1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2014-2015 PMC-Sierra, Inc. 4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 of the License. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 13 * NON INFRINGEMENT. See the GNU General Public License for more details. 14 * 15 * Questions/Comments/Bugfixes to storagedev@pmcs.com 16 * 17 */ 18 19 #include <linux/module.h> 20 #include <linux/interrupt.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/pci-aspm.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/fs.h> 28 #include <linux/timer.h> 29 #include <linux/init.h> 30 #include <linux/spinlock.h> 31 #include <linux/compat.h> 32 #include <linux/blktrace_api.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/completion.h> 37 #include <linux/moduleparam.h> 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_tcq.h> 43 #include <scsi/scsi_eh.h> 44 #include <scsi/scsi_dbg.h> 45 #include <linux/cciss_ioctl.h> 46 #include <linux/string.h> 47 #include <linux/bitmap.h> 48 #include <linux/atomic.h> 49 #include <linux/jiffies.h> 50 #include <linux/percpu-defs.h> 51 #include <linux/percpu.h> 52 #include <asm/unaligned.h> 53 #include <asm/div64.h> 54 #include "hpsa_cmd.h" 55 #include "hpsa.h" 56 57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 58 #define HPSA_DRIVER_VERSION "3.4.10-0" 59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 60 #define HPSA "hpsa" 61 62 /* How long to wait for CISS doorbell communication */ 63 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */ 64 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */ 65 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */ 66 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */ 67 #define MAX_IOCTL_CONFIG_WAIT 1000 68 69 /*define how many times we will try a command because of bus resets */ 70 #define MAX_CMD_RETRIES 3 71 72 /* Embedded module documentation macros - see modules.h */ 73 MODULE_AUTHOR("Hewlett-Packard Company"); 74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 75 HPSA_DRIVER_VERSION); 76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 77 MODULE_VERSION(HPSA_DRIVER_VERSION); 78 MODULE_LICENSE("GPL"); 79 80 static int hpsa_allow_any; 81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 82 MODULE_PARM_DESC(hpsa_allow_any, 83 "Allow hpsa driver to access unknown HP Smart Array hardware"); 84 static int hpsa_simple_mode; 85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 86 MODULE_PARM_DESC(hpsa_simple_mode, 87 "Use 'simple mode' rather than 'performant mode'"); 88 89 /* define the PCI info for the cards we can control */ 90 static const struct pci_device_id hpsa_pci_device_id[] = { 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921}, 107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922}, 108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923}, 109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924}, 110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926}, 111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928}, 112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929}, 113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD}, 114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE}, 115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF}, 116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0}, 117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1}, 118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2}, 119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3}, 120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4}, 121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5}, 122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6}, 123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7}, 124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8}, 125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9}, 126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA}, 127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB}, 128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC}, 129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD}, 130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE}, 131 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580}, 132 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581}, 133 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582}, 134 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583}, 135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584}, 136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585}, 137 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, 138 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, 139 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, 140 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, 141 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, 142 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 143 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 144 {0,} 145 }; 146 147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 148 149 /* board_id = Subsystem Device ID & Vendor ID 150 * product = Marketing Name for the board 151 * access = Address of the struct of function pointers 152 */ 153 static struct board_type products[] = { 154 {0x3241103C, "Smart Array P212", &SA5_access}, 155 {0x3243103C, "Smart Array P410", &SA5_access}, 156 {0x3245103C, "Smart Array P410i", &SA5_access}, 157 {0x3247103C, "Smart Array P411", &SA5_access}, 158 {0x3249103C, "Smart Array P812", &SA5_access}, 159 {0x324A103C, "Smart Array P712m", &SA5_access}, 160 {0x324B103C, "Smart Array P711m", &SA5_access}, 161 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ 162 {0x3350103C, "Smart Array P222", &SA5_access}, 163 {0x3351103C, "Smart Array P420", &SA5_access}, 164 {0x3352103C, "Smart Array P421", &SA5_access}, 165 {0x3353103C, "Smart Array P822", &SA5_access}, 166 {0x3354103C, "Smart Array P420i", &SA5_access}, 167 {0x3355103C, "Smart Array P220i", &SA5_access}, 168 {0x3356103C, "Smart Array P721m", &SA5_access}, 169 {0x1921103C, "Smart Array P830i", &SA5_access}, 170 {0x1922103C, "Smart Array P430", &SA5_access}, 171 {0x1923103C, "Smart Array P431", &SA5_access}, 172 {0x1924103C, "Smart Array P830", &SA5_access}, 173 {0x1926103C, "Smart Array P731m", &SA5_access}, 174 {0x1928103C, "Smart Array P230i", &SA5_access}, 175 {0x1929103C, "Smart Array P530", &SA5_access}, 176 {0x21BD103C, "Smart Array P244br", &SA5_access}, 177 {0x21BE103C, "Smart Array P741m", &SA5_access}, 178 {0x21BF103C, "Smart HBA H240ar", &SA5_access}, 179 {0x21C0103C, "Smart Array P440ar", &SA5_access}, 180 {0x21C1103C, "Smart Array P840ar", &SA5_access}, 181 {0x21C2103C, "Smart Array P440", &SA5_access}, 182 {0x21C3103C, "Smart Array P441", &SA5_access}, 183 {0x21C4103C, "Smart Array", &SA5_access}, 184 {0x21C5103C, "Smart Array P841", &SA5_access}, 185 {0x21C6103C, "Smart HBA H244br", &SA5_access}, 186 {0x21C7103C, "Smart HBA H240", &SA5_access}, 187 {0x21C8103C, "Smart HBA H241", &SA5_access}, 188 {0x21C9103C, "Smart Array", &SA5_access}, 189 {0x21CA103C, "Smart Array P246br", &SA5_access}, 190 {0x21CB103C, "Smart Array P840", &SA5_access}, 191 {0x21CC103C, "Smart Array", &SA5_access}, 192 {0x21CD103C, "Smart Array", &SA5_access}, 193 {0x21CE103C, "Smart HBA", &SA5_access}, 194 {0x05809005, "SmartHBA-SA", &SA5_access}, 195 {0x05819005, "SmartHBA-SA 8i", &SA5_access}, 196 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access}, 197 {0x05839005, "SmartHBA-SA 8e", &SA5_access}, 198 {0x05849005, "SmartHBA-SA 16i", &SA5_access}, 199 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access}, 200 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, 201 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, 202 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, 203 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, 204 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, 205 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 206 }; 207 208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy) 209 static const struct scsi_cmnd hpsa_cmd_busy; 210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle) 211 static const struct scsi_cmnd hpsa_cmd_idle; 212 static int number_of_controllers; 213 214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); 217 218 #ifdef CONFIG_COMPAT 219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, 220 void __user *arg); 221 #endif 222 223 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 224 static struct CommandList *cmd_alloc(struct ctlr_info *h); 225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c); 226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 227 struct scsi_cmnd *scmd); 228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 229 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 230 int cmd_type); 231 static void hpsa_free_cmd_pool(struct ctlr_info *h); 232 #define VPD_PAGE (1 << 8) 233 234 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 235 static void hpsa_scan_start(struct Scsi_Host *); 236 static int hpsa_scan_finished(struct Scsi_Host *sh, 237 unsigned long elapsed_time); 238 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth); 239 240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 241 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); 242 static int hpsa_slave_alloc(struct scsi_device *sdev); 243 static int hpsa_slave_configure(struct scsi_device *sdev); 244 static void hpsa_slave_destroy(struct scsi_device *sdev); 245 246 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 247 static int check_for_unit_attention(struct ctlr_info *h, 248 struct CommandList *c); 249 static void check_ioctl_unit_attention(struct ctlr_info *h, 250 struct CommandList *c); 251 /* performant mode helper functions */ 252 static void calc_bucket_map(int *bucket, int num_buckets, 253 int nsgs, int min_blocks, u32 *bucket_map); 254 static void hpsa_free_performant_mode(struct ctlr_info *h); 255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 256 static inline u32 next_command(struct ctlr_info *h, u8 q); 257 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 258 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 259 u64 *cfg_offset); 260 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 261 unsigned long *memory_bar); 262 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 263 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 264 int wait_for_ready); 265 static inline void finish_cmd(struct CommandList *c); 266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h); 267 #define BOARD_NOT_READY 0 268 #define BOARD_READY 1 269 static void hpsa_drain_accel_commands(struct ctlr_info *h); 270 static void hpsa_flush_cache(struct ctlr_info *h); 271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 272 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 273 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk); 274 static void hpsa_command_resubmit_worker(struct work_struct *work); 275 static u32 lockup_detected(struct ctlr_info *h); 276 static int detect_controller_lockup(struct ctlr_info *h); 277 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device); 278 279 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 280 { 281 unsigned long *priv = shost_priv(sdev->host); 282 return (struct ctlr_info *) *priv; 283 } 284 285 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 286 { 287 unsigned long *priv = shost_priv(sh); 288 return (struct ctlr_info *) *priv; 289 } 290 291 static inline bool hpsa_is_cmd_idle(struct CommandList *c) 292 { 293 return c->scsi_cmd == SCSI_CMD_IDLE; 294 } 295 296 static inline bool hpsa_is_pending_event(struct CommandList *c) 297 { 298 return c->abort_pending || c->reset_pending; 299 } 300 301 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */ 302 static void decode_sense_data(const u8 *sense_data, int sense_data_len, 303 u8 *sense_key, u8 *asc, u8 *ascq) 304 { 305 struct scsi_sense_hdr sshdr; 306 bool rc; 307 308 *sense_key = -1; 309 *asc = -1; 310 *ascq = -1; 311 312 if (sense_data_len < 1) 313 return; 314 315 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr); 316 if (rc) { 317 *sense_key = sshdr.sense_key; 318 *asc = sshdr.asc; 319 *ascq = sshdr.ascq; 320 } 321 } 322 323 static int check_for_unit_attention(struct ctlr_info *h, 324 struct CommandList *c) 325 { 326 u8 sense_key, asc, ascq; 327 int sense_len; 328 329 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 330 sense_len = sizeof(c->err_info->SenseInfo); 331 else 332 sense_len = c->err_info->SenseLen; 333 334 decode_sense_data(c->err_info->SenseInfo, sense_len, 335 &sense_key, &asc, &ascq); 336 if (sense_key != UNIT_ATTENTION || asc == 0xff) 337 return 0; 338 339 switch (asc) { 340 case STATE_CHANGED: 341 dev_warn(&h->pdev->dev, 342 "%s: a state change detected, command retried\n", 343 h->devname); 344 break; 345 case LUN_FAILED: 346 dev_warn(&h->pdev->dev, 347 "%s: LUN failure detected\n", h->devname); 348 break; 349 case REPORT_LUNS_CHANGED: 350 dev_warn(&h->pdev->dev, 351 "%s: report LUN data changed\n", h->devname); 352 /* 353 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 354 * target (array) devices. 355 */ 356 break; 357 case POWER_OR_RESET: 358 dev_warn(&h->pdev->dev, 359 "%s: a power on or device reset detected\n", 360 h->devname); 361 break; 362 case UNIT_ATTENTION_CLEARED: 363 dev_warn(&h->pdev->dev, 364 "%s: unit attention cleared by another initiator\n", 365 h->devname); 366 break; 367 default: 368 dev_warn(&h->pdev->dev, 369 "%s: unknown unit attention detected\n", 370 h->devname); 371 break; 372 } 373 return 1; 374 } 375 376 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 377 { 378 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 379 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 380 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 381 return 0; 382 dev_warn(&h->pdev->dev, HPSA "device busy"); 383 return 1; 384 } 385 386 static u32 lockup_detected(struct ctlr_info *h); 387 static ssize_t host_show_lockup_detected(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 int ld; 391 struct ctlr_info *h; 392 struct Scsi_Host *shost = class_to_shost(dev); 393 394 h = shost_to_hba(shost); 395 ld = lockup_detected(h); 396 397 return sprintf(buf, "ld=%d\n", ld); 398 } 399 400 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, 401 struct device_attribute *attr, 402 const char *buf, size_t count) 403 { 404 int status, len; 405 struct ctlr_info *h; 406 struct Scsi_Host *shost = class_to_shost(dev); 407 char tmpbuf[10]; 408 409 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 410 return -EACCES; 411 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 412 strncpy(tmpbuf, buf, len); 413 tmpbuf[len] = '\0'; 414 if (sscanf(tmpbuf, "%d", &status) != 1) 415 return -EINVAL; 416 h = shost_to_hba(shost); 417 h->acciopath_status = !!status; 418 dev_warn(&h->pdev->dev, 419 "hpsa: HP SSD Smart Path %s via sysfs update.\n", 420 h->acciopath_status ? "enabled" : "disabled"); 421 return count; 422 } 423 424 static ssize_t host_store_raid_offload_debug(struct device *dev, 425 struct device_attribute *attr, 426 const char *buf, size_t count) 427 { 428 int debug_level, len; 429 struct ctlr_info *h; 430 struct Scsi_Host *shost = class_to_shost(dev); 431 char tmpbuf[10]; 432 433 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 434 return -EACCES; 435 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; 436 strncpy(tmpbuf, buf, len); 437 tmpbuf[len] = '\0'; 438 if (sscanf(tmpbuf, "%d", &debug_level) != 1) 439 return -EINVAL; 440 if (debug_level < 0) 441 debug_level = 0; 442 h = shost_to_hba(shost); 443 h->raid_offload_debug = debug_level; 444 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", 445 h->raid_offload_debug); 446 return count; 447 } 448 449 static ssize_t host_store_rescan(struct device *dev, 450 struct device_attribute *attr, 451 const char *buf, size_t count) 452 { 453 struct ctlr_info *h; 454 struct Scsi_Host *shost = class_to_shost(dev); 455 h = shost_to_hba(shost); 456 hpsa_scan_start(h->scsi_host); 457 return count; 458 } 459 460 static ssize_t host_show_firmware_revision(struct device *dev, 461 struct device_attribute *attr, char *buf) 462 { 463 struct ctlr_info *h; 464 struct Scsi_Host *shost = class_to_shost(dev); 465 unsigned char *fwrev; 466 467 h = shost_to_hba(shost); 468 if (!h->hba_inquiry_data) 469 return 0; 470 fwrev = &h->hba_inquiry_data[32]; 471 return snprintf(buf, 20, "%c%c%c%c\n", 472 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 473 } 474 475 static ssize_t host_show_commands_outstanding(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct Scsi_Host *shost = class_to_shost(dev); 479 struct ctlr_info *h = shost_to_hba(shost); 480 481 return snprintf(buf, 20, "%d\n", 482 atomic_read(&h->commands_outstanding)); 483 } 484 485 static ssize_t host_show_transport_mode(struct device *dev, 486 struct device_attribute *attr, char *buf) 487 { 488 struct ctlr_info *h; 489 struct Scsi_Host *shost = class_to_shost(dev); 490 491 h = shost_to_hba(shost); 492 return snprintf(buf, 20, "%s\n", 493 h->transMethod & CFGTBL_Trans_Performant ? 494 "performant" : "simple"); 495 } 496 497 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct ctlr_info *h; 501 struct Scsi_Host *shost = class_to_shost(dev); 502 503 h = shost_to_hba(shost); 504 return snprintf(buf, 30, "HP SSD Smart Path %s\n", 505 (h->acciopath_status == 1) ? "enabled" : "disabled"); 506 } 507 508 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 509 static u32 unresettable_controller[] = { 510 0x324a103C, /* Smart Array P712m */ 511 0x324b103C, /* Smart Array P711m */ 512 0x3223103C, /* Smart Array P800 */ 513 0x3234103C, /* Smart Array P400 */ 514 0x3235103C, /* Smart Array P400i */ 515 0x3211103C, /* Smart Array E200i */ 516 0x3212103C, /* Smart Array E200 */ 517 0x3213103C, /* Smart Array E200i */ 518 0x3214103C, /* Smart Array E200i */ 519 0x3215103C, /* Smart Array E200i */ 520 0x3237103C, /* Smart Array E500 */ 521 0x323D103C, /* Smart Array P700m */ 522 0x40800E11, /* Smart Array 5i */ 523 0x409C0E11, /* Smart Array 6400 */ 524 0x409D0E11, /* Smart Array 6400 EM */ 525 0x40700E11, /* Smart Array 5300 */ 526 0x40820E11, /* Smart Array 532 */ 527 0x40830E11, /* Smart Array 5312 */ 528 0x409A0E11, /* Smart Array 641 */ 529 0x409B0E11, /* Smart Array 642 */ 530 0x40910E11, /* Smart Array 6i */ 531 }; 532 533 /* List of controllers which cannot even be soft reset */ 534 static u32 soft_unresettable_controller[] = { 535 0x40800E11, /* Smart Array 5i */ 536 0x40700E11, /* Smart Array 5300 */ 537 0x40820E11, /* Smart Array 532 */ 538 0x40830E11, /* Smart Array 5312 */ 539 0x409A0E11, /* Smart Array 641 */ 540 0x409B0E11, /* Smart Array 642 */ 541 0x40910E11, /* Smart Array 6i */ 542 /* Exclude 640x boards. These are two pci devices in one slot 543 * which share a battery backed cache module. One controls the 544 * cache, the other accesses the cache through the one that controls 545 * it. If we reset the one controlling the cache, the other will 546 * likely not be happy. Just forbid resetting this conjoined mess. 547 * The 640x isn't really supported by hpsa anyway. 548 */ 549 0x409C0E11, /* Smart Array 6400 */ 550 0x409D0E11, /* Smart Array 6400 EM */ 551 }; 552 553 static u32 needs_abort_tags_swizzled[] = { 554 0x323D103C, /* Smart Array P700m */ 555 0x324a103C, /* Smart Array P712m */ 556 0x324b103C, /* SmartArray P711m */ 557 }; 558 559 static int board_id_in_array(u32 a[], int nelems, u32 board_id) 560 { 561 int i; 562 563 for (i = 0; i < nelems; i++) 564 if (a[i] == board_id) 565 return 1; 566 return 0; 567 } 568 569 static int ctlr_is_hard_resettable(u32 board_id) 570 { 571 return !board_id_in_array(unresettable_controller, 572 ARRAY_SIZE(unresettable_controller), board_id); 573 } 574 575 static int ctlr_is_soft_resettable(u32 board_id) 576 { 577 return !board_id_in_array(soft_unresettable_controller, 578 ARRAY_SIZE(soft_unresettable_controller), board_id); 579 } 580 581 static int ctlr_is_resettable(u32 board_id) 582 { 583 return ctlr_is_hard_resettable(board_id) || 584 ctlr_is_soft_resettable(board_id); 585 } 586 587 static int ctlr_needs_abort_tags_swizzled(u32 board_id) 588 { 589 return board_id_in_array(needs_abort_tags_swizzled, 590 ARRAY_SIZE(needs_abort_tags_swizzled), board_id); 591 } 592 593 static ssize_t host_show_resettable(struct device *dev, 594 struct device_attribute *attr, char *buf) 595 { 596 struct ctlr_info *h; 597 struct Scsi_Host *shost = class_to_shost(dev); 598 599 h = shost_to_hba(shost); 600 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 601 } 602 603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 604 { 605 return (scsi3addr[3] & 0xC0) == 0x40; 606 } 607 608 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6", 609 "1(+0)ADM", "UNKNOWN" 610 }; 611 #define HPSA_RAID_0 0 612 #define HPSA_RAID_4 1 613 #define HPSA_RAID_1 2 /* also used for RAID 10 */ 614 #define HPSA_RAID_5 3 /* also used for RAID 50 */ 615 #define HPSA_RAID_51 4 616 #define HPSA_RAID_6 5 /* also used for RAID 60 */ 617 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */ 618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 619 620 static ssize_t raid_level_show(struct device *dev, 621 struct device_attribute *attr, char *buf) 622 { 623 ssize_t l = 0; 624 unsigned char rlevel; 625 struct ctlr_info *h; 626 struct scsi_device *sdev; 627 struct hpsa_scsi_dev_t *hdev; 628 unsigned long flags; 629 630 sdev = to_scsi_device(dev); 631 h = sdev_to_hba(sdev); 632 spin_lock_irqsave(&h->lock, flags); 633 hdev = sdev->hostdata; 634 if (!hdev) { 635 spin_unlock_irqrestore(&h->lock, flags); 636 return -ENODEV; 637 } 638 639 /* Is this even a logical drive? */ 640 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 641 spin_unlock_irqrestore(&h->lock, flags); 642 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 643 return l; 644 } 645 646 rlevel = hdev->raid_level; 647 spin_unlock_irqrestore(&h->lock, flags); 648 if (rlevel > RAID_UNKNOWN) 649 rlevel = RAID_UNKNOWN; 650 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 651 return l; 652 } 653 654 static ssize_t lunid_show(struct device *dev, 655 struct device_attribute *attr, char *buf) 656 { 657 struct ctlr_info *h; 658 struct scsi_device *sdev; 659 struct hpsa_scsi_dev_t *hdev; 660 unsigned long flags; 661 unsigned char lunid[8]; 662 663 sdev = to_scsi_device(dev); 664 h = sdev_to_hba(sdev); 665 spin_lock_irqsave(&h->lock, flags); 666 hdev = sdev->hostdata; 667 if (!hdev) { 668 spin_unlock_irqrestore(&h->lock, flags); 669 return -ENODEV; 670 } 671 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 672 spin_unlock_irqrestore(&h->lock, flags); 673 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 674 lunid[0], lunid[1], lunid[2], lunid[3], 675 lunid[4], lunid[5], lunid[6], lunid[7]); 676 } 677 678 static ssize_t unique_id_show(struct device *dev, 679 struct device_attribute *attr, char *buf) 680 { 681 struct ctlr_info *h; 682 struct scsi_device *sdev; 683 struct hpsa_scsi_dev_t *hdev; 684 unsigned long flags; 685 unsigned char sn[16]; 686 687 sdev = to_scsi_device(dev); 688 h = sdev_to_hba(sdev); 689 spin_lock_irqsave(&h->lock, flags); 690 hdev = sdev->hostdata; 691 if (!hdev) { 692 spin_unlock_irqrestore(&h->lock, flags); 693 return -ENODEV; 694 } 695 memcpy(sn, hdev->device_id, sizeof(sn)); 696 spin_unlock_irqrestore(&h->lock, flags); 697 return snprintf(buf, 16 * 2 + 2, 698 "%02X%02X%02X%02X%02X%02X%02X%02X" 699 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 700 sn[0], sn[1], sn[2], sn[3], 701 sn[4], sn[5], sn[6], sn[7], 702 sn[8], sn[9], sn[10], sn[11], 703 sn[12], sn[13], sn[14], sn[15]); 704 } 705 706 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, 707 struct device_attribute *attr, char *buf) 708 { 709 struct ctlr_info *h; 710 struct scsi_device *sdev; 711 struct hpsa_scsi_dev_t *hdev; 712 unsigned long flags; 713 int offload_enabled; 714 715 sdev = to_scsi_device(dev); 716 h = sdev_to_hba(sdev); 717 spin_lock_irqsave(&h->lock, flags); 718 hdev = sdev->hostdata; 719 if (!hdev) { 720 spin_unlock_irqrestore(&h->lock, flags); 721 return -ENODEV; 722 } 723 offload_enabled = hdev->offload_enabled; 724 spin_unlock_irqrestore(&h->lock, flags); 725 return snprintf(buf, 20, "%d\n", offload_enabled); 726 } 727 728 #define MAX_PATHS 8 729 #define PATH_STRING_LEN 50 730 731 static ssize_t path_info_show(struct device *dev, 732 struct device_attribute *attr, char *buf) 733 { 734 struct ctlr_info *h; 735 struct scsi_device *sdev; 736 struct hpsa_scsi_dev_t *hdev; 737 unsigned long flags; 738 int i; 739 int output_len = 0; 740 u8 box; 741 u8 bay; 742 u8 path_map_index = 0; 743 char *active; 744 unsigned char phys_connector[2]; 745 unsigned char path[MAX_PATHS][PATH_STRING_LEN]; 746 747 memset(path, 0, MAX_PATHS * PATH_STRING_LEN); 748 sdev = to_scsi_device(dev); 749 h = sdev_to_hba(sdev); 750 spin_lock_irqsave(&h->devlock, flags); 751 hdev = sdev->hostdata; 752 if (!hdev) { 753 spin_unlock_irqrestore(&h->devlock, flags); 754 return -ENODEV; 755 } 756 757 bay = hdev->bay; 758 for (i = 0; i < MAX_PATHS; i++) { 759 path_map_index = 1<<i; 760 if (i == hdev->active_path_index) 761 active = "Active"; 762 else if (hdev->path_map & path_map_index) 763 active = "Inactive"; 764 else 765 continue; 766 767 output_len = snprintf(path[i], 768 PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ", 769 h->scsi_host->host_no, 770 hdev->bus, hdev->target, hdev->lun, 771 scsi_device_type(hdev->devtype)); 772 773 if (is_ext_target(h, hdev) || 774 (hdev->devtype == TYPE_RAID) || 775 is_logical_dev_addr_mode(hdev->scsi3addr)) { 776 output_len += snprintf(path[i] + output_len, 777 PATH_STRING_LEN, "%s\n", 778 active); 779 continue; 780 } 781 782 box = hdev->box[i]; 783 memcpy(&phys_connector, &hdev->phys_connector[i], 784 sizeof(phys_connector)); 785 if (phys_connector[0] < '0') 786 phys_connector[0] = '0'; 787 if (phys_connector[1] < '0') 788 phys_connector[1] = '0'; 789 if (hdev->phys_connector[i] > 0) 790 output_len += snprintf(path[i] + output_len, 791 PATH_STRING_LEN, 792 "PORT: %.2s ", 793 phys_connector); 794 if (hdev->devtype == TYPE_DISK && 795 hdev->expose_state != HPSA_DO_NOT_EXPOSE) { 796 if (box == 0 || box == 0xFF) { 797 output_len += snprintf(path[i] + output_len, 798 PATH_STRING_LEN, 799 "BAY: %hhu %s\n", 800 bay, active); 801 } else { 802 output_len += snprintf(path[i] + output_len, 803 PATH_STRING_LEN, 804 "BOX: %hhu BAY: %hhu %s\n", 805 box, bay, active); 806 } 807 } else if (box != 0 && box != 0xFF) { 808 output_len += snprintf(path[i] + output_len, 809 PATH_STRING_LEN, "BOX: %hhu %s\n", 810 box, active); 811 } else 812 output_len += snprintf(path[i] + output_len, 813 PATH_STRING_LEN, "%s\n", active); 814 } 815 816 spin_unlock_irqrestore(&h->devlock, flags); 817 return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s", 818 path[0], path[1], path[2], path[3], 819 path[4], path[5], path[6], path[7]); 820 } 821 822 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 823 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 824 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 825 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 826 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, 827 host_show_hp_ssd_smart_path_enabled, NULL); 828 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL); 829 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, 830 host_show_hp_ssd_smart_path_status, 831 host_store_hp_ssd_smart_path_status); 832 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, 833 host_store_raid_offload_debug); 834 static DEVICE_ATTR(firmware_revision, S_IRUGO, 835 host_show_firmware_revision, NULL); 836 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 837 host_show_commands_outstanding, NULL); 838 static DEVICE_ATTR(transport_mode, S_IRUGO, 839 host_show_transport_mode, NULL); 840 static DEVICE_ATTR(resettable, S_IRUGO, 841 host_show_resettable, NULL); 842 static DEVICE_ATTR(lockup_detected, S_IRUGO, 843 host_show_lockup_detected, NULL); 844 845 static struct device_attribute *hpsa_sdev_attrs[] = { 846 &dev_attr_raid_level, 847 &dev_attr_lunid, 848 &dev_attr_unique_id, 849 &dev_attr_hp_ssd_smart_path_enabled, 850 &dev_attr_path_info, 851 &dev_attr_lockup_detected, 852 NULL, 853 }; 854 855 static struct device_attribute *hpsa_shost_attrs[] = { 856 &dev_attr_rescan, 857 &dev_attr_firmware_revision, 858 &dev_attr_commands_outstanding, 859 &dev_attr_transport_mode, 860 &dev_attr_resettable, 861 &dev_attr_hp_ssd_smart_path_status, 862 &dev_attr_raid_offload_debug, 863 NULL, 864 }; 865 866 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \ 867 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS) 868 869 static struct scsi_host_template hpsa_driver_template = { 870 .module = THIS_MODULE, 871 .name = HPSA, 872 .proc_name = HPSA, 873 .queuecommand = hpsa_scsi_queue_command, 874 .scan_start = hpsa_scan_start, 875 .scan_finished = hpsa_scan_finished, 876 .change_queue_depth = hpsa_change_queue_depth, 877 .this_id = -1, 878 .use_clustering = ENABLE_CLUSTERING, 879 .eh_abort_handler = hpsa_eh_abort_handler, 880 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 881 .ioctl = hpsa_ioctl, 882 .slave_alloc = hpsa_slave_alloc, 883 .slave_configure = hpsa_slave_configure, 884 .slave_destroy = hpsa_slave_destroy, 885 #ifdef CONFIG_COMPAT 886 .compat_ioctl = hpsa_compat_ioctl, 887 #endif 888 .sdev_attrs = hpsa_sdev_attrs, 889 .shost_attrs = hpsa_shost_attrs, 890 .max_sectors = 8192, 891 .no_write_same = 1, 892 }; 893 894 static inline u32 next_command(struct ctlr_info *h, u8 q) 895 { 896 u32 a; 897 struct reply_queue_buffer *rq = &h->reply_queue[q]; 898 899 if (h->transMethod & CFGTBL_Trans_io_accel1) 900 return h->access.command_completed(h, q); 901 902 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 903 return h->access.command_completed(h, q); 904 905 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { 906 a = rq->head[rq->current_entry]; 907 rq->current_entry++; 908 atomic_dec(&h->commands_outstanding); 909 } else { 910 a = FIFO_EMPTY; 911 } 912 /* Check for wraparound */ 913 if (rq->current_entry == h->max_commands) { 914 rq->current_entry = 0; 915 rq->wraparound ^= 1; 916 } 917 return a; 918 } 919 920 /* 921 * There are some special bits in the bus address of the 922 * command that we have to set for the controller to know 923 * how to process the command: 924 * 925 * Normal performant mode: 926 * bit 0: 1 means performant mode, 0 means simple mode. 927 * bits 1-3 = block fetch table entry 928 * bits 4-6 = command type (== 0) 929 * 930 * ioaccel1 mode: 931 * bit 0 = "performant mode" bit. 932 * bits 1-3 = block fetch table entry 933 * bits 4-6 = command type (== 110) 934 * (command type is needed because ioaccel1 mode 935 * commands are submitted through the same register as normal 936 * mode commands, so this is how the controller knows whether 937 * the command is normal mode or ioaccel1 mode.) 938 * 939 * ioaccel2 mode: 940 * bit 0 = "performant mode" bit. 941 * bits 1-4 = block fetch table entry (note extra bit) 942 * bits 4-6 = not needed, because ioaccel2 mode has 943 * a separate special register for submitting commands. 944 */ 945 946 /* 947 * set_performant_mode: Modify the tag for cciss performant 948 * set bit 0 for pull model, bits 3-1 for block fetch 949 * register number 950 */ 951 #define DEFAULT_REPLY_QUEUE (-1) 952 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c, 953 int reply_queue) 954 { 955 if (likely(h->transMethod & CFGTBL_Trans_Performant)) { 956 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 957 if (unlikely(!h->msix_vector)) 958 return; 959 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 960 c->Header.ReplyQueue = 961 raw_smp_processor_id() % h->nreply_queues; 962 else 963 c->Header.ReplyQueue = reply_queue % h->nreply_queues; 964 } 965 } 966 967 static void set_ioaccel1_performant_mode(struct ctlr_info *h, 968 struct CommandList *c, 969 int reply_queue) 970 { 971 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 972 973 /* 974 * Tell the controller to post the reply to the queue for this 975 * processor. This seems to give the best I/O throughput. 976 */ 977 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 978 cp->ReplyQueue = smp_processor_id() % h->nreply_queues; 979 else 980 cp->ReplyQueue = reply_queue % h->nreply_queues; 981 /* 982 * Set the bits in the address sent down to include: 983 * - performant mode bit (bit 0) 984 * - pull count (bits 1-3) 985 * - command type (bits 4-6) 986 */ 987 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | 988 IOACCEL1_BUSADDR_CMDTYPE; 989 } 990 991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h, 992 struct CommandList *c, 993 int reply_queue) 994 { 995 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *) 996 &h->ioaccel2_cmd_pool[c->cmdindex]; 997 998 /* Tell the controller to post the reply to the queue for this 999 * processor. This seems to give the best I/O throughput. 1000 */ 1001 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1002 cp->reply_queue = smp_processor_id() % h->nreply_queues; 1003 else 1004 cp->reply_queue = reply_queue % h->nreply_queues; 1005 /* Set the bits in the address sent down to include: 1006 * - performant mode bit not used in ioaccel mode 2 1007 * - pull count (bits 0-3) 1008 * - command type isn't needed for ioaccel2 1009 */ 1010 c->busaddr |= h->ioaccel2_blockFetchTable[0]; 1011 } 1012 1013 static void set_ioaccel2_performant_mode(struct ctlr_info *h, 1014 struct CommandList *c, 1015 int reply_queue) 1016 { 1017 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 1018 1019 /* 1020 * Tell the controller to post the reply to the queue for this 1021 * processor. This seems to give the best I/O throughput. 1022 */ 1023 if (likely(reply_queue == DEFAULT_REPLY_QUEUE)) 1024 cp->reply_queue = smp_processor_id() % h->nreply_queues; 1025 else 1026 cp->reply_queue = reply_queue % h->nreply_queues; 1027 /* 1028 * Set the bits in the address sent down to include: 1029 * - performant mode bit not used in ioaccel mode 2 1030 * - pull count (bits 0-3) 1031 * - command type isn't needed for ioaccel2 1032 */ 1033 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); 1034 } 1035 1036 static int is_firmware_flash_cmd(u8 *cdb) 1037 { 1038 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; 1039 } 1040 1041 /* 1042 * During firmware flash, the heartbeat register may not update as frequently 1043 * as it should. So we dial down lockup detection during firmware flash. and 1044 * dial it back up when firmware flash completes. 1045 */ 1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) 1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) 1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, 1049 struct CommandList *c) 1050 { 1051 if (!is_firmware_flash_cmd(c->Request.CDB)) 1052 return; 1053 atomic_inc(&h->firmware_flash_in_progress); 1054 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; 1055 } 1056 1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, 1058 struct CommandList *c) 1059 { 1060 if (is_firmware_flash_cmd(c->Request.CDB) && 1061 atomic_dec_and_test(&h->firmware_flash_in_progress)) 1062 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 1063 } 1064 1065 static void __enqueue_cmd_and_start_io(struct ctlr_info *h, 1066 struct CommandList *c, int reply_queue) 1067 { 1068 dial_down_lockup_detection_during_fw_flash(h, c); 1069 atomic_inc(&h->commands_outstanding); 1070 switch (c->cmd_type) { 1071 case CMD_IOACCEL1: 1072 set_ioaccel1_performant_mode(h, c, reply_queue); 1073 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); 1074 break; 1075 case CMD_IOACCEL2: 1076 set_ioaccel2_performant_mode(h, c, reply_queue); 1077 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1078 break; 1079 case IOACCEL2_TMF: 1080 set_ioaccel2_tmf_performant_mode(h, c, reply_queue); 1081 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32); 1082 break; 1083 default: 1084 set_performant_mode(h, c, reply_queue); 1085 h->access.submit_command(h, c); 1086 } 1087 } 1088 1089 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c) 1090 { 1091 if (unlikely(hpsa_is_pending_event(c))) 1092 return finish_cmd(c); 1093 1094 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE); 1095 } 1096 1097 static inline int is_hba_lunid(unsigned char scsi3addr[]) 1098 { 1099 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 1100 } 1101 1102 static inline int is_scsi_rev_5(struct ctlr_info *h) 1103 { 1104 if (!h->hba_inquiry_data) 1105 return 0; 1106 if ((h->hba_inquiry_data[2] & 0x07) == 5) 1107 return 1; 1108 return 0; 1109 } 1110 1111 static int hpsa_find_target_lun(struct ctlr_info *h, 1112 unsigned char scsi3addr[], int bus, int *target, int *lun) 1113 { 1114 /* finds an unused bus, target, lun for a new physical device 1115 * assumes h->devlock is held 1116 */ 1117 int i, found = 0; 1118 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 1119 1120 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 1121 1122 for (i = 0; i < h->ndevices; i++) { 1123 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 1124 __set_bit(h->dev[i]->target, lun_taken); 1125 } 1126 1127 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 1128 if (i < HPSA_MAX_DEVICES) { 1129 /* *bus = 1; */ 1130 *target = i; 1131 *lun = 0; 1132 found = 1; 1133 } 1134 return !found; 1135 } 1136 1137 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h, 1138 struct hpsa_scsi_dev_t *dev, char *description) 1139 { 1140 dev_printk(level, &h->pdev->dev, 1141 "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n", 1142 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 1143 description, 1144 scsi_device_type(dev->devtype), 1145 dev->vendor, 1146 dev->model, 1147 dev->raid_level > RAID_UNKNOWN ? 1148 "RAID-?" : raid_label[dev->raid_level], 1149 dev->offload_config ? '+' : '-', 1150 dev->offload_enabled ? '+' : '-', 1151 dev->expose_state); 1152 } 1153 1154 /* Add an entry into h->dev[] array. */ 1155 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 1156 struct hpsa_scsi_dev_t *device, 1157 struct hpsa_scsi_dev_t *added[], int *nadded) 1158 { 1159 /* assumes h->devlock is held */ 1160 int n = h->ndevices; 1161 int i; 1162 unsigned char addr1[8], addr2[8]; 1163 struct hpsa_scsi_dev_t *sd; 1164 1165 if (n >= HPSA_MAX_DEVICES) { 1166 dev_err(&h->pdev->dev, "too many devices, some will be " 1167 "inaccessible.\n"); 1168 return -1; 1169 } 1170 1171 /* physical devices do not have lun or target assigned until now. */ 1172 if (device->lun != -1) 1173 /* Logical device, lun is already assigned. */ 1174 goto lun_assigned; 1175 1176 /* If this device a non-zero lun of a multi-lun device 1177 * byte 4 of the 8-byte LUN addr will contain the logical 1178 * unit no, zero otherwise. 1179 */ 1180 if (device->scsi3addr[4] == 0) { 1181 /* This is not a non-zero lun of a multi-lun device */ 1182 if (hpsa_find_target_lun(h, device->scsi3addr, 1183 device->bus, &device->target, &device->lun) != 0) 1184 return -1; 1185 goto lun_assigned; 1186 } 1187 1188 /* This is a non-zero lun of a multi-lun device. 1189 * Search through our list and find the device which 1190 * has the same 8 byte LUN address, excepting byte 4 and 5. 1191 * Assign the same bus and target for this new LUN. 1192 * Use the logical unit number from the firmware. 1193 */ 1194 memcpy(addr1, device->scsi3addr, 8); 1195 addr1[4] = 0; 1196 addr1[5] = 0; 1197 for (i = 0; i < n; i++) { 1198 sd = h->dev[i]; 1199 memcpy(addr2, sd->scsi3addr, 8); 1200 addr2[4] = 0; 1201 addr2[5] = 0; 1202 /* differ only in byte 4 and 5? */ 1203 if (memcmp(addr1, addr2, 8) == 0) { 1204 device->bus = sd->bus; 1205 device->target = sd->target; 1206 device->lun = device->scsi3addr[4]; 1207 break; 1208 } 1209 } 1210 if (device->lun == -1) { 1211 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 1212 " suspect firmware bug or unsupported hardware " 1213 "configuration.\n"); 1214 return -1; 1215 } 1216 1217 lun_assigned: 1218 1219 h->dev[n] = device; 1220 h->ndevices++; 1221 added[*nadded] = device; 1222 (*nadded)++; 1223 hpsa_show_dev_msg(KERN_INFO, h, device, 1224 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked"); 1225 device->offload_to_be_enabled = device->offload_enabled; 1226 device->offload_enabled = 0; 1227 return 0; 1228 } 1229 1230 /* Update an entry in h->dev[] array. */ 1231 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, 1232 int entry, struct hpsa_scsi_dev_t *new_entry) 1233 { 1234 int offload_enabled; 1235 /* assumes h->devlock is held */ 1236 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1237 1238 /* Raid level changed. */ 1239 h->dev[entry]->raid_level = new_entry->raid_level; 1240 1241 /* Raid offload parameters changed. Careful about the ordering. */ 1242 if (new_entry->offload_config && new_entry->offload_enabled) { 1243 /* 1244 * if drive is newly offload_enabled, we want to copy the 1245 * raid map data first. If previously offload_enabled and 1246 * offload_config were set, raid map data had better be 1247 * the same as it was before. if raid map data is changed 1248 * then it had better be the case that 1249 * h->dev[entry]->offload_enabled is currently 0. 1250 */ 1251 h->dev[entry]->raid_map = new_entry->raid_map; 1252 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1253 } 1254 if (new_entry->hba_ioaccel_enabled) { 1255 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; 1256 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */ 1257 } 1258 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled; 1259 h->dev[entry]->offload_config = new_entry->offload_config; 1260 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; 1261 h->dev[entry]->queue_depth = new_entry->queue_depth; 1262 1263 /* 1264 * We can turn off ioaccel offload now, but need to delay turning 1265 * it on until we can update h->dev[entry]->phys_disk[], but we 1266 * can't do that until all the devices are updated. 1267 */ 1268 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled; 1269 if (!new_entry->offload_enabled) 1270 h->dev[entry]->offload_enabled = 0; 1271 1272 offload_enabled = h->dev[entry]->offload_enabled; 1273 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled; 1274 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated"); 1275 h->dev[entry]->offload_enabled = offload_enabled; 1276 } 1277 1278 /* Replace an entry from h->dev[] array. */ 1279 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 1280 int entry, struct hpsa_scsi_dev_t *new_entry, 1281 struct hpsa_scsi_dev_t *added[], int *nadded, 1282 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1283 { 1284 /* assumes h->devlock is held */ 1285 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1286 removed[*nremoved] = h->dev[entry]; 1287 (*nremoved)++; 1288 1289 /* 1290 * New physical devices won't have target/lun assigned yet 1291 * so we need to preserve the values in the slot we are replacing. 1292 */ 1293 if (new_entry->target == -1) { 1294 new_entry->target = h->dev[entry]->target; 1295 new_entry->lun = h->dev[entry]->lun; 1296 } 1297 1298 h->dev[entry] = new_entry; 1299 added[*nadded] = new_entry; 1300 (*nadded)++; 1301 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced"); 1302 new_entry->offload_to_be_enabled = new_entry->offload_enabled; 1303 new_entry->offload_enabled = 0; 1304 } 1305 1306 /* Remove an entry from h->dev[] array. */ 1307 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 1308 struct hpsa_scsi_dev_t *removed[], int *nremoved) 1309 { 1310 /* assumes h->devlock is held */ 1311 int i; 1312 struct hpsa_scsi_dev_t *sd; 1313 1314 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 1315 1316 sd = h->dev[entry]; 1317 removed[*nremoved] = h->dev[entry]; 1318 (*nremoved)++; 1319 1320 for (i = entry; i < h->ndevices-1; i++) 1321 h->dev[i] = h->dev[i+1]; 1322 h->ndevices--; 1323 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed"); 1324 } 1325 1326 #define SCSI3ADDR_EQ(a, b) ( \ 1327 (a)[7] == (b)[7] && \ 1328 (a)[6] == (b)[6] && \ 1329 (a)[5] == (b)[5] && \ 1330 (a)[4] == (b)[4] && \ 1331 (a)[3] == (b)[3] && \ 1332 (a)[2] == (b)[2] && \ 1333 (a)[1] == (b)[1] && \ 1334 (a)[0] == (b)[0]) 1335 1336 static void fixup_botched_add(struct ctlr_info *h, 1337 struct hpsa_scsi_dev_t *added) 1338 { 1339 /* called when scsi_add_device fails in order to re-adjust 1340 * h->dev[] to match the mid layer's view. 1341 */ 1342 unsigned long flags; 1343 int i, j; 1344 1345 spin_lock_irqsave(&h->lock, flags); 1346 for (i = 0; i < h->ndevices; i++) { 1347 if (h->dev[i] == added) { 1348 for (j = i; j < h->ndevices-1; j++) 1349 h->dev[j] = h->dev[j+1]; 1350 h->ndevices--; 1351 break; 1352 } 1353 } 1354 spin_unlock_irqrestore(&h->lock, flags); 1355 kfree(added); 1356 } 1357 1358 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 1359 struct hpsa_scsi_dev_t *dev2) 1360 { 1361 /* we compare everything except lun and target as these 1362 * are not yet assigned. Compare parts likely 1363 * to differ first 1364 */ 1365 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 1366 sizeof(dev1->scsi3addr)) != 0) 1367 return 0; 1368 if (memcmp(dev1->device_id, dev2->device_id, 1369 sizeof(dev1->device_id)) != 0) 1370 return 0; 1371 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 1372 return 0; 1373 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 1374 return 0; 1375 if (dev1->devtype != dev2->devtype) 1376 return 0; 1377 if (dev1->bus != dev2->bus) 1378 return 0; 1379 return 1; 1380 } 1381 1382 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 1383 struct hpsa_scsi_dev_t *dev2) 1384 { 1385 /* Device attributes that can change, but don't mean 1386 * that the device is a different device, nor that the OS 1387 * needs to be told anything about the change. 1388 */ 1389 if (dev1->raid_level != dev2->raid_level) 1390 return 1; 1391 if (dev1->offload_config != dev2->offload_config) 1392 return 1; 1393 if (dev1->offload_enabled != dev2->offload_enabled) 1394 return 1; 1395 if (!is_logical_dev_addr_mode(dev1->scsi3addr)) 1396 if (dev1->queue_depth != dev2->queue_depth) 1397 return 1; 1398 return 0; 1399 } 1400 1401 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 1402 * and return needle location in *index. If scsi3addr matches, but not 1403 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 1404 * location in *index. 1405 * In the case of a minor device attribute change, such as RAID level, just 1406 * return DEVICE_UPDATED, along with the updated device's location in index. 1407 * If needle not found, return DEVICE_NOT_FOUND. 1408 */ 1409 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 1410 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 1411 int *index) 1412 { 1413 int i; 1414 #define DEVICE_NOT_FOUND 0 1415 #define DEVICE_CHANGED 1 1416 #define DEVICE_SAME 2 1417 #define DEVICE_UPDATED 3 1418 for (i = 0; i < haystack_size; i++) { 1419 if (haystack[i] == NULL) /* previously removed. */ 1420 continue; 1421 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 1422 *index = i; 1423 if (device_is_the_same(needle, haystack[i])) { 1424 if (device_updated(needle, haystack[i])) 1425 return DEVICE_UPDATED; 1426 return DEVICE_SAME; 1427 } else { 1428 /* Keep offline devices offline */ 1429 if (needle->volume_offline) 1430 return DEVICE_NOT_FOUND; 1431 return DEVICE_CHANGED; 1432 } 1433 } 1434 } 1435 *index = -1; 1436 return DEVICE_NOT_FOUND; 1437 } 1438 1439 static void hpsa_monitor_offline_device(struct ctlr_info *h, 1440 unsigned char scsi3addr[]) 1441 { 1442 struct offline_device_entry *device; 1443 unsigned long flags; 1444 1445 /* Check to see if device is already on the list */ 1446 spin_lock_irqsave(&h->offline_device_lock, flags); 1447 list_for_each_entry(device, &h->offline_device_list, offline_list) { 1448 if (memcmp(device->scsi3addr, scsi3addr, 1449 sizeof(device->scsi3addr)) == 0) { 1450 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1451 return; 1452 } 1453 } 1454 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1455 1456 /* Device is not on the list, add it. */ 1457 device = kmalloc(sizeof(*device), GFP_KERNEL); 1458 if (!device) { 1459 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__); 1460 return; 1461 } 1462 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); 1463 spin_lock_irqsave(&h->offline_device_lock, flags); 1464 list_add_tail(&device->offline_list, &h->offline_device_list); 1465 spin_unlock_irqrestore(&h->offline_device_lock, flags); 1466 } 1467 1468 /* Print a message explaining various offline volume states */ 1469 static void hpsa_show_volume_status(struct ctlr_info *h, 1470 struct hpsa_scsi_dev_t *sd) 1471 { 1472 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) 1473 dev_info(&h->pdev->dev, 1474 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", 1475 h->scsi_host->host_no, 1476 sd->bus, sd->target, sd->lun); 1477 switch (sd->volume_offline) { 1478 case HPSA_LV_OK: 1479 break; 1480 case HPSA_LV_UNDERGOING_ERASE: 1481 dev_info(&h->pdev->dev, 1482 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", 1483 h->scsi_host->host_no, 1484 sd->bus, sd->target, sd->lun); 1485 break; 1486 case HPSA_LV_NOT_AVAILABLE: 1487 dev_info(&h->pdev->dev, 1488 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n", 1489 h->scsi_host->host_no, 1490 sd->bus, sd->target, sd->lun); 1491 break; 1492 case HPSA_LV_UNDERGOING_RPI: 1493 dev_info(&h->pdev->dev, 1494 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n", 1495 h->scsi_host->host_no, 1496 sd->bus, sd->target, sd->lun); 1497 break; 1498 case HPSA_LV_PENDING_RPI: 1499 dev_info(&h->pdev->dev, 1500 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", 1501 h->scsi_host->host_no, 1502 sd->bus, sd->target, sd->lun); 1503 break; 1504 case HPSA_LV_ENCRYPTED_NO_KEY: 1505 dev_info(&h->pdev->dev, 1506 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", 1507 h->scsi_host->host_no, 1508 sd->bus, sd->target, sd->lun); 1509 break; 1510 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 1511 dev_info(&h->pdev->dev, 1512 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", 1513 h->scsi_host->host_no, 1514 sd->bus, sd->target, sd->lun); 1515 break; 1516 case HPSA_LV_UNDERGOING_ENCRYPTION: 1517 dev_info(&h->pdev->dev, 1518 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", 1519 h->scsi_host->host_no, 1520 sd->bus, sd->target, sd->lun); 1521 break; 1522 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 1523 dev_info(&h->pdev->dev, 1524 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", 1525 h->scsi_host->host_no, 1526 sd->bus, sd->target, sd->lun); 1527 break; 1528 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 1529 dev_info(&h->pdev->dev, 1530 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", 1531 h->scsi_host->host_no, 1532 sd->bus, sd->target, sd->lun); 1533 break; 1534 case HPSA_LV_PENDING_ENCRYPTION: 1535 dev_info(&h->pdev->dev, 1536 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", 1537 h->scsi_host->host_no, 1538 sd->bus, sd->target, sd->lun); 1539 break; 1540 case HPSA_LV_PENDING_ENCRYPTION_REKEYING: 1541 dev_info(&h->pdev->dev, 1542 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", 1543 h->scsi_host->host_no, 1544 sd->bus, sd->target, sd->lun); 1545 break; 1546 } 1547 } 1548 1549 /* 1550 * Figure the list of physical drive pointers for a logical drive with 1551 * raid offload configured. 1552 */ 1553 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h, 1554 struct hpsa_scsi_dev_t *dev[], int ndevices, 1555 struct hpsa_scsi_dev_t *logical_drive) 1556 { 1557 struct raid_map_data *map = &logical_drive->raid_map; 1558 struct raid_map_disk_data *dd = &map->data[0]; 1559 int i, j; 1560 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 1561 le16_to_cpu(map->metadata_disks_per_row); 1562 int nraid_map_entries = le16_to_cpu(map->row_cnt) * 1563 le16_to_cpu(map->layout_map_count) * 1564 total_disks_per_row; 1565 int nphys_disk = le16_to_cpu(map->layout_map_count) * 1566 total_disks_per_row; 1567 int qdepth; 1568 1569 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES) 1570 nraid_map_entries = RAID_MAP_MAX_ENTRIES; 1571 1572 logical_drive->nphysical_disks = nraid_map_entries; 1573 1574 qdepth = 0; 1575 for (i = 0; i < nraid_map_entries; i++) { 1576 logical_drive->phys_disk[i] = NULL; 1577 if (!logical_drive->offload_config) 1578 continue; 1579 for (j = 0; j < ndevices; j++) { 1580 if (dev[j]->devtype != TYPE_DISK) 1581 continue; 1582 if (is_logical_dev_addr_mode(dev[j]->scsi3addr)) 1583 continue; 1584 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle) 1585 continue; 1586 1587 logical_drive->phys_disk[i] = dev[j]; 1588 if (i < nphys_disk) 1589 qdepth = min(h->nr_cmds, qdepth + 1590 logical_drive->phys_disk[i]->queue_depth); 1591 break; 1592 } 1593 1594 /* 1595 * This can happen if a physical drive is removed and 1596 * the logical drive is degraded. In that case, the RAID 1597 * map data will refer to a physical disk which isn't actually 1598 * present. And in that case offload_enabled should already 1599 * be 0, but we'll turn it off here just in case 1600 */ 1601 if (!logical_drive->phys_disk[i]) { 1602 logical_drive->offload_enabled = 0; 1603 logical_drive->offload_to_be_enabled = 0; 1604 logical_drive->queue_depth = 8; 1605 } 1606 } 1607 if (nraid_map_entries) 1608 /* 1609 * This is correct for reads, too high for full stripe writes, 1610 * way too high for partial stripe writes 1611 */ 1612 logical_drive->queue_depth = qdepth; 1613 else 1614 logical_drive->queue_depth = h->nr_cmds; 1615 } 1616 1617 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h, 1618 struct hpsa_scsi_dev_t *dev[], int ndevices) 1619 { 1620 int i; 1621 1622 for (i = 0; i < ndevices; i++) { 1623 if (dev[i]->devtype != TYPE_DISK) 1624 continue; 1625 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr)) 1626 continue; 1627 1628 /* 1629 * If offload is currently enabled, the RAID map and 1630 * phys_disk[] assignment *better* not be changing 1631 * and since it isn't changing, we do not need to 1632 * update it. 1633 */ 1634 if (dev[i]->offload_enabled) 1635 continue; 1636 1637 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]); 1638 } 1639 } 1640 1641 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 1642 struct hpsa_scsi_dev_t *sd[], int nsds) 1643 { 1644 /* sd contains scsi3 addresses and devtypes, and inquiry 1645 * data. This function takes what's in sd to be the current 1646 * reality and updates h->dev[] to reflect that reality. 1647 */ 1648 int i, entry, device_change, changes = 0; 1649 struct hpsa_scsi_dev_t *csd; 1650 unsigned long flags; 1651 struct hpsa_scsi_dev_t **added, **removed; 1652 int nadded, nremoved; 1653 struct Scsi_Host *sh = NULL; 1654 1655 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); 1656 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); 1657 1658 if (!added || !removed) { 1659 dev_warn(&h->pdev->dev, "out of memory in " 1660 "adjust_hpsa_scsi_table\n"); 1661 goto free_and_out; 1662 } 1663 1664 spin_lock_irqsave(&h->devlock, flags); 1665 1666 /* find any devices in h->dev[] that are not in 1667 * sd[] and remove them from h->dev[], and for any 1668 * devices which have changed, remove the old device 1669 * info and add the new device info. 1670 * If minor device attributes change, just update 1671 * the existing device structure. 1672 */ 1673 i = 0; 1674 nremoved = 0; 1675 nadded = 0; 1676 while (i < h->ndevices) { 1677 csd = h->dev[i]; 1678 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 1679 if (device_change == DEVICE_NOT_FOUND) { 1680 changes++; 1681 hpsa_scsi_remove_entry(h, hostno, i, 1682 removed, &nremoved); 1683 continue; /* remove ^^^, hence i not incremented */ 1684 } else if (device_change == DEVICE_CHANGED) { 1685 changes++; 1686 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 1687 added, &nadded, removed, &nremoved); 1688 /* Set it to NULL to prevent it from being freed 1689 * at the bottom of hpsa_update_scsi_devices() 1690 */ 1691 sd[entry] = NULL; 1692 } else if (device_change == DEVICE_UPDATED) { 1693 hpsa_scsi_update_entry(h, hostno, i, sd[entry]); 1694 } 1695 i++; 1696 } 1697 1698 /* Now, make sure every device listed in sd[] is also 1699 * listed in h->dev[], adding them if they aren't found 1700 */ 1701 1702 for (i = 0; i < nsds; i++) { 1703 if (!sd[i]) /* if already added above. */ 1704 continue; 1705 1706 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS 1707 * as the SCSI mid-layer does not handle such devices well. 1708 * It relentlessly loops sending TUR at 3Hz, then READ(10) 1709 * at 160Hz, and prevents the system from coming up. 1710 */ 1711 if (sd[i]->volume_offline) { 1712 hpsa_show_volume_status(h, sd[i]); 1713 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline"); 1714 continue; 1715 } 1716 1717 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 1718 h->ndevices, &entry); 1719 if (device_change == DEVICE_NOT_FOUND) { 1720 changes++; 1721 if (hpsa_scsi_add_entry(h, hostno, sd[i], 1722 added, &nadded) != 0) 1723 break; 1724 sd[i] = NULL; /* prevent from being freed later. */ 1725 } else if (device_change == DEVICE_CHANGED) { 1726 /* should never happen... */ 1727 changes++; 1728 dev_warn(&h->pdev->dev, 1729 "device unexpectedly changed.\n"); 1730 /* but if it does happen, we just ignore that device */ 1731 } 1732 } 1733 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices); 1734 1735 /* Now that h->dev[]->phys_disk[] is coherent, we can enable 1736 * any logical drives that need it enabled. 1737 */ 1738 for (i = 0; i < h->ndevices; i++) 1739 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled; 1740 1741 spin_unlock_irqrestore(&h->devlock, flags); 1742 1743 /* Monitor devices which are in one of several NOT READY states to be 1744 * brought online later. This must be done without holding h->devlock, 1745 * so don't touch h->dev[] 1746 */ 1747 for (i = 0; i < nsds; i++) { 1748 if (!sd[i]) /* if already added above. */ 1749 continue; 1750 if (sd[i]->volume_offline) 1751 hpsa_monitor_offline_device(h, sd[i]->scsi3addr); 1752 } 1753 1754 /* Don't notify scsi mid layer of any changes the first time through 1755 * (or if there are no changes) scsi_scan_host will do it later the 1756 * first time through. 1757 */ 1758 if (hostno == -1 || !changes) 1759 goto free_and_out; 1760 1761 sh = h->scsi_host; 1762 /* Notify scsi mid layer of any removed devices */ 1763 for (i = 0; i < nremoved; i++) { 1764 if (removed[i]->expose_state & HPSA_SCSI_ADD) { 1765 struct scsi_device *sdev = 1766 scsi_device_lookup(sh, removed[i]->bus, 1767 removed[i]->target, removed[i]->lun); 1768 if (sdev != NULL) { 1769 scsi_remove_device(sdev); 1770 scsi_device_put(sdev); 1771 } else { 1772 /* 1773 * We don't expect to get here. 1774 * future cmds to this device will get selection 1775 * timeout as if the device was gone. 1776 */ 1777 hpsa_show_dev_msg(KERN_WARNING, h, removed[i], 1778 "didn't find device for removal."); 1779 } 1780 } 1781 kfree(removed[i]); 1782 removed[i] = NULL; 1783 } 1784 1785 /* Notify scsi mid layer of any added devices */ 1786 for (i = 0; i < nadded; i++) { 1787 if (!(added[i]->expose_state & HPSA_SCSI_ADD)) 1788 continue; 1789 if (scsi_add_device(sh, added[i]->bus, 1790 added[i]->target, added[i]->lun) == 0) 1791 continue; 1792 hpsa_show_dev_msg(KERN_WARNING, h, added[i], 1793 "addition failed, device not added."); 1794 /* now we have to remove it from h->dev, 1795 * since it didn't get added to scsi mid layer 1796 */ 1797 fixup_botched_add(h, added[i]); 1798 added[i] = NULL; 1799 } 1800 1801 free_and_out: 1802 kfree(added); 1803 kfree(removed); 1804 } 1805 1806 /* 1807 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * 1808 * Assume's h->devlock is held. 1809 */ 1810 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 1811 int bus, int target, int lun) 1812 { 1813 int i; 1814 struct hpsa_scsi_dev_t *sd; 1815 1816 for (i = 0; i < h->ndevices; i++) { 1817 sd = h->dev[i]; 1818 if (sd->bus == bus && sd->target == target && sd->lun == lun) 1819 return sd; 1820 } 1821 return NULL; 1822 } 1823 1824 static int hpsa_slave_alloc(struct scsi_device *sdev) 1825 { 1826 struct hpsa_scsi_dev_t *sd; 1827 unsigned long flags; 1828 struct ctlr_info *h; 1829 1830 h = sdev_to_hba(sdev); 1831 spin_lock_irqsave(&h->devlock, flags); 1832 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 1833 sdev_id(sdev), sdev->lun); 1834 if (likely(sd)) { 1835 atomic_set(&sd->ioaccel_cmds_out, 0); 1836 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL; 1837 } else 1838 sdev->hostdata = NULL; 1839 spin_unlock_irqrestore(&h->devlock, flags); 1840 return 0; 1841 } 1842 1843 /* configure scsi device based on internal per-device structure */ 1844 static int hpsa_slave_configure(struct scsi_device *sdev) 1845 { 1846 struct hpsa_scsi_dev_t *sd; 1847 int queue_depth; 1848 1849 sd = sdev->hostdata; 1850 sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH); 1851 1852 if (sd) 1853 queue_depth = sd->queue_depth != 0 ? 1854 sd->queue_depth : sdev->host->can_queue; 1855 else 1856 queue_depth = sdev->host->can_queue; 1857 1858 scsi_change_queue_depth(sdev, queue_depth); 1859 1860 return 0; 1861 } 1862 1863 static void hpsa_slave_destroy(struct scsi_device *sdev) 1864 { 1865 /* nothing to do. */ 1866 } 1867 1868 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 1869 { 1870 int i; 1871 1872 if (!h->ioaccel2_cmd_sg_list) 1873 return; 1874 for (i = 0; i < h->nr_cmds; i++) { 1875 kfree(h->ioaccel2_cmd_sg_list[i]); 1876 h->ioaccel2_cmd_sg_list[i] = NULL; 1877 } 1878 kfree(h->ioaccel2_cmd_sg_list); 1879 h->ioaccel2_cmd_sg_list = NULL; 1880 } 1881 1882 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h) 1883 { 1884 int i; 1885 1886 if (h->chainsize <= 0) 1887 return 0; 1888 1889 h->ioaccel2_cmd_sg_list = 1890 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds, 1891 GFP_KERNEL); 1892 if (!h->ioaccel2_cmd_sg_list) 1893 return -ENOMEM; 1894 for (i = 0; i < h->nr_cmds; i++) { 1895 h->ioaccel2_cmd_sg_list[i] = 1896 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) * 1897 h->maxsgentries, GFP_KERNEL); 1898 if (!h->ioaccel2_cmd_sg_list[i]) 1899 goto clean; 1900 } 1901 return 0; 1902 1903 clean: 1904 hpsa_free_ioaccel2_sg_chain_blocks(h); 1905 return -ENOMEM; 1906 } 1907 1908 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 1909 { 1910 int i; 1911 1912 if (!h->cmd_sg_list) 1913 return; 1914 for (i = 0; i < h->nr_cmds; i++) { 1915 kfree(h->cmd_sg_list[i]); 1916 h->cmd_sg_list[i] = NULL; 1917 } 1918 kfree(h->cmd_sg_list); 1919 h->cmd_sg_list = NULL; 1920 } 1921 1922 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h) 1923 { 1924 int i; 1925 1926 if (h->chainsize <= 0) 1927 return 0; 1928 1929 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 1930 GFP_KERNEL); 1931 if (!h->cmd_sg_list) { 1932 dev_err(&h->pdev->dev, "Failed to allocate SG list\n"); 1933 return -ENOMEM; 1934 } 1935 for (i = 0; i < h->nr_cmds; i++) { 1936 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 1937 h->chainsize, GFP_KERNEL); 1938 if (!h->cmd_sg_list[i]) { 1939 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n"); 1940 goto clean; 1941 } 1942 } 1943 return 0; 1944 1945 clean: 1946 hpsa_free_sg_chain_blocks(h); 1947 return -ENOMEM; 1948 } 1949 1950 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h, 1951 struct io_accel2_cmd *cp, struct CommandList *c) 1952 { 1953 struct ioaccel2_sg_element *chain_block; 1954 u64 temp64; 1955 u32 chain_size; 1956 1957 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex]; 1958 chain_size = le32_to_cpu(cp->data_len); 1959 temp64 = pci_map_single(h->pdev, chain_block, chain_size, 1960 PCI_DMA_TODEVICE); 1961 if (dma_mapping_error(&h->pdev->dev, temp64)) { 1962 /* prevent subsequent unmapping */ 1963 cp->sg->address = 0; 1964 return -1; 1965 } 1966 cp->sg->address = cpu_to_le64(temp64); 1967 return 0; 1968 } 1969 1970 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h, 1971 struct io_accel2_cmd *cp) 1972 { 1973 struct ioaccel2_sg_element *chain_sg; 1974 u64 temp64; 1975 u32 chain_size; 1976 1977 chain_sg = cp->sg; 1978 temp64 = le64_to_cpu(chain_sg->address); 1979 chain_size = le32_to_cpu(cp->data_len); 1980 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE); 1981 } 1982 1983 static int hpsa_map_sg_chain_block(struct ctlr_info *h, 1984 struct CommandList *c) 1985 { 1986 struct SGDescriptor *chain_sg, *chain_block; 1987 u64 temp64; 1988 u32 chain_len; 1989 1990 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1991 chain_block = h->cmd_sg_list[c->cmdindex]; 1992 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); 1993 chain_len = sizeof(*chain_sg) * 1994 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries); 1995 chain_sg->Len = cpu_to_le32(chain_len); 1996 temp64 = pci_map_single(h->pdev, chain_block, chain_len, 1997 PCI_DMA_TODEVICE); 1998 if (dma_mapping_error(&h->pdev->dev, temp64)) { 1999 /* prevent subsequent unmapping */ 2000 chain_sg->Addr = cpu_to_le64(0); 2001 return -1; 2002 } 2003 chain_sg->Addr = cpu_to_le64(temp64); 2004 return 0; 2005 } 2006 2007 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 2008 struct CommandList *c) 2009 { 2010 struct SGDescriptor *chain_sg; 2011 2012 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) 2013 return; 2014 2015 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 2016 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), 2017 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); 2018 } 2019 2020 2021 /* Decode the various types of errors on ioaccel2 path. 2022 * Return 1 for any error that should generate a RAID path retry. 2023 * Return 0 for errors that don't require a RAID path retry. 2024 */ 2025 static int handle_ioaccel_mode2_error(struct ctlr_info *h, 2026 struct CommandList *c, 2027 struct scsi_cmnd *cmd, 2028 struct io_accel2_cmd *c2) 2029 { 2030 int data_len; 2031 int retry = 0; 2032 u32 ioaccel2_resid = 0; 2033 2034 switch (c2->error_data.serv_response) { 2035 case IOACCEL2_SERV_RESPONSE_COMPLETE: 2036 switch (c2->error_data.status) { 2037 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: 2038 break; 2039 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: 2040 cmd->result |= SAM_STAT_CHECK_CONDITION; 2041 if (c2->error_data.data_present != 2042 IOACCEL2_SENSE_DATA_PRESENT) { 2043 memset(cmd->sense_buffer, 0, 2044 SCSI_SENSE_BUFFERSIZE); 2045 break; 2046 } 2047 /* copy the sense data */ 2048 data_len = c2->error_data.sense_data_len; 2049 if (data_len > SCSI_SENSE_BUFFERSIZE) 2050 data_len = SCSI_SENSE_BUFFERSIZE; 2051 if (data_len > sizeof(c2->error_data.sense_data_buff)) 2052 data_len = 2053 sizeof(c2->error_data.sense_data_buff); 2054 memcpy(cmd->sense_buffer, 2055 c2->error_data.sense_data_buff, data_len); 2056 retry = 1; 2057 break; 2058 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: 2059 retry = 1; 2060 break; 2061 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: 2062 retry = 1; 2063 break; 2064 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: 2065 retry = 1; 2066 break; 2067 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: 2068 retry = 1; 2069 break; 2070 default: 2071 retry = 1; 2072 break; 2073 } 2074 break; 2075 case IOACCEL2_SERV_RESPONSE_FAILURE: 2076 switch (c2->error_data.status) { 2077 case IOACCEL2_STATUS_SR_IO_ERROR: 2078 case IOACCEL2_STATUS_SR_IO_ABORTED: 2079 case IOACCEL2_STATUS_SR_OVERRUN: 2080 retry = 1; 2081 break; 2082 case IOACCEL2_STATUS_SR_UNDERRUN: 2083 cmd->result = (DID_OK << 16); /* host byte */ 2084 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2085 ioaccel2_resid = get_unaligned_le32( 2086 &c2->error_data.resid_cnt[0]); 2087 scsi_set_resid(cmd, ioaccel2_resid); 2088 break; 2089 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE: 2090 case IOACCEL2_STATUS_SR_INVALID_DEVICE: 2091 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED: 2092 /* We will get an event from ctlr to trigger rescan */ 2093 retry = 1; 2094 break; 2095 default: 2096 retry = 1; 2097 } 2098 break; 2099 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 2100 break; 2101 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 2102 break; 2103 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 2104 retry = 1; 2105 break; 2106 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 2107 break; 2108 default: 2109 retry = 1; 2110 break; 2111 } 2112 2113 return retry; /* retry on raid path? */ 2114 } 2115 2116 static void hpsa_cmd_resolve_events(struct ctlr_info *h, 2117 struct CommandList *c) 2118 { 2119 bool do_wake = false; 2120 2121 /* 2122 * Prevent the following race in the abort handler: 2123 * 2124 * 1. LLD is requested to abort a SCSI command 2125 * 2. The SCSI command completes 2126 * 3. The struct CommandList associated with step 2 is made available 2127 * 4. New I/O request to LLD to another LUN re-uses struct CommandList 2128 * 5. Abort handler follows scsi_cmnd->host_scribble and 2129 * finds struct CommandList and tries to aborts it 2130 * Now we have aborted the wrong command. 2131 * 2132 * Reset c->scsi_cmd here so that the abort or reset handler will know 2133 * this command has completed. Then, check to see if the handler is 2134 * waiting for this command, and, if so, wake it. 2135 */ 2136 c->scsi_cmd = SCSI_CMD_IDLE; 2137 mb(); /* Declare command idle before checking for pending events. */ 2138 if (c->abort_pending) { 2139 do_wake = true; 2140 c->abort_pending = false; 2141 } 2142 if (c->reset_pending) { 2143 unsigned long flags; 2144 struct hpsa_scsi_dev_t *dev; 2145 2146 /* 2147 * There appears to be a reset pending; lock the lock and 2148 * reconfirm. If so, then decrement the count of outstanding 2149 * commands and wake the reset command if this is the last one. 2150 */ 2151 spin_lock_irqsave(&h->lock, flags); 2152 dev = c->reset_pending; /* Re-fetch under the lock. */ 2153 if (dev && atomic_dec_and_test(&dev->reset_cmds_out)) 2154 do_wake = true; 2155 c->reset_pending = NULL; 2156 spin_unlock_irqrestore(&h->lock, flags); 2157 } 2158 2159 if (do_wake) 2160 wake_up_all(&h->event_sync_wait_queue); 2161 } 2162 2163 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h, 2164 struct CommandList *c) 2165 { 2166 hpsa_cmd_resolve_events(h, c); 2167 cmd_tagged_free(h, c); 2168 } 2169 2170 static void hpsa_cmd_free_and_done(struct ctlr_info *h, 2171 struct CommandList *c, struct scsi_cmnd *cmd) 2172 { 2173 hpsa_cmd_resolve_and_free(h, c); 2174 cmd->scsi_done(cmd); 2175 } 2176 2177 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c) 2178 { 2179 INIT_WORK(&c->work, hpsa_command_resubmit_worker); 2180 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work); 2181 } 2182 2183 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd) 2184 { 2185 cmd->result = DID_ABORT << 16; 2186 } 2187 2188 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c, 2189 struct scsi_cmnd *cmd) 2190 { 2191 hpsa_set_scsi_cmd_aborted(cmd); 2192 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n", 2193 c->Request.CDB, c->err_info->ScsiStatus); 2194 hpsa_cmd_resolve_and_free(h, c); 2195 } 2196 2197 static void process_ioaccel2_completion(struct ctlr_info *h, 2198 struct CommandList *c, struct scsi_cmnd *cmd, 2199 struct hpsa_scsi_dev_t *dev) 2200 { 2201 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2202 2203 /* check for good status */ 2204 if (likely(c2->error_data.serv_response == 0 && 2205 c2->error_data.status == 0)) 2206 return hpsa_cmd_free_and_done(h, c, cmd); 2207 2208 /* 2209 * Any RAID offload error results in retry which will use 2210 * the normal I/O path so the controller can handle whatever's 2211 * wrong. 2212 */ 2213 if (is_logical_dev_addr_mode(dev->scsi3addr) && 2214 c2->error_data.serv_response == 2215 IOACCEL2_SERV_RESPONSE_FAILURE) { 2216 if (c2->error_data.status == 2217 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) 2218 dev->offload_enabled = 0; 2219 2220 return hpsa_retry_cmd(h, c); 2221 } 2222 2223 if (handle_ioaccel_mode2_error(h, c, cmd, c2)) 2224 return hpsa_retry_cmd(h, c); 2225 2226 return hpsa_cmd_free_and_done(h, c, cmd); 2227 } 2228 2229 /* Returns 0 on success, < 0 otherwise. */ 2230 static int hpsa_evaluate_tmf_status(struct ctlr_info *h, 2231 struct CommandList *cp) 2232 { 2233 u8 tmf_status = cp->err_info->ScsiStatus; 2234 2235 switch (tmf_status) { 2236 case CISS_TMF_COMPLETE: 2237 /* 2238 * CISS_TMF_COMPLETE never happens, instead, 2239 * ei->CommandStatus == 0 for this case. 2240 */ 2241 case CISS_TMF_SUCCESS: 2242 return 0; 2243 case CISS_TMF_INVALID_FRAME: 2244 case CISS_TMF_NOT_SUPPORTED: 2245 case CISS_TMF_FAILED: 2246 case CISS_TMF_WRONG_LUN: 2247 case CISS_TMF_OVERLAPPED_TAG: 2248 break; 2249 default: 2250 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n", 2251 tmf_status); 2252 break; 2253 } 2254 return -tmf_status; 2255 } 2256 2257 static void complete_scsi_command(struct CommandList *cp) 2258 { 2259 struct scsi_cmnd *cmd; 2260 struct ctlr_info *h; 2261 struct ErrorInfo *ei; 2262 struct hpsa_scsi_dev_t *dev; 2263 struct io_accel2_cmd *c2; 2264 2265 u8 sense_key; 2266 u8 asc; /* additional sense code */ 2267 u8 ascq; /* additional sense code qualifier */ 2268 unsigned long sense_data_size; 2269 2270 ei = cp->err_info; 2271 cmd = cp->scsi_cmd; 2272 h = cp->h; 2273 dev = cmd->device->hostdata; 2274 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex]; 2275 2276 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 2277 if ((cp->cmd_type == CMD_SCSI) && 2278 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries)) 2279 hpsa_unmap_sg_chain_block(h, cp); 2280 2281 if ((cp->cmd_type == CMD_IOACCEL2) && 2282 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN)) 2283 hpsa_unmap_ioaccel2_sg_chain_block(h, c2); 2284 2285 cmd->result = (DID_OK << 16); /* host byte */ 2286 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 2287 2288 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) 2289 atomic_dec(&cp->phys_disk->ioaccel_cmds_out); 2290 2291 /* 2292 * We check for lockup status here as it may be set for 2293 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by 2294 * fail_all_oustanding_cmds() 2295 */ 2296 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) { 2297 /* DID_NO_CONNECT will prevent a retry */ 2298 cmd->result = DID_NO_CONNECT << 16; 2299 return hpsa_cmd_free_and_done(h, cp, cmd); 2300 } 2301 2302 if ((unlikely(hpsa_is_pending_event(cp)))) { 2303 if (cp->reset_pending) 2304 return hpsa_cmd_resolve_and_free(h, cp); 2305 if (cp->abort_pending) 2306 return hpsa_cmd_abort_and_free(h, cp, cmd); 2307 } 2308 2309 if (cp->cmd_type == CMD_IOACCEL2) 2310 return process_ioaccel2_completion(h, cp, cmd, dev); 2311 2312 scsi_set_resid(cmd, ei->ResidualCnt); 2313 if (ei->CommandStatus == 0) 2314 return hpsa_cmd_free_and_done(h, cp, cmd); 2315 2316 /* For I/O accelerator commands, copy over some fields to the normal 2317 * CISS header used below for error handling. 2318 */ 2319 if (cp->cmd_type == CMD_IOACCEL1) { 2320 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; 2321 cp->Header.SGList = scsi_sg_count(cmd); 2322 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList); 2323 cp->Request.CDBLen = le16_to_cpu(c->io_flags) & 2324 IOACCEL1_IOFLAGS_CDBLEN_MASK; 2325 cp->Header.tag = c->tag; 2326 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); 2327 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); 2328 2329 /* Any RAID offload error results in retry which will use 2330 * the normal I/O path so the controller can handle whatever's 2331 * wrong. 2332 */ 2333 if (is_logical_dev_addr_mode(dev->scsi3addr)) { 2334 if (ei->CommandStatus == CMD_IOACCEL_DISABLED) 2335 dev->offload_enabled = 0; 2336 return hpsa_retry_cmd(h, cp); 2337 } 2338 } 2339 2340 /* an error has occurred */ 2341 switch (ei->CommandStatus) { 2342 2343 case CMD_TARGET_STATUS: 2344 cmd->result |= ei->ScsiStatus; 2345 /* copy the sense data */ 2346 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 2347 sense_data_size = SCSI_SENSE_BUFFERSIZE; 2348 else 2349 sense_data_size = sizeof(ei->SenseInfo); 2350 if (ei->SenseLen < sense_data_size) 2351 sense_data_size = ei->SenseLen; 2352 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 2353 if (ei->ScsiStatus) 2354 decode_sense_data(ei->SenseInfo, sense_data_size, 2355 &sense_key, &asc, &ascq); 2356 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 2357 if (sense_key == ABORTED_COMMAND) { 2358 cmd->result |= DID_SOFT_ERROR << 16; 2359 break; 2360 } 2361 break; 2362 } 2363 /* Problem was not a check condition 2364 * Pass it up to the upper layers... 2365 */ 2366 if (ei->ScsiStatus) { 2367 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 2368 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 2369 "Returning result: 0x%x\n", 2370 cp, ei->ScsiStatus, 2371 sense_key, asc, ascq, 2372 cmd->result); 2373 } else { /* scsi status is zero??? How??? */ 2374 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 2375 "Returning no connection.\n", cp), 2376 2377 /* Ordinarily, this case should never happen, 2378 * but there is a bug in some released firmware 2379 * revisions that allows it to happen if, for 2380 * example, a 4100 backplane loses power and 2381 * the tape drive is in it. We assume that 2382 * it's a fatal error of some kind because we 2383 * can't show that it wasn't. We will make it 2384 * look like selection timeout since that is 2385 * the most common reason for this to occur, 2386 * and it's severe enough. 2387 */ 2388 2389 cmd->result = DID_NO_CONNECT << 16; 2390 } 2391 break; 2392 2393 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2394 break; 2395 case CMD_DATA_OVERRUN: 2396 dev_warn(&h->pdev->dev, 2397 "CDB %16phN data overrun\n", cp->Request.CDB); 2398 break; 2399 case CMD_INVALID: { 2400 /* print_bytes(cp, sizeof(*cp), 1, 0); 2401 print_cmd(cp); */ 2402 /* We get CMD_INVALID if you address a non-existent device 2403 * instead of a selection timeout (no response). You will 2404 * see this if you yank out a drive, then try to access it. 2405 * This is kind of a shame because it means that any other 2406 * CMD_INVALID (e.g. driver bug) will get interpreted as a 2407 * missing target. */ 2408 cmd->result = DID_NO_CONNECT << 16; 2409 } 2410 break; 2411 case CMD_PROTOCOL_ERR: 2412 cmd->result = DID_ERROR << 16; 2413 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n", 2414 cp->Request.CDB); 2415 break; 2416 case CMD_HARDWARE_ERR: 2417 cmd->result = DID_ERROR << 16; 2418 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n", 2419 cp->Request.CDB); 2420 break; 2421 case CMD_CONNECTION_LOST: 2422 cmd->result = DID_ERROR << 16; 2423 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n", 2424 cp->Request.CDB); 2425 break; 2426 case CMD_ABORTED: 2427 /* Return now to avoid calling scsi_done(). */ 2428 return hpsa_cmd_abort_and_free(h, cp, cmd); 2429 case CMD_ABORT_FAILED: 2430 cmd->result = DID_ERROR << 16; 2431 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n", 2432 cp->Request.CDB); 2433 break; 2434 case CMD_UNSOLICITED_ABORT: 2435 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 2436 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n", 2437 cp->Request.CDB); 2438 break; 2439 case CMD_TIMEOUT: 2440 cmd->result = DID_TIME_OUT << 16; 2441 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n", 2442 cp->Request.CDB); 2443 break; 2444 case CMD_UNABORTABLE: 2445 cmd->result = DID_ERROR << 16; 2446 dev_warn(&h->pdev->dev, "Command unabortable\n"); 2447 break; 2448 case CMD_TMF_STATUS: 2449 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */ 2450 cmd->result = DID_ERROR << 16; 2451 break; 2452 case CMD_IOACCEL_DISABLED: 2453 /* This only handles the direct pass-through case since RAID 2454 * offload is handled above. Just attempt a retry. 2455 */ 2456 cmd->result = DID_SOFT_ERROR << 16; 2457 dev_warn(&h->pdev->dev, 2458 "cp %p had HP SSD Smart Path error\n", cp); 2459 break; 2460 default: 2461 cmd->result = DID_ERROR << 16; 2462 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 2463 cp, ei->CommandStatus); 2464 } 2465 2466 return hpsa_cmd_free_and_done(h, cp, cmd); 2467 } 2468 2469 static void hpsa_pci_unmap(struct pci_dev *pdev, 2470 struct CommandList *c, int sg_used, int data_direction) 2471 { 2472 int i; 2473 2474 for (i = 0; i < sg_used; i++) 2475 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), 2476 le32_to_cpu(c->SG[i].Len), 2477 data_direction); 2478 } 2479 2480 static int hpsa_map_one(struct pci_dev *pdev, 2481 struct CommandList *cp, 2482 unsigned char *buf, 2483 size_t buflen, 2484 int data_direction) 2485 { 2486 u64 addr64; 2487 2488 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 2489 cp->Header.SGList = 0; 2490 cp->Header.SGTotal = cpu_to_le16(0); 2491 return 0; 2492 } 2493 2494 addr64 = pci_map_single(pdev, buf, buflen, data_direction); 2495 if (dma_mapping_error(&pdev->dev, addr64)) { 2496 /* Prevent subsequent unmap of something never mapped */ 2497 cp->Header.SGList = 0; 2498 cp->Header.SGTotal = cpu_to_le16(0); 2499 return -1; 2500 } 2501 cp->SG[0].Addr = cpu_to_le64(addr64); 2502 cp->SG[0].Len = cpu_to_le32(buflen); 2503 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ 2504 cp->Header.SGList = 1; /* no. SGs contig in this cmd */ 2505 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ 2506 return 0; 2507 } 2508 2509 #define NO_TIMEOUT ((unsigned long) -1) 2510 #define DEFAULT_TIMEOUT 30000 /* milliseconds */ 2511 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 2512 struct CommandList *c, int reply_queue, unsigned long timeout_msecs) 2513 { 2514 DECLARE_COMPLETION_ONSTACK(wait); 2515 2516 c->waiting = &wait; 2517 __enqueue_cmd_and_start_io(h, c, reply_queue); 2518 if (timeout_msecs == NO_TIMEOUT) { 2519 /* TODO: get rid of this no-timeout thing */ 2520 wait_for_completion_io(&wait); 2521 return IO_OK; 2522 } 2523 if (!wait_for_completion_io_timeout(&wait, 2524 msecs_to_jiffies(timeout_msecs))) { 2525 dev_warn(&h->pdev->dev, "Command timed out.\n"); 2526 return -ETIMEDOUT; 2527 } 2528 return IO_OK; 2529 } 2530 2531 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c, 2532 int reply_queue, unsigned long timeout_msecs) 2533 { 2534 if (unlikely(lockup_detected(h))) { 2535 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 2536 return IO_OK; 2537 } 2538 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs); 2539 } 2540 2541 static u32 lockup_detected(struct ctlr_info *h) 2542 { 2543 int cpu; 2544 u32 rc, *lockup_detected; 2545 2546 cpu = get_cpu(); 2547 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 2548 rc = *lockup_detected; 2549 put_cpu(); 2550 return rc; 2551 } 2552 2553 #define MAX_DRIVER_CMD_RETRIES 25 2554 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 2555 struct CommandList *c, int data_direction, unsigned long timeout_msecs) 2556 { 2557 int backoff_time = 10, retry_count = 0; 2558 int rc; 2559 2560 do { 2561 memset(c->err_info, 0, sizeof(*c->err_info)); 2562 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, 2563 timeout_msecs); 2564 if (rc) 2565 break; 2566 retry_count++; 2567 if (retry_count > 3) { 2568 msleep(backoff_time); 2569 if (backoff_time < 1000) 2570 backoff_time *= 2; 2571 } 2572 } while ((check_for_unit_attention(h, c) || 2573 check_for_busy(h, c)) && 2574 retry_count <= MAX_DRIVER_CMD_RETRIES); 2575 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 2576 if (retry_count > MAX_DRIVER_CMD_RETRIES) 2577 rc = -EIO; 2578 return rc; 2579 } 2580 2581 static void hpsa_print_cmd(struct ctlr_info *h, char *txt, 2582 struct CommandList *c) 2583 { 2584 const u8 *cdb = c->Request.CDB; 2585 const u8 *lun = c->Header.LUN.LunAddrBytes; 2586 2587 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x" 2588 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", 2589 txt, lun[0], lun[1], lun[2], lun[3], 2590 lun[4], lun[5], lun[6], lun[7], 2591 cdb[0], cdb[1], cdb[2], cdb[3], 2592 cdb[4], cdb[5], cdb[6], cdb[7], 2593 cdb[8], cdb[9], cdb[10], cdb[11], 2594 cdb[12], cdb[13], cdb[14], cdb[15]); 2595 } 2596 2597 static void hpsa_scsi_interpret_error(struct ctlr_info *h, 2598 struct CommandList *cp) 2599 { 2600 const struct ErrorInfo *ei = cp->err_info; 2601 struct device *d = &cp->h->pdev->dev; 2602 u8 sense_key, asc, ascq; 2603 int sense_len; 2604 2605 switch (ei->CommandStatus) { 2606 case CMD_TARGET_STATUS: 2607 if (ei->SenseLen > sizeof(ei->SenseInfo)) 2608 sense_len = sizeof(ei->SenseInfo); 2609 else 2610 sense_len = ei->SenseLen; 2611 decode_sense_data(ei->SenseInfo, sense_len, 2612 &sense_key, &asc, &ascq); 2613 hpsa_print_cmd(h, "SCSI status", cp); 2614 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) 2615 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n", 2616 sense_key, asc, ascq); 2617 else 2618 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus); 2619 if (ei->ScsiStatus == 0) 2620 dev_warn(d, "SCSI status is abnormally zero. " 2621 "(probably indicates selection timeout " 2622 "reported incorrectly due to a known " 2623 "firmware bug, circa July, 2001.)\n"); 2624 break; 2625 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 2626 break; 2627 case CMD_DATA_OVERRUN: 2628 hpsa_print_cmd(h, "overrun condition", cp); 2629 break; 2630 case CMD_INVALID: { 2631 /* controller unfortunately reports SCSI passthru's 2632 * to non-existent targets as invalid commands. 2633 */ 2634 hpsa_print_cmd(h, "invalid command", cp); 2635 dev_warn(d, "probably means device no longer present\n"); 2636 } 2637 break; 2638 case CMD_PROTOCOL_ERR: 2639 hpsa_print_cmd(h, "protocol error", cp); 2640 break; 2641 case CMD_HARDWARE_ERR: 2642 hpsa_print_cmd(h, "hardware error", cp); 2643 break; 2644 case CMD_CONNECTION_LOST: 2645 hpsa_print_cmd(h, "connection lost", cp); 2646 break; 2647 case CMD_ABORTED: 2648 hpsa_print_cmd(h, "aborted", cp); 2649 break; 2650 case CMD_ABORT_FAILED: 2651 hpsa_print_cmd(h, "abort failed", cp); 2652 break; 2653 case CMD_UNSOLICITED_ABORT: 2654 hpsa_print_cmd(h, "unsolicited abort", cp); 2655 break; 2656 case CMD_TIMEOUT: 2657 hpsa_print_cmd(h, "timed out", cp); 2658 break; 2659 case CMD_UNABORTABLE: 2660 hpsa_print_cmd(h, "unabortable", cp); 2661 break; 2662 case CMD_CTLR_LOCKUP: 2663 hpsa_print_cmd(h, "controller lockup detected", cp); 2664 break; 2665 default: 2666 hpsa_print_cmd(h, "unknown status", cp); 2667 dev_warn(d, "Unknown command status %x\n", 2668 ei->CommandStatus); 2669 } 2670 } 2671 2672 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 2673 u16 page, unsigned char *buf, 2674 unsigned char bufsize) 2675 { 2676 int rc = IO_OK; 2677 struct CommandList *c; 2678 struct ErrorInfo *ei; 2679 2680 c = cmd_alloc(h); 2681 2682 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, 2683 page, scsi3addr, TYPE_CMD)) { 2684 rc = -1; 2685 goto out; 2686 } 2687 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2688 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 2689 if (rc) 2690 goto out; 2691 ei = c->err_info; 2692 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2693 hpsa_scsi_interpret_error(h, c); 2694 rc = -1; 2695 } 2696 out: 2697 cmd_free(h, c); 2698 return rc; 2699 } 2700 2701 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, 2702 u8 reset_type, int reply_queue) 2703 { 2704 int rc = IO_OK; 2705 struct CommandList *c; 2706 struct ErrorInfo *ei; 2707 2708 c = cmd_alloc(h); 2709 2710 2711 /* fill_cmd can't fail here, no data buffer to map. */ 2712 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 2713 scsi3addr, TYPE_MSG); 2714 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */ 2715 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 2716 if (rc) { 2717 dev_warn(&h->pdev->dev, "Failed to send reset command\n"); 2718 goto out; 2719 } 2720 /* no unmap needed here because no data xfer. */ 2721 2722 ei = c->err_info; 2723 if (ei->CommandStatus != 0) { 2724 hpsa_scsi_interpret_error(h, c); 2725 rc = -1; 2726 } 2727 out: 2728 cmd_free(h, c); 2729 return rc; 2730 } 2731 2732 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c, 2733 struct hpsa_scsi_dev_t *dev, 2734 unsigned char *scsi3addr) 2735 { 2736 int i; 2737 bool match = false; 2738 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 2739 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 2740 2741 if (hpsa_is_cmd_idle(c)) 2742 return false; 2743 2744 switch (c->cmd_type) { 2745 case CMD_SCSI: 2746 case CMD_IOCTL_PEND: 2747 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes, 2748 sizeof(c->Header.LUN.LunAddrBytes)); 2749 break; 2750 2751 case CMD_IOACCEL1: 2752 case CMD_IOACCEL2: 2753 if (c->phys_disk == dev) { 2754 /* HBA mode match */ 2755 match = true; 2756 } else { 2757 /* Possible RAID mode -- check each phys dev. */ 2758 /* FIXME: Do we need to take out a lock here? If 2759 * so, we could just call hpsa_get_pdisk_of_ioaccel2() 2760 * instead. */ 2761 for (i = 0; i < dev->nphysical_disks && !match; i++) { 2762 /* FIXME: an alternate test might be 2763 * 2764 * match = dev->phys_disk[i]->ioaccel_handle 2765 * == c2->scsi_nexus; */ 2766 match = dev->phys_disk[i] == c->phys_disk; 2767 } 2768 } 2769 break; 2770 2771 case IOACCEL2_TMF: 2772 for (i = 0; i < dev->nphysical_disks && !match; i++) { 2773 match = dev->phys_disk[i]->ioaccel_handle == 2774 le32_to_cpu(ac->it_nexus); 2775 } 2776 break; 2777 2778 case 0: /* The command is in the middle of being initialized. */ 2779 match = false; 2780 break; 2781 2782 default: 2783 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n", 2784 c->cmd_type); 2785 BUG(); 2786 } 2787 2788 return match; 2789 } 2790 2791 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev, 2792 unsigned char *scsi3addr, u8 reset_type, int reply_queue) 2793 { 2794 int i; 2795 int rc = 0; 2796 2797 /* We can really only handle one reset at a time */ 2798 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) { 2799 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n"); 2800 return -EINTR; 2801 } 2802 2803 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0); 2804 2805 for (i = 0; i < h->nr_cmds; i++) { 2806 struct CommandList *c = h->cmd_pool + i; 2807 int refcount = atomic_inc_return(&c->refcount); 2808 2809 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) { 2810 unsigned long flags; 2811 2812 /* 2813 * Mark the target command as having a reset pending, 2814 * then lock a lock so that the command cannot complete 2815 * while we're considering it. If the command is not 2816 * idle then count it; otherwise revoke the event. 2817 */ 2818 c->reset_pending = dev; 2819 spin_lock_irqsave(&h->lock, flags); /* Implied MB */ 2820 if (!hpsa_is_cmd_idle(c)) 2821 atomic_inc(&dev->reset_cmds_out); 2822 else 2823 c->reset_pending = NULL; 2824 spin_unlock_irqrestore(&h->lock, flags); 2825 } 2826 2827 cmd_free(h, c); 2828 } 2829 2830 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue); 2831 if (!rc) 2832 wait_event(h->event_sync_wait_queue, 2833 atomic_read(&dev->reset_cmds_out) == 0 || 2834 lockup_detected(h)); 2835 2836 if (unlikely(lockup_detected(h))) { 2837 dev_warn(&h->pdev->dev, 2838 "Controller lockup detected during reset wait\n"); 2839 rc = -ENODEV; 2840 } 2841 2842 if (unlikely(rc)) 2843 atomic_set(&dev->reset_cmds_out, 0); 2844 2845 mutex_unlock(&h->reset_mutex); 2846 return rc; 2847 } 2848 2849 static void hpsa_get_raid_level(struct ctlr_info *h, 2850 unsigned char *scsi3addr, unsigned char *raid_level) 2851 { 2852 int rc; 2853 unsigned char *buf; 2854 2855 *raid_level = RAID_UNKNOWN; 2856 buf = kzalloc(64, GFP_KERNEL); 2857 if (!buf) 2858 return; 2859 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64); 2860 if (rc == 0) 2861 *raid_level = buf[8]; 2862 if (*raid_level > RAID_UNKNOWN) 2863 *raid_level = RAID_UNKNOWN; 2864 kfree(buf); 2865 return; 2866 } 2867 2868 #define HPSA_MAP_DEBUG 2869 #ifdef HPSA_MAP_DEBUG 2870 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, 2871 struct raid_map_data *map_buff) 2872 { 2873 struct raid_map_disk_data *dd = &map_buff->data[0]; 2874 int map, row, col; 2875 u16 map_cnt, row_cnt, disks_per_row; 2876 2877 if (rc != 0) 2878 return; 2879 2880 /* Show details only if debugging has been activated. */ 2881 if (h->raid_offload_debug < 2) 2882 return; 2883 2884 dev_info(&h->pdev->dev, "structure_size = %u\n", 2885 le32_to_cpu(map_buff->structure_size)); 2886 dev_info(&h->pdev->dev, "volume_blk_size = %u\n", 2887 le32_to_cpu(map_buff->volume_blk_size)); 2888 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", 2889 le64_to_cpu(map_buff->volume_blk_cnt)); 2890 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", 2891 map_buff->phys_blk_shift); 2892 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", 2893 map_buff->parity_rotation_shift); 2894 dev_info(&h->pdev->dev, "strip_size = %u\n", 2895 le16_to_cpu(map_buff->strip_size)); 2896 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", 2897 le64_to_cpu(map_buff->disk_starting_blk)); 2898 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", 2899 le64_to_cpu(map_buff->disk_blk_cnt)); 2900 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", 2901 le16_to_cpu(map_buff->data_disks_per_row)); 2902 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", 2903 le16_to_cpu(map_buff->metadata_disks_per_row)); 2904 dev_info(&h->pdev->dev, "row_cnt = %u\n", 2905 le16_to_cpu(map_buff->row_cnt)); 2906 dev_info(&h->pdev->dev, "layout_map_count = %u\n", 2907 le16_to_cpu(map_buff->layout_map_count)); 2908 dev_info(&h->pdev->dev, "flags = 0x%x\n", 2909 le16_to_cpu(map_buff->flags)); 2910 dev_info(&h->pdev->dev, "encrypytion = %s\n", 2911 le16_to_cpu(map_buff->flags) & 2912 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF"); 2913 dev_info(&h->pdev->dev, "dekindex = %u\n", 2914 le16_to_cpu(map_buff->dekindex)); 2915 map_cnt = le16_to_cpu(map_buff->layout_map_count); 2916 for (map = 0; map < map_cnt; map++) { 2917 dev_info(&h->pdev->dev, "Map%u:\n", map); 2918 row_cnt = le16_to_cpu(map_buff->row_cnt); 2919 for (row = 0; row < row_cnt; row++) { 2920 dev_info(&h->pdev->dev, " Row%u:\n", row); 2921 disks_per_row = 2922 le16_to_cpu(map_buff->data_disks_per_row); 2923 for (col = 0; col < disks_per_row; col++, dd++) 2924 dev_info(&h->pdev->dev, 2925 " D%02u: h=0x%04x xor=%u,%u\n", 2926 col, dd->ioaccel_handle, 2927 dd->xor_mult[0], dd->xor_mult[1]); 2928 disks_per_row = 2929 le16_to_cpu(map_buff->metadata_disks_per_row); 2930 for (col = 0; col < disks_per_row; col++, dd++) 2931 dev_info(&h->pdev->dev, 2932 " M%02u: h=0x%04x xor=%u,%u\n", 2933 col, dd->ioaccel_handle, 2934 dd->xor_mult[0], dd->xor_mult[1]); 2935 } 2936 } 2937 } 2938 #else 2939 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, 2940 __attribute__((unused)) int rc, 2941 __attribute__((unused)) struct raid_map_data *map_buff) 2942 { 2943 } 2944 #endif 2945 2946 static int hpsa_get_raid_map(struct ctlr_info *h, 2947 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 2948 { 2949 int rc = 0; 2950 struct CommandList *c; 2951 struct ErrorInfo *ei; 2952 2953 c = cmd_alloc(h); 2954 2955 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, 2956 sizeof(this_device->raid_map), 0, 2957 scsi3addr, TYPE_CMD)) { 2958 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n"); 2959 cmd_free(h, c); 2960 return -1; 2961 } 2962 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 2963 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 2964 if (rc) 2965 goto out; 2966 ei = c->err_info; 2967 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 2968 hpsa_scsi_interpret_error(h, c); 2969 rc = -1; 2970 goto out; 2971 } 2972 cmd_free(h, c); 2973 2974 /* @todo in the future, dynamically allocate RAID map memory */ 2975 if (le32_to_cpu(this_device->raid_map.structure_size) > 2976 sizeof(this_device->raid_map)) { 2977 dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); 2978 rc = -1; 2979 } 2980 hpsa_debug_map_buff(h, rc, &this_device->raid_map); 2981 return rc; 2982 out: 2983 cmd_free(h, c); 2984 return rc; 2985 } 2986 2987 static int hpsa_bmic_id_physical_device(struct ctlr_info *h, 2988 unsigned char scsi3addr[], u16 bmic_device_index, 2989 struct bmic_identify_physical_device *buf, size_t bufsize) 2990 { 2991 int rc = IO_OK; 2992 struct CommandList *c; 2993 struct ErrorInfo *ei; 2994 2995 c = cmd_alloc(h); 2996 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize, 2997 0, RAID_CTLR_LUNID, TYPE_CMD); 2998 if (rc) 2999 goto out; 3000 3001 c->Request.CDB[2] = bmic_device_index & 0xff; 3002 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff; 3003 3004 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE, 3005 NO_TIMEOUT); 3006 ei = c->err_info; 3007 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 3008 hpsa_scsi_interpret_error(h, c); 3009 rc = -1; 3010 } 3011 out: 3012 cmd_free(h, c); 3013 return rc; 3014 } 3015 3016 static int hpsa_vpd_page_supported(struct ctlr_info *h, 3017 unsigned char scsi3addr[], u8 page) 3018 { 3019 int rc; 3020 int i; 3021 int pages; 3022 unsigned char *buf, bufsize; 3023 3024 buf = kzalloc(256, GFP_KERNEL); 3025 if (!buf) 3026 return 0; 3027 3028 /* Get the size of the page list first */ 3029 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3030 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3031 buf, HPSA_VPD_HEADER_SZ); 3032 if (rc != 0) 3033 goto exit_unsupported; 3034 pages = buf[3]; 3035 if ((pages + HPSA_VPD_HEADER_SZ) <= 255) 3036 bufsize = pages + HPSA_VPD_HEADER_SZ; 3037 else 3038 bufsize = 255; 3039 3040 /* Get the whole VPD page list */ 3041 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3042 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, 3043 buf, bufsize); 3044 if (rc != 0) 3045 goto exit_unsupported; 3046 3047 pages = buf[3]; 3048 for (i = 1; i <= pages; i++) 3049 if (buf[3 + i] == page) 3050 goto exit_supported; 3051 exit_unsupported: 3052 kfree(buf); 3053 return 0; 3054 exit_supported: 3055 kfree(buf); 3056 return 1; 3057 } 3058 3059 static void hpsa_get_ioaccel_status(struct ctlr_info *h, 3060 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) 3061 { 3062 int rc; 3063 unsigned char *buf; 3064 u8 ioaccel_status; 3065 3066 this_device->offload_config = 0; 3067 this_device->offload_enabled = 0; 3068 this_device->offload_to_be_enabled = 0; 3069 3070 buf = kzalloc(64, GFP_KERNEL); 3071 if (!buf) 3072 return; 3073 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) 3074 goto out; 3075 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 3076 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); 3077 if (rc != 0) 3078 goto out; 3079 3080 #define IOACCEL_STATUS_BYTE 4 3081 #define OFFLOAD_CONFIGURED_BIT 0x01 3082 #define OFFLOAD_ENABLED_BIT 0x02 3083 ioaccel_status = buf[IOACCEL_STATUS_BYTE]; 3084 this_device->offload_config = 3085 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); 3086 if (this_device->offload_config) { 3087 this_device->offload_enabled = 3088 !!(ioaccel_status & OFFLOAD_ENABLED_BIT); 3089 if (hpsa_get_raid_map(h, scsi3addr, this_device)) 3090 this_device->offload_enabled = 0; 3091 } 3092 this_device->offload_to_be_enabled = this_device->offload_enabled; 3093 out: 3094 kfree(buf); 3095 return; 3096 } 3097 3098 /* Get the device id from inquiry page 0x83 */ 3099 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 3100 unsigned char *device_id, int buflen) 3101 { 3102 int rc; 3103 unsigned char *buf; 3104 3105 if (buflen > 16) 3106 buflen = 16; 3107 buf = kzalloc(64, GFP_KERNEL); 3108 if (!buf) 3109 return -ENOMEM; 3110 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64); 3111 if (rc == 0) 3112 memcpy(device_id, &buf[8], buflen); 3113 kfree(buf); 3114 return rc != 0; 3115 } 3116 3117 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 3118 void *buf, int bufsize, 3119 int extended_response) 3120 { 3121 int rc = IO_OK; 3122 struct CommandList *c; 3123 unsigned char scsi3addr[8]; 3124 struct ErrorInfo *ei; 3125 3126 c = cmd_alloc(h); 3127 3128 /* address the controller */ 3129 memset(scsi3addr, 0, sizeof(scsi3addr)); 3130 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 3131 buf, bufsize, 0, scsi3addr, TYPE_CMD)) { 3132 rc = -1; 3133 goto out; 3134 } 3135 if (extended_response) 3136 c->Request.CDB[1] = extended_response; 3137 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 3138 PCI_DMA_FROMDEVICE, NO_TIMEOUT); 3139 if (rc) 3140 goto out; 3141 ei = c->err_info; 3142 if (ei->CommandStatus != 0 && 3143 ei->CommandStatus != CMD_DATA_UNDERRUN) { 3144 hpsa_scsi_interpret_error(h, c); 3145 rc = -1; 3146 } else { 3147 struct ReportLUNdata *rld = buf; 3148 3149 if (rld->extended_response_flag != extended_response) { 3150 dev_err(&h->pdev->dev, 3151 "report luns requested format %u, got %u\n", 3152 extended_response, 3153 rld->extended_response_flag); 3154 rc = -1; 3155 } 3156 } 3157 out: 3158 cmd_free(h, c); 3159 return rc; 3160 } 3161 3162 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 3163 struct ReportExtendedLUNdata *buf, int bufsize) 3164 { 3165 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, 3166 HPSA_REPORT_PHYS_EXTENDED); 3167 } 3168 3169 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 3170 struct ReportLUNdata *buf, int bufsize) 3171 { 3172 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 3173 } 3174 3175 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 3176 int bus, int target, int lun) 3177 { 3178 device->bus = bus; 3179 device->target = target; 3180 device->lun = lun; 3181 } 3182 3183 /* Use VPD inquiry to get details of volume status */ 3184 static int hpsa_get_volume_status(struct ctlr_info *h, 3185 unsigned char scsi3addr[]) 3186 { 3187 int rc; 3188 int status; 3189 int size; 3190 unsigned char *buf; 3191 3192 buf = kzalloc(64, GFP_KERNEL); 3193 if (!buf) 3194 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3195 3196 /* Does controller have VPD for logical volume status? */ 3197 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) 3198 goto exit_failed; 3199 3200 /* Get the size of the VPD return buffer */ 3201 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3202 buf, HPSA_VPD_HEADER_SZ); 3203 if (rc != 0) 3204 goto exit_failed; 3205 size = buf[3]; 3206 3207 /* Now get the whole VPD buffer */ 3208 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, 3209 buf, size + HPSA_VPD_HEADER_SZ); 3210 if (rc != 0) 3211 goto exit_failed; 3212 status = buf[4]; /* status byte */ 3213 3214 kfree(buf); 3215 return status; 3216 exit_failed: 3217 kfree(buf); 3218 return HPSA_VPD_LV_STATUS_UNSUPPORTED; 3219 } 3220 3221 /* Determine offline status of a volume. 3222 * Return either: 3223 * 0 (not offline) 3224 * 0xff (offline for unknown reasons) 3225 * # (integer code indicating one of several NOT READY states 3226 * describing why a volume is to be kept offline) 3227 */ 3228 static int hpsa_volume_offline(struct ctlr_info *h, 3229 unsigned char scsi3addr[]) 3230 { 3231 struct CommandList *c; 3232 unsigned char *sense; 3233 u8 sense_key, asc, ascq; 3234 int sense_len; 3235 int rc, ldstat = 0; 3236 u16 cmd_status; 3237 u8 scsi_status; 3238 #define ASC_LUN_NOT_READY 0x04 3239 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 3240 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 3241 3242 c = cmd_alloc(h); 3243 3244 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); 3245 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); 3246 if (rc) { 3247 cmd_free(h, c); 3248 return 0; 3249 } 3250 sense = c->err_info->SenseInfo; 3251 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo)) 3252 sense_len = sizeof(c->err_info->SenseInfo); 3253 else 3254 sense_len = c->err_info->SenseLen; 3255 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq); 3256 cmd_status = c->err_info->CommandStatus; 3257 scsi_status = c->err_info->ScsiStatus; 3258 cmd_free(h, c); 3259 /* Is the volume 'not ready'? */ 3260 if (cmd_status != CMD_TARGET_STATUS || 3261 scsi_status != SAM_STAT_CHECK_CONDITION || 3262 sense_key != NOT_READY || 3263 asc != ASC_LUN_NOT_READY) { 3264 return 0; 3265 } 3266 3267 /* Determine the reason for not ready state */ 3268 ldstat = hpsa_get_volume_status(h, scsi3addr); 3269 3270 /* Keep volume offline in certain cases: */ 3271 switch (ldstat) { 3272 case HPSA_LV_UNDERGOING_ERASE: 3273 case HPSA_LV_NOT_AVAILABLE: 3274 case HPSA_LV_UNDERGOING_RPI: 3275 case HPSA_LV_PENDING_RPI: 3276 case HPSA_LV_ENCRYPTED_NO_KEY: 3277 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: 3278 case HPSA_LV_UNDERGOING_ENCRYPTION: 3279 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: 3280 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: 3281 return ldstat; 3282 case HPSA_VPD_LV_STATUS_UNSUPPORTED: 3283 /* If VPD status page isn't available, 3284 * use ASC/ASCQ to determine state 3285 */ 3286 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || 3287 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) 3288 return ldstat; 3289 break; 3290 default: 3291 break; 3292 } 3293 return 0; 3294 } 3295 3296 /* 3297 * Find out if a logical device supports aborts by simply trying one. 3298 * Smart Array may claim not to support aborts on logical drives, but 3299 * if a MSA2000 * is connected, the drives on that will be presented 3300 * by the Smart Array as logical drives, and aborts may be sent to 3301 * those devices successfully. So the simplest way to find out is 3302 * to simply try an abort and see how the device responds. 3303 */ 3304 static int hpsa_device_supports_aborts(struct ctlr_info *h, 3305 unsigned char *scsi3addr) 3306 { 3307 struct CommandList *c; 3308 struct ErrorInfo *ei; 3309 int rc = 0; 3310 3311 u64 tag = (u64) -1; /* bogus tag */ 3312 3313 /* Assume that physical devices support aborts */ 3314 if (!is_logical_dev_addr_mode(scsi3addr)) 3315 return 1; 3316 3317 c = cmd_alloc(h); 3318 3319 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG); 3320 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); 3321 /* no unmap needed here because no data xfer. */ 3322 ei = c->err_info; 3323 switch (ei->CommandStatus) { 3324 case CMD_INVALID: 3325 rc = 0; 3326 break; 3327 case CMD_UNABORTABLE: 3328 case CMD_ABORT_FAILED: 3329 rc = 1; 3330 break; 3331 case CMD_TMF_STATUS: 3332 rc = hpsa_evaluate_tmf_status(h, c); 3333 break; 3334 default: 3335 rc = 0; 3336 break; 3337 } 3338 cmd_free(h, c); 3339 return rc; 3340 } 3341 3342 static int hpsa_update_device_info(struct ctlr_info *h, 3343 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 3344 unsigned char *is_OBDR_device) 3345 { 3346 3347 #define OBDR_SIG_OFFSET 43 3348 #define OBDR_TAPE_SIG "$DR-10" 3349 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 3350 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 3351 3352 unsigned char *inq_buff; 3353 unsigned char *obdr_sig; 3354 3355 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 3356 if (!inq_buff) 3357 goto bail_out; 3358 3359 /* Do an inquiry to the device to see what it is. */ 3360 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 3361 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 3362 /* Inquiry failed (msg printed already) */ 3363 dev_err(&h->pdev->dev, 3364 "hpsa_update_device_info: inquiry failed\n"); 3365 goto bail_out; 3366 } 3367 3368 this_device->devtype = (inq_buff[0] & 0x1f); 3369 memcpy(this_device->scsi3addr, scsi3addr, 8); 3370 memcpy(this_device->vendor, &inq_buff[8], 3371 sizeof(this_device->vendor)); 3372 memcpy(this_device->model, &inq_buff[16], 3373 sizeof(this_device->model)); 3374 memset(this_device->device_id, 0, 3375 sizeof(this_device->device_id)); 3376 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 3377 sizeof(this_device->device_id)); 3378 3379 if (this_device->devtype == TYPE_DISK && 3380 is_logical_dev_addr_mode(scsi3addr)) { 3381 int volume_offline; 3382 3383 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 3384 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) 3385 hpsa_get_ioaccel_status(h, scsi3addr, this_device); 3386 volume_offline = hpsa_volume_offline(h, scsi3addr); 3387 if (volume_offline < 0 || volume_offline > 0xff) 3388 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED; 3389 this_device->volume_offline = volume_offline & 0xff; 3390 } else { 3391 this_device->raid_level = RAID_UNKNOWN; 3392 this_device->offload_config = 0; 3393 this_device->offload_enabled = 0; 3394 this_device->offload_to_be_enabled = 0; 3395 this_device->hba_ioaccel_enabled = 0; 3396 this_device->volume_offline = 0; 3397 this_device->queue_depth = h->nr_cmds; 3398 } 3399 3400 if (is_OBDR_device) { 3401 /* See if this is a One-Button-Disaster-Recovery device 3402 * by looking for "$DR-10" at offset 43 in inquiry data. 3403 */ 3404 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 3405 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 3406 strncmp(obdr_sig, OBDR_TAPE_SIG, 3407 OBDR_SIG_LEN) == 0); 3408 } 3409 kfree(inq_buff); 3410 return 0; 3411 3412 bail_out: 3413 kfree(inq_buff); 3414 return 1; 3415 } 3416 3417 static void hpsa_update_device_supports_aborts(struct ctlr_info *h, 3418 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr) 3419 { 3420 unsigned long flags; 3421 int rc, entry; 3422 /* 3423 * See if this device supports aborts. If we already know 3424 * the device, we already know if it supports aborts, otherwise 3425 * we have to find out if it supports aborts by trying one. 3426 */ 3427 spin_lock_irqsave(&h->devlock, flags); 3428 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry); 3429 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) && 3430 entry >= 0 && entry < h->ndevices) { 3431 dev->supports_aborts = h->dev[entry]->supports_aborts; 3432 spin_unlock_irqrestore(&h->devlock, flags); 3433 } else { 3434 spin_unlock_irqrestore(&h->devlock, flags); 3435 dev->supports_aborts = 3436 hpsa_device_supports_aborts(h, scsi3addr); 3437 if (dev->supports_aborts < 0) 3438 dev->supports_aborts = 0; 3439 } 3440 } 3441 3442 static unsigned char *ext_target_model[] = { 3443 "MSA2012", 3444 "MSA2024", 3445 "MSA2312", 3446 "MSA2324", 3447 "P2000 G3 SAS", 3448 "MSA 2040 SAS", 3449 NULL, 3450 }; 3451 3452 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 3453 { 3454 int i; 3455 3456 for (i = 0; ext_target_model[i]; i++) 3457 if (strncmp(device->model, ext_target_model[i], 3458 strlen(ext_target_model[i])) == 0) 3459 return 1; 3460 return 0; 3461 } 3462 3463 /* Helper function to assign bus, target, lun mapping of devices. 3464 * Puts non-external target logical volumes on bus 0, external target logical 3465 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 3466 * Logical drive target and lun are assigned at this time, but 3467 * physical device lun and target assignment are deferred (assigned 3468 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 3469 */ 3470 static void figure_bus_target_lun(struct ctlr_info *h, 3471 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 3472 { 3473 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 3474 3475 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 3476 /* physical device, target and lun filled in later */ 3477 if (is_hba_lunid(lunaddrbytes)) 3478 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); 3479 else 3480 /* defer target, lun assignment for physical devices */ 3481 hpsa_set_bus_target_lun(device, 2, -1, -1); 3482 return; 3483 } 3484 /* It's a logical device */ 3485 if (is_ext_target(h, device)) { 3486 /* external target way, put logicals on bus 1 3487 * and match target/lun numbers box 3488 * reports, other smart array, bus 0, target 0, match lunid 3489 */ 3490 hpsa_set_bus_target_lun(device, 3491 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); 3492 return; 3493 } 3494 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); 3495 } 3496 3497 /* 3498 * If there is no lun 0 on a target, linux won't find any devices. 3499 * For the external targets (arrays), we have to manually detect the enclosure 3500 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 3501 * it for some reason. *tmpdevice is the target we're adding, 3502 * this_device is a pointer into the current element of currentsd[] 3503 * that we're building up in update_scsi_devices(), below. 3504 * lunzerobits is a bitmap that tracks which targets already have a 3505 * lun 0 assigned. 3506 * Returns 1 if an enclosure was added, 0 if not. 3507 */ 3508 static int add_ext_target_dev(struct ctlr_info *h, 3509 struct hpsa_scsi_dev_t *tmpdevice, 3510 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 3511 unsigned long lunzerobits[], int *n_ext_target_devs) 3512 { 3513 unsigned char scsi3addr[8]; 3514 3515 if (test_bit(tmpdevice->target, lunzerobits)) 3516 return 0; /* There is already a lun 0 on this target. */ 3517 3518 if (!is_logical_dev_addr_mode(lunaddrbytes)) 3519 return 0; /* It's the logical targets that may lack lun 0. */ 3520 3521 if (!is_ext_target(h, tmpdevice)) 3522 return 0; /* Only external target devices have this problem. */ 3523 3524 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ 3525 return 0; 3526 3527 memset(scsi3addr, 0, 8); 3528 scsi3addr[3] = tmpdevice->target; 3529 if (is_hba_lunid(scsi3addr)) 3530 return 0; /* Don't add the RAID controller here. */ 3531 3532 if (is_scsi_rev_5(h)) 3533 return 0; /* p1210m doesn't need to do this. */ 3534 3535 if (*n_ext_target_devs >= MAX_EXT_TARGETS) { 3536 dev_warn(&h->pdev->dev, "Maximum number of external " 3537 "target devices exceeded. Check your hardware " 3538 "configuration."); 3539 return 0; 3540 } 3541 3542 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) 3543 return 0; 3544 (*n_ext_target_devs)++; 3545 hpsa_set_bus_target_lun(this_device, 3546 tmpdevice->bus, tmpdevice->target, 0); 3547 hpsa_update_device_supports_aborts(h, this_device, scsi3addr); 3548 set_bit(tmpdevice->target, lunzerobits); 3549 return 1; 3550 } 3551 3552 /* 3553 * Get address of physical disk used for an ioaccel2 mode command: 3554 * 1. Extract ioaccel2 handle from the command. 3555 * 2. Find a matching ioaccel2 handle from list of physical disks. 3556 * 3. Return: 3557 * 1 and set scsi3addr to address of matching physical 3558 * 0 if no matching physical disk was found. 3559 */ 3560 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, 3561 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) 3562 { 3563 struct io_accel2_cmd *c2 = 3564 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; 3565 unsigned long flags; 3566 int i; 3567 3568 spin_lock_irqsave(&h->devlock, flags); 3569 for (i = 0; i < h->ndevices; i++) 3570 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) { 3571 memcpy(scsi3addr, h->dev[i]->scsi3addr, 3572 sizeof(h->dev[i]->scsi3addr)); 3573 spin_unlock_irqrestore(&h->devlock, flags); 3574 return 1; 3575 } 3576 spin_unlock_irqrestore(&h->devlock, flags); 3577 return 0; 3578 } 3579 3580 /* 3581 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 3582 * logdev. The number of luns in physdev and logdev are returned in 3583 * *nphysicals and *nlogicals, respectively. 3584 * Returns 0 on success, -1 otherwise. 3585 */ 3586 static int hpsa_gather_lun_info(struct ctlr_info *h, 3587 struct ReportExtendedLUNdata *physdev, u32 *nphysicals, 3588 struct ReportLUNdata *logdev, u32 *nlogicals) 3589 { 3590 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) { 3591 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 3592 return -1; 3593 } 3594 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24; 3595 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 3596 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n", 3597 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN); 3598 *nphysicals = HPSA_MAX_PHYS_LUN; 3599 } 3600 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) { 3601 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 3602 return -1; 3603 } 3604 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 3605 /* Reject Logicals in excess of our max capability. */ 3606 if (*nlogicals > HPSA_MAX_LUN) { 3607 dev_warn(&h->pdev->dev, 3608 "maximum logical LUNs (%d) exceeded. " 3609 "%d LUNs ignored.\n", HPSA_MAX_LUN, 3610 *nlogicals - HPSA_MAX_LUN); 3611 *nlogicals = HPSA_MAX_LUN; 3612 } 3613 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 3614 dev_warn(&h->pdev->dev, 3615 "maximum logical + physical LUNs (%d) exceeded. " 3616 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 3617 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 3618 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 3619 } 3620 return 0; 3621 } 3622 3623 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, 3624 int i, int nphysicals, int nlogicals, 3625 struct ReportExtendedLUNdata *physdev_list, 3626 struct ReportLUNdata *logdev_list) 3627 { 3628 /* Helper function, figure out where the LUN ID info is coming from 3629 * given index i, lists of physical and logical devices, where in 3630 * the list the raid controller is supposed to appear (first or last) 3631 */ 3632 3633 int logicals_start = nphysicals + (raid_ctlr_position == 0); 3634 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 3635 3636 if (i == raid_ctlr_position) 3637 return RAID_CTLR_LUNID; 3638 3639 if (i < logicals_start) 3640 return &physdev_list->LUN[i - 3641 (raid_ctlr_position == 0)].lunid[0]; 3642 3643 if (i < last_device) 3644 return &logdev_list->LUN[i - nphysicals - 3645 (raid_ctlr_position == 0)][0]; 3646 BUG(); 3647 return NULL; 3648 } 3649 3650 /* get physical drive ioaccel handle and queue depth */ 3651 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h, 3652 struct hpsa_scsi_dev_t *dev, 3653 u8 *lunaddrbytes, 3654 struct bmic_identify_physical_device *id_phys) 3655 { 3656 int rc; 3657 struct ext_report_lun_entry *rle = 3658 (struct ext_report_lun_entry *) lunaddrbytes; 3659 3660 dev->ioaccel_handle = rle->ioaccel_handle; 3661 if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle) 3662 dev->hba_ioaccel_enabled = 1; 3663 memset(id_phys, 0, sizeof(*id_phys)); 3664 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes, 3665 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys, 3666 sizeof(*id_phys)); 3667 if (!rc) 3668 /* Reserve space for FW operations */ 3669 #define DRIVE_CMDS_RESERVED_FOR_FW 2 3670 #define DRIVE_QUEUE_DEPTH 7 3671 dev->queue_depth = 3672 le16_to_cpu(id_phys->current_queue_depth_limit) - 3673 DRIVE_CMDS_RESERVED_FOR_FW; 3674 else 3675 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */ 3676 atomic_set(&dev->ioaccel_cmds_out, 0); 3677 atomic_set(&dev->reset_cmds_out, 0); 3678 } 3679 3680 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device, 3681 u8 *lunaddrbytes, 3682 struct bmic_identify_physical_device *id_phys) 3683 { 3684 if (PHYS_IOACCEL(lunaddrbytes) 3685 && this_device->ioaccel_handle) 3686 this_device->hba_ioaccel_enabled = 1; 3687 3688 memcpy(&this_device->active_path_index, 3689 &id_phys->active_path_number, 3690 sizeof(this_device->active_path_index)); 3691 memcpy(&this_device->path_map, 3692 &id_phys->redundant_path_present_map, 3693 sizeof(this_device->path_map)); 3694 memcpy(&this_device->box, 3695 &id_phys->alternate_paths_phys_box_on_port, 3696 sizeof(this_device->box)); 3697 memcpy(&this_device->phys_connector, 3698 &id_phys->alternate_paths_phys_connector, 3699 sizeof(this_device->phys_connector)); 3700 memcpy(&this_device->bay, 3701 &id_phys->phys_bay_in_box, 3702 sizeof(this_device->bay)); 3703 } 3704 3705 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 3706 { 3707 /* the idea here is we could get notified 3708 * that some devices have changed, so we do a report 3709 * physical luns and report logical luns cmd, and adjust 3710 * our list of devices accordingly. 3711 * 3712 * The scsi3addr's of devices won't change so long as the 3713 * adapter is not reset. That means we can rescan and 3714 * tell which devices we already know about, vs. new 3715 * devices, vs. disappearing devices. 3716 */ 3717 struct ReportExtendedLUNdata *physdev_list = NULL; 3718 struct ReportLUNdata *logdev_list = NULL; 3719 struct bmic_identify_physical_device *id_phys = NULL; 3720 u32 nphysicals = 0; 3721 u32 nlogicals = 0; 3722 u32 ndev_allocated = 0; 3723 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 3724 int ncurrent = 0; 3725 int i, n_ext_target_devs, ndevs_to_allocate; 3726 int raid_ctlr_position; 3727 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 3728 3729 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); 3730 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); 3731 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); 3732 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 3733 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL); 3734 3735 if (!currentsd || !physdev_list || !logdev_list || 3736 !tmpdevice || !id_phys) { 3737 dev_err(&h->pdev->dev, "out of memory\n"); 3738 goto out; 3739 } 3740 memset(lunzerobits, 0, sizeof(lunzerobits)); 3741 3742 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals, 3743 logdev_list, &nlogicals)) 3744 goto out; 3745 3746 /* We might see up to the maximum number of logical and physical disks 3747 * plus external target devices, and a device for the local RAID 3748 * controller. 3749 */ 3750 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 3751 3752 /* Allocate the per device structures */ 3753 for (i = 0; i < ndevs_to_allocate; i++) { 3754 if (i >= HPSA_MAX_DEVICES) { 3755 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 3756 " %d devices ignored.\n", HPSA_MAX_DEVICES, 3757 ndevs_to_allocate - HPSA_MAX_DEVICES); 3758 break; 3759 } 3760 3761 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 3762 if (!currentsd[i]) { 3763 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 3764 __FILE__, __LINE__); 3765 goto out; 3766 } 3767 ndev_allocated++; 3768 } 3769 3770 if (is_scsi_rev_5(h)) 3771 raid_ctlr_position = 0; 3772 else 3773 raid_ctlr_position = nphysicals + nlogicals; 3774 3775 /* adjust our table of devices */ 3776 n_ext_target_devs = 0; 3777 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 3778 u8 *lunaddrbytes, is_OBDR = 0; 3779 3780 /* Figure out where the LUN ID info is coming from */ 3781 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 3782 i, nphysicals, nlogicals, physdev_list, logdev_list); 3783 3784 /* skip masked non-disk devices */ 3785 if (MASKED_DEVICE(lunaddrbytes)) 3786 if (i < nphysicals + (raid_ctlr_position == 0) && 3787 NON_DISK_PHYS_DEV(lunaddrbytes)) 3788 continue; 3789 3790 /* Get device type, vendor, model, device id */ 3791 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 3792 &is_OBDR)) 3793 continue; /* skip it if we can't talk to it. */ 3794 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 3795 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes); 3796 this_device = currentsd[ncurrent]; 3797 3798 /* 3799 * For external target devices, we have to insert a LUN 0 which 3800 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 3801 * is nonetheless an enclosure device there. We have to 3802 * present that otherwise linux won't find anything if 3803 * there is no lun 0. 3804 */ 3805 if (add_ext_target_dev(h, tmpdevice, this_device, 3806 lunaddrbytes, lunzerobits, 3807 &n_ext_target_devs)) { 3808 ncurrent++; 3809 this_device = currentsd[ncurrent]; 3810 } 3811 3812 *this_device = *tmpdevice; 3813 3814 /* do not expose masked devices */ 3815 if (MASKED_DEVICE(lunaddrbytes) && 3816 i < nphysicals + (raid_ctlr_position == 0)) { 3817 this_device->expose_state = HPSA_DO_NOT_EXPOSE; 3818 } else { 3819 this_device->expose_state = 3820 HPSA_SG_ATTACH | HPSA_ULD_ATTACH; 3821 } 3822 3823 switch (this_device->devtype) { 3824 case TYPE_ROM: 3825 /* We don't *really* support actual CD-ROM devices, 3826 * just "One Button Disaster Recovery" tape drive 3827 * which temporarily pretends to be a CD-ROM drive. 3828 * So we check that the device is really an OBDR tape 3829 * device by checking for "$DR-10" in bytes 43-48 of 3830 * the inquiry data. 3831 */ 3832 if (is_OBDR) 3833 ncurrent++; 3834 break; 3835 case TYPE_DISK: 3836 if (i < nphysicals + (raid_ctlr_position == 0)) { 3837 /* The disk is in HBA mode. */ 3838 /* Never use RAID mapper in HBA mode. */ 3839 this_device->offload_enabled = 0; 3840 hpsa_get_ioaccel_drive_info(h, this_device, 3841 lunaddrbytes, id_phys); 3842 hpsa_get_path_info(this_device, lunaddrbytes, 3843 id_phys); 3844 } 3845 ncurrent++; 3846 break; 3847 case TYPE_TAPE: 3848 case TYPE_MEDIUM_CHANGER: 3849 case TYPE_ENCLOSURE: 3850 ncurrent++; 3851 break; 3852 case TYPE_RAID: 3853 /* Only present the Smartarray HBA as a RAID controller. 3854 * If it's a RAID controller other than the HBA itself 3855 * (an external RAID controller, MSA500 or similar) 3856 * don't present it. 3857 */ 3858 if (!is_hba_lunid(lunaddrbytes)) 3859 break; 3860 ncurrent++; 3861 break; 3862 default: 3863 break; 3864 } 3865 if (ncurrent >= HPSA_MAX_DEVICES) 3866 break; 3867 } 3868 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 3869 out: 3870 kfree(tmpdevice); 3871 for (i = 0; i < ndev_allocated; i++) 3872 kfree(currentsd[i]); 3873 kfree(currentsd); 3874 kfree(physdev_list); 3875 kfree(logdev_list); 3876 kfree(id_phys); 3877 } 3878 3879 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc, 3880 struct scatterlist *sg) 3881 { 3882 u64 addr64 = (u64) sg_dma_address(sg); 3883 unsigned int len = sg_dma_len(sg); 3884 3885 desc->Addr = cpu_to_le64(addr64); 3886 desc->Len = cpu_to_le32(len); 3887 desc->Ext = 0; 3888 } 3889 3890 /* 3891 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 3892 * dma mapping and fills in the scatter gather entries of the 3893 * hpsa command, cp. 3894 */ 3895 static int hpsa_scatter_gather(struct ctlr_info *h, 3896 struct CommandList *cp, 3897 struct scsi_cmnd *cmd) 3898 { 3899 struct scatterlist *sg; 3900 int use_sg, i, sg_limit, chained, last_sg; 3901 struct SGDescriptor *curr_sg; 3902 3903 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 3904 3905 use_sg = scsi_dma_map(cmd); 3906 if (use_sg < 0) 3907 return use_sg; 3908 3909 if (!use_sg) 3910 goto sglist_finished; 3911 3912 /* 3913 * If the number of entries is greater than the max for a single list, 3914 * then we have a chained list; we will set up all but one entry in the 3915 * first list (the last entry is saved for link information); 3916 * otherwise, we don't have a chained list and we'll set up at each of 3917 * the entries in the one list. 3918 */ 3919 curr_sg = cp->SG; 3920 chained = use_sg > h->max_cmd_sg_entries; 3921 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg; 3922 last_sg = scsi_sg_count(cmd) - 1; 3923 scsi_for_each_sg(cmd, sg, sg_limit, i) { 3924 hpsa_set_sg_descriptor(curr_sg, sg); 3925 curr_sg++; 3926 } 3927 3928 if (chained) { 3929 /* 3930 * Continue with the chained list. Set curr_sg to the chained 3931 * list. Modify the limit to the total count less the entries 3932 * we've already set up. Resume the scan at the list entry 3933 * where the previous loop left off. 3934 */ 3935 curr_sg = h->cmd_sg_list[cp->cmdindex]; 3936 sg_limit = use_sg - sg_limit; 3937 for_each_sg(sg, sg, sg_limit, i) { 3938 hpsa_set_sg_descriptor(curr_sg, sg); 3939 curr_sg++; 3940 } 3941 } 3942 3943 /* Back the pointer up to the last entry and mark it as "last". */ 3944 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST); 3945 3946 if (use_sg + chained > h->maxSG) 3947 h->maxSG = use_sg + chained; 3948 3949 if (chained) { 3950 cp->Header.SGList = h->max_cmd_sg_entries; 3951 cp->Header.SGTotal = cpu_to_le16(use_sg + 1); 3952 if (hpsa_map_sg_chain_block(h, cp)) { 3953 scsi_dma_unmap(cmd); 3954 return -1; 3955 } 3956 return 0; 3957 } 3958 3959 sglist_finished: 3960 3961 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 3962 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */ 3963 return 0; 3964 } 3965 3966 #define IO_ACCEL_INELIGIBLE (1) 3967 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) 3968 { 3969 int is_write = 0; 3970 u32 block; 3971 u32 block_cnt; 3972 3973 /* Perform some CDB fixups if needed using 10 byte reads/writes only */ 3974 switch (cdb[0]) { 3975 case WRITE_6: 3976 case WRITE_12: 3977 is_write = 1; 3978 case READ_6: 3979 case READ_12: 3980 if (*cdb_len == 6) { 3981 block = (((u32) cdb[2]) << 8) | cdb[3]; 3982 block_cnt = cdb[4]; 3983 } else { 3984 BUG_ON(*cdb_len != 12); 3985 block = (((u32) cdb[2]) << 24) | 3986 (((u32) cdb[3]) << 16) | 3987 (((u32) cdb[4]) << 8) | 3988 cdb[5]; 3989 block_cnt = 3990 (((u32) cdb[6]) << 24) | 3991 (((u32) cdb[7]) << 16) | 3992 (((u32) cdb[8]) << 8) | 3993 cdb[9]; 3994 } 3995 if (block_cnt > 0xffff) 3996 return IO_ACCEL_INELIGIBLE; 3997 3998 cdb[0] = is_write ? WRITE_10 : READ_10; 3999 cdb[1] = 0; 4000 cdb[2] = (u8) (block >> 24); 4001 cdb[3] = (u8) (block >> 16); 4002 cdb[4] = (u8) (block >> 8); 4003 cdb[5] = (u8) (block); 4004 cdb[6] = 0; 4005 cdb[7] = (u8) (block_cnt >> 8); 4006 cdb[8] = (u8) (block_cnt); 4007 cdb[9] = 0; 4008 *cdb_len = 10; 4009 break; 4010 } 4011 return 0; 4012 } 4013 4014 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, 4015 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4016 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4017 { 4018 struct scsi_cmnd *cmd = c->scsi_cmd; 4019 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; 4020 unsigned int len; 4021 unsigned int total_len = 0; 4022 struct scatterlist *sg; 4023 u64 addr64; 4024 int use_sg, i; 4025 struct SGDescriptor *curr_sg; 4026 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; 4027 4028 /* TODO: implement chaining support */ 4029 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) { 4030 atomic_dec(&phys_disk->ioaccel_cmds_out); 4031 return IO_ACCEL_INELIGIBLE; 4032 } 4033 4034 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); 4035 4036 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4037 atomic_dec(&phys_disk->ioaccel_cmds_out); 4038 return IO_ACCEL_INELIGIBLE; 4039 } 4040 4041 c->cmd_type = CMD_IOACCEL1; 4042 4043 /* Adjust the DMA address to point to the accelerated command buffer */ 4044 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + 4045 (c->cmdindex * sizeof(*cp)); 4046 BUG_ON(c->busaddr & 0x0000007F); 4047 4048 use_sg = scsi_dma_map(cmd); 4049 if (use_sg < 0) { 4050 atomic_dec(&phys_disk->ioaccel_cmds_out); 4051 return use_sg; 4052 } 4053 4054 if (use_sg) { 4055 curr_sg = cp->SG; 4056 scsi_for_each_sg(cmd, sg, use_sg, i) { 4057 addr64 = (u64) sg_dma_address(sg); 4058 len = sg_dma_len(sg); 4059 total_len += len; 4060 curr_sg->Addr = cpu_to_le64(addr64); 4061 curr_sg->Len = cpu_to_le32(len); 4062 curr_sg->Ext = cpu_to_le32(0); 4063 curr_sg++; 4064 } 4065 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); 4066 4067 switch (cmd->sc_data_direction) { 4068 case DMA_TO_DEVICE: 4069 control |= IOACCEL1_CONTROL_DATA_OUT; 4070 break; 4071 case DMA_FROM_DEVICE: 4072 control |= IOACCEL1_CONTROL_DATA_IN; 4073 break; 4074 case DMA_NONE: 4075 control |= IOACCEL1_CONTROL_NODATAXFER; 4076 break; 4077 default: 4078 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4079 cmd->sc_data_direction); 4080 BUG(); 4081 break; 4082 } 4083 } else { 4084 control |= IOACCEL1_CONTROL_NODATAXFER; 4085 } 4086 4087 c->Header.SGList = use_sg; 4088 /* Fill out the command structure to submit */ 4089 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF); 4090 cp->transfer_len = cpu_to_le32(total_len); 4091 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ | 4092 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK)); 4093 cp->control = cpu_to_le32(control); 4094 memcpy(cp->CDB, cdb, cdb_len); 4095 memcpy(cp->CISS_LUN, scsi3addr, 8); 4096 /* Tag was already set at init time. */ 4097 enqueue_cmd_and_start_io(h, c); 4098 return 0; 4099 } 4100 4101 /* 4102 * Queue a command directly to a device behind the controller using the 4103 * I/O accelerator path. 4104 */ 4105 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, 4106 struct CommandList *c) 4107 { 4108 struct scsi_cmnd *cmd = c->scsi_cmd; 4109 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4110 4111 c->phys_disk = dev; 4112 4113 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, 4114 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev); 4115 } 4116 4117 /* 4118 * Set encryption parameters for the ioaccel2 request 4119 */ 4120 static void set_encrypt_ioaccel2(struct ctlr_info *h, 4121 struct CommandList *c, struct io_accel2_cmd *cp) 4122 { 4123 struct scsi_cmnd *cmd = c->scsi_cmd; 4124 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4125 struct raid_map_data *map = &dev->raid_map; 4126 u64 first_block; 4127 4128 /* Are we doing encryption on this device */ 4129 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON)) 4130 return; 4131 /* Set the data encryption key index. */ 4132 cp->dekindex = map->dekindex; 4133 4134 /* Set the encryption enable flag, encoded into direction field. */ 4135 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; 4136 4137 /* Set encryption tweak values based on logical block address 4138 * If block size is 512, tweak value is LBA. 4139 * For other block sizes, tweak is (LBA * block size)/ 512) 4140 */ 4141 switch (cmd->cmnd[0]) { 4142 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ 4143 case WRITE_6: 4144 case READ_6: 4145 first_block = get_unaligned_be16(&cmd->cmnd[2]); 4146 break; 4147 case WRITE_10: 4148 case READ_10: 4149 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ 4150 case WRITE_12: 4151 case READ_12: 4152 first_block = get_unaligned_be32(&cmd->cmnd[2]); 4153 break; 4154 case WRITE_16: 4155 case READ_16: 4156 first_block = get_unaligned_be64(&cmd->cmnd[2]); 4157 break; 4158 default: 4159 dev_err(&h->pdev->dev, 4160 "ERROR: %s: size (0x%x) not supported for encryption\n", 4161 __func__, cmd->cmnd[0]); 4162 BUG(); 4163 break; 4164 } 4165 4166 if (le32_to_cpu(map->volume_blk_size) != 512) 4167 first_block = first_block * 4168 le32_to_cpu(map->volume_blk_size)/512; 4169 4170 cp->tweak_lower = cpu_to_le32(first_block); 4171 cp->tweak_upper = cpu_to_le32(first_block >> 32); 4172 } 4173 4174 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, 4175 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4176 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4177 { 4178 struct scsi_cmnd *cmd = c->scsi_cmd; 4179 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; 4180 struct ioaccel2_sg_element *curr_sg; 4181 int use_sg, i; 4182 struct scatterlist *sg; 4183 u64 addr64; 4184 u32 len; 4185 u32 total_len = 0; 4186 4187 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 4188 4189 if (fixup_ioaccel_cdb(cdb, &cdb_len)) { 4190 atomic_dec(&phys_disk->ioaccel_cmds_out); 4191 return IO_ACCEL_INELIGIBLE; 4192 } 4193 4194 c->cmd_type = CMD_IOACCEL2; 4195 /* Adjust the DMA address to point to the accelerated command buffer */ 4196 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 4197 (c->cmdindex * sizeof(*cp)); 4198 BUG_ON(c->busaddr & 0x0000007F); 4199 4200 memset(cp, 0, sizeof(*cp)); 4201 cp->IU_type = IOACCEL2_IU_TYPE; 4202 4203 use_sg = scsi_dma_map(cmd); 4204 if (use_sg < 0) { 4205 atomic_dec(&phys_disk->ioaccel_cmds_out); 4206 return use_sg; 4207 } 4208 4209 if (use_sg) { 4210 curr_sg = cp->sg; 4211 if (use_sg > h->ioaccel_maxsg) { 4212 addr64 = le64_to_cpu( 4213 h->ioaccel2_cmd_sg_list[c->cmdindex]->address); 4214 curr_sg->address = cpu_to_le64(addr64); 4215 curr_sg->length = 0; 4216 curr_sg->reserved[0] = 0; 4217 curr_sg->reserved[1] = 0; 4218 curr_sg->reserved[2] = 0; 4219 curr_sg->chain_indicator = 0x80; 4220 4221 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex]; 4222 } 4223 scsi_for_each_sg(cmd, sg, use_sg, i) { 4224 addr64 = (u64) sg_dma_address(sg); 4225 len = sg_dma_len(sg); 4226 total_len += len; 4227 curr_sg->address = cpu_to_le64(addr64); 4228 curr_sg->length = cpu_to_le32(len); 4229 curr_sg->reserved[0] = 0; 4230 curr_sg->reserved[1] = 0; 4231 curr_sg->reserved[2] = 0; 4232 curr_sg->chain_indicator = 0; 4233 curr_sg++; 4234 } 4235 4236 switch (cmd->sc_data_direction) { 4237 case DMA_TO_DEVICE: 4238 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4239 cp->direction |= IOACCEL2_DIR_DATA_OUT; 4240 break; 4241 case DMA_FROM_DEVICE: 4242 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4243 cp->direction |= IOACCEL2_DIR_DATA_IN; 4244 break; 4245 case DMA_NONE: 4246 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4247 cp->direction |= IOACCEL2_DIR_NO_DATA; 4248 break; 4249 default: 4250 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4251 cmd->sc_data_direction); 4252 BUG(); 4253 break; 4254 } 4255 } else { 4256 cp->direction &= ~IOACCEL2_DIRECTION_MASK; 4257 cp->direction |= IOACCEL2_DIR_NO_DATA; 4258 } 4259 4260 /* Set encryption parameters, if necessary */ 4261 set_encrypt_ioaccel2(h, c, cp); 4262 4263 cp->scsi_nexus = cpu_to_le32(ioaccel_handle); 4264 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT); 4265 memcpy(cp->cdb, cdb, sizeof(cp->cdb)); 4266 4267 cp->data_len = cpu_to_le32(total_len); 4268 cp->err_ptr = cpu_to_le64(c->busaddr + 4269 offsetof(struct io_accel2_cmd, error_data)); 4270 cp->err_len = cpu_to_le32(sizeof(cp->error_data)); 4271 4272 /* fill in sg elements */ 4273 if (use_sg > h->ioaccel_maxsg) { 4274 cp->sg_count = 1; 4275 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) { 4276 atomic_dec(&phys_disk->ioaccel_cmds_out); 4277 scsi_dma_unmap(cmd); 4278 return -1; 4279 } 4280 } else 4281 cp->sg_count = (u8) use_sg; 4282 4283 enqueue_cmd_and_start_io(h, c); 4284 return 0; 4285 } 4286 4287 /* 4288 * Queue a command to the correct I/O accelerator path. 4289 */ 4290 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, 4291 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, 4292 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk) 4293 { 4294 /* Try to honor the device's queue depth */ 4295 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) > 4296 phys_disk->queue_depth) { 4297 atomic_dec(&phys_disk->ioaccel_cmds_out); 4298 return IO_ACCEL_INELIGIBLE; 4299 } 4300 if (h->transMethod & CFGTBL_Trans_io_accel1) 4301 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, 4302 cdb, cdb_len, scsi3addr, 4303 phys_disk); 4304 else 4305 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, 4306 cdb, cdb_len, scsi3addr, 4307 phys_disk); 4308 } 4309 4310 static void raid_map_helper(struct raid_map_data *map, 4311 int offload_to_mirror, u32 *map_index, u32 *current_group) 4312 { 4313 if (offload_to_mirror == 0) { 4314 /* use physical disk in the first mirrored group. */ 4315 *map_index %= le16_to_cpu(map->data_disks_per_row); 4316 return; 4317 } 4318 do { 4319 /* determine mirror group that *map_index indicates */ 4320 *current_group = *map_index / 4321 le16_to_cpu(map->data_disks_per_row); 4322 if (offload_to_mirror == *current_group) 4323 continue; 4324 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) { 4325 /* select map index from next group */ 4326 *map_index += le16_to_cpu(map->data_disks_per_row); 4327 (*current_group)++; 4328 } else { 4329 /* select map index from first group */ 4330 *map_index %= le16_to_cpu(map->data_disks_per_row); 4331 *current_group = 0; 4332 } 4333 } while (offload_to_mirror != *current_group); 4334 } 4335 4336 /* 4337 * Attempt to perform offload RAID mapping for a logical volume I/O. 4338 */ 4339 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, 4340 struct CommandList *c) 4341 { 4342 struct scsi_cmnd *cmd = c->scsi_cmd; 4343 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4344 struct raid_map_data *map = &dev->raid_map; 4345 struct raid_map_disk_data *dd = &map->data[0]; 4346 int is_write = 0; 4347 u32 map_index; 4348 u64 first_block, last_block; 4349 u32 block_cnt; 4350 u32 blocks_per_row; 4351 u64 first_row, last_row; 4352 u32 first_row_offset, last_row_offset; 4353 u32 first_column, last_column; 4354 u64 r0_first_row, r0_last_row; 4355 u32 r5or6_blocks_per_row; 4356 u64 r5or6_first_row, r5or6_last_row; 4357 u32 r5or6_first_row_offset, r5or6_last_row_offset; 4358 u32 r5or6_first_column, r5or6_last_column; 4359 u32 total_disks_per_row; 4360 u32 stripesize; 4361 u32 first_group, last_group, current_group; 4362 u32 map_row; 4363 u32 disk_handle; 4364 u64 disk_block; 4365 u32 disk_block_cnt; 4366 u8 cdb[16]; 4367 u8 cdb_len; 4368 u16 strip_size; 4369 #if BITS_PER_LONG == 32 4370 u64 tmpdiv; 4371 #endif 4372 int offload_to_mirror; 4373 4374 /* check for valid opcode, get LBA and block count */ 4375 switch (cmd->cmnd[0]) { 4376 case WRITE_6: 4377 is_write = 1; 4378 case READ_6: 4379 first_block = 4380 (((u64) cmd->cmnd[2]) << 8) | 4381 cmd->cmnd[3]; 4382 block_cnt = cmd->cmnd[4]; 4383 if (block_cnt == 0) 4384 block_cnt = 256; 4385 break; 4386 case WRITE_10: 4387 is_write = 1; 4388 case READ_10: 4389 first_block = 4390 (((u64) cmd->cmnd[2]) << 24) | 4391 (((u64) cmd->cmnd[3]) << 16) | 4392 (((u64) cmd->cmnd[4]) << 8) | 4393 cmd->cmnd[5]; 4394 block_cnt = 4395 (((u32) cmd->cmnd[7]) << 8) | 4396 cmd->cmnd[8]; 4397 break; 4398 case WRITE_12: 4399 is_write = 1; 4400 case READ_12: 4401 first_block = 4402 (((u64) cmd->cmnd[2]) << 24) | 4403 (((u64) cmd->cmnd[3]) << 16) | 4404 (((u64) cmd->cmnd[4]) << 8) | 4405 cmd->cmnd[5]; 4406 block_cnt = 4407 (((u32) cmd->cmnd[6]) << 24) | 4408 (((u32) cmd->cmnd[7]) << 16) | 4409 (((u32) cmd->cmnd[8]) << 8) | 4410 cmd->cmnd[9]; 4411 break; 4412 case WRITE_16: 4413 is_write = 1; 4414 case READ_16: 4415 first_block = 4416 (((u64) cmd->cmnd[2]) << 56) | 4417 (((u64) cmd->cmnd[3]) << 48) | 4418 (((u64) cmd->cmnd[4]) << 40) | 4419 (((u64) cmd->cmnd[5]) << 32) | 4420 (((u64) cmd->cmnd[6]) << 24) | 4421 (((u64) cmd->cmnd[7]) << 16) | 4422 (((u64) cmd->cmnd[8]) << 8) | 4423 cmd->cmnd[9]; 4424 block_cnt = 4425 (((u32) cmd->cmnd[10]) << 24) | 4426 (((u32) cmd->cmnd[11]) << 16) | 4427 (((u32) cmd->cmnd[12]) << 8) | 4428 cmd->cmnd[13]; 4429 break; 4430 default: 4431 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ 4432 } 4433 last_block = first_block + block_cnt - 1; 4434 4435 /* check for write to non-RAID-0 */ 4436 if (is_write && dev->raid_level != 0) 4437 return IO_ACCEL_INELIGIBLE; 4438 4439 /* check for invalid block or wraparound */ 4440 if (last_block >= le64_to_cpu(map->volume_blk_cnt) || 4441 last_block < first_block) 4442 return IO_ACCEL_INELIGIBLE; 4443 4444 /* calculate stripe information for the request */ 4445 blocks_per_row = le16_to_cpu(map->data_disks_per_row) * 4446 le16_to_cpu(map->strip_size); 4447 strip_size = le16_to_cpu(map->strip_size); 4448 #if BITS_PER_LONG == 32 4449 tmpdiv = first_block; 4450 (void) do_div(tmpdiv, blocks_per_row); 4451 first_row = tmpdiv; 4452 tmpdiv = last_block; 4453 (void) do_div(tmpdiv, blocks_per_row); 4454 last_row = tmpdiv; 4455 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 4456 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 4457 tmpdiv = first_row_offset; 4458 (void) do_div(tmpdiv, strip_size); 4459 first_column = tmpdiv; 4460 tmpdiv = last_row_offset; 4461 (void) do_div(tmpdiv, strip_size); 4462 last_column = tmpdiv; 4463 #else 4464 first_row = first_block / blocks_per_row; 4465 last_row = last_block / blocks_per_row; 4466 first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); 4467 last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); 4468 first_column = first_row_offset / strip_size; 4469 last_column = last_row_offset / strip_size; 4470 #endif 4471 4472 /* if this isn't a single row/column then give to the controller */ 4473 if ((first_row != last_row) || (first_column != last_column)) 4474 return IO_ACCEL_INELIGIBLE; 4475 4476 /* proceeding with driver mapping */ 4477 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) + 4478 le16_to_cpu(map->metadata_disks_per_row); 4479 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 4480 le16_to_cpu(map->row_cnt); 4481 map_index = (map_row * total_disks_per_row) + first_column; 4482 4483 switch (dev->raid_level) { 4484 case HPSA_RAID_0: 4485 break; /* nothing special to do */ 4486 case HPSA_RAID_1: 4487 /* Handles load balance across RAID 1 members. 4488 * (2-drive R1 and R10 with even # of drives.) 4489 * Appropriate for SSDs, not optimal for HDDs 4490 */ 4491 BUG_ON(le16_to_cpu(map->layout_map_count) != 2); 4492 if (dev->offload_to_mirror) 4493 map_index += le16_to_cpu(map->data_disks_per_row); 4494 dev->offload_to_mirror = !dev->offload_to_mirror; 4495 break; 4496 case HPSA_RAID_ADM: 4497 /* Handles N-way mirrors (R1-ADM) 4498 * and R10 with # of drives divisible by 3.) 4499 */ 4500 BUG_ON(le16_to_cpu(map->layout_map_count) != 3); 4501 4502 offload_to_mirror = dev->offload_to_mirror; 4503 raid_map_helper(map, offload_to_mirror, 4504 &map_index, ¤t_group); 4505 /* set mirror group to use next time */ 4506 offload_to_mirror = 4507 (offload_to_mirror >= 4508 le16_to_cpu(map->layout_map_count) - 1) 4509 ? 0 : offload_to_mirror + 1; 4510 dev->offload_to_mirror = offload_to_mirror; 4511 /* Avoid direct use of dev->offload_to_mirror within this 4512 * function since multiple threads might simultaneously 4513 * increment it beyond the range of dev->layout_map_count -1. 4514 */ 4515 break; 4516 case HPSA_RAID_5: 4517 case HPSA_RAID_6: 4518 if (le16_to_cpu(map->layout_map_count) <= 1) 4519 break; 4520 4521 /* Verify first and last block are in same RAID group */ 4522 r5or6_blocks_per_row = 4523 le16_to_cpu(map->strip_size) * 4524 le16_to_cpu(map->data_disks_per_row); 4525 BUG_ON(r5or6_blocks_per_row == 0); 4526 stripesize = r5or6_blocks_per_row * 4527 le16_to_cpu(map->layout_map_count); 4528 #if BITS_PER_LONG == 32 4529 tmpdiv = first_block; 4530 first_group = do_div(tmpdiv, stripesize); 4531 tmpdiv = first_group; 4532 (void) do_div(tmpdiv, r5or6_blocks_per_row); 4533 first_group = tmpdiv; 4534 tmpdiv = last_block; 4535 last_group = do_div(tmpdiv, stripesize); 4536 tmpdiv = last_group; 4537 (void) do_div(tmpdiv, r5or6_blocks_per_row); 4538 last_group = tmpdiv; 4539 #else 4540 first_group = (first_block % stripesize) / r5or6_blocks_per_row; 4541 last_group = (last_block % stripesize) / r5or6_blocks_per_row; 4542 #endif 4543 if (first_group != last_group) 4544 return IO_ACCEL_INELIGIBLE; 4545 4546 /* Verify request is in a single row of RAID 5/6 */ 4547 #if BITS_PER_LONG == 32 4548 tmpdiv = first_block; 4549 (void) do_div(tmpdiv, stripesize); 4550 first_row = r5or6_first_row = r0_first_row = tmpdiv; 4551 tmpdiv = last_block; 4552 (void) do_div(tmpdiv, stripesize); 4553 r5or6_last_row = r0_last_row = tmpdiv; 4554 #else 4555 first_row = r5or6_first_row = r0_first_row = 4556 first_block / stripesize; 4557 r5or6_last_row = r0_last_row = last_block / stripesize; 4558 #endif 4559 if (r5or6_first_row != r5or6_last_row) 4560 return IO_ACCEL_INELIGIBLE; 4561 4562 4563 /* Verify request is in a single column */ 4564 #if BITS_PER_LONG == 32 4565 tmpdiv = first_block; 4566 first_row_offset = do_div(tmpdiv, stripesize); 4567 tmpdiv = first_row_offset; 4568 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); 4569 r5or6_first_row_offset = first_row_offset; 4570 tmpdiv = last_block; 4571 r5or6_last_row_offset = do_div(tmpdiv, stripesize); 4572 tmpdiv = r5or6_last_row_offset; 4573 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); 4574 tmpdiv = r5or6_first_row_offset; 4575 (void) do_div(tmpdiv, map->strip_size); 4576 first_column = r5or6_first_column = tmpdiv; 4577 tmpdiv = r5or6_last_row_offset; 4578 (void) do_div(tmpdiv, map->strip_size); 4579 r5or6_last_column = tmpdiv; 4580 #else 4581 first_row_offset = r5or6_first_row_offset = 4582 (u32)((first_block % stripesize) % 4583 r5or6_blocks_per_row); 4584 4585 r5or6_last_row_offset = 4586 (u32)((last_block % stripesize) % 4587 r5or6_blocks_per_row); 4588 4589 first_column = r5or6_first_column = 4590 r5or6_first_row_offset / le16_to_cpu(map->strip_size); 4591 r5or6_last_column = 4592 r5or6_last_row_offset / le16_to_cpu(map->strip_size); 4593 #endif 4594 if (r5or6_first_column != r5or6_last_column) 4595 return IO_ACCEL_INELIGIBLE; 4596 4597 /* Request is eligible */ 4598 map_row = ((u32)(first_row >> map->parity_rotation_shift)) % 4599 le16_to_cpu(map->row_cnt); 4600 4601 map_index = (first_group * 4602 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) + 4603 (map_row * total_disks_per_row) + first_column; 4604 break; 4605 default: 4606 return IO_ACCEL_INELIGIBLE; 4607 } 4608 4609 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES)) 4610 return IO_ACCEL_INELIGIBLE; 4611 4612 c->phys_disk = dev->phys_disk[map_index]; 4613 4614 disk_handle = dd[map_index].ioaccel_handle; 4615 disk_block = le64_to_cpu(map->disk_starting_blk) + 4616 first_row * le16_to_cpu(map->strip_size) + 4617 (first_row_offset - first_column * 4618 le16_to_cpu(map->strip_size)); 4619 disk_block_cnt = block_cnt; 4620 4621 /* handle differing logical/physical block sizes */ 4622 if (map->phys_blk_shift) { 4623 disk_block <<= map->phys_blk_shift; 4624 disk_block_cnt <<= map->phys_blk_shift; 4625 } 4626 BUG_ON(disk_block_cnt > 0xffff); 4627 4628 /* build the new CDB for the physical disk I/O */ 4629 if (disk_block > 0xffffffff) { 4630 cdb[0] = is_write ? WRITE_16 : READ_16; 4631 cdb[1] = 0; 4632 cdb[2] = (u8) (disk_block >> 56); 4633 cdb[3] = (u8) (disk_block >> 48); 4634 cdb[4] = (u8) (disk_block >> 40); 4635 cdb[5] = (u8) (disk_block >> 32); 4636 cdb[6] = (u8) (disk_block >> 24); 4637 cdb[7] = (u8) (disk_block >> 16); 4638 cdb[8] = (u8) (disk_block >> 8); 4639 cdb[9] = (u8) (disk_block); 4640 cdb[10] = (u8) (disk_block_cnt >> 24); 4641 cdb[11] = (u8) (disk_block_cnt >> 16); 4642 cdb[12] = (u8) (disk_block_cnt >> 8); 4643 cdb[13] = (u8) (disk_block_cnt); 4644 cdb[14] = 0; 4645 cdb[15] = 0; 4646 cdb_len = 16; 4647 } else { 4648 cdb[0] = is_write ? WRITE_10 : READ_10; 4649 cdb[1] = 0; 4650 cdb[2] = (u8) (disk_block >> 24); 4651 cdb[3] = (u8) (disk_block >> 16); 4652 cdb[4] = (u8) (disk_block >> 8); 4653 cdb[5] = (u8) (disk_block); 4654 cdb[6] = 0; 4655 cdb[7] = (u8) (disk_block_cnt >> 8); 4656 cdb[8] = (u8) (disk_block_cnt); 4657 cdb[9] = 0; 4658 cdb_len = 10; 4659 } 4660 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, 4661 dev->scsi3addr, 4662 dev->phys_disk[map_index]); 4663 } 4664 4665 /* 4666 * Submit commands down the "normal" RAID stack path 4667 * All callers to hpsa_ciss_submit must check lockup_detected 4668 * beforehand, before (opt.) and after calling cmd_alloc 4669 */ 4670 static int hpsa_ciss_submit(struct ctlr_info *h, 4671 struct CommandList *c, struct scsi_cmnd *cmd, 4672 unsigned char scsi3addr[]) 4673 { 4674 cmd->host_scribble = (unsigned char *) c; 4675 c->cmd_type = CMD_SCSI; 4676 c->scsi_cmd = cmd; 4677 c->Header.ReplyQueue = 0; /* unused in simple mode */ 4678 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 4679 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT)); 4680 4681 /* Fill in the request block... */ 4682 4683 c->Request.Timeout = 0; 4684 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 4685 c->Request.CDBLen = cmd->cmd_len; 4686 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 4687 switch (cmd->sc_data_direction) { 4688 case DMA_TO_DEVICE: 4689 c->Request.type_attr_dir = 4690 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); 4691 break; 4692 case DMA_FROM_DEVICE: 4693 c->Request.type_attr_dir = 4694 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); 4695 break; 4696 case DMA_NONE: 4697 c->Request.type_attr_dir = 4698 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); 4699 break; 4700 case DMA_BIDIRECTIONAL: 4701 /* This can happen if a buggy application does a scsi passthru 4702 * and sets both inlen and outlen to non-zero. ( see 4703 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 4704 */ 4705 4706 c->Request.type_attr_dir = 4707 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); 4708 /* This is technically wrong, and hpsa controllers should 4709 * reject it with CMD_INVALID, which is the most correct 4710 * response, but non-fibre backends appear to let it 4711 * slide by, and give the same results as if this field 4712 * were set correctly. Either way is acceptable for 4713 * our purposes here. 4714 */ 4715 4716 break; 4717 4718 default: 4719 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 4720 cmd->sc_data_direction); 4721 BUG(); 4722 break; 4723 } 4724 4725 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 4726 hpsa_cmd_resolve_and_free(h, c); 4727 return SCSI_MLQUEUE_HOST_BUSY; 4728 } 4729 enqueue_cmd_and_start_io(h, c); 4730 /* the cmd'll come back via intr handler in complete_scsi_command() */ 4731 return 0; 4732 } 4733 4734 static void hpsa_cmd_init(struct ctlr_info *h, int index, 4735 struct CommandList *c) 4736 { 4737 dma_addr_t cmd_dma_handle, err_dma_handle; 4738 4739 /* Zero out all of commandlist except the last field, refcount */ 4740 memset(c, 0, offsetof(struct CommandList, refcount)); 4741 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT)); 4742 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 4743 c->err_info = h->errinfo_pool + index; 4744 memset(c->err_info, 0, sizeof(*c->err_info)); 4745 err_dma_handle = h->errinfo_pool_dhandle 4746 + index * sizeof(*c->err_info); 4747 c->cmdindex = index; 4748 c->busaddr = (u32) cmd_dma_handle; 4749 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle); 4750 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info)); 4751 c->h = h; 4752 c->scsi_cmd = SCSI_CMD_IDLE; 4753 } 4754 4755 static void hpsa_preinitialize_commands(struct ctlr_info *h) 4756 { 4757 int i; 4758 4759 for (i = 0; i < h->nr_cmds; i++) { 4760 struct CommandList *c = h->cmd_pool + i; 4761 4762 hpsa_cmd_init(h, i, c); 4763 atomic_set(&c->refcount, 0); 4764 } 4765 } 4766 4767 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index, 4768 struct CommandList *c) 4769 { 4770 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c); 4771 4772 BUG_ON(c->cmdindex != index); 4773 4774 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 4775 memset(c->err_info, 0, sizeof(*c->err_info)); 4776 c->busaddr = (u32) cmd_dma_handle; 4777 } 4778 4779 static int hpsa_ioaccel_submit(struct ctlr_info *h, 4780 struct CommandList *c, struct scsi_cmnd *cmd, 4781 unsigned char *scsi3addr) 4782 { 4783 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; 4784 int rc = IO_ACCEL_INELIGIBLE; 4785 4786 cmd->host_scribble = (unsigned char *) c; 4787 4788 if (dev->offload_enabled) { 4789 hpsa_cmd_init(h, c->cmdindex, c); 4790 c->cmd_type = CMD_SCSI; 4791 c->scsi_cmd = cmd; 4792 rc = hpsa_scsi_ioaccel_raid_map(h, c); 4793 if (rc < 0) /* scsi_dma_map failed. */ 4794 rc = SCSI_MLQUEUE_HOST_BUSY; 4795 } else if (dev->hba_ioaccel_enabled) { 4796 hpsa_cmd_init(h, c->cmdindex, c); 4797 c->cmd_type = CMD_SCSI; 4798 c->scsi_cmd = cmd; 4799 rc = hpsa_scsi_ioaccel_direct_map(h, c); 4800 if (rc < 0) /* scsi_dma_map failed. */ 4801 rc = SCSI_MLQUEUE_HOST_BUSY; 4802 } 4803 return rc; 4804 } 4805 4806 static void hpsa_command_resubmit_worker(struct work_struct *work) 4807 { 4808 struct scsi_cmnd *cmd; 4809 struct hpsa_scsi_dev_t *dev; 4810 struct CommandList *c = container_of(work, struct CommandList, work); 4811 4812 cmd = c->scsi_cmd; 4813 dev = cmd->device->hostdata; 4814 if (!dev) { 4815 cmd->result = DID_NO_CONNECT << 16; 4816 return hpsa_cmd_free_and_done(c->h, c, cmd); 4817 } 4818 if (c->reset_pending) 4819 return hpsa_cmd_resolve_and_free(c->h, c); 4820 if (c->abort_pending) 4821 return hpsa_cmd_abort_and_free(c->h, c, cmd); 4822 if (c->cmd_type == CMD_IOACCEL2) { 4823 struct ctlr_info *h = c->h; 4824 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 4825 int rc; 4826 4827 if (c2->error_data.serv_response == 4828 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) { 4829 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr); 4830 if (rc == 0) 4831 return; 4832 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 4833 /* 4834 * If we get here, it means dma mapping failed. 4835 * Try again via scsi mid layer, which will 4836 * then get SCSI_MLQUEUE_HOST_BUSY. 4837 */ 4838 cmd->result = DID_IMM_RETRY << 16; 4839 return hpsa_cmd_free_and_done(h, c, cmd); 4840 } 4841 /* else, fall thru and resubmit down CISS path */ 4842 } 4843 } 4844 hpsa_cmd_partial_init(c->h, c->cmdindex, c); 4845 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) { 4846 /* 4847 * If we get here, it means dma mapping failed. Try 4848 * again via scsi mid layer, which will then get 4849 * SCSI_MLQUEUE_HOST_BUSY. 4850 * 4851 * hpsa_ciss_submit will have already freed c 4852 * if it encountered a dma mapping failure. 4853 */ 4854 cmd->result = DID_IMM_RETRY << 16; 4855 cmd->scsi_done(cmd); 4856 } 4857 } 4858 4859 /* Running in struct Scsi_Host->host_lock less mode */ 4860 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) 4861 { 4862 struct ctlr_info *h; 4863 struct hpsa_scsi_dev_t *dev; 4864 unsigned char scsi3addr[8]; 4865 struct CommandList *c; 4866 int rc = 0; 4867 4868 /* Get the ptr to our adapter structure out of cmd->host. */ 4869 h = sdev_to_hba(cmd->device); 4870 4871 BUG_ON(cmd->request->tag < 0); 4872 4873 dev = cmd->device->hostdata; 4874 if (!dev) { 4875 cmd->result = DID_NO_CONNECT << 16; 4876 cmd->scsi_done(cmd); 4877 return 0; 4878 } 4879 4880 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 4881 4882 if (unlikely(lockup_detected(h))) { 4883 cmd->result = DID_NO_CONNECT << 16; 4884 cmd->scsi_done(cmd); 4885 return 0; 4886 } 4887 c = cmd_tagged_alloc(h, cmd); 4888 4889 /* 4890 * Call alternate submit routine for I/O accelerated commands. 4891 * Retries always go down the normal I/O path. 4892 */ 4893 if (likely(cmd->retries == 0 && 4894 cmd->request->cmd_type == REQ_TYPE_FS && 4895 h->acciopath_status)) { 4896 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr); 4897 if (rc == 0) 4898 return 0; 4899 if (rc == SCSI_MLQUEUE_HOST_BUSY) { 4900 hpsa_cmd_resolve_and_free(h, c); 4901 return SCSI_MLQUEUE_HOST_BUSY; 4902 } 4903 } 4904 return hpsa_ciss_submit(h, c, cmd, scsi3addr); 4905 } 4906 4907 static void hpsa_scan_complete(struct ctlr_info *h) 4908 { 4909 unsigned long flags; 4910 4911 spin_lock_irqsave(&h->scan_lock, flags); 4912 h->scan_finished = 1; 4913 wake_up_all(&h->scan_wait_queue); 4914 spin_unlock_irqrestore(&h->scan_lock, flags); 4915 } 4916 4917 static void hpsa_scan_start(struct Scsi_Host *sh) 4918 { 4919 struct ctlr_info *h = shost_to_hba(sh); 4920 unsigned long flags; 4921 4922 /* 4923 * Don't let rescans be initiated on a controller known to be locked 4924 * up. If the controller locks up *during* a rescan, that thread is 4925 * probably hosed, but at least we can prevent new rescan threads from 4926 * piling up on a locked up controller. 4927 */ 4928 if (unlikely(lockup_detected(h))) 4929 return hpsa_scan_complete(h); 4930 4931 /* wait until any scan already in progress is finished. */ 4932 while (1) { 4933 spin_lock_irqsave(&h->scan_lock, flags); 4934 if (h->scan_finished) 4935 break; 4936 spin_unlock_irqrestore(&h->scan_lock, flags); 4937 wait_event(h->scan_wait_queue, h->scan_finished); 4938 /* Note: We don't need to worry about a race between this 4939 * thread and driver unload because the midlayer will 4940 * have incremented the reference count, so unload won't 4941 * happen if we're in here. 4942 */ 4943 } 4944 h->scan_finished = 0; /* mark scan as in progress */ 4945 spin_unlock_irqrestore(&h->scan_lock, flags); 4946 4947 if (unlikely(lockup_detected(h))) 4948 return hpsa_scan_complete(h); 4949 4950 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 4951 4952 hpsa_scan_complete(h); 4953 } 4954 4955 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth) 4956 { 4957 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata; 4958 4959 if (!logical_drive) 4960 return -ENODEV; 4961 4962 if (qdepth < 1) 4963 qdepth = 1; 4964 else if (qdepth > logical_drive->queue_depth) 4965 qdepth = logical_drive->queue_depth; 4966 4967 return scsi_change_queue_depth(sdev, qdepth); 4968 } 4969 4970 static int hpsa_scan_finished(struct Scsi_Host *sh, 4971 unsigned long elapsed_time) 4972 { 4973 struct ctlr_info *h = shost_to_hba(sh); 4974 unsigned long flags; 4975 int finished; 4976 4977 spin_lock_irqsave(&h->scan_lock, flags); 4978 finished = h->scan_finished; 4979 spin_unlock_irqrestore(&h->scan_lock, flags); 4980 return finished; 4981 } 4982 4983 static int hpsa_scsi_host_alloc(struct ctlr_info *h) 4984 { 4985 struct Scsi_Host *sh; 4986 int error; 4987 4988 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 4989 if (sh == NULL) { 4990 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n"); 4991 return -ENOMEM; 4992 } 4993 4994 sh->io_port = 0; 4995 sh->n_io_port = 0; 4996 sh->this_id = -1; 4997 sh->max_channel = 3; 4998 sh->max_cmd_len = MAX_COMMAND_SIZE; 4999 sh->max_lun = HPSA_MAX_LUN; 5000 sh->max_id = HPSA_MAX_LUN; 5001 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS; 5002 sh->cmd_per_lun = sh->can_queue; 5003 sh->sg_tablesize = h->maxsgentries; 5004 sh->hostdata[0] = (unsigned long) h; 5005 sh->irq = h->intr[h->intr_mode]; 5006 sh->unique_id = sh->irq; 5007 error = scsi_init_shared_tag_map(sh, sh->can_queue); 5008 if (error) { 5009 dev_err(&h->pdev->dev, 5010 "%s: scsi_init_shared_tag_map failed for controller %d\n", 5011 __func__, h->ctlr); 5012 scsi_host_put(sh); 5013 return error; 5014 } 5015 h->scsi_host = sh; 5016 return 0; 5017 } 5018 5019 static int hpsa_scsi_add_host(struct ctlr_info *h) 5020 { 5021 int rv; 5022 5023 rv = scsi_add_host(h->scsi_host, &h->pdev->dev); 5024 if (rv) { 5025 dev_err(&h->pdev->dev, "scsi_add_host failed\n"); 5026 return rv; 5027 } 5028 scsi_scan_host(h->scsi_host); 5029 return 0; 5030 } 5031 5032 /* 5033 * The block layer has already gone to the trouble of picking out a unique, 5034 * small-integer tag for this request. We use an offset from that value as 5035 * an index to select our command block. (The offset allows us to reserve the 5036 * low-numbered entries for our own uses.) 5037 */ 5038 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd) 5039 { 5040 int idx = scmd->request->tag; 5041 5042 if (idx < 0) 5043 return idx; 5044 5045 /* Offset to leave space for internal cmds. */ 5046 return idx += HPSA_NRESERVED_CMDS; 5047 } 5048 5049 /* 5050 * Send a TEST_UNIT_READY command to the specified LUN using the specified 5051 * reply queue; returns zero if the unit is ready, and non-zero otherwise. 5052 */ 5053 static int hpsa_send_test_unit_ready(struct ctlr_info *h, 5054 struct CommandList *c, unsigned char lunaddr[], 5055 int reply_queue) 5056 { 5057 int rc; 5058 5059 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ 5060 (void) fill_cmd(c, TEST_UNIT_READY, h, 5061 NULL, 0, 0, lunaddr, TYPE_CMD); 5062 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5063 if (rc) 5064 return rc; 5065 /* no unmap needed here because no data xfer. */ 5066 5067 /* Check if the unit is already ready. */ 5068 if (c->err_info->CommandStatus == CMD_SUCCESS) 5069 return 0; 5070 5071 /* 5072 * The first command sent after reset will receive "unit attention" to 5073 * indicate that the LUN has been reset...this is actually what we're 5074 * looking for (but, success is good too). 5075 */ 5076 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 5077 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 5078 (c->err_info->SenseInfo[2] == NO_SENSE || 5079 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 5080 return 0; 5081 5082 return 1; 5083 } 5084 5085 /* 5086 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary; 5087 * returns zero when the unit is ready, and non-zero when giving up. 5088 */ 5089 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h, 5090 struct CommandList *c, 5091 unsigned char lunaddr[], int reply_queue) 5092 { 5093 int rc; 5094 int count = 0; 5095 int waittime = 1; /* seconds */ 5096 5097 /* Send test unit ready until device ready, or give up. */ 5098 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) { 5099 5100 /* 5101 * Wait for a bit. do this first, because if we send 5102 * the TUR right away, the reset will just abort it. 5103 */ 5104 msleep(1000 * waittime); 5105 5106 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue); 5107 if (!rc) 5108 break; 5109 5110 /* Increase wait time with each try, up to a point. */ 5111 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 5112 waittime *= 2; 5113 5114 dev_warn(&h->pdev->dev, 5115 "waiting %d secs for device to become ready.\n", 5116 waittime); 5117 } 5118 5119 return rc; 5120 } 5121 5122 static int wait_for_device_to_become_ready(struct ctlr_info *h, 5123 unsigned char lunaddr[], 5124 int reply_queue) 5125 { 5126 int first_queue; 5127 int last_queue; 5128 int rq; 5129 int rc = 0; 5130 struct CommandList *c; 5131 5132 c = cmd_alloc(h); 5133 5134 /* 5135 * If no specific reply queue was requested, then send the TUR 5136 * repeatedly, requesting a reply on each reply queue; otherwise execute 5137 * the loop exactly once using only the specified queue. 5138 */ 5139 if (reply_queue == DEFAULT_REPLY_QUEUE) { 5140 first_queue = 0; 5141 last_queue = h->nreply_queues - 1; 5142 } else { 5143 first_queue = reply_queue; 5144 last_queue = reply_queue; 5145 } 5146 5147 for (rq = first_queue; rq <= last_queue; rq++) { 5148 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq); 5149 if (rc) 5150 break; 5151 } 5152 5153 if (rc) 5154 dev_warn(&h->pdev->dev, "giving up on device.\n"); 5155 else 5156 dev_warn(&h->pdev->dev, "device is ready.\n"); 5157 5158 cmd_free(h, c); 5159 return rc; 5160 } 5161 5162 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 5163 * complaining. Doing a host- or bus-reset can't do anything good here. 5164 */ 5165 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 5166 { 5167 int rc; 5168 struct ctlr_info *h; 5169 struct hpsa_scsi_dev_t *dev; 5170 char msg[48]; 5171 5172 /* find the controller to which the command to be aborted was sent */ 5173 h = sdev_to_hba(scsicmd->device); 5174 if (h == NULL) /* paranoia */ 5175 return FAILED; 5176 5177 if (lockup_detected(h)) 5178 return FAILED; 5179 5180 dev = scsicmd->device->hostdata; 5181 if (!dev) { 5182 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__); 5183 return FAILED; 5184 } 5185 5186 /* if controller locked up, we can guarantee command won't complete */ 5187 if (lockup_detected(h)) { 5188 snprintf(msg, sizeof(msg), 5189 "cmd %d RESET FAILED, lockup detected", 5190 hpsa_get_cmd_index(scsicmd)); 5191 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5192 return FAILED; 5193 } 5194 5195 /* this reset request might be the result of a lockup; check */ 5196 if (detect_controller_lockup(h)) { 5197 snprintf(msg, sizeof(msg), 5198 "cmd %d RESET FAILED, new lockup detected", 5199 hpsa_get_cmd_index(scsicmd)); 5200 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5201 return FAILED; 5202 } 5203 5204 /* Do not attempt on controller */ 5205 if (is_hba_lunid(dev->scsi3addr)) 5206 return SUCCESS; 5207 5208 hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting"); 5209 5210 /* send a reset to the SCSI LUN which the command was sent to */ 5211 rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN, 5212 DEFAULT_REPLY_QUEUE); 5213 snprintf(msg, sizeof(msg), "reset %s", 5214 rc == 0 ? "completed successfully" : "failed"); 5215 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg); 5216 return rc == 0 ? SUCCESS : FAILED; 5217 } 5218 5219 static void swizzle_abort_tag(u8 *tag) 5220 { 5221 u8 original_tag[8]; 5222 5223 memcpy(original_tag, tag, 8); 5224 tag[0] = original_tag[3]; 5225 tag[1] = original_tag[2]; 5226 tag[2] = original_tag[1]; 5227 tag[3] = original_tag[0]; 5228 tag[4] = original_tag[7]; 5229 tag[5] = original_tag[6]; 5230 tag[6] = original_tag[5]; 5231 tag[7] = original_tag[4]; 5232 } 5233 5234 static void hpsa_get_tag(struct ctlr_info *h, 5235 struct CommandList *c, __le32 *taglower, __le32 *tagupper) 5236 { 5237 u64 tag; 5238 if (c->cmd_type == CMD_IOACCEL1) { 5239 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) 5240 &h->ioaccel_cmd_pool[c->cmdindex]; 5241 tag = le64_to_cpu(cm1->tag); 5242 *tagupper = cpu_to_le32(tag >> 32); 5243 *taglower = cpu_to_le32(tag); 5244 return; 5245 } 5246 if (c->cmd_type == CMD_IOACCEL2) { 5247 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) 5248 &h->ioaccel2_cmd_pool[c->cmdindex]; 5249 /* upper tag not used in ioaccel2 mode */ 5250 memset(tagupper, 0, sizeof(*tagupper)); 5251 *taglower = cm2->Tag; 5252 return; 5253 } 5254 tag = le64_to_cpu(c->Header.tag); 5255 *tagupper = cpu_to_le32(tag >> 32); 5256 *taglower = cpu_to_le32(tag); 5257 } 5258 5259 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, 5260 struct CommandList *abort, int reply_queue) 5261 { 5262 int rc = IO_OK; 5263 struct CommandList *c; 5264 struct ErrorInfo *ei; 5265 __le32 tagupper, taglower; 5266 5267 c = cmd_alloc(h); 5268 5269 /* fill_cmd can't fail here, no buffer to map */ 5270 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag, 5271 0, 0, scsi3addr, TYPE_MSG); 5272 if (h->needs_abort_tags_swizzled) 5273 swizzle_abort_tag(&c->Request.CDB[4]); 5274 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5275 hpsa_get_tag(h, abort, &taglower, &tagupper); 5276 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n", 5277 __func__, tagupper, taglower); 5278 /* no unmap needed here because no data xfer. */ 5279 5280 ei = c->err_info; 5281 switch (ei->CommandStatus) { 5282 case CMD_SUCCESS: 5283 break; 5284 case CMD_TMF_STATUS: 5285 rc = hpsa_evaluate_tmf_status(h, c); 5286 break; 5287 case CMD_UNABORTABLE: /* Very common, don't make noise. */ 5288 rc = -1; 5289 break; 5290 default: 5291 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", 5292 __func__, tagupper, taglower); 5293 hpsa_scsi_interpret_error(h, c); 5294 rc = -1; 5295 break; 5296 } 5297 cmd_free(h, c); 5298 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", 5299 __func__, tagupper, taglower); 5300 return rc; 5301 } 5302 5303 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h, 5304 struct CommandList *command_to_abort, int reply_queue) 5305 { 5306 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5307 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2; 5308 struct io_accel2_cmd *c2a = 5309 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex]; 5310 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd; 5311 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata; 5312 5313 /* 5314 * We're overlaying struct hpsa_tmf_struct on top of something which 5315 * was allocated as a struct io_accel2_cmd, so we better be sure it 5316 * actually fits, and doesn't overrun the error info space. 5317 */ 5318 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) > 5319 sizeof(struct io_accel2_cmd)); 5320 BUG_ON(offsetof(struct io_accel2_cmd, error_data) < 5321 offsetof(struct hpsa_tmf_struct, error_len) + 5322 sizeof(ac->error_len)); 5323 5324 c->cmd_type = IOACCEL2_TMF; 5325 c->scsi_cmd = SCSI_CMD_BUSY; 5326 5327 /* Adjust the DMA address to point to the accelerated command buffer */ 5328 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + 5329 (c->cmdindex * sizeof(struct io_accel2_cmd)); 5330 BUG_ON(c->busaddr & 0x0000007F); 5331 5332 memset(ac, 0, sizeof(*c2)); /* yes this is correct */ 5333 ac->iu_type = IOACCEL2_IU_TMF_TYPE; 5334 ac->reply_queue = reply_queue; 5335 ac->tmf = IOACCEL2_TMF_ABORT; 5336 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle); 5337 memset(ac->lun_id, 0, sizeof(ac->lun_id)); 5338 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT); 5339 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag)); 5340 ac->error_ptr = cpu_to_le64(c->busaddr + 5341 offsetof(struct io_accel2_cmd, error_data)); 5342 ac->error_len = cpu_to_le32(sizeof(c2->error_data)); 5343 } 5344 5345 /* ioaccel2 path firmware cannot handle abort task requests. 5346 * Change abort requests to physical target reset, and send to the 5347 * address of the physical disk used for the ioaccel 2 command. 5348 * Return 0 on success (IO_OK) 5349 * -1 on failure 5350 */ 5351 5352 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, 5353 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) 5354 { 5355 int rc = IO_OK; 5356 struct scsi_cmnd *scmd; /* scsi command within request being aborted */ 5357 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ 5358 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ 5359 unsigned char *psa = &phys_scsi3addr[0]; 5360 5361 /* Get a pointer to the hpsa logical device. */ 5362 scmd = abort->scsi_cmd; 5363 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); 5364 if (dev == NULL) { 5365 dev_warn(&h->pdev->dev, 5366 "Cannot abort: no device pointer for command.\n"); 5367 return -1; /* not abortable */ 5368 } 5369 5370 if (h->raid_offload_debug > 0) 5371 dev_info(&h->pdev->dev, 5372 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 5373 h->scsi_host->host_no, dev->bus, dev->target, dev->lun, 5374 "Reset as abort", 5375 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3], 5376 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]); 5377 5378 if (!dev->offload_enabled) { 5379 dev_warn(&h->pdev->dev, 5380 "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); 5381 return -1; /* not abortable */ 5382 } 5383 5384 /* Incoming scsi3addr is logical addr. We need physical disk addr. */ 5385 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { 5386 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); 5387 return -1; /* not abortable */ 5388 } 5389 5390 /* send the reset */ 5391 if (h->raid_offload_debug > 0) 5392 dev_info(&h->pdev->dev, 5393 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 5394 psa[0], psa[1], psa[2], psa[3], 5395 psa[4], psa[5], psa[6], psa[7]); 5396 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue); 5397 if (rc != 0) { 5398 dev_warn(&h->pdev->dev, 5399 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 5400 psa[0], psa[1], psa[2], psa[3], 5401 psa[4], psa[5], psa[6], psa[7]); 5402 return rc; /* failed to reset */ 5403 } 5404 5405 /* wait for device to recover */ 5406 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) { 5407 dev_warn(&h->pdev->dev, 5408 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 5409 psa[0], psa[1], psa[2], psa[3], 5410 psa[4], psa[5], psa[6], psa[7]); 5411 return -1; /* failed to recover */ 5412 } 5413 5414 /* device recovered */ 5415 dev_info(&h->pdev->dev, 5416 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 5417 psa[0], psa[1], psa[2], psa[3], 5418 psa[4], psa[5], psa[6], psa[7]); 5419 5420 return rc; /* success */ 5421 } 5422 5423 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h, 5424 struct CommandList *abort, int reply_queue) 5425 { 5426 int rc = IO_OK; 5427 struct CommandList *c; 5428 __le32 taglower, tagupper; 5429 struct hpsa_scsi_dev_t *dev; 5430 struct io_accel2_cmd *c2; 5431 5432 dev = abort->scsi_cmd->device->hostdata; 5433 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled) 5434 return -1; 5435 5436 c = cmd_alloc(h); 5437 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue); 5438 c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; 5439 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT); 5440 hpsa_get_tag(h, abort, &taglower, &tagupper); 5441 dev_dbg(&h->pdev->dev, 5442 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n", 5443 __func__, tagupper, taglower); 5444 /* no unmap needed here because no data xfer. */ 5445 5446 dev_dbg(&h->pdev->dev, 5447 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n", 5448 __func__, tagupper, taglower, c2->error_data.serv_response); 5449 switch (c2->error_data.serv_response) { 5450 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: 5451 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: 5452 rc = 0; 5453 break; 5454 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: 5455 case IOACCEL2_SERV_RESPONSE_FAILURE: 5456 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: 5457 rc = -1; 5458 break; 5459 default: 5460 dev_warn(&h->pdev->dev, 5461 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n", 5462 __func__, tagupper, taglower, 5463 c2->error_data.serv_response); 5464 rc = -1; 5465 } 5466 cmd_free(h, c); 5467 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, 5468 tagupper, taglower); 5469 return rc; 5470 } 5471 5472 static int hpsa_send_abort_both_ways(struct ctlr_info *h, 5473 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue) 5474 { 5475 /* 5476 * ioccelerator mode 2 commands should be aborted via the 5477 * accelerated path, since RAID path is unaware of these commands, 5478 * but not all underlying firmware can handle abort TMF. 5479 * Change abort to physical device reset when abort TMF is unsupported. 5480 */ 5481 if (abort->cmd_type == CMD_IOACCEL2) { 5482 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) 5483 return hpsa_send_abort_ioaccel2(h, abort, 5484 reply_queue); 5485 else 5486 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, 5487 abort, reply_queue); 5488 } 5489 return hpsa_send_abort(h, scsi3addr, abort, reply_queue); 5490 } 5491 5492 /* Find out which reply queue a command was meant to return on */ 5493 static int hpsa_extract_reply_queue(struct ctlr_info *h, 5494 struct CommandList *c) 5495 { 5496 if (c->cmd_type == CMD_IOACCEL2) 5497 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue; 5498 return c->Header.ReplyQueue; 5499 } 5500 5501 /* 5502 * Limit concurrency of abort commands to prevent 5503 * over-subscription of commands 5504 */ 5505 static inline int wait_for_available_abort_cmd(struct ctlr_info *h) 5506 { 5507 #define ABORT_CMD_WAIT_MSECS 5000 5508 return !wait_event_timeout(h->abort_cmd_wait_queue, 5509 atomic_dec_if_positive(&h->abort_cmds_available) >= 0, 5510 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS)); 5511 } 5512 5513 /* Send an abort for the specified command. 5514 * If the device and controller support it, 5515 * send a task abort request. 5516 */ 5517 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) 5518 { 5519 5520 int rc; 5521 struct ctlr_info *h; 5522 struct hpsa_scsi_dev_t *dev; 5523 struct CommandList *abort; /* pointer to command to be aborted */ 5524 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ 5525 char msg[256]; /* For debug messaging. */ 5526 int ml = 0; 5527 __le32 tagupper, taglower; 5528 int refcount, reply_queue; 5529 5530 if (sc == NULL) 5531 return FAILED; 5532 5533 if (sc->device == NULL) 5534 return FAILED; 5535 5536 /* Find the controller of the command to be aborted */ 5537 h = sdev_to_hba(sc->device); 5538 if (h == NULL) 5539 return FAILED; 5540 5541 /* Find the device of the command to be aborted */ 5542 dev = sc->device->hostdata; 5543 if (!dev) { 5544 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", 5545 msg); 5546 return FAILED; 5547 } 5548 5549 /* If controller locked up, we can guarantee command won't complete */ 5550 if (lockup_detected(h)) { 5551 hpsa_show_dev_msg(KERN_WARNING, h, dev, 5552 "ABORT FAILED, lockup detected"); 5553 return FAILED; 5554 } 5555 5556 /* This is a good time to check if controller lockup has occurred */ 5557 if (detect_controller_lockup(h)) { 5558 hpsa_show_dev_msg(KERN_WARNING, h, dev, 5559 "ABORT FAILED, new lockup detected"); 5560 return FAILED; 5561 } 5562 5563 /* Check that controller supports some kind of task abort */ 5564 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && 5565 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 5566 return FAILED; 5567 5568 memset(msg, 0, sizeof(msg)); 5569 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p", 5570 h->scsi_host->host_no, sc->device->channel, 5571 sc->device->id, sc->device->lun, 5572 "Aborting command", sc); 5573 5574 /* Get SCSI command to be aborted */ 5575 abort = (struct CommandList *) sc->host_scribble; 5576 if (abort == NULL) { 5577 /* This can happen if the command already completed. */ 5578 return SUCCESS; 5579 } 5580 refcount = atomic_inc_return(&abort->refcount); 5581 if (refcount == 1) { /* Command is done already. */ 5582 cmd_free(h, abort); 5583 return SUCCESS; 5584 } 5585 5586 /* Don't bother trying the abort if we know it won't work. */ 5587 if (abort->cmd_type != CMD_IOACCEL2 && 5588 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) { 5589 cmd_free(h, abort); 5590 return FAILED; 5591 } 5592 5593 /* 5594 * Check that we're aborting the right command. 5595 * It's possible the CommandList already completed and got re-used. 5596 */ 5597 if (abort->scsi_cmd != sc) { 5598 cmd_free(h, abort); 5599 return SUCCESS; 5600 } 5601 5602 abort->abort_pending = true; 5603 hpsa_get_tag(h, abort, &taglower, &tagupper); 5604 reply_queue = hpsa_extract_reply_queue(h, abort); 5605 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); 5606 as = abort->scsi_cmd; 5607 if (as != NULL) 5608 ml += sprintf(msg+ml, 5609 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ", 5610 as->cmd_len, as->cmnd[0], as->cmnd[1], 5611 as->serial_number); 5612 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg); 5613 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command"); 5614 5615 /* 5616 * Command is in flight, or possibly already completed 5617 * by the firmware (but not to the scsi mid layer) but we can't 5618 * distinguish which. Send the abort down. 5619 */ 5620 if (wait_for_available_abort_cmd(h)) { 5621 dev_warn(&h->pdev->dev, 5622 "%s FAILED, timeout waiting for an abort command to become available.\n", 5623 msg); 5624 cmd_free(h, abort); 5625 return FAILED; 5626 } 5627 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue); 5628 atomic_inc(&h->abort_cmds_available); 5629 wake_up_all(&h->abort_cmd_wait_queue); 5630 if (rc != 0) { 5631 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg); 5632 hpsa_show_dev_msg(KERN_WARNING, h, dev, 5633 "FAILED to abort command"); 5634 cmd_free(h, abort); 5635 return FAILED; 5636 } 5637 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg); 5638 wait_event(h->event_sync_wait_queue, 5639 abort->scsi_cmd != sc || lockup_detected(h)); 5640 cmd_free(h, abort); 5641 return !lockup_detected(h) ? SUCCESS : FAILED; 5642 } 5643 5644 /* 5645 * For operations with an associated SCSI command, a command block is allocated 5646 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the 5647 * block request tag as an index into a table of entries. cmd_tagged_free() is 5648 * the complement, although cmd_free() may be called instead. 5649 */ 5650 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h, 5651 struct scsi_cmnd *scmd) 5652 { 5653 int idx = hpsa_get_cmd_index(scmd); 5654 struct CommandList *c = h->cmd_pool + idx; 5655 5656 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) { 5657 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n", 5658 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1); 5659 /* The index value comes from the block layer, so if it's out of 5660 * bounds, it's probably not our bug. 5661 */ 5662 BUG(); 5663 } 5664 5665 atomic_inc(&c->refcount); 5666 if (unlikely(!hpsa_is_cmd_idle(c))) { 5667 /* 5668 * We expect that the SCSI layer will hand us a unique tag 5669 * value. Thus, there should never be a collision here between 5670 * two requests...because if the selected command isn't idle 5671 * then someone is going to be very disappointed. 5672 */ 5673 dev_err(&h->pdev->dev, 5674 "tag collision (tag=%d) in cmd_tagged_alloc().\n", 5675 idx); 5676 if (c->scsi_cmd != NULL) 5677 scsi_print_command(c->scsi_cmd); 5678 scsi_print_command(scmd); 5679 } 5680 5681 hpsa_cmd_partial_init(h, idx, c); 5682 return c; 5683 } 5684 5685 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c) 5686 { 5687 /* 5688 * Release our reference to the block. We don't need to do anything 5689 * else to free it, because it is accessed by index. (There's no point 5690 * in checking the result of the decrement, since we cannot guarantee 5691 * that there isn't a concurrent abort which is also accessing it.) 5692 */ 5693 (void)atomic_dec(&c->refcount); 5694 } 5695 5696 /* 5697 * For operations that cannot sleep, a command block is allocated at init, 5698 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 5699 * which ones are free or in use. Lock must be held when calling this. 5700 * cmd_free() is the complement. 5701 * This function never gives up and returns NULL. If it hangs, 5702 * another thread must call cmd_free() to free some tags. 5703 */ 5704 5705 static struct CommandList *cmd_alloc(struct ctlr_info *h) 5706 { 5707 struct CommandList *c; 5708 int refcount, i; 5709 int offset = 0; 5710 5711 /* 5712 * There is some *extremely* small but non-zero chance that that 5713 * multiple threads could get in here, and one thread could 5714 * be scanning through the list of bits looking for a free 5715 * one, but the free ones are always behind him, and other 5716 * threads sneak in behind him and eat them before he can 5717 * get to them, so that while there is always a free one, a 5718 * very unlucky thread might be starved anyway, never able to 5719 * beat the other threads. In reality, this happens so 5720 * infrequently as to be indistinguishable from never. 5721 * 5722 * Note that we start allocating commands before the SCSI host structure 5723 * is initialized. Since the search starts at bit zero, this 5724 * all works, since we have at least one command structure available; 5725 * however, it means that the structures with the low indexes have to be 5726 * reserved for driver-initiated requests, while requests from the block 5727 * layer will use the higher indexes. 5728 */ 5729 5730 for (;;) { 5731 i = find_next_zero_bit(h->cmd_pool_bits, 5732 HPSA_NRESERVED_CMDS, 5733 offset); 5734 if (unlikely(i >= HPSA_NRESERVED_CMDS)) { 5735 offset = 0; 5736 continue; 5737 } 5738 c = h->cmd_pool + i; 5739 refcount = atomic_inc_return(&c->refcount); 5740 if (unlikely(refcount > 1)) { 5741 cmd_free(h, c); /* already in use */ 5742 offset = (i + 1) % HPSA_NRESERVED_CMDS; 5743 continue; 5744 } 5745 set_bit(i & (BITS_PER_LONG - 1), 5746 h->cmd_pool_bits + (i / BITS_PER_LONG)); 5747 break; /* it's ours now. */ 5748 } 5749 hpsa_cmd_partial_init(h, i, c); 5750 return c; 5751 } 5752 5753 /* 5754 * This is the complementary operation to cmd_alloc(). Note, however, in some 5755 * corner cases it may also be used to free blocks allocated by 5756 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and 5757 * the clear-bit is harmless. 5758 */ 5759 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 5760 { 5761 if (atomic_dec_and_test(&c->refcount)) { 5762 int i; 5763 5764 i = c - h->cmd_pool; 5765 clear_bit(i & (BITS_PER_LONG - 1), 5766 h->cmd_pool_bits + (i / BITS_PER_LONG)); 5767 } 5768 } 5769 5770 #ifdef CONFIG_COMPAT 5771 5772 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, 5773 void __user *arg) 5774 { 5775 IOCTL32_Command_struct __user *arg32 = 5776 (IOCTL32_Command_struct __user *) arg; 5777 IOCTL_Command_struct arg64; 5778 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 5779 int err; 5780 u32 cp; 5781 5782 memset(&arg64, 0, sizeof(arg64)); 5783 err = 0; 5784 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 5785 sizeof(arg64.LUN_info)); 5786 err |= copy_from_user(&arg64.Request, &arg32->Request, 5787 sizeof(arg64.Request)); 5788 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 5789 sizeof(arg64.error_info)); 5790 err |= get_user(arg64.buf_size, &arg32->buf_size); 5791 err |= get_user(cp, &arg32->buf); 5792 arg64.buf = compat_ptr(cp); 5793 err |= copy_to_user(p, &arg64, sizeof(arg64)); 5794 5795 if (err) 5796 return -EFAULT; 5797 5798 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); 5799 if (err) 5800 return err; 5801 err |= copy_in_user(&arg32->error_info, &p->error_info, 5802 sizeof(arg32->error_info)); 5803 if (err) 5804 return -EFAULT; 5805 return err; 5806 } 5807 5808 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 5809 int cmd, void __user *arg) 5810 { 5811 BIG_IOCTL32_Command_struct __user *arg32 = 5812 (BIG_IOCTL32_Command_struct __user *) arg; 5813 BIG_IOCTL_Command_struct arg64; 5814 BIG_IOCTL_Command_struct __user *p = 5815 compat_alloc_user_space(sizeof(arg64)); 5816 int err; 5817 u32 cp; 5818 5819 memset(&arg64, 0, sizeof(arg64)); 5820 err = 0; 5821 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 5822 sizeof(arg64.LUN_info)); 5823 err |= copy_from_user(&arg64.Request, &arg32->Request, 5824 sizeof(arg64.Request)); 5825 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 5826 sizeof(arg64.error_info)); 5827 err |= get_user(arg64.buf_size, &arg32->buf_size); 5828 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 5829 err |= get_user(cp, &arg32->buf); 5830 arg64.buf = compat_ptr(cp); 5831 err |= copy_to_user(p, &arg64, sizeof(arg64)); 5832 5833 if (err) 5834 return -EFAULT; 5835 5836 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); 5837 if (err) 5838 return err; 5839 err |= copy_in_user(&arg32->error_info, &p->error_info, 5840 sizeof(arg32->error_info)); 5841 if (err) 5842 return -EFAULT; 5843 return err; 5844 } 5845 5846 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 5847 { 5848 switch (cmd) { 5849 case CCISS_GETPCIINFO: 5850 case CCISS_GETINTINFO: 5851 case CCISS_SETINTINFO: 5852 case CCISS_GETNODENAME: 5853 case CCISS_SETNODENAME: 5854 case CCISS_GETHEARTBEAT: 5855 case CCISS_GETBUSTYPES: 5856 case CCISS_GETFIRMVER: 5857 case CCISS_GETDRIVVER: 5858 case CCISS_REVALIDVOLS: 5859 case CCISS_DEREGDISK: 5860 case CCISS_REGNEWDISK: 5861 case CCISS_REGNEWD: 5862 case CCISS_RESCANDISK: 5863 case CCISS_GETLUNINFO: 5864 return hpsa_ioctl(dev, cmd, arg); 5865 5866 case CCISS_PASSTHRU32: 5867 return hpsa_ioctl32_passthru(dev, cmd, arg); 5868 case CCISS_BIG_PASSTHRU32: 5869 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 5870 5871 default: 5872 return -ENOIOCTLCMD; 5873 } 5874 } 5875 #endif 5876 5877 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 5878 { 5879 struct hpsa_pci_info pciinfo; 5880 5881 if (!argp) 5882 return -EINVAL; 5883 pciinfo.domain = pci_domain_nr(h->pdev->bus); 5884 pciinfo.bus = h->pdev->bus->number; 5885 pciinfo.dev_fn = h->pdev->devfn; 5886 pciinfo.board_id = h->board_id; 5887 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 5888 return -EFAULT; 5889 return 0; 5890 } 5891 5892 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 5893 { 5894 DriverVer_type DriverVer; 5895 unsigned char vmaj, vmin, vsubmin; 5896 int rc; 5897 5898 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 5899 &vmaj, &vmin, &vsubmin); 5900 if (rc != 3) { 5901 dev_info(&h->pdev->dev, "driver version string '%s' " 5902 "unrecognized.", HPSA_DRIVER_VERSION); 5903 vmaj = 0; 5904 vmin = 0; 5905 vsubmin = 0; 5906 } 5907 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 5908 if (!argp) 5909 return -EINVAL; 5910 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 5911 return -EFAULT; 5912 return 0; 5913 } 5914 5915 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 5916 { 5917 IOCTL_Command_struct iocommand; 5918 struct CommandList *c; 5919 char *buff = NULL; 5920 u64 temp64; 5921 int rc = 0; 5922 5923 if (!argp) 5924 return -EINVAL; 5925 if (!capable(CAP_SYS_RAWIO)) 5926 return -EPERM; 5927 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 5928 return -EFAULT; 5929 if ((iocommand.buf_size < 1) && 5930 (iocommand.Request.Type.Direction != XFER_NONE)) { 5931 return -EINVAL; 5932 } 5933 if (iocommand.buf_size > 0) { 5934 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 5935 if (buff == NULL) 5936 return -ENOMEM; 5937 if (iocommand.Request.Type.Direction & XFER_WRITE) { 5938 /* Copy the data into the buffer we created */ 5939 if (copy_from_user(buff, iocommand.buf, 5940 iocommand.buf_size)) { 5941 rc = -EFAULT; 5942 goto out_kfree; 5943 } 5944 } else { 5945 memset(buff, 0, iocommand.buf_size); 5946 } 5947 } 5948 c = cmd_alloc(h); 5949 5950 /* Fill in the command type */ 5951 c->cmd_type = CMD_IOCTL_PEND; 5952 c->scsi_cmd = SCSI_CMD_BUSY; 5953 /* Fill in Command Header */ 5954 c->Header.ReplyQueue = 0; /* unused in simple mode */ 5955 if (iocommand.buf_size > 0) { /* buffer to fill */ 5956 c->Header.SGList = 1; 5957 c->Header.SGTotal = cpu_to_le16(1); 5958 } else { /* no buffers to fill */ 5959 c->Header.SGList = 0; 5960 c->Header.SGTotal = cpu_to_le16(0); 5961 } 5962 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 5963 5964 /* Fill in Request block */ 5965 memcpy(&c->Request, &iocommand.Request, 5966 sizeof(c->Request)); 5967 5968 /* Fill in the scatter gather information */ 5969 if (iocommand.buf_size > 0) { 5970 temp64 = pci_map_single(h->pdev, buff, 5971 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 5972 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { 5973 c->SG[0].Addr = cpu_to_le64(0); 5974 c->SG[0].Len = cpu_to_le32(0); 5975 rc = -ENOMEM; 5976 goto out; 5977 } 5978 c->SG[0].Addr = cpu_to_le64(temp64); 5979 c->SG[0].Len = cpu_to_le32(iocommand.buf_size); 5980 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ 5981 } 5982 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); 5983 if (iocommand.buf_size > 0) 5984 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 5985 check_ioctl_unit_attention(h, c); 5986 if (rc) { 5987 rc = -EIO; 5988 goto out; 5989 } 5990 5991 /* Copy the error information out */ 5992 memcpy(&iocommand.error_info, c->err_info, 5993 sizeof(iocommand.error_info)); 5994 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 5995 rc = -EFAULT; 5996 goto out; 5997 } 5998 if ((iocommand.Request.Type.Direction & XFER_READ) && 5999 iocommand.buf_size > 0) { 6000 /* Copy the data out of the buffer we created */ 6001 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 6002 rc = -EFAULT; 6003 goto out; 6004 } 6005 } 6006 out: 6007 cmd_free(h, c); 6008 out_kfree: 6009 kfree(buff); 6010 return rc; 6011 } 6012 6013 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 6014 { 6015 BIG_IOCTL_Command_struct *ioc; 6016 struct CommandList *c; 6017 unsigned char **buff = NULL; 6018 int *buff_size = NULL; 6019 u64 temp64; 6020 BYTE sg_used = 0; 6021 int status = 0; 6022 u32 left; 6023 u32 sz; 6024 BYTE __user *data_ptr; 6025 6026 if (!argp) 6027 return -EINVAL; 6028 if (!capable(CAP_SYS_RAWIO)) 6029 return -EPERM; 6030 ioc = (BIG_IOCTL_Command_struct *) 6031 kmalloc(sizeof(*ioc), GFP_KERNEL); 6032 if (!ioc) { 6033 status = -ENOMEM; 6034 goto cleanup1; 6035 } 6036 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 6037 status = -EFAULT; 6038 goto cleanup1; 6039 } 6040 if ((ioc->buf_size < 1) && 6041 (ioc->Request.Type.Direction != XFER_NONE)) { 6042 status = -EINVAL; 6043 goto cleanup1; 6044 } 6045 /* Check kmalloc limits using all SGs */ 6046 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 6047 status = -EINVAL; 6048 goto cleanup1; 6049 } 6050 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 6051 status = -EINVAL; 6052 goto cleanup1; 6053 } 6054 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); 6055 if (!buff) { 6056 status = -ENOMEM; 6057 goto cleanup1; 6058 } 6059 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); 6060 if (!buff_size) { 6061 status = -ENOMEM; 6062 goto cleanup1; 6063 } 6064 left = ioc->buf_size; 6065 data_ptr = ioc->buf; 6066 while (left) { 6067 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 6068 buff_size[sg_used] = sz; 6069 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 6070 if (buff[sg_used] == NULL) { 6071 status = -ENOMEM; 6072 goto cleanup1; 6073 } 6074 if (ioc->Request.Type.Direction & XFER_WRITE) { 6075 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 6076 status = -EFAULT; 6077 goto cleanup1; 6078 } 6079 } else 6080 memset(buff[sg_used], 0, sz); 6081 left -= sz; 6082 data_ptr += sz; 6083 sg_used++; 6084 } 6085 c = cmd_alloc(h); 6086 6087 c->cmd_type = CMD_IOCTL_PEND; 6088 c->scsi_cmd = SCSI_CMD_BUSY; 6089 c->Header.ReplyQueue = 0; 6090 c->Header.SGList = (u8) sg_used; 6091 c->Header.SGTotal = cpu_to_le16(sg_used); 6092 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 6093 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 6094 if (ioc->buf_size > 0) { 6095 int i; 6096 for (i = 0; i < sg_used; i++) { 6097 temp64 = pci_map_single(h->pdev, buff[i], 6098 buff_size[i], PCI_DMA_BIDIRECTIONAL); 6099 if (dma_mapping_error(&h->pdev->dev, 6100 (dma_addr_t) temp64)) { 6101 c->SG[i].Addr = cpu_to_le64(0); 6102 c->SG[i].Len = cpu_to_le32(0); 6103 hpsa_pci_unmap(h->pdev, c, i, 6104 PCI_DMA_BIDIRECTIONAL); 6105 status = -ENOMEM; 6106 goto cleanup0; 6107 } 6108 c->SG[i].Addr = cpu_to_le64(temp64); 6109 c->SG[i].Len = cpu_to_le32(buff_size[i]); 6110 c->SG[i].Ext = cpu_to_le32(0); 6111 } 6112 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); 6113 } 6114 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT); 6115 if (sg_used) 6116 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 6117 check_ioctl_unit_attention(h, c); 6118 if (status) { 6119 status = -EIO; 6120 goto cleanup0; 6121 } 6122 6123 /* Copy the error information out */ 6124 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 6125 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 6126 status = -EFAULT; 6127 goto cleanup0; 6128 } 6129 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { 6130 int i; 6131 6132 /* Copy the data out of the buffer we created */ 6133 BYTE __user *ptr = ioc->buf; 6134 for (i = 0; i < sg_used; i++) { 6135 if (copy_to_user(ptr, buff[i], buff_size[i])) { 6136 status = -EFAULT; 6137 goto cleanup0; 6138 } 6139 ptr += buff_size[i]; 6140 } 6141 } 6142 status = 0; 6143 cleanup0: 6144 cmd_free(h, c); 6145 cleanup1: 6146 if (buff) { 6147 int i; 6148 6149 for (i = 0; i < sg_used; i++) 6150 kfree(buff[i]); 6151 kfree(buff); 6152 } 6153 kfree(buff_size); 6154 kfree(ioc); 6155 return status; 6156 } 6157 6158 static void check_ioctl_unit_attention(struct ctlr_info *h, 6159 struct CommandList *c) 6160 { 6161 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 6162 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 6163 (void) check_for_unit_attention(h, c); 6164 } 6165 6166 /* 6167 * ioctl 6168 */ 6169 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) 6170 { 6171 struct ctlr_info *h; 6172 void __user *argp = (void __user *)arg; 6173 int rc; 6174 6175 h = sdev_to_hba(dev); 6176 6177 switch (cmd) { 6178 case CCISS_DEREGDISK: 6179 case CCISS_REGNEWDISK: 6180 case CCISS_REGNEWD: 6181 hpsa_scan_start(h->scsi_host); 6182 return 0; 6183 case CCISS_GETPCIINFO: 6184 return hpsa_getpciinfo_ioctl(h, argp); 6185 case CCISS_GETDRIVVER: 6186 return hpsa_getdrivver_ioctl(h, argp); 6187 case CCISS_PASSTHRU: 6188 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6189 return -EAGAIN; 6190 rc = hpsa_passthru_ioctl(h, argp); 6191 atomic_inc(&h->passthru_cmds_avail); 6192 return rc; 6193 case CCISS_BIG_PASSTHRU: 6194 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0) 6195 return -EAGAIN; 6196 rc = hpsa_big_passthru_ioctl(h, argp); 6197 atomic_inc(&h->passthru_cmds_avail); 6198 return rc; 6199 default: 6200 return -ENOTTY; 6201 } 6202 } 6203 6204 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, 6205 u8 reset_type) 6206 { 6207 struct CommandList *c; 6208 6209 c = cmd_alloc(h); 6210 6211 /* fill_cmd can't fail here, no data buffer to map */ 6212 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 6213 RAID_CTLR_LUNID, TYPE_MSG); 6214 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 6215 c->waiting = NULL; 6216 enqueue_cmd_and_start_io(h, c); 6217 /* Don't wait for completion, the reset won't complete. Don't free 6218 * the command either. This is the last command we will send before 6219 * re-initializing everything, so it doesn't matter and won't leak. 6220 */ 6221 return; 6222 } 6223 6224 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 6225 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, 6226 int cmd_type) 6227 { 6228 int pci_dir = XFER_NONE; 6229 u64 tag; /* for commands to be aborted */ 6230 6231 c->cmd_type = CMD_IOCTL_PEND; 6232 c->scsi_cmd = SCSI_CMD_BUSY; 6233 c->Header.ReplyQueue = 0; 6234 if (buff != NULL && size > 0) { 6235 c->Header.SGList = 1; 6236 c->Header.SGTotal = cpu_to_le16(1); 6237 } else { 6238 c->Header.SGList = 0; 6239 c->Header.SGTotal = cpu_to_le16(0); 6240 } 6241 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 6242 6243 if (cmd_type == TYPE_CMD) { 6244 switch (cmd) { 6245 case HPSA_INQUIRY: 6246 /* are we trying to read a vital product page */ 6247 if (page_code & VPD_PAGE) { 6248 c->Request.CDB[1] = 0x01; 6249 c->Request.CDB[2] = (page_code & 0xff); 6250 } 6251 c->Request.CDBLen = 6; 6252 c->Request.type_attr_dir = 6253 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6254 c->Request.Timeout = 0; 6255 c->Request.CDB[0] = HPSA_INQUIRY; 6256 c->Request.CDB[4] = size & 0xFF; 6257 break; 6258 case HPSA_REPORT_LOG: 6259 case HPSA_REPORT_PHYS: 6260 /* Talking to controller so It's a physical command 6261 mode = 00 target = 0. Nothing to write. 6262 */ 6263 c->Request.CDBLen = 12; 6264 c->Request.type_attr_dir = 6265 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6266 c->Request.Timeout = 0; 6267 c->Request.CDB[0] = cmd; 6268 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6269 c->Request.CDB[7] = (size >> 16) & 0xFF; 6270 c->Request.CDB[8] = (size >> 8) & 0xFF; 6271 c->Request.CDB[9] = size & 0xFF; 6272 break; 6273 case HPSA_CACHE_FLUSH: 6274 c->Request.CDBLen = 12; 6275 c->Request.type_attr_dir = 6276 TYPE_ATTR_DIR(cmd_type, 6277 ATTR_SIMPLE, XFER_WRITE); 6278 c->Request.Timeout = 0; 6279 c->Request.CDB[0] = BMIC_WRITE; 6280 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 6281 c->Request.CDB[7] = (size >> 8) & 0xFF; 6282 c->Request.CDB[8] = size & 0xFF; 6283 break; 6284 case TEST_UNIT_READY: 6285 c->Request.CDBLen = 6; 6286 c->Request.type_attr_dir = 6287 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6288 c->Request.Timeout = 0; 6289 break; 6290 case HPSA_GET_RAID_MAP: 6291 c->Request.CDBLen = 12; 6292 c->Request.type_attr_dir = 6293 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6294 c->Request.Timeout = 0; 6295 c->Request.CDB[0] = HPSA_CISS_READ; 6296 c->Request.CDB[1] = cmd; 6297 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 6298 c->Request.CDB[7] = (size >> 16) & 0xFF; 6299 c->Request.CDB[8] = (size >> 8) & 0xFF; 6300 c->Request.CDB[9] = size & 0xFF; 6301 break; 6302 case BMIC_SENSE_CONTROLLER_PARAMETERS: 6303 c->Request.CDBLen = 10; 6304 c->Request.type_attr_dir = 6305 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6306 c->Request.Timeout = 0; 6307 c->Request.CDB[0] = BMIC_READ; 6308 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; 6309 c->Request.CDB[7] = (size >> 16) & 0xFF; 6310 c->Request.CDB[8] = (size >> 8) & 0xFF; 6311 break; 6312 case BMIC_IDENTIFY_PHYSICAL_DEVICE: 6313 c->Request.CDBLen = 10; 6314 c->Request.type_attr_dir = 6315 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); 6316 c->Request.Timeout = 0; 6317 c->Request.CDB[0] = BMIC_READ; 6318 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE; 6319 c->Request.CDB[7] = (size >> 16) & 0xFF; 6320 c->Request.CDB[8] = (size >> 8) & 0XFF; 6321 break; 6322 default: 6323 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 6324 BUG(); 6325 return -1; 6326 } 6327 } else if (cmd_type == TYPE_MSG) { 6328 switch (cmd) { 6329 6330 case HPSA_DEVICE_RESET_MSG: 6331 c->Request.CDBLen = 16; 6332 c->Request.type_attr_dir = 6333 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); 6334 c->Request.Timeout = 0; /* Don't time out */ 6335 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 6336 c->Request.CDB[0] = cmd; 6337 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; 6338 /* If bytes 4-7 are zero, it means reset the */ 6339 /* LunID device */ 6340 c->Request.CDB[4] = 0x00; 6341 c->Request.CDB[5] = 0x00; 6342 c->Request.CDB[6] = 0x00; 6343 c->Request.CDB[7] = 0x00; 6344 break; 6345 case HPSA_ABORT_MSG: 6346 memcpy(&tag, buff, sizeof(tag)); 6347 dev_dbg(&h->pdev->dev, 6348 "Abort Tag:0x%016llx using rqst Tag:0x%016llx", 6349 tag, c->Header.tag); 6350 c->Request.CDBLen = 16; 6351 c->Request.type_attr_dir = 6352 TYPE_ATTR_DIR(cmd_type, 6353 ATTR_SIMPLE, XFER_WRITE); 6354 c->Request.Timeout = 0; /* Don't time out */ 6355 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; 6356 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; 6357 c->Request.CDB[2] = 0x00; /* reserved */ 6358 c->Request.CDB[3] = 0x00; /* reserved */ 6359 /* Tag to abort goes in CDB[4]-CDB[11] */ 6360 memcpy(&c->Request.CDB[4], &tag, sizeof(tag)); 6361 c->Request.CDB[12] = 0x00; /* reserved */ 6362 c->Request.CDB[13] = 0x00; /* reserved */ 6363 c->Request.CDB[14] = 0x00; /* reserved */ 6364 c->Request.CDB[15] = 0x00; /* reserved */ 6365 break; 6366 default: 6367 dev_warn(&h->pdev->dev, "unknown message type %d\n", 6368 cmd); 6369 BUG(); 6370 } 6371 } else { 6372 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 6373 BUG(); 6374 } 6375 6376 switch (GET_DIR(c->Request.type_attr_dir)) { 6377 case XFER_READ: 6378 pci_dir = PCI_DMA_FROMDEVICE; 6379 break; 6380 case XFER_WRITE: 6381 pci_dir = PCI_DMA_TODEVICE; 6382 break; 6383 case XFER_NONE: 6384 pci_dir = PCI_DMA_NONE; 6385 break; 6386 default: 6387 pci_dir = PCI_DMA_BIDIRECTIONAL; 6388 } 6389 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) 6390 return -1; 6391 return 0; 6392 } 6393 6394 /* 6395 * Map (physical) PCI mem into (virtual) kernel space 6396 */ 6397 static void __iomem *remap_pci_mem(ulong base, ulong size) 6398 { 6399 ulong page_base = ((ulong) base) & PAGE_MASK; 6400 ulong page_offs = ((ulong) base) - page_base; 6401 void __iomem *page_remapped = ioremap_nocache(page_base, 6402 page_offs + size); 6403 6404 return page_remapped ? (page_remapped + page_offs) : NULL; 6405 } 6406 6407 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) 6408 { 6409 return h->access.command_completed(h, q); 6410 } 6411 6412 static inline bool interrupt_pending(struct ctlr_info *h) 6413 { 6414 return h->access.intr_pending(h); 6415 } 6416 6417 static inline long interrupt_not_for_us(struct ctlr_info *h) 6418 { 6419 return (h->access.intr_pending(h) == 0) || 6420 (h->interrupts_enabled == 0); 6421 } 6422 6423 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 6424 u32 raw_tag) 6425 { 6426 if (unlikely(tag_index >= h->nr_cmds)) { 6427 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 6428 return 1; 6429 } 6430 return 0; 6431 } 6432 6433 static inline void finish_cmd(struct CommandList *c) 6434 { 6435 dial_up_lockup_detection_on_fw_flash_complete(c->h, c); 6436 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI 6437 || c->cmd_type == CMD_IOACCEL2)) 6438 complete_scsi_command(c); 6439 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF) 6440 complete(c->waiting); 6441 } 6442 6443 6444 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 6445 { 6446 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 6447 #define HPSA_SIMPLE_ERROR_BITS 0x03 6448 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 6449 return tag & ~HPSA_SIMPLE_ERROR_BITS; 6450 return tag & ~HPSA_PERF_ERROR_BITS; 6451 } 6452 6453 /* process completion of an indexed ("direct lookup") command */ 6454 static inline void process_indexed_cmd(struct ctlr_info *h, 6455 u32 raw_tag) 6456 { 6457 u32 tag_index; 6458 struct CommandList *c; 6459 6460 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT; 6461 if (!bad_tag(h, tag_index, raw_tag)) { 6462 c = h->cmd_pool + tag_index; 6463 finish_cmd(c); 6464 } 6465 } 6466 6467 /* Some controllers, like p400, will give us one interrupt 6468 * after a soft reset, even if we turned interrupts off. 6469 * Only need to check for this in the hpsa_xxx_discard_completions 6470 * functions. 6471 */ 6472 static int ignore_bogus_interrupt(struct ctlr_info *h) 6473 { 6474 if (likely(!reset_devices)) 6475 return 0; 6476 6477 if (likely(h->interrupts_enabled)) 6478 return 0; 6479 6480 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 6481 "(known firmware bug.) Ignoring.\n"); 6482 6483 return 1; 6484 } 6485 6486 /* 6487 * Convert &h->q[x] (passed to interrupt handlers) back to h. 6488 * Relies on (h-q[x] == x) being true for x such that 6489 * 0 <= x < MAX_REPLY_QUEUES. 6490 */ 6491 static struct ctlr_info *queue_to_hba(u8 *queue) 6492 { 6493 return container_of((queue - *queue), struct ctlr_info, q[0]); 6494 } 6495 6496 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) 6497 { 6498 struct ctlr_info *h = queue_to_hba(queue); 6499 u8 q = *(u8 *) queue; 6500 u32 raw_tag; 6501 6502 if (ignore_bogus_interrupt(h)) 6503 return IRQ_NONE; 6504 6505 if (interrupt_not_for_us(h)) 6506 return IRQ_NONE; 6507 h->last_intr_timestamp = get_jiffies_64(); 6508 while (interrupt_pending(h)) { 6509 raw_tag = get_next_completion(h, q); 6510 while (raw_tag != FIFO_EMPTY) 6511 raw_tag = next_command(h, q); 6512 } 6513 return IRQ_HANDLED; 6514 } 6515 6516 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) 6517 { 6518 struct ctlr_info *h = queue_to_hba(queue); 6519 u32 raw_tag; 6520 u8 q = *(u8 *) queue; 6521 6522 if (ignore_bogus_interrupt(h)) 6523 return IRQ_NONE; 6524 6525 h->last_intr_timestamp = get_jiffies_64(); 6526 raw_tag = get_next_completion(h, q); 6527 while (raw_tag != FIFO_EMPTY) 6528 raw_tag = next_command(h, q); 6529 return IRQ_HANDLED; 6530 } 6531 6532 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) 6533 { 6534 struct ctlr_info *h = queue_to_hba((u8 *) queue); 6535 u32 raw_tag; 6536 u8 q = *(u8 *) queue; 6537 6538 if (interrupt_not_for_us(h)) 6539 return IRQ_NONE; 6540 h->last_intr_timestamp = get_jiffies_64(); 6541 while (interrupt_pending(h)) { 6542 raw_tag = get_next_completion(h, q); 6543 while (raw_tag != FIFO_EMPTY) { 6544 process_indexed_cmd(h, raw_tag); 6545 raw_tag = next_command(h, q); 6546 } 6547 } 6548 return IRQ_HANDLED; 6549 } 6550 6551 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) 6552 { 6553 struct ctlr_info *h = queue_to_hba(queue); 6554 u32 raw_tag; 6555 u8 q = *(u8 *) queue; 6556 6557 h->last_intr_timestamp = get_jiffies_64(); 6558 raw_tag = get_next_completion(h, q); 6559 while (raw_tag != FIFO_EMPTY) { 6560 process_indexed_cmd(h, raw_tag); 6561 raw_tag = next_command(h, q); 6562 } 6563 return IRQ_HANDLED; 6564 } 6565 6566 /* Send a message CDB to the firmware. Careful, this only works 6567 * in simple mode, not performant mode due to the tag lookup. 6568 * We only ever use this immediately after a controller reset. 6569 */ 6570 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 6571 unsigned char type) 6572 { 6573 struct Command { 6574 struct CommandListHeader CommandHeader; 6575 struct RequestBlock Request; 6576 struct ErrDescriptor ErrorDescriptor; 6577 }; 6578 struct Command *cmd; 6579 static const size_t cmd_sz = sizeof(*cmd) + 6580 sizeof(cmd->ErrorDescriptor); 6581 dma_addr_t paddr64; 6582 __le32 paddr32; 6583 u32 tag; 6584 void __iomem *vaddr; 6585 int i, err; 6586 6587 vaddr = pci_ioremap_bar(pdev, 0); 6588 if (vaddr == NULL) 6589 return -ENOMEM; 6590 6591 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 6592 * CCISS commands, so they must be allocated from the lower 4GiB of 6593 * memory. 6594 */ 6595 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 6596 if (err) { 6597 iounmap(vaddr); 6598 return err; 6599 } 6600 6601 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 6602 if (cmd == NULL) { 6603 iounmap(vaddr); 6604 return -ENOMEM; 6605 } 6606 6607 /* This must fit, because of the 32-bit consistent DMA mask. Also, 6608 * although there's no guarantee, we assume that the address is at 6609 * least 4-byte aligned (most likely, it's page-aligned). 6610 */ 6611 paddr32 = cpu_to_le32(paddr64); 6612 6613 cmd->CommandHeader.ReplyQueue = 0; 6614 cmd->CommandHeader.SGList = 0; 6615 cmd->CommandHeader.SGTotal = cpu_to_le16(0); 6616 cmd->CommandHeader.tag = cpu_to_le64(paddr64); 6617 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 6618 6619 cmd->Request.CDBLen = 16; 6620 cmd->Request.type_attr_dir = 6621 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); 6622 cmd->Request.Timeout = 0; /* Don't time out */ 6623 cmd->Request.CDB[0] = opcode; 6624 cmd->Request.CDB[1] = type; 6625 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 6626 cmd->ErrorDescriptor.Addr = 6627 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd))); 6628 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); 6629 6630 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET); 6631 6632 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 6633 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 6634 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64) 6635 break; 6636 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 6637 } 6638 6639 iounmap(vaddr); 6640 6641 /* we leak the DMA buffer here ... no choice since the controller could 6642 * still complete the command. 6643 */ 6644 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 6645 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 6646 opcode, type); 6647 return -ETIMEDOUT; 6648 } 6649 6650 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 6651 6652 if (tag & HPSA_ERROR_BIT) { 6653 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 6654 opcode, type); 6655 return -EIO; 6656 } 6657 6658 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 6659 opcode, type); 6660 return 0; 6661 } 6662 6663 #define hpsa_noop(p) hpsa_message(p, 3, 0) 6664 6665 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 6666 void __iomem *vaddr, u32 use_doorbell) 6667 { 6668 6669 if (use_doorbell) { 6670 /* For everything after the P600, the PCI power state method 6671 * of resetting the controller doesn't work, so we have this 6672 * other way using the doorbell register. 6673 */ 6674 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 6675 writel(use_doorbell, vaddr + SA5_DOORBELL); 6676 6677 /* PMC hardware guys tell us we need a 10 second delay after 6678 * doorbell reset and before any attempt to talk to the board 6679 * at all to ensure that this actually works and doesn't fall 6680 * over in some weird corner cases. 6681 */ 6682 msleep(10000); 6683 } else { /* Try to do it the PCI power state way */ 6684 6685 /* Quoting from the Open CISS Specification: "The Power 6686 * Management Control/Status Register (CSR) controls the power 6687 * state of the device. The normal operating state is D0, 6688 * CSR=00h. The software off state is D3, CSR=03h. To reset 6689 * the controller, place the interface device in D3 then to D0, 6690 * this causes a secondary PCI reset which will reset the 6691 * controller." */ 6692 6693 int rc = 0; 6694 6695 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 6696 6697 /* enter the D3hot power management state */ 6698 rc = pci_set_power_state(pdev, PCI_D3hot); 6699 if (rc) 6700 return rc; 6701 6702 msleep(500); 6703 6704 /* enter the D0 power management state */ 6705 rc = pci_set_power_state(pdev, PCI_D0); 6706 if (rc) 6707 return rc; 6708 6709 /* 6710 * The P600 requires a small delay when changing states. 6711 * Otherwise we may think the board did not reset and we bail. 6712 * This for kdump only and is particular to the P600. 6713 */ 6714 msleep(500); 6715 } 6716 return 0; 6717 } 6718 6719 static void init_driver_version(char *driver_version, int len) 6720 { 6721 memset(driver_version, 0, len); 6722 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 6723 } 6724 6725 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) 6726 { 6727 char *driver_version; 6728 int i, size = sizeof(cfgtable->driver_version); 6729 6730 driver_version = kmalloc(size, GFP_KERNEL); 6731 if (!driver_version) 6732 return -ENOMEM; 6733 6734 init_driver_version(driver_version, size); 6735 for (i = 0; i < size; i++) 6736 writeb(driver_version[i], &cfgtable->driver_version[i]); 6737 kfree(driver_version); 6738 return 0; 6739 } 6740 6741 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, 6742 unsigned char *driver_ver) 6743 { 6744 int i; 6745 6746 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 6747 driver_ver[i] = readb(&cfgtable->driver_version[i]); 6748 } 6749 6750 static int controller_reset_failed(struct CfgTable __iomem *cfgtable) 6751 { 6752 6753 char *driver_ver, *old_driver_ver; 6754 int rc, size = sizeof(cfgtable->driver_version); 6755 6756 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 6757 if (!old_driver_ver) 6758 return -ENOMEM; 6759 driver_ver = old_driver_ver + size; 6760 6761 /* After a reset, the 32 bytes of "driver version" in the cfgtable 6762 * should have been changed, otherwise we know the reset failed. 6763 */ 6764 init_driver_version(old_driver_ver, size); 6765 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 6766 rc = !memcmp(driver_ver, old_driver_ver, size); 6767 kfree(old_driver_ver); 6768 return rc; 6769 } 6770 /* This does a hard reset of the controller using PCI power management 6771 * states or the using the doorbell register. 6772 */ 6773 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id) 6774 { 6775 u64 cfg_offset; 6776 u32 cfg_base_addr; 6777 u64 cfg_base_addr_index; 6778 void __iomem *vaddr; 6779 unsigned long paddr; 6780 u32 misc_fw_support; 6781 int rc; 6782 struct CfgTable __iomem *cfgtable; 6783 u32 use_doorbell; 6784 u16 command_register; 6785 6786 /* For controllers as old as the P600, this is very nearly 6787 * the same thing as 6788 * 6789 * pci_save_state(pci_dev); 6790 * pci_set_power_state(pci_dev, PCI_D3hot); 6791 * pci_set_power_state(pci_dev, PCI_D0); 6792 * pci_restore_state(pci_dev); 6793 * 6794 * For controllers newer than the P600, the pci power state 6795 * method of resetting doesn't work so we have another way 6796 * using the doorbell register. 6797 */ 6798 6799 if (!ctlr_is_resettable(board_id)) { 6800 dev_warn(&pdev->dev, "Controller not resettable\n"); 6801 return -ENODEV; 6802 } 6803 6804 /* if controller is soft- but not hard resettable... */ 6805 if (!ctlr_is_hard_resettable(board_id)) 6806 return -ENOTSUPP; /* try soft reset later. */ 6807 6808 /* Save the PCI command register */ 6809 pci_read_config_word(pdev, 4, &command_register); 6810 pci_save_state(pdev); 6811 6812 /* find the first memory BAR, so we can find the cfg table */ 6813 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 6814 if (rc) 6815 return rc; 6816 vaddr = remap_pci_mem(paddr, 0x250); 6817 if (!vaddr) 6818 return -ENOMEM; 6819 6820 /* find cfgtable in order to check if reset via doorbell is supported */ 6821 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 6822 &cfg_base_addr_index, &cfg_offset); 6823 if (rc) 6824 goto unmap_vaddr; 6825 cfgtable = remap_pci_mem(pci_resource_start(pdev, 6826 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 6827 if (!cfgtable) { 6828 rc = -ENOMEM; 6829 goto unmap_vaddr; 6830 } 6831 rc = write_driver_ver_to_cfgtable(cfgtable); 6832 if (rc) 6833 goto unmap_cfgtable; 6834 6835 /* If reset via doorbell register is supported, use that. 6836 * There are two such methods. Favor the newest method. 6837 */ 6838 misc_fw_support = readl(&cfgtable->misc_fw_support); 6839 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 6840 if (use_doorbell) { 6841 use_doorbell = DOORBELL_CTLR_RESET2; 6842 } else { 6843 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 6844 if (use_doorbell) { 6845 dev_warn(&pdev->dev, 6846 "Soft reset not supported. Firmware update is required.\n"); 6847 rc = -ENOTSUPP; /* try soft reset */ 6848 goto unmap_cfgtable; 6849 } 6850 } 6851 6852 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 6853 if (rc) 6854 goto unmap_cfgtable; 6855 6856 pci_restore_state(pdev); 6857 pci_write_config_word(pdev, 4, command_register); 6858 6859 /* Some devices (notably the HP Smart Array 5i Controller) 6860 need a little pause here */ 6861 msleep(HPSA_POST_RESET_PAUSE_MSECS); 6862 6863 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 6864 if (rc) { 6865 dev_warn(&pdev->dev, 6866 "Failed waiting for board to become ready after hard reset\n"); 6867 goto unmap_cfgtable; 6868 } 6869 6870 rc = controller_reset_failed(vaddr); 6871 if (rc < 0) 6872 goto unmap_cfgtable; 6873 if (rc) { 6874 dev_warn(&pdev->dev, "Unable to successfully reset " 6875 "controller. Will try soft reset.\n"); 6876 rc = -ENOTSUPP; 6877 } else { 6878 dev_info(&pdev->dev, "board ready after hard reset.\n"); 6879 } 6880 6881 unmap_cfgtable: 6882 iounmap(cfgtable); 6883 6884 unmap_vaddr: 6885 iounmap(vaddr); 6886 return rc; 6887 } 6888 6889 /* 6890 * We cannot read the structure directly, for portability we must use 6891 * the io functions. 6892 * This is for debug only. 6893 */ 6894 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) 6895 { 6896 #ifdef HPSA_DEBUG 6897 int i; 6898 char temp_name[17]; 6899 6900 dev_info(dev, "Controller Configuration information\n"); 6901 dev_info(dev, "------------------------------------\n"); 6902 for (i = 0; i < 4; i++) 6903 temp_name[i] = readb(&(tb->Signature[i])); 6904 temp_name[4] = '\0'; 6905 dev_info(dev, " Signature = %s\n", temp_name); 6906 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 6907 dev_info(dev, " Transport methods supported = 0x%x\n", 6908 readl(&(tb->TransportSupport))); 6909 dev_info(dev, " Transport methods active = 0x%x\n", 6910 readl(&(tb->TransportActive))); 6911 dev_info(dev, " Requested transport Method = 0x%x\n", 6912 readl(&(tb->HostWrite.TransportRequest))); 6913 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 6914 readl(&(tb->HostWrite.CoalIntDelay))); 6915 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 6916 readl(&(tb->HostWrite.CoalIntCount))); 6917 dev_info(dev, " Max outstanding commands = %d\n", 6918 readl(&(tb->CmdsOutMax))); 6919 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 6920 for (i = 0; i < 16; i++) 6921 temp_name[i] = readb(&(tb->ServerName[i])); 6922 temp_name[16] = '\0'; 6923 dev_info(dev, " Server Name = %s\n", temp_name); 6924 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 6925 readl(&(tb->HeartBeat))); 6926 #endif /* HPSA_DEBUG */ 6927 } 6928 6929 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 6930 { 6931 int i, offset, mem_type, bar_type; 6932 6933 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 6934 return 0; 6935 offset = 0; 6936 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 6937 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 6938 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 6939 offset += 4; 6940 else { 6941 mem_type = pci_resource_flags(pdev, i) & 6942 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 6943 switch (mem_type) { 6944 case PCI_BASE_ADDRESS_MEM_TYPE_32: 6945 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 6946 offset += 4; /* 32 bit */ 6947 break; 6948 case PCI_BASE_ADDRESS_MEM_TYPE_64: 6949 offset += 8; 6950 break; 6951 default: /* reserved in PCI 2.2 */ 6952 dev_warn(&pdev->dev, 6953 "base address is invalid\n"); 6954 return -1; 6955 break; 6956 } 6957 } 6958 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 6959 return i + 1; 6960 } 6961 return -1; 6962 } 6963 6964 static void hpsa_disable_interrupt_mode(struct ctlr_info *h) 6965 { 6966 if (h->msix_vector) { 6967 if (h->pdev->msix_enabled) 6968 pci_disable_msix(h->pdev); 6969 h->msix_vector = 0; 6970 } else if (h->msi_vector) { 6971 if (h->pdev->msi_enabled) 6972 pci_disable_msi(h->pdev); 6973 h->msi_vector = 0; 6974 } 6975 } 6976 6977 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 6978 * controllers that are capable. If not, we use legacy INTx mode. 6979 */ 6980 static void hpsa_interrupt_mode(struct ctlr_info *h) 6981 { 6982 #ifdef CONFIG_PCI_MSI 6983 int err, i; 6984 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; 6985 6986 for (i = 0; i < MAX_REPLY_QUEUES; i++) { 6987 hpsa_msix_entries[i].vector = 0; 6988 hpsa_msix_entries[i].entry = i; 6989 } 6990 6991 /* Some boards advertise MSI but don't really support it */ 6992 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 6993 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 6994 goto default_int_mode; 6995 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 6996 dev_info(&h->pdev->dev, "MSI-X capable controller\n"); 6997 h->msix_vector = MAX_REPLY_QUEUES; 6998 if (h->msix_vector > num_online_cpus()) 6999 h->msix_vector = num_online_cpus(); 7000 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries, 7001 1, h->msix_vector); 7002 if (err < 0) { 7003 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); 7004 h->msix_vector = 0; 7005 goto single_msi_mode; 7006 } else if (err < h->msix_vector) { 7007 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 7008 "available\n", err); 7009 } 7010 h->msix_vector = err; 7011 for (i = 0; i < h->msix_vector; i++) 7012 h->intr[i] = hpsa_msix_entries[i].vector; 7013 return; 7014 } 7015 single_msi_mode: 7016 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 7017 dev_info(&h->pdev->dev, "MSI capable controller\n"); 7018 if (!pci_enable_msi(h->pdev)) 7019 h->msi_vector = 1; 7020 else 7021 dev_warn(&h->pdev->dev, "MSI init failed\n"); 7022 } 7023 default_int_mode: 7024 #endif /* CONFIG_PCI_MSI */ 7025 /* if we get here we're going to use the default interrupt mode */ 7026 h->intr[h->intr_mode] = h->pdev->irq; 7027 } 7028 7029 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 7030 { 7031 int i; 7032 u32 subsystem_vendor_id, subsystem_device_id; 7033 7034 subsystem_vendor_id = pdev->subsystem_vendor; 7035 subsystem_device_id = pdev->subsystem_device; 7036 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 7037 subsystem_vendor_id; 7038 7039 for (i = 0; i < ARRAY_SIZE(products); i++) 7040 if (*board_id == products[i].board_id) 7041 return i; 7042 7043 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 7044 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 7045 !hpsa_allow_any) { 7046 dev_warn(&pdev->dev, "unrecognized board ID: " 7047 "0x%08x, ignoring.\n", *board_id); 7048 return -ENODEV; 7049 } 7050 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 7051 } 7052 7053 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 7054 unsigned long *memory_bar) 7055 { 7056 int i; 7057 7058 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 7059 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 7060 /* addressing mode bits already removed */ 7061 *memory_bar = pci_resource_start(pdev, i); 7062 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 7063 *memory_bar); 7064 return 0; 7065 } 7066 dev_warn(&pdev->dev, "no memory BAR found\n"); 7067 return -ENODEV; 7068 } 7069 7070 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, 7071 int wait_for_ready) 7072 { 7073 int i, iterations; 7074 u32 scratchpad; 7075 if (wait_for_ready) 7076 iterations = HPSA_BOARD_READY_ITERATIONS; 7077 else 7078 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 7079 7080 for (i = 0; i < iterations; i++) { 7081 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 7082 if (wait_for_ready) { 7083 if (scratchpad == HPSA_FIRMWARE_READY) 7084 return 0; 7085 } else { 7086 if (scratchpad != HPSA_FIRMWARE_READY) 7087 return 0; 7088 } 7089 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 7090 } 7091 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 7092 return -ENODEV; 7093 } 7094 7095 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, 7096 u32 *cfg_base_addr, u64 *cfg_base_addr_index, 7097 u64 *cfg_offset) 7098 { 7099 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 7100 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 7101 *cfg_base_addr &= (u32) 0x0000ffff; 7102 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 7103 if (*cfg_base_addr_index == -1) { 7104 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 7105 return -ENODEV; 7106 } 7107 return 0; 7108 } 7109 7110 static void hpsa_free_cfgtables(struct ctlr_info *h) 7111 { 7112 if (h->transtable) { 7113 iounmap(h->transtable); 7114 h->transtable = NULL; 7115 } 7116 if (h->cfgtable) { 7117 iounmap(h->cfgtable); 7118 h->cfgtable = NULL; 7119 } 7120 } 7121 7122 /* Find and map CISS config table and transfer table 7123 + * several items must be unmapped (freed) later 7124 + * */ 7125 static int hpsa_find_cfgtables(struct ctlr_info *h) 7126 { 7127 u64 cfg_offset; 7128 u32 cfg_base_addr; 7129 u64 cfg_base_addr_index; 7130 u32 trans_offset; 7131 int rc; 7132 7133 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 7134 &cfg_base_addr_index, &cfg_offset); 7135 if (rc) 7136 return rc; 7137 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 7138 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 7139 if (!h->cfgtable) { 7140 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n"); 7141 return -ENOMEM; 7142 } 7143 rc = write_driver_ver_to_cfgtable(h->cfgtable); 7144 if (rc) 7145 return rc; 7146 /* Find performant mode table. */ 7147 trans_offset = readl(&h->cfgtable->TransMethodOffset); 7148 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 7149 cfg_base_addr_index)+cfg_offset+trans_offset, 7150 sizeof(*h->transtable)); 7151 if (!h->transtable) { 7152 dev_err(&h->pdev->dev, "Failed mapping transfer table\n"); 7153 hpsa_free_cfgtables(h); 7154 return -ENOMEM; 7155 } 7156 return 0; 7157 } 7158 7159 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 7160 { 7161 #define MIN_MAX_COMMANDS 16 7162 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS); 7163 7164 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands); 7165 7166 /* Limit commands in memory limited kdump scenario. */ 7167 if (reset_devices && h->max_commands > 32) 7168 h->max_commands = 32; 7169 7170 if (h->max_commands < MIN_MAX_COMMANDS) { 7171 dev_warn(&h->pdev->dev, 7172 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n", 7173 h->max_commands, 7174 MIN_MAX_COMMANDS); 7175 h->max_commands = MIN_MAX_COMMANDS; 7176 } 7177 } 7178 7179 /* If the controller reports that the total max sg entries is greater than 512, 7180 * then we know that chained SG blocks work. (Original smart arrays did not 7181 * support chained SG blocks and would return zero for max sg entries.) 7182 */ 7183 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h) 7184 { 7185 return h->maxsgentries > 512; 7186 } 7187 7188 /* Interrogate the hardware for some limits: 7189 * max commands, max SG elements without chaining, and with chaining, 7190 * SG chain block size, etc. 7191 */ 7192 static void hpsa_find_board_params(struct ctlr_info *h) 7193 { 7194 hpsa_get_max_perf_mode_cmds(h); 7195 h->nr_cmds = h->max_commands; 7196 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 7197 h->fw_support = readl(&(h->cfgtable->misc_fw_support)); 7198 if (hpsa_supports_chained_sg_blocks(h)) { 7199 /* Limit in-command s/g elements to 32 save dma'able memory. */ 7200 h->max_cmd_sg_entries = 32; 7201 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; 7202 h->maxsgentries--; /* save one for chain pointer */ 7203 } else { 7204 /* 7205 * Original smart arrays supported at most 31 s/g entries 7206 * embedded inline in the command (trying to use more 7207 * would lock up the controller) 7208 */ 7209 h->max_cmd_sg_entries = 31; 7210 h->maxsgentries = 31; /* default to traditional values */ 7211 h->chainsize = 0; 7212 } 7213 7214 /* Find out what task management functions are supported and cache */ 7215 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 7216 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) 7217 dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); 7218 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 7219 dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); 7220 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)) 7221 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n"); 7222 } 7223 7224 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 7225 { 7226 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 7227 dev_err(&h->pdev->dev, "not a valid CISS config table\n"); 7228 return false; 7229 } 7230 return true; 7231 } 7232 7233 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) 7234 { 7235 u32 driver_support; 7236 7237 driver_support = readl(&(h->cfgtable->driver_support)); 7238 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 7239 #ifdef CONFIG_X86 7240 driver_support |= ENABLE_SCSI_PREFETCH; 7241 #endif 7242 driver_support |= ENABLE_UNIT_ATTN; 7243 writel(driver_support, &(h->cfgtable->driver_support)); 7244 } 7245 7246 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 7247 * in a prefetch beyond physical memory. 7248 */ 7249 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 7250 { 7251 u32 dma_prefetch; 7252 7253 if (h->board_id != 0x3225103C) 7254 return; 7255 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 7256 dma_prefetch |= 0x8000; 7257 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 7258 } 7259 7260 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) 7261 { 7262 int i; 7263 u32 doorbell_value; 7264 unsigned long flags; 7265 /* wait until the clear_event_notify bit 6 is cleared by controller. */ 7266 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) { 7267 spin_lock_irqsave(&h->lock, flags); 7268 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7269 spin_unlock_irqrestore(&h->lock, flags); 7270 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) 7271 goto done; 7272 /* delay and try again */ 7273 msleep(CLEAR_EVENT_WAIT_INTERVAL); 7274 } 7275 return -ENODEV; 7276 done: 7277 return 0; 7278 } 7279 7280 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 7281 { 7282 int i; 7283 u32 doorbell_value; 7284 unsigned long flags; 7285 7286 /* under certain very rare conditions, this can take awhile. 7287 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 7288 * as we enter this code.) 7289 */ 7290 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) { 7291 if (h->remove_in_progress) 7292 goto done; 7293 spin_lock_irqsave(&h->lock, flags); 7294 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 7295 spin_unlock_irqrestore(&h->lock, flags); 7296 if (!(doorbell_value & CFGTBL_ChangeReq)) 7297 goto done; 7298 /* delay and try again */ 7299 msleep(MODE_CHANGE_WAIT_INTERVAL); 7300 } 7301 return -ENODEV; 7302 done: 7303 return 0; 7304 } 7305 7306 /* return -ENODEV or other reason on error, 0 on success */ 7307 static int hpsa_enter_simple_mode(struct ctlr_info *h) 7308 { 7309 u32 trans_support; 7310 7311 trans_support = readl(&(h->cfgtable->TransportSupport)); 7312 if (!(trans_support & SIMPLE_MODE)) 7313 return -ENOTSUPP; 7314 7315 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 7316 7317 /* Update the field, and then ring the doorbell */ 7318 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 7319 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 7320 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7321 if (hpsa_wait_for_mode_change_ack(h)) 7322 goto error; 7323 print_cfg_table(&h->pdev->dev, h->cfgtable); 7324 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) 7325 goto error; 7326 h->transMethod = CFGTBL_Trans_Simple; 7327 return 0; 7328 error: 7329 dev_err(&h->pdev->dev, "failed to enter simple mode\n"); 7330 return -ENODEV; 7331 } 7332 7333 /* free items allocated or mapped by hpsa_pci_init */ 7334 static void hpsa_free_pci_init(struct ctlr_info *h) 7335 { 7336 hpsa_free_cfgtables(h); /* pci_init 4 */ 7337 iounmap(h->vaddr); /* pci_init 3 */ 7338 h->vaddr = NULL; 7339 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 7340 /* 7341 * call pci_disable_device before pci_release_regions per 7342 * Documentation/PCI/pci.txt 7343 */ 7344 pci_disable_device(h->pdev); /* pci_init 1 */ 7345 pci_release_regions(h->pdev); /* pci_init 2 */ 7346 } 7347 7348 /* several items must be freed later */ 7349 static int hpsa_pci_init(struct ctlr_info *h) 7350 { 7351 int prod_index, err; 7352 7353 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 7354 if (prod_index < 0) 7355 return prod_index; 7356 h->product_name = products[prod_index].product_name; 7357 h->access = *(products[prod_index].access); 7358 7359 h->needs_abort_tags_swizzled = 7360 ctlr_needs_abort_tags_swizzled(h->board_id); 7361 7362 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 7363 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 7364 7365 err = pci_enable_device(h->pdev); 7366 if (err) { 7367 dev_err(&h->pdev->dev, "failed to enable PCI device\n"); 7368 pci_disable_device(h->pdev); 7369 return err; 7370 } 7371 7372 err = pci_request_regions(h->pdev, HPSA); 7373 if (err) { 7374 dev_err(&h->pdev->dev, 7375 "failed to obtain PCI resources\n"); 7376 pci_disable_device(h->pdev); 7377 return err; 7378 } 7379 7380 pci_set_master(h->pdev); 7381 7382 hpsa_interrupt_mode(h); 7383 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 7384 if (err) 7385 goto clean2; /* intmode+region, pci */ 7386 h->vaddr = remap_pci_mem(h->paddr, 0x250); 7387 if (!h->vaddr) { 7388 dev_err(&h->pdev->dev, "failed to remap PCI mem\n"); 7389 err = -ENOMEM; 7390 goto clean2; /* intmode+region, pci */ 7391 } 7392 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7393 if (err) 7394 goto clean3; /* vaddr, intmode+region, pci */ 7395 err = hpsa_find_cfgtables(h); 7396 if (err) 7397 goto clean3; /* vaddr, intmode+region, pci */ 7398 hpsa_find_board_params(h); 7399 7400 if (!hpsa_CISS_signature_present(h)) { 7401 err = -ENODEV; 7402 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7403 } 7404 hpsa_set_driver_support_bits(h); 7405 hpsa_p600_dma_prefetch_quirk(h); 7406 err = hpsa_enter_simple_mode(h); 7407 if (err) 7408 goto clean4; /* cfgtables, vaddr, intmode+region, pci */ 7409 return 0; 7410 7411 clean4: /* cfgtables, vaddr, intmode+region, pci */ 7412 hpsa_free_cfgtables(h); 7413 clean3: /* vaddr, intmode+region, pci */ 7414 iounmap(h->vaddr); 7415 h->vaddr = NULL; 7416 clean2: /* intmode+region, pci */ 7417 hpsa_disable_interrupt_mode(h); 7418 /* 7419 * call pci_disable_device before pci_release_regions per 7420 * Documentation/PCI/pci.txt 7421 */ 7422 pci_disable_device(h->pdev); 7423 pci_release_regions(h->pdev); 7424 return err; 7425 } 7426 7427 static void hpsa_hba_inquiry(struct ctlr_info *h) 7428 { 7429 int rc; 7430 7431 #define HBA_INQUIRY_BYTE_COUNT 64 7432 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 7433 if (!h->hba_inquiry_data) 7434 return; 7435 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 7436 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 7437 if (rc != 0) { 7438 kfree(h->hba_inquiry_data); 7439 h->hba_inquiry_data = NULL; 7440 } 7441 } 7442 7443 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id) 7444 { 7445 int rc, i; 7446 void __iomem *vaddr; 7447 7448 if (!reset_devices) 7449 return 0; 7450 7451 /* kdump kernel is loading, we don't know in which state is 7452 * the pci interface. The dev->enable_cnt is equal zero 7453 * so we call enable+disable, wait a while and switch it on. 7454 */ 7455 rc = pci_enable_device(pdev); 7456 if (rc) { 7457 dev_warn(&pdev->dev, "Failed to enable PCI device\n"); 7458 return -ENODEV; 7459 } 7460 pci_disable_device(pdev); 7461 msleep(260); /* a randomly chosen number */ 7462 rc = pci_enable_device(pdev); 7463 if (rc) { 7464 dev_warn(&pdev->dev, "failed to enable device.\n"); 7465 return -ENODEV; 7466 } 7467 7468 pci_set_master(pdev); 7469 7470 vaddr = pci_ioremap_bar(pdev, 0); 7471 if (vaddr == NULL) { 7472 rc = -ENOMEM; 7473 goto out_disable; 7474 } 7475 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET); 7476 iounmap(vaddr); 7477 7478 /* Reset the controller with a PCI power-cycle or via doorbell */ 7479 rc = hpsa_kdump_hard_reset_controller(pdev, board_id); 7480 7481 /* -ENOTSUPP here means we cannot reset the controller 7482 * but it's already (and still) up and running in 7483 * "performant mode". Or, it might be 640x, which can't reset 7484 * due to concerns about shared bbwc between 6402/6404 pair. 7485 */ 7486 if (rc) 7487 goto out_disable; 7488 7489 /* Now try to get the controller to respond to a no-op */ 7490 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n"); 7491 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 7492 if (hpsa_noop(pdev) == 0) 7493 break; 7494 else 7495 dev_warn(&pdev->dev, "no-op failed%s\n", 7496 (i < 11 ? "; re-trying" : "")); 7497 } 7498 7499 out_disable: 7500 7501 pci_disable_device(pdev); 7502 return rc; 7503 } 7504 7505 static void hpsa_free_cmd_pool(struct ctlr_info *h) 7506 { 7507 kfree(h->cmd_pool_bits); 7508 h->cmd_pool_bits = NULL; 7509 if (h->cmd_pool) { 7510 pci_free_consistent(h->pdev, 7511 h->nr_cmds * sizeof(struct CommandList), 7512 h->cmd_pool, 7513 h->cmd_pool_dhandle); 7514 h->cmd_pool = NULL; 7515 h->cmd_pool_dhandle = 0; 7516 } 7517 if (h->errinfo_pool) { 7518 pci_free_consistent(h->pdev, 7519 h->nr_cmds * sizeof(struct ErrorInfo), 7520 h->errinfo_pool, 7521 h->errinfo_pool_dhandle); 7522 h->errinfo_pool = NULL; 7523 h->errinfo_pool_dhandle = 0; 7524 } 7525 } 7526 7527 static int hpsa_alloc_cmd_pool(struct ctlr_info *h) 7528 { 7529 h->cmd_pool_bits = kzalloc( 7530 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 7531 sizeof(unsigned long), GFP_KERNEL); 7532 h->cmd_pool = pci_alloc_consistent(h->pdev, 7533 h->nr_cmds * sizeof(*h->cmd_pool), 7534 &(h->cmd_pool_dhandle)); 7535 h->errinfo_pool = pci_alloc_consistent(h->pdev, 7536 h->nr_cmds * sizeof(*h->errinfo_pool), 7537 &(h->errinfo_pool_dhandle)); 7538 if ((h->cmd_pool_bits == NULL) 7539 || (h->cmd_pool == NULL) 7540 || (h->errinfo_pool == NULL)) { 7541 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 7542 goto clean_up; 7543 } 7544 hpsa_preinitialize_commands(h); 7545 return 0; 7546 clean_up: 7547 hpsa_free_cmd_pool(h); 7548 return -ENOMEM; 7549 } 7550 7551 static void hpsa_irq_affinity_hints(struct ctlr_info *h) 7552 { 7553 int i, cpu; 7554 7555 cpu = cpumask_first(cpu_online_mask); 7556 for (i = 0; i < h->msix_vector; i++) { 7557 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu)); 7558 cpu = cpumask_next(cpu, cpu_online_mask); 7559 } 7560 } 7561 7562 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */ 7563 static void hpsa_free_irqs(struct ctlr_info *h) 7564 { 7565 int i; 7566 7567 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { 7568 /* Single reply queue, only one irq to free */ 7569 i = h->intr_mode; 7570 irq_set_affinity_hint(h->intr[i], NULL); 7571 free_irq(h->intr[i], &h->q[i]); 7572 h->q[i] = 0; 7573 return; 7574 } 7575 7576 for (i = 0; i < h->msix_vector; i++) { 7577 irq_set_affinity_hint(h->intr[i], NULL); 7578 free_irq(h->intr[i], &h->q[i]); 7579 h->q[i] = 0; 7580 } 7581 for (; i < MAX_REPLY_QUEUES; i++) 7582 h->q[i] = 0; 7583 } 7584 7585 /* returns 0 on success; cleans up and returns -Enn on error */ 7586 static int hpsa_request_irqs(struct ctlr_info *h, 7587 irqreturn_t (*msixhandler)(int, void *), 7588 irqreturn_t (*intxhandler)(int, void *)) 7589 { 7590 int rc, i; 7591 7592 /* 7593 * initialize h->q[x] = x so that interrupt handlers know which 7594 * queue to process. 7595 */ 7596 for (i = 0; i < MAX_REPLY_QUEUES; i++) 7597 h->q[i] = (u8) i; 7598 7599 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { 7600 /* If performant mode and MSI-X, use multiple reply queues */ 7601 for (i = 0; i < h->msix_vector; i++) { 7602 sprintf(h->intrname[i], "%s-msix%d", h->devname, i); 7603 rc = request_irq(h->intr[i], msixhandler, 7604 0, h->intrname[i], 7605 &h->q[i]); 7606 if (rc) { 7607 int j; 7608 7609 dev_err(&h->pdev->dev, 7610 "failed to get irq %d for %s\n", 7611 h->intr[i], h->devname); 7612 for (j = 0; j < i; j++) { 7613 free_irq(h->intr[j], &h->q[j]); 7614 h->q[j] = 0; 7615 } 7616 for (; j < MAX_REPLY_QUEUES; j++) 7617 h->q[j] = 0; 7618 return rc; 7619 } 7620 } 7621 hpsa_irq_affinity_hints(h); 7622 } else { 7623 /* Use single reply pool */ 7624 if (h->msix_vector > 0 || h->msi_vector) { 7625 if (h->msix_vector) 7626 sprintf(h->intrname[h->intr_mode], 7627 "%s-msix", h->devname); 7628 else 7629 sprintf(h->intrname[h->intr_mode], 7630 "%s-msi", h->devname); 7631 rc = request_irq(h->intr[h->intr_mode], 7632 msixhandler, 0, 7633 h->intrname[h->intr_mode], 7634 &h->q[h->intr_mode]); 7635 } else { 7636 sprintf(h->intrname[h->intr_mode], 7637 "%s-intx", h->devname); 7638 rc = request_irq(h->intr[h->intr_mode], 7639 intxhandler, IRQF_SHARED, 7640 h->intrname[h->intr_mode], 7641 &h->q[h->intr_mode]); 7642 } 7643 irq_set_affinity_hint(h->intr[h->intr_mode], NULL); 7644 } 7645 if (rc) { 7646 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n", 7647 h->intr[h->intr_mode], h->devname); 7648 hpsa_free_irqs(h); 7649 return -ENODEV; 7650 } 7651 return 0; 7652 } 7653 7654 static int hpsa_kdump_soft_reset(struct ctlr_info *h) 7655 { 7656 int rc; 7657 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER); 7658 7659 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 7660 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY); 7661 if (rc) { 7662 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 7663 return rc; 7664 } 7665 7666 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 7667 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 7668 if (rc) { 7669 dev_warn(&h->pdev->dev, "Board failed to become ready " 7670 "after soft reset.\n"); 7671 return rc; 7672 } 7673 7674 return 0; 7675 } 7676 7677 static void hpsa_free_reply_queues(struct ctlr_info *h) 7678 { 7679 int i; 7680 7681 for (i = 0; i < h->nreply_queues; i++) { 7682 if (!h->reply_queue[i].head) 7683 continue; 7684 pci_free_consistent(h->pdev, 7685 h->reply_queue_size, 7686 h->reply_queue[i].head, 7687 h->reply_queue[i].busaddr); 7688 h->reply_queue[i].head = NULL; 7689 h->reply_queue[i].busaddr = 0; 7690 } 7691 h->reply_queue_size = 0; 7692 } 7693 7694 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 7695 { 7696 hpsa_free_performant_mode(h); /* init_one 7 */ 7697 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 7698 hpsa_free_cmd_pool(h); /* init_one 5 */ 7699 hpsa_free_irqs(h); /* init_one 4 */ 7700 scsi_host_put(h->scsi_host); /* init_one 3 */ 7701 h->scsi_host = NULL; /* init_one 3 */ 7702 hpsa_free_pci_init(h); /* init_one 2_5 */ 7703 free_percpu(h->lockup_detected); /* init_one 2 */ 7704 h->lockup_detected = NULL; /* init_one 2 */ 7705 if (h->resubmit_wq) { 7706 destroy_workqueue(h->resubmit_wq); /* init_one 1 */ 7707 h->resubmit_wq = NULL; 7708 } 7709 if (h->rescan_ctlr_wq) { 7710 destroy_workqueue(h->rescan_ctlr_wq); 7711 h->rescan_ctlr_wq = NULL; 7712 } 7713 kfree(h); /* init_one 1 */ 7714 } 7715 7716 /* Called when controller lockup detected. */ 7717 static void fail_all_outstanding_cmds(struct ctlr_info *h) 7718 { 7719 int i, refcount; 7720 struct CommandList *c; 7721 int failcount = 0; 7722 7723 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */ 7724 for (i = 0; i < h->nr_cmds; i++) { 7725 c = h->cmd_pool + i; 7726 refcount = atomic_inc_return(&c->refcount); 7727 if (refcount > 1) { 7728 c->err_info->CommandStatus = CMD_CTLR_LOCKUP; 7729 finish_cmd(c); 7730 atomic_dec(&h->commands_outstanding); 7731 failcount++; 7732 } 7733 cmd_free(h, c); 7734 } 7735 dev_warn(&h->pdev->dev, 7736 "failed %d commands in fail_all\n", failcount); 7737 } 7738 7739 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) 7740 { 7741 int cpu; 7742 7743 for_each_online_cpu(cpu) { 7744 u32 *lockup_detected; 7745 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); 7746 *lockup_detected = value; 7747 } 7748 wmb(); /* be sure the per-cpu variables are out to memory */ 7749 } 7750 7751 static void controller_lockup_detected(struct ctlr_info *h) 7752 { 7753 unsigned long flags; 7754 u32 lockup_detected; 7755 7756 h->access.set_intr_mask(h, HPSA_INTR_OFF); 7757 spin_lock_irqsave(&h->lock, flags); 7758 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 7759 if (!lockup_detected) { 7760 /* no heartbeat, but controller gave us a zero. */ 7761 dev_warn(&h->pdev->dev, 7762 "lockup detected after %d but scratchpad register is zero\n", 7763 h->heartbeat_sample_interval / HZ); 7764 lockup_detected = 0xffffffff; 7765 } 7766 set_lockup_detected_for_all_cpus(h, lockup_detected); 7767 spin_unlock_irqrestore(&h->lock, flags); 7768 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n", 7769 lockup_detected, h->heartbeat_sample_interval / HZ); 7770 pci_disable_device(h->pdev); 7771 fail_all_outstanding_cmds(h); 7772 } 7773 7774 static int detect_controller_lockup(struct ctlr_info *h) 7775 { 7776 u64 now; 7777 u32 heartbeat; 7778 unsigned long flags; 7779 7780 now = get_jiffies_64(); 7781 /* If we've received an interrupt recently, we're ok. */ 7782 if (time_after64(h->last_intr_timestamp + 7783 (h->heartbeat_sample_interval), now)) 7784 return false; 7785 7786 /* 7787 * If we've already checked the heartbeat recently, we're ok. 7788 * This could happen if someone sends us a signal. We 7789 * otherwise don't care about signals in this thread. 7790 */ 7791 if (time_after64(h->last_heartbeat_timestamp + 7792 (h->heartbeat_sample_interval), now)) 7793 return false; 7794 7795 /* If heartbeat has not changed since we last looked, we're not ok. */ 7796 spin_lock_irqsave(&h->lock, flags); 7797 heartbeat = readl(&h->cfgtable->HeartBeat); 7798 spin_unlock_irqrestore(&h->lock, flags); 7799 if (h->last_heartbeat == heartbeat) { 7800 controller_lockup_detected(h); 7801 return true; 7802 } 7803 7804 /* We're ok. */ 7805 h->last_heartbeat = heartbeat; 7806 h->last_heartbeat_timestamp = now; 7807 return false; 7808 } 7809 7810 static void hpsa_ack_ctlr_events(struct ctlr_info *h) 7811 { 7812 int i; 7813 char *event_type; 7814 7815 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 7816 return; 7817 7818 /* Ask the controller to clear the events we're handling. */ 7819 if ((h->transMethod & (CFGTBL_Trans_io_accel1 7820 | CFGTBL_Trans_io_accel2)) && 7821 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || 7822 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { 7823 7824 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) 7825 event_type = "state change"; 7826 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) 7827 event_type = "configuration change"; 7828 /* Stop sending new RAID offload reqs via the IO accelerator */ 7829 scsi_block_requests(h->scsi_host); 7830 for (i = 0; i < h->ndevices; i++) 7831 h->dev[i]->offload_enabled = 0; 7832 hpsa_drain_accel_commands(h); 7833 /* Set 'accelerator path config change' bit */ 7834 dev_warn(&h->pdev->dev, 7835 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", 7836 h->events, event_type); 7837 writel(h->events, &(h->cfgtable->clear_event_notify)); 7838 /* Set the "clear event notify field update" bit 6 */ 7839 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 7840 /* Wait until ctlr clears 'clear event notify field', bit 6 */ 7841 hpsa_wait_for_clear_event_notify_ack(h); 7842 scsi_unblock_requests(h->scsi_host); 7843 } else { 7844 /* Acknowledge controller notification events. */ 7845 writel(h->events, &(h->cfgtable->clear_event_notify)); 7846 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); 7847 hpsa_wait_for_clear_event_notify_ack(h); 7848 #if 0 7849 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 7850 hpsa_wait_for_mode_change_ack(h); 7851 #endif 7852 } 7853 return; 7854 } 7855 7856 /* Check a register on the controller to see if there are configuration 7857 * changes (added/changed/removed logical drives, etc.) which mean that 7858 * we should rescan the controller for devices. 7859 * Also check flag for driver-initiated rescan. 7860 */ 7861 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) 7862 { 7863 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) 7864 return 0; 7865 7866 h->events = readl(&(h->cfgtable->event_notify)); 7867 return h->events & RESCAN_REQUIRED_EVENT_BITS; 7868 } 7869 7870 /* 7871 * Check if any of the offline devices have become ready 7872 */ 7873 static int hpsa_offline_devices_ready(struct ctlr_info *h) 7874 { 7875 unsigned long flags; 7876 struct offline_device_entry *d; 7877 struct list_head *this, *tmp; 7878 7879 spin_lock_irqsave(&h->offline_device_lock, flags); 7880 list_for_each_safe(this, tmp, &h->offline_device_list) { 7881 d = list_entry(this, struct offline_device_entry, 7882 offline_list); 7883 spin_unlock_irqrestore(&h->offline_device_lock, flags); 7884 if (!hpsa_volume_offline(h, d->scsi3addr)) { 7885 spin_lock_irqsave(&h->offline_device_lock, flags); 7886 list_del(&d->offline_list); 7887 spin_unlock_irqrestore(&h->offline_device_lock, flags); 7888 return 1; 7889 } 7890 spin_lock_irqsave(&h->offline_device_lock, flags); 7891 } 7892 spin_unlock_irqrestore(&h->offline_device_lock, flags); 7893 return 0; 7894 } 7895 7896 static void hpsa_rescan_ctlr_worker(struct work_struct *work) 7897 { 7898 unsigned long flags; 7899 struct ctlr_info *h = container_of(to_delayed_work(work), 7900 struct ctlr_info, rescan_ctlr_work); 7901 7902 7903 if (h->remove_in_progress) 7904 return; 7905 7906 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { 7907 scsi_host_get(h->scsi_host); 7908 hpsa_ack_ctlr_events(h); 7909 hpsa_scan_start(h->scsi_host); 7910 scsi_host_put(h->scsi_host); 7911 } 7912 spin_lock_irqsave(&h->lock, flags); 7913 if (!h->remove_in_progress) 7914 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 7915 h->heartbeat_sample_interval); 7916 spin_unlock_irqrestore(&h->lock, flags); 7917 } 7918 7919 static void hpsa_monitor_ctlr_worker(struct work_struct *work) 7920 { 7921 unsigned long flags; 7922 struct ctlr_info *h = container_of(to_delayed_work(work), 7923 struct ctlr_info, monitor_ctlr_work); 7924 7925 detect_controller_lockup(h); 7926 if (lockup_detected(h)) 7927 return; 7928 7929 spin_lock_irqsave(&h->lock, flags); 7930 if (!h->remove_in_progress) 7931 schedule_delayed_work(&h->monitor_ctlr_work, 7932 h->heartbeat_sample_interval); 7933 spin_unlock_irqrestore(&h->lock, flags); 7934 } 7935 7936 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h, 7937 char *name) 7938 { 7939 struct workqueue_struct *wq = NULL; 7940 7941 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr); 7942 if (!wq) 7943 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name); 7944 7945 return wq; 7946 } 7947 7948 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 7949 { 7950 int dac, rc; 7951 struct ctlr_info *h; 7952 int try_soft_reset = 0; 7953 unsigned long flags; 7954 u32 board_id; 7955 7956 if (number_of_controllers == 0) 7957 printk(KERN_INFO DRIVER_NAME "\n"); 7958 7959 rc = hpsa_lookup_board_id(pdev, &board_id); 7960 if (rc < 0) { 7961 dev_warn(&pdev->dev, "Board ID not found\n"); 7962 return rc; 7963 } 7964 7965 rc = hpsa_init_reset_devices(pdev, board_id); 7966 if (rc) { 7967 if (rc != -ENOTSUPP) 7968 return rc; 7969 /* If the reset fails in a particular way (it has no way to do 7970 * a proper hard reset, so returns -ENOTSUPP) we can try to do 7971 * a soft reset once we get the controller configured up to the 7972 * point that it can accept a command. 7973 */ 7974 try_soft_reset = 1; 7975 rc = 0; 7976 } 7977 7978 reinit_after_soft_reset: 7979 7980 /* Command structures must be aligned on a 32-byte boundary because 7981 * the 5 lower bits of the address are used by the hardware. and by 7982 * the driver. See comments in hpsa.h for more info. 7983 */ 7984 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 7985 h = kzalloc(sizeof(*h), GFP_KERNEL); 7986 if (!h) { 7987 dev_err(&pdev->dev, "Failed to allocate controller head\n"); 7988 return -ENOMEM; 7989 } 7990 7991 h->pdev = pdev; 7992 7993 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 7994 INIT_LIST_HEAD(&h->offline_device_list); 7995 spin_lock_init(&h->lock); 7996 spin_lock_init(&h->offline_device_lock); 7997 spin_lock_init(&h->scan_lock); 7998 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS); 7999 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS); 8000 8001 /* Allocate and clear per-cpu variable lockup_detected */ 8002 h->lockup_detected = alloc_percpu(u32); 8003 if (!h->lockup_detected) { 8004 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n"); 8005 rc = -ENOMEM; 8006 goto clean1; /* aer/h */ 8007 } 8008 set_lockup_detected_for_all_cpus(h, 0); 8009 8010 rc = hpsa_pci_init(h); 8011 if (rc) 8012 goto clean2; /* lu, aer/h */ 8013 8014 /* relies on h-> settings made by hpsa_pci_init, including 8015 * interrupt_mode h->intr */ 8016 rc = hpsa_scsi_host_alloc(h); 8017 if (rc) 8018 goto clean2_5; /* pci, lu, aer/h */ 8019 8020 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no); 8021 h->ctlr = number_of_controllers; 8022 number_of_controllers++; 8023 8024 /* configure PCI DMA stuff */ 8025 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 8026 if (rc == 0) { 8027 dac = 1; 8028 } else { 8029 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 8030 if (rc == 0) { 8031 dac = 0; 8032 } else { 8033 dev_err(&pdev->dev, "no suitable DMA available\n"); 8034 goto clean3; /* shost, pci, lu, aer/h */ 8035 } 8036 } 8037 8038 /* make sure the board interrupts are off */ 8039 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8040 8041 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx); 8042 if (rc) 8043 goto clean3; /* shost, pci, lu, aer/h */ 8044 rc = hpsa_alloc_cmd_pool(h); 8045 if (rc) 8046 goto clean4; /* irq, shost, pci, lu, aer/h */ 8047 rc = hpsa_alloc_sg_chain_blocks(h); 8048 if (rc) 8049 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */ 8050 init_waitqueue_head(&h->scan_wait_queue); 8051 init_waitqueue_head(&h->abort_cmd_wait_queue); 8052 init_waitqueue_head(&h->event_sync_wait_queue); 8053 mutex_init(&h->reset_mutex); 8054 h->scan_finished = 1; /* no scan currently in progress */ 8055 8056 pci_set_drvdata(pdev, h); 8057 h->ndevices = 0; 8058 8059 spin_lock_init(&h->devlock); 8060 rc = hpsa_put_ctlr_into_performant_mode(h); 8061 if (rc) 8062 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */ 8063 8064 /* hook into SCSI subsystem */ 8065 rc = hpsa_scsi_add_host(h); 8066 if (rc) 8067 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8068 8069 /* create the resubmit workqueue */ 8070 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan"); 8071 if (!h->rescan_ctlr_wq) { 8072 rc = -ENOMEM; 8073 goto clean7; 8074 } 8075 8076 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit"); 8077 if (!h->resubmit_wq) { 8078 rc = -ENOMEM; 8079 goto clean7; /* aer/h */ 8080 } 8081 8082 /* 8083 * At this point, the controller is ready to take commands. 8084 * Now, if reset_devices and the hard reset didn't work, try 8085 * the soft reset and see if that works. 8086 */ 8087 if (try_soft_reset) { 8088 8089 /* This is kind of gross. We may or may not get a completion 8090 * from the soft reset command, and if we do, then the value 8091 * from the fifo may or may not be valid. So, we wait 10 secs 8092 * after the reset throwing away any completions we get during 8093 * that time. Unregister the interrupt handler and register 8094 * fake ones to scoop up any residual completions. 8095 */ 8096 spin_lock_irqsave(&h->lock, flags); 8097 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8098 spin_unlock_irqrestore(&h->lock, flags); 8099 hpsa_free_irqs(h); 8100 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions, 8101 hpsa_intx_discard_completions); 8102 if (rc) { 8103 dev_warn(&h->pdev->dev, 8104 "Failed to request_irq after soft reset.\n"); 8105 /* 8106 * cannot goto clean7 or free_irqs will be called 8107 * again. Instead, do its work 8108 */ 8109 hpsa_free_performant_mode(h); /* clean7 */ 8110 hpsa_free_sg_chain_blocks(h); /* clean6 */ 8111 hpsa_free_cmd_pool(h); /* clean5 */ 8112 /* 8113 * skip hpsa_free_irqs(h) clean4 since that 8114 * was just called before request_irqs failed 8115 */ 8116 goto clean3; 8117 } 8118 8119 rc = hpsa_kdump_soft_reset(h); 8120 if (rc) 8121 /* Neither hard nor soft reset worked, we're hosed. */ 8122 goto clean7; 8123 8124 dev_info(&h->pdev->dev, "Board READY.\n"); 8125 dev_info(&h->pdev->dev, 8126 "Waiting for stale completions to drain.\n"); 8127 h->access.set_intr_mask(h, HPSA_INTR_ON); 8128 msleep(10000); 8129 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8130 8131 rc = controller_reset_failed(h->cfgtable); 8132 if (rc) 8133 dev_info(&h->pdev->dev, 8134 "Soft reset appears to have failed.\n"); 8135 8136 /* since the controller's reset, we have to go back and re-init 8137 * everything. Easiest to just forget what we've done and do it 8138 * all over again. 8139 */ 8140 hpsa_undo_allocations_after_kdump_soft_reset(h); 8141 try_soft_reset = 0; 8142 if (rc) 8143 /* don't goto clean, we already unallocated */ 8144 return -ENODEV; 8145 8146 goto reinit_after_soft_reset; 8147 } 8148 8149 /* Enable Accelerated IO path at driver layer */ 8150 h->acciopath_status = 1; 8151 8152 8153 /* Turn the interrupts on so we can service requests */ 8154 h->access.set_intr_mask(h, HPSA_INTR_ON); 8155 8156 hpsa_hba_inquiry(h); 8157 8158 /* Monitor the controller for firmware lockups */ 8159 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; 8160 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); 8161 schedule_delayed_work(&h->monitor_ctlr_work, 8162 h->heartbeat_sample_interval); 8163 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker); 8164 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work, 8165 h->heartbeat_sample_interval); 8166 return 0; 8167 8168 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */ 8169 hpsa_free_performant_mode(h); 8170 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8171 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */ 8172 hpsa_free_sg_chain_blocks(h); 8173 clean5: /* cmd, irq, shost, pci, lu, aer/h */ 8174 hpsa_free_cmd_pool(h); 8175 clean4: /* irq, shost, pci, lu, aer/h */ 8176 hpsa_free_irqs(h); 8177 clean3: /* shost, pci, lu, aer/h */ 8178 scsi_host_put(h->scsi_host); 8179 h->scsi_host = NULL; 8180 clean2_5: /* pci, lu, aer/h */ 8181 hpsa_free_pci_init(h); 8182 clean2: /* lu, aer/h */ 8183 if (h->lockup_detected) { 8184 free_percpu(h->lockup_detected); 8185 h->lockup_detected = NULL; 8186 } 8187 clean1: /* wq/aer/h */ 8188 if (h->resubmit_wq) { 8189 destroy_workqueue(h->resubmit_wq); 8190 h->resubmit_wq = NULL; 8191 } 8192 if (h->rescan_ctlr_wq) { 8193 destroy_workqueue(h->rescan_ctlr_wq); 8194 h->rescan_ctlr_wq = NULL; 8195 } 8196 kfree(h); 8197 return rc; 8198 } 8199 8200 static void hpsa_flush_cache(struct ctlr_info *h) 8201 { 8202 char *flush_buf; 8203 struct CommandList *c; 8204 int rc; 8205 8206 if (unlikely(lockup_detected(h))) 8207 return; 8208 flush_buf = kzalloc(4, GFP_KERNEL); 8209 if (!flush_buf) 8210 return; 8211 8212 c = cmd_alloc(h); 8213 8214 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 8215 RAID_CTLR_LUNID, TYPE_CMD)) { 8216 goto out; 8217 } 8218 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, 8219 PCI_DMA_TODEVICE, NO_TIMEOUT); 8220 if (rc) 8221 goto out; 8222 if (c->err_info->CommandStatus != 0) 8223 out: 8224 dev_warn(&h->pdev->dev, 8225 "error flushing cache on controller\n"); 8226 cmd_free(h, c); 8227 kfree(flush_buf); 8228 } 8229 8230 static void hpsa_shutdown(struct pci_dev *pdev) 8231 { 8232 struct ctlr_info *h; 8233 8234 h = pci_get_drvdata(pdev); 8235 /* Turn board interrupts off and send the flush cache command 8236 * sendcmd will turn off interrupt, and send the flush... 8237 * To write all data in the battery backed cache to disks 8238 */ 8239 hpsa_flush_cache(h); 8240 h->access.set_intr_mask(h, HPSA_INTR_OFF); 8241 hpsa_free_irqs(h); /* init_one 4 */ 8242 hpsa_disable_interrupt_mode(h); /* pci_init 2 */ 8243 } 8244 8245 static void hpsa_free_device_info(struct ctlr_info *h) 8246 { 8247 int i; 8248 8249 for (i = 0; i < h->ndevices; i++) { 8250 kfree(h->dev[i]); 8251 h->dev[i] = NULL; 8252 } 8253 } 8254 8255 static void hpsa_remove_one(struct pci_dev *pdev) 8256 { 8257 struct ctlr_info *h; 8258 unsigned long flags; 8259 8260 if (pci_get_drvdata(pdev) == NULL) { 8261 dev_err(&pdev->dev, "unable to remove device\n"); 8262 return; 8263 } 8264 h = pci_get_drvdata(pdev); 8265 8266 /* Get rid of any controller monitoring work items */ 8267 spin_lock_irqsave(&h->lock, flags); 8268 h->remove_in_progress = 1; 8269 spin_unlock_irqrestore(&h->lock, flags); 8270 cancel_delayed_work_sync(&h->monitor_ctlr_work); 8271 cancel_delayed_work_sync(&h->rescan_ctlr_work); 8272 destroy_workqueue(h->rescan_ctlr_wq); 8273 destroy_workqueue(h->resubmit_wq); 8274 8275 /* includes hpsa_free_irqs - init_one 4 */ 8276 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 8277 hpsa_shutdown(pdev); 8278 8279 hpsa_free_device_info(h); /* scan */ 8280 8281 kfree(h->hba_inquiry_data); /* init_one 10 */ 8282 h->hba_inquiry_data = NULL; /* init_one 10 */ 8283 if (h->scsi_host) 8284 scsi_remove_host(h->scsi_host); /* init_one 8 */ 8285 hpsa_free_ioaccel2_sg_chain_blocks(h); 8286 hpsa_free_performant_mode(h); /* init_one 7 */ 8287 hpsa_free_sg_chain_blocks(h); /* init_one 6 */ 8288 hpsa_free_cmd_pool(h); /* init_one 5 */ 8289 8290 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */ 8291 8292 scsi_host_put(h->scsi_host); /* init_one 3 */ 8293 h->scsi_host = NULL; /* init_one 3 */ 8294 8295 /* includes hpsa_disable_interrupt_mode - pci_init 2 */ 8296 hpsa_free_pci_init(h); /* init_one 2.5 */ 8297 8298 free_percpu(h->lockup_detected); /* init_one 2 */ 8299 h->lockup_detected = NULL; /* init_one 2 */ 8300 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */ 8301 kfree(h); /* init_one 1 */ 8302 } 8303 8304 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 8305 __attribute__((unused)) pm_message_t state) 8306 { 8307 return -ENOSYS; 8308 } 8309 8310 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 8311 { 8312 return -ENOSYS; 8313 } 8314 8315 static struct pci_driver hpsa_pci_driver = { 8316 .name = HPSA, 8317 .probe = hpsa_init_one, 8318 .remove = hpsa_remove_one, 8319 .id_table = hpsa_pci_device_id, /* id_table */ 8320 .shutdown = hpsa_shutdown, 8321 .suspend = hpsa_suspend, 8322 .resume = hpsa_resume, 8323 }; 8324 8325 /* Fill in bucket_map[], given nsgs (the max number of 8326 * scatter gather elements supported) and bucket[], 8327 * which is an array of 8 integers. The bucket[] array 8328 * contains 8 different DMA transfer sizes (in 16 8329 * byte increments) which the controller uses to fetch 8330 * commands. This function fills in bucket_map[], which 8331 * maps a given number of scatter gather elements to one of 8332 * the 8 DMA transfer sizes. The point of it is to allow the 8333 * controller to only do as much DMA as needed to fetch the 8334 * command, with the DMA transfer size encoded in the lower 8335 * bits of the command address. 8336 */ 8337 static void calc_bucket_map(int bucket[], int num_buckets, 8338 int nsgs, int min_blocks, u32 *bucket_map) 8339 { 8340 int i, j, b, size; 8341 8342 /* Note, bucket_map must have nsgs+1 entries. */ 8343 for (i = 0; i <= nsgs; i++) { 8344 /* Compute size of a command with i SG entries */ 8345 size = i + min_blocks; 8346 b = num_buckets; /* Assume the biggest bucket */ 8347 /* Find the bucket that is just big enough */ 8348 for (j = 0; j < num_buckets; j++) { 8349 if (bucket[j] >= size) { 8350 b = j; 8351 break; 8352 } 8353 } 8354 /* for a command with i SG entries, use bucket b. */ 8355 bucket_map[i] = b; 8356 } 8357 } 8358 8359 /* 8360 * return -ENODEV on err, 0 on success (or no action) 8361 * allocates numerous items that must be freed later 8362 */ 8363 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) 8364 { 8365 int i; 8366 unsigned long register_value; 8367 unsigned long transMethod = CFGTBL_Trans_Performant | 8368 (trans_support & CFGTBL_Trans_use_short_tags) | 8369 CFGTBL_Trans_enable_directed_msix | 8370 (trans_support & (CFGTBL_Trans_io_accel1 | 8371 CFGTBL_Trans_io_accel2)); 8372 struct access_method access = SA5_performant_access; 8373 8374 /* This is a bit complicated. There are 8 registers on 8375 * the controller which we write to to tell it 8 different 8376 * sizes of commands which there may be. It's a way of 8377 * reducing the DMA done to fetch each command. Encoded into 8378 * each command's tag are 3 bits which communicate to the controller 8379 * which of the eight sizes that command fits within. The size of 8380 * each command depends on how many scatter gather entries there are. 8381 * Each SG entry requires 16 bytes. The eight registers are programmed 8382 * with the number of 16-byte blocks a command of that size requires. 8383 * The smallest command possible requires 5 such 16 byte blocks. 8384 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 8385 * blocks. Note, this only extends to the SG entries contained 8386 * within the command block, and does not extend to chained blocks 8387 * of SG elements. bft[] contains the eight values we write to 8388 * the registers. They are not evenly distributed, but have more 8389 * sizes for small commands, and fewer sizes for larger commands. 8390 */ 8391 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 8392 #define MIN_IOACCEL2_BFT_ENTRY 5 8393 #define HPSA_IOACCEL2_HEADER_SZ 4 8394 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, 8395 13, 14, 15, 16, 17, 18, 19, 8396 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; 8397 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); 8398 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); 8399 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > 8400 16 * MIN_IOACCEL2_BFT_ENTRY); 8401 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); 8402 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 8403 /* 5 = 1 s/g entry or 4k 8404 * 6 = 2 s/g entry or 8k 8405 * 8 = 4 s/g entry or 16k 8406 * 10 = 6 s/g entry or 24k 8407 */ 8408 8409 /* If the controller supports either ioaccel method then 8410 * we can also use the RAID stack submit path that does not 8411 * perform the superfluous readl() after each command submission. 8412 */ 8413 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) 8414 access = SA5_performant_access_no_read; 8415 8416 /* Controller spec: zero out this buffer. */ 8417 for (i = 0; i < h->nreply_queues; i++) 8418 memset(h->reply_queue[i].head, 0, h->reply_queue_size); 8419 8420 bft[7] = SG_ENTRIES_IN_CMD + 4; 8421 calc_bucket_map(bft, ARRAY_SIZE(bft), 8422 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); 8423 for (i = 0; i < 8; i++) 8424 writel(bft[i], &h->transtable->BlockFetch[i]); 8425 8426 /* size of controller ring buffer */ 8427 writel(h->max_commands, &h->transtable->RepQSize); 8428 writel(h->nreply_queues, &h->transtable->RepQCount); 8429 writel(0, &h->transtable->RepQCtrAddrLow32); 8430 writel(0, &h->transtable->RepQCtrAddrHigh32); 8431 8432 for (i = 0; i < h->nreply_queues; i++) { 8433 writel(0, &h->transtable->RepQAddr[i].upper); 8434 writel(h->reply_queue[i].busaddr, 8435 &h->transtable->RepQAddr[i].lower); 8436 } 8437 8438 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); 8439 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); 8440 /* 8441 * enable outbound interrupt coalescing in accelerator mode; 8442 */ 8443 if (trans_support & CFGTBL_Trans_io_accel1) { 8444 access = SA5_ioaccel_mode1_access; 8445 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 8446 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 8447 } else { 8448 if (trans_support & CFGTBL_Trans_io_accel2) { 8449 access = SA5_ioaccel_mode2_access; 8450 writel(10, &h->cfgtable->HostWrite.CoalIntDelay); 8451 writel(4, &h->cfgtable->HostWrite.CoalIntCount); 8452 } 8453 } 8454 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 8455 if (hpsa_wait_for_mode_change_ack(h)) { 8456 dev_err(&h->pdev->dev, 8457 "performant mode problem - doorbell timeout\n"); 8458 return -ENODEV; 8459 } 8460 register_value = readl(&(h->cfgtable->TransportActive)); 8461 if (!(register_value & CFGTBL_Trans_Performant)) { 8462 dev_err(&h->pdev->dev, 8463 "performant mode problem - transport not active\n"); 8464 return -ENODEV; 8465 } 8466 /* Change the access methods to the performant access methods */ 8467 h->access = access; 8468 h->transMethod = transMethod; 8469 8470 if (!((trans_support & CFGTBL_Trans_io_accel1) || 8471 (trans_support & CFGTBL_Trans_io_accel2))) 8472 return 0; 8473 8474 if (trans_support & CFGTBL_Trans_io_accel1) { 8475 /* Set up I/O accelerator mode */ 8476 for (i = 0; i < h->nreply_queues; i++) { 8477 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); 8478 h->reply_queue[i].current_entry = 8479 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); 8480 } 8481 bft[7] = h->ioaccel_maxsg + 8; 8482 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, 8483 h->ioaccel1_blockFetchTable); 8484 8485 /* initialize all reply queue entries to unused */ 8486 for (i = 0; i < h->nreply_queues; i++) 8487 memset(h->reply_queue[i].head, 8488 (u8) IOACCEL_MODE1_REPLY_UNUSED, 8489 h->reply_queue_size); 8490 8491 /* set all the constant fields in the accelerator command 8492 * frames once at init time to save CPU cycles later. 8493 */ 8494 for (i = 0; i < h->nr_cmds; i++) { 8495 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; 8496 8497 cp->function = IOACCEL1_FUNCTION_SCSIIO; 8498 cp->err_info = (u32) (h->errinfo_pool_dhandle + 8499 (i * sizeof(struct ErrorInfo))); 8500 cp->err_info_len = sizeof(struct ErrorInfo); 8501 cp->sgl_offset = IOACCEL1_SGLOFFSET; 8502 cp->host_context_flags = 8503 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT); 8504 cp->timeout_sec = 0; 8505 cp->ReplyQueue = 0; 8506 cp->tag = 8507 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT)); 8508 cp->host_addr = 8509 cpu_to_le64(h->ioaccel_cmd_pool_dhandle + 8510 (i * sizeof(struct io_accel1_cmd))); 8511 } 8512 } else if (trans_support & CFGTBL_Trans_io_accel2) { 8513 u64 cfg_offset, cfg_base_addr_index; 8514 u32 bft2_offset, cfg_base_addr; 8515 int rc; 8516 8517 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 8518 &cfg_base_addr_index, &cfg_offset); 8519 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); 8520 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; 8521 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, 8522 4, h->ioaccel2_blockFetchTable); 8523 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); 8524 BUILD_BUG_ON(offsetof(struct CfgTable, 8525 io_accel_request_size_offset) != 0xb8); 8526 h->ioaccel2_bft2_regs = 8527 remap_pci_mem(pci_resource_start(h->pdev, 8528 cfg_base_addr_index) + 8529 cfg_offset + bft2_offset, 8530 ARRAY_SIZE(bft2) * 8531 sizeof(*h->ioaccel2_bft2_regs)); 8532 for (i = 0; i < ARRAY_SIZE(bft2); i++) 8533 writel(bft2[i], &h->ioaccel2_bft2_regs[i]); 8534 } 8535 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 8536 if (hpsa_wait_for_mode_change_ack(h)) { 8537 dev_err(&h->pdev->dev, 8538 "performant mode problem - enabling ioaccel mode\n"); 8539 return -ENODEV; 8540 } 8541 return 0; 8542 } 8543 8544 /* Free ioaccel1 mode command blocks and block fetch table */ 8545 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h) 8546 { 8547 if (h->ioaccel_cmd_pool) { 8548 pci_free_consistent(h->pdev, 8549 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 8550 h->ioaccel_cmd_pool, 8551 h->ioaccel_cmd_pool_dhandle); 8552 h->ioaccel_cmd_pool = NULL; 8553 h->ioaccel_cmd_pool_dhandle = 0; 8554 } 8555 kfree(h->ioaccel1_blockFetchTable); 8556 h->ioaccel1_blockFetchTable = NULL; 8557 } 8558 8559 /* Allocate ioaccel1 mode command blocks and block fetch table */ 8560 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h) 8561 { 8562 h->ioaccel_maxsg = 8563 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 8564 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) 8565 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; 8566 8567 /* Command structures must be aligned on a 128-byte boundary 8568 * because the 7 lower bits of the address are used by the 8569 * hardware. 8570 */ 8571 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % 8572 IOACCEL1_COMMANDLIST_ALIGNMENT); 8573 h->ioaccel_cmd_pool = 8574 pci_alloc_consistent(h->pdev, 8575 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), 8576 &(h->ioaccel_cmd_pool_dhandle)); 8577 8578 h->ioaccel1_blockFetchTable = 8579 kmalloc(((h->ioaccel_maxsg + 1) * 8580 sizeof(u32)), GFP_KERNEL); 8581 8582 if ((h->ioaccel_cmd_pool == NULL) || 8583 (h->ioaccel1_blockFetchTable == NULL)) 8584 goto clean_up; 8585 8586 memset(h->ioaccel_cmd_pool, 0, 8587 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); 8588 return 0; 8589 8590 clean_up: 8591 hpsa_free_ioaccel1_cmd_and_bft(h); 8592 return -ENOMEM; 8593 } 8594 8595 /* Free ioaccel2 mode command blocks and block fetch table */ 8596 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h) 8597 { 8598 hpsa_free_ioaccel2_sg_chain_blocks(h); 8599 8600 if (h->ioaccel2_cmd_pool) { 8601 pci_free_consistent(h->pdev, 8602 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 8603 h->ioaccel2_cmd_pool, 8604 h->ioaccel2_cmd_pool_dhandle); 8605 h->ioaccel2_cmd_pool = NULL; 8606 h->ioaccel2_cmd_pool_dhandle = 0; 8607 } 8608 kfree(h->ioaccel2_blockFetchTable); 8609 h->ioaccel2_blockFetchTable = NULL; 8610 } 8611 8612 /* Allocate ioaccel2 mode command blocks and block fetch table */ 8613 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h) 8614 { 8615 int rc; 8616 8617 /* Allocate ioaccel2 mode command blocks and block fetch table */ 8618 8619 h->ioaccel_maxsg = 8620 readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); 8621 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) 8622 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; 8623 8624 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % 8625 IOACCEL2_COMMANDLIST_ALIGNMENT); 8626 h->ioaccel2_cmd_pool = 8627 pci_alloc_consistent(h->pdev, 8628 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), 8629 &(h->ioaccel2_cmd_pool_dhandle)); 8630 8631 h->ioaccel2_blockFetchTable = 8632 kmalloc(((h->ioaccel_maxsg + 1) * 8633 sizeof(u32)), GFP_KERNEL); 8634 8635 if ((h->ioaccel2_cmd_pool == NULL) || 8636 (h->ioaccel2_blockFetchTable == NULL)) { 8637 rc = -ENOMEM; 8638 goto clean_up; 8639 } 8640 8641 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h); 8642 if (rc) 8643 goto clean_up; 8644 8645 memset(h->ioaccel2_cmd_pool, 0, 8646 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); 8647 return 0; 8648 8649 clean_up: 8650 hpsa_free_ioaccel2_cmd_and_bft(h); 8651 return rc; 8652 } 8653 8654 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */ 8655 static void hpsa_free_performant_mode(struct ctlr_info *h) 8656 { 8657 kfree(h->blockFetchTable); 8658 h->blockFetchTable = NULL; 8659 hpsa_free_reply_queues(h); 8660 hpsa_free_ioaccel1_cmd_and_bft(h); 8661 hpsa_free_ioaccel2_cmd_and_bft(h); 8662 } 8663 8664 /* return -ENODEV on error, 0 on success (or no action) 8665 * allocates numerous items that must be freed later 8666 */ 8667 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 8668 { 8669 u32 trans_support; 8670 unsigned long transMethod = CFGTBL_Trans_Performant | 8671 CFGTBL_Trans_use_short_tags; 8672 int i, rc; 8673 8674 if (hpsa_simple_mode) 8675 return 0; 8676 8677 trans_support = readl(&(h->cfgtable->TransportSupport)); 8678 if (!(trans_support & PERFORMANT_MODE)) 8679 return 0; 8680 8681 /* Check for I/O accelerator mode support */ 8682 if (trans_support & CFGTBL_Trans_io_accel1) { 8683 transMethod |= CFGTBL_Trans_io_accel1 | 8684 CFGTBL_Trans_enable_directed_msix; 8685 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h); 8686 if (rc) 8687 return rc; 8688 } else if (trans_support & CFGTBL_Trans_io_accel2) { 8689 transMethod |= CFGTBL_Trans_io_accel2 | 8690 CFGTBL_Trans_enable_directed_msix; 8691 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h); 8692 if (rc) 8693 return rc; 8694 } 8695 8696 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; 8697 hpsa_get_max_perf_mode_cmds(h); 8698 /* Performant mode ring buffer and supporting data structures */ 8699 h->reply_queue_size = h->max_commands * sizeof(u64); 8700 8701 for (i = 0; i < h->nreply_queues; i++) { 8702 h->reply_queue[i].head = pci_alloc_consistent(h->pdev, 8703 h->reply_queue_size, 8704 &(h->reply_queue[i].busaddr)); 8705 if (!h->reply_queue[i].head) { 8706 rc = -ENOMEM; 8707 goto clean1; /* rq, ioaccel */ 8708 } 8709 h->reply_queue[i].size = h->max_commands; 8710 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */ 8711 h->reply_queue[i].current_entry = 0; 8712 } 8713 8714 /* Need a block fetch table for performant mode */ 8715 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 8716 sizeof(u32)), GFP_KERNEL); 8717 if (!h->blockFetchTable) { 8718 rc = -ENOMEM; 8719 goto clean1; /* rq, ioaccel */ 8720 } 8721 8722 rc = hpsa_enter_performant_mode(h, trans_support); 8723 if (rc) 8724 goto clean2; /* bft, rq, ioaccel */ 8725 return 0; 8726 8727 clean2: /* bft, rq, ioaccel */ 8728 kfree(h->blockFetchTable); 8729 h->blockFetchTable = NULL; 8730 clean1: /* rq, ioaccel */ 8731 hpsa_free_reply_queues(h); 8732 hpsa_free_ioaccel1_cmd_and_bft(h); 8733 hpsa_free_ioaccel2_cmd_and_bft(h); 8734 return rc; 8735 } 8736 8737 static int is_accelerated_cmd(struct CommandList *c) 8738 { 8739 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; 8740 } 8741 8742 static void hpsa_drain_accel_commands(struct ctlr_info *h) 8743 { 8744 struct CommandList *c = NULL; 8745 int i, accel_cmds_out; 8746 int refcount; 8747 8748 do { /* wait for all outstanding ioaccel commands to drain out */ 8749 accel_cmds_out = 0; 8750 for (i = 0; i < h->nr_cmds; i++) { 8751 c = h->cmd_pool + i; 8752 refcount = atomic_inc_return(&c->refcount); 8753 if (refcount > 1) /* Command is allocated */ 8754 accel_cmds_out += is_accelerated_cmd(c); 8755 cmd_free(h, c); 8756 } 8757 if (accel_cmds_out <= 0) 8758 break; 8759 msleep(100); 8760 } while (1); 8761 } 8762 8763 /* 8764 * This is it. Register the PCI driver information for the cards we control 8765 * the OS will call our registered routines when it finds one of our cards. 8766 */ 8767 static int __init hpsa_init(void) 8768 { 8769 return pci_register_driver(&hpsa_pci_driver); 8770 } 8771 8772 static void __exit hpsa_cleanup(void) 8773 { 8774 pci_unregister_driver(&hpsa_pci_driver); 8775 } 8776 8777 static void __attribute__((unused)) verify_offsets(void) 8778 { 8779 #define VERIFY_OFFSET(member, offset) \ 8780 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) 8781 8782 VERIFY_OFFSET(structure_size, 0); 8783 VERIFY_OFFSET(volume_blk_size, 4); 8784 VERIFY_OFFSET(volume_blk_cnt, 8); 8785 VERIFY_OFFSET(phys_blk_shift, 16); 8786 VERIFY_OFFSET(parity_rotation_shift, 17); 8787 VERIFY_OFFSET(strip_size, 18); 8788 VERIFY_OFFSET(disk_starting_blk, 20); 8789 VERIFY_OFFSET(disk_blk_cnt, 28); 8790 VERIFY_OFFSET(data_disks_per_row, 36); 8791 VERIFY_OFFSET(metadata_disks_per_row, 38); 8792 VERIFY_OFFSET(row_cnt, 40); 8793 VERIFY_OFFSET(layout_map_count, 42); 8794 VERIFY_OFFSET(flags, 44); 8795 VERIFY_OFFSET(dekindex, 46); 8796 /* VERIFY_OFFSET(reserved, 48 */ 8797 VERIFY_OFFSET(data, 64); 8798 8799 #undef VERIFY_OFFSET 8800 8801 #define VERIFY_OFFSET(member, offset) \ 8802 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) 8803 8804 VERIFY_OFFSET(IU_type, 0); 8805 VERIFY_OFFSET(direction, 1); 8806 VERIFY_OFFSET(reply_queue, 2); 8807 /* VERIFY_OFFSET(reserved1, 3); */ 8808 VERIFY_OFFSET(scsi_nexus, 4); 8809 VERIFY_OFFSET(Tag, 8); 8810 VERIFY_OFFSET(cdb, 16); 8811 VERIFY_OFFSET(cciss_lun, 32); 8812 VERIFY_OFFSET(data_len, 40); 8813 VERIFY_OFFSET(cmd_priority_task_attr, 44); 8814 VERIFY_OFFSET(sg_count, 45); 8815 /* VERIFY_OFFSET(reserved3 */ 8816 VERIFY_OFFSET(err_ptr, 48); 8817 VERIFY_OFFSET(err_len, 56); 8818 /* VERIFY_OFFSET(reserved4 */ 8819 VERIFY_OFFSET(sg, 64); 8820 8821 #undef VERIFY_OFFSET 8822 8823 #define VERIFY_OFFSET(member, offset) \ 8824 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) 8825 8826 VERIFY_OFFSET(dev_handle, 0x00); 8827 VERIFY_OFFSET(reserved1, 0x02); 8828 VERIFY_OFFSET(function, 0x03); 8829 VERIFY_OFFSET(reserved2, 0x04); 8830 VERIFY_OFFSET(err_info, 0x0C); 8831 VERIFY_OFFSET(reserved3, 0x10); 8832 VERIFY_OFFSET(err_info_len, 0x12); 8833 VERIFY_OFFSET(reserved4, 0x13); 8834 VERIFY_OFFSET(sgl_offset, 0x14); 8835 VERIFY_OFFSET(reserved5, 0x15); 8836 VERIFY_OFFSET(transfer_len, 0x1C); 8837 VERIFY_OFFSET(reserved6, 0x20); 8838 VERIFY_OFFSET(io_flags, 0x24); 8839 VERIFY_OFFSET(reserved7, 0x26); 8840 VERIFY_OFFSET(LUN, 0x34); 8841 VERIFY_OFFSET(control, 0x3C); 8842 VERIFY_OFFSET(CDB, 0x40); 8843 VERIFY_OFFSET(reserved8, 0x50); 8844 VERIFY_OFFSET(host_context_flags, 0x60); 8845 VERIFY_OFFSET(timeout_sec, 0x62); 8846 VERIFY_OFFSET(ReplyQueue, 0x64); 8847 VERIFY_OFFSET(reserved9, 0x65); 8848 VERIFY_OFFSET(tag, 0x68); 8849 VERIFY_OFFSET(host_addr, 0x70); 8850 VERIFY_OFFSET(CISS_LUN, 0x78); 8851 VERIFY_OFFSET(SG, 0x78 + 8); 8852 #undef VERIFY_OFFSET 8853 } 8854 8855 module_init(hpsa_init); 8856 module_exit(hpsa_cleanup); 8857