 DriverVer_type DriverVer; 2395 unsigned char vmaj, vmin, vsubmin; 2396 int rc; 2397 2398 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2399 &vmaj, &vmin, &vsubmin); 2400 if (rc != 3) { 2401 dev_info(&h->pdev->dev, "driver version string '%s' " 2402 "unrecognized.", HPSA_DRIVER_VERSION); 2403 vmaj = 0; 2404 vmin = 0; 2405 vsubmin = 0; 2406 } 2407 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2408 if (!argp) 2409 return -EINVAL; 2410 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2411 return -EFAULT; 2412 return 0; 2413 } 2414 2415 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2416 { 2417 IOCTL_Command_struct iocommand; 2418 struct CommandList *c; 2419 char *buff = NULL; 2420 union u64bit temp64; 2421 2422 if (!argp) 2423 return -EINVAL; 2424 if (!capable(CAP_SYS_RAWIO)) 2425 return -EPERM; 2426 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2427 return -EFAULT; 2428 if ((iocommand.buf_size < 1) && 2429 (iocommand.Request.Type.Direction != XFER_NONE)) { 2430 return -EINVAL; 2431 } 2432 if (iocommand.buf_size > 0) { 2433 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2434 if (buff == NULL) 2435 return -EFAULT; 2436 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2437 /* Copy the data into the buffer we created */ 2438 if (copy_from_user(buff, iocommand.buf, 2439 iocommand.buf_size)) { 2440 kfree(buff); 2441 return -EFAULT; 2442 } 2443 } else { 2444 memset(buff, 0, iocommand.buf_size); 2445 } 2446 } 2447 c = cmd_special_alloc(h); 2448 if (c == NULL) { 2449 kfree(buff); 2450 return -ENOMEM; 2451 } 2452 /* Fill in the command type */ 2453 c->cmd_type = CMD_IOCTL_PEND; 2454 /* Fill in Command Header */ 2455 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2456 if (iocommand.buf_size > 0) { /* buffer to fill */ 2457 c->Header.SGList = 1; 2458 c->Header.SGTotal = 1; 2459 } else { /* no buffers to fill */ 2460 c->Header.SGList = 0; 2461 c->Header.SGTotal = 0; 2462 } 2463 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2464 /* use the kernel address the cmd block for tag */ 2465 c->Header.Tag.lower = c->busaddr; 2466 2467 /* Fill in Request block */ 2468 memcpy(&c->Request, &iocommand.Request, 2469 sizeof(c->Request)); 2470 2471 /* Fill in the scatter gather information */ 2472 if (iocommand.buf_size > 0) { 2473 temp64.val = pci_map_single(h->pdev, buff, 2474 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2475 c->SG[0].Addr.lower = temp64.val32.lower; 2476 c->SG[0].Addr.upper = temp64.val32.upper; 2477 c->SG[0].Len = iocommand.buf_size; 2478 c->SG[0].Ext = 0; /* we are not chaining*/ 2479 } 2480 hpsa_scsi_do_simple_cmd_core(h, c); 2481 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2482 check_ioctl_unit_attention(h, c); 2483 2484 /* Copy the error information out */ 2485 memcpy(&iocommand.error_info, c->err_info, 2486 sizeof(iocommand.error_info)); 2487 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2488 kfree(buff); 2489 cmd_special_free(h, c); 2490 return -EFAULT; 2491 } 2492 if (iocommand.Request.Type.Direction == XFER_READ && 2493 iocommand.buf_size > 0) { 2494 /* Copy the data out of the buffer we created */ 2495 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2496 kfree(buff); 2497 cmd_special_free(h, c); 2498 return -EFAULT; 2499 } 2500 } 2501 kfree(buff); 2502 cmd_special_free(h, c); 2503 return 0; 2504 } 2505 2506 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2507 { 2508 BIG_IOCTL_Command_struct *ioc; 2509 struct CommandList *c; 2510 unsigned char **buff = NULL; 2511 int *buff_size = NULL; 2512 union u64bit temp64; 2513 BYTE sg_used = 0; 2514 int status = 0; 2515 int i; 2516 u32 left; 2517 u32 sz; 2518 BYTE __user *data_ptr; 2519 2520 if (!argp) 2521 return -EINVAL; 2522 if (!capable(CAP_SYS_RAWIO)) 2523 return -EPERM; 2524 ioc = (BIG_IOCTL_Command_struct *) 2525 kmalloc(sizeof(*ioc), GFP_KERNEL); 2526 if (!ioc) { 2527 status = -ENOMEM; 2528 goto cleanup1; 2529 } 2530 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2531 status = -EFAULT; 2532 goto cleanup1; 2533 } 2534 if ((ioc->buf_size < 1) && 2535 (ioc->Request.Type.Direction != XFER_NONE)) { 2536 status = -EINVAL; 2537 goto cleanup1; 2538 } 2539 /* Check kmalloc limits using all SGs */ 2540 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2541 status = -EINVAL; 2542 goto cleanup1; 2543 } 2544 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2545 status = -EINVAL; 2546 goto cleanup1; 2547 } 2548 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2549 if (!buff) { 2550 status = -ENOMEM; 2551 goto cleanup1; 2552 } 2553 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2554 if (!buff_size) { 2555 status = -ENOMEM; 2556 goto cleanup1; 2557 } 2558 left = ioc->buf_size; 2559 data_ptr = ioc->buf; 2560 while (left) { 2561 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2562 buff_size[sg_used] = sz; 2563 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2564 if (buff[sg_used] == NULL) { 2565 status = -ENOMEM; 2566 goto cleanup1; 2567 } 2568 if (ioc->Request.Type.Direction == XFER_WRITE) { 2569 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2570 status = -ENOMEM; 2571 goto cleanup1; 2572 } 2573 } else 2574 memset(buff[sg_used], 0, sz); 2575 left -= sz; 2576 data_ptr += sz; 2577 sg_used++; 2578 } 2579 c = cmd_special_alloc(h); 2580 if (c == NULL) { 2581 status = -ENOMEM; 2582 goto cleanup1; 2583 } 2584 c->cmd_type = CMD_IOCTL_PEND; 2585 c->Header.ReplyQueue = 0; 2586 c->Header.SGList = c->Header.SGTotal = sg_used; 2587 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2588 c->Header.Tag.lower = c->busaddr; 2589 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2590 if (ioc->buf_size > 0) { 2591 int i; 2592 for (i = 0; i < sg_used; i++) { 2593 temp64.val = pci_map_single(h->pdev, buff[i], 2594 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2595 c->SG[i].Addr.lower = temp64.val32.lower; 2596 c->SG[i].Addr.upper = temp64.val32.upper; 2597 c->SG[i].Len = buff_size[i]; 2598 /* we are not chaining */ 2599 c->SG[i].Ext = 0; 2600 } 2601 } 2602 hpsa_scsi_do_simple_cmd_core(h, c); 2603 if (sg_used) 2604 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2605 check_ioctl_unit_attention(h, c); 2606 /* Copy the error information out */ 2607 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2608 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2609 cmd_special_free(h, c); 2610 status = -EFAULT; 2611 goto cleanup1; 2612 } 2613 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { 2614 /* Copy the data out of the buffer we created */ 2615 BYTE __user *ptr = ioc->buf; 2616 for (i = 0; i < sg_used; i++) { 2617 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2618 cmd_special_free(h, c); 2619 status = -EFAULT; 2620 goto cleanup1; 2621 } 2622 ptr += buff_size[i]; 2623 } 2624 } 2625 cmd_special_free(h, c); 2626 status = 0; 2627 cleanup1: 2628 if (buff) { 2629 for (i = 0; i < sg_used; i++) 2630 kfree(buff[i]); 2631 kfree(buff); 2632 } 2633 kfree(buff_size); 2634 kfree(ioc); 2635 return status; 2636 } 2637 2638 static void check_ioctl_unit_attention(struct ctlr_info *h, 2639 struct CommandList *c) 2640 { 2641 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2642 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2643 (void) check_for_unit_attention(h, c); 2644 } 2645 /* 2646 * ioctl 2647 */ 2648 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2649 { 2650 struct ctlr_info *h; 2651 void __user *argp = (void __user *)arg; 2652 2653 h = sdev_to_hba(dev); 2654 2655 switch (cmd) { 2656 case CCISS_DEREGDISK: 2657 case CCISS_REGNEWDISK: 2658 case CCISS_REGNEWD: 2659 hpsa_scan_start(h->scsi_host); 2660 return 0; 2661 case CCISS_GETPCIINFO: 2662 return hpsa_getpciinfo_ioctl(h, argp); 2663 case CCISS_GETDRIVVER: 2664 return hpsa_getdrivver_ioctl(h, argp); 2665 case CCISS_PASSTHRU: 2666 return hpsa_passthru_ioctl(h, argp); 2667 case CCISS_BIG_PASSTHRU: 2668 return hpsa_big_passthru_ioctl(h, argp); 2669 default: 2670 return -ENOTTY; 2671 } 2672 } 2673 2674 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2675 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2676 int cmd_type) 2677 { 2678 int pci_dir = XFER_NONE; 2679 2680 c->cmd_type = CMD_IOCTL_PEND; 2681 c->Header.ReplyQueue = 0; 2682 if (buff != NULL && size > 0) { 2683 c->Header.SGList = 1; 2684 c->Header.SGTotal = 1; 2685 } else { 2686 c->Header.SGList = 0; 2687 c->Header.SGTotal = 0; 2688 } 2689 c->Header.Tag.lower = c->busaddr; 2690 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2691 2692 c->Request.Type.Type = cmd_type; 2693 if (cmd_type == TYPE_CMD) { 2694 switch (cmd) { 2695 case HPSA_INQUIRY: 2696 /* are we trying to read a vital product page */ 2697 if (page_code != 0) { 2698 c->Request.CDB[1] = 0x01; 2699 c->Request.CDB[2] = page_code; 2700 } 2701 c->Request.CDBLen = 6; 2702 c->Request.Type.Attribute = ATTR_SIMPLE; 2703 c->Request.Type.Direction = XFER_READ; 2704 c->Request.Timeout = 0; 2705 c->Request.CDB[0] = HPSA_INQUIRY; 2706 c->Request.CDB[4] = size & 0xFF; 2707 break; 2708 case HPSA_REPORT_LOG: 2709 case HPSA_REPORT_PHYS: 2710 /* Talking to controller so It's a physical command 2711 mode = 00 target = 0. Nothing to write. 2712 */ 2713 c->Request.CDBLen = 12; 2714 c->Request.Type.Attribute = ATTR_SIMPLE; 2715 c->Request.Type.Direction = XFER_READ; 2716 c->Request.Timeout = 0; 2717 c->Request.CDB[0] = cmd; 2718 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2719 c->Request.CDB[7] = (size >> 16) & 0xFF; 2720 c->Request.CDB[8] = (size >> 8) & 0xFF; 2721 c->Request.CDB[9] = size & 0xFF; 2722 break; 2723 case HPSA_CACHE_FLUSH: 2724 c->Request.CDBLen = 12; 2725 c->Request.Type.Attribute = ATTR_SIMPLE; 2726 c->Request.Type.Direction = XFER_WRITE; 2727 c->Request.Timeout = 0; 2728 c->Request.CDB[0] = BMIC_WRITE; 2729 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2730 break; 2731 case TEST_UNIT_READY: 2732 c->Request.CDBLen = 6; 2733 c->Request.Type.Attribute = ATTR_SIMPLE; 2734 c->Request.Type.Direction = XFER_NONE; 2735 c->Request.Timeout = 0; 2736 break; 2737 default: 2738 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2739 BUG(); 2740 return; 2741 } 2742 } else if (cmd_type == TYPE_MSG) { 2743 switch (cmd) { 2744 2745 case HPSA_DEVICE_RESET_MSG: 2746 c->Request.CDBLen = 16; 2747 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2748 c->Request.Type.Attribute = ATTR_SIMPLE; 2749 c->Request.Type.Direction = XFER_NONE; 2750 c->Request.Timeout = 0; /* Don't time out */ 2751 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2752 c->Request.CDB[1] = 0x03; /* Reset target above */ 2753 /* If bytes 4-7 are zero, it means reset the */ 2754 /* LunID device */ 2755 c->Request.CDB[4] = 0x00; 2756 c->Request.CDB[5] = 0x00; 2757 c->Request.CDB[6] = 0x00; 2758 c->Request.CDB[7] = 0x00; 2759 break; 2760 2761 default: 2762 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2763 cmd); 2764 BUG(); 2765 } 2766 } else { 2767 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2768 BUG(); 2769 } 2770 2771 switch (c->Request.Type.Direction) { 2772 case XFER_READ: 2773 pci_dir = PCI_DMA_FROMDEVICE; 2774 break; 2775 case XFER_WRITE: 2776 pci_dir = PCI_DMA_TODEVICE; 2777 break; 2778 case XFER_NONE: 2779 pci_dir = PCI_DMA_NONE; 2780 break; 2781 default: 2782 pci_dir = PCI_DMA_BIDIRECTIONAL; 2783 } 2784 2785 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2786 2787 return; 2788 } 2789 2790 /* 2791 * Map (physical) PCI mem into (virtual) kernel space 2792 */ 2793 static void __iomem *remap_pci_mem(ulong base, ulong size) 2794 { 2795 ulong page_base = ((ulong) base) & PAGE_MASK; 2796 ulong page_offs = ((ulong) base) - page_base; 2797 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2798 2799 return page_remapped ? (page_remapped + page_offs) : NULL; 2800 } 2801 2802 /* Takes cmds off the submission queue and sends them to the hardware, 2803 * then puts them on the queue of cmds waiting for completion. 2804 */ 2805 static void start_io(struct ctlr_info *h) 2806 { 2807 struct CommandList *c; 2808 2809 while (!hlist_empty(&h->reqQ)) { 2810 c = hlist_entry(h->reqQ.first, struct CommandList, list); 2811 /* can't do anything if fifo is full */ 2812 if ((h->access.fifo_full(h))) { 2813 dev_warn(&h->pdev->dev, "fifo full\n"); 2814 break; 2815 } 2816 2817 /* Get the first entry from the Request Q */ 2818 removeQ(c); 2819 h->Qdepth--; 2820 2821 /* Tell the controller execute command */ 2822 h->access.submit_command(h, c); 2823 2824 /* Put job onto the completed Q */ 2825 addQ(&h->cmpQ, c); 2826 } 2827 } 2828 2829 static inline unsigned long get_next_completion(struct ctlr_info *h) 2830 { 2831 return h->access.command_completed(h); 2832 } 2833 2834 static inline bool interrupt_pending(struct ctlr_info *h) 2835 { 2836 return h->access.intr_pending(h); 2837 } 2838 2839 static inline long interrupt_not_for_us(struct ctlr_info *h) 2840 { 2841 return (h->access.intr_pending(h) == 0) || 2842 (h->interrupts_enabled == 0); 2843 } 2844 2845 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2846 u32 raw_tag) 2847 { 2848 if (unlikely(tag_index >= h->nr_cmds)) { 2849 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2850 return 1; 2851 } 2852 return 0; 2853 } 2854 2855 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2856 { 2857 removeQ(c); 2858 if (likely(c->cmd_type == CMD_SCSI)) 2859 complete_scsi_command(c, 0, raw_tag); 2860 else if (c->cmd_type == CMD_IOCTL_PEND) 2861 complete(c->waiting); 2862 } 2863 2864 static inline u32 hpsa_tag_contains_index(u32 tag) 2865 { 2866 #define DIRECT_LOOKUP_BIT 0x10 2867 return tag & DIRECT_LOOKUP_BIT; 2868 } 2869 2870 static inline u32 hpsa_tag_to_index(u32 tag) 2871 { 2872 #define DIRECT_LOOKUP_SHIFT 5 2873 return tag >> DIRECT_LOOKUP_SHIFT; 2874 } 2875 2876 static inline u32 hpsa_tag_discard_error_bits(u32 tag) 2877 { 2878 #define HPSA_ERROR_BITS 0x03 2879 return tag & ~HPSA_ERROR_BITS; 2880 } 2881 2882 /* process completion of an indexed ("direct lookup") command */ 2883 static inline u32 process_indexed_cmd(struct ctlr_info *h, 2884 u32 raw_tag) 2885 { 2886 u32 tag_index; 2887 struct CommandList *c; 2888 2889 tag_index = hpsa_tag_to_index(raw_tag); 2890 if (bad_tag(h, tag_index, raw_tag)) 2891 return next_command(h); 2892 c = h->cmd_pool + tag_index; 2893 finish_cmd(c, raw_tag); 2894 return next_command(h); 2895 } 2896 2897 /* process completion of a non-indexed command */ 2898 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 2899 u32 raw_tag) 2900 { 2901 u32 tag; 2902 struct CommandList *c = NULL; 2903 struct hlist_node *tmp; 2904 2905 tag = hpsa_tag_discard_error_bits(raw_tag); 2906 hlist_for_each_entry(c, tmp, &h->cmpQ, list) { 2907 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 2908 finish_cmd(c, raw_tag); 2909 return next_command(h); 2910 } 2911 } 2912 bad_tag(h, h->nr_cmds + 1, raw_tag); 2913 return next_command(h); 2914 } 2915 2916 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id) 2917 { 2918 struct ctlr_info *h = dev_id; 2919 unsigned long flags; 2920 u32 raw_tag; 2921 2922 if (interrupt_not_for_us(h)) 2923 return IRQ_NONE; 2924 spin_lock_irqsave(&h->lock, flags); 2925 while (interrupt_pending(h)) { 2926 raw_tag = get_next_completion(h); 2927 while (raw_tag != FIFO_EMPTY) { 2928 if (hpsa_tag_contains_index(raw_tag)) 2929 raw_tag = process_indexed_cmd(h, raw_tag); 2930 else 2931 raw_tag = process_nonindexed_cmd(h, raw_tag); 2932 } 2933 } 2934 spin_unlock_irqrestore(&h->lock, flags); 2935 return IRQ_HANDLED; 2936 } 2937 2938 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id) 2939 { 2940 struct ctlr_info *h = dev_id; 2941 unsigned long flags; 2942 u32 raw_tag; 2943 2944 spin_lock_irqsave(&h->lock, flags); 2945 raw_tag = get_next_completion(h); 2946 while (raw_tag != FIFO_EMPTY) { 2947 if (hpsa_tag_contains_index(raw_tag)) 2948 raw_tag = process_indexed_cmd(h, raw_tag); 2949 else 2950 raw_tag = process_nonindexed_cmd(h, raw_tag); 2951 } 2952 spin_unlock_irqrestore(&h->lock, flags); 2953 return IRQ_HANDLED; 2954 } 2955 2956 /* Send a message CDB to the firmware. */ 2957 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 2958 unsigned char type) 2959 { 2960 struct Command { 2961 struct CommandListHeader CommandHeader; 2962 struct RequestBlock Request; 2963 struct ErrDescriptor ErrorDescriptor; 2964 }; 2965 struct Command *cmd; 2966 static const size_t cmd_sz = sizeof(*cmd) + 2967 sizeof(cmd->ErrorDescriptor); 2968 dma_addr_t paddr64; 2969 uint32_t paddr32, tag; 2970 void __iomem *vaddr; 2971 int i, err; 2972 2973 vaddr = pci_ioremap_bar(pdev, 0); 2974 if (vaddr == NULL) 2975 return -ENOMEM; 2976 2977 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 2978 * CCISS commands, so they must be allocated from the lower 4GiB of 2979 * memory. 2980 */ 2981 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 2982 if (err) { 2983 iounmap(vaddr); 2984 return -ENOMEM; 2985 } 2986 2987 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 2988 if (cmd == NULL) { 2989 iounmap(vaddr); 2990 return -ENOMEM; 2991 } 2992 2993 /* This must fit, because of the 32-bit consistent DMA mask. Also, 2994 * although there's no guarantee, we assume that the address is at 2995 * least 4-byte aligned (most likely, it's page-aligned). 2996 */ 2997 paddr32 = paddr64; 2998 2999 cmd->CommandHeader.ReplyQueue = 0; 3000 cmd->CommandHeader.SGList = 0; 3001 cmd->CommandHeader.SGTotal = 0; 3002 cmd->CommandHeader.Tag.lower = paddr32; 3003 cmd->CommandHeader.Tag.upper = 0; 3004 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3005 3006 cmd->Request.CDBLen = 16; 3007 cmd->Request.Type.Type = TYPE_MSG; 3008 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3009 cmd->Request.Type.Direction = XFER_NONE; 3010 cmd->Request.Timeout = 0; /* Don't time out */ 3011 cmd->Request.CDB[0] = opcode; 3012 cmd->Request.CDB[1] = type; 3013 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3014 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3015 cmd->ErrorDescriptor.Addr.upper = 0; 3016 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3017 3018 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3019 3020 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3021 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3022 if (hpsa_tag_discard_error_bits(tag) == paddr32) 3023 break; 3024 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3025 } 3026 3027 iounmap(vaddr); 3028 3029 /* we leak the DMA buffer here ... no choice since the controller could 3030 * still complete the command. 3031 */ 3032 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3033 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3034 opcode, type); 3035 return -ETIMEDOUT; 3036 } 3037 3038 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3039 3040 if (tag & HPSA_ERROR_BIT) { 3041 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3042 opcode, type); 3043 return -EIO; 3044 } 3045 3046 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3047 opcode, type); 3048 return 0; 3049 } 3050 3051 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 3052 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3053 3054 static __devinit int hpsa_reset_msi(struct pci_dev *pdev) 3055 { 3056 /* the #defines are stolen from drivers/pci/msi.h. */ 3057 #define msi_control_reg(base) (base + PCI_MSI_FLAGS) 3058 #define PCI_MSIX_FLAGS_ENABLE (1 << 15) 3059 3060 int pos; 3061 u16 control = 0; 3062 3063 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); 3064 if (pos) { 3065 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3066 if (control & PCI_MSI_FLAGS_ENABLE) { 3067 dev_info(&pdev->dev, "resetting MSI\n"); 3068 pci_write_config_word(pdev, msi_control_reg(pos), 3069 control & ~PCI_MSI_FLAGS_ENABLE); 3070 } 3071 } 3072 3073 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 3074 if (pos) { 3075 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3076 if (control & PCI_MSIX_FLAGS_ENABLE) { 3077 dev_info(&pdev->dev, "resetting MSI-X\n"); 3078 pci_write_config_word(pdev, msi_control_reg(pos), 3079 control & ~PCI_MSIX_FLAGS_ENABLE); 3080 } 3081 } 3082 3083 return 0; 3084 } 3085 3086 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3087 void * __iomem vaddr, bool use_doorbell) 3088 { 3089 u16 pmcsr; 3090 int pos; 3091 3092 if (use_doorbell) { 3093 /* For everything after the P600, the PCI power state method 3094 * of resetting the controller doesn't work, so we have this 3095 * other way using the doorbell register. 3096 */ 3097 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3098 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL); 3099 msleep(1000); 3100 } else { /* Try to do it the PCI power state way */ 3101 3102 /* Quoting from the Open CISS Specification: "The Power 3103 * Management Control/Status Register (CSR) controls the power 3104 * state of the device. The normal operating state is D0, 3105 * CSR=00h. The software off state is D3, CSR=03h. To reset 3106 * the controller, place the interface device in D3 then to D0, 3107 * this causes a secondary PCI reset which will reset the 3108 * controller." */ 3109 3110 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3111 if (pos == 0) { 3112 dev_err(&pdev->dev, 3113 "hpsa_reset_controller: " 3114 "PCI PM not supported\n"); 3115 return -ENODEV; 3116 } 3117 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3118 /* enter the D3hot power management state */ 3119 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3120 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3121 pmcsr |= PCI_D3hot; 3122 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3123 3124 msleep(500); 3125 3126 /* enter the D0 power management state */ 3127 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3128 pmcsr |= PCI_D0; 3129 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3130 3131 msleep(500); 3132 } 3133 return 0; 3134 } 3135 3136 /* This does a hard reset of the controller using PCI power management 3137 * states or the using the doorbell register. 3138 */ 3139 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3140 { 3141 u16 saved_config_space[32]; 3142 u64 cfg_offset; 3143 u32 cfg_base_addr; 3144 u64 cfg_base_addr_index; 3145 void __iomem *vaddr; 3146 unsigned long paddr; 3147 u32 misc_fw_support, active_transport; 3148 int rc, i; 3149 struct CfgTable __iomem *cfgtable; 3150 bool use_doorbell; 3151 u32 board_id; 3152 3153 /* For controllers as old as the P600, this is very nearly 3154 * the same thing as 3155 * 3156 * pci_save_state(pci_dev); 3157 * pci_set_power_state(pci_dev, PCI_D3hot); 3158 * pci_set_power_state(pci_dev, PCI_D0); 3159 * pci_restore_state(pci_dev); 3160 * 3161 * but we can't use these nice canned kernel routines on 3162 * kexec, because they also check the MSI/MSI-X state in PCI 3163 * configuration space and do the wrong thing when it is 3164 * set/cleared. Also, the pci_save/restore_state functions 3165 * violate the ordering requirements for restoring the 3166 * configuration space from the CCISS document (see the 3167 * comment below). So we roll our own .... 3168 * 3169 * For controllers newer than the P600, the pci power state 3170 * method of resetting doesn't work so we have another way 3171 * using the doorbell register. 3172 */ 3173 3174 /* Exclude 640x boards. These are two pci devices in one slot 3175 * which share a battery backed cache module. One controls the 3176 * cache, the other accesses the cache through the one that controls 3177 * it. If we reset the one controlling the cache, the other will 3178 * likely not be happy. Just forbid resetting this conjoined mess. 3179 * The 640x isn't really supported by hpsa anyway. 3180 */ 3181 hpsa_lookup_board_id(pdev, &board_id); 3182 if (board_id == 0x409C0E11 || board_id == 0x409D0E11) 3183 return -ENOTSUPP; 3184 3185 for (i = 0; i < 32; i++) 3186 pci_read_config_word(pdev, 2*i, &saved_config_space[i]); 3187 3188 3189 /* find the first memory BAR, so we can find the cfg table */ 3190 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3191 if (rc) 3192 return rc; 3193 vaddr = remap_pci_mem(paddr, 0x250); 3194 if (!vaddr) 3195 return -ENOMEM; 3196 3197 /* find cfgtable in order to check if reset via doorbell is supported */ 3198 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3199 &cfg_base_addr_index, &cfg_offset); 3200 if (rc) 3201 goto unmap_vaddr; 3202 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3203 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3204 if (!cfgtable) { 3205 rc = -ENOMEM; 3206 goto unmap_vaddr; 3207 } 3208 3209 /* If reset via doorbell register is supported, use that. */ 3210 misc_fw_support = readl(&cfgtable->misc_fw_support); 3211 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3212 3213 /* The doorbell reset seems to cause lockups on some Smart 3214 * Arrays (e.g. P410, P410i, maybe others). Until this is 3215 * fixed or at least isolated, avoid the doorbell reset. 3216 */ 3217 use_doorbell = 0; 3218 3219 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3220 if (rc) 3221 goto unmap_cfgtable; 3222 3223 /* Restore the PCI configuration space. The Open CISS 3224 * Specification says, "Restore the PCI Configuration 3225 * Registers, offsets 00h through 60h. It is important to 3226 * restore the command register, 16-bits at offset 04h, 3227 * last. Do not restore the configuration status register, 3228 * 16-bits at offset 06h." Note that the offset is 2*i. 3229 */ 3230 for (i = 0; i < 32; i++) { 3231 if (i == 2 || i == 3) 3232 continue; 3233 pci_write_config_word(pdev, 2*i, saved_config_space[i]); 3234 } 3235 wmb(); 3236 pci_write_config_word(pdev, 4, saved_config_space[2]); 3237 3238 /* Some devices (notably the HP Smart Array 5i Controller) 3239 need a little pause here */ 3240 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3241 3242 /* Controller should be in simple mode at this point. If it's not, 3243 * It means we're on one of those controllers which doesn't support 3244 * the doorbell reset method and on which the PCI power management reset 3245 * method doesn't work (P800, for example.) 3246 * In those cases, pretend the reset worked and hope for the best. 3247 */ 3248 active_transport = readl(&cfgtable->TransportActive); 3249 if (active_transport & PERFORMANT_MODE) { 3250 dev_warn(&pdev->dev, "Unable to successfully reset controller," 3251 " proceeding anyway.\n"); 3252 rc = -ENOTSUPP; 3253 } 3254 3255 unmap_cfgtable: 3256 iounmap(cfgtable); 3257 3258 unmap_vaddr: 3259 iounmap(vaddr); 3260 return rc; 3261 } 3262 3263 /* 3264 * We cannot read the structure directly, for portability we must use 3265 * the io functions. 3266 * This is for debug only. 3267 */ 3268 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3269 { 3270 #ifdef HPSA_DEBUG 3271 int i; 3272 char temp_name[17]; 3273 3274 dev_info(dev, "Controller Configuration information\n"); 3275 dev_info(dev, "------------------------------------\n"); 3276 for (i = 0; i < 4; i++) 3277 temp_name[i] = readb(&(tb->Signature[i])); 3278 temp_name[4] = '\0'; 3279 dev_info(dev, " Signature = %s\n", temp_name); 3280 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3281 dev_info(dev, " Transport methods supported = 0x%x\n", 3282 readl(&(tb->TransportSupport))); 3283 dev_info(dev, " Transport methods active = 0x%x\n", 3284 readl(&(tb->TransportActive))); 3285 dev_info(dev, " Requested transport Method = 0x%x\n", 3286 readl(&(tb->HostWrite.TransportRequest))); 3287 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3288 readl(&(tb->HostWrite.CoalIntDelay))); 3289 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3290 readl(&(tb->HostWrite.CoalIntCount))); 3291 dev_info(dev, " Max outstanding commands = 0x%d\n", 3292 readl(&(tb->CmdsOutMax))); 3293 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3294 for (i = 0; i < 16; i++) 3295 temp_name[i] = readb(&(tb->ServerName[i])); 3296 temp_name[16] = '\0'; 3297 dev_info(dev, " Server Name = %s\n", temp_name); 3298 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3299 readl(&(tb->HeartBeat))); 3300 #endif /* HPSA_DEBUG */ 3301 } 3302 3303 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3304 { 3305 int i, offset, mem_type, bar_type; 3306 3307 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3308 return 0; 3309 offset = 0; 3310 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3311 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3312 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3313 offset += 4; 3314 else { 3315 mem_type = pci_resource_flags(pdev, i) & 3316 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3317 switch (mem_type) { 3318 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3319 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3320 offset += 4; /* 32 bit */ 3321 break; 3322 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3323 offset += 8; 3324 break; 3325 default: /* reserved in PCI 2.2 */ 3326 dev_warn(&pdev->dev, 3327 "base address is invalid\n"); 3328 return -1; 3329 break; 3330 } 3331 } 3332 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3333 return i + 1; 3334 } 3335 return -1; 3336 } 3337 3338 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3339 * controllers that are capable. If not, we use IO-APIC mode. 3340 */ 3341 3342 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3343 { 3344 #ifdef CONFIG_PCI_MSI 3345 int err; 3346 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3347 {0, 2}, {0, 3} 3348 }; 3349 3350 /* Some boards advertise MSI but don't really support it */ 3351 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3352 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3353 goto default_int_mode; 3354 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3355 dev_info(&h->pdev->dev, "MSIX\n"); 3356 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3357 if (!err) { 3358 h->intr[0] = hpsa_msix_entries[0].vector; 3359 h->intr[1] = hpsa_msix_entries[1].vector; 3360 h->intr[2] = hpsa_msix_entries[2].vector; 3361 h->intr[3] = hpsa_msix_entries[3].vector; 3362 h->msix_vector = 1; 3363 return; 3364 } 3365 if (err > 0) { 3366 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3367 "available\n", err); 3368 goto default_int_mode; 3369 } else { 3370 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3371 err); 3372 goto default_int_mode; 3373 } 3374 } 3375 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3376 dev_info(&h->pdev->dev, "MSI\n"); 3377 if (!pci_enable_msi(h->pdev)) 3378 h->msi_vector = 1; 3379 else 3380 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3381 } 3382 default_int_mode: 3383 #endif /* CONFIG_PCI_MSI */ 3384 /* if we get here we're going to use the default interrupt mode */ 3385 h->intr[PERF_MODE_INT] = h->pdev->irq; 3386 } 3387 3388 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3389 { 3390 int i; 3391 u32 subsystem_vendor_id, subsystem_device_id; 3392 3393 subsystem_vendor_id = pdev->subsystem_vendor; 3394 subsystem_device_id = pdev->subsystem_device; 3395 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3396 subsystem_vendor_id; 3397 3398 for (i = 0; i < ARRAY_SIZE(products); i++) 3399 if (*board_id == products[i].board_id) 3400 return i; 3401 3402 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 3403 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 3404 !hpsa_allow_any) { 3405 dev_warn(&pdev->dev, "unrecognized board ID: " 3406 "0x%08x, ignoring.\n", *board_id); 3407 return -ENODEV; 3408 } 3409 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 3410 } 3411 3412 static inline bool hpsa_board_disabled(struct pci_dev *pdev) 3413 { 3414 u16 command; 3415 3416 (void) pci_read_config_word(pdev, PCI_COMMAND, &command); 3417 return ((command & PCI_COMMAND_MEMORY) == 0); 3418 } 3419 3420 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 3421 unsigned long *memory_bar) 3422 { 3423 int i; 3424 3425 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 3426 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 3427 /* addressing mode bits already removed */ 3428 *memory_bar = pci_resource_start(pdev, i); 3429 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 3430 *memory_bar); 3431 return 0; 3432 } 3433 dev_warn(&pdev->dev, "no memory BAR found\n"); 3434 return -ENODEV; 3435 } 3436 3437 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h) 3438 { 3439 int i; 3440 u32 scratchpad; 3441 3442 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { 3443 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 3444 if (scratchpad == HPSA_FIRMWARE_READY) 3445 return 0; 3446 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3447 } 3448 dev_warn(&h->pdev->dev, "board not ready, timed out.\n"); 3449 return -ENODEV; 3450 } 3451 3452 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 3453 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 3454 u64 *cfg_offset) 3455 { 3456 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 3457 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 3458 *cfg_base_addr &= (u32) 0x0000ffff; 3459 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 3460 if (*cfg_base_addr_index == -1) { 3461 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 3462 return -ENODEV; 3463 } 3464 return 0; 3465 } 3466 3467 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 3468 { 3469 u64 cfg_offset; 3470 u32 cfg_base_addr; 3471 u64 cfg_base_addr_index; 3472 u32 trans_offset; 3473 int rc; 3474 3475 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 3476 &cfg_base_addr_index, &cfg_offset); 3477 if (rc) 3478 return rc; 3479 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 3480 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 3481 if (!h->cfgtable) 3482 return -ENOMEM; 3483 /* Find performant mode table. */ 3484 trans_offset = readl(&h->cfgtable->TransMethodOffset); 3485 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 3486 cfg_base_addr_index)+cfg_offset+trans_offset, 3487 sizeof(*h->transtable)); 3488 if (!h->transtable) 3489 return -ENOMEM; 3490 return 0; 3491 } 3492 3493 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 3494 { 3495 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3496 if (h->max_commands < 16) { 3497 dev_warn(&h->pdev->dev, "Controller reports " 3498 "max supported commands of %d, an obvious lie. " 3499 "Using 16. Ensure that firmware is up to date.\n", 3500 h->max_commands); 3501 h->max_commands = 16; 3502 } 3503 } 3504 3505 /* Interrogate the hardware for some limits: 3506 * max commands, max SG elements without chaining, and with chaining, 3507 * SG chain block size, etc. 3508 */ 3509 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 3510 { 3511 hpsa_get_max_perf_mode_cmds(h); 3512 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 3513 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 3514 /* 3515 * Limit in-command s/g elements to 32 save dma'able memory. 3516 * Howvever spec says if 0, use 31 3517 */ 3518 h->max_cmd_sg_entries = 31; 3519 if (h->maxsgentries > 512) { 3520 h->max_cmd_sg_entries = 32; 3521 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 3522 h->maxsgentries--; /* save one for chain pointer */ 3523 } else { 3524 h->maxsgentries = 31; /* default to traditional values */ 3525 h->chainsize = 0; 3526 } 3527 } 3528 3529 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 3530 { 3531 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3532 (readb(&h->cfgtable->Signature[1]) != 'I') || 3533 (readb(&h->cfgtable->Signature[2]) != 'S') || 3534 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3535 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 3536 return false; 3537 } 3538 return true; 3539 } 3540 3541 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3542 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 3543 { 3544 #ifdef CONFIG_X86 3545 u32 prefetch; 3546 3547 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3548 prefetch |= 0x100; 3549 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3550 #endif 3551 } 3552 3553 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 3554 * in a prefetch beyond physical memory. 3555 */ 3556 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 3557 { 3558 u32 dma_prefetch; 3559 3560 if (h->board_id != 0x3225103C) 3561 return; 3562 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3563 dma_prefetch |= 0x8000; 3564 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3565 } 3566 3567 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 3568 { 3569 int i; 3570 3571 /* under certain very rare conditions, this can take awhile. 3572 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3573 * as we enter this code.) 3574 */ 3575 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3576 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) 3577 break; 3578 /* delay and try again */ 3579 msleep(10); 3580 } 3581 } 3582 3583 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 3584 { 3585 u32 trans_support; 3586 3587 trans_support = readl(&(h->cfgtable->TransportSupport)); 3588 if (!(trans_support & SIMPLE_MODE)) 3589 return -ENOTSUPP; 3590 3591 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3592 /* Update the field, and then ring the doorbell */ 3593 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3594 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3595 hpsa_wait_for_mode_change_ack(h); 3596 print_cfg_table(&h->pdev->dev, h->cfgtable); 3597 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3598 dev_warn(&h->pdev->dev, 3599 "unable to get board into simple mode\n"); 3600 return -ENODEV; 3601 } 3602 return 0; 3603 } 3604 3605 static int __devinit hpsa_pci_init(struct ctlr_info *h) 3606 { 3607 int prod_index, err; 3608 3609 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 3610 if (prod_index < 0) 3611 return -ENODEV; 3612 h->product_name = products[prod_index].product_name; 3613 h->access = *(products[prod_index].access); 3614 3615 if (hpsa_board_disabled(h->pdev)) { 3616 dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); 3617 return -ENODEV; 3618 } 3619 err = pci_enable_device(h->pdev); 3620 if (err) { 3621 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 3622 return err; 3623 } 3624 3625 err = pci_request_regions(h->pdev, "hpsa"); 3626 if (err) { 3627 dev_err(&h->pdev->dev, 3628 "cannot obtain PCI resources, aborting\n"); 3629 return err; 3630 } 3631 hpsa_interrupt_mode(h); 3632 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 3633 if (err) 3634 goto err_out_free_res; 3635 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3636 if (!h->vaddr) { 3637 err = -ENOMEM; 3638 goto err_out_free_res; 3639 } 3640 err = hpsa_wait_for_board_ready(h); 3641 if (err) 3642 goto err_out_free_res; 3643 err = hpsa_find_cfgtables(h); 3644 if (err) 3645 goto err_out_free_res; 3646 hpsa_find_board_params(h); 3647 3648 if (!hpsa_CISS_signature_present(h)) { 3649 err = -ENODEV; 3650 goto err_out_free_res; 3651 } 3652 hpsa_enable_scsi_prefetch(h); 3653 hpsa_p600_dma_prefetch_quirk(h); 3654 err = hpsa_enter_simple_mode(h); 3655 if (err) 3656 goto err_out_free_res; 3657 return 0; 3658 3659 err_out_free_res: 3660 if (h->transtable) 3661 iounmap(h->transtable); 3662 if (h->cfgtable) 3663 iounmap(h->cfgtable); 3664 if (h->vaddr) 3665 iounmap(h->vaddr); 3666 /* 3667 * Deliberately omit pci_disable_device(): it does something nasty to 3668 * Smart Array controllers that pci_enable_device does not undo 3669 */ 3670 pci_release_regions(h->pdev); 3671 return err; 3672 } 3673 3674 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3675 { 3676 int rc; 3677 3678 #define HBA_INQUIRY_BYTE_COUNT 64 3679 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3680 if (!h->hba_inquiry_data) 3681 return; 3682 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3683 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3684 if (rc != 0) { 3685 kfree(h->hba_inquiry_data); 3686 h->hba_inquiry_data = NULL; 3687 } 3688 } 3689 3690 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 3691 { 3692 int rc, i; 3693 3694 if (!reset_devices) 3695 return 0; 3696 3697 /* Reset the controller with a PCI power-cycle or via doorbell */ 3698 rc = hpsa_kdump_hard_reset_controller(pdev); 3699 3700 /* -ENOTSUPP here means we cannot reset the controller 3701 * but it's already (and still) up and running in 3702 * "performant mode". Or, it might be 640x, which can't reset 3703 * due to concerns about shared bbwc between 6402/6404 pair. 3704 */ 3705 if (rc == -ENOTSUPP) 3706 return 0; /* just try to do the kdump anyhow. */ 3707 if (rc) 3708 return -ENODEV; 3709 if (hpsa_reset_msi(pdev)) 3710 return -ENODEV; 3711 3712 /* Now try to get the controller to respond to a no-op */ 3713 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3714 if (hpsa_noop(pdev) == 0) 3715 break; 3716 else 3717 dev_warn(&pdev->dev, "no-op failed%s\n", 3718 (i < 11 ? "; re-trying" : "")); 3719 } 3720 return 0; 3721 } 3722 3723 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3724 const struct pci_device_id *ent) 3725 { 3726 int dac, rc; 3727 struct ctlr_info *h; 3728 3729 if (number_of_controllers == 0) 3730 printk(KERN_INFO DRIVER_NAME "\n"); 3731 3732 rc = hpsa_init_reset_devices(pdev); 3733 if (rc) 3734 return rc; 3735 3736 /* Command structures must be aligned on a 32-byte boundary because 3737 * the 5 lower bits of the address are used by the hardware. and by 3738 * the driver. See comments in hpsa.h for more info. 3739 */ 3740 #define COMMANDLIST_ALIGNMENT 32 3741 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 3742 h = kzalloc(sizeof(*h), GFP_KERNEL); 3743 if (!h) 3744 return -ENOMEM; 3745 3746 h->pdev = pdev; 3747 h->busy_initializing = 1; 3748 INIT_HLIST_HEAD(&h->cmpQ); 3749 INIT_HLIST_HEAD(&h->reqQ); 3750 rc = hpsa_pci_init(h); 3751 if (rc != 0) 3752 goto clean1; 3753 3754 sprintf(h->devname, "hpsa%d", number_of_controllers); 3755 h->ctlr = number_of_controllers; 3756 number_of_controllers++; 3757 3758 /* configure PCI DMA stuff */ 3759 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 3760 if (rc == 0) { 3761 dac = 1; 3762 } else { 3763 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3764 if (rc == 0) { 3765 dac = 0; 3766 } else { 3767 dev_err(&pdev->dev, "no suitable DMA available\n"); 3768 goto clean1; 3769 } 3770 } 3771 3772 /* make sure the board interrupts are off */ 3773 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3774 3775 if (h->msix_vector || h->msi_vector) 3776 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi, 3777 IRQF_DISABLED, h->devname, h); 3778 else 3779 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx, 3780 IRQF_DISABLED, h->devname, h); 3781 if (rc) { 3782 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3783 h->intr[PERF_MODE_INT], h->devname); 3784 goto clean2; 3785 } 3786 3787 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 3788 h->devname, pdev->device, 3789 h->intr[PERF_MODE_INT], dac ? "" : " not"); 3790 3791 h->cmd_pool_bits = 3792 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3793 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3794 h->cmd_pool = pci_alloc_consistent(h->pdev, 3795 h->nr_cmds * sizeof(*h->cmd_pool), 3796 &(h->cmd_pool_dhandle)); 3797 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3798 h->nr_cmds * sizeof(*h->errinfo_pool), 3799 &(h->errinfo_pool_dhandle)); 3800 if ((h->cmd_pool_bits == NULL) 3801 || (h->cmd_pool == NULL) 3802 || (h->errinfo_pool == NULL)) { 3803 dev_err(&pdev->dev, "out of memory"); 3804 rc = -ENOMEM; 3805 goto clean4; 3806 } 3807 if (hpsa_allocate_sg_chain_blocks(h)) 3808 goto clean4; 3809 spin_lock_init(&h->lock); 3810 spin_lock_init(&h->scan_lock); 3811 init_waitqueue_head(&h->scan_wait_queue); 3812 h->scan_finished = 1; /* no scan currently in progress */ 3813 3814 pci_set_drvdata(pdev, h); 3815 memset(h->cmd_pool_bits, 0, 3816 ((h->nr_cmds + BITS_PER_LONG - 3817 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3818 3819 hpsa_scsi_setup(h); 3820 3821 /* Turn the interrupts on so we can service requests */ 3822 h->access.set_intr_mask(h, HPSA_INTR_ON); 3823 3824 hpsa_put_ctlr_into_performant_mode(h); 3825 hpsa_hba_inquiry(h); 3826 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3827 h->busy_initializing = 0; 3828 return 1; 3829 3830 clean4: 3831 hpsa_free_sg_chain_blocks(h); 3832 kfree(h->cmd_pool_bits); 3833 if (h->cmd_pool) 3834 pci_free_consistent(h->pdev, 3835 h->nr_cmds * sizeof(struct CommandList), 3836 h->cmd_pool, h->cmd_pool_dhandle); 3837 if (h->errinfo_pool) 3838 pci_free_consistent(h->pdev, 3839 h->nr_cmds * sizeof(struct ErrorInfo), 3840 h->errinfo_pool, 3841 h->errinfo_pool_dhandle); 3842 free_irq(h->intr[PERF_MODE_INT], h); 3843 clean2: 3844 clean1: 3845 h->busy_initializing = 0; 3846 kfree(h); 3847 return rc; 3848 } 3849 3850 static void hpsa_flush_cache(struct ctlr_info *h) 3851 { 3852 char *flush_buf; 3853 struct CommandList *c; 3854 3855 flush_buf = kzalloc(4, GFP_KERNEL); 3856 if (!flush_buf) 3857 return; 3858 3859 c = cmd_special_alloc(h); 3860 if (!c) { 3861 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3862 goto out_of_memory; 3863 } 3864 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3865 RAID_CTLR_LUNID, TYPE_CMD); 3866 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3867 if (c->err_info->CommandStatus != 0) 3868 dev_warn(&h->pdev->dev, 3869 "error flushing cache on controller\n"); 3870 cmd_special_free(h, c); 3871 out_of_memory: 3872 kfree(flush_buf); 3873 } 3874 3875 static void hpsa_shutdown(struct pci_dev *pdev) 3876 { 3877 struct ctlr_info *h; 3878 3879 h = pci_get_drvdata(pdev); 3880 /* Turn board interrupts off and send the flush cache command 3881 * sendcmd will turn off interrupt, and send the flush... 3882 * To write all data in the battery backed cache to disks 3883 */ 3884 hpsa_flush_cache(h); 3885 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3886 free_irq(h->intr[PERF_MODE_INT], h); 3887 #ifdef CONFIG_PCI_MSI 3888 if (h->msix_vector) 3889 pci_disable_msix(h->pdev); 3890 else if (h->msi_vector) 3891 pci_disable_msi(h->pdev); 3892 #endif /* CONFIG_PCI_MSI */ 3893 } 3894 3895 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3896 { 3897 struct ctlr_info *h; 3898 3899 if (pci_get_drvdata(pdev) == NULL) { 3900 dev_err(&pdev->dev, "unable to remove device \n"); 3901 return; 3902 } 3903 h = pci_get_drvdata(pdev); 3904 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3905 hpsa_shutdown(pdev); 3906 iounmap(h->vaddr); 3907 iounmap(h->transtable); 3908 iounmap(h->cfgtable); 3909 hpsa_free_sg_chain_blocks(h); 3910 pci_free_consistent(h->pdev, 3911 h->nr_cmds * sizeof(struct CommandList), 3912 h->cmd_pool, h->cmd_pool_dhandle); 3913 pci_free_consistent(h->pdev, 3914 h->nr_cmds * sizeof(struct ErrorInfo), 3915 h->errinfo_pool, h->errinfo_pool_dhandle); 3916 pci_free_consistent(h->pdev, h->reply_pool_size, 3917 h->reply_pool, h->reply_pool_dhandle); 3918 kfree(h->cmd_pool_bits); 3919 kfree(h->blockFetchTable); 3920 kfree(h->hba_inquiry_data); 3921 /* 3922 * Deliberately omit pci_disable_device(): it does something nasty to 3923 * Smart Array controllers that pci_enable_device does not undo 3924 */ 3925 pci_release_regions(pdev); 3926 pci_set_drvdata(pdev, NULL); 3927 kfree(h); 3928 } 3929 3930 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 3931 __attribute__((unused)) pm_message_t state) 3932 { 3933 return -ENOSYS; 3934 } 3935 3936 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 3937 { 3938 return -ENOSYS; 3939 } 3940 3941 static struct pci_driver hpsa_pci_driver = { 3942 .name = "hpsa", 3943 .probe = hpsa_init_one, 3944 .remove = __devexit_p(hpsa_remove_one), 3945 .id_table = hpsa_pci_device_id, /* id_table */ 3946 .shutdown = hpsa_shutdown, 3947 .suspend = hpsa_suspend, 3948 .resume = hpsa_resume, 3949 }; 3950 3951 /* Fill in bucket_map[], given nsgs (the max number of 3952 * scatter gather elements supported) and bucket[], 3953 * which is an array of 8 integers. The bucket[] array 3954 * contains 8 different DMA transfer sizes (in 16 3955 * byte increments) which the controller uses to fetch 3956 * commands. This function fills in bucket_map[], which 3957 * maps a given number of scatter gather elements to one of 3958 * the 8 DMA transfer sizes. The point of it is to allow the 3959 * controller to only do as much DMA as needed to fetch the 3960 * command, with the DMA transfer size encoded in the lower 3961 * bits of the command address. 3962 */ 3963 static void calc_bucket_map(int bucket[], int num_buckets, 3964 int nsgs, int *bucket_map) 3965 { 3966 int i, j, b, size; 3967 3968 /* even a command with 0 SGs requires 4 blocks */ 3969 #define MINIMUM_TRANSFER_BLOCKS 4 3970 #define NUM_BUCKETS 8 3971 /* Note, bucket_map must have nsgs+1 entries. */ 3972 for (i = 0; i <= nsgs; i++) { 3973 /* Compute size of a command with i SG entries */ 3974 size = i + MINIMUM_TRANSFER_BLOCKS; 3975 b = num_buckets; /* Assume the biggest bucket */ 3976 /* Find the bucket that is just big enough */ 3977 for (j = 0; j < 8; j++) { 3978 if (bucket[j] >= size) { 3979 b = j; 3980 break; 3981 } 3982 } 3983 /* for a command with i SG entries, use bucket b. */ 3984 bucket_map[i] = b; 3985 } 3986 } 3987 3988 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h) 3989 { 3990 int i; 3991 unsigned long register_value; 3992 3993 /* This is a bit complicated. There are 8 registers on 3994 * the controller which we write to to tell it 8 different 3995 * sizes of commands which there may be. It's a way of 3996 * reducing the DMA done to fetch each command. Encoded into 3997 * each command's tag are 3 bits which communicate to the controller 3998 * which of the eight sizes that command fits within. The size of 3999 * each command depends on how many scatter gather entries there are. 4000 * Each SG entry requires 16 bytes. The eight registers are programmed 4001 * with the number of 16-byte blocks a command of that size requires. 4002 * The smallest command possible requires 5 such 16 byte blocks. 4003 * the largest command possible requires MAXSGENTRIES + 4 16-byte 4004 * blocks. Note, this only extends to the SG entries contained 4005 * within the command block, and does not extend to chained blocks 4006 * of SG elements. bft[] contains the eight values we write to 4007 * the registers. They are not evenly distributed, but have more 4008 * sizes for small commands, and fewer sizes for larger commands. 4009 */ 4010 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4}; 4011 BUILD_BUG_ON(28 > MAXSGENTRIES + 4); 4012 /* 5 = 1 s/g entry or 4k 4013 * 6 = 2 s/g entry or 8k 4014 * 8 = 4 s/g entry or 16k 4015 * 10 = 6 s/g entry or 24k 4016 */ 4017 4018 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 4019 4020 /* Controller spec: zero out this buffer. */ 4021 memset(h->reply_pool, 0, h->reply_pool_size); 4022 h->reply_pool_head = h->reply_pool; 4023 4024 bft[7] = h->max_sg_entries + 4; 4025 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 4026 for (i = 0; i < 8; i++) 4027 writel(bft[i], &h->transtable->BlockFetch[i]); 4028 4029 /* size of controller ring buffer */ 4030 writel(h->max_commands, &h->transtable->RepQSize); 4031 writel(1, &h->transtable->RepQCount); 4032 writel(0, &h->transtable->RepQCtrAddrLow32); 4033 writel(0, &h->transtable->RepQCtrAddrHigh32); 4034 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 4035 writel(0, &h->transtable->RepQAddr0High32); 4036 writel(CFGTBL_Trans_Performant, 4037 &(h->cfgtable->HostWrite.TransportRequest)); 4038 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4039 hpsa_wait_for_mode_change_ack(h); 4040 register_value = readl(&(h->cfgtable->TransportActive)); 4041 if (!(register_value & CFGTBL_Trans_Performant)) { 4042 dev_warn(&h->pdev->dev, "unable to get board into" 4043 " performant mode\n"); 4044 return; 4045 } 4046 } 4047 4048 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 4049 { 4050 u32 trans_support; 4051 4052 trans_support = readl(&(h->cfgtable->TransportSupport)); 4053 if (!(trans_support & PERFORMANT_MODE)) 4054 return; 4055 4056 hpsa_get_max_perf_mode_cmds(h); 4057 h->max_sg_entries = 32; 4058 /* Performant mode ring buffer and supporting data structures */ 4059 h->reply_pool_size = h->max_commands * sizeof(u64); 4060 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 4061 &(h->reply_pool_dhandle)); 4062 4063 /* Need a block fetch table for performant mode */ 4064 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 4065 sizeof(u32)), GFP_KERNEL); 4066 4067 if ((h->reply_pool == NULL) 4068 || (h->blockFetchTable == NULL)) 4069 goto clean_up; 4070 4071 hpsa_enter_performant_mode(h); 4072 4073 /* Change the access methods to the performant access methods */ 4074 h->access = SA5_performant_access; 4075 h->transMethod = CFGTBL_Trans_Performant; 4076 4077 return; 4078 4079 clean_up: 4080 if (h->reply_pool) 4081 pci_free_consistent(h->pdev, h->reply_pool_size, 4082 h->reply_pool, h->reply_pool_dhandle); 4083 kfree(h->blockFetchTable); 4084 } 4085 4086 /* 4087 * This is it. Register the PCI driver information for the cards we control 4088 * the OS will call our registered routines when it finds one of our cards. 4089 */ 4090 static int __init hpsa_init(void) 4091 { 4092 return pci_register_driver(&hpsa_pci_driver); 4093 } 4094 4095 static void __exit hpsa_cleanup(void) 4096 { 4097 pci_unregister_driver(&hpsa_pci_driver); 4098 } 4099 4100 module_init(hpsa_init); 4101 module_exit(hpsa_cleanup); 4102