1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/delay.h> 29 #include <linux/fs.h> 30 #include <linux/timer.h> 31 #include <linux/seq_file.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp_lock.h> 35 #include <linux/compat.h> 36 #include <linux/blktrace_api.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/completion.h> 41 #include <linux/moduleparam.h> 42 #include <scsi/scsi.h> 43 #include <scsi/scsi_cmnd.h> 44 #include <scsi/scsi_device.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_tcq.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <asm/atomic.h> 51 #include <linux/kthread.h> 52 #include "hpsa_cmd.h" 53 #include "hpsa.h" 54 55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 56 #define HPSA_DRIVER_VERSION "2.0.2-1" 57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 58 59 /* How long to wait (in milliseconds) for board to go into simple mode */ 60 #define MAX_CONFIG_WAIT 30000 61 #define MAX_IOCTL_CONFIG_WAIT 1000 62 63 /*define how many times we will try a command because of bus resets */ 64 #define MAX_CMD_RETRIES 3 65 66 /* Embedded module documentation macros - see modules.h */ 67 MODULE_AUTHOR("Hewlett-Packard Company"); 68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 69 HPSA_DRIVER_VERSION); 70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 71 MODULE_VERSION(HPSA_DRIVER_VERSION); 72 MODULE_LICENSE("GPL"); 73 74 static int hpsa_allow_any; 75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 76 MODULE_PARM_DESC(hpsa_allow_any, 77 "Allow hpsa driver to access unknown HP Smart Array hardware"); 78 79 /* define the PCI info for the cards we can control */ 80 static const struct pci_device_id hpsa_pci_device_id[] = { 81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 89 #define PCI_DEVICE_ID_HP_CISSF 0x333f 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x333F}, 91 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 92 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 93 {0,} 94 }; 95 96 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 97 98 /* board_id = Subsystem Device ID & Vendor ID 99 * product = Marketing Name for the board 100 * access = Address of the struct of function pointers 101 */ 102 static struct board_type products[] = { 103 {0x3241103C, "Smart Array P212", &SA5_access}, 104 {0x3243103C, "Smart Array P410", &SA5_access}, 105 {0x3245103C, "Smart Array P410i", &SA5_access}, 106 {0x3247103C, "Smart Array P411", &SA5_access}, 107 {0x3249103C, "Smart Array P812", &SA5_access}, 108 {0x324a103C, "Smart Array P712m", &SA5_access}, 109 {0x324b103C, "Smart Array P711m", &SA5_access}, 110 {0x3233103C, "StorageWorks P1210m", &SA5_access}, 111 {0x333F103C, "StorageWorks P1210m", &SA5_access}, 112 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 113 }; 114 115 static int number_of_controllers; 116 117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id); 118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 119 static void start_io(struct ctlr_info *h); 120 121 #ifdef CONFIG_COMPAT 122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 123 #endif 124 125 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 127 static struct CommandList *cmd_alloc(struct ctlr_info *h); 128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 130 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 131 int cmd_type); 132 133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 134 void (*done)(struct scsi_cmnd *)); 135 static void hpsa_scan_start(struct Scsi_Host *); 136 static int hpsa_scan_finished(struct Scsi_Host *sh, 137 unsigned long elapsed_time); 138 static int hpsa_change_queue_depth(struct scsi_device *sdev, 139 int qdepth, int reason); 140 141 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 142 static int hpsa_slave_alloc(struct scsi_device *sdev); 143 static void hpsa_slave_destroy(struct scsi_device *sdev); 144 145 static ssize_t raid_level_show(struct device *dev, 146 struct device_attribute *attr, char *buf); 147 static ssize_t lunid_show(struct device *dev, 148 struct device_attribute *attr, char *buf); 149 static ssize_t unique_id_show(struct device *dev, 150 struct device_attribute *attr, char *buf); 151 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 152 static ssize_t host_store_rescan(struct device *dev, 153 struct device_attribute *attr, const char *buf, size_t count); 154 static int check_for_unit_attention(struct ctlr_info *h, 155 struct CommandList *c); 156 static void check_ioctl_unit_attention(struct ctlr_info *h, 157 struct CommandList *c); 158 /* performant mode helper functions */ 159 static void calc_bucket_map(int *bucket, int num_buckets, 160 int nsgs, int *bucket_map); 161 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 162 static inline u32 next_command(struct ctlr_info *h); 163 164 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 165 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 166 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 167 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 168 169 static struct device_attribute *hpsa_sdev_attrs[] = { 170 &dev_attr_raid_level, 171 &dev_attr_lunid, 172 &dev_attr_unique_id, 173 NULL, 174 }; 175 176 static struct device_attribute *hpsa_shost_attrs[] = { 177 &dev_attr_rescan, 178 NULL, 179 }; 180 181 static struct scsi_host_template hpsa_driver_template = { 182 .module = THIS_MODULE, 183 .name = "hpsa", 184 .proc_name = "hpsa", 185 .queuecommand = hpsa_scsi_queue_command, 186 .scan_start = hpsa_scan_start, 187 .scan_finished = hpsa_scan_finished, 188 .change_queue_depth = hpsa_change_queue_depth, 189 .this_id = -1, 190 .use_clustering = ENABLE_CLUSTERING, 191 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 192 .ioctl = hpsa_ioctl, 193 .slave_alloc = hpsa_slave_alloc, 194 .slave_destroy = hpsa_slave_destroy, 195 #ifdef CONFIG_COMPAT 196 .compat_ioctl = hpsa_compat_ioctl, 197 #endif 198 .sdev_attrs = hpsa_sdev_attrs, 199 .shost_attrs = hpsa_shost_attrs, 200 }; 201 202 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 203 { 204 unsigned long *priv = shost_priv(sdev->host); 205 return (struct ctlr_info *) *priv; 206 } 207 208 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 209 { 210 unsigned long *priv = shost_priv(sh); 211 return (struct ctlr_info *) *priv; 212 } 213 214 static int check_for_unit_attention(struct ctlr_info *h, 215 struct CommandList *c) 216 { 217 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 218 return 0; 219 220 switch (c->err_info->SenseInfo[12]) { 221 case STATE_CHANGED: 222 dev_warn(&h->pdev->dev, "hpsa%d: a state change " 223 "detected, command retried\n", h->ctlr); 224 break; 225 case LUN_FAILED: 226 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " 227 "detected, action required\n", h->ctlr); 228 break; 229 case REPORT_LUNS_CHANGED: 230 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " 231 "changed, action required\n", h->ctlr); 232 /* 233 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. 234 */ 235 break; 236 case POWER_OR_RESET: 237 dev_warn(&h->pdev->dev, "hpsa%d: a power on " 238 "or device reset detected\n", h->ctlr); 239 break; 240 case UNIT_ATTENTION_CLEARED: 241 dev_warn(&h->pdev->dev, "hpsa%d: unit attention " 242 "cleared by another initiator\n", h->ctlr); 243 break; 244 default: 245 dev_warn(&h->pdev->dev, "hpsa%d: unknown " 246 "unit attention detected\n", h->ctlr); 247 break; 248 } 249 return 1; 250 } 251 252 static ssize_t host_store_rescan(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct ctlr_info *h; 257 struct Scsi_Host *shost = class_to_shost(dev); 258 h = shost_to_hba(shost); 259 hpsa_scan_start(h->scsi_host); 260 return count; 261 } 262 263 /* Enqueuing and dequeuing functions for cmdlists. */ 264 static inline void addQ(struct hlist_head *list, struct CommandList *c) 265 { 266 hlist_add_head(&c->list, list); 267 } 268 269 static inline u32 next_command(struct ctlr_info *h) 270 { 271 u32 a; 272 273 if (unlikely(h->transMethod != CFGTBL_Trans_Performant)) 274 return h->access.command_completed(h); 275 276 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 277 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 278 (h->reply_pool_head)++; 279 h->commands_outstanding--; 280 } else { 281 a = FIFO_EMPTY; 282 } 283 /* Check for wraparound */ 284 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 285 h->reply_pool_head = h->reply_pool; 286 h->reply_pool_wraparound ^= 1; 287 } 288 return a; 289 } 290 291 /* set_performant_mode: Modify the tag for cciss performant 292 * set bit 0 for pull model, bits 3-1 for block fetch 293 * register number 294 */ 295 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 296 { 297 if (likely(h->transMethod == CFGTBL_Trans_Performant)) 298 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 299 } 300 301 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 302 struct CommandList *c) 303 { 304 unsigned long flags; 305 306 set_performant_mode(h, c); 307 spin_lock_irqsave(&h->lock, flags); 308 addQ(&h->reqQ, c); 309 h->Qdepth++; 310 start_io(h); 311 spin_unlock_irqrestore(&h->lock, flags); 312 } 313 314 static inline void removeQ(struct CommandList *c) 315 { 316 if (WARN_ON(hlist_unhashed(&c->list))) 317 return; 318 hlist_del_init(&c->list); 319 } 320 321 static inline int is_hba_lunid(unsigned char scsi3addr[]) 322 { 323 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 324 } 325 326 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 327 { 328 return (scsi3addr[3] & 0xC0) == 0x40; 329 } 330 331 static inline int is_scsi_rev_5(struct ctlr_info *h) 332 { 333 if (!h->hba_inquiry_data) 334 return 0; 335 if ((h->hba_inquiry_data[2] & 0x07) == 5) 336 return 1; 337 return 0; 338 } 339 340 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 341 "UNKNOWN" 342 }; 343 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 344 345 static ssize_t raid_level_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 ssize_t l = 0; 349 unsigned char rlevel; 350 struct ctlr_info *h; 351 struct scsi_device *sdev; 352 struct hpsa_scsi_dev_t *hdev; 353 unsigned long flags; 354 355 sdev = to_scsi_device(dev); 356 h = sdev_to_hba(sdev); 357 spin_lock_irqsave(&h->lock, flags); 358 hdev = sdev->hostdata; 359 if (!hdev) { 360 spin_unlock_irqrestore(&h->lock, flags); 361 return -ENODEV; 362 } 363 364 /* Is this even a logical drive? */ 365 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 366 spin_unlock_irqrestore(&h->lock, flags); 367 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 368 return l; 369 } 370 371 rlevel = hdev->raid_level; 372 spin_unlock_irqrestore(&h->lock, flags); 373 if (rlevel > RAID_UNKNOWN) 374 rlevel = RAID_UNKNOWN; 375 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 376 return l; 377 } 378 379 static ssize_t lunid_show(struct device *dev, 380 struct device_attribute *attr, char *buf) 381 { 382 struct ctlr_info *h; 383 struct scsi_device *sdev; 384 struct hpsa_scsi_dev_t *hdev; 385 unsigned long flags; 386 unsigned char lunid[8]; 387 388 sdev = to_scsi_device(dev); 389 h = sdev_to_hba(sdev); 390 spin_lock_irqsave(&h->lock, flags); 391 hdev = sdev->hostdata; 392 if (!hdev) { 393 spin_unlock_irqrestore(&h->lock, flags); 394 return -ENODEV; 395 } 396 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 397 spin_unlock_irqrestore(&h->lock, flags); 398 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 399 lunid[0], lunid[1], lunid[2], lunid[3], 400 lunid[4], lunid[5], lunid[6], lunid[7]); 401 } 402 403 static ssize_t unique_id_show(struct device *dev, 404 struct device_attribute *attr, char *buf) 405 { 406 struct ctlr_info *h; 407 struct scsi_device *sdev; 408 struct hpsa_scsi_dev_t *hdev; 409 unsigned long flags; 410 unsigned char sn[16]; 411 412 sdev = to_scsi_device(dev); 413 h = sdev_to_hba(sdev); 414 spin_lock_irqsave(&h->lock, flags); 415 hdev = sdev->hostdata; 416 if (!hdev) { 417 spin_unlock_irqrestore(&h->lock, flags); 418 return -ENODEV; 419 } 420 memcpy(sn, hdev->device_id, sizeof(sn)); 421 spin_unlock_irqrestore(&h->lock, flags); 422 return snprintf(buf, 16 * 2 + 2, 423 "%02X%02X%02X%02X%02X%02X%02X%02X" 424 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 425 sn[0], sn[1], sn[2], sn[3], 426 sn[4], sn[5], sn[6], sn[7], 427 sn[8], sn[9], sn[10], sn[11], 428 sn[12], sn[13], sn[14], sn[15]); 429 } 430 431 static int hpsa_find_target_lun(struct ctlr_info *h, 432 unsigned char scsi3addr[], int bus, int *target, int *lun) 433 { 434 /* finds an unused bus, target, lun for a new physical device 435 * assumes h->devlock is held 436 */ 437 int i, found = 0; 438 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); 439 440 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); 441 442 for (i = 0; i < h->ndevices; i++) { 443 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 444 set_bit(h->dev[i]->target, lun_taken); 445 } 446 447 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { 448 if (!test_bit(i, lun_taken)) { 449 /* *bus = 1; */ 450 *target = i; 451 *lun = 0; 452 found = 1; 453 break; 454 } 455 } 456 return !found; 457 } 458 459 /* Add an entry into h->dev[] array. */ 460 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 461 struct hpsa_scsi_dev_t *device, 462 struct hpsa_scsi_dev_t *added[], int *nadded) 463 { 464 /* assumes h->devlock is held */ 465 int n = h->ndevices; 466 int i; 467 unsigned char addr1[8], addr2[8]; 468 struct hpsa_scsi_dev_t *sd; 469 470 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { 471 dev_err(&h->pdev->dev, "too many devices, some will be " 472 "inaccessible.\n"); 473 return -1; 474 } 475 476 /* physical devices do not have lun or target assigned until now. */ 477 if (device->lun != -1) 478 /* Logical device, lun is already assigned. */ 479 goto lun_assigned; 480 481 /* If this device a non-zero lun of a multi-lun device 482 * byte 4 of the 8-byte LUN addr will contain the logical 483 * unit no, zero otherise. 484 */ 485 if (device->scsi3addr[4] == 0) { 486 /* This is not a non-zero lun of a multi-lun device */ 487 if (hpsa_find_target_lun(h, device->scsi3addr, 488 device->bus, &device->target, &device->lun) != 0) 489 return -1; 490 goto lun_assigned; 491 } 492 493 /* This is a non-zero lun of a multi-lun device. 494 * Search through our list and find the device which 495 * has the same 8 byte LUN address, excepting byte 4. 496 * Assign the same bus and target for this new LUN. 497 * Use the logical unit number from the firmware. 498 */ 499 memcpy(addr1, device->scsi3addr, 8); 500 addr1[4] = 0; 501 for (i = 0; i < n; i++) { 502 sd = h->dev[i]; 503 memcpy(addr2, sd->scsi3addr, 8); 504 addr2[4] = 0; 505 /* differ only in byte 4? */ 506 if (memcmp(addr1, addr2, 8) == 0) { 507 device->bus = sd->bus; 508 device->target = sd->target; 509 device->lun = device->scsi3addr[4]; 510 break; 511 } 512 } 513 if (device->lun == -1) { 514 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 515 " suspect firmware bug or unsupported hardware " 516 "configuration.\n"); 517 return -1; 518 } 519 520 lun_assigned: 521 522 h->dev[n] = device; 523 h->ndevices++; 524 added[*nadded] = device; 525 (*nadded)++; 526 527 /* initially, (before registering with scsi layer) we don't 528 * know our hostno and we don't want to print anything first 529 * time anyway (the scsi layer's inquiries will show that info) 530 */ 531 /* if (hostno != -1) */ 532 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 533 scsi_device_type(device->devtype), hostno, 534 device->bus, device->target, device->lun); 535 return 0; 536 } 537 538 /* Replace an entry from h->dev[] array. */ 539 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 540 int entry, struct hpsa_scsi_dev_t *new_entry, 541 struct hpsa_scsi_dev_t *added[], int *nadded, 542 struct hpsa_scsi_dev_t *removed[], int *nremoved) 543 { 544 /* assumes h->devlock is held */ 545 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 546 removed[*nremoved] = h->dev[entry]; 547 (*nremoved)++; 548 h->dev[entry] = new_entry; 549 added[*nadded] = new_entry; 550 (*nadded)++; 551 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 552 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 553 new_entry->target, new_entry->lun); 554 } 555 556 /* Remove an entry from h->dev[] array. */ 557 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 558 struct hpsa_scsi_dev_t *removed[], int *nremoved) 559 { 560 /* assumes h->devlock is held */ 561 int i; 562 struct hpsa_scsi_dev_t *sd; 563 564 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA); 565 566 sd = h->dev[entry]; 567 removed[*nremoved] = h->dev[entry]; 568 (*nremoved)++; 569 570 for (i = entry; i < h->ndevices-1; i++) 571 h->dev[i] = h->dev[i+1]; 572 h->ndevices--; 573 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 574 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 575 sd->lun); 576 } 577 578 #define SCSI3ADDR_EQ(a, b) ( \ 579 (a)[7] == (b)[7] && \ 580 (a)[6] == (b)[6] && \ 581 (a)[5] == (b)[5] && \ 582 (a)[4] == (b)[4] && \ 583 (a)[3] == (b)[3] && \ 584 (a)[2] == (b)[2] && \ 585 (a)[1] == (b)[1] && \ 586 (a)[0] == (b)[0]) 587 588 static void fixup_botched_add(struct ctlr_info *h, 589 struct hpsa_scsi_dev_t *added) 590 { 591 /* called when scsi_add_device fails in order to re-adjust 592 * h->dev[] to match the mid layer's view. 593 */ 594 unsigned long flags; 595 int i, j; 596 597 spin_lock_irqsave(&h->lock, flags); 598 for (i = 0; i < h->ndevices; i++) { 599 if (h->dev[i] == added) { 600 for (j = i; j < h->ndevices-1; j++) 601 h->dev[j] = h->dev[j+1]; 602 h->ndevices--; 603 break; 604 } 605 } 606 spin_unlock_irqrestore(&h->lock, flags); 607 kfree(added); 608 } 609 610 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 611 struct hpsa_scsi_dev_t *dev2) 612 { 613 if ((is_logical_dev_addr_mode(dev1->scsi3addr) || 614 (dev1->lun != -1 && dev2->lun != -1)) && 615 dev1->devtype != 0x0C) 616 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); 617 618 /* we compare everything except lun and target as these 619 * are not yet assigned. Compare parts likely 620 * to differ first 621 */ 622 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 623 sizeof(dev1->scsi3addr)) != 0) 624 return 0; 625 if (memcmp(dev1->device_id, dev2->device_id, 626 sizeof(dev1->device_id)) != 0) 627 return 0; 628 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 629 return 0; 630 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 631 return 0; 632 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) 633 return 0; 634 if (dev1->devtype != dev2->devtype) 635 return 0; 636 if (dev1->raid_level != dev2->raid_level) 637 return 0; 638 if (dev1->bus != dev2->bus) 639 return 0; 640 return 1; 641 } 642 643 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 644 * and return needle location in *index. If scsi3addr matches, but not 645 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 646 * location in *index. If needle not found, return DEVICE_NOT_FOUND. 647 */ 648 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 649 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 650 int *index) 651 { 652 int i; 653 #define DEVICE_NOT_FOUND 0 654 #define DEVICE_CHANGED 1 655 #define DEVICE_SAME 2 656 for (i = 0; i < haystack_size; i++) { 657 if (haystack[i] == NULL) /* previously removed. */ 658 continue; 659 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 660 *index = i; 661 if (device_is_the_same(needle, haystack[i])) 662 return DEVICE_SAME; 663 else 664 return DEVICE_CHANGED; 665 } 666 } 667 *index = -1; 668 return DEVICE_NOT_FOUND; 669 } 670 671 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 672 struct hpsa_scsi_dev_t *sd[], int nsds) 673 { 674 /* sd contains scsi3 addresses and devtypes, and inquiry 675 * data. This function takes what's in sd to be the current 676 * reality and updates h->dev[] to reflect that reality. 677 */ 678 int i, entry, device_change, changes = 0; 679 struct hpsa_scsi_dev_t *csd; 680 unsigned long flags; 681 struct hpsa_scsi_dev_t **added, **removed; 682 int nadded, nremoved; 683 struct Scsi_Host *sh = NULL; 684 685 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, 686 GFP_KERNEL); 687 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, 688 GFP_KERNEL); 689 690 if (!added || !removed) { 691 dev_warn(&h->pdev->dev, "out of memory in " 692 "adjust_hpsa_scsi_table\n"); 693 goto free_and_out; 694 } 695 696 spin_lock_irqsave(&h->devlock, flags); 697 698 /* find any devices in h->dev[] that are not in 699 * sd[] and remove them from h->dev[], and for any 700 * devices which have changed, remove the old device 701 * info and add the new device info. 702 */ 703 i = 0; 704 nremoved = 0; 705 nadded = 0; 706 while (i < h->ndevices) { 707 csd = h->dev[i]; 708 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 709 if (device_change == DEVICE_NOT_FOUND) { 710 changes++; 711 hpsa_scsi_remove_entry(h, hostno, i, 712 removed, &nremoved); 713 continue; /* remove ^^^, hence i not incremented */ 714 } else if (device_change == DEVICE_CHANGED) { 715 changes++; 716 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 717 added, &nadded, removed, &nremoved); 718 /* Set it to NULL to prevent it from being freed 719 * at the bottom of hpsa_update_scsi_devices() 720 */ 721 sd[entry] = NULL; 722 } 723 i++; 724 } 725 726 /* Now, make sure every device listed in sd[] is also 727 * listed in h->dev[], adding them if they aren't found 728 */ 729 730 for (i = 0; i < nsds; i++) { 731 if (!sd[i]) /* if already added above. */ 732 continue; 733 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 734 h->ndevices, &entry); 735 if (device_change == DEVICE_NOT_FOUND) { 736 changes++; 737 if (hpsa_scsi_add_entry(h, hostno, sd[i], 738 added, &nadded) != 0) 739 break; 740 sd[i] = NULL; /* prevent from being freed later. */ 741 } else if (device_change == DEVICE_CHANGED) { 742 /* should never happen... */ 743 changes++; 744 dev_warn(&h->pdev->dev, 745 "device unexpectedly changed.\n"); 746 /* but if it does happen, we just ignore that device */ 747 } 748 } 749 spin_unlock_irqrestore(&h->devlock, flags); 750 751 /* Don't notify scsi mid layer of any changes the first time through 752 * (or if there are no changes) scsi_scan_host will do it later the 753 * first time through. 754 */ 755 if (hostno == -1 || !changes) 756 goto free_and_out; 757 758 sh = h->scsi_host; 759 /* Notify scsi mid layer of any removed devices */ 760 for (i = 0; i < nremoved; i++) { 761 struct scsi_device *sdev = 762 scsi_device_lookup(sh, removed[i]->bus, 763 removed[i]->target, removed[i]->lun); 764 if (sdev != NULL) { 765 scsi_remove_device(sdev); 766 scsi_device_put(sdev); 767 } else { 768 /* We don't expect to get here. 769 * future cmds to this device will get selection 770 * timeout as if the device was gone. 771 */ 772 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 773 " for removal.", hostno, removed[i]->bus, 774 removed[i]->target, removed[i]->lun); 775 } 776 kfree(removed[i]); 777 removed[i] = NULL; 778 } 779 780 /* Notify scsi mid layer of any added devices */ 781 for (i = 0; i < nadded; i++) { 782 if (scsi_add_device(sh, added[i]->bus, 783 added[i]->target, added[i]->lun) == 0) 784 continue; 785 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 786 "device not added.\n", hostno, added[i]->bus, 787 added[i]->target, added[i]->lun); 788 /* now we have to remove it from h->dev, 789 * since it didn't get added to scsi mid layer 790 */ 791 fixup_botched_add(h, added[i]); 792 } 793 794 free_and_out: 795 kfree(added); 796 kfree(removed); 797 } 798 799 /* 800 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 801 * Assume's h->devlock is held. 802 */ 803 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 804 int bus, int target, int lun) 805 { 806 int i; 807 struct hpsa_scsi_dev_t *sd; 808 809 for (i = 0; i < h->ndevices; i++) { 810 sd = h->dev[i]; 811 if (sd->bus == bus && sd->target == target && sd->lun == lun) 812 return sd; 813 } 814 return NULL; 815 } 816 817 /* link sdev->hostdata to our per-device structure. */ 818 static int hpsa_slave_alloc(struct scsi_device *sdev) 819 { 820 struct hpsa_scsi_dev_t *sd; 821 unsigned long flags; 822 struct ctlr_info *h; 823 824 h = sdev_to_hba(sdev); 825 spin_lock_irqsave(&h->devlock, flags); 826 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 827 sdev_id(sdev), sdev->lun); 828 if (sd != NULL) 829 sdev->hostdata = sd; 830 spin_unlock_irqrestore(&h->devlock, flags); 831 return 0; 832 } 833 834 static void hpsa_slave_destroy(struct scsi_device *sdev) 835 { 836 /* nothing to do. */ 837 } 838 839 static void hpsa_scsi_setup(struct ctlr_info *h) 840 { 841 h->ndevices = 0; 842 h->scsi_host = NULL; 843 spin_lock_init(&h->devlock); 844 } 845 846 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 847 { 848 int i; 849 850 if (!h->cmd_sg_list) 851 return; 852 for (i = 0; i < h->nr_cmds; i++) { 853 kfree(h->cmd_sg_list[i]); 854 h->cmd_sg_list[i] = NULL; 855 } 856 kfree(h->cmd_sg_list); 857 h->cmd_sg_list = NULL; 858 } 859 860 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 861 { 862 int i; 863 864 if (h->chainsize <= 0) 865 return 0; 866 867 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 868 GFP_KERNEL); 869 if (!h->cmd_sg_list) 870 return -ENOMEM; 871 for (i = 0; i < h->nr_cmds; i++) { 872 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 873 h->chainsize, GFP_KERNEL); 874 if (!h->cmd_sg_list[i]) 875 goto clean; 876 } 877 return 0; 878 879 clean: 880 hpsa_free_sg_chain_blocks(h); 881 return -ENOMEM; 882 } 883 884 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 885 struct CommandList *c) 886 { 887 struct SGDescriptor *chain_sg, *chain_block; 888 u64 temp64; 889 890 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 891 chain_block = h->cmd_sg_list[c->cmdindex]; 892 chain_sg->Ext = HPSA_SG_CHAIN; 893 chain_sg->Len = sizeof(*chain_sg) * 894 (c->Header.SGTotal - h->max_cmd_sg_entries); 895 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 896 PCI_DMA_TODEVICE); 897 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 898 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 899 } 900 901 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 902 struct CommandList *c) 903 { 904 struct SGDescriptor *chain_sg; 905 union u64bit temp64; 906 907 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 908 return; 909 910 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 911 temp64.val32.lower = chain_sg->Addr.lower; 912 temp64.val32.upper = chain_sg->Addr.upper; 913 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 914 } 915 916 static void complete_scsi_command(struct CommandList *cp, 917 int timeout, u32 tag) 918 { 919 struct scsi_cmnd *cmd; 920 struct ctlr_info *h; 921 struct ErrorInfo *ei; 922 923 unsigned char sense_key; 924 unsigned char asc; /* additional sense code */ 925 unsigned char ascq; /* additional sense code qualifier */ 926 927 ei = cp->err_info; 928 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 929 h = cp->h; 930 931 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 932 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 933 hpsa_unmap_sg_chain_block(h, cp); 934 935 cmd->result = (DID_OK << 16); /* host byte */ 936 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 937 cmd->result |= ei->ScsiStatus; 938 939 /* copy the sense data whether we need to or not. */ 940 memcpy(cmd->sense_buffer, ei->SenseInfo, 941 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? 942 SCSI_SENSE_BUFFERSIZE : 943 ei->SenseLen); 944 scsi_set_resid(cmd, ei->ResidualCnt); 945 946 if (ei->CommandStatus == 0) { 947 cmd->scsi_done(cmd); 948 cmd_free(h, cp); 949 return; 950 } 951 952 /* an error has occurred */ 953 switch (ei->CommandStatus) { 954 955 case CMD_TARGET_STATUS: 956 if (ei->ScsiStatus) { 957 /* Get sense key */ 958 sense_key = 0xf & ei->SenseInfo[2]; 959 /* Get additional sense code */ 960 asc = ei->SenseInfo[12]; 961 /* Get addition sense code qualifier */ 962 ascq = ei->SenseInfo[13]; 963 } 964 965 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 966 if (check_for_unit_attention(h, cp)) { 967 cmd->result = DID_SOFT_ERROR << 16; 968 break; 969 } 970 if (sense_key == ILLEGAL_REQUEST) { 971 /* 972 * SCSI REPORT_LUNS is commonly unsupported on 973 * Smart Array. Suppress noisy complaint. 974 */ 975 if (cp->Request.CDB[0] == REPORT_LUNS) 976 break; 977 978 /* If ASC/ASCQ indicate Logical Unit 979 * Not Supported condition, 980 */ 981 if ((asc == 0x25) && (ascq == 0x0)) { 982 dev_warn(&h->pdev->dev, "cp %p " 983 "has check condition\n", cp); 984 break; 985 } 986 } 987 988 if (sense_key == NOT_READY) { 989 /* If Sense is Not Ready, Logical Unit 990 * Not ready, Manual Intervention 991 * required 992 */ 993 if ((asc == 0x04) && (ascq == 0x03)) { 994 dev_warn(&h->pdev->dev, "cp %p " 995 "has check condition: unit " 996 "not ready, manual " 997 "intervention required\n", cp); 998 break; 999 } 1000 } 1001 if (sense_key == ABORTED_COMMAND) { 1002 /* Aborted command is retryable */ 1003 dev_warn(&h->pdev->dev, "cp %p " 1004 "has check condition: aborted command: " 1005 "ASC: 0x%x, ASCQ: 0x%x\n", 1006 cp, asc, ascq); 1007 cmd->result = DID_SOFT_ERROR << 16; 1008 break; 1009 } 1010 /* Must be some other type of check condition */ 1011 dev_warn(&h->pdev->dev, "cp %p has check condition: " 1012 "unknown type: " 1013 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1014 "Returning result: 0x%x, " 1015 "cmd=[%02x %02x %02x %02x %02x " 1016 "%02x %02x %02x %02x %02x %02x " 1017 "%02x %02x %02x %02x %02x]\n", 1018 cp, sense_key, asc, ascq, 1019 cmd->result, 1020 cmd->cmnd[0], cmd->cmnd[1], 1021 cmd->cmnd[2], cmd->cmnd[3], 1022 cmd->cmnd[4], cmd->cmnd[5], 1023 cmd->cmnd[6], cmd->cmnd[7], 1024 cmd->cmnd[8], cmd->cmnd[9], 1025 cmd->cmnd[10], cmd->cmnd[11], 1026 cmd->cmnd[12], cmd->cmnd[13], 1027 cmd->cmnd[14], cmd->cmnd[15]); 1028 break; 1029 } 1030 1031 1032 /* Problem was not a check condition 1033 * Pass it up to the upper layers... 1034 */ 1035 if (ei->ScsiStatus) { 1036 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1037 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1038 "Returning result: 0x%x\n", 1039 cp, ei->ScsiStatus, 1040 sense_key, asc, ascq, 1041 cmd->result); 1042 } else { /* scsi status is zero??? How??? */ 1043 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1044 "Returning no connection.\n", cp), 1045 1046 /* Ordinarily, this case should never happen, 1047 * but there is a bug in some released firmware 1048 * revisions that allows it to happen if, for 1049 * example, a 4100 backplane loses power and 1050 * the tape drive is in it. We assume that 1051 * it's a fatal error of some kind because we 1052 * can't show that it wasn't. We will make it 1053 * look like selection timeout since that is 1054 * the most common reason for this to occur, 1055 * and it's severe enough. 1056 */ 1057 1058 cmd->result = DID_NO_CONNECT << 16; 1059 } 1060 break; 1061 1062 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1063 break; 1064 case CMD_DATA_OVERRUN: 1065 dev_warn(&h->pdev->dev, "cp %p has" 1066 " completed with data overrun " 1067 "reported\n", cp); 1068 break; 1069 case CMD_INVALID: { 1070 /* print_bytes(cp, sizeof(*cp), 1, 0); 1071 print_cmd(cp); */ 1072 /* We get CMD_INVALID if you address a non-existent device 1073 * instead of a selection timeout (no response). You will 1074 * see this if you yank out a drive, then try to access it. 1075 * This is kind of a shame because it means that any other 1076 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1077 * missing target. */ 1078 cmd->result = DID_NO_CONNECT << 16; 1079 } 1080 break; 1081 case CMD_PROTOCOL_ERR: 1082 dev_warn(&h->pdev->dev, "cp %p has " 1083 "protocol error \n", cp); 1084 break; 1085 case CMD_HARDWARE_ERR: 1086 cmd->result = DID_ERROR << 16; 1087 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1088 break; 1089 case CMD_CONNECTION_LOST: 1090 cmd->result = DID_ERROR << 16; 1091 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1092 break; 1093 case CMD_ABORTED: 1094 cmd->result = DID_ABORT << 16; 1095 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1096 cp, ei->ScsiStatus); 1097 break; 1098 case CMD_ABORT_FAILED: 1099 cmd->result = DID_ERROR << 16; 1100 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1101 break; 1102 case CMD_UNSOLICITED_ABORT: 1103 cmd->result = DID_RESET << 16; 1104 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " 1105 "abort\n", cp); 1106 break; 1107 case CMD_TIMEOUT: 1108 cmd->result = DID_TIME_OUT << 16; 1109 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1110 break; 1111 default: 1112 cmd->result = DID_ERROR << 16; 1113 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1114 cp, ei->CommandStatus); 1115 } 1116 cmd->scsi_done(cmd); 1117 cmd_free(h, cp); 1118 } 1119 1120 static int hpsa_scsi_detect(struct ctlr_info *h) 1121 { 1122 struct Scsi_Host *sh; 1123 int error; 1124 1125 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 1126 if (sh == NULL) 1127 goto fail; 1128 1129 sh->io_port = 0; 1130 sh->n_io_port = 0; 1131 sh->this_id = -1; 1132 sh->max_channel = 3; 1133 sh->max_cmd_len = MAX_COMMAND_SIZE; 1134 sh->max_lun = HPSA_MAX_LUN; 1135 sh->max_id = HPSA_MAX_LUN; 1136 sh->can_queue = h->nr_cmds; 1137 sh->cmd_per_lun = h->nr_cmds; 1138 sh->sg_tablesize = h->maxsgentries; 1139 h->scsi_host = sh; 1140 sh->hostdata[0] = (unsigned long) h; 1141 sh->irq = h->intr[PERF_MODE_INT]; 1142 sh->unique_id = sh->irq; 1143 error = scsi_add_host(sh, &h->pdev->dev); 1144 if (error) 1145 goto fail_host_put; 1146 scsi_scan_host(sh); 1147 return 0; 1148 1149 fail_host_put: 1150 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" 1151 " failed for controller %d\n", h->ctlr); 1152 scsi_host_put(sh); 1153 return error; 1154 fail: 1155 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" 1156 " failed for controller %d\n", h->ctlr); 1157 return -ENOMEM; 1158 } 1159 1160 static void hpsa_pci_unmap(struct pci_dev *pdev, 1161 struct CommandList *c, int sg_used, int data_direction) 1162 { 1163 int i; 1164 union u64bit addr64; 1165 1166 for (i = 0; i < sg_used; i++) { 1167 addr64.val32.lower = c->SG[i].Addr.lower; 1168 addr64.val32.upper = c->SG[i].Addr.upper; 1169 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1170 data_direction); 1171 } 1172 } 1173 1174 static void hpsa_map_one(struct pci_dev *pdev, 1175 struct CommandList *cp, 1176 unsigned char *buf, 1177 size_t buflen, 1178 int data_direction) 1179 { 1180 u64 addr64; 1181 1182 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1183 cp->Header.SGList = 0; 1184 cp->Header.SGTotal = 0; 1185 return; 1186 } 1187 1188 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1189 cp->SG[0].Addr.lower = 1190 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1191 cp->SG[0].Addr.upper = 1192 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1193 cp->SG[0].Len = buflen; 1194 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1195 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1196 } 1197 1198 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1199 struct CommandList *c) 1200 { 1201 DECLARE_COMPLETION_ONSTACK(wait); 1202 1203 c->waiting = &wait; 1204 enqueue_cmd_and_start_io(h, c); 1205 wait_for_completion(&wait); 1206 } 1207 1208 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1209 struct CommandList *c, int data_direction) 1210 { 1211 int retry_count = 0; 1212 1213 do { 1214 memset(c->err_info, 0, sizeof(c->err_info)); 1215 hpsa_scsi_do_simple_cmd_core(h, c); 1216 retry_count++; 1217 } while (check_for_unit_attention(h, c) && retry_count <= 3); 1218 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1219 } 1220 1221 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1222 { 1223 struct ErrorInfo *ei; 1224 struct device *d = &cp->h->pdev->dev; 1225 1226 ei = cp->err_info; 1227 switch (ei->CommandStatus) { 1228 case CMD_TARGET_STATUS: 1229 dev_warn(d, "cmd %p has completed with errors\n", cp); 1230 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1231 ei->ScsiStatus); 1232 if (ei->ScsiStatus == 0) 1233 dev_warn(d, "SCSI status is abnormally zero. " 1234 "(probably indicates selection timeout " 1235 "reported incorrectly due to a known " 1236 "firmware bug, circa July, 2001.)\n"); 1237 break; 1238 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1239 dev_info(d, "UNDERRUN\n"); 1240 break; 1241 case CMD_DATA_OVERRUN: 1242 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1243 break; 1244 case CMD_INVALID: { 1245 /* controller unfortunately reports SCSI passthru's 1246 * to non-existent targets as invalid commands. 1247 */ 1248 dev_warn(d, "cp %p is reported invalid (probably means " 1249 "target device no longer present)\n", cp); 1250 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1251 print_cmd(cp); */ 1252 } 1253 break; 1254 case CMD_PROTOCOL_ERR: 1255 dev_warn(d, "cp %p has protocol error \n", cp); 1256 break; 1257 case CMD_HARDWARE_ERR: 1258 /* cmd->result = DID_ERROR << 16; */ 1259 dev_warn(d, "cp %p had hardware error\n", cp); 1260 break; 1261 case CMD_CONNECTION_LOST: 1262 dev_warn(d, "cp %p had connection lost\n", cp); 1263 break; 1264 case CMD_ABORTED: 1265 dev_warn(d, "cp %p was aborted\n", cp); 1266 break; 1267 case CMD_ABORT_FAILED: 1268 dev_warn(d, "cp %p reports abort failed\n", cp); 1269 break; 1270 case CMD_UNSOLICITED_ABORT: 1271 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1272 break; 1273 case CMD_TIMEOUT: 1274 dev_warn(d, "cp %p timed out\n", cp); 1275 break; 1276 default: 1277 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1278 ei->CommandStatus); 1279 } 1280 } 1281 1282 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1283 unsigned char page, unsigned char *buf, 1284 unsigned char bufsize) 1285 { 1286 int rc = IO_OK; 1287 struct CommandList *c; 1288 struct ErrorInfo *ei; 1289 1290 c = cmd_special_alloc(h); 1291 1292 if (c == NULL) { /* trouble... */ 1293 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1294 return -ENOMEM; 1295 } 1296 1297 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1298 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1299 ei = c->err_info; 1300 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1301 hpsa_scsi_interpret_error(c); 1302 rc = -1; 1303 } 1304 cmd_special_free(h, c); 1305 return rc; 1306 } 1307 1308 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1309 { 1310 int rc = IO_OK; 1311 struct CommandList *c; 1312 struct ErrorInfo *ei; 1313 1314 c = cmd_special_alloc(h); 1315 1316 if (c == NULL) { /* trouble... */ 1317 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1318 return -ENOMEM; 1319 } 1320 1321 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1322 hpsa_scsi_do_simple_cmd_core(h, c); 1323 /* no unmap needed here because no data xfer. */ 1324 1325 ei = c->err_info; 1326 if (ei->CommandStatus != 0) { 1327 hpsa_scsi_interpret_error(c); 1328 rc = -1; 1329 } 1330 cmd_special_free(h, c); 1331 return rc; 1332 } 1333 1334 static void hpsa_get_raid_level(struct ctlr_info *h, 1335 unsigned char *scsi3addr, unsigned char *raid_level) 1336 { 1337 int rc; 1338 unsigned char *buf; 1339 1340 *raid_level = RAID_UNKNOWN; 1341 buf = kzalloc(64, GFP_KERNEL); 1342 if (!buf) 1343 return; 1344 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1345 if (rc == 0) 1346 *raid_level = buf[8]; 1347 if (*raid_level > RAID_UNKNOWN) 1348 *raid_level = RAID_UNKNOWN; 1349 kfree(buf); 1350 return; 1351 } 1352 1353 /* Get the device id from inquiry page 0x83 */ 1354 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1355 unsigned char *device_id, int buflen) 1356 { 1357 int rc; 1358 unsigned char *buf; 1359 1360 if (buflen > 16) 1361 buflen = 16; 1362 buf = kzalloc(64, GFP_KERNEL); 1363 if (!buf) 1364 return -1; 1365 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1366 if (rc == 0) 1367 memcpy(device_id, &buf[8], buflen); 1368 kfree(buf); 1369 return rc != 0; 1370 } 1371 1372 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1373 struct ReportLUNdata *buf, int bufsize, 1374 int extended_response) 1375 { 1376 int rc = IO_OK; 1377 struct CommandList *c; 1378 unsigned char scsi3addr[8]; 1379 struct ErrorInfo *ei; 1380 1381 c = cmd_special_alloc(h); 1382 if (c == NULL) { /* trouble... */ 1383 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1384 return -1; 1385 } 1386 /* address the controller */ 1387 memset(scsi3addr, 0, sizeof(scsi3addr)); 1388 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1389 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1390 if (extended_response) 1391 c->Request.CDB[1] = extended_response; 1392 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1393 ei = c->err_info; 1394 if (ei->CommandStatus != 0 && 1395 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1396 hpsa_scsi_interpret_error(c); 1397 rc = -1; 1398 } 1399 cmd_special_free(h, c); 1400 return rc; 1401 } 1402 1403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1404 struct ReportLUNdata *buf, 1405 int bufsize, int extended_response) 1406 { 1407 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1408 } 1409 1410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1411 struct ReportLUNdata *buf, int bufsize) 1412 { 1413 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1414 } 1415 1416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1417 int bus, int target, int lun) 1418 { 1419 device->bus = bus; 1420 device->target = target; 1421 device->lun = lun; 1422 } 1423 1424 static int hpsa_update_device_info(struct ctlr_info *h, 1425 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) 1426 { 1427 #define OBDR_TAPE_INQ_SIZE 49 1428 unsigned char *inq_buff; 1429 1430 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1431 if (!inq_buff) 1432 goto bail_out; 1433 1434 /* Do an inquiry to the device to see what it is. */ 1435 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1436 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1437 /* Inquiry failed (msg printed already) */ 1438 dev_err(&h->pdev->dev, 1439 "hpsa_update_device_info: inquiry failed\n"); 1440 goto bail_out; 1441 } 1442 1443 /* As a side effect, record the firmware version number 1444 * if we happen to be talking to the RAID controller. 1445 */ 1446 if (is_hba_lunid(scsi3addr)) 1447 memcpy(h->firm_ver, &inq_buff[32], 4); 1448 1449 this_device->devtype = (inq_buff[0] & 0x1f); 1450 memcpy(this_device->scsi3addr, scsi3addr, 8); 1451 memcpy(this_device->vendor, &inq_buff[8], 1452 sizeof(this_device->vendor)); 1453 memcpy(this_device->model, &inq_buff[16], 1454 sizeof(this_device->model)); 1455 memcpy(this_device->revision, &inq_buff[32], 1456 sizeof(this_device->revision)); 1457 memset(this_device->device_id, 0, 1458 sizeof(this_device->device_id)); 1459 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1460 sizeof(this_device->device_id)); 1461 1462 if (this_device->devtype == TYPE_DISK && 1463 is_logical_dev_addr_mode(scsi3addr)) 1464 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1465 else 1466 this_device->raid_level = RAID_UNKNOWN; 1467 1468 kfree(inq_buff); 1469 return 0; 1470 1471 bail_out: 1472 kfree(inq_buff); 1473 return 1; 1474 } 1475 1476 static unsigned char *msa2xxx_model[] = { 1477 "MSA2012", 1478 "MSA2024", 1479 "MSA2312", 1480 "MSA2324", 1481 NULL, 1482 }; 1483 1484 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1485 { 1486 int i; 1487 1488 for (i = 0; msa2xxx_model[i]; i++) 1489 if (strncmp(device->model, msa2xxx_model[i], 1490 strlen(msa2xxx_model[i])) == 0) 1491 return 1; 1492 return 0; 1493 } 1494 1495 /* Helper function to assign bus, target, lun mapping of devices. 1496 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical 1497 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1498 * Logical drive target and lun are assigned at this time, but 1499 * physical device lun and target assignment are deferred (assigned 1500 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1501 */ 1502 static void figure_bus_target_lun(struct ctlr_info *h, 1503 u8 *lunaddrbytes, int *bus, int *target, int *lun, 1504 struct hpsa_scsi_dev_t *device) 1505 { 1506 u32 lunid; 1507 1508 if (is_logical_dev_addr_mode(lunaddrbytes)) { 1509 /* logical device */ 1510 if (unlikely(is_scsi_rev_5(h))) { 1511 /* p1210m, logical drives lun assignments 1512 * match SCSI REPORT LUNS data. 1513 */ 1514 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1515 *bus = 0; 1516 *target = 0; 1517 *lun = (lunid & 0x3fff) + 1; 1518 } else { 1519 /* not p1210m... */ 1520 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1521 if (is_msa2xxx(h, device)) { 1522 /* msa2xxx way, put logicals on bus 1 1523 * and match target/lun numbers box 1524 * reports. 1525 */ 1526 *bus = 1; 1527 *target = (lunid >> 16) & 0x3fff; 1528 *lun = lunid & 0x00ff; 1529 } else { 1530 /* Traditional smart array way. */ 1531 *bus = 0; 1532 *lun = 0; 1533 *target = lunid & 0x3fff; 1534 } 1535 } 1536 } else { 1537 /* physical device */ 1538 if (is_hba_lunid(lunaddrbytes)) 1539 if (unlikely(is_scsi_rev_5(h))) { 1540 *bus = 0; /* put p1210m ctlr at 0,0,0 */ 1541 *target = 0; 1542 *lun = 0; 1543 return; 1544 } else 1545 *bus = 3; /* traditional smartarray */ 1546 else 1547 *bus = 2; /* physical disk */ 1548 *target = -1; 1549 *lun = -1; /* we will fill these in later. */ 1550 } 1551 } 1552 1553 /* 1554 * If there is no lun 0 on a target, linux won't find any devices. 1555 * For the MSA2xxx boxes, we have to manually detect the enclosure 1556 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1557 * it for some reason. *tmpdevice is the target we're adding, 1558 * this_device is a pointer into the current element of currentsd[] 1559 * that we're building up in update_scsi_devices(), below. 1560 * lunzerobits is a bitmap that tracks which targets already have a 1561 * lun 0 assigned. 1562 * Returns 1 if an enclosure was added, 0 if not. 1563 */ 1564 static int add_msa2xxx_enclosure_device(struct ctlr_info *h, 1565 struct hpsa_scsi_dev_t *tmpdevice, 1566 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1567 int bus, int target, int lun, unsigned long lunzerobits[], 1568 int *nmsa2xxx_enclosures) 1569 { 1570 unsigned char scsi3addr[8]; 1571 1572 if (test_bit(target, lunzerobits)) 1573 return 0; /* There is already a lun 0 on this target. */ 1574 1575 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1576 return 0; /* It's the logical targets that may lack lun 0. */ 1577 1578 if (!is_msa2xxx(h, tmpdevice)) 1579 return 0; /* It's only the MSA2xxx that have this problem. */ 1580 1581 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ 1582 return 0; 1583 1584 if (is_hba_lunid(scsi3addr)) 1585 return 0; /* Don't add the RAID controller here. */ 1586 1587 if (is_scsi_rev_5(h)) 1588 return 0; /* p1210m doesn't need to do this. */ 1589 1590 #define MAX_MSA2XXX_ENCLOSURES 32 1591 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { 1592 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " 1593 "enclosures exceeded. Check your hardware " 1594 "configuration."); 1595 return 0; 1596 } 1597 1598 memset(scsi3addr, 0, 8); 1599 scsi3addr[3] = target; 1600 if (hpsa_update_device_info(h, scsi3addr, this_device)) 1601 return 0; 1602 (*nmsa2xxx_enclosures)++; 1603 hpsa_set_bus_target_lun(this_device, bus, target, 0); 1604 set_bit(target, lunzerobits); 1605 return 1; 1606 } 1607 1608 /* 1609 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1610 * logdev. The number of luns in physdev and logdev are returned in 1611 * *nphysicals and *nlogicals, respectively. 1612 * Returns 0 on success, -1 otherwise. 1613 */ 1614 static int hpsa_gather_lun_info(struct ctlr_info *h, 1615 int reportlunsize, 1616 struct ReportLUNdata *physdev, u32 *nphysicals, 1617 struct ReportLUNdata *logdev, u32 *nlogicals) 1618 { 1619 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1620 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1621 return -1; 1622 } 1623 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1624 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1625 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1626 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1627 *nphysicals - HPSA_MAX_PHYS_LUN); 1628 *nphysicals = HPSA_MAX_PHYS_LUN; 1629 } 1630 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1631 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1632 return -1; 1633 } 1634 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1635 /* Reject Logicals in excess of our max capability. */ 1636 if (*nlogicals > HPSA_MAX_LUN) { 1637 dev_warn(&h->pdev->dev, 1638 "maximum logical LUNs (%d) exceeded. " 1639 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1640 *nlogicals - HPSA_MAX_LUN); 1641 *nlogicals = HPSA_MAX_LUN; 1642 } 1643 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1644 dev_warn(&h->pdev->dev, 1645 "maximum logical + physical LUNs (%d) exceeded. " 1646 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1647 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1648 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1649 } 1650 return 0; 1651 } 1652 1653 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1654 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1655 struct ReportLUNdata *logdev_list) 1656 { 1657 /* Helper function, figure out where the LUN ID info is coming from 1658 * given index i, lists of physical and logical devices, where in 1659 * the list the raid controller is supposed to appear (first or last) 1660 */ 1661 1662 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1663 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1664 1665 if (i == raid_ctlr_position) 1666 return RAID_CTLR_LUNID; 1667 1668 if (i < logicals_start) 1669 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1670 1671 if (i < last_device) 1672 return &logdev_list->LUN[i - nphysicals - 1673 (raid_ctlr_position == 0)][0]; 1674 BUG(); 1675 return NULL; 1676 } 1677 1678 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1679 { 1680 /* the idea here is we could get notified 1681 * that some devices have changed, so we do a report 1682 * physical luns and report logical luns cmd, and adjust 1683 * our list of devices accordingly. 1684 * 1685 * The scsi3addr's of devices won't change so long as the 1686 * adapter is not reset. That means we can rescan and 1687 * tell which devices we already know about, vs. new 1688 * devices, vs. disappearing devices. 1689 */ 1690 struct ReportLUNdata *physdev_list = NULL; 1691 struct ReportLUNdata *logdev_list = NULL; 1692 unsigned char *inq_buff = NULL; 1693 u32 nphysicals = 0; 1694 u32 nlogicals = 0; 1695 u32 ndev_allocated = 0; 1696 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1697 int ncurrent = 0; 1698 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1699 int i, nmsa2xxx_enclosures, ndevs_to_allocate; 1700 int bus, target, lun; 1701 int raid_ctlr_position; 1702 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); 1703 1704 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, 1705 GFP_KERNEL); 1706 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1707 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1708 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1709 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1710 1711 if (!currentsd || !physdev_list || !logdev_list || 1712 !inq_buff || !tmpdevice) { 1713 dev_err(&h->pdev->dev, "out of memory\n"); 1714 goto out; 1715 } 1716 memset(lunzerobits, 0, sizeof(lunzerobits)); 1717 1718 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1719 logdev_list, &nlogicals)) 1720 goto out; 1721 1722 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them 1723 * but each of them 4 times through different paths. The plus 1 1724 * is for the RAID controller. 1725 */ 1726 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; 1727 1728 /* Allocate the per device structures */ 1729 for (i = 0; i < ndevs_to_allocate; i++) { 1730 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1731 if (!currentsd[i]) { 1732 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1733 __FILE__, __LINE__); 1734 goto out; 1735 } 1736 ndev_allocated++; 1737 } 1738 1739 if (unlikely(is_scsi_rev_5(h))) 1740 raid_ctlr_position = 0; 1741 else 1742 raid_ctlr_position = nphysicals + nlogicals; 1743 1744 /* adjust our table of devices */ 1745 nmsa2xxx_enclosures = 0; 1746 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1747 u8 *lunaddrbytes; 1748 1749 /* Figure out where the LUN ID info is coming from */ 1750 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1751 i, nphysicals, nlogicals, physdev_list, logdev_list); 1752 /* skip masked physical devices. */ 1753 if (lunaddrbytes[3] & 0xC0 && 1754 i < nphysicals + (raid_ctlr_position == 0)) 1755 continue; 1756 1757 /* Get device type, vendor, model, device id */ 1758 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) 1759 continue; /* skip it if we can't talk to it. */ 1760 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, 1761 tmpdevice); 1762 this_device = currentsd[ncurrent]; 1763 1764 /* 1765 * For the msa2xxx boxes, we have to insert a LUN 0 which 1766 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1767 * is nonetheless an enclosure device there. We have to 1768 * present that otherwise linux won't find anything if 1769 * there is no lun 0. 1770 */ 1771 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, 1772 lunaddrbytes, bus, target, lun, lunzerobits, 1773 &nmsa2xxx_enclosures)) { 1774 ncurrent++; 1775 this_device = currentsd[ncurrent]; 1776 } 1777 1778 *this_device = *tmpdevice; 1779 hpsa_set_bus_target_lun(this_device, bus, target, lun); 1780 1781 switch (this_device->devtype) { 1782 case TYPE_ROM: { 1783 /* We don't *really* support actual CD-ROM devices, 1784 * just "One Button Disaster Recovery" tape drive 1785 * which temporarily pretends to be a CD-ROM drive. 1786 * So we check that the device is really an OBDR tape 1787 * device by checking for "$DR-10" in bytes 43-48 of 1788 * the inquiry data. 1789 */ 1790 char obdr_sig[7]; 1791 #define OBDR_TAPE_SIG "$DR-10" 1792 strncpy(obdr_sig, &inq_buff[43], 6); 1793 obdr_sig[6] = '\0'; 1794 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) 1795 /* Not OBDR device, ignore it. */ 1796 break; 1797 } 1798 ncurrent++; 1799 break; 1800 case TYPE_DISK: 1801 if (i < nphysicals) 1802 break; 1803 ncurrent++; 1804 break; 1805 case TYPE_TAPE: 1806 case TYPE_MEDIUM_CHANGER: 1807 ncurrent++; 1808 break; 1809 case TYPE_RAID: 1810 /* Only present the Smartarray HBA as a RAID controller. 1811 * If it's a RAID controller other than the HBA itself 1812 * (an external RAID controller, MSA500 or similar) 1813 * don't present it. 1814 */ 1815 if (!is_hba_lunid(lunaddrbytes)) 1816 break; 1817 ncurrent++; 1818 break; 1819 default: 1820 break; 1821 } 1822 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) 1823 break; 1824 } 1825 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1826 out: 1827 kfree(tmpdevice); 1828 for (i = 0; i < ndev_allocated; i++) 1829 kfree(currentsd[i]); 1830 kfree(currentsd); 1831 kfree(inq_buff); 1832 kfree(physdev_list); 1833 kfree(logdev_list); 1834 } 1835 1836 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 1837 * dma mapping and fills in the scatter gather entries of the 1838 * hpsa command, cp. 1839 */ 1840 static int hpsa_scatter_gather(struct ctlr_info *h, 1841 struct CommandList *cp, 1842 struct scsi_cmnd *cmd) 1843 { 1844 unsigned int len; 1845 struct scatterlist *sg; 1846 u64 addr64; 1847 int use_sg, i, sg_index, chained; 1848 struct SGDescriptor *curr_sg; 1849 1850 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 1851 1852 use_sg = scsi_dma_map(cmd); 1853 if (use_sg < 0) 1854 return use_sg; 1855 1856 if (!use_sg) 1857 goto sglist_finished; 1858 1859 curr_sg = cp->SG; 1860 chained = 0; 1861 sg_index = 0; 1862 scsi_for_each_sg(cmd, sg, use_sg, i) { 1863 if (i == h->max_cmd_sg_entries - 1 && 1864 use_sg > h->max_cmd_sg_entries) { 1865 chained = 1; 1866 curr_sg = h->cmd_sg_list[cp->cmdindex]; 1867 sg_index = 0; 1868 } 1869 addr64 = (u64) sg_dma_address(sg); 1870 len = sg_dma_len(sg); 1871 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 1872 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 1873 curr_sg->Len = len; 1874 curr_sg->Ext = 0; /* we are not chaining */ 1875 curr_sg++; 1876 } 1877 1878 if (use_sg + chained > h->maxSG) 1879 h->maxSG = use_sg + chained; 1880 1881 if (chained) { 1882 cp->Header.SGList = h->max_cmd_sg_entries; 1883 cp->Header.SGTotal = (u16) (use_sg + 1); 1884 hpsa_map_sg_chain_block(h, cp); 1885 return 0; 1886 } 1887 1888 sglist_finished: 1889 1890 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 1891 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 1892 return 0; 1893 } 1894 1895 1896 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, 1897 void (*done)(struct scsi_cmnd *)) 1898 { 1899 struct ctlr_info *h; 1900 struct hpsa_scsi_dev_t *dev; 1901 unsigned char scsi3addr[8]; 1902 struct CommandList *c; 1903 unsigned long flags; 1904 1905 /* Get the ptr to our adapter structure out of cmd->host. */ 1906 h = sdev_to_hba(cmd->device); 1907 dev = cmd->device->hostdata; 1908 if (!dev) { 1909 cmd->result = DID_NO_CONNECT << 16; 1910 done(cmd); 1911 return 0; 1912 } 1913 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 1914 1915 /* Need a lock as this is being allocated from the pool */ 1916 spin_lock_irqsave(&h->lock, flags); 1917 c = cmd_alloc(h); 1918 spin_unlock_irqrestore(&h->lock, flags); 1919 if (c == NULL) { /* trouble... */ 1920 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 1921 return SCSI_MLQUEUE_HOST_BUSY; 1922 } 1923 1924 /* Fill in the command list header */ 1925 1926 cmd->scsi_done = done; /* save this for use by completion code */ 1927 1928 /* save c in case we have to abort it */ 1929 cmd->host_scribble = (unsigned char *) c; 1930 1931 c->cmd_type = CMD_SCSI; 1932 c->scsi_cmd = cmd; 1933 c->Header.ReplyQueue = 0; /* unused in simple mode */ 1934 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 1935 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 1936 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 1937 1938 /* Fill in the request block... */ 1939 1940 c->Request.Timeout = 0; 1941 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 1942 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 1943 c->Request.CDBLen = cmd->cmd_len; 1944 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 1945 c->Request.Type.Type = TYPE_CMD; 1946 c->Request.Type.Attribute = ATTR_SIMPLE; 1947 switch (cmd->sc_data_direction) { 1948 case DMA_TO_DEVICE: 1949 c->Request.Type.Direction = XFER_WRITE; 1950 break; 1951 case DMA_FROM_DEVICE: 1952 c->Request.Type.Direction = XFER_READ; 1953 break; 1954 case DMA_NONE: 1955 c->Request.Type.Direction = XFER_NONE; 1956 break; 1957 case DMA_BIDIRECTIONAL: 1958 /* This can happen if a buggy application does a scsi passthru 1959 * and sets both inlen and outlen to non-zero. ( see 1960 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 1961 */ 1962 1963 c->Request.Type.Direction = XFER_RSVD; 1964 /* This is technically wrong, and hpsa controllers should 1965 * reject it with CMD_INVALID, which is the most correct 1966 * response, but non-fibre backends appear to let it 1967 * slide by, and give the same results as if this field 1968 * were set correctly. Either way is acceptable for 1969 * our purposes here. 1970 */ 1971 1972 break; 1973 1974 default: 1975 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 1976 cmd->sc_data_direction); 1977 BUG(); 1978 break; 1979 } 1980 1981 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 1982 cmd_free(h, c); 1983 return SCSI_MLQUEUE_HOST_BUSY; 1984 } 1985 enqueue_cmd_and_start_io(h, c); 1986 /* the cmd'll come back via intr handler in complete_scsi_command() */ 1987 return 0; 1988 } 1989 1990 static void hpsa_scan_start(struct Scsi_Host *sh) 1991 { 1992 struct ctlr_info *h = shost_to_hba(sh); 1993 unsigned long flags; 1994 1995 /* wait until any scan already in progress is finished. */ 1996 while (1) { 1997 spin_lock_irqsave(&h->scan_lock, flags); 1998 if (h->scan_finished) 1999 break; 2000 spin_unlock_irqrestore(&h->scan_lock, flags); 2001 wait_event(h->scan_wait_queue, h->scan_finished); 2002 /* Note: We don't need to worry about a race between this 2003 * thread and driver unload because the midlayer will 2004 * have incremented the reference count, so unload won't 2005 * happen if we're in here. 2006 */ 2007 } 2008 h->scan_finished = 0; /* mark scan as in progress */ 2009 spin_unlock_irqrestore(&h->scan_lock, flags); 2010 2011 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2012 2013 spin_lock_irqsave(&h->scan_lock, flags); 2014 h->scan_finished = 1; /* mark scan as finished. */ 2015 wake_up_all(&h->scan_wait_queue); 2016 spin_unlock_irqrestore(&h->scan_lock, flags); 2017 } 2018 2019 static int hpsa_scan_finished(struct Scsi_Host *sh, 2020 unsigned long elapsed_time) 2021 { 2022 struct ctlr_info *h = shost_to_hba(sh); 2023 unsigned long flags; 2024 int finished; 2025 2026 spin_lock_irqsave(&h->scan_lock, flags); 2027 finished = h->scan_finished; 2028 spin_unlock_irqrestore(&h->scan_lock, flags); 2029 return finished; 2030 } 2031 2032 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2033 int qdepth, int reason) 2034 { 2035 struct ctlr_info *h = sdev_to_hba(sdev); 2036 2037 if (reason != SCSI_QDEPTH_DEFAULT) 2038 return -ENOTSUPP; 2039 2040 if (qdepth < 1) 2041 qdepth = 1; 2042 else 2043 if (qdepth > h->nr_cmds) 2044 qdepth = h->nr_cmds; 2045 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2046 return sdev->queue_depth; 2047 } 2048 2049 static void hpsa_unregister_scsi(struct ctlr_info *h) 2050 { 2051 /* we are being forcibly unloaded, and may not refuse. */ 2052 scsi_remove_host(h->scsi_host); 2053 scsi_host_put(h->scsi_host); 2054 h->scsi_host = NULL; 2055 } 2056 2057 static int hpsa_register_scsi(struct ctlr_info *h) 2058 { 2059 int rc; 2060 2061 rc = hpsa_scsi_detect(h); 2062 if (rc != 0) 2063 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" 2064 " hpsa_scsi_detect(), rc is %d\n", rc); 2065 return rc; 2066 } 2067 2068 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2069 unsigned char lunaddr[]) 2070 { 2071 int rc = 0; 2072 int count = 0; 2073 int waittime = 1; /* seconds */ 2074 struct CommandList *c; 2075 2076 c = cmd_special_alloc(h); 2077 if (!c) { 2078 dev_warn(&h->pdev->dev, "out of memory in " 2079 "wait_for_device_to_become_ready.\n"); 2080 return IO_ERROR; 2081 } 2082 2083 /* Send test unit ready until device ready, or give up. */ 2084 while (count < HPSA_TUR_RETRY_LIMIT) { 2085 2086 /* Wait for a bit. do this first, because if we send 2087 * the TUR right away, the reset will just abort it. 2088 */ 2089 msleep(1000 * waittime); 2090 count++; 2091 2092 /* Increase wait time with each try, up to a point. */ 2093 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2094 waittime = waittime * 2; 2095 2096 /* Send the Test Unit Ready */ 2097 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2098 hpsa_scsi_do_simple_cmd_core(h, c); 2099 /* no unmap needed here because no data xfer. */ 2100 2101 if (c->err_info->CommandStatus == CMD_SUCCESS) 2102 break; 2103 2104 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2105 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2106 (c->err_info->SenseInfo[2] == NO_SENSE || 2107 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2108 break; 2109 2110 dev_warn(&h->pdev->dev, "waiting %d secs " 2111 "for device to become ready.\n", waittime); 2112 rc = 1; /* device not ready. */ 2113 } 2114 2115 if (rc) 2116 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2117 else 2118 dev_warn(&h->pdev->dev, "device is ready.\n"); 2119 2120 cmd_special_free(h, c); 2121 return rc; 2122 } 2123 2124 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2125 * complaining. Doing a host- or bus-reset can't do anything good here. 2126 */ 2127 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2128 { 2129 int rc; 2130 struct ctlr_info *h; 2131 struct hpsa_scsi_dev_t *dev; 2132 2133 /* find the controller to which the command to be aborted was sent */ 2134 h = sdev_to_hba(scsicmd->device); 2135 if (h == NULL) /* paranoia */ 2136 return FAILED; 2137 dev = scsicmd->device->hostdata; 2138 if (!dev) { 2139 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2140 "device lookup failed.\n"); 2141 return FAILED; 2142 } 2143 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2144 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2145 /* send a reset to the SCSI LUN which the command was sent to */ 2146 rc = hpsa_send_reset(h, dev->scsi3addr); 2147 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2148 return SUCCESS; 2149 2150 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2151 return FAILED; 2152 } 2153 2154 /* 2155 * For operations that cannot sleep, a command block is allocated at init, 2156 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2157 * which ones are free or in use. Lock must be held when calling this. 2158 * cmd_free() is the complement. 2159 */ 2160 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2161 { 2162 struct CommandList *c; 2163 int i; 2164 union u64bit temp64; 2165 dma_addr_t cmd_dma_handle, err_dma_handle; 2166 2167 do { 2168 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2169 if (i == h->nr_cmds) 2170 return NULL; 2171 } while (test_and_set_bit 2172 (i & (BITS_PER_LONG - 1), 2173 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2174 c = h->cmd_pool + i; 2175 memset(c, 0, sizeof(*c)); 2176 cmd_dma_handle = h->cmd_pool_dhandle 2177 + i * sizeof(*c); 2178 c->err_info = h->errinfo_pool + i; 2179 memset(c->err_info, 0, sizeof(*c->err_info)); 2180 err_dma_handle = h->errinfo_pool_dhandle 2181 + i * sizeof(*c->err_info); 2182 h->nr_allocs++; 2183 2184 c->cmdindex = i; 2185 2186 INIT_HLIST_NODE(&c->list); 2187 c->busaddr = (u32) cmd_dma_handle; 2188 temp64.val = (u64) err_dma_handle; 2189 c->ErrDesc.Addr.lower = temp64.val32.lower; 2190 c->ErrDesc.Addr.upper = temp64.val32.upper; 2191 c->ErrDesc.Len = sizeof(*c->err_info); 2192 2193 c->h = h; 2194 return c; 2195 } 2196 2197 /* For operations that can wait for kmalloc to possibly sleep, 2198 * this routine can be called. Lock need not be held to call 2199 * cmd_special_alloc. cmd_special_free() is the complement. 2200 */ 2201 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2202 { 2203 struct CommandList *c; 2204 union u64bit temp64; 2205 dma_addr_t cmd_dma_handle, err_dma_handle; 2206 2207 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2208 if (c == NULL) 2209 return NULL; 2210 memset(c, 0, sizeof(*c)); 2211 2212 c->cmdindex = -1; 2213 2214 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2215 &err_dma_handle); 2216 2217 if (c->err_info == NULL) { 2218 pci_free_consistent(h->pdev, 2219 sizeof(*c), c, cmd_dma_handle); 2220 return NULL; 2221 } 2222 memset(c->err_info, 0, sizeof(*c->err_info)); 2223 2224 INIT_HLIST_NODE(&c->list); 2225 c->busaddr = (u32) cmd_dma_handle; 2226 temp64.val = (u64) err_dma_handle; 2227 c->ErrDesc.Addr.lower = temp64.val32.lower; 2228 c->ErrDesc.Addr.upper = temp64.val32.upper; 2229 c->ErrDesc.Len = sizeof(*c->err_info); 2230 2231 c->h = h; 2232 return c; 2233 } 2234 2235 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2236 { 2237 int i; 2238 2239 i = c - h->cmd_pool; 2240 clear_bit(i & (BITS_PER_LONG - 1), 2241 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2242 h->nr_frees++; 2243 } 2244 2245 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2246 { 2247 union u64bit temp64; 2248 2249 temp64.val32.lower = c->ErrDesc.Addr.lower; 2250 temp64.val32.upper = c->ErrDesc.Addr.upper; 2251 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2252 c->err_info, (dma_addr_t) temp64.val); 2253 pci_free_consistent(h->pdev, sizeof(*c), 2254 c, (dma_addr_t) c->busaddr); 2255 } 2256 2257 #ifdef CONFIG_COMPAT 2258 2259 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2260 { 2261 IOCTL32_Command_struct __user *arg32 = 2262 (IOCTL32_Command_struct __user *) arg; 2263 IOCTL_Command_struct arg64; 2264 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2265 int err; 2266 u32 cp; 2267 2268 err = 0; 2269 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2270 sizeof(arg64.LUN_info)); 2271 err |= copy_from_user(&arg64.Request, &arg32->Request, 2272 sizeof(arg64.Request)); 2273 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2274 sizeof(arg64.error_info)); 2275 err |= get_user(arg64.buf_size, &arg32->buf_size); 2276 err |= get_user(cp, &arg32->buf); 2277 arg64.buf = compat_ptr(cp); 2278 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2279 2280 if (err) 2281 return -EFAULT; 2282 2283 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2284 if (err) 2285 return err; 2286 err |= copy_in_user(&arg32->error_info, &p->error_info, 2287 sizeof(arg32->error_info)); 2288 if (err) 2289 return -EFAULT; 2290 return err; 2291 } 2292 2293 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2294 int cmd, void *arg) 2295 { 2296 BIG_IOCTL32_Command_struct __user *arg32 = 2297 (BIG_IOCTL32_Command_struct __user *) arg; 2298 BIG_IOCTL_Command_struct arg64; 2299 BIG_IOCTL_Command_struct __user *p = 2300 compat_alloc_user_space(sizeof(arg64)); 2301 int err; 2302 u32 cp; 2303 2304 err = 0; 2305 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2306 sizeof(arg64.LUN_info)); 2307 err |= copy_from_user(&arg64.Request, &arg32->Request, 2308 sizeof(arg64.Request)); 2309 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2310 sizeof(arg64.error_info)); 2311 err |= get_user(arg64.buf_size, &arg32->buf_size); 2312 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2313 err |= get_user(cp, &arg32->buf); 2314 arg64.buf = compat_ptr(cp); 2315 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2316 2317 if (err) 2318 return -EFAULT; 2319 2320 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2321 if (err) 2322 return err; 2323 err |= copy_in_user(&arg32->error_info, &p->error_info, 2324 sizeof(arg32->error_info)); 2325 if (err) 2326 return -EFAULT; 2327 return err; 2328 } 2329 2330 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2331 { 2332 switch (cmd) { 2333 case CCISS_GETPCIINFO: 2334 case CCISS_GETINTINFO: 2335 case CCISS_SETINTINFO: 2336 case CCISS_GETNODENAME: 2337 case CCISS_SETNODENAME: 2338 case CCISS_GETHEARTBEAT: 2339 case CCISS_GETBUSTYPES: 2340 case CCISS_GETFIRMVER: 2341 case CCISS_GETDRIVVER: 2342 case CCISS_REVALIDVOLS: 2343 case CCISS_DEREGDISK: 2344 case CCISS_REGNEWDISK: 2345 case CCISS_REGNEWD: 2346 case CCISS_RESCANDISK: 2347 case CCISS_GETLUNINFO: 2348 return hpsa_ioctl(dev, cmd, arg); 2349 2350 case CCISS_PASSTHRU32: 2351 return hpsa_ioctl32_passthru(dev, cmd, arg); 2352 case CCISS_BIG_PASSTHRU32: 2353 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2354 2355 default: 2356 return -ENOIOCTLCMD; 2357 } 2358 } 2359 #endif 2360 2361 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2362 { 2363 struct hpsa_pci_info pciinfo; 2364 2365 if (!argp) 2366 return -EINVAL; 2367 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2368 pciinfo.bus = h->pdev->bus->number; 2369 pciinfo.dev_fn = h->pdev->devfn; 2370 pciinfo.board_id = h->board_id; 2371 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2372 return -EFAULT; 2373 return 0; 2374 } 2375 2376 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2377 { 2378 DriverVer_type DriverVer; 2379 unsigned char vmaj, vmin, vsubmin; 2380 int rc; 2381 2382 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2383 &vmaj, &vmin, &vsubmin); 2384 if (rc != 3) { 2385 dev_info(&h->pdev->dev, "driver version string '%s' " 2386 "unrecognized.", HPSA_DRIVER_VERSION); 2387 vmaj = 0; 2388 vmin = 0; 2389 vsubmin = 0; 2390 } 2391 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2392 if (!argp) 2393 return -EINVAL; 2394 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2395 return -EFAULT; 2396 return 0; 2397 } 2398 2399 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2400 { 2401 IOCTL_Command_struct iocommand; 2402 struct CommandList *c; 2403 char *buff = NULL; 2404 union u64bit temp64; 2405 2406 if (!argp) 2407 return -EINVAL; 2408 if (!capable(CAP_SYS_RAWIO)) 2409 return -EPERM; 2410 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2411 return -EFAULT; 2412 if ((iocommand.buf_size < 1) && 2413 (iocommand.Request.Type.Direction != XFER_NONE)) { 2414 return -EINVAL; 2415 } 2416 if (iocommand.buf_size > 0) { 2417 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2418 if (buff == NULL) 2419 return -EFAULT; 2420 } 2421 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2422 /* Copy the data into the buffer we created */ 2423 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { 2424 kfree(buff); 2425 return -EFAULT; 2426 } 2427 } else 2428 memset(buff, 0, iocommand.buf_size); 2429 c = cmd_special_alloc(h); 2430 if (c == NULL) { 2431 kfree(buff); 2432 return -ENOMEM; 2433 } 2434 /* Fill in the command type */ 2435 c->cmd_type = CMD_IOCTL_PEND; 2436 /* Fill in Command Header */ 2437 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2438 if (iocommand.buf_size > 0) { /* buffer to fill */ 2439 c->Header.SGList = 1; 2440 c->Header.SGTotal = 1; 2441 } else { /* no buffers to fill */ 2442 c->Header.SGList = 0; 2443 c->Header.SGTotal = 0; 2444 } 2445 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2446 /* use the kernel address the cmd block for tag */ 2447 c->Header.Tag.lower = c->busaddr; 2448 2449 /* Fill in Request block */ 2450 memcpy(&c->Request, &iocommand.Request, 2451 sizeof(c->Request)); 2452 2453 /* Fill in the scatter gather information */ 2454 if (iocommand.buf_size > 0) { 2455 temp64.val = pci_map_single(h->pdev, buff, 2456 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2457 c->SG[0].Addr.lower = temp64.val32.lower; 2458 c->SG[0].Addr.upper = temp64.val32.upper; 2459 c->SG[0].Len = iocommand.buf_size; 2460 c->SG[0].Ext = 0; /* we are not chaining*/ 2461 } 2462 hpsa_scsi_do_simple_cmd_core(h, c); 2463 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2464 check_ioctl_unit_attention(h, c); 2465 2466 /* Copy the error information out */ 2467 memcpy(&iocommand.error_info, c->err_info, 2468 sizeof(iocommand.error_info)); 2469 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2470 kfree(buff); 2471 cmd_special_free(h, c); 2472 return -EFAULT; 2473 } 2474 2475 if (iocommand.Request.Type.Direction == XFER_READ) { 2476 /* Copy the data out of the buffer we created */ 2477 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2478 kfree(buff); 2479 cmd_special_free(h, c); 2480 return -EFAULT; 2481 } 2482 } 2483 kfree(buff); 2484 cmd_special_free(h, c); 2485 return 0; 2486 } 2487 2488 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2489 { 2490 BIG_IOCTL_Command_struct *ioc; 2491 struct CommandList *c; 2492 unsigned char **buff = NULL; 2493 int *buff_size = NULL; 2494 union u64bit temp64; 2495 BYTE sg_used = 0; 2496 int status = 0; 2497 int i; 2498 u32 left; 2499 u32 sz; 2500 BYTE __user *data_ptr; 2501 2502 if (!argp) 2503 return -EINVAL; 2504 if (!capable(CAP_SYS_RAWIO)) 2505 return -EPERM; 2506 ioc = (BIG_IOCTL_Command_struct *) 2507 kmalloc(sizeof(*ioc), GFP_KERNEL); 2508 if (!ioc) { 2509 status = -ENOMEM; 2510 goto cleanup1; 2511 } 2512 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2513 status = -EFAULT; 2514 goto cleanup1; 2515 } 2516 if ((ioc->buf_size < 1) && 2517 (ioc->Request.Type.Direction != XFER_NONE)) { 2518 status = -EINVAL; 2519 goto cleanup1; 2520 } 2521 /* Check kmalloc limits using all SGs */ 2522 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2523 status = -EINVAL; 2524 goto cleanup1; 2525 } 2526 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { 2527 status = -EINVAL; 2528 goto cleanup1; 2529 } 2530 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); 2531 if (!buff) { 2532 status = -ENOMEM; 2533 goto cleanup1; 2534 } 2535 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); 2536 if (!buff_size) { 2537 status = -ENOMEM; 2538 goto cleanup1; 2539 } 2540 left = ioc->buf_size; 2541 data_ptr = ioc->buf; 2542 while (left) { 2543 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 2544 buff_size[sg_used] = sz; 2545 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 2546 if (buff[sg_used] == NULL) { 2547 status = -ENOMEM; 2548 goto cleanup1; 2549 } 2550 if (ioc->Request.Type.Direction == XFER_WRITE) { 2551 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 2552 status = -ENOMEM; 2553 goto cleanup1; 2554 } 2555 } else 2556 memset(buff[sg_used], 0, sz); 2557 left -= sz; 2558 data_ptr += sz; 2559 sg_used++; 2560 } 2561 c = cmd_special_alloc(h); 2562 if (c == NULL) { 2563 status = -ENOMEM; 2564 goto cleanup1; 2565 } 2566 c->cmd_type = CMD_IOCTL_PEND; 2567 c->Header.ReplyQueue = 0; 2568 2569 if (ioc->buf_size > 0) { 2570 c->Header.SGList = sg_used; 2571 c->Header.SGTotal = sg_used; 2572 } else { 2573 c->Header.SGList = 0; 2574 c->Header.SGTotal = 0; 2575 } 2576 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 2577 c->Header.Tag.lower = c->busaddr; 2578 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 2579 if (ioc->buf_size > 0) { 2580 int i; 2581 for (i = 0; i < sg_used; i++) { 2582 temp64.val = pci_map_single(h->pdev, buff[i], 2583 buff_size[i], PCI_DMA_BIDIRECTIONAL); 2584 c->SG[i].Addr.lower = temp64.val32.lower; 2585 c->SG[i].Addr.upper = temp64.val32.upper; 2586 c->SG[i].Len = buff_size[i]; 2587 /* we are not chaining */ 2588 c->SG[i].Ext = 0; 2589 } 2590 } 2591 hpsa_scsi_do_simple_cmd_core(h, c); 2592 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 2593 check_ioctl_unit_attention(h, c); 2594 /* Copy the error information out */ 2595 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 2596 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 2597 cmd_special_free(h, c); 2598 status = -EFAULT; 2599 goto cleanup1; 2600 } 2601 if (ioc->Request.Type.Direction == XFER_READ) { 2602 /* Copy the data out of the buffer we created */ 2603 BYTE __user *ptr = ioc->buf; 2604 for (i = 0; i < sg_used; i++) { 2605 if (copy_to_user(ptr, buff[i], buff_size[i])) { 2606 cmd_special_free(h, c); 2607 status = -EFAULT; 2608 goto cleanup1; 2609 } 2610 ptr += buff_size[i]; 2611 } 2612 } 2613 cmd_special_free(h, c); 2614 status = 0; 2615 cleanup1: 2616 if (buff) { 2617 for (i = 0; i < sg_used; i++) 2618 kfree(buff[i]); 2619 kfree(buff); 2620 } 2621 kfree(buff_size); 2622 kfree(ioc); 2623 return status; 2624 } 2625 2626 static void check_ioctl_unit_attention(struct ctlr_info *h, 2627 struct CommandList *c) 2628 { 2629 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2630 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 2631 (void) check_for_unit_attention(h, c); 2632 } 2633 /* 2634 * ioctl 2635 */ 2636 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 2637 { 2638 struct ctlr_info *h; 2639 void __user *argp = (void __user *)arg; 2640 2641 h = sdev_to_hba(dev); 2642 2643 switch (cmd) { 2644 case CCISS_DEREGDISK: 2645 case CCISS_REGNEWDISK: 2646 case CCISS_REGNEWD: 2647 hpsa_scan_start(h->scsi_host); 2648 return 0; 2649 case CCISS_GETPCIINFO: 2650 return hpsa_getpciinfo_ioctl(h, argp); 2651 case CCISS_GETDRIVVER: 2652 return hpsa_getdrivver_ioctl(h, argp); 2653 case CCISS_PASSTHRU: 2654 return hpsa_passthru_ioctl(h, argp); 2655 case CCISS_BIG_PASSTHRU: 2656 return hpsa_big_passthru_ioctl(h, argp); 2657 default: 2658 return -ENOTTY; 2659 } 2660 } 2661 2662 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 2663 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 2664 int cmd_type) 2665 { 2666 int pci_dir = XFER_NONE; 2667 2668 c->cmd_type = CMD_IOCTL_PEND; 2669 c->Header.ReplyQueue = 0; 2670 if (buff != NULL && size > 0) { 2671 c->Header.SGList = 1; 2672 c->Header.SGTotal = 1; 2673 } else { 2674 c->Header.SGList = 0; 2675 c->Header.SGTotal = 0; 2676 } 2677 c->Header.Tag.lower = c->busaddr; 2678 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 2679 2680 c->Request.Type.Type = cmd_type; 2681 if (cmd_type == TYPE_CMD) { 2682 switch (cmd) { 2683 case HPSA_INQUIRY: 2684 /* are we trying to read a vital product page */ 2685 if (page_code != 0) { 2686 c->Request.CDB[1] = 0x01; 2687 c->Request.CDB[2] = page_code; 2688 } 2689 c->Request.CDBLen = 6; 2690 c->Request.Type.Attribute = ATTR_SIMPLE; 2691 c->Request.Type.Direction = XFER_READ; 2692 c->Request.Timeout = 0; 2693 c->Request.CDB[0] = HPSA_INQUIRY; 2694 c->Request.CDB[4] = size & 0xFF; 2695 break; 2696 case HPSA_REPORT_LOG: 2697 case HPSA_REPORT_PHYS: 2698 /* Talking to controller so It's a physical command 2699 mode = 00 target = 0. Nothing to write. 2700 */ 2701 c->Request.CDBLen = 12; 2702 c->Request.Type.Attribute = ATTR_SIMPLE; 2703 c->Request.Type.Direction = XFER_READ; 2704 c->Request.Timeout = 0; 2705 c->Request.CDB[0] = cmd; 2706 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 2707 c->Request.CDB[7] = (size >> 16) & 0xFF; 2708 c->Request.CDB[8] = (size >> 8) & 0xFF; 2709 c->Request.CDB[9] = size & 0xFF; 2710 break; 2711 case HPSA_CACHE_FLUSH: 2712 c->Request.CDBLen = 12; 2713 c->Request.Type.Attribute = ATTR_SIMPLE; 2714 c->Request.Type.Direction = XFER_WRITE; 2715 c->Request.Timeout = 0; 2716 c->Request.CDB[0] = BMIC_WRITE; 2717 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 2718 break; 2719 case TEST_UNIT_READY: 2720 c->Request.CDBLen = 6; 2721 c->Request.Type.Attribute = ATTR_SIMPLE; 2722 c->Request.Type.Direction = XFER_NONE; 2723 c->Request.Timeout = 0; 2724 break; 2725 default: 2726 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 2727 BUG(); 2728 return; 2729 } 2730 } else if (cmd_type == TYPE_MSG) { 2731 switch (cmd) { 2732 2733 case HPSA_DEVICE_RESET_MSG: 2734 c->Request.CDBLen = 16; 2735 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 2736 c->Request.Type.Attribute = ATTR_SIMPLE; 2737 c->Request.Type.Direction = XFER_NONE; 2738 c->Request.Timeout = 0; /* Don't time out */ 2739 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ 2740 c->Request.CDB[1] = 0x03; /* Reset target above */ 2741 /* If bytes 4-7 are zero, it means reset the */ 2742 /* LunID device */ 2743 c->Request.CDB[4] = 0x00; 2744 c->Request.CDB[5] = 0x00; 2745 c->Request.CDB[6] = 0x00; 2746 c->Request.CDB[7] = 0x00; 2747 break; 2748 2749 default: 2750 dev_warn(&h->pdev->dev, "unknown message type %d\n", 2751 cmd); 2752 BUG(); 2753 } 2754 } else { 2755 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 2756 BUG(); 2757 } 2758 2759 switch (c->Request.Type.Direction) { 2760 case XFER_READ: 2761 pci_dir = PCI_DMA_FROMDEVICE; 2762 break; 2763 case XFER_WRITE: 2764 pci_dir = PCI_DMA_TODEVICE; 2765 break; 2766 case XFER_NONE: 2767 pci_dir = PCI_DMA_NONE; 2768 break; 2769 default: 2770 pci_dir = PCI_DMA_BIDIRECTIONAL; 2771 } 2772 2773 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 2774 2775 return; 2776 } 2777 2778 /* 2779 * Map (physical) PCI mem into (virtual) kernel space 2780 */ 2781 static void __iomem *remap_pci_mem(ulong base, ulong size) 2782 { 2783 ulong page_base = ((ulong) base) & PAGE_MASK; 2784 ulong page_offs = ((ulong) base) - page_base; 2785 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 2786 2787 return page_remapped ? (page_remapped + page_offs) : NULL; 2788 } 2789 2790 /* Takes cmds off the submission queue and sends them to the hardware, 2791 * then puts them on the queue of cmds waiting for completion. 2792 */ 2793 static void start_io(struct ctlr_info *h) 2794 { 2795 struct CommandList *c; 2796 2797 while (!hlist_empty(&h->reqQ)) { 2798 c = hlist_entry(h->reqQ.first, struct CommandList, list); 2799 /* can't do anything if fifo is full */ 2800 if ((h->access.fifo_full(h))) { 2801 dev_warn(&h->pdev->dev, "fifo full\n"); 2802 break; 2803 } 2804 2805 /* Get the first entry from the Request Q */ 2806 removeQ(c); 2807 h->Qdepth--; 2808 2809 /* Tell the controller execute command */ 2810 h->access.submit_command(h, c); 2811 2812 /* Put job onto the completed Q */ 2813 addQ(&h->cmpQ, c); 2814 } 2815 } 2816 2817 static inline unsigned long get_next_completion(struct ctlr_info *h) 2818 { 2819 return h->access.command_completed(h); 2820 } 2821 2822 static inline bool interrupt_pending(struct ctlr_info *h) 2823 { 2824 return h->access.intr_pending(h); 2825 } 2826 2827 static inline long interrupt_not_for_us(struct ctlr_info *h) 2828 { 2829 return !(h->msi_vector || h->msix_vector) && 2830 ((h->access.intr_pending(h) == 0) || 2831 (h->interrupts_enabled == 0)); 2832 } 2833 2834 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 2835 u32 raw_tag) 2836 { 2837 if (unlikely(tag_index >= h->nr_cmds)) { 2838 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 2839 return 1; 2840 } 2841 return 0; 2842 } 2843 2844 static inline void finish_cmd(struct CommandList *c, u32 raw_tag) 2845 { 2846 removeQ(c); 2847 if (likely(c->cmd_type == CMD_SCSI)) 2848 complete_scsi_command(c, 0, raw_tag); 2849 else if (c->cmd_type == CMD_IOCTL_PEND) 2850 complete(c->waiting); 2851 } 2852 2853 static inline u32 hpsa_tag_contains_index(u32 tag) 2854 { 2855 #define DIRECT_LOOKUP_BIT 0x10 2856 return tag & DIRECT_LOOKUP_BIT; 2857 } 2858 2859 static inline u32 hpsa_tag_to_index(u32 tag) 2860 { 2861 #define DIRECT_LOOKUP_SHIFT 5 2862 return tag >> DIRECT_LOOKUP_SHIFT; 2863 } 2864 2865 static inline u32 hpsa_tag_discard_error_bits(u32 tag) 2866 { 2867 #define HPSA_ERROR_BITS 0x03 2868 return tag & ~HPSA_ERROR_BITS; 2869 } 2870 2871 /* process completion of an indexed ("direct lookup") command */ 2872 static inline u32 process_indexed_cmd(struct ctlr_info *h, 2873 u32 raw_tag) 2874 { 2875 u32 tag_index; 2876 struct CommandList *c; 2877 2878 tag_index = hpsa_tag_to_index(raw_tag); 2879 if (bad_tag(h, tag_index, raw_tag)) 2880 return next_command(h); 2881 c = h->cmd_pool + tag_index; 2882 finish_cmd(c, raw_tag); 2883 return next_command(h); 2884 } 2885 2886 /* process completion of a non-indexed command */ 2887 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 2888 u32 raw_tag) 2889 { 2890 u32 tag; 2891 struct CommandList *c = NULL; 2892 struct hlist_node *tmp; 2893 2894 tag = hpsa_tag_discard_error_bits(raw_tag); 2895 hlist_for_each_entry(c, tmp, &h->cmpQ, list) { 2896 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 2897 finish_cmd(c, raw_tag); 2898 return next_command(h); 2899 } 2900 } 2901 bad_tag(h, h->nr_cmds + 1, raw_tag); 2902 return next_command(h); 2903 } 2904 2905 static irqreturn_t do_hpsa_intr(int irq, void *dev_id) 2906 { 2907 struct ctlr_info *h = dev_id; 2908 unsigned long flags; 2909 u32 raw_tag; 2910 2911 if (interrupt_not_for_us(h)) 2912 return IRQ_NONE; 2913 spin_lock_irqsave(&h->lock, flags); 2914 raw_tag = get_next_completion(h); 2915 while (raw_tag != FIFO_EMPTY) { 2916 if (hpsa_tag_contains_index(raw_tag)) 2917 raw_tag = process_indexed_cmd(h, raw_tag); 2918 else 2919 raw_tag = process_nonindexed_cmd(h, raw_tag); 2920 } 2921 spin_unlock_irqrestore(&h->lock, flags); 2922 return IRQ_HANDLED; 2923 } 2924 2925 /* Send a message CDB to the firmware. */ 2926 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 2927 unsigned char type) 2928 { 2929 struct Command { 2930 struct CommandListHeader CommandHeader; 2931 struct RequestBlock Request; 2932 struct ErrDescriptor ErrorDescriptor; 2933 }; 2934 struct Command *cmd; 2935 static const size_t cmd_sz = sizeof(*cmd) + 2936 sizeof(cmd->ErrorDescriptor); 2937 dma_addr_t paddr64; 2938 uint32_t paddr32, tag; 2939 void __iomem *vaddr; 2940 int i, err; 2941 2942 vaddr = pci_ioremap_bar(pdev, 0); 2943 if (vaddr == NULL) 2944 return -ENOMEM; 2945 2946 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 2947 * CCISS commands, so they must be allocated from the lower 4GiB of 2948 * memory. 2949 */ 2950 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 2951 if (err) { 2952 iounmap(vaddr); 2953 return -ENOMEM; 2954 } 2955 2956 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 2957 if (cmd == NULL) { 2958 iounmap(vaddr); 2959 return -ENOMEM; 2960 } 2961 2962 /* This must fit, because of the 32-bit consistent DMA mask. Also, 2963 * although there's no guarantee, we assume that the address is at 2964 * least 4-byte aligned (most likely, it's page-aligned). 2965 */ 2966 paddr32 = paddr64; 2967 2968 cmd->CommandHeader.ReplyQueue = 0; 2969 cmd->CommandHeader.SGList = 0; 2970 cmd->CommandHeader.SGTotal = 0; 2971 cmd->CommandHeader.Tag.lower = paddr32; 2972 cmd->CommandHeader.Tag.upper = 0; 2973 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 2974 2975 cmd->Request.CDBLen = 16; 2976 cmd->Request.Type.Type = TYPE_MSG; 2977 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 2978 cmd->Request.Type.Direction = XFER_NONE; 2979 cmd->Request.Timeout = 0; /* Don't time out */ 2980 cmd->Request.CDB[0] = opcode; 2981 cmd->Request.CDB[1] = type; 2982 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 2983 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 2984 cmd->ErrorDescriptor.Addr.upper = 0; 2985 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 2986 2987 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 2988 2989 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 2990 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 2991 if (hpsa_tag_discard_error_bits(tag) == paddr32) 2992 break; 2993 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 2994 } 2995 2996 iounmap(vaddr); 2997 2998 /* we leak the DMA buffer here ... no choice since the controller could 2999 * still complete the command. 3000 */ 3001 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3002 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3003 opcode, type); 3004 return -ETIMEDOUT; 3005 } 3006 3007 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3008 3009 if (tag & HPSA_ERROR_BIT) { 3010 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3011 opcode, type); 3012 return -EIO; 3013 } 3014 3015 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3016 opcode, type); 3017 return 0; 3018 } 3019 3020 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) 3021 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3022 3023 static __devinit int hpsa_reset_msi(struct pci_dev *pdev) 3024 { 3025 /* the #defines are stolen from drivers/pci/msi.h. */ 3026 #define msi_control_reg(base) (base + PCI_MSI_FLAGS) 3027 #define PCI_MSIX_FLAGS_ENABLE (1 << 15) 3028 3029 int pos; 3030 u16 control = 0; 3031 3032 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); 3033 if (pos) { 3034 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3035 if (control & PCI_MSI_FLAGS_ENABLE) { 3036 dev_info(&pdev->dev, "resetting MSI\n"); 3037 pci_write_config_word(pdev, msi_control_reg(pos), 3038 control & ~PCI_MSI_FLAGS_ENABLE); 3039 } 3040 } 3041 3042 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); 3043 if (pos) { 3044 pci_read_config_word(pdev, msi_control_reg(pos), &control); 3045 if (control & PCI_MSIX_FLAGS_ENABLE) { 3046 dev_info(&pdev->dev, "resetting MSI-X\n"); 3047 pci_write_config_word(pdev, msi_control_reg(pos), 3048 control & ~PCI_MSIX_FLAGS_ENABLE); 3049 } 3050 } 3051 3052 return 0; 3053 } 3054 3055 /* This does a hard reset of the controller using PCI power management 3056 * states. 3057 */ 3058 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) 3059 { 3060 u16 pmcsr, saved_config_space[32]; 3061 int i, pos; 3062 3063 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3064 3065 /* This is very nearly the same thing as 3066 * 3067 * pci_save_state(pci_dev); 3068 * pci_set_power_state(pci_dev, PCI_D3hot); 3069 * pci_set_power_state(pci_dev, PCI_D0); 3070 * pci_restore_state(pci_dev); 3071 * 3072 * but we can't use these nice canned kernel routines on 3073 * kexec, because they also check the MSI/MSI-X state in PCI 3074 * configuration space and do the wrong thing when it is 3075 * set/cleared. Also, the pci_save/restore_state functions 3076 * violate the ordering requirements for restoring the 3077 * configuration space from the CCISS document (see the 3078 * comment below). So we roll our own .... 3079 */ 3080 3081 for (i = 0; i < 32; i++) 3082 pci_read_config_word(pdev, 2*i, &saved_config_space[i]); 3083 3084 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3085 if (pos == 0) { 3086 dev_err(&pdev->dev, 3087 "hpsa_reset_controller: PCI PM not supported\n"); 3088 return -ENODEV; 3089 } 3090 3091 /* Quoting from the Open CISS Specification: "The Power 3092 * Management Control/Status Register (CSR) controls the power 3093 * state of the device. The normal operating state is D0, 3094 * CSR=00h. The software off state is D3, CSR=03h. To reset 3095 * the controller, place the interface device in D3 then to 3096 * D0, this causes a secondary PCI reset which will reset the 3097 * controller." 3098 */ 3099 3100 /* enter the D3hot power management state */ 3101 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3102 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3103 pmcsr |= PCI_D3hot; 3104 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3105 3106 msleep(500); 3107 3108 /* enter the D0 power management state */ 3109 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3110 pmcsr |= PCI_D0; 3111 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3112 3113 msleep(500); 3114 3115 /* Restore the PCI configuration space. The Open CISS 3116 * Specification says, "Restore the PCI Configuration 3117 * Registers, offsets 00h through 60h. It is important to 3118 * restore the command register, 16-bits at offset 04h, 3119 * last. Do not restore the configuration status register, 3120 * 16-bits at offset 06h." Note that the offset is 2*i. 3121 */ 3122 for (i = 0; i < 32; i++) { 3123 if (i == 2 || i == 3) 3124 continue; 3125 pci_write_config_word(pdev, 2*i, saved_config_space[i]); 3126 } 3127 wmb(); 3128 pci_write_config_word(pdev, 4, saved_config_space[2]); 3129 3130 return 0; 3131 } 3132 3133 /* 3134 * We cannot read the structure directly, for portability we must use 3135 * the io functions. 3136 * This is for debug only. 3137 */ 3138 #ifdef HPSA_DEBUG 3139 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3140 { 3141 int i; 3142 char temp_name[17]; 3143 3144 dev_info(dev, "Controller Configuration information\n"); 3145 dev_info(dev, "------------------------------------\n"); 3146 for (i = 0; i < 4; i++) 3147 temp_name[i] = readb(&(tb->Signature[i])); 3148 temp_name[4] = '\0'; 3149 dev_info(dev, " Signature = %s\n", temp_name); 3150 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3151 dev_info(dev, " Transport methods supported = 0x%x\n", 3152 readl(&(tb->TransportSupport))); 3153 dev_info(dev, " Transport methods active = 0x%x\n", 3154 readl(&(tb->TransportActive))); 3155 dev_info(dev, " Requested transport Method = 0x%x\n", 3156 readl(&(tb->HostWrite.TransportRequest))); 3157 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3158 readl(&(tb->HostWrite.CoalIntDelay))); 3159 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3160 readl(&(tb->HostWrite.CoalIntCount))); 3161 dev_info(dev, " Max outstanding commands = 0x%d\n", 3162 readl(&(tb->CmdsOutMax))); 3163 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3164 for (i = 0; i < 16; i++) 3165 temp_name[i] = readb(&(tb->ServerName[i])); 3166 temp_name[16] = '\0'; 3167 dev_info(dev, " Server Name = %s\n", temp_name); 3168 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3169 readl(&(tb->HeartBeat))); 3170 } 3171 #endif /* HPSA_DEBUG */ 3172 3173 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3174 { 3175 int i, offset, mem_type, bar_type; 3176 3177 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3178 return 0; 3179 offset = 0; 3180 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3181 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3182 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3183 offset += 4; 3184 else { 3185 mem_type = pci_resource_flags(pdev, i) & 3186 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3187 switch (mem_type) { 3188 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3189 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3190 offset += 4; /* 32 bit */ 3191 break; 3192 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3193 offset += 8; 3194 break; 3195 default: /* reserved in PCI 2.2 */ 3196 dev_warn(&pdev->dev, 3197 "base address is invalid\n"); 3198 return -1; 3199 break; 3200 } 3201 } 3202 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3203 return i + 1; 3204 } 3205 return -1; 3206 } 3207 3208 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3209 * controllers that are capable. If not, we use IO-APIC mode. 3210 */ 3211 3212 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3213 { 3214 #ifdef CONFIG_PCI_MSI 3215 int err; 3216 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3217 {0, 2}, {0, 3} 3218 }; 3219 3220 /* Some boards advertise MSI but don't really support it */ 3221 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3222 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3223 goto default_int_mode; 3224 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3225 dev_info(&h->pdev->dev, "MSIX\n"); 3226 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3227 if (!err) { 3228 h->intr[0] = hpsa_msix_entries[0].vector; 3229 h->intr[1] = hpsa_msix_entries[1].vector; 3230 h->intr[2] = hpsa_msix_entries[2].vector; 3231 h->intr[3] = hpsa_msix_entries[3].vector; 3232 h->msix_vector = 1; 3233 return; 3234 } 3235 if (err > 0) { 3236 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3237 "available\n", err); 3238 goto default_int_mode; 3239 } else { 3240 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3241 err); 3242 goto default_int_mode; 3243 } 3244 } 3245 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3246 dev_info(&h->pdev->dev, "MSI\n"); 3247 if (!pci_enable_msi(h->pdev)) 3248 h->msi_vector = 1; 3249 else 3250 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3251 } 3252 default_int_mode: 3253 #endif /* CONFIG_PCI_MSI */ 3254 /* if we get here we're going to use the default interrupt mode */ 3255 h->intr[PERF_MODE_INT] = h->pdev->irq; 3256 } 3257 3258 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3259 { 3260 int i; 3261 u32 subsystem_vendor_id, subsystem_device_id; 3262 3263 subsystem_vendor_id = pdev->subsystem_vendor; 3264 subsystem_device_id = pdev->subsystem_device; 3265 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3266 subsystem_vendor_id; 3267 3268 for (i = 0; i < ARRAY_SIZE(products); i++) 3269 if (*board_id == products[i].board_id) 3270 return i; 3271 3272 if (subsystem_vendor_id != PCI_VENDOR_ID_HP || !hpsa_allow_any) { 3273 dev_warn(&pdev->dev, "unrecognized board ID: " 3274 "0x%08x, ignoring.\n", *board_id); 3275 return -ENODEV; 3276 } 3277 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 3278 } 3279 3280 static inline bool hpsa_board_disabled(struct pci_dev *pdev) 3281 { 3282 u16 command; 3283 3284 (void) pci_read_config_word(pdev, PCI_COMMAND, &command); 3285 return ((command & PCI_COMMAND_MEMORY) == 0); 3286 } 3287 3288 static int __devinit hpsa_pci_find_memory_BAR(struct ctlr_info *h, 3289 unsigned long *memory_bar) 3290 { 3291 int i; 3292 3293 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 3294 if (pci_resource_flags(h->pdev, i) & IORESOURCE_MEM) { 3295 /* addressing mode bits already removed */ 3296 *memory_bar = pci_resource_start(h->pdev, i); 3297 dev_dbg(&h->pdev->dev, "memory BAR = %lx\n", 3298 *memory_bar); 3299 return 0; 3300 } 3301 dev_warn(&h->pdev->dev, "no memory BAR found\n"); 3302 return -ENODEV; 3303 } 3304 3305 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h) 3306 { 3307 int i; 3308 u32 scratchpad; 3309 3310 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { 3311 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 3312 if (scratchpad == HPSA_FIRMWARE_READY) 3313 return 0; 3314 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 3315 } 3316 dev_warn(&h->pdev->dev, "board not ready, timed out.\n"); 3317 return -ENODEV; 3318 } 3319 3320 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 3321 { 3322 u64 cfg_offset; 3323 u32 cfg_base_addr; 3324 u64 cfg_base_addr_index; 3325 u32 trans_offset; 3326 3327 /* get the address index number */ 3328 cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); 3329 cfg_base_addr &= (u32) 0x0000ffff; 3330 cfg_base_addr_index = find_PCI_BAR_index(h->pdev, cfg_base_addr); 3331 if (cfg_base_addr_index == -1) { 3332 dev_warn(&h->pdev->dev, "cannot find cfg_base_addr_index\n"); 3333 return -ENODEV; 3334 } 3335 cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); 3336 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 3337 cfg_base_addr_index) + cfg_offset, 3338 sizeof(h->cfgtable)); 3339 if (!h->cfgtable) 3340 return -ENOMEM; 3341 /* Find performant mode table. */ 3342 trans_offset = readl(&(h->cfgtable->TransMethodOffset)); 3343 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 3344 cfg_base_addr_index)+cfg_offset+trans_offset, 3345 sizeof(*h->transtable)); 3346 if (!h->transtable) 3347 return -ENOMEM; 3348 return 0; 3349 } 3350 3351 static int __devinit hpsa_pci_init(struct ctlr_info *h) 3352 { 3353 int i, prod_index, err; 3354 3355 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 3356 if (prod_index < 0) 3357 return -ENODEV; 3358 h->product_name = products[prod_index].product_name; 3359 h->access = *(products[prod_index].access); 3360 3361 if (hpsa_board_disabled(h->pdev)) { 3362 dev_warn(&h->pdev->dev, "controller appears to be disabled\n"); 3363 return -ENODEV; 3364 } 3365 err = pci_enable_device(h->pdev); 3366 if (err) { 3367 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 3368 return err; 3369 } 3370 3371 err = pci_request_regions(h->pdev, "hpsa"); 3372 if (err) { 3373 dev_err(&h->pdev->dev, 3374 "cannot obtain PCI resources, aborting\n"); 3375 return err; 3376 } 3377 hpsa_interrupt_mode(h); 3378 err = hpsa_pci_find_memory_BAR(h, &h->paddr); 3379 if (err) 3380 goto err_out_free_res; 3381 h->vaddr = remap_pci_mem(h->paddr, 0x250); 3382 3383 err = hpsa_wait_for_board_ready(h); 3384 if (err) 3385 goto err_out_free_res; 3386 err = hpsa_find_cfgtables(h); 3387 if (err) 3388 goto err_out_free_res; 3389 3390 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3391 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 3392 3393 /* 3394 * Limit in-command s/g elements to 32 save dma'able memory. 3395 * Howvever spec says if 0, use 31 3396 */ 3397 3398 h->max_cmd_sg_entries = 31; 3399 if (h->maxsgentries > 512) { 3400 h->max_cmd_sg_entries = 32; 3401 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 3402 h->maxsgentries--; /* save one for chain pointer */ 3403 } else { 3404 h->maxsgentries = 31; /* default to traditional values */ 3405 h->chainsize = 0; 3406 } 3407 3408 /* Allow room for some ioctls */ 3409 h->nr_cmds = h->max_commands - 4; 3410 3411 if ((readb(&h->cfgtable->Signature[0]) != 'C') || 3412 (readb(&h->cfgtable->Signature[1]) != 'I') || 3413 (readb(&h->cfgtable->Signature[2]) != 'S') || 3414 (readb(&h->cfgtable->Signature[3]) != 'S')) { 3415 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 3416 err = -ENODEV; 3417 goto err_out_free_res; 3418 } 3419 #ifdef CONFIG_X86 3420 { 3421 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 3422 u32 prefetch; 3423 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 3424 prefetch |= 0x100; 3425 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 3426 } 3427 #endif 3428 3429 /* Disabling DMA prefetch for the P600 3430 * An ASIC bug may result in a prefetch beyond 3431 * physical memory. 3432 */ 3433 if (h->board_id == 0x3225103C) { 3434 u32 dma_prefetch; 3435 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 3436 dma_prefetch |= 0x8000; 3437 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 3438 } 3439 3440 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 3441 /* Update the field, and then ring the doorbell */ 3442 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 3443 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3444 3445 /* under certain very rare conditions, this can take awhile. 3446 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3447 * as we enter this code.) 3448 */ 3449 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 3450 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) 3451 break; 3452 /* delay and try again */ 3453 msleep(10); 3454 } 3455 3456 #ifdef HPSA_DEBUG 3457 print_cfg_table(&h->pdev->dev, h->cfgtable); 3458 #endif /* HPSA_DEBUG */ 3459 3460 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 3461 dev_warn(&h->pdev->dev, 3462 "unable to get board into simple mode\n"); 3463 err = -ENODEV; 3464 goto err_out_free_res; 3465 } 3466 return 0; 3467 3468 err_out_free_res: 3469 /* 3470 * Deliberately omit pci_disable_device(): it does something nasty to 3471 * Smart Array controllers that pci_enable_device does not undo 3472 */ 3473 pci_release_regions(h->pdev); 3474 return err; 3475 } 3476 3477 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 3478 { 3479 int rc; 3480 3481 #define HBA_INQUIRY_BYTE_COUNT 64 3482 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 3483 if (!h->hba_inquiry_data) 3484 return; 3485 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 3486 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 3487 if (rc != 0) { 3488 kfree(h->hba_inquiry_data); 3489 h->hba_inquiry_data = NULL; 3490 } 3491 } 3492 3493 static int __devinit hpsa_init_one(struct pci_dev *pdev, 3494 const struct pci_device_id *ent) 3495 { 3496 int i, rc; 3497 int dac; 3498 struct ctlr_info *h; 3499 3500 if (number_of_controllers == 0) 3501 printk(KERN_INFO DRIVER_NAME "\n"); 3502 if (reset_devices) { 3503 /* Reset the controller with a PCI power-cycle */ 3504 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) 3505 return -ENODEV; 3506 3507 /* Some devices (notably the HP Smart Array 5i Controller) 3508 need a little pause here */ 3509 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3510 3511 /* Now try to get the controller to respond to a no-op */ 3512 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 3513 if (hpsa_noop(pdev) == 0) 3514 break; 3515 else 3516 dev_warn(&pdev->dev, "no-op failed%s\n", 3517 (i < 11 ? "; re-trying" : "")); 3518 } 3519 } 3520 3521 /* Command structures must be aligned on a 32-byte boundary because 3522 * the 5 lower bits of the address are used by the hardware. and by 3523 * the driver. See comments in hpsa.h for more info. 3524 */ 3525 #define COMMANDLIST_ALIGNMENT 32 3526 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 3527 h = kzalloc(sizeof(*h), GFP_KERNEL); 3528 if (!h) 3529 return -ENOMEM; 3530 3531 h->pdev = pdev; 3532 h->busy_initializing = 1; 3533 INIT_HLIST_HEAD(&h->cmpQ); 3534 INIT_HLIST_HEAD(&h->reqQ); 3535 rc = hpsa_pci_init(h); 3536 if (rc != 0) 3537 goto clean1; 3538 3539 sprintf(h->devname, "hpsa%d", number_of_controllers); 3540 h->ctlr = number_of_controllers; 3541 number_of_controllers++; 3542 3543 /* configure PCI DMA stuff */ 3544 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 3545 if (rc == 0) { 3546 dac = 1; 3547 } else { 3548 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 3549 if (rc == 0) { 3550 dac = 0; 3551 } else { 3552 dev_err(&pdev->dev, "no suitable DMA available\n"); 3553 goto clean1; 3554 } 3555 } 3556 3557 /* make sure the board interrupts are off */ 3558 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3559 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr, 3560 IRQF_DISABLED, h->devname, h); 3561 if (rc) { 3562 dev_err(&pdev->dev, "unable to get irq %d for %s\n", 3563 h->intr[PERF_MODE_INT], h->devname); 3564 goto clean2; 3565 } 3566 3567 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 3568 h->devname, pdev->device, 3569 h->intr[PERF_MODE_INT], dac ? "" : " not"); 3570 3571 h->cmd_pool_bits = 3572 kmalloc(((h->nr_cmds + BITS_PER_LONG - 3573 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); 3574 h->cmd_pool = pci_alloc_consistent(h->pdev, 3575 h->nr_cmds * sizeof(*h->cmd_pool), 3576 &(h->cmd_pool_dhandle)); 3577 h->errinfo_pool = pci_alloc_consistent(h->pdev, 3578 h->nr_cmds * sizeof(*h->errinfo_pool), 3579 &(h->errinfo_pool_dhandle)); 3580 if ((h->cmd_pool_bits == NULL) 3581 || (h->cmd_pool == NULL) 3582 || (h->errinfo_pool == NULL)) { 3583 dev_err(&pdev->dev, "out of memory"); 3584 rc = -ENOMEM; 3585 goto clean4; 3586 } 3587 if (hpsa_allocate_sg_chain_blocks(h)) 3588 goto clean4; 3589 spin_lock_init(&h->lock); 3590 spin_lock_init(&h->scan_lock); 3591 init_waitqueue_head(&h->scan_wait_queue); 3592 h->scan_finished = 1; /* no scan currently in progress */ 3593 3594 pci_set_drvdata(pdev, h); 3595 memset(h->cmd_pool_bits, 0, 3596 ((h->nr_cmds + BITS_PER_LONG - 3597 1) / BITS_PER_LONG) * sizeof(unsigned long)); 3598 3599 hpsa_scsi_setup(h); 3600 3601 /* Turn the interrupts on so we can service requests */ 3602 h->access.set_intr_mask(h, HPSA_INTR_ON); 3603 3604 hpsa_put_ctlr_into_performant_mode(h); 3605 hpsa_hba_inquiry(h); 3606 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 3607 h->busy_initializing = 0; 3608 return 1; 3609 3610 clean4: 3611 hpsa_free_sg_chain_blocks(h); 3612 kfree(h->cmd_pool_bits); 3613 if (h->cmd_pool) 3614 pci_free_consistent(h->pdev, 3615 h->nr_cmds * sizeof(struct CommandList), 3616 h->cmd_pool, h->cmd_pool_dhandle); 3617 if (h->errinfo_pool) 3618 pci_free_consistent(h->pdev, 3619 h->nr_cmds * sizeof(struct ErrorInfo), 3620 h->errinfo_pool, 3621 h->errinfo_pool_dhandle); 3622 free_irq(h->intr[PERF_MODE_INT], h); 3623 clean2: 3624 clean1: 3625 h->busy_initializing = 0; 3626 kfree(h); 3627 return rc; 3628 } 3629 3630 static void hpsa_flush_cache(struct ctlr_info *h) 3631 { 3632 char *flush_buf; 3633 struct CommandList *c; 3634 3635 flush_buf = kzalloc(4, GFP_KERNEL); 3636 if (!flush_buf) 3637 return; 3638 3639 c = cmd_special_alloc(h); 3640 if (!c) { 3641 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 3642 goto out_of_memory; 3643 } 3644 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 3645 RAID_CTLR_LUNID, TYPE_CMD); 3646 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 3647 if (c->err_info->CommandStatus != 0) 3648 dev_warn(&h->pdev->dev, 3649 "error flushing cache on controller\n"); 3650 cmd_special_free(h, c); 3651 out_of_memory: 3652 kfree(flush_buf); 3653 } 3654 3655 static void hpsa_shutdown(struct pci_dev *pdev) 3656 { 3657 struct ctlr_info *h; 3658 3659 h = pci_get_drvdata(pdev); 3660 /* Turn board interrupts off and send the flush cache command 3661 * sendcmd will turn off interrupt, and send the flush... 3662 * To write all data in the battery backed cache to disks 3663 */ 3664 hpsa_flush_cache(h); 3665 h->access.set_intr_mask(h, HPSA_INTR_OFF); 3666 free_irq(h->intr[PERF_MODE_INT], h); 3667 #ifdef CONFIG_PCI_MSI 3668 if (h->msix_vector) 3669 pci_disable_msix(h->pdev); 3670 else if (h->msi_vector) 3671 pci_disable_msi(h->pdev); 3672 #endif /* CONFIG_PCI_MSI */ 3673 } 3674 3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 3676 { 3677 struct ctlr_info *h; 3678 3679 if (pci_get_drvdata(pdev) == NULL) { 3680 dev_err(&pdev->dev, "unable to remove device \n"); 3681 return; 3682 } 3683 h = pci_get_drvdata(pdev); 3684 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 3685 hpsa_shutdown(pdev); 3686 iounmap(h->vaddr); 3687 hpsa_free_sg_chain_blocks(h); 3688 pci_free_consistent(h->pdev, 3689 h->nr_cmds * sizeof(struct CommandList), 3690 h->cmd_pool, h->cmd_pool_dhandle); 3691 pci_free_consistent(h->pdev, 3692 h->nr_cmds * sizeof(struct ErrorInfo), 3693 h->errinfo_pool, h->errinfo_pool_dhandle); 3694 pci_free_consistent(h->pdev, h->reply_pool_size, 3695 h->reply_pool, h->reply_pool_dhandle); 3696 kfree(h->cmd_pool_bits); 3697 kfree(h->blockFetchTable); 3698 kfree(h->hba_inquiry_data); 3699 /* 3700 * Deliberately omit pci_disable_device(): it does something nasty to 3701 * Smart Array controllers that pci_enable_device does not undo 3702 */ 3703 pci_release_regions(pdev); 3704 pci_set_drvdata(pdev, NULL); 3705 kfree(h); 3706 } 3707 3708 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 3709 __attribute__((unused)) pm_message_t state) 3710 { 3711 return -ENOSYS; 3712 } 3713 3714 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 3715 { 3716 return -ENOSYS; 3717 } 3718 3719 static struct pci_driver hpsa_pci_driver = { 3720 .name = "hpsa", 3721 .probe = hpsa_init_one, 3722 .remove = __devexit_p(hpsa_remove_one), 3723 .id_table = hpsa_pci_device_id, /* id_table */ 3724 .shutdown = hpsa_shutdown, 3725 .suspend = hpsa_suspend, 3726 .resume = hpsa_resume, 3727 }; 3728 3729 /* Fill in bucket_map[], given nsgs (the max number of 3730 * scatter gather elements supported) and bucket[], 3731 * which is an array of 8 integers. The bucket[] array 3732 * contains 8 different DMA transfer sizes (in 16 3733 * byte increments) which the controller uses to fetch 3734 * commands. This function fills in bucket_map[], which 3735 * maps a given number of scatter gather elements to one of 3736 * the 8 DMA transfer sizes. The point of it is to allow the 3737 * controller to only do as much DMA as needed to fetch the 3738 * command, with the DMA transfer size encoded in the lower 3739 * bits of the command address. 3740 */ 3741 static void calc_bucket_map(int bucket[], int num_buckets, 3742 int nsgs, int *bucket_map) 3743 { 3744 int i, j, b, size; 3745 3746 /* even a command with 0 SGs requires 4 blocks */ 3747 #define MINIMUM_TRANSFER_BLOCKS 4 3748 #define NUM_BUCKETS 8 3749 /* Note, bucket_map must have nsgs+1 entries. */ 3750 for (i = 0; i <= nsgs; i++) { 3751 /* Compute size of a command with i SG entries */ 3752 size = i + MINIMUM_TRANSFER_BLOCKS; 3753 b = num_buckets; /* Assume the biggest bucket */ 3754 /* Find the bucket that is just big enough */ 3755 for (j = 0; j < 8; j++) { 3756 if (bucket[j] >= size) { 3757 b = j; 3758 break; 3759 } 3760 } 3761 /* for a command with i SG entries, use bucket b. */ 3762 bucket_map[i] = b; 3763 } 3764 } 3765 3766 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 3767 { 3768 u32 trans_support; 3769 u64 trans_offset; 3770 /* 5 = 1 s/g entry or 4k 3771 * 6 = 2 s/g entry or 8k 3772 * 8 = 4 s/g entry or 16k 3773 * 10 = 6 s/g entry or 24k 3774 */ 3775 int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */ 3776 int i = 0; 3777 int l = 0; 3778 unsigned long register_value; 3779 3780 trans_support = readl(&(h->cfgtable->TransportSupport)); 3781 if (!(trans_support & PERFORMANT_MODE)) 3782 return; 3783 3784 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 3785 h->max_sg_entries = 32; 3786 /* Performant mode ring buffer and supporting data structures */ 3787 h->reply_pool_size = h->max_commands * sizeof(u64); 3788 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 3789 &(h->reply_pool_dhandle)); 3790 3791 /* Need a block fetch table for performant mode */ 3792 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) * 3793 sizeof(u32)), GFP_KERNEL); 3794 3795 if ((h->reply_pool == NULL) 3796 || (h->blockFetchTable == NULL)) 3797 goto clean_up; 3798 3799 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 3800 3801 /* Controller spec: zero out this buffer. */ 3802 memset(h->reply_pool, 0, h->reply_pool_size); 3803 h->reply_pool_head = h->reply_pool; 3804 3805 trans_offset = readl(&(h->cfgtable->TransMethodOffset)); 3806 bft[7] = h->max_sg_entries + 4; 3807 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable); 3808 for (i = 0; i < 8; i++) 3809 writel(bft[i], &h->transtable->BlockFetch[i]); 3810 3811 /* size of controller ring buffer */ 3812 writel(h->max_commands, &h->transtable->RepQSize); 3813 writel(1, &h->transtable->RepQCount); 3814 writel(0, &h->transtable->RepQCtrAddrLow32); 3815 writel(0, &h->transtable->RepQCtrAddrHigh32); 3816 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 3817 writel(0, &h->transtable->RepQAddr0High32); 3818 writel(CFGTBL_Trans_Performant, 3819 &(h->cfgtable->HostWrite.TransportRequest)); 3820 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 3821 /* under certain very rare conditions, this can take awhile. 3822 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 3823 * as we enter this code.) */ 3824 for (l = 0; l < MAX_CONFIG_WAIT; l++) { 3825 register_value = readl(h->vaddr + SA5_DOORBELL); 3826 if (!(register_value & CFGTBL_ChangeReq)) 3827 break; 3828 /* delay and try again */ 3829 set_current_state(TASK_INTERRUPTIBLE); 3830 schedule_timeout(10); 3831 } 3832 register_value = readl(&(h->cfgtable->TransportActive)); 3833 if (!(register_value & CFGTBL_Trans_Performant)) { 3834 dev_warn(&h->pdev->dev, "unable to get board into" 3835 " performant mode\n"); 3836 return; 3837 } 3838 3839 /* Change the access methods to the performant access methods */ 3840 h->access = SA5_performant_access; 3841 h->transMethod = CFGTBL_Trans_Performant; 3842 3843 return; 3844 3845 clean_up: 3846 if (h->reply_pool) 3847 pci_free_consistent(h->pdev, h->reply_pool_size, 3848 h->reply_pool, h->reply_pool_dhandle); 3849 kfree(h->blockFetchTable); 3850 } 3851 3852 /* 3853 * This is it. Register the PCI driver information for the cards we control 3854 * the OS will call our registered routines when it finds one of our cards. 3855 */ 3856 static int __init hpsa_init(void) 3857 { 3858 return pci_register_driver(&hpsa_pci_driver); 3859 } 3860 3861 static void __exit hpsa_cleanup(void) 3862 { 3863 pci_unregister_driver(&hpsa_pci_driver); 3864 } 3865 3866 module_init(hpsa_init); 3867 module_exit(hpsa_cleanup); 3868