xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 77c4495c17d7508bdef1cfd2c3c933ff5379908b)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54 
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62 
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65 
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69 	HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73 
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77 		"Allow hpsa driver to access unknown HP Smart Array hardware");
78 
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89 #define PCI_DEVICE_ID_HP_CISSF 0x333f
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
91 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
92 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93 	{0,}
94 };
95 
96 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
97 
98 /*  board_id = Subsystem Device ID & Vendor ID
99  *  product = Marketing Name for the board
100  *  access = Address of the struct of function pointers
101  */
102 static struct board_type products[] = {
103 	{0x3241103C, "Smart Array P212", &SA5_access},
104 	{0x3243103C, "Smart Array P410", &SA5_access},
105 	{0x3245103C, "Smart Array P410i", &SA5_access},
106 	{0x3247103C, "Smart Array P411", &SA5_access},
107 	{0x3249103C, "Smart Array P812", &SA5_access},
108 	{0x324a103C, "Smart Array P712m", &SA5_access},
109 	{0x324b103C, "Smart Array P711m", &SA5_access},
110 	{0x3233103C, "StorageWorks P1210m", &SA5_access},
111 	{0x333F103C, "StorageWorks P1210m", &SA5_access},
112 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114 
115 static int number_of_controllers;
116 
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120 
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124 
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
131 	int cmd_type);
132 
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134 		void (*done)(struct scsi_cmnd *));
135 static void hpsa_scan_start(struct Scsi_Host *);
136 static int hpsa_scan_finished(struct Scsi_Host *sh,
137 	unsigned long elapsed_time);
138 static int hpsa_change_queue_depth(struct scsi_device *sdev,
139 	int qdepth, int reason);
140 
141 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
142 static int hpsa_slave_alloc(struct scsi_device *sdev);
143 static void hpsa_slave_destroy(struct scsi_device *sdev);
144 
145 static ssize_t raid_level_show(struct device *dev,
146 	struct device_attribute *attr, char *buf);
147 static ssize_t lunid_show(struct device *dev,
148 	struct device_attribute *attr, char *buf);
149 static ssize_t unique_id_show(struct device *dev,
150 	struct device_attribute *attr, char *buf);
151 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
152 static ssize_t host_store_rescan(struct device *dev,
153 	 struct device_attribute *attr, const char *buf, size_t count);
154 static int check_for_unit_attention(struct ctlr_info *h,
155 	struct CommandList *c);
156 static void check_ioctl_unit_attention(struct ctlr_info *h,
157 	struct CommandList *c);
158 /* performant mode helper functions */
159 static void calc_bucket_map(int *bucket, int num_buckets,
160 	int nsgs, int *bucket_map);
161 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
162 static inline u32 next_command(struct ctlr_info *h);
163 
164 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
165 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
166 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
167 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
168 
169 static struct device_attribute *hpsa_sdev_attrs[] = {
170 	&dev_attr_raid_level,
171 	&dev_attr_lunid,
172 	&dev_attr_unique_id,
173 	NULL,
174 };
175 
176 static struct device_attribute *hpsa_shost_attrs[] = {
177 	&dev_attr_rescan,
178 	NULL,
179 };
180 
181 static struct scsi_host_template hpsa_driver_template = {
182 	.module			= THIS_MODULE,
183 	.name			= "hpsa",
184 	.proc_name		= "hpsa",
185 	.queuecommand		= hpsa_scsi_queue_command,
186 	.scan_start		= hpsa_scan_start,
187 	.scan_finished		= hpsa_scan_finished,
188 	.change_queue_depth	= hpsa_change_queue_depth,
189 	.this_id		= -1,
190 	.use_clustering		= ENABLE_CLUSTERING,
191 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
192 	.ioctl			= hpsa_ioctl,
193 	.slave_alloc		= hpsa_slave_alloc,
194 	.slave_destroy		= hpsa_slave_destroy,
195 #ifdef CONFIG_COMPAT
196 	.compat_ioctl		= hpsa_compat_ioctl,
197 #endif
198 	.sdev_attrs = hpsa_sdev_attrs,
199 	.shost_attrs = hpsa_shost_attrs,
200 };
201 
202 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
203 {
204 	unsigned long *priv = shost_priv(sdev->host);
205 	return (struct ctlr_info *) *priv;
206 }
207 
208 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
209 {
210 	unsigned long *priv = shost_priv(sh);
211 	return (struct ctlr_info *) *priv;
212 }
213 
214 static int check_for_unit_attention(struct ctlr_info *h,
215 	struct CommandList *c)
216 {
217 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
218 		return 0;
219 
220 	switch (c->err_info->SenseInfo[12]) {
221 	case STATE_CHANGED:
222 		dev_warn(&h->pdev->dev, "hpsa%d: a state change "
223 			"detected, command retried\n", h->ctlr);
224 		break;
225 	case LUN_FAILED:
226 		dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
227 			"detected, action required\n", h->ctlr);
228 		break;
229 	case REPORT_LUNS_CHANGED:
230 		dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
231 			"changed, action required\n", h->ctlr);
232 	/*
233 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
234 	 */
235 		break;
236 	case POWER_OR_RESET:
237 		dev_warn(&h->pdev->dev, "hpsa%d: a power on "
238 			"or device reset detected\n", h->ctlr);
239 		break;
240 	case UNIT_ATTENTION_CLEARED:
241 		dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
242 		    "cleared by another initiator\n", h->ctlr);
243 		break;
244 	default:
245 		dev_warn(&h->pdev->dev, "hpsa%d: unknown "
246 			"unit attention detected\n", h->ctlr);
247 		break;
248 	}
249 	return 1;
250 }
251 
252 static ssize_t host_store_rescan(struct device *dev,
253 				 struct device_attribute *attr,
254 				 const char *buf, size_t count)
255 {
256 	struct ctlr_info *h;
257 	struct Scsi_Host *shost = class_to_shost(dev);
258 	h = shost_to_hba(shost);
259 	hpsa_scan_start(h->scsi_host);
260 	return count;
261 }
262 
263 /* Enqueuing and dequeuing functions for cmdlists. */
264 static inline void addQ(struct hlist_head *list, struct CommandList *c)
265 {
266 	hlist_add_head(&c->list, list);
267 }
268 
269 static inline u32 next_command(struct ctlr_info *h)
270 {
271 	u32 a;
272 
273 	if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
274 		return h->access.command_completed(h);
275 
276 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
277 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
278 		(h->reply_pool_head)++;
279 		h->commands_outstanding--;
280 	} else {
281 		a = FIFO_EMPTY;
282 	}
283 	/* Check for wraparound */
284 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
285 		h->reply_pool_head = h->reply_pool;
286 		h->reply_pool_wraparound ^= 1;
287 	}
288 	return a;
289 }
290 
291 /* set_performant_mode: Modify the tag for cciss performant
292  * set bit 0 for pull model, bits 3-1 for block fetch
293  * register number
294  */
295 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
296 {
297 	if (likely(h->transMethod == CFGTBL_Trans_Performant))
298 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
299 }
300 
301 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
302 	struct CommandList *c)
303 {
304 	unsigned long flags;
305 
306 	set_performant_mode(h, c);
307 	spin_lock_irqsave(&h->lock, flags);
308 	addQ(&h->reqQ, c);
309 	h->Qdepth++;
310 	start_io(h);
311 	spin_unlock_irqrestore(&h->lock, flags);
312 }
313 
314 static inline void removeQ(struct CommandList *c)
315 {
316 	if (WARN_ON(hlist_unhashed(&c->list)))
317 		return;
318 	hlist_del_init(&c->list);
319 }
320 
321 static inline int is_hba_lunid(unsigned char scsi3addr[])
322 {
323 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
324 }
325 
326 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
327 {
328 	return (scsi3addr[3] & 0xC0) == 0x40;
329 }
330 
331 static inline int is_scsi_rev_5(struct ctlr_info *h)
332 {
333 	if (!h->hba_inquiry_data)
334 		return 0;
335 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
336 		return 1;
337 	return 0;
338 }
339 
340 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
341 	"UNKNOWN"
342 };
343 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
344 
345 static ssize_t raid_level_show(struct device *dev,
346 	     struct device_attribute *attr, char *buf)
347 {
348 	ssize_t l = 0;
349 	unsigned char rlevel;
350 	struct ctlr_info *h;
351 	struct scsi_device *sdev;
352 	struct hpsa_scsi_dev_t *hdev;
353 	unsigned long flags;
354 
355 	sdev = to_scsi_device(dev);
356 	h = sdev_to_hba(sdev);
357 	spin_lock_irqsave(&h->lock, flags);
358 	hdev = sdev->hostdata;
359 	if (!hdev) {
360 		spin_unlock_irqrestore(&h->lock, flags);
361 		return -ENODEV;
362 	}
363 
364 	/* Is this even a logical drive? */
365 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
366 		spin_unlock_irqrestore(&h->lock, flags);
367 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
368 		return l;
369 	}
370 
371 	rlevel = hdev->raid_level;
372 	spin_unlock_irqrestore(&h->lock, flags);
373 	if (rlevel > RAID_UNKNOWN)
374 		rlevel = RAID_UNKNOWN;
375 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
376 	return l;
377 }
378 
379 static ssize_t lunid_show(struct device *dev,
380 	     struct device_attribute *attr, char *buf)
381 {
382 	struct ctlr_info *h;
383 	struct scsi_device *sdev;
384 	struct hpsa_scsi_dev_t *hdev;
385 	unsigned long flags;
386 	unsigned char lunid[8];
387 
388 	sdev = to_scsi_device(dev);
389 	h = sdev_to_hba(sdev);
390 	spin_lock_irqsave(&h->lock, flags);
391 	hdev = sdev->hostdata;
392 	if (!hdev) {
393 		spin_unlock_irqrestore(&h->lock, flags);
394 		return -ENODEV;
395 	}
396 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
397 	spin_unlock_irqrestore(&h->lock, flags);
398 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
399 		lunid[0], lunid[1], lunid[2], lunid[3],
400 		lunid[4], lunid[5], lunid[6], lunid[7]);
401 }
402 
403 static ssize_t unique_id_show(struct device *dev,
404 	     struct device_attribute *attr, char *buf)
405 {
406 	struct ctlr_info *h;
407 	struct scsi_device *sdev;
408 	struct hpsa_scsi_dev_t *hdev;
409 	unsigned long flags;
410 	unsigned char sn[16];
411 
412 	sdev = to_scsi_device(dev);
413 	h = sdev_to_hba(sdev);
414 	spin_lock_irqsave(&h->lock, flags);
415 	hdev = sdev->hostdata;
416 	if (!hdev) {
417 		spin_unlock_irqrestore(&h->lock, flags);
418 		return -ENODEV;
419 	}
420 	memcpy(sn, hdev->device_id, sizeof(sn));
421 	spin_unlock_irqrestore(&h->lock, flags);
422 	return snprintf(buf, 16 * 2 + 2,
423 			"%02X%02X%02X%02X%02X%02X%02X%02X"
424 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
425 			sn[0], sn[1], sn[2], sn[3],
426 			sn[4], sn[5], sn[6], sn[7],
427 			sn[8], sn[9], sn[10], sn[11],
428 			sn[12], sn[13], sn[14], sn[15]);
429 }
430 
431 static int hpsa_find_target_lun(struct ctlr_info *h,
432 	unsigned char scsi3addr[], int bus, int *target, int *lun)
433 {
434 	/* finds an unused bus, target, lun for a new physical device
435 	 * assumes h->devlock is held
436 	 */
437 	int i, found = 0;
438 	DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
439 
440 	memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
441 
442 	for (i = 0; i < h->ndevices; i++) {
443 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
444 			set_bit(h->dev[i]->target, lun_taken);
445 	}
446 
447 	for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
448 		if (!test_bit(i, lun_taken)) {
449 			/* *bus = 1; */
450 			*target = i;
451 			*lun = 0;
452 			found = 1;
453 			break;
454 		}
455 	}
456 	return !found;
457 }
458 
459 /* Add an entry into h->dev[] array. */
460 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
461 		struct hpsa_scsi_dev_t *device,
462 		struct hpsa_scsi_dev_t *added[], int *nadded)
463 {
464 	/* assumes h->devlock is held */
465 	int n = h->ndevices;
466 	int i;
467 	unsigned char addr1[8], addr2[8];
468 	struct hpsa_scsi_dev_t *sd;
469 
470 	if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
471 		dev_err(&h->pdev->dev, "too many devices, some will be "
472 			"inaccessible.\n");
473 		return -1;
474 	}
475 
476 	/* physical devices do not have lun or target assigned until now. */
477 	if (device->lun != -1)
478 		/* Logical device, lun is already assigned. */
479 		goto lun_assigned;
480 
481 	/* If this device a non-zero lun of a multi-lun device
482 	 * byte 4 of the 8-byte LUN addr will contain the logical
483 	 * unit no, zero otherise.
484 	 */
485 	if (device->scsi3addr[4] == 0) {
486 		/* This is not a non-zero lun of a multi-lun device */
487 		if (hpsa_find_target_lun(h, device->scsi3addr,
488 			device->bus, &device->target, &device->lun) != 0)
489 			return -1;
490 		goto lun_assigned;
491 	}
492 
493 	/* This is a non-zero lun of a multi-lun device.
494 	 * Search through our list and find the device which
495 	 * has the same 8 byte LUN address, excepting byte 4.
496 	 * Assign the same bus and target for this new LUN.
497 	 * Use the logical unit number from the firmware.
498 	 */
499 	memcpy(addr1, device->scsi3addr, 8);
500 	addr1[4] = 0;
501 	for (i = 0; i < n; i++) {
502 		sd = h->dev[i];
503 		memcpy(addr2, sd->scsi3addr, 8);
504 		addr2[4] = 0;
505 		/* differ only in byte 4? */
506 		if (memcmp(addr1, addr2, 8) == 0) {
507 			device->bus = sd->bus;
508 			device->target = sd->target;
509 			device->lun = device->scsi3addr[4];
510 			break;
511 		}
512 	}
513 	if (device->lun == -1) {
514 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
515 			" suspect firmware bug or unsupported hardware "
516 			"configuration.\n");
517 			return -1;
518 	}
519 
520 lun_assigned:
521 
522 	h->dev[n] = device;
523 	h->ndevices++;
524 	added[*nadded] = device;
525 	(*nadded)++;
526 
527 	/* initially, (before registering with scsi layer) we don't
528 	 * know our hostno and we don't want to print anything first
529 	 * time anyway (the scsi layer's inquiries will show that info)
530 	 */
531 	/* if (hostno != -1) */
532 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
533 			scsi_device_type(device->devtype), hostno,
534 			device->bus, device->target, device->lun);
535 	return 0;
536 }
537 
538 /* Replace an entry from h->dev[] array. */
539 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
540 	int entry, struct hpsa_scsi_dev_t *new_entry,
541 	struct hpsa_scsi_dev_t *added[], int *nadded,
542 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
543 {
544 	/* assumes h->devlock is held */
545 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
546 	removed[*nremoved] = h->dev[entry];
547 	(*nremoved)++;
548 	h->dev[entry] = new_entry;
549 	added[*nadded] = new_entry;
550 	(*nadded)++;
551 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
552 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
553 			new_entry->target, new_entry->lun);
554 }
555 
556 /* Remove an entry from h->dev[] array. */
557 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
558 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
559 {
560 	/* assumes h->devlock is held */
561 	int i;
562 	struct hpsa_scsi_dev_t *sd;
563 
564 	BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
565 
566 	sd = h->dev[entry];
567 	removed[*nremoved] = h->dev[entry];
568 	(*nremoved)++;
569 
570 	for (i = entry; i < h->ndevices-1; i++)
571 		h->dev[i] = h->dev[i+1];
572 	h->ndevices--;
573 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
574 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
575 		sd->lun);
576 }
577 
578 #define SCSI3ADDR_EQ(a, b) ( \
579 	(a)[7] == (b)[7] && \
580 	(a)[6] == (b)[6] && \
581 	(a)[5] == (b)[5] && \
582 	(a)[4] == (b)[4] && \
583 	(a)[3] == (b)[3] && \
584 	(a)[2] == (b)[2] && \
585 	(a)[1] == (b)[1] && \
586 	(a)[0] == (b)[0])
587 
588 static void fixup_botched_add(struct ctlr_info *h,
589 	struct hpsa_scsi_dev_t *added)
590 {
591 	/* called when scsi_add_device fails in order to re-adjust
592 	 * h->dev[] to match the mid layer's view.
593 	 */
594 	unsigned long flags;
595 	int i, j;
596 
597 	spin_lock_irqsave(&h->lock, flags);
598 	for (i = 0; i < h->ndevices; i++) {
599 		if (h->dev[i] == added) {
600 			for (j = i; j < h->ndevices-1; j++)
601 				h->dev[j] = h->dev[j+1];
602 			h->ndevices--;
603 			break;
604 		}
605 	}
606 	spin_unlock_irqrestore(&h->lock, flags);
607 	kfree(added);
608 }
609 
610 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
611 	struct hpsa_scsi_dev_t *dev2)
612 {
613 	if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
614 		(dev1->lun != -1 && dev2->lun != -1)) &&
615 		dev1->devtype != 0x0C)
616 		return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
617 
618 	/* we compare everything except lun and target as these
619 	 * are not yet assigned.  Compare parts likely
620 	 * to differ first
621 	 */
622 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
623 		sizeof(dev1->scsi3addr)) != 0)
624 		return 0;
625 	if (memcmp(dev1->device_id, dev2->device_id,
626 		sizeof(dev1->device_id)) != 0)
627 		return 0;
628 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
629 		return 0;
630 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
631 		return 0;
632 	if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
633 		return 0;
634 	if (dev1->devtype != dev2->devtype)
635 		return 0;
636 	if (dev1->raid_level != dev2->raid_level)
637 		return 0;
638 	if (dev1->bus != dev2->bus)
639 		return 0;
640 	return 1;
641 }
642 
643 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
644  * and return needle location in *index.  If scsi3addr matches, but not
645  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
646  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
647  */
648 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
649 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
650 	int *index)
651 {
652 	int i;
653 #define DEVICE_NOT_FOUND 0
654 #define DEVICE_CHANGED 1
655 #define DEVICE_SAME 2
656 	for (i = 0; i < haystack_size; i++) {
657 		if (haystack[i] == NULL) /* previously removed. */
658 			continue;
659 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
660 			*index = i;
661 			if (device_is_the_same(needle, haystack[i]))
662 				return DEVICE_SAME;
663 			else
664 				return DEVICE_CHANGED;
665 		}
666 	}
667 	*index = -1;
668 	return DEVICE_NOT_FOUND;
669 }
670 
671 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
672 	struct hpsa_scsi_dev_t *sd[], int nsds)
673 {
674 	/* sd contains scsi3 addresses and devtypes, and inquiry
675 	 * data.  This function takes what's in sd to be the current
676 	 * reality and updates h->dev[] to reflect that reality.
677 	 */
678 	int i, entry, device_change, changes = 0;
679 	struct hpsa_scsi_dev_t *csd;
680 	unsigned long flags;
681 	struct hpsa_scsi_dev_t **added, **removed;
682 	int nadded, nremoved;
683 	struct Scsi_Host *sh = NULL;
684 
685 	added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
686 		GFP_KERNEL);
687 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
688 		GFP_KERNEL);
689 
690 	if (!added || !removed) {
691 		dev_warn(&h->pdev->dev, "out of memory in "
692 			"adjust_hpsa_scsi_table\n");
693 		goto free_and_out;
694 	}
695 
696 	spin_lock_irqsave(&h->devlock, flags);
697 
698 	/* find any devices in h->dev[] that are not in
699 	 * sd[] and remove them from h->dev[], and for any
700 	 * devices which have changed, remove the old device
701 	 * info and add the new device info.
702 	 */
703 	i = 0;
704 	nremoved = 0;
705 	nadded = 0;
706 	while (i < h->ndevices) {
707 		csd = h->dev[i];
708 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
709 		if (device_change == DEVICE_NOT_FOUND) {
710 			changes++;
711 			hpsa_scsi_remove_entry(h, hostno, i,
712 				removed, &nremoved);
713 			continue; /* remove ^^^, hence i not incremented */
714 		} else if (device_change == DEVICE_CHANGED) {
715 			changes++;
716 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
717 				added, &nadded, removed, &nremoved);
718 			/* Set it to NULL to prevent it from being freed
719 			 * at the bottom of hpsa_update_scsi_devices()
720 			 */
721 			sd[entry] = NULL;
722 		}
723 		i++;
724 	}
725 
726 	/* Now, make sure every device listed in sd[] is also
727 	 * listed in h->dev[], adding them if they aren't found
728 	 */
729 
730 	for (i = 0; i < nsds; i++) {
731 		if (!sd[i]) /* if already added above. */
732 			continue;
733 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
734 					h->ndevices, &entry);
735 		if (device_change == DEVICE_NOT_FOUND) {
736 			changes++;
737 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
738 				added, &nadded) != 0)
739 				break;
740 			sd[i] = NULL; /* prevent from being freed later. */
741 		} else if (device_change == DEVICE_CHANGED) {
742 			/* should never happen... */
743 			changes++;
744 			dev_warn(&h->pdev->dev,
745 				"device unexpectedly changed.\n");
746 			/* but if it does happen, we just ignore that device */
747 		}
748 	}
749 	spin_unlock_irqrestore(&h->devlock, flags);
750 
751 	/* Don't notify scsi mid layer of any changes the first time through
752 	 * (or if there are no changes) scsi_scan_host will do it later the
753 	 * first time through.
754 	 */
755 	if (hostno == -1 || !changes)
756 		goto free_and_out;
757 
758 	sh = h->scsi_host;
759 	/* Notify scsi mid layer of any removed devices */
760 	for (i = 0; i < nremoved; i++) {
761 		struct scsi_device *sdev =
762 			scsi_device_lookup(sh, removed[i]->bus,
763 				removed[i]->target, removed[i]->lun);
764 		if (sdev != NULL) {
765 			scsi_remove_device(sdev);
766 			scsi_device_put(sdev);
767 		} else {
768 			/* We don't expect to get here.
769 			 * future cmds to this device will get selection
770 			 * timeout as if the device was gone.
771 			 */
772 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
773 				" for removal.", hostno, removed[i]->bus,
774 				removed[i]->target, removed[i]->lun);
775 		}
776 		kfree(removed[i]);
777 		removed[i] = NULL;
778 	}
779 
780 	/* Notify scsi mid layer of any added devices */
781 	for (i = 0; i < nadded; i++) {
782 		if (scsi_add_device(sh, added[i]->bus,
783 			added[i]->target, added[i]->lun) == 0)
784 			continue;
785 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
786 			"device not added.\n", hostno, added[i]->bus,
787 			added[i]->target, added[i]->lun);
788 		/* now we have to remove it from h->dev,
789 		 * since it didn't get added to scsi mid layer
790 		 */
791 		fixup_botched_add(h, added[i]);
792 	}
793 
794 free_and_out:
795 	kfree(added);
796 	kfree(removed);
797 }
798 
799 /*
800  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
801  * Assume's h->devlock is held.
802  */
803 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
804 	int bus, int target, int lun)
805 {
806 	int i;
807 	struct hpsa_scsi_dev_t *sd;
808 
809 	for (i = 0; i < h->ndevices; i++) {
810 		sd = h->dev[i];
811 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
812 			return sd;
813 	}
814 	return NULL;
815 }
816 
817 /* link sdev->hostdata to our per-device structure. */
818 static int hpsa_slave_alloc(struct scsi_device *sdev)
819 {
820 	struct hpsa_scsi_dev_t *sd;
821 	unsigned long flags;
822 	struct ctlr_info *h;
823 
824 	h = sdev_to_hba(sdev);
825 	spin_lock_irqsave(&h->devlock, flags);
826 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
827 		sdev_id(sdev), sdev->lun);
828 	if (sd != NULL)
829 		sdev->hostdata = sd;
830 	spin_unlock_irqrestore(&h->devlock, flags);
831 	return 0;
832 }
833 
834 static void hpsa_slave_destroy(struct scsi_device *sdev)
835 {
836 	/* nothing to do. */
837 }
838 
839 static void hpsa_scsi_setup(struct ctlr_info *h)
840 {
841 	h->ndevices = 0;
842 	h->scsi_host = NULL;
843 	spin_lock_init(&h->devlock);
844 }
845 
846 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
847 {
848 	int i;
849 
850 	if (!h->cmd_sg_list)
851 		return;
852 	for (i = 0; i < h->nr_cmds; i++) {
853 		kfree(h->cmd_sg_list[i]);
854 		h->cmd_sg_list[i] = NULL;
855 	}
856 	kfree(h->cmd_sg_list);
857 	h->cmd_sg_list = NULL;
858 }
859 
860 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
861 {
862 	int i;
863 
864 	if (h->chainsize <= 0)
865 		return 0;
866 
867 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
868 				GFP_KERNEL);
869 	if (!h->cmd_sg_list)
870 		return -ENOMEM;
871 	for (i = 0; i < h->nr_cmds; i++) {
872 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
873 						h->chainsize, GFP_KERNEL);
874 		if (!h->cmd_sg_list[i])
875 			goto clean;
876 	}
877 	return 0;
878 
879 clean:
880 	hpsa_free_sg_chain_blocks(h);
881 	return -ENOMEM;
882 }
883 
884 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
885 	struct CommandList *c)
886 {
887 	struct SGDescriptor *chain_sg, *chain_block;
888 	u64 temp64;
889 
890 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
891 	chain_block = h->cmd_sg_list[c->cmdindex];
892 	chain_sg->Ext = HPSA_SG_CHAIN;
893 	chain_sg->Len = sizeof(*chain_sg) *
894 		(c->Header.SGTotal - h->max_cmd_sg_entries);
895 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
896 				PCI_DMA_TODEVICE);
897 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
898 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
899 }
900 
901 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
902 	struct CommandList *c)
903 {
904 	struct SGDescriptor *chain_sg;
905 	union u64bit temp64;
906 
907 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
908 		return;
909 
910 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
911 	temp64.val32.lower = chain_sg->Addr.lower;
912 	temp64.val32.upper = chain_sg->Addr.upper;
913 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
914 }
915 
916 static void complete_scsi_command(struct CommandList *cp,
917 	int timeout, u32 tag)
918 {
919 	struct scsi_cmnd *cmd;
920 	struct ctlr_info *h;
921 	struct ErrorInfo *ei;
922 
923 	unsigned char sense_key;
924 	unsigned char asc;      /* additional sense code */
925 	unsigned char ascq;     /* additional sense code qualifier */
926 
927 	ei = cp->err_info;
928 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
929 	h = cp->h;
930 
931 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
932 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
933 		hpsa_unmap_sg_chain_block(h, cp);
934 
935 	cmd->result = (DID_OK << 16); 		/* host byte */
936 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
937 	cmd->result |= ei->ScsiStatus;
938 
939 	/* copy the sense data whether we need to or not. */
940 	memcpy(cmd->sense_buffer, ei->SenseInfo,
941 		ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
942 			SCSI_SENSE_BUFFERSIZE :
943 			ei->SenseLen);
944 	scsi_set_resid(cmd, ei->ResidualCnt);
945 
946 	if (ei->CommandStatus == 0) {
947 		cmd->scsi_done(cmd);
948 		cmd_free(h, cp);
949 		return;
950 	}
951 
952 	/* an error has occurred */
953 	switch (ei->CommandStatus) {
954 
955 	case CMD_TARGET_STATUS:
956 		if (ei->ScsiStatus) {
957 			/* Get sense key */
958 			sense_key = 0xf & ei->SenseInfo[2];
959 			/* Get additional sense code */
960 			asc = ei->SenseInfo[12];
961 			/* Get addition sense code qualifier */
962 			ascq = ei->SenseInfo[13];
963 		}
964 
965 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
966 			if (check_for_unit_attention(h, cp)) {
967 				cmd->result = DID_SOFT_ERROR << 16;
968 				break;
969 			}
970 			if (sense_key == ILLEGAL_REQUEST) {
971 				/*
972 				 * SCSI REPORT_LUNS is commonly unsupported on
973 				 * Smart Array.  Suppress noisy complaint.
974 				 */
975 				if (cp->Request.CDB[0] == REPORT_LUNS)
976 					break;
977 
978 				/* If ASC/ASCQ indicate Logical Unit
979 				 * Not Supported condition,
980 				 */
981 				if ((asc == 0x25) && (ascq == 0x0)) {
982 					dev_warn(&h->pdev->dev, "cp %p "
983 						"has check condition\n", cp);
984 					break;
985 				}
986 			}
987 
988 			if (sense_key == NOT_READY) {
989 				/* If Sense is Not Ready, Logical Unit
990 				 * Not ready, Manual Intervention
991 				 * required
992 				 */
993 				if ((asc == 0x04) && (ascq == 0x03)) {
994 					dev_warn(&h->pdev->dev, "cp %p "
995 						"has check condition: unit "
996 						"not ready, manual "
997 						"intervention required\n", cp);
998 					break;
999 				}
1000 			}
1001 			if (sense_key == ABORTED_COMMAND) {
1002 				/* Aborted command is retryable */
1003 				dev_warn(&h->pdev->dev, "cp %p "
1004 					"has check condition: aborted command: "
1005 					"ASC: 0x%x, ASCQ: 0x%x\n",
1006 					cp, asc, ascq);
1007 				cmd->result = DID_SOFT_ERROR << 16;
1008 				break;
1009 			}
1010 			/* Must be some other type of check condition */
1011 			dev_warn(&h->pdev->dev, "cp %p has check condition: "
1012 					"unknown type: "
1013 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1014 					"Returning result: 0x%x, "
1015 					"cmd=[%02x %02x %02x %02x %02x "
1016 					"%02x %02x %02x %02x %02x %02x "
1017 					"%02x %02x %02x %02x %02x]\n",
1018 					cp, sense_key, asc, ascq,
1019 					cmd->result,
1020 					cmd->cmnd[0], cmd->cmnd[1],
1021 					cmd->cmnd[2], cmd->cmnd[3],
1022 					cmd->cmnd[4], cmd->cmnd[5],
1023 					cmd->cmnd[6], cmd->cmnd[7],
1024 					cmd->cmnd[8], cmd->cmnd[9],
1025 					cmd->cmnd[10], cmd->cmnd[11],
1026 					cmd->cmnd[12], cmd->cmnd[13],
1027 					cmd->cmnd[14], cmd->cmnd[15]);
1028 			break;
1029 		}
1030 
1031 
1032 		/* Problem was not a check condition
1033 		 * Pass it up to the upper layers...
1034 		 */
1035 		if (ei->ScsiStatus) {
1036 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1037 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1038 				"Returning result: 0x%x\n",
1039 				cp, ei->ScsiStatus,
1040 				sense_key, asc, ascq,
1041 				cmd->result);
1042 		} else {  /* scsi status is zero??? How??? */
1043 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1044 				"Returning no connection.\n", cp),
1045 
1046 			/* Ordinarily, this case should never happen,
1047 			 * but there is a bug in some released firmware
1048 			 * revisions that allows it to happen if, for
1049 			 * example, a 4100 backplane loses power and
1050 			 * the tape drive is in it.  We assume that
1051 			 * it's a fatal error of some kind because we
1052 			 * can't show that it wasn't. We will make it
1053 			 * look like selection timeout since that is
1054 			 * the most common reason for this to occur,
1055 			 * and it's severe enough.
1056 			 */
1057 
1058 			cmd->result = DID_NO_CONNECT << 16;
1059 		}
1060 		break;
1061 
1062 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1063 		break;
1064 	case CMD_DATA_OVERRUN:
1065 		dev_warn(&h->pdev->dev, "cp %p has"
1066 			" completed with data overrun "
1067 			"reported\n", cp);
1068 		break;
1069 	case CMD_INVALID: {
1070 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1071 		print_cmd(cp); */
1072 		/* We get CMD_INVALID if you address a non-existent device
1073 		 * instead of a selection timeout (no response).  You will
1074 		 * see this if you yank out a drive, then try to access it.
1075 		 * This is kind of a shame because it means that any other
1076 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1077 		 * missing target. */
1078 		cmd->result = DID_NO_CONNECT << 16;
1079 	}
1080 		break;
1081 	case CMD_PROTOCOL_ERR:
1082 		dev_warn(&h->pdev->dev, "cp %p has "
1083 			"protocol error \n", cp);
1084 		break;
1085 	case CMD_HARDWARE_ERR:
1086 		cmd->result = DID_ERROR << 16;
1087 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1088 		break;
1089 	case CMD_CONNECTION_LOST:
1090 		cmd->result = DID_ERROR << 16;
1091 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1092 		break;
1093 	case CMD_ABORTED:
1094 		cmd->result = DID_ABORT << 16;
1095 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1096 				cp, ei->ScsiStatus);
1097 		break;
1098 	case CMD_ABORT_FAILED:
1099 		cmd->result = DID_ERROR << 16;
1100 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1101 		break;
1102 	case CMD_UNSOLICITED_ABORT:
1103 		cmd->result = DID_RESET << 16;
1104 		dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1105 			"abort\n", cp);
1106 		break;
1107 	case CMD_TIMEOUT:
1108 		cmd->result = DID_TIME_OUT << 16;
1109 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1110 		break;
1111 	default:
1112 		cmd->result = DID_ERROR << 16;
1113 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1114 				cp, ei->CommandStatus);
1115 	}
1116 	cmd->scsi_done(cmd);
1117 	cmd_free(h, cp);
1118 }
1119 
1120 static int hpsa_scsi_detect(struct ctlr_info *h)
1121 {
1122 	struct Scsi_Host *sh;
1123 	int error;
1124 
1125 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1126 	if (sh == NULL)
1127 		goto fail;
1128 
1129 	sh->io_port = 0;
1130 	sh->n_io_port = 0;
1131 	sh->this_id = -1;
1132 	sh->max_channel = 3;
1133 	sh->max_cmd_len = MAX_COMMAND_SIZE;
1134 	sh->max_lun = HPSA_MAX_LUN;
1135 	sh->max_id = HPSA_MAX_LUN;
1136 	sh->can_queue = h->nr_cmds;
1137 	sh->cmd_per_lun = h->nr_cmds;
1138 	sh->sg_tablesize = h->maxsgentries;
1139 	h->scsi_host = sh;
1140 	sh->hostdata[0] = (unsigned long) h;
1141 	sh->irq = h->intr[PERF_MODE_INT];
1142 	sh->unique_id = sh->irq;
1143 	error = scsi_add_host(sh, &h->pdev->dev);
1144 	if (error)
1145 		goto fail_host_put;
1146 	scsi_scan_host(sh);
1147 	return 0;
1148 
1149  fail_host_put:
1150 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1151 		" failed for controller %d\n", h->ctlr);
1152 	scsi_host_put(sh);
1153 	return error;
1154  fail:
1155 	dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1156 		" failed for controller %d\n", h->ctlr);
1157 	return -ENOMEM;
1158 }
1159 
1160 static void hpsa_pci_unmap(struct pci_dev *pdev,
1161 	struct CommandList *c, int sg_used, int data_direction)
1162 {
1163 	int i;
1164 	union u64bit addr64;
1165 
1166 	for (i = 0; i < sg_used; i++) {
1167 		addr64.val32.lower = c->SG[i].Addr.lower;
1168 		addr64.val32.upper = c->SG[i].Addr.upper;
1169 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1170 			data_direction);
1171 	}
1172 }
1173 
1174 static void hpsa_map_one(struct pci_dev *pdev,
1175 		struct CommandList *cp,
1176 		unsigned char *buf,
1177 		size_t buflen,
1178 		int data_direction)
1179 {
1180 	u64 addr64;
1181 
1182 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1183 		cp->Header.SGList = 0;
1184 		cp->Header.SGTotal = 0;
1185 		return;
1186 	}
1187 
1188 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1189 	cp->SG[0].Addr.lower =
1190 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1191 	cp->SG[0].Addr.upper =
1192 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1193 	cp->SG[0].Len = buflen;
1194 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1195 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1196 }
1197 
1198 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1199 	struct CommandList *c)
1200 {
1201 	DECLARE_COMPLETION_ONSTACK(wait);
1202 
1203 	c->waiting = &wait;
1204 	enqueue_cmd_and_start_io(h, c);
1205 	wait_for_completion(&wait);
1206 }
1207 
1208 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1209 	struct CommandList *c, int data_direction)
1210 {
1211 	int retry_count = 0;
1212 
1213 	do {
1214 		memset(c->err_info, 0, sizeof(c->err_info));
1215 		hpsa_scsi_do_simple_cmd_core(h, c);
1216 		retry_count++;
1217 	} while (check_for_unit_attention(h, c) && retry_count <= 3);
1218 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1219 }
1220 
1221 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1222 {
1223 	struct ErrorInfo *ei;
1224 	struct device *d = &cp->h->pdev->dev;
1225 
1226 	ei = cp->err_info;
1227 	switch (ei->CommandStatus) {
1228 	case CMD_TARGET_STATUS:
1229 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1230 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1231 				ei->ScsiStatus);
1232 		if (ei->ScsiStatus == 0)
1233 			dev_warn(d, "SCSI status is abnormally zero.  "
1234 			"(probably indicates selection timeout "
1235 			"reported incorrectly due to a known "
1236 			"firmware bug, circa July, 2001.)\n");
1237 		break;
1238 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1239 			dev_info(d, "UNDERRUN\n");
1240 		break;
1241 	case CMD_DATA_OVERRUN:
1242 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1243 		break;
1244 	case CMD_INVALID: {
1245 		/* controller unfortunately reports SCSI passthru's
1246 		 * to non-existent targets as invalid commands.
1247 		 */
1248 		dev_warn(d, "cp %p is reported invalid (probably means "
1249 			"target device no longer present)\n", cp);
1250 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1251 		print_cmd(cp);  */
1252 		}
1253 		break;
1254 	case CMD_PROTOCOL_ERR:
1255 		dev_warn(d, "cp %p has protocol error \n", cp);
1256 		break;
1257 	case CMD_HARDWARE_ERR:
1258 		/* cmd->result = DID_ERROR << 16; */
1259 		dev_warn(d, "cp %p had hardware error\n", cp);
1260 		break;
1261 	case CMD_CONNECTION_LOST:
1262 		dev_warn(d, "cp %p had connection lost\n", cp);
1263 		break;
1264 	case CMD_ABORTED:
1265 		dev_warn(d, "cp %p was aborted\n", cp);
1266 		break;
1267 	case CMD_ABORT_FAILED:
1268 		dev_warn(d, "cp %p reports abort failed\n", cp);
1269 		break;
1270 	case CMD_UNSOLICITED_ABORT:
1271 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1272 		break;
1273 	case CMD_TIMEOUT:
1274 		dev_warn(d, "cp %p timed out\n", cp);
1275 		break;
1276 	default:
1277 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1278 				ei->CommandStatus);
1279 	}
1280 }
1281 
1282 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1283 			unsigned char page, unsigned char *buf,
1284 			unsigned char bufsize)
1285 {
1286 	int rc = IO_OK;
1287 	struct CommandList *c;
1288 	struct ErrorInfo *ei;
1289 
1290 	c = cmd_special_alloc(h);
1291 
1292 	if (c == NULL) {			/* trouble... */
1293 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1294 		return -ENOMEM;
1295 	}
1296 
1297 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1298 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1299 	ei = c->err_info;
1300 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1301 		hpsa_scsi_interpret_error(c);
1302 		rc = -1;
1303 	}
1304 	cmd_special_free(h, c);
1305 	return rc;
1306 }
1307 
1308 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1309 {
1310 	int rc = IO_OK;
1311 	struct CommandList *c;
1312 	struct ErrorInfo *ei;
1313 
1314 	c = cmd_special_alloc(h);
1315 
1316 	if (c == NULL) {			/* trouble... */
1317 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1318 		return -ENOMEM;
1319 	}
1320 
1321 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1322 	hpsa_scsi_do_simple_cmd_core(h, c);
1323 	/* no unmap needed here because no data xfer. */
1324 
1325 	ei = c->err_info;
1326 	if (ei->CommandStatus != 0) {
1327 		hpsa_scsi_interpret_error(c);
1328 		rc = -1;
1329 	}
1330 	cmd_special_free(h, c);
1331 	return rc;
1332 }
1333 
1334 static void hpsa_get_raid_level(struct ctlr_info *h,
1335 	unsigned char *scsi3addr, unsigned char *raid_level)
1336 {
1337 	int rc;
1338 	unsigned char *buf;
1339 
1340 	*raid_level = RAID_UNKNOWN;
1341 	buf = kzalloc(64, GFP_KERNEL);
1342 	if (!buf)
1343 		return;
1344 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1345 	if (rc == 0)
1346 		*raid_level = buf[8];
1347 	if (*raid_level > RAID_UNKNOWN)
1348 		*raid_level = RAID_UNKNOWN;
1349 	kfree(buf);
1350 	return;
1351 }
1352 
1353 /* Get the device id from inquiry page 0x83 */
1354 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1355 	unsigned char *device_id, int buflen)
1356 {
1357 	int rc;
1358 	unsigned char *buf;
1359 
1360 	if (buflen > 16)
1361 		buflen = 16;
1362 	buf = kzalloc(64, GFP_KERNEL);
1363 	if (!buf)
1364 		return -1;
1365 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1366 	if (rc == 0)
1367 		memcpy(device_id, &buf[8], buflen);
1368 	kfree(buf);
1369 	return rc != 0;
1370 }
1371 
1372 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1373 		struct ReportLUNdata *buf, int bufsize,
1374 		int extended_response)
1375 {
1376 	int rc = IO_OK;
1377 	struct CommandList *c;
1378 	unsigned char scsi3addr[8];
1379 	struct ErrorInfo *ei;
1380 
1381 	c = cmd_special_alloc(h);
1382 	if (c == NULL) {			/* trouble... */
1383 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1384 		return -1;
1385 	}
1386 	/* address the controller */
1387 	memset(scsi3addr, 0, sizeof(scsi3addr));
1388 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1389 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1390 	if (extended_response)
1391 		c->Request.CDB[1] = extended_response;
1392 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1393 	ei = c->err_info;
1394 	if (ei->CommandStatus != 0 &&
1395 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1396 		hpsa_scsi_interpret_error(c);
1397 		rc = -1;
1398 	}
1399 	cmd_special_free(h, c);
1400 	return rc;
1401 }
1402 
1403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1404 		struct ReportLUNdata *buf,
1405 		int bufsize, int extended_response)
1406 {
1407 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1408 }
1409 
1410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1411 		struct ReportLUNdata *buf, int bufsize)
1412 {
1413 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1414 }
1415 
1416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1417 	int bus, int target, int lun)
1418 {
1419 	device->bus = bus;
1420 	device->target = target;
1421 	device->lun = lun;
1422 }
1423 
1424 static int hpsa_update_device_info(struct ctlr_info *h,
1425 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1426 {
1427 #define OBDR_TAPE_INQ_SIZE 49
1428 	unsigned char *inq_buff;
1429 
1430 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1431 	if (!inq_buff)
1432 		goto bail_out;
1433 
1434 	/* Do an inquiry to the device to see what it is. */
1435 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1436 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1437 		/* Inquiry failed (msg printed already) */
1438 		dev_err(&h->pdev->dev,
1439 			"hpsa_update_device_info: inquiry failed\n");
1440 		goto bail_out;
1441 	}
1442 
1443 	/* As a side effect, record the firmware version number
1444 	 * if we happen to be talking to the RAID controller.
1445 	 */
1446 	if (is_hba_lunid(scsi3addr))
1447 		memcpy(h->firm_ver, &inq_buff[32], 4);
1448 
1449 	this_device->devtype = (inq_buff[0] & 0x1f);
1450 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1451 	memcpy(this_device->vendor, &inq_buff[8],
1452 		sizeof(this_device->vendor));
1453 	memcpy(this_device->model, &inq_buff[16],
1454 		sizeof(this_device->model));
1455 	memcpy(this_device->revision, &inq_buff[32],
1456 		sizeof(this_device->revision));
1457 	memset(this_device->device_id, 0,
1458 		sizeof(this_device->device_id));
1459 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1460 		sizeof(this_device->device_id));
1461 
1462 	if (this_device->devtype == TYPE_DISK &&
1463 		is_logical_dev_addr_mode(scsi3addr))
1464 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1465 	else
1466 		this_device->raid_level = RAID_UNKNOWN;
1467 
1468 	kfree(inq_buff);
1469 	return 0;
1470 
1471 bail_out:
1472 	kfree(inq_buff);
1473 	return 1;
1474 }
1475 
1476 static unsigned char *msa2xxx_model[] = {
1477 	"MSA2012",
1478 	"MSA2024",
1479 	"MSA2312",
1480 	"MSA2324",
1481 	NULL,
1482 };
1483 
1484 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1485 {
1486 	int i;
1487 
1488 	for (i = 0; msa2xxx_model[i]; i++)
1489 		if (strncmp(device->model, msa2xxx_model[i],
1490 			strlen(msa2xxx_model[i])) == 0)
1491 			return 1;
1492 	return 0;
1493 }
1494 
1495 /* Helper function to assign bus, target, lun mapping of devices.
1496  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1497  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1498  * Logical drive target and lun are assigned at this time, but
1499  * physical device lun and target assignment are deferred (assigned
1500  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1501  */
1502 static void figure_bus_target_lun(struct ctlr_info *h,
1503 	u8 *lunaddrbytes, int *bus, int *target, int *lun,
1504 	struct hpsa_scsi_dev_t *device)
1505 {
1506 	u32 lunid;
1507 
1508 	if (is_logical_dev_addr_mode(lunaddrbytes)) {
1509 		/* logical device */
1510 		if (unlikely(is_scsi_rev_5(h))) {
1511 			/* p1210m, logical drives lun assignments
1512 			 * match SCSI REPORT LUNS data.
1513 			 */
1514 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1515 			*bus = 0;
1516 			*target = 0;
1517 			*lun = (lunid & 0x3fff) + 1;
1518 		} else {
1519 			/* not p1210m... */
1520 			lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1521 			if (is_msa2xxx(h, device)) {
1522 				/* msa2xxx way, put logicals on bus 1
1523 				 * and match target/lun numbers box
1524 				 * reports.
1525 				 */
1526 				*bus = 1;
1527 				*target = (lunid >> 16) & 0x3fff;
1528 				*lun = lunid & 0x00ff;
1529 			} else {
1530 				/* Traditional smart array way. */
1531 				*bus = 0;
1532 				*lun = 0;
1533 				*target = lunid & 0x3fff;
1534 			}
1535 		}
1536 	} else {
1537 		/* physical device */
1538 		if (is_hba_lunid(lunaddrbytes))
1539 			if (unlikely(is_scsi_rev_5(h))) {
1540 				*bus = 0; /* put p1210m ctlr at 0,0,0 */
1541 				*target = 0;
1542 				*lun = 0;
1543 				return;
1544 			} else
1545 				*bus = 3; /* traditional smartarray */
1546 		else
1547 			*bus = 2; /* physical disk */
1548 		*target = -1;
1549 		*lun = -1; /* we will fill these in later. */
1550 	}
1551 }
1552 
1553 /*
1554  * If there is no lun 0 on a target, linux won't find any devices.
1555  * For the MSA2xxx boxes, we have to manually detect the enclosure
1556  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1557  * it for some reason.  *tmpdevice is the target we're adding,
1558  * this_device is a pointer into the current element of currentsd[]
1559  * that we're building up in update_scsi_devices(), below.
1560  * lunzerobits is a bitmap that tracks which targets already have a
1561  * lun 0 assigned.
1562  * Returns 1 if an enclosure was added, 0 if not.
1563  */
1564 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1565 	struct hpsa_scsi_dev_t *tmpdevice,
1566 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1567 	int bus, int target, int lun, unsigned long lunzerobits[],
1568 	int *nmsa2xxx_enclosures)
1569 {
1570 	unsigned char scsi3addr[8];
1571 
1572 	if (test_bit(target, lunzerobits))
1573 		return 0; /* There is already a lun 0 on this target. */
1574 
1575 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1576 		return 0; /* It's the logical targets that may lack lun 0. */
1577 
1578 	if (!is_msa2xxx(h, tmpdevice))
1579 		return 0; /* It's only the MSA2xxx that have this problem. */
1580 
1581 	if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1582 		return 0;
1583 
1584 	if (is_hba_lunid(scsi3addr))
1585 		return 0; /* Don't add the RAID controller here. */
1586 
1587 	if (is_scsi_rev_5(h))
1588 		return 0; /* p1210m doesn't need to do this. */
1589 
1590 #define MAX_MSA2XXX_ENCLOSURES 32
1591 	if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1592 		dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1593 			"enclosures exceeded.  Check your hardware "
1594 			"configuration.");
1595 		return 0;
1596 	}
1597 
1598 	memset(scsi3addr, 0, 8);
1599 	scsi3addr[3] = target;
1600 	if (hpsa_update_device_info(h, scsi3addr, this_device))
1601 		return 0;
1602 	(*nmsa2xxx_enclosures)++;
1603 	hpsa_set_bus_target_lun(this_device, bus, target, 0);
1604 	set_bit(target, lunzerobits);
1605 	return 1;
1606 }
1607 
1608 /*
1609  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1610  * logdev.  The number of luns in physdev and logdev are returned in
1611  * *nphysicals and *nlogicals, respectively.
1612  * Returns 0 on success, -1 otherwise.
1613  */
1614 static int hpsa_gather_lun_info(struct ctlr_info *h,
1615 	int reportlunsize,
1616 	struct ReportLUNdata *physdev, u32 *nphysicals,
1617 	struct ReportLUNdata *logdev, u32 *nlogicals)
1618 {
1619 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1620 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1621 		return -1;
1622 	}
1623 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1624 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1625 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1626 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1627 			*nphysicals - HPSA_MAX_PHYS_LUN);
1628 		*nphysicals = HPSA_MAX_PHYS_LUN;
1629 	}
1630 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1631 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1632 		return -1;
1633 	}
1634 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1635 	/* Reject Logicals in excess of our max capability. */
1636 	if (*nlogicals > HPSA_MAX_LUN) {
1637 		dev_warn(&h->pdev->dev,
1638 			"maximum logical LUNs (%d) exceeded.  "
1639 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1640 			*nlogicals - HPSA_MAX_LUN);
1641 			*nlogicals = HPSA_MAX_LUN;
1642 	}
1643 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1644 		dev_warn(&h->pdev->dev,
1645 			"maximum logical + physical LUNs (%d) exceeded. "
1646 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1647 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1648 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1649 	}
1650 	return 0;
1651 }
1652 
1653 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1654 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1655 	struct ReportLUNdata *logdev_list)
1656 {
1657 	/* Helper function, figure out where the LUN ID info is coming from
1658 	 * given index i, lists of physical and logical devices, where in
1659 	 * the list the raid controller is supposed to appear (first or last)
1660 	 */
1661 
1662 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1663 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1664 
1665 	if (i == raid_ctlr_position)
1666 		return RAID_CTLR_LUNID;
1667 
1668 	if (i < logicals_start)
1669 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1670 
1671 	if (i < last_device)
1672 		return &logdev_list->LUN[i - nphysicals -
1673 			(raid_ctlr_position == 0)][0];
1674 	BUG();
1675 	return NULL;
1676 }
1677 
1678 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1679 {
1680 	/* the idea here is we could get notified
1681 	 * that some devices have changed, so we do a report
1682 	 * physical luns and report logical luns cmd, and adjust
1683 	 * our list of devices accordingly.
1684 	 *
1685 	 * The scsi3addr's of devices won't change so long as the
1686 	 * adapter is not reset.  That means we can rescan and
1687 	 * tell which devices we already know about, vs. new
1688 	 * devices, vs.  disappearing devices.
1689 	 */
1690 	struct ReportLUNdata *physdev_list = NULL;
1691 	struct ReportLUNdata *logdev_list = NULL;
1692 	unsigned char *inq_buff = NULL;
1693 	u32 nphysicals = 0;
1694 	u32 nlogicals = 0;
1695 	u32 ndev_allocated = 0;
1696 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1697 	int ncurrent = 0;
1698 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1699 	int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1700 	int bus, target, lun;
1701 	int raid_ctlr_position;
1702 	DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1703 
1704 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1705 		GFP_KERNEL);
1706 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1707 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1708 	inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1709 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1710 
1711 	if (!currentsd || !physdev_list || !logdev_list ||
1712 		!inq_buff || !tmpdevice) {
1713 		dev_err(&h->pdev->dev, "out of memory\n");
1714 		goto out;
1715 	}
1716 	memset(lunzerobits, 0, sizeof(lunzerobits));
1717 
1718 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1719 			logdev_list, &nlogicals))
1720 		goto out;
1721 
1722 	/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1723 	 * but each of them 4 times through different paths.  The plus 1
1724 	 * is for the RAID controller.
1725 	 */
1726 	ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1727 
1728 	/* Allocate the per device structures */
1729 	for (i = 0; i < ndevs_to_allocate; i++) {
1730 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1731 		if (!currentsd[i]) {
1732 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1733 				__FILE__, __LINE__);
1734 			goto out;
1735 		}
1736 		ndev_allocated++;
1737 	}
1738 
1739 	if (unlikely(is_scsi_rev_5(h)))
1740 		raid_ctlr_position = 0;
1741 	else
1742 		raid_ctlr_position = nphysicals + nlogicals;
1743 
1744 	/* adjust our table of devices */
1745 	nmsa2xxx_enclosures = 0;
1746 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1747 		u8 *lunaddrbytes;
1748 
1749 		/* Figure out where the LUN ID info is coming from */
1750 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1751 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1752 		/* skip masked physical devices. */
1753 		if (lunaddrbytes[3] & 0xC0 &&
1754 			i < nphysicals + (raid_ctlr_position == 0))
1755 			continue;
1756 
1757 		/* Get device type, vendor, model, device id */
1758 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1759 			continue; /* skip it if we can't talk to it. */
1760 		figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1761 			tmpdevice);
1762 		this_device = currentsd[ncurrent];
1763 
1764 		/*
1765 		 * For the msa2xxx boxes, we have to insert a LUN 0 which
1766 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1767 		 * is nonetheless an enclosure device there.  We have to
1768 		 * present that otherwise linux won't find anything if
1769 		 * there is no lun 0.
1770 		 */
1771 		if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1772 				lunaddrbytes, bus, target, lun, lunzerobits,
1773 				&nmsa2xxx_enclosures)) {
1774 			ncurrent++;
1775 			this_device = currentsd[ncurrent];
1776 		}
1777 
1778 		*this_device = *tmpdevice;
1779 		hpsa_set_bus_target_lun(this_device, bus, target, lun);
1780 
1781 		switch (this_device->devtype) {
1782 		case TYPE_ROM: {
1783 			/* We don't *really* support actual CD-ROM devices,
1784 			 * just "One Button Disaster Recovery" tape drive
1785 			 * which temporarily pretends to be a CD-ROM drive.
1786 			 * So we check that the device is really an OBDR tape
1787 			 * device by checking for "$DR-10" in bytes 43-48 of
1788 			 * the inquiry data.
1789 			 */
1790 				char obdr_sig[7];
1791 #define OBDR_TAPE_SIG "$DR-10"
1792 				strncpy(obdr_sig, &inq_buff[43], 6);
1793 				obdr_sig[6] = '\0';
1794 				if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1795 					/* Not OBDR device, ignore it. */
1796 					break;
1797 			}
1798 			ncurrent++;
1799 			break;
1800 		case TYPE_DISK:
1801 			if (i < nphysicals)
1802 				break;
1803 			ncurrent++;
1804 			break;
1805 		case TYPE_TAPE:
1806 		case TYPE_MEDIUM_CHANGER:
1807 			ncurrent++;
1808 			break;
1809 		case TYPE_RAID:
1810 			/* Only present the Smartarray HBA as a RAID controller.
1811 			 * If it's a RAID controller other than the HBA itself
1812 			 * (an external RAID controller, MSA500 or similar)
1813 			 * don't present it.
1814 			 */
1815 			if (!is_hba_lunid(lunaddrbytes))
1816 				break;
1817 			ncurrent++;
1818 			break;
1819 		default:
1820 			break;
1821 		}
1822 		if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1823 			break;
1824 	}
1825 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1826 out:
1827 	kfree(tmpdevice);
1828 	for (i = 0; i < ndev_allocated; i++)
1829 		kfree(currentsd[i]);
1830 	kfree(currentsd);
1831 	kfree(inq_buff);
1832 	kfree(physdev_list);
1833 	kfree(logdev_list);
1834 }
1835 
1836 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1837  * dma mapping  and fills in the scatter gather entries of the
1838  * hpsa command, cp.
1839  */
1840 static int hpsa_scatter_gather(struct ctlr_info *h,
1841 		struct CommandList *cp,
1842 		struct scsi_cmnd *cmd)
1843 {
1844 	unsigned int len;
1845 	struct scatterlist *sg;
1846 	u64 addr64;
1847 	int use_sg, i, sg_index, chained;
1848 	struct SGDescriptor *curr_sg;
1849 
1850 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1851 
1852 	use_sg = scsi_dma_map(cmd);
1853 	if (use_sg < 0)
1854 		return use_sg;
1855 
1856 	if (!use_sg)
1857 		goto sglist_finished;
1858 
1859 	curr_sg = cp->SG;
1860 	chained = 0;
1861 	sg_index = 0;
1862 	scsi_for_each_sg(cmd, sg, use_sg, i) {
1863 		if (i == h->max_cmd_sg_entries - 1 &&
1864 			use_sg > h->max_cmd_sg_entries) {
1865 			chained = 1;
1866 			curr_sg = h->cmd_sg_list[cp->cmdindex];
1867 			sg_index = 0;
1868 		}
1869 		addr64 = (u64) sg_dma_address(sg);
1870 		len  = sg_dma_len(sg);
1871 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1872 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1873 		curr_sg->Len = len;
1874 		curr_sg->Ext = 0;  /* we are not chaining */
1875 		curr_sg++;
1876 	}
1877 
1878 	if (use_sg + chained > h->maxSG)
1879 		h->maxSG = use_sg + chained;
1880 
1881 	if (chained) {
1882 		cp->Header.SGList = h->max_cmd_sg_entries;
1883 		cp->Header.SGTotal = (u16) (use_sg + 1);
1884 		hpsa_map_sg_chain_block(h, cp);
1885 		return 0;
1886 	}
1887 
1888 sglist_finished:
1889 
1890 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1891 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1892 	return 0;
1893 }
1894 
1895 
1896 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1897 	void (*done)(struct scsi_cmnd *))
1898 {
1899 	struct ctlr_info *h;
1900 	struct hpsa_scsi_dev_t *dev;
1901 	unsigned char scsi3addr[8];
1902 	struct CommandList *c;
1903 	unsigned long flags;
1904 
1905 	/* Get the ptr to our adapter structure out of cmd->host. */
1906 	h = sdev_to_hba(cmd->device);
1907 	dev = cmd->device->hostdata;
1908 	if (!dev) {
1909 		cmd->result = DID_NO_CONNECT << 16;
1910 		done(cmd);
1911 		return 0;
1912 	}
1913 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1914 
1915 	/* Need a lock as this is being allocated from the pool */
1916 	spin_lock_irqsave(&h->lock, flags);
1917 	c = cmd_alloc(h);
1918 	spin_unlock_irqrestore(&h->lock, flags);
1919 	if (c == NULL) {			/* trouble... */
1920 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1921 		return SCSI_MLQUEUE_HOST_BUSY;
1922 	}
1923 
1924 	/* Fill in the command list header */
1925 
1926 	cmd->scsi_done = done;    /* save this for use by completion code */
1927 
1928 	/* save c in case we have to abort it  */
1929 	cmd->host_scribble = (unsigned char *) c;
1930 
1931 	c->cmd_type = CMD_SCSI;
1932 	c->scsi_cmd = cmd;
1933 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
1934 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1935 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1936 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1937 
1938 	/* Fill in the request block... */
1939 
1940 	c->Request.Timeout = 0;
1941 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1942 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1943 	c->Request.CDBLen = cmd->cmd_len;
1944 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1945 	c->Request.Type.Type = TYPE_CMD;
1946 	c->Request.Type.Attribute = ATTR_SIMPLE;
1947 	switch (cmd->sc_data_direction) {
1948 	case DMA_TO_DEVICE:
1949 		c->Request.Type.Direction = XFER_WRITE;
1950 		break;
1951 	case DMA_FROM_DEVICE:
1952 		c->Request.Type.Direction = XFER_READ;
1953 		break;
1954 	case DMA_NONE:
1955 		c->Request.Type.Direction = XFER_NONE;
1956 		break;
1957 	case DMA_BIDIRECTIONAL:
1958 		/* This can happen if a buggy application does a scsi passthru
1959 		 * and sets both inlen and outlen to non-zero. ( see
1960 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1961 		 */
1962 
1963 		c->Request.Type.Direction = XFER_RSVD;
1964 		/* This is technically wrong, and hpsa controllers should
1965 		 * reject it with CMD_INVALID, which is the most correct
1966 		 * response, but non-fibre backends appear to let it
1967 		 * slide by, and give the same results as if this field
1968 		 * were set correctly.  Either way is acceptable for
1969 		 * our purposes here.
1970 		 */
1971 
1972 		break;
1973 
1974 	default:
1975 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1976 			cmd->sc_data_direction);
1977 		BUG();
1978 		break;
1979 	}
1980 
1981 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1982 		cmd_free(h, c);
1983 		return SCSI_MLQUEUE_HOST_BUSY;
1984 	}
1985 	enqueue_cmd_and_start_io(h, c);
1986 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
1987 	return 0;
1988 }
1989 
1990 static void hpsa_scan_start(struct Scsi_Host *sh)
1991 {
1992 	struct ctlr_info *h = shost_to_hba(sh);
1993 	unsigned long flags;
1994 
1995 	/* wait until any scan already in progress is finished. */
1996 	while (1) {
1997 		spin_lock_irqsave(&h->scan_lock, flags);
1998 		if (h->scan_finished)
1999 			break;
2000 		spin_unlock_irqrestore(&h->scan_lock, flags);
2001 		wait_event(h->scan_wait_queue, h->scan_finished);
2002 		/* Note: We don't need to worry about a race between this
2003 		 * thread and driver unload because the midlayer will
2004 		 * have incremented the reference count, so unload won't
2005 		 * happen if we're in here.
2006 		 */
2007 	}
2008 	h->scan_finished = 0; /* mark scan as in progress */
2009 	spin_unlock_irqrestore(&h->scan_lock, flags);
2010 
2011 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2012 
2013 	spin_lock_irqsave(&h->scan_lock, flags);
2014 	h->scan_finished = 1; /* mark scan as finished. */
2015 	wake_up_all(&h->scan_wait_queue);
2016 	spin_unlock_irqrestore(&h->scan_lock, flags);
2017 }
2018 
2019 static int hpsa_scan_finished(struct Scsi_Host *sh,
2020 	unsigned long elapsed_time)
2021 {
2022 	struct ctlr_info *h = shost_to_hba(sh);
2023 	unsigned long flags;
2024 	int finished;
2025 
2026 	spin_lock_irqsave(&h->scan_lock, flags);
2027 	finished = h->scan_finished;
2028 	spin_unlock_irqrestore(&h->scan_lock, flags);
2029 	return finished;
2030 }
2031 
2032 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2033 	int qdepth, int reason)
2034 {
2035 	struct ctlr_info *h = sdev_to_hba(sdev);
2036 
2037 	if (reason != SCSI_QDEPTH_DEFAULT)
2038 		return -ENOTSUPP;
2039 
2040 	if (qdepth < 1)
2041 		qdepth = 1;
2042 	else
2043 		if (qdepth > h->nr_cmds)
2044 			qdepth = h->nr_cmds;
2045 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2046 	return sdev->queue_depth;
2047 }
2048 
2049 static void hpsa_unregister_scsi(struct ctlr_info *h)
2050 {
2051 	/* we are being forcibly unloaded, and may not refuse. */
2052 	scsi_remove_host(h->scsi_host);
2053 	scsi_host_put(h->scsi_host);
2054 	h->scsi_host = NULL;
2055 }
2056 
2057 static int hpsa_register_scsi(struct ctlr_info *h)
2058 {
2059 	int rc;
2060 
2061 	rc = hpsa_scsi_detect(h);
2062 	if (rc != 0)
2063 		dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2064 			" hpsa_scsi_detect(), rc is %d\n", rc);
2065 	return rc;
2066 }
2067 
2068 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2069 	unsigned char lunaddr[])
2070 {
2071 	int rc = 0;
2072 	int count = 0;
2073 	int waittime = 1; /* seconds */
2074 	struct CommandList *c;
2075 
2076 	c = cmd_special_alloc(h);
2077 	if (!c) {
2078 		dev_warn(&h->pdev->dev, "out of memory in "
2079 			"wait_for_device_to_become_ready.\n");
2080 		return IO_ERROR;
2081 	}
2082 
2083 	/* Send test unit ready until device ready, or give up. */
2084 	while (count < HPSA_TUR_RETRY_LIMIT) {
2085 
2086 		/* Wait for a bit.  do this first, because if we send
2087 		 * the TUR right away, the reset will just abort it.
2088 		 */
2089 		msleep(1000 * waittime);
2090 		count++;
2091 
2092 		/* Increase wait time with each try, up to a point. */
2093 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2094 			waittime = waittime * 2;
2095 
2096 		/* Send the Test Unit Ready */
2097 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2098 		hpsa_scsi_do_simple_cmd_core(h, c);
2099 		/* no unmap needed here because no data xfer. */
2100 
2101 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2102 			break;
2103 
2104 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2105 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2106 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2107 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2108 			break;
2109 
2110 		dev_warn(&h->pdev->dev, "waiting %d secs "
2111 			"for device to become ready.\n", waittime);
2112 		rc = 1; /* device not ready. */
2113 	}
2114 
2115 	if (rc)
2116 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2117 	else
2118 		dev_warn(&h->pdev->dev, "device is ready.\n");
2119 
2120 	cmd_special_free(h, c);
2121 	return rc;
2122 }
2123 
2124 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2125  * complaining.  Doing a host- or bus-reset can't do anything good here.
2126  */
2127 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2128 {
2129 	int rc;
2130 	struct ctlr_info *h;
2131 	struct hpsa_scsi_dev_t *dev;
2132 
2133 	/* find the controller to which the command to be aborted was sent */
2134 	h = sdev_to_hba(scsicmd->device);
2135 	if (h == NULL) /* paranoia */
2136 		return FAILED;
2137 	dev = scsicmd->device->hostdata;
2138 	if (!dev) {
2139 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2140 			"device lookup failed.\n");
2141 		return FAILED;
2142 	}
2143 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2144 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2145 	/* send a reset to the SCSI LUN which the command was sent to */
2146 	rc = hpsa_send_reset(h, dev->scsi3addr);
2147 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2148 		return SUCCESS;
2149 
2150 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2151 	return FAILED;
2152 }
2153 
2154 /*
2155  * For operations that cannot sleep, a command block is allocated at init,
2156  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2157  * which ones are free or in use.  Lock must be held when calling this.
2158  * cmd_free() is the complement.
2159  */
2160 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2161 {
2162 	struct CommandList *c;
2163 	int i;
2164 	union u64bit temp64;
2165 	dma_addr_t cmd_dma_handle, err_dma_handle;
2166 
2167 	do {
2168 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2169 		if (i == h->nr_cmds)
2170 			return NULL;
2171 	} while (test_and_set_bit
2172 		 (i & (BITS_PER_LONG - 1),
2173 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2174 	c = h->cmd_pool + i;
2175 	memset(c, 0, sizeof(*c));
2176 	cmd_dma_handle = h->cmd_pool_dhandle
2177 	    + i * sizeof(*c);
2178 	c->err_info = h->errinfo_pool + i;
2179 	memset(c->err_info, 0, sizeof(*c->err_info));
2180 	err_dma_handle = h->errinfo_pool_dhandle
2181 	    + i * sizeof(*c->err_info);
2182 	h->nr_allocs++;
2183 
2184 	c->cmdindex = i;
2185 
2186 	INIT_HLIST_NODE(&c->list);
2187 	c->busaddr = (u32) cmd_dma_handle;
2188 	temp64.val = (u64) err_dma_handle;
2189 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2190 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2191 	c->ErrDesc.Len = sizeof(*c->err_info);
2192 
2193 	c->h = h;
2194 	return c;
2195 }
2196 
2197 /* For operations that can wait for kmalloc to possibly sleep,
2198  * this routine can be called. Lock need not be held to call
2199  * cmd_special_alloc. cmd_special_free() is the complement.
2200  */
2201 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2202 {
2203 	struct CommandList *c;
2204 	union u64bit temp64;
2205 	dma_addr_t cmd_dma_handle, err_dma_handle;
2206 
2207 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2208 	if (c == NULL)
2209 		return NULL;
2210 	memset(c, 0, sizeof(*c));
2211 
2212 	c->cmdindex = -1;
2213 
2214 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2215 		    &err_dma_handle);
2216 
2217 	if (c->err_info == NULL) {
2218 		pci_free_consistent(h->pdev,
2219 			sizeof(*c), c, cmd_dma_handle);
2220 		return NULL;
2221 	}
2222 	memset(c->err_info, 0, sizeof(*c->err_info));
2223 
2224 	INIT_HLIST_NODE(&c->list);
2225 	c->busaddr = (u32) cmd_dma_handle;
2226 	temp64.val = (u64) err_dma_handle;
2227 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2228 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2229 	c->ErrDesc.Len = sizeof(*c->err_info);
2230 
2231 	c->h = h;
2232 	return c;
2233 }
2234 
2235 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2236 {
2237 	int i;
2238 
2239 	i = c - h->cmd_pool;
2240 	clear_bit(i & (BITS_PER_LONG - 1),
2241 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2242 	h->nr_frees++;
2243 }
2244 
2245 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2246 {
2247 	union u64bit temp64;
2248 
2249 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2250 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2251 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2252 			    c->err_info, (dma_addr_t) temp64.val);
2253 	pci_free_consistent(h->pdev, sizeof(*c),
2254 			    c, (dma_addr_t) c->busaddr);
2255 }
2256 
2257 #ifdef CONFIG_COMPAT
2258 
2259 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2260 {
2261 	IOCTL32_Command_struct __user *arg32 =
2262 	    (IOCTL32_Command_struct __user *) arg;
2263 	IOCTL_Command_struct arg64;
2264 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2265 	int err;
2266 	u32 cp;
2267 
2268 	err = 0;
2269 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2270 			   sizeof(arg64.LUN_info));
2271 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2272 			   sizeof(arg64.Request));
2273 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2274 			   sizeof(arg64.error_info));
2275 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2276 	err |= get_user(cp, &arg32->buf);
2277 	arg64.buf = compat_ptr(cp);
2278 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2279 
2280 	if (err)
2281 		return -EFAULT;
2282 
2283 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2284 	if (err)
2285 		return err;
2286 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2287 			 sizeof(arg32->error_info));
2288 	if (err)
2289 		return -EFAULT;
2290 	return err;
2291 }
2292 
2293 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2294 	int cmd, void *arg)
2295 {
2296 	BIG_IOCTL32_Command_struct __user *arg32 =
2297 	    (BIG_IOCTL32_Command_struct __user *) arg;
2298 	BIG_IOCTL_Command_struct arg64;
2299 	BIG_IOCTL_Command_struct __user *p =
2300 	    compat_alloc_user_space(sizeof(arg64));
2301 	int err;
2302 	u32 cp;
2303 
2304 	err = 0;
2305 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2306 			   sizeof(arg64.LUN_info));
2307 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2308 			   sizeof(arg64.Request));
2309 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2310 			   sizeof(arg64.error_info));
2311 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2312 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2313 	err |= get_user(cp, &arg32->buf);
2314 	arg64.buf = compat_ptr(cp);
2315 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2316 
2317 	if (err)
2318 		return -EFAULT;
2319 
2320 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2321 	if (err)
2322 		return err;
2323 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2324 			 sizeof(arg32->error_info));
2325 	if (err)
2326 		return -EFAULT;
2327 	return err;
2328 }
2329 
2330 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2331 {
2332 	switch (cmd) {
2333 	case CCISS_GETPCIINFO:
2334 	case CCISS_GETINTINFO:
2335 	case CCISS_SETINTINFO:
2336 	case CCISS_GETNODENAME:
2337 	case CCISS_SETNODENAME:
2338 	case CCISS_GETHEARTBEAT:
2339 	case CCISS_GETBUSTYPES:
2340 	case CCISS_GETFIRMVER:
2341 	case CCISS_GETDRIVVER:
2342 	case CCISS_REVALIDVOLS:
2343 	case CCISS_DEREGDISK:
2344 	case CCISS_REGNEWDISK:
2345 	case CCISS_REGNEWD:
2346 	case CCISS_RESCANDISK:
2347 	case CCISS_GETLUNINFO:
2348 		return hpsa_ioctl(dev, cmd, arg);
2349 
2350 	case CCISS_PASSTHRU32:
2351 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2352 	case CCISS_BIG_PASSTHRU32:
2353 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2354 
2355 	default:
2356 		return -ENOIOCTLCMD;
2357 	}
2358 }
2359 #endif
2360 
2361 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2362 {
2363 	struct hpsa_pci_info pciinfo;
2364 
2365 	if (!argp)
2366 		return -EINVAL;
2367 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2368 	pciinfo.bus = h->pdev->bus->number;
2369 	pciinfo.dev_fn = h->pdev->devfn;
2370 	pciinfo.board_id = h->board_id;
2371 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2372 		return -EFAULT;
2373 	return 0;
2374 }
2375 
2376 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2377 {
2378 	DriverVer_type DriverVer;
2379 	unsigned char vmaj, vmin, vsubmin;
2380 	int rc;
2381 
2382 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2383 		&vmaj, &vmin, &vsubmin);
2384 	if (rc != 3) {
2385 		dev_info(&h->pdev->dev, "driver version string '%s' "
2386 			"unrecognized.", HPSA_DRIVER_VERSION);
2387 		vmaj = 0;
2388 		vmin = 0;
2389 		vsubmin = 0;
2390 	}
2391 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2392 	if (!argp)
2393 		return -EINVAL;
2394 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2395 		return -EFAULT;
2396 	return 0;
2397 }
2398 
2399 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2400 {
2401 	IOCTL_Command_struct iocommand;
2402 	struct CommandList *c;
2403 	char *buff = NULL;
2404 	union u64bit temp64;
2405 
2406 	if (!argp)
2407 		return -EINVAL;
2408 	if (!capable(CAP_SYS_RAWIO))
2409 		return -EPERM;
2410 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2411 		return -EFAULT;
2412 	if ((iocommand.buf_size < 1) &&
2413 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2414 		return -EINVAL;
2415 	}
2416 	if (iocommand.buf_size > 0) {
2417 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2418 		if (buff == NULL)
2419 			return -EFAULT;
2420 	}
2421 	if (iocommand.Request.Type.Direction == XFER_WRITE) {
2422 		/* Copy the data into the buffer we created */
2423 		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2424 			kfree(buff);
2425 			return -EFAULT;
2426 		}
2427 	} else
2428 		memset(buff, 0, iocommand.buf_size);
2429 	c = cmd_special_alloc(h);
2430 	if (c == NULL) {
2431 		kfree(buff);
2432 		return -ENOMEM;
2433 	}
2434 	/* Fill in the command type */
2435 	c->cmd_type = CMD_IOCTL_PEND;
2436 	/* Fill in Command Header */
2437 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2438 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2439 		c->Header.SGList = 1;
2440 		c->Header.SGTotal = 1;
2441 	} else	{ /* no buffers to fill */
2442 		c->Header.SGList = 0;
2443 		c->Header.SGTotal = 0;
2444 	}
2445 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2446 	/* use the kernel address the cmd block for tag */
2447 	c->Header.Tag.lower = c->busaddr;
2448 
2449 	/* Fill in Request block */
2450 	memcpy(&c->Request, &iocommand.Request,
2451 		sizeof(c->Request));
2452 
2453 	/* Fill in the scatter gather information */
2454 	if (iocommand.buf_size > 0) {
2455 		temp64.val = pci_map_single(h->pdev, buff,
2456 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2457 		c->SG[0].Addr.lower = temp64.val32.lower;
2458 		c->SG[0].Addr.upper = temp64.val32.upper;
2459 		c->SG[0].Len = iocommand.buf_size;
2460 		c->SG[0].Ext = 0; /* we are not chaining*/
2461 	}
2462 	hpsa_scsi_do_simple_cmd_core(h, c);
2463 	hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2464 	check_ioctl_unit_attention(h, c);
2465 
2466 	/* Copy the error information out */
2467 	memcpy(&iocommand.error_info, c->err_info,
2468 		sizeof(iocommand.error_info));
2469 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2470 		kfree(buff);
2471 		cmd_special_free(h, c);
2472 		return -EFAULT;
2473 	}
2474 
2475 	if (iocommand.Request.Type.Direction == XFER_READ) {
2476 		/* Copy the data out of the buffer we created */
2477 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2478 			kfree(buff);
2479 			cmd_special_free(h, c);
2480 			return -EFAULT;
2481 		}
2482 	}
2483 	kfree(buff);
2484 	cmd_special_free(h, c);
2485 	return 0;
2486 }
2487 
2488 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2489 {
2490 	BIG_IOCTL_Command_struct *ioc;
2491 	struct CommandList *c;
2492 	unsigned char **buff = NULL;
2493 	int *buff_size = NULL;
2494 	union u64bit temp64;
2495 	BYTE sg_used = 0;
2496 	int status = 0;
2497 	int i;
2498 	u32 left;
2499 	u32 sz;
2500 	BYTE __user *data_ptr;
2501 
2502 	if (!argp)
2503 		return -EINVAL;
2504 	if (!capable(CAP_SYS_RAWIO))
2505 		return -EPERM;
2506 	ioc = (BIG_IOCTL_Command_struct *)
2507 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2508 	if (!ioc) {
2509 		status = -ENOMEM;
2510 		goto cleanup1;
2511 	}
2512 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2513 		status = -EFAULT;
2514 		goto cleanup1;
2515 	}
2516 	if ((ioc->buf_size < 1) &&
2517 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2518 		status = -EINVAL;
2519 		goto cleanup1;
2520 	}
2521 	/* Check kmalloc limits  using all SGs */
2522 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2523 		status = -EINVAL;
2524 		goto cleanup1;
2525 	}
2526 	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2527 		status = -EINVAL;
2528 		goto cleanup1;
2529 	}
2530 	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2531 	if (!buff) {
2532 		status = -ENOMEM;
2533 		goto cleanup1;
2534 	}
2535 	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2536 	if (!buff_size) {
2537 		status = -ENOMEM;
2538 		goto cleanup1;
2539 	}
2540 	left = ioc->buf_size;
2541 	data_ptr = ioc->buf;
2542 	while (left) {
2543 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2544 		buff_size[sg_used] = sz;
2545 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2546 		if (buff[sg_used] == NULL) {
2547 			status = -ENOMEM;
2548 			goto cleanup1;
2549 		}
2550 		if (ioc->Request.Type.Direction == XFER_WRITE) {
2551 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2552 				status = -ENOMEM;
2553 				goto cleanup1;
2554 			}
2555 		} else
2556 			memset(buff[sg_used], 0, sz);
2557 		left -= sz;
2558 		data_ptr += sz;
2559 		sg_used++;
2560 	}
2561 	c = cmd_special_alloc(h);
2562 	if (c == NULL) {
2563 		status = -ENOMEM;
2564 		goto cleanup1;
2565 	}
2566 	c->cmd_type = CMD_IOCTL_PEND;
2567 	c->Header.ReplyQueue = 0;
2568 
2569 	if (ioc->buf_size > 0) {
2570 		c->Header.SGList = sg_used;
2571 		c->Header.SGTotal = sg_used;
2572 	} else {
2573 		c->Header.SGList = 0;
2574 		c->Header.SGTotal = 0;
2575 	}
2576 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2577 	c->Header.Tag.lower = c->busaddr;
2578 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2579 	if (ioc->buf_size > 0) {
2580 		int i;
2581 		for (i = 0; i < sg_used; i++) {
2582 			temp64.val = pci_map_single(h->pdev, buff[i],
2583 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
2584 			c->SG[i].Addr.lower = temp64.val32.lower;
2585 			c->SG[i].Addr.upper = temp64.val32.upper;
2586 			c->SG[i].Len = buff_size[i];
2587 			/* we are not chaining */
2588 			c->SG[i].Ext = 0;
2589 		}
2590 	}
2591 	hpsa_scsi_do_simple_cmd_core(h, c);
2592 	hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2593 	check_ioctl_unit_attention(h, c);
2594 	/* Copy the error information out */
2595 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2596 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2597 		cmd_special_free(h, c);
2598 		status = -EFAULT;
2599 		goto cleanup1;
2600 	}
2601 	if (ioc->Request.Type.Direction == XFER_READ) {
2602 		/* Copy the data out of the buffer we created */
2603 		BYTE __user *ptr = ioc->buf;
2604 		for (i = 0; i < sg_used; i++) {
2605 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
2606 				cmd_special_free(h, c);
2607 				status = -EFAULT;
2608 				goto cleanup1;
2609 			}
2610 			ptr += buff_size[i];
2611 		}
2612 	}
2613 	cmd_special_free(h, c);
2614 	status = 0;
2615 cleanup1:
2616 	if (buff) {
2617 		for (i = 0; i < sg_used; i++)
2618 			kfree(buff[i]);
2619 		kfree(buff);
2620 	}
2621 	kfree(buff_size);
2622 	kfree(ioc);
2623 	return status;
2624 }
2625 
2626 static void check_ioctl_unit_attention(struct ctlr_info *h,
2627 	struct CommandList *c)
2628 {
2629 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2630 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2631 		(void) check_for_unit_attention(h, c);
2632 }
2633 /*
2634  * ioctl
2635  */
2636 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2637 {
2638 	struct ctlr_info *h;
2639 	void __user *argp = (void __user *)arg;
2640 
2641 	h = sdev_to_hba(dev);
2642 
2643 	switch (cmd) {
2644 	case CCISS_DEREGDISK:
2645 	case CCISS_REGNEWDISK:
2646 	case CCISS_REGNEWD:
2647 		hpsa_scan_start(h->scsi_host);
2648 		return 0;
2649 	case CCISS_GETPCIINFO:
2650 		return hpsa_getpciinfo_ioctl(h, argp);
2651 	case CCISS_GETDRIVVER:
2652 		return hpsa_getdrivver_ioctl(h, argp);
2653 	case CCISS_PASSTHRU:
2654 		return hpsa_passthru_ioctl(h, argp);
2655 	case CCISS_BIG_PASSTHRU:
2656 		return hpsa_big_passthru_ioctl(h, argp);
2657 	default:
2658 		return -ENOTTY;
2659 	}
2660 }
2661 
2662 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2663 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2664 	int cmd_type)
2665 {
2666 	int pci_dir = XFER_NONE;
2667 
2668 	c->cmd_type = CMD_IOCTL_PEND;
2669 	c->Header.ReplyQueue = 0;
2670 	if (buff != NULL && size > 0) {
2671 		c->Header.SGList = 1;
2672 		c->Header.SGTotal = 1;
2673 	} else {
2674 		c->Header.SGList = 0;
2675 		c->Header.SGTotal = 0;
2676 	}
2677 	c->Header.Tag.lower = c->busaddr;
2678 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2679 
2680 	c->Request.Type.Type = cmd_type;
2681 	if (cmd_type == TYPE_CMD) {
2682 		switch (cmd) {
2683 		case HPSA_INQUIRY:
2684 			/* are we trying to read a vital product page */
2685 			if (page_code != 0) {
2686 				c->Request.CDB[1] = 0x01;
2687 				c->Request.CDB[2] = page_code;
2688 			}
2689 			c->Request.CDBLen = 6;
2690 			c->Request.Type.Attribute = ATTR_SIMPLE;
2691 			c->Request.Type.Direction = XFER_READ;
2692 			c->Request.Timeout = 0;
2693 			c->Request.CDB[0] = HPSA_INQUIRY;
2694 			c->Request.CDB[4] = size & 0xFF;
2695 			break;
2696 		case HPSA_REPORT_LOG:
2697 		case HPSA_REPORT_PHYS:
2698 			/* Talking to controller so It's a physical command
2699 			   mode = 00 target = 0.  Nothing to write.
2700 			 */
2701 			c->Request.CDBLen = 12;
2702 			c->Request.Type.Attribute = ATTR_SIMPLE;
2703 			c->Request.Type.Direction = XFER_READ;
2704 			c->Request.Timeout = 0;
2705 			c->Request.CDB[0] = cmd;
2706 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2707 			c->Request.CDB[7] = (size >> 16) & 0xFF;
2708 			c->Request.CDB[8] = (size >> 8) & 0xFF;
2709 			c->Request.CDB[9] = size & 0xFF;
2710 			break;
2711 		case HPSA_CACHE_FLUSH:
2712 			c->Request.CDBLen = 12;
2713 			c->Request.Type.Attribute = ATTR_SIMPLE;
2714 			c->Request.Type.Direction = XFER_WRITE;
2715 			c->Request.Timeout = 0;
2716 			c->Request.CDB[0] = BMIC_WRITE;
2717 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2718 			break;
2719 		case TEST_UNIT_READY:
2720 			c->Request.CDBLen = 6;
2721 			c->Request.Type.Attribute = ATTR_SIMPLE;
2722 			c->Request.Type.Direction = XFER_NONE;
2723 			c->Request.Timeout = 0;
2724 			break;
2725 		default:
2726 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2727 			BUG();
2728 			return;
2729 		}
2730 	} else if (cmd_type == TYPE_MSG) {
2731 		switch (cmd) {
2732 
2733 		case  HPSA_DEVICE_RESET_MSG:
2734 			c->Request.CDBLen = 16;
2735 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2736 			c->Request.Type.Attribute = ATTR_SIMPLE;
2737 			c->Request.Type.Direction = XFER_NONE;
2738 			c->Request.Timeout = 0; /* Don't time out */
2739 			c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2740 			c->Request.CDB[1] = 0x03;  /* Reset target above */
2741 			/* If bytes 4-7 are zero, it means reset the */
2742 			/* LunID device */
2743 			c->Request.CDB[4] = 0x00;
2744 			c->Request.CDB[5] = 0x00;
2745 			c->Request.CDB[6] = 0x00;
2746 			c->Request.CDB[7] = 0x00;
2747 		break;
2748 
2749 		default:
2750 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
2751 				cmd);
2752 			BUG();
2753 		}
2754 	} else {
2755 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2756 		BUG();
2757 	}
2758 
2759 	switch (c->Request.Type.Direction) {
2760 	case XFER_READ:
2761 		pci_dir = PCI_DMA_FROMDEVICE;
2762 		break;
2763 	case XFER_WRITE:
2764 		pci_dir = PCI_DMA_TODEVICE;
2765 		break;
2766 	case XFER_NONE:
2767 		pci_dir = PCI_DMA_NONE;
2768 		break;
2769 	default:
2770 		pci_dir = PCI_DMA_BIDIRECTIONAL;
2771 	}
2772 
2773 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2774 
2775 	return;
2776 }
2777 
2778 /*
2779  * Map (physical) PCI mem into (virtual) kernel space
2780  */
2781 static void __iomem *remap_pci_mem(ulong base, ulong size)
2782 {
2783 	ulong page_base = ((ulong) base) & PAGE_MASK;
2784 	ulong page_offs = ((ulong) base) - page_base;
2785 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2786 
2787 	return page_remapped ? (page_remapped + page_offs) : NULL;
2788 }
2789 
2790 /* Takes cmds off the submission queue and sends them to the hardware,
2791  * then puts them on the queue of cmds waiting for completion.
2792  */
2793 static void start_io(struct ctlr_info *h)
2794 {
2795 	struct CommandList *c;
2796 
2797 	while (!hlist_empty(&h->reqQ)) {
2798 		c = hlist_entry(h->reqQ.first, struct CommandList, list);
2799 		/* can't do anything if fifo is full */
2800 		if ((h->access.fifo_full(h))) {
2801 			dev_warn(&h->pdev->dev, "fifo full\n");
2802 			break;
2803 		}
2804 
2805 		/* Get the first entry from the Request Q */
2806 		removeQ(c);
2807 		h->Qdepth--;
2808 
2809 		/* Tell the controller execute command */
2810 		h->access.submit_command(h, c);
2811 
2812 		/* Put job onto the completed Q */
2813 		addQ(&h->cmpQ, c);
2814 	}
2815 }
2816 
2817 static inline unsigned long get_next_completion(struct ctlr_info *h)
2818 {
2819 	return h->access.command_completed(h);
2820 }
2821 
2822 static inline bool interrupt_pending(struct ctlr_info *h)
2823 {
2824 	return h->access.intr_pending(h);
2825 }
2826 
2827 static inline long interrupt_not_for_us(struct ctlr_info *h)
2828 {
2829 	return !(h->msi_vector || h->msix_vector) &&
2830 		((h->access.intr_pending(h) == 0) ||
2831 		(h->interrupts_enabled == 0));
2832 }
2833 
2834 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2835 	u32 raw_tag)
2836 {
2837 	if (unlikely(tag_index >= h->nr_cmds)) {
2838 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2839 		return 1;
2840 	}
2841 	return 0;
2842 }
2843 
2844 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2845 {
2846 	removeQ(c);
2847 	if (likely(c->cmd_type == CMD_SCSI))
2848 		complete_scsi_command(c, 0, raw_tag);
2849 	else if (c->cmd_type == CMD_IOCTL_PEND)
2850 		complete(c->waiting);
2851 }
2852 
2853 static inline u32 hpsa_tag_contains_index(u32 tag)
2854 {
2855 #define DIRECT_LOOKUP_BIT 0x10
2856 	return tag & DIRECT_LOOKUP_BIT;
2857 }
2858 
2859 static inline u32 hpsa_tag_to_index(u32 tag)
2860 {
2861 #define DIRECT_LOOKUP_SHIFT 5
2862 	return tag >> DIRECT_LOOKUP_SHIFT;
2863 }
2864 
2865 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2866 {
2867 #define HPSA_ERROR_BITS 0x03
2868 	return tag & ~HPSA_ERROR_BITS;
2869 }
2870 
2871 /* process completion of an indexed ("direct lookup") command */
2872 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2873 	u32 raw_tag)
2874 {
2875 	u32 tag_index;
2876 	struct CommandList *c;
2877 
2878 	tag_index = hpsa_tag_to_index(raw_tag);
2879 	if (bad_tag(h, tag_index, raw_tag))
2880 		return next_command(h);
2881 	c = h->cmd_pool + tag_index;
2882 	finish_cmd(c, raw_tag);
2883 	return next_command(h);
2884 }
2885 
2886 /* process completion of a non-indexed command */
2887 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2888 	u32 raw_tag)
2889 {
2890 	u32 tag;
2891 	struct CommandList *c = NULL;
2892 	struct hlist_node *tmp;
2893 
2894 	tag = hpsa_tag_discard_error_bits(raw_tag);
2895 	hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2896 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2897 			finish_cmd(c, raw_tag);
2898 			return next_command(h);
2899 		}
2900 	}
2901 	bad_tag(h, h->nr_cmds + 1, raw_tag);
2902 	return next_command(h);
2903 }
2904 
2905 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2906 {
2907 	struct ctlr_info *h = dev_id;
2908 	unsigned long flags;
2909 	u32 raw_tag;
2910 
2911 	if (interrupt_not_for_us(h))
2912 		return IRQ_NONE;
2913 	spin_lock_irqsave(&h->lock, flags);
2914 	raw_tag = get_next_completion(h);
2915 	while (raw_tag != FIFO_EMPTY) {
2916 		if (hpsa_tag_contains_index(raw_tag))
2917 			raw_tag = process_indexed_cmd(h, raw_tag);
2918 		else
2919 			raw_tag = process_nonindexed_cmd(h, raw_tag);
2920 	}
2921 	spin_unlock_irqrestore(&h->lock, flags);
2922 	return IRQ_HANDLED;
2923 }
2924 
2925 /* Send a message CDB to the firmware. */
2926 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2927 						unsigned char type)
2928 {
2929 	struct Command {
2930 		struct CommandListHeader CommandHeader;
2931 		struct RequestBlock Request;
2932 		struct ErrDescriptor ErrorDescriptor;
2933 	};
2934 	struct Command *cmd;
2935 	static const size_t cmd_sz = sizeof(*cmd) +
2936 					sizeof(cmd->ErrorDescriptor);
2937 	dma_addr_t paddr64;
2938 	uint32_t paddr32, tag;
2939 	void __iomem *vaddr;
2940 	int i, err;
2941 
2942 	vaddr = pci_ioremap_bar(pdev, 0);
2943 	if (vaddr == NULL)
2944 		return -ENOMEM;
2945 
2946 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
2947 	 * CCISS commands, so they must be allocated from the lower 4GiB of
2948 	 * memory.
2949 	 */
2950 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2951 	if (err) {
2952 		iounmap(vaddr);
2953 		return -ENOMEM;
2954 	}
2955 
2956 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2957 	if (cmd == NULL) {
2958 		iounmap(vaddr);
2959 		return -ENOMEM;
2960 	}
2961 
2962 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
2963 	 * although there's no guarantee, we assume that the address is at
2964 	 * least 4-byte aligned (most likely, it's page-aligned).
2965 	 */
2966 	paddr32 = paddr64;
2967 
2968 	cmd->CommandHeader.ReplyQueue = 0;
2969 	cmd->CommandHeader.SGList = 0;
2970 	cmd->CommandHeader.SGTotal = 0;
2971 	cmd->CommandHeader.Tag.lower = paddr32;
2972 	cmd->CommandHeader.Tag.upper = 0;
2973 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2974 
2975 	cmd->Request.CDBLen = 16;
2976 	cmd->Request.Type.Type = TYPE_MSG;
2977 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2978 	cmd->Request.Type.Direction = XFER_NONE;
2979 	cmd->Request.Timeout = 0; /* Don't time out */
2980 	cmd->Request.CDB[0] = opcode;
2981 	cmd->Request.CDB[1] = type;
2982 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2983 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2984 	cmd->ErrorDescriptor.Addr.upper = 0;
2985 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2986 
2987 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2988 
2989 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2990 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2991 		if (hpsa_tag_discard_error_bits(tag) == paddr32)
2992 			break;
2993 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2994 	}
2995 
2996 	iounmap(vaddr);
2997 
2998 	/* we leak the DMA buffer here ... no choice since the controller could
2999 	 *  still complete the command.
3000 	 */
3001 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3002 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3003 			opcode, type);
3004 		return -ETIMEDOUT;
3005 	}
3006 
3007 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3008 
3009 	if (tag & HPSA_ERROR_BIT) {
3010 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3011 			opcode, type);
3012 		return -EIO;
3013 	}
3014 
3015 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3016 		opcode, type);
3017 	return 0;
3018 }
3019 
3020 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3021 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3022 
3023 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3024 {
3025 /* the #defines are stolen from drivers/pci/msi.h. */
3026 #define msi_control_reg(base)		(base + PCI_MSI_FLAGS)
3027 #define PCI_MSIX_FLAGS_ENABLE		(1 << 15)
3028 
3029 	int pos;
3030 	u16 control = 0;
3031 
3032 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3033 	if (pos) {
3034 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3035 		if (control & PCI_MSI_FLAGS_ENABLE) {
3036 			dev_info(&pdev->dev, "resetting MSI\n");
3037 			pci_write_config_word(pdev, msi_control_reg(pos),
3038 					control & ~PCI_MSI_FLAGS_ENABLE);
3039 		}
3040 	}
3041 
3042 	pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3043 	if (pos) {
3044 		pci_read_config_word(pdev, msi_control_reg(pos), &control);
3045 		if (control & PCI_MSIX_FLAGS_ENABLE) {
3046 			dev_info(&pdev->dev, "resetting MSI-X\n");
3047 			pci_write_config_word(pdev, msi_control_reg(pos),
3048 					control & ~PCI_MSIX_FLAGS_ENABLE);
3049 		}
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 /* This does a hard reset of the controller using PCI power management
3056  * states.
3057  */
3058 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3059 {
3060 	u16 pmcsr, saved_config_space[32];
3061 	int i, pos;
3062 
3063 	dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3064 
3065 	/* This is very nearly the same thing as
3066 	 *
3067 	 * pci_save_state(pci_dev);
3068 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3069 	 * pci_set_power_state(pci_dev, PCI_D0);
3070 	 * pci_restore_state(pci_dev);
3071 	 *
3072 	 * but we can't use these nice canned kernel routines on
3073 	 * kexec, because they also check the MSI/MSI-X state in PCI
3074 	 * configuration space and do the wrong thing when it is
3075 	 * set/cleared.  Also, the pci_save/restore_state functions
3076 	 * violate the ordering requirements for restoring the
3077 	 * configuration space from the CCISS document (see the
3078 	 * comment below).  So we roll our own ....
3079 	 */
3080 
3081 	for (i = 0; i < 32; i++)
3082 		pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3083 
3084 	pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3085 	if (pos == 0) {
3086 		dev_err(&pdev->dev,
3087 			"hpsa_reset_controller: PCI PM not supported\n");
3088 		return -ENODEV;
3089 	}
3090 
3091 	/* Quoting from the Open CISS Specification: "The Power
3092 	 * Management Control/Status Register (CSR) controls the power
3093 	 * state of the device.  The normal operating state is D0,
3094 	 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3095 	 * the controller, place the interface device in D3 then to
3096 	 * D0, this causes a secondary PCI reset which will reset the
3097 	 * controller."
3098 	 */
3099 
3100 	/* enter the D3hot power management state */
3101 	pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3102 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3103 	pmcsr |= PCI_D3hot;
3104 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3105 
3106 	msleep(500);
3107 
3108 	/* enter the D0 power management state */
3109 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3110 	pmcsr |= PCI_D0;
3111 	pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3112 
3113 	msleep(500);
3114 
3115 	/* Restore the PCI configuration space.  The Open CISS
3116 	 * Specification says, "Restore the PCI Configuration
3117 	 * Registers, offsets 00h through 60h. It is important to
3118 	 * restore the command register, 16-bits at offset 04h,
3119 	 * last. Do not restore the configuration status register,
3120 	 * 16-bits at offset 06h."  Note that the offset is 2*i.
3121 	 */
3122 	for (i = 0; i < 32; i++) {
3123 		if (i == 2 || i == 3)
3124 			continue;
3125 		pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3126 	}
3127 	wmb();
3128 	pci_write_config_word(pdev, 4, saved_config_space[2]);
3129 
3130 	return 0;
3131 }
3132 
3133 /*
3134  *  We cannot read the structure directly, for portability we must use
3135  *   the io functions.
3136  *   This is for debug only.
3137  */
3138 #ifdef HPSA_DEBUG
3139 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3140 {
3141 	int i;
3142 	char temp_name[17];
3143 
3144 	dev_info(dev, "Controller Configuration information\n");
3145 	dev_info(dev, "------------------------------------\n");
3146 	for (i = 0; i < 4; i++)
3147 		temp_name[i] = readb(&(tb->Signature[i]));
3148 	temp_name[4] = '\0';
3149 	dev_info(dev, "   Signature = %s\n", temp_name);
3150 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3151 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3152 	       readl(&(tb->TransportSupport)));
3153 	dev_info(dev, "   Transport methods active = 0x%x\n",
3154 	       readl(&(tb->TransportActive)));
3155 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3156 	       readl(&(tb->HostWrite.TransportRequest)));
3157 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3158 	       readl(&(tb->HostWrite.CoalIntDelay)));
3159 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3160 	       readl(&(tb->HostWrite.CoalIntCount)));
3161 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3162 	       readl(&(tb->CmdsOutMax)));
3163 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3164 	for (i = 0; i < 16; i++)
3165 		temp_name[i] = readb(&(tb->ServerName[i]));
3166 	temp_name[16] = '\0';
3167 	dev_info(dev, "   Server Name = %s\n", temp_name);
3168 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3169 		readl(&(tb->HeartBeat)));
3170 }
3171 #endif				/* HPSA_DEBUG */
3172 
3173 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3174 {
3175 	int i, offset, mem_type, bar_type;
3176 
3177 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3178 		return 0;
3179 	offset = 0;
3180 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3181 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3182 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3183 			offset += 4;
3184 		else {
3185 			mem_type = pci_resource_flags(pdev, i) &
3186 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3187 			switch (mem_type) {
3188 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3189 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3190 				offset += 4;	/* 32 bit */
3191 				break;
3192 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3193 				offset += 8;
3194 				break;
3195 			default:	/* reserved in PCI 2.2 */
3196 				dev_warn(&pdev->dev,
3197 				       "base address is invalid\n");
3198 				return -1;
3199 				break;
3200 			}
3201 		}
3202 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3203 			return i + 1;
3204 	}
3205 	return -1;
3206 }
3207 
3208 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3209  * controllers that are capable. If not, we use IO-APIC mode.
3210  */
3211 
3212 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3213 {
3214 #ifdef CONFIG_PCI_MSI
3215 	int err;
3216 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3217 	{0, 2}, {0, 3}
3218 	};
3219 
3220 	/* Some boards advertise MSI but don't really support it */
3221 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3222 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3223 		goto default_int_mode;
3224 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3225 		dev_info(&h->pdev->dev, "MSIX\n");
3226 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3227 		if (!err) {
3228 			h->intr[0] = hpsa_msix_entries[0].vector;
3229 			h->intr[1] = hpsa_msix_entries[1].vector;
3230 			h->intr[2] = hpsa_msix_entries[2].vector;
3231 			h->intr[3] = hpsa_msix_entries[3].vector;
3232 			h->msix_vector = 1;
3233 			return;
3234 		}
3235 		if (err > 0) {
3236 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3237 			       "available\n", err);
3238 			goto default_int_mode;
3239 		} else {
3240 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3241 			       err);
3242 			goto default_int_mode;
3243 		}
3244 	}
3245 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3246 		dev_info(&h->pdev->dev, "MSI\n");
3247 		if (!pci_enable_msi(h->pdev))
3248 			h->msi_vector = 1;
3249 		else
3250 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3251 	}
3252 default_int_mode:
3253 #endif				/* CONFIG_PCI_MSI */
3254 	/* if we get here we're going to use the default interrupt mode */
3255 	h->intr[PERF_MODE_INT] = h->pdev->irq;
3256 }
3257 
3258 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3259 {
3260 	int i;
3261 	u32 subsystem_vendor_id, subsystem_device_id;
3262 
3263 	subsystem_vendor_id = pdev->subsystem_vendor;
3264 	subsystem_device_id = pdev->subsystem_device;
3265 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3266 		    subsystem_vendor_id;
3267 
3268 	for (i = 0; i < ARRAY_SIZE(products); i++)
3269 		if (*board_id == products[i].board_id)
3270 			return i;
3271 
3272 	if (subsystem_vendor_id != PCI_VENDOR_ID_HP || !hpsa_allow_any) {
3273 		dev_warn(&pdev->dev, "unrecognized board ID: "
3274 			"0x%08x, ignoring.\n", *board_id);
3275 			return -ENODEV;
3276 	}
3277 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3278 }
3279 
3280 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3281 {
3282 	u16 command;
3283 
3284 	(void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3285 	return ((command & PCI_COMMAND_MEMORY) == 0);
3286 }
3287 
3288 static int __devinit hpsa_pci_find_memory_BAR(struct ctlr_info *h,
3289 	unsigned long *memory_bar)
3290 {
3291 	int i;
3292 
3293 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3294 		if (pci_resource_flags(h->pdev, i) & IORESOURCE_MEM) {
3295 			/* addressing mode bits already removed */
3296 			*memory_bar = pci_resource_start(h->pdev, i);
3297 			dev_dbg(&h->pdev->dev, "memory BAR = %lx\n",
3298 				*memory_bar);
3299 			return 0;
3300 		}
3301 	dev_warn(&h->pdev->dev, "no memory BAR found\n");
3302 	return -ENODEV;
3303 }
3304 
3305 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3306 {
3307 	int i;
3308 	u32 scratchpad;
3309 
3310 	for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3311 		scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3312 		if (scratchpad == HPSA_FIRMWARE_READY)
3313 			return 0;
3314 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3315 	}
3316 	dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3317 	return -ENODEV;
3318 }
3319 
3320 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3321 {
3322 	u64 cfg_offset;
3323 	u32 cfg_base_addr;
3324 	u64 cfg_base_addr_index;
3325 	u32 trans_offset;
3326 
3327 	/* get the address index number */
3328 	cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3329 	cfg_base_addr &= (u32) 0x0000ffff;
3330 	cfg_base_addr_index = find_PCI_BAR_index(h->pdev, cfg_base_addr);
3331 	if (cfg_base_addr_index == -1) {
3332 		dev_warn(&h->pdev->dev, "cannot find cfg_base_addr_index\n");
3333 		return -ENODEV;
3334 	}
3335 	cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3336 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3337 			       cfg_base_addr_index) + cfg_offset,
3338 				sizeof(h->cfgtable));
3339 	if (!h->cfgtable)
3340 		return -ENOMEM;
3341 	/* Find performant mode table. */
3342 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3343 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3344 				cfg_base_addr_index)+cfg_offset+trans_offset,
3345 				sizeof(*h->transtable));
3346 	if (!h->transtable)
3347 		return -ENOMEM;
3348 	return 0;
3349 }
3350 
3351 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3352 {
3353 	int i, prod_index, err;
3354 
3355 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3356 	if (prod_index < 0)
3357 		return -ENODEV;
3358 	h->product_name = products[prod_index].product_name;
3359 	h->access = *(products[prod_index].access);
3360 
3361 	if (hpsa_board_disabled(h->pdev)) {
3362 		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3363 		return -ENODEV;
3364 	}
3365 	err = pci_enable_device(h->pdev);
3366 	if (err) {
3367 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3368 		return err;
3369 	}
3370 
3371 	err = pci_request_regions(h->pdev, "hpsa");
3372 	if (err) {
3373 		dev_err(&h->pdev->dev,
3374 			"cannot obtain PCI resources, aborting\n");
3375 		return err;
3376 	}
3377 	hpsa_interrupt_mode(h);
3378 	err = hpsa_pci_find_memory_BAR(h, &h->paddr);
3379 	if (err)
3380 		goto err_out_free_res;
3381 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
3382 
3383 	err = hpsa_wait_for_board_ready(h);
3384 	if (err)
3385 		goto err_out_free_res;
3386 	err = hpsa_find_cfgtables(h);
3387 	if (err)
3388 		goto err_out_free_res;
3389 
3390 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3391 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3392 
3393 	/*
3394 	 * Limit in-command s/g elements to 32 save dma'able memory.
3395 	 * Howvever spec says if 0, use 31
3396 	 */
3397 
3398 	h->max_cmd_sg_entries = 31;
3399 	if (h->maxsgentries > 512) {
3400 		h->max_cmd_sg_entries = 32;
3401 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3402 		h->maxsgentries--; /* save one for chain pointer */
3403 	} else {
3404 		h->maxsgentries = 31; /* default to traditional values */
3405 		h->chainsize = 0;
3406 	}
3407 
3408 	/* Allow room for some ioctls */
3409 	h->nr_cmds = h->max_commands - 4;
3410 
3411 	if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3412 	    (readb(&h->cfgtable->Signature[1]) != 'I') ||
3413 	    (readb(&h->cfgtable->Signature[2]) != 'S') ||
3414 	    (readb(&h->cfgtable->Signature[3]) != 'S')) {
3415 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3416 		err = -ENODEV;
3417 		goto err_out_free_res;
3418 	}
3419 #ifdef CONFIG_X86
3420 	{
3421 		/* Need to enable prefetch in the SCSI core for 6400 in x86 */
3422 		u32 prefetch;
3423 		prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3424 		prefetch |= 0x100;
3425 		writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3426 	}
3427 #endif
3428 
3429 	/* Disabling DMA prefetch for the P600
3430 	 * An ASIC bug may result in a prefetch beyond
3431 	 * physical memory.
3432 	 */
3433 	if (h->board_id == 0x3225103C) {
3434 		u32 dma_prefetch;
3435 		dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3436 		dma_prefetch |= 0x8000;
3437 		writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3438 	}
3439 
3440 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3441 	/* Update the field, and then ring the doorbell */
3442 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3443 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3444 
3445 	/* under certain very rare conditions, this can take awhile.
3446 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3447 	 * as we enter this code.)
3448 	 */
3449 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3450 		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3451 			break;
3452 		/* delay and try again */
3453 		msleep(10);
3454 	}
3455 
3456 #ifdef HPSA_DEBUG
3457 	print_cfg_table(&h->pdev->dev, h->cfgtable);
3458 #endif				/* HPSA_DEBUG */
3459 
3460 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3461 		dev_warn(&h->pdev->dev,
3462 			"unable to get board into simple mode\n");
3463 		err = -ENODEV;
3464 		goto err_out_free_res;
3465 	}
3466 	return 0;
3467 
3468 err_out_free_res:
3469 	/*
3470 	 * Deliberately omit pci_disable_device(): it does something nasty to
3471 	 * Smart Array controllers that pci_enable_device does not undo
3472 	 */
3473 	pci_release_regions(h->pdev);
3474 	return err;
3475 }
3476 
3477 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3478 {
3479 	int rc;
3480 
3481 #define HBA_INQUIRY_BYTE_COUNT 64
3482 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3483 	if (!h->hba_inquiry_data)
3484 		return;
3485 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3486 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3487 	if (rc != 0) {
3488 		kfree(h->hba_inquiry_data);
3489 		h->hba_inquiry_data = NULL;
3490 	}
3491 }
3492 
3493 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3494 				    const struct pci_device_id *ent)
3495 {
3496 	int i, rc;
3497 	int dac;
3498 	struct ctlr_info *h;
3499 
3500 	if (number_of_controllers == 0)
3501 		printk(KERN_INFO DRIVER_NAME "\n");
3502 	if (reset_devices) {
3503 		/* Reset the controller with a PCI power-cycle */
3504 		if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3505 			return -ENODEV;
3506 
3507 		/* Some devices (notably the HP Smart Array 5i Controller)
3508 		   need a little pause here */
3509 		msleep(HPSA_POST_RESET_PAUSE_MSECS);
3510 
3511 		/* Now try to get the controller to respond to a no-op */
3512 		for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3513 			if (hpsa_noop(pdev) == 0)
3514 				break;
3515 			else
3516 				dev_warn(&pdev->dev, "no-op failed%s\n",
3517 						(i < 11 ? "; re-trying" : ""));
3518 		}
3519 	}
3520 
3521 	/* Command structures must be aligned on a 32-byte boundary because
3522 	 * the 5 lower bits of the address are used by the hardware. and by
3523 	 * the driver.  See comments in hpsa.h for more info.
3524 	 */
3525 #define COMMANDLIST_ALIGNMENT 32
3526 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3527 	h = kzalloc(sizeof(*h), GFP_KERNEL);
3528 	if (!h)
3529 		return -ENOMEM;
3530 
3531 	h->pdev = pdev;
3532 	h->busy_initializing = 1;
3533 	INIT_HLIST_HEAD(&h->cmpQ);
3534 	INIT_HLIST_HEAD(&h->reqQ);
3535 	rc = hpsa_pci_init(h);
3536 	if (rc != 0)
3537 		goto clean1;
3538 
3539 	sprintf(h->devname, "hpsa%d", number_of_controllers);
3540 	h->ctlr = number_of_controllers;
3541 	number_of_controllers++;
3542 
3543 	/* configure PCI DMA stuff */
3544 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3545 	if (rc == 0) {
3546 		dac = 1;
3547 	} else {
3548 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3549 		if (rc == 0) {
3550 			dac = 0;
3551 		} else {
3552 			dev_err(&pdev->dev, "no suitable DMA available\n");
3553 			goto clean1;
3554 		}
3555 	}
3556 
3557 	/* make sure the board interrupts are off */
3558 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3559 	rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3560 			IRQF_DISABLED, h->devname, h);
3561 	if (rc) {
3562 		dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3563 		       h->intr[PERF_MODE_INT], h->devname);
3564 		goto clean2;
3565 	}
3566 
3567 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3568 	       h->devname, pdev->device,
3569 	       h->intr[PERF_MODE_INT], dac ? "" : " not");
3570 
3571 	h->cmd_pool_bits =
3572 	    kmalloc(((h->nr_cmds + BITS_PER_LONG -
3573 		      1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3574 	h->cmd_pool = pci_alloc_consistent(h->pdev,
3575 		    h->nr_cmds * sizeof(*h->cmd_pool),
3576 		    &(h->cmd_pool_dhandle));
3577 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
3578 		    h->nr_cmds * sizeof(*h->errinfo_pool),
3579 		    &(h->errinfo_pool_dhandle));
3580 	if ((h->cmd_pool_bits == NULL)
3581 	    || (h->cmd_pool == NULL)
3582 	    || (h->errinfo_pool == NULL)) {
3583 		dev_err(&pdev->dev, "out of memory");
3584 		rc = -ENOMEM;
3585 		goto clean4;
3586 	}
3587 	if (hpsa_allocate_sg_chain_blocks(h))
3588 		goto clean4;
3589 	spin_lock_init(&h->lock);
3590 	spin_lock_init(&h->scan_lock);
3591 	init_waitqueue_head(&h->scan_wait_queue);
3592 	h->scan_finished = 1; /* no scan currently in progress */
3593 
3594 	pci_set_drvdata(pdev, h);
3595 	memset(h->cmd_pool_bits, 0,
3596 	       ((h->nr_cmds + BITS_PER_LONG -
3597 		 1) / BITS_PER_LONG) * sizeof(unsigned long));
3598 
3599 	hpsa_scsi_setup(h);
3600 
3601 	/* Turn the interrupts on so we can service requests */
3602 	h->access.set_intr_mask(h, HPSA_INTR_ON);
3603 
3604 	hpsa_put_ctlr_into_performant_mode(h);
3605 	hpsa_hba_inquiry(h);
3606 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
3607 	h->busy_initializing = 0;
3608 	return 1;
3609 
3610 clean4:
3611 	hpsa_free_sg_chain_blocks(h);
3612 	kfree(h->cmd_pool_bits);
3613 	if (h->cmd_pool)
3614 		pci_free_consistent(h->pdev,
3615 			    h->nr_cmds * sizeof(struct CommandList),
3616 			    h->cmd_pool, h->cmd_pool_dhandle);
3617 	if (h->errinfo_pool)
3618 		pci_free_consistent(h->pdev,
3619 			    h->nr_cmds * sizeof(struct ErrorInfo),
3620 			    h->errinfo_pool,
3621 			    h->errinfo_pool_dhandle);
3622 	free_irq(h->intr[PERF_MODE_INT], h);
3623 clean2:
3624 clean1:
3625 	h->busy_initializing = 0;
3626 	kfree(h);
3627 	return rc;
3628 }
3629 
3630 static void hpsa_flush_cache(struct ctlr_info *h)
3631 {
3632 	char *flush_buf;
3633 	struct CommandList *c;
3634 
3635 	flush_buf = kzalloc(4, GFP_KERNEL);
3636 	if (!flush_buf)
3637 		return;
3638 
3639 	c = cmd_special_alloc(h);
3640 	if (!c) {
3641 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3642 		goto out_of_memory;
3643 	}
3644 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3645 		RAID_CTLR_LUNID, TYPE_CMD);
3646 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3647 	if (c->err_info->CommandStatus != 0)
3648 		dev_warn(&h->pdev->dev,
3649 			"error flushing cache on controller\n");
3650 	cmd_special_free(h, c);
3651 out_of_memory:
3652 	kfree(flush_buf);
3653 }
3654 
3655 static void hpsa_shutdown(struct pci_dev *pdev)
3656 {
3657 	struct ctlr_info *h;
3658 
3659 	h = pci_get_drvdata(pdev);
3660 	/* Turn board interrupts off  and send the flush cache command
3661 	 * sendcmd will turn off interrupt, and send the flush...
3662 	 * To write all data in the battery backed cache to disks
3663 	 */
3664 	hpsa_flush_cache(h);
3665 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
3666 	free_irq(h->intr[PERF_MODE_INT], h);
3667 #ifdef CONFIG_PCI_MSI
3668 	if (h->msix_vector)
3669 		pci_disable_msix(h->pdev);
3670 	else if (h->msi_vector)
3671 		pci_disable_msi(h->pdev);
3672 #endif				/* CONFIG_PCI_MSI */
3673 }
3674 
3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3676 {
3677 	struct ctlr_info *h;
3678 
3679 	if (pci_get_drvdata(pdev) == NULL) {
3680 		dev_err(&pdev->dev, "unable to remove device \n");
3681 		return;
3682 	}
3683 	h = pci_get_drvdata(pdev);
3684 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
3685 	hpsa_shutdown(pdev);
3686 	iounmap(h->vaddr);
3687 	hpsa_free_sg_chain_blocks(h);
3688 	pci_free_consistent(h->pdev,
3689 		h->nr_cmds * sizeof(struct CommandList),
3690 		h->cmd_pool, h->cmd_pool_dhandle);
3691 	pci_free_consistent(h->pdev,
3692 		h->nr_cmds * sizeof(struct ErrorInfo),
3693 		h->errinfo_pool, h->errinfo_pool_dhandle);
3694 	pci_free_consistent(h->pdev, h->reply_pool_size,
3695 		h->reply_pool, h->reply_pool_dhandle);
3696 	kfree(h->cmd_pool_bits);
3697 	kfree(h->blockFetchTable);
3698 	kfree(h->hba_inquiry_data);
3699 	/*
3700 	 * Deliberately omit pci_disable_device(): it does something nasty to
3701 	 * Smart Array controllers that pci_enable_device does not undo
3702 	 */
3703 	pci_release_regions(pdev);
3704 	pci_set_drvdata(pdev, NULL);
3705 	kfree(h);
3706 }
3707 
3708 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3709 	__attribute__((unused)) pm_message_t state)
3710 {
3711 	return -ENOSYS;
3712 }
3713 
3714 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3715 {
3716 	return -ENOSYS;
3717 }
3718 
3719 static struct pci_driver hpsa_pci_driver = {
3720 	.name = "hpsa",
3721 	.probe = hpsa_init_one,
3722 	.remove = __devexit_p(hpsa_remove_one),
3723 	.id_table = hpsa_pci_device_id,	/* id_table */
3724 	.shutdown = hpsa_shutdown,
3725 	.suspend = hpsa_suspend,
3726 	.resume = hpsa_resume,
3727 };
3728 
3729 /* Fill in bucket_map[], given nsgs (the max number of
3730  * scatter gather elements supported) and bucket[],
3731  * which is an array of 8 integers.  The bucket[] array
3732  * contains 8 different DMA transfer sizes (in 16
3733  * byte increments) which the controller uses to fetch
3734  * commands.  This function fills in bucket_map[], which
3735  * maps a given number of scatter gather elements to one of
3736  * the 8 DMA transfer sizes.  The point of it is to allow the
3737  * controller to only do as much DMA as needed to fetch the
3738  * command, with the DMA transfer size encoded in the lower
3739  * bits of the command address.
3740  */
3741 static void  calc_bucket_map(int bucket[], int num_buckets,
3742 	int nsgs, int *bucket_map)
3743 {
3744 	int i, j, b, size;
3745 
3746 	/* even a command with 0 SGs requires 4 blocks */
3747 #define MINIMUM_TRANSFER_BLOCKS 4
3748 #define NUM_BUCKETS 8
3749 	/* Note, bucket_map must have nsgs+1 entries. */
3750 	for (i = 0; i <= nsgs; i++) {
3751 		/* Compute size of a command with i SG entries */
3752 		size = i + MINIMUM_TRANSFER_BLOCKS;
3753 		b = num_buckets; /* Assume the biggest bucket */
3754 		/* Find the bucket that is just big enough */
3755 		for (j = 0; j < 8; j++) {
3756 			if (bucket[j] >= size) {
3757 				b = j;
3758 				break;
3759 			}
3760 		}
3761 		/* for a command with i SG entries, use bucket b. */
3762 		bucket_map[i] = b;
3763 	}
3764 }
3765 
3766 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3767 {
3768 	u32 trans_support;
3769 	u64 trans_offset;
3770 	/*  5 = 1 s/g entry or 4k
3771 	 *  6 = 2 s/g entry or 8k
3772 	 *  8 = 4 s/g entry or 16k
3773 	 * 10 = 6 s/g entry or 24k
3774 	 */
3775 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3776 	int i = 0;
3777 	int l = 0;
3778 	unsigned long register_value;
3779 
3780 	trans_support = readl(&(h->cfgtable->TransportSupport));
3781 	if (!(trans_support & PERFORMANT_MODE))
3782 		return;
3783 
3784 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3785 	h->max_sg_entries = 32;
3786 	/* Performant mode ring buffer and supporting data structures */
3787 	h->reply_pool_size = h->max_commands * sizeof(u64);
3788 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3789 				&(h->reply_pool_dhandle));
3790 
3791 	/* Need a block fetch table for performant mode */
3792 	h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3793 				sizeof(u32)), GFP_KERNEL);
3794 
3795 	if ((h->reply_pool == NULL)
3796 		|| (h->blockFetchTable == NULL))
3797 		goto clean_up;
3798 
3799 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3800 
3801 	/* Controller spec: zero out this buffer. */
3802 	memset(h->reply_pool, 0, h->reply_pool_size);
3803 	h->reply_pool_head = h->reply_pool;
3804 
3805 	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3806 	bft[7] = h->max_sg_entries + 4;
3807 	calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3808 	for (i = 0; i < 8; i++)
3809 		writel(bft[i], &h->transtable->BlockFetch[i]);
3810 
3811 	/* size of controller ring buffer */
3812 	writel(h->max_commands, &h->transtable->RepQSize);
3813 	writel(1, &h->transtable->RepQCount);
3814 	writel(0, &h->transtable->RepQCtrAddrLow32);
3815 	writel(0, &h->transtable->RepQCtrAddrHigh32);
3816 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3817 	writel(0, &h->transtable->RepQAddr0High32);
3818 	writel(CFGTBL_Trans_Performant,
3819 		&(h->cfgtable->HostWrite.TransportRequest));
3820 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3821 	/* under certain very rare conditions, this can take awhile.
3822 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3823 	 * as we enter this code.) */
3824 	for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3825 		register_value = readl(h->vaddr + SA5_DOORBELL);
3826 		if (!(register_value & CFGTBL_ChangeReq))
3827 			break;
3828 		/* delay and try again */
3829 		set_current_state(TASK_INTERRUPTIBLE);
3830 		schedule_timeout(10);
3831 	}
3832 	register_value = readl(&(h->cfgtable->TransportActive));
3833 	if (!(register_value & CFGTBL_Trans_Performant)) {
3834 		dev_warn(&h->pdev->dev, "unable to get board into"
3835 					" performant mode\n");
3836 		return;
3837 	}
3838 
3839 	/* Change the access methods to the performant access methods */
3840 	h->access = SA5_performant_access;
3841 	h->transMethod = CFGTBL_Trans_Performant;
3842 
3843 	return;
3844 
3845 clean_up:
3846 	if (h->reply_pool)
3847 		pci_free_consistent(h->pdev, h->reply_pool_size,
3848 			h->reply_pool, h->reply_pool_dhandle);
3849 	kfree(h->blockFetchTable);
3850 }
3851 
3852 /*
3853  *  This is it.  Register the PCI driver information for the cards we control
3854  *  the OS will call our registered routines when it finds one of our cards.
3855  */
3856 static int __init hpsa_init(void)
3857 {
3858 	return pci_register_driver(&hpsa_pci_driver);
3859 }
3860 
3861 static void __exit hpsa_cleanup(void)
3862 {
3863 	pci_unregister_driver(&hpsa_pci_driver);
3864 }
3865 
3866 module_init(hpsa_init);
3867 module_exit(hpsa_cleanup);
3868