1 /* 2 * Disk Array driver for HP Smart Array SAS controllers 3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; version 2 of the License. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 17 * 18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com 19 * 20 */ 21 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <linux/types.h> 25 #include <linux/pci.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/fs.h> 31 #include <linux/timer.h> 32 #include <linux/seq_file.h> 33 #include <linux/init.h> 34 #include <linux/spinlock.h> 35 #include <linux/compat.h> 36 #include <linux/blktrace_api.h> 37 #include <linux/uaccess.h> 38 #include <linux/io.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/completion.h> 41 #include <linux/moduleparam.h> 42 #include <scsi/scsi.h> 43 #include <scsi/scsi_cmnd.h> 44 #include <scsi/scsi_device.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_tcq.h> 47 #include <linux/cciss_ioctl.h> 48 #include <linux/string.h> 49 #include <linux/bitmap.h> 50 #include <linux/atomic.h> 51 #include <linux/kthread.h> 52 #include <linux/jiffies.h> 53 #include "hpsa_cmd.h" 54 #include "hpsa.h" 55 56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ 57 #define HPSA_DRIVER_VERSION "2.0.2-1" 58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" 59 #define HPSA "hpsa" 60 61 /* How long to wait (in milliseconds) for board to go into simple mode */ 62 #define MAX_CONFIG_WAIT 30000 63 #define MAX_IOCTL_CONFIG_WAIT 1000 64 65 /*define how many times we will try a command because of bus resets */ 66 #define MAX_CMD_RETRIES 3 67 68 /* Embedded module documentation macros - see modules.h */ 69 MODULE_AUTHOR("Hewlett-Packard Company"); 70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ 71 HPSA_DRIVER_VERSION); 72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); 73 MODULE_VERSION(HPSA_DRIVER_VERSION); 74 MODULE_LICENSE("GPL"); 75 76 static int hpsa_allow_any; 77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); 78 MODULE_PARM_DESC(hpsa_allow_any, 79 "Allow hpsa driver to access unknown HP Smart Array hardware"); 80 static int hpsa_simple_mode; 81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); 82 MODULE_PARM_DESC(hpsa_simple_mode, 83 "Use 'simple mode' rather than 'performant mode'"); 84 85 /* define the PCI info for the cards we can control */ 86 static const struct pci_device_id hpsa_pci_device_id[] = { 87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, 88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, 89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, 90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, 91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, 92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, 93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, 94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233}, 95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350}, 96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351}, 97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352}, 98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353}, 99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354}, 100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355}, 101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356}, 102 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, 103 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, 104 {0,} 105 }; 106 107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); 108 109 /* board_id = Subsystem Device ID & Vendor ID 110 * product = Marketing Name for the board 111 * access = Address of the struct of function pointers 112 */ 113 static struct board_type products[] = { 114 {0x3241103C, "Smart Array P212", &SA5_access}, 115 {0x3243103C, "Smart Array P410", &SA5_access}, 116 {0x3245103C, "Smart Array P410i", &SA5_access}, 117 {0x3247103C, "Smart Array P411", &SA5_access}, 118 {0x3249103C, "Smart Array P812", &SA5_access}, 119 {0x324a103C, "Smart Array P712m", &SA5_access}, 120 {0x324b103C, "Smart Array P711m", &SA5_access}, 121 {0x3350103C, "Smart Array", &SA5_access}, 122 {0x3351103C, "Smart Array", &SA5_access}, 123 {0x3352103C, "Smart Array", &SA5_access}, 124 {0x3353103C, "Smart Array", &SA5_access}, 125 {0x3354103C, "Smart Array", &SA5_access}, 126 {0x3355103C, "Smart Array", &SA5_access}, 127 {0x3356103C, "Smart Array", &SA5_access}, 128 {0xFFFF103C, "Unknown Smart Array", &SA5_access}, 129 }; 130 131 static int number_of_controllers; 132 133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list); 134 static spinlock_t lockup_detector_lock; 135 static struct task_struct *hpsa_lockup_detector; 136 137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); 138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); 139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); 140 static void start_io(struct ctlr_info *h); 141 142 #ifdef CONFIG_COMPAT 143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); 144 #endif 145 146 static void cmd_free(struct ctlr_info *h, struct CommandList *c); 147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); 148 static struct CommandList *cmd_alloc(struct ctlr_info *h); 149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h); 150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 151 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 152 int cmd_type); 153 154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); 155 static void hpsa_scan_start(struct Scsi_Host *); 156 static int hpsa_scan_finished(struct Scsi_Host *sh, 157 unsigned long elapsed_time); 158 static int hpsa_change_queue_depth(struct scsi_device *sdev, 159 int qdepth, int reason); 160 161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); 162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); 163 static int hpsa_slave_alloc(struct scsi_device *sdev); 164 static void hpsa_slave_destroy(struct scsi_device *sdev); 165 166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); 167 static int check_for_unit_attention(struct ctlr_info *h, 168 struct CommandList *c); 169 static void check_ioctl_unit_attention(struct ctlr_info *h, 170 struct CommandList *c); 171 /* performant mode helper functions */ 172 static void calc_bucket_map(int *bucket, int num_buckets, 173 int nsgs, int *bucket_map); 174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); 175 static inline u32 next_command(struct ctlr_info *h); 176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 177 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 178 u64 *cfg_offset); 179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 180 unsigned long *memory_bar); 181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); 182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 183 void __iomem *vaddr, int wait_for_ready); 184 static inline void finish_cmd(struct CommandList *c); 185 #define BOARD_NOT_READY 0 186 #define BOARD_READY 1 187 188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) 189 { 190 unsigned long *priv = shost_priv(sdev->host); 191 return (struct ctlr_info *) *priv; 192 } 193 194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) 195 { 196 unsigned long *priv = shost_priv(sh); 197 return (struct ctlr_info *) *priv; 198 } 199 200 static int check_for_unit_attention(struct ctlr_info *h, 201 struct CommandList *c) 202 { 203 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) 204 return 0; 205 206 switch (c->err_info->SenseInfo[12]) { 207 case STATE_CHANGED: 208 dev_warn(&h->pdev->dev, HPSA "%d: a state change " 209 "detected, command retried\n", h->ctlr); 210 break; 211 case LUN_FAILED: 212 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure " 213 "detected, action required\n", h->ctlr); 214 break; 215 case REPORT_LUNS_CHANGED: 216 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data " 217 "changed, action required\n", h->ctlr); 218 /* 219 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external 220 * target (array) devices. 221 */ 222 break; 223 case POWER_OR_RESET: 224 dev_warn(&h->pdev->dev, HPSA "%d: a power on " 225 "or device reset detected\n", h->ctlr); 226 break; 227 case UNIT_ATTENTION_CLEARED: 228 dev_warn(&h->pdev->dev, HPSA "%d: unit attention " 229 "cleared by another initiator\n", h->ctlr); 230 break; 231 default: 232 dev_warn(&h->pdev->dev, HPSA "%d: unknown " 233 "unit attention detected\n", h->ctlr); 234 break; 235 } 236 return 1; 237 } 238 239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c) 240 { 241 if (c->err_info->CommandStatus != CMD_TARGET_STATUS || 242 (c->err_info->ScsiStatus != SAM_STAT_BUSY && 243 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) 244 return 0; 245 dev_warn(&h->pdev->dev, HPSA "device busy"); 246 return 1; 247 } 248 249 static ssize_t host_store_rescan(struct device *dev, 250 struct device_attribute *attr, 251 const char *buf, size_t count) 252 { 253 struct ctlr_info *h; 254 struct Scsi_Host *shost = class_to_shost(dev); 255 h = shost_to_hba(shost); 256 hpsa_scan_start(h->scsi_host); 257 return count; 258 } 259 260 static ssize_t host_show_firmware_revision(struct device *dev, 261 struct device_attribute *attr, char *buf) 262 { 263 struct ctlr_info *h; 264 struct Scsi_Host *shost = class_to_shost(dev); 265 unsigned char *fwrev; 266 267 h = shost_to_hba(shost); 268 if (!h->hba_inquiry_data) 269 return 0; 270 fwrev = &h->hba_inquiry_data[32]; 271 return snprintf(buf, 20, "%c%c%c%c\n", 272 fwrev[0], fwrev[1], fwrev[2], fwrev[3]); 273 } 274 275 static ssize_t host_show_commands_outstanding(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 struct Scsi_Host *shost = class_to_shost(dev); 279 struct ctlr_info *h = shost_to_hba(shost); 280 281 return snprintf(buf, 20, "%d\n", h->commands_outstanding); 282 } 283 284 static ssize_t host_show_transport_mode(struct device *dev, 285 struct device_attribute *attr, char *buf) 286 { 287 struct ctlr_info *h; 288 struct Scsi_Host *shost = class_to_shost(dev); 289 290 h = shost_to_hba(shost); 291 return snprintf(buf, 20, "%s\n", 292 h->transMethod & CFGTBL_Trans_Performant ? 293 "performant" : "simple"); 294 } 295 296 /* List of controllers which cannot be hard reset on kexec with reset_devices */ 297 static u32 unresettable_controller[] = { 298 0x324a103C, /* Smart Array P712m */ 299 0x324b103C, /* SmartArray P711m */ 300 0x3223103C, /* Smart Array P800 */ 301 0x3234103C, /* Smart Array P400 */ 302 0x3235103C, /* Smart Array P400i */ 303 0x3211103C, /* Smart Array E200i */ 304 0x3212103C, /* Smart Array E200 */ 305 0x3213103C, /* Smart Array E200i */ 306 0x3214103C, /* Smart Array E200i */ 307 0x3215103C, /* Smart Array E200i */ 308 0x3237103C, /* Smart Array E500 */ 309 0x323D103C, /* Smart Array P700m */ 310 0x40800E11, /* Smart Array 5i */ 311 0x409C0E11, /* Smart Array 6400 */ 312 0x409D0E11, /* Smart Array 6400 EM */ 313 0x40700E11, /* Smart Array 5300 */ 314 0x40820E11, /* Smart Array 532 */ 315 0x40830E11, /* Smart Array 5312 */ 316 0x409A0E11, /* Smart Array 641 */ 317 0x409B0E11, /* Smart Array 642 */ 318 0x40910E11, /* Smart Array 6i */ 319 }; 320 321 /* List of controllers which cannot even be soft reset */ 322 static u32 soft_unresettable_controller[] = { 323 0x40800E11, /* Smart Array 5i */ 324 0x40700E11, /* Smart Array 5300 */ 325 0x40820E11, /* Smart Array 532 */ 326 0x40830E11, /* Smart Array 5312 */ 327 0x409A0E11, /* Smart Array 641 */ 328 0x409B0E11, /* Smart Array 642 */ 329 0x40910E11, /* Smart Array 6i */ 330 /* Exclude 640x boards. These are two pci devices in one slot 331 * which share a battery backed cache module. One controls the 332 * cache, the other accesses the cache through the one that controls 333 * it. If we reset the one controlling the cache, the other will 334 * likely not be happy. Just forbid resetting this conjoined mess. 335 * The 640x isn't really supported by hpsa anyway. 336 */ 337 0x409C0E11, /* Smart Array 6400 */ 338 0x409D0E11, /* Smart Array 6400 EM */ 339 }; 340 341 static int ctlr_is_hard_resettable(u32 board_id) 342 { 343 int i; 344 345 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) 346 if (unresettable_controller[i] == board_id) 347 return 0; 348 return 1; 349 } 350 351 static int ctlr_is_soft_resettable(u32 board_id) 352 { 353 int i; 354 355 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) 356 if (soft_unresettable_controller[i] == board_id) 357 return 0; 358 return 1; 359 } 360 361 static int ctlr_is_resettable(u32 board_id) 362 { 363 return ctlr_is_hard_resettable(board_id) || 364 ctlr_is_soft_resettable(board_id); 365 } 366 367 static ssize_t host_show_resettable(struct device *dev, 368 struct device_attribute *attr, char *buf) 369 { 370 struct ctlr_info *h; 371 struct Scsi_Host *shost = class_to_shost(dev); 372 373 h = shost_to_hba(shost); 374 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); 375 } 376 377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) 378 { 379 return (scsi3addr[3] & 0xC0) == 0x40; 380 } 381 382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", 383 "UNKNOWN" 384 }; 385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) 386 387 static ssize_t raid_level_show(struct device *dev, 388 struct device_attribute *attr, char *buf) 389 { 390 ssize_t l = 0; 391 unsigned char rlevel; 392 struct ctlr_info *h; 393 struct scsi_device *sdev; 394 struct hpsa_scsi_dev_t *hdev; 395 unsigned long flags; 396 397 sdev = to_scsi_device(dev); 398 h = sdev_to_hba(sdev); 399 spin_lock_irqsave(&h->lock, flags); 400 hdev = sdev->hostdata; 401 if (!hdev) { 402 spin_unlock_irqrestore(&h->lock, flags); 403 return -ENODEV; 404 } 405 406 /* Is this even a logical drive? */ 407 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { 408 spin_unlock_irqrestore(&h->lock, flags); 409 l = snprintf(buf, PAGE_SIZE, "N/A\n"); 410 return l; 411 } 412 413 rlevel = hdev->raid_level; 414 spin_unlock_irqrestore(&h->lock, flags); 415 if (rlevel > RAID_UNKNOWN) 416 rlevel = RAID_UNKNOWN; 417 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); 418 return l; 419 } 420 421 static ssize_t lunid_show(struct device *dev, 422 struct device_attribute *attr, char *buf) 423 { 424 struct ctlr_info *h; 425 struct scsi_device *sdev; 426 struct hpsa_scsi_dev_t *hdev; 427 unsigned long flags; 428 unsigned char lunid[8]; 429 430 sdev = to_scsi_device(dev); 431 h = sdev_to_hba(sdev); 432 spin_lock_irqsave(&h->lock, flags); 433 hdev = sdev->hostdata; 434 if (!hdev) { 435 spin_unlock_irqrestore(&h->lock, flags); 436 return -ENODEV; 437 } 438 memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); 439 spin_unlock_irqrestore(&h->lock, flags); 440 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", 441 lunid[0], lunid[1], lunid[2], lunid[3], 442 lunid[4], lunid[5], lunid[6], lunid[7]); 443 } 444 445 static ssize_t unique_id_show(struct device *dev, 446 struct device_attribute *attr, char *buf) 447 { 448 struct ctlr_info *h; 449 struct scsi_device *sdev; 450 struct hpsa_scsi_dev_t *hdev; 451 unsigned long flags; 452 unsigned char sn[16]; 453 454 sdev = to_scsi_device(dev); 455 h = sdev_to_hba(sdev); 456 spin_lock_irqsave(&h->lock, flags); 457 hdev = sdev->hostdata; 458 if (!hdev) { 459 spin_unlock_irqrestore(&h->lock, flags); 460 return -ENODEV; 461 } 462 memcpy(sn, hdev->device_id, sizeof(sn)); 463 spin_unlock_irqrestore(&h->lock, flags); 464 return snprintf(buf, 16 * 2 + 2, 465 "%02X%02X%02X%02X%02X%02X%02X%02X" 466 "%02X%02X%02X%02X%02X%02X%02X%02X\n", 467 sn[0], sn[1], sn[2], sn[3], 468 sn[4], sn[5], sn[6], sn[7], 469 sn[8], sn[9], sn[10], sn[11], 470 sn[12], sn[13], sn[14], sn[15]); 471 } 472 473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); 474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); 475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); 476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); 477 static DEVICE_ATTR(firmware_revision, S_IRUGO, 478 host_show_firmware_revision, NULL); 479 static DEVICE_ATTR(commands_outstanding, S_IRUGO, 480 host_show_commands_outstanding, NULL); 481 static DEVICE_ATTR(transport_mode, S_IRUGO, 482 host_show_transport_mode, NULL); 483 static DEVICE_ATTR(resettable, S_IRUGO, 484 host_show_resettable, NULL); 485 486 static struct device_attribute *hpsa_sdev_attrs[] = { 487 &dev_attr_raid_level, 488 &dev_attr_lunid, 489 &dev_attr_unique_id, 490 NULL, 491 }; 492 493 static struct device_attribute *hpsa_shost_attrs[] = { 494 &dev_attr_rescan, 495 &dev_attr_firmware_revision, 496 &dev_attr_commands_outstanding, 497 &dev_attr_transport_mode, 498 &dev_attr_resettable, 499 NULL, 500 }; 501 502 static struct scsi_host_template hpsa_driver_template = { 503 .module = THIS_MODULE, 504 .name = HPSA, 505 .proc_name = HPSA, 506 .queuecommand = hpsa_scsi_queue_command, 507 .scan_start = hpsa_scan_start, 508 .scan_finished = hpsa_scan_finished, 509 .change_queue_depth = hpsa_change_queue_depth, 510 .this_id = -1, 511 .use_clustering = ENABLE_CLUSTERING, 512 .eh_abort_handler = hpsa_eh_abort_handler, 513 .eh_device_reset_handler = hpsa_eh_device_reset_handler, 514 .ioctl = hpsa_ioctl, 515 .slave_alloc = hpsa_slave_alloc, 516 .slave_destroy = hpsa_slave_destroy, 517 #ifdef CONFIG_COMPAT 518 .compat_ioctl = hpsa_compat_ioctl, 519 #endif 520 .sdev_attrs = hpsa_sdev_attrs, 521 .shost_attrs = hpsa_shost_attrs, 522 .max_sectors = 8192, 523 }; 524 525 526 /* Enqueuing and dequeuing functions for cmdlists. */ 527 static inline void addQ(struct list_head *list, struct CommandList *c) 528 { 529 list_add_tail(&c->list, list); 530 } 531 532 static inline u32 next_command(struct ctlr_info *h) 533 { 534 u32 a; 535 536 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 537 return h->access.command_completed(h); 538 539 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) { 540 a = *(h->reply_pool_head); /* Next cmd in ring buffer */ 541 (h->reply_pool_head)++; 542 h->commands_outstanding--; 543 } else { 544 a = FIFO_EMPTY; 545 } 546 /* Check for wraparound */ 547 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) { 548 h->reply_pool_head = h->reply_pool; 549 h->reply_pool_wraparound ^= 1; 550 } 551 return a; 552 } 553 554 /* set_performant_mode: Modify the tag for cciss performant 555 * set bit 0 for pull model, bits 3-1 for block fetch 556 * register number 557 */ 558 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) 559 { 560 if (likely(h->transMethod & CFGTBL_Trans_Performant)) 561 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); 562 } 563 564 static void enqueue_cmd_and_start_io(struct ctlr_info *h, 565 struct CommandList *c) 566 { 567 unsigned long flags; 568 569 set_performant_mode(h, c); 570 spin_lock_irqsave(&h->lock, flags); 571 addQ(&h->reqQ, c); 572 h->Qdepth++; 573 start_io(h); 574 spin_unlock_irqrestore(&h->lock, flags); 575 } 576 577 static inline void removeQ(struct CommandList *c) 578 { 579 if (WARN_ON(list_empty(&c->list))) 580 return; 581 list_del_init(&c->list); 582 } 583 584 static inline int is_hba_lunid(unsigned char scsi3addr[]) 585 { 586 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; 587 } 588 589 static inline int is_scsi_rev_5(struct ctlr_info *h) 590 { 591 if (!h->hba_inquiry_data) 592 return 0; 593 if ((h->hba_inquiry_data[2] & 0x07) == 5) 594 return 1; 595 return 0; 596 } 597 598 static int hpsa_find_target_lun(struct ctlr_info *h, 599 unsigned char scsi3addr[], int bus, int *target, int *lun) 600 { 601 /* finds an unused bus, target, lun for a new physical device 602 * assumes h->devlock is held 603 */ 604 int i, found = 0; 605 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); 606 607 bitmap_zero(lun_taken, HPSA_MAX_DEVICES); 608 609 for (i = 0; i < h->ndevices; i++) { 610 if (h->dev[i]->bus == bus && h->dev[i]->target != -1) 611 __set_bit(h->dev[i]->target, lun_taken); 612 } 613 614 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); 615 if (i < HPSA_MAX_DEVICES) { 616 /* *bus = 1; */ 617 *target = i; 618 *lun = 0; 619 found = 1; 620 } 621 return !found; 622 } 623 624 /* Add an entry into h->dev[] array. */ 625 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, 626 struct hpsa_scsi_dev_t *device, 627 struct hpsa_scsi_dev_t *added[], int *nadded) 628 { 629 /* assumes h->devlock is held */ 630 int n = h->ndevices; 631 int i; 632 unsigned char addr1[8], addr2[8]; 633 struct hpsa_scsi_dev_t *sd; 634 635 if (n >= HPSA_MAX_DEVICES) { 636 dev_err(&h->pdev->dev, "too many devices, some will be " 637 "inaccessible.\n"); 638 return -1; 639 } 640 641 /* physical devices do not have lun or target assigned until now. */ 642 if (device->lun != -1) 643 /* Logical device, lun is already assigned. */ 644 goto lun_assigned; 645 646 /* If this device a non-zero lun of a multi-lun device 647 * byte 4 of the 8-byte LUN addr will contain the logical 648 * unit no, zero otherise. 649 */ 650 if (device->scsi3addr[4] == 0) { 651 /* This is not a non-zero lun of a multi-lun device */ 652 if (hpsa_find_target_lun(h, device->scsi3addr, 653 device->bus, &device->target, &device->lun) != 0) 654 return -1; 655 goto lun_assigned; 656 } 657 658 /* This is a non-zero lun of a multi-lun device. 659 * Search through our list and find the device which 660 * has the same 8 byte LUN address, excepting byte 4. 661 * Assign the same bus and target for this new LUN. 662 * Use the logical unit number from the firmware. 663 */ 664 memcpy(addr1, device->scsi3addr, 8); 665 addr1[4] = 0; 666 for (i = 0; i < n; i++) { 667 sd = h->dev[i]; 668 memcpy(addr2, sd->scsi3addr, 8); 669 addr2[4] = 0; 670 /* differ only in byte 4? */ 671 if (memcmp(addr1, addr2, 8) == 0) { 672 device->bus = sd->bus; 673 device->target = sd->target; 674 device->lun = device->scsi3addr[4]; 675 break; 676 } 677 } 678 if (device->lun == -1) { 679 dev_warn(&h->pdev->dev, "physical device with no LUN=0," 680 " suspect firmware bug or unsupported hardware " 681 "configuration.\n"); 682 return -1; 683 } 684 685 lun_assigned: 686 687 h->dev[n] = device; 688 h->ndevices++; 689 added[*nadded] = device; 690 (*nadded)++; 691 692 /* initially, (before registering with scsi layer) we don't 693 * know our hostno and we don't want to print anything first 694 * time anyway (the scsi layer's inquiries will show that info) 695 */ 696 /* if (hostno != -1) */ 697 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", 698 scsi_device_type(device->devtype), hostno, 699 device->bus, device->target, device->lun); 700 return 0; 701 } 702 703 /* Update an entry in h->dev[] array. */ 704 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, 705 int entry, struct hpsa_scsi_dev_t *new_entry) 706 { 707 /* assumes h->devlock is held */ 708 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 709 710 /* Raid level changed. */ 711 h->dev[entry]->raid_level = new_entry->raid_level; 712 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", 713 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 714 new_entry->target, new_entry->lun); 715 } 716 717 /* Replace an entry from h->dev[] array. */ 718 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, 719 int entry, struct hpsa_scsi_dev_t *new_entry, 720 struct hpsa_scsi_dev_t *added[], int *nadded, 721 struct hpsa_scsi_dev_t *removed[], int *nremoved) 722 { 723 /* assumes h->devlock is held */ 724 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 725 removed[*nremoved] = h->dev[entry]; 726 (*nremoved)++; 727 728 /* 729 * New physical devices won't have target/lun assigned yet 730 * so we need to preserve the values in the slot we are replacing. 731 */ 732 if (new_entry->target == -1) { 733 new_entry->target = h->dev[entry]->target; 734 new_entry->lun = h->dev[entry]->lun; 735 } 736 737 h->dev[entry] = new_entry; 738 added[*nadded] = new_entry; 739 (*nadded)++; 740 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", 741 scsi_device_type(new_entry->devtype), hostno, new_entry->bus, 742 new_entry->target, new_entry->lun); 743 } 744 745 /* Remove an entry from h->dev[] array. */ 746 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, 747 struct hpsa_scsi_dev_t *removed[], int *nremoved) 748 { 749 /* assumes h->devlock is held */ 750 int i; 751 struct hpsa_scsi_dev_t *sd; 752 753 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); 754 755 sd = h->dev[entry]; 756 removed[*nremoved] = h->dev[entry]; 757 (*nremoved)++; 758 759 for (i = entry; i < h->ndevices-1; i++) 760 h->dev[i] = h->dev[i+1]; 761 h->ndevices--; 762 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", 763 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, 764 sd->lun); 765 } 766 767 #define SCSI3ADDR_EQ(a, b) ( \ 768 (a)[7] == (b)[7] && \ 769 (a)[6] == (b)[6] && \ 770 (a)[5] == (b)[5] && \ 771 (a)[4] == (b)[4] && \ 772 (a)[3] == (b)[3] && \ 773 (a)[2] == (b)[2] && \ 774 (a)[1] == (b)[1] && \ 775 (a)[0] == (b)[0]) 776 777 static void fixup_botched_add(struct ctlr_info *h, 778 struct hpsa_scsi_dev_t *added) 779 { 780 /* called when scsi_add_device fails in order to re-adjust 781 * h->dev[] to match the mid layer's view. 782 */ 783 unsigned long flags; 784 int i, j; 785 786 spin_lock_irqsave(&h->lock, flags); 787 for (i = 0; i < h->ndevices; i++) { 788 if (h->dev[i] == added) { 789 for (j = i; j < h->ndevices-1; j++) 790 h->dev[j] = h->dev[j+1]; 791 h->ndevices--; 792 break; 793 } 794 } 795 spin_unlock_irqrestore(&h->lock, flags); 796 kfree(added); 797 } 798 799 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, 800 struct hpsa_scsi_dev_t *dev2) 801 { 802 /* we compare everything except lun and target as these 803 * are not yet assigned. Compare parts likely 804 * to differ first 805 */ 806 if (memcmp(dev1->scsi3addr, dev2->scsi3addr, 807 sizeof(dev1->scsi3addr)) != 0) 808 return 0; 809 if (memcmp(dev1->device_id, dev2->device_id, 810 sizeof(dev1->device_id)) != 0) 811 return 0; 812 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) 813 return 0; 814 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) 815 return 0; 816 if (dev1->devtype != dev2->devtype) 817 return 0; 818 if (dev1->bus != dev2->bus) 819 return 0; 820 return 1; 821 } 822 823 static inline int device_updated(struct hpsa_scsi_dev_t *dev1, 824 struct hpsa_scsi_dev_t *dev2) 825 { 826 /* Device attributes that can change, but don't mean 827 * that the device is a different device, nor that the OS 828 * needs to be told anything about the change. 829 */ 830 if (dev1->raid_level != dev2->raid_level) 831 return 1; 832 return 0; 833 } 834 835 /* Find needle in haystack. If exact match found, return DEVICE_SAME, 836 * and return needle location in *index. If scsi3addr matches, but not 837 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle 838 * location in *index. 839 * In the case of a minor device attribute change, such as RAID level, just 840 * return DEVICE_UPDATED, along with the updated device's location in index. 841 * If needle not found, return DEVICE_NOT_FOUND. 842 */ 843 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, 844 struct hpsa_scsi_dev_t *haystack[], int haystack_size, 845 int *index) 846 { 847 int i; 848 #define DEVICE_NOT_FOUND 0 849 #define DEVICE_CHANGED 1 850 #define DEVICE_SAME 2 851 #define DEVICE_UPDATED 3 852 for (i = 0; i < haystack_size; i++) { 853 if (haystack[i] == NULL) /* previously removed. */ 854 continue; 855 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { 856 *index = i; 857 if (device_is_the_same(needle, haystack[i])) { 858 if (device_updated(needle, haystack[i])) 859 return DEVICE_UPDATED; 860 return DEVICE_SAME; 861 } else { 862 return DEVICE_CHANGED; 863 } 864 } 865 } 866 *index = -1; 867 return DEVICE_NOT_FOUND; 868 } 869 870 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, 871 struct hpsa_scsi_dev_t *sd[], int nsds) 872 { 873 /* sd contains scsi3 addresses and devtypes, and inquiry 874 * data. This function takes what's in sd to be the current 875 * reality and updates h->dev[] to reflect that reality. 876 */ 877 int i, entry, device_change, changes = 0; 878 struct hpsa_scsi_dev_t *csd; 879 unsigned long flags; 880 struct hpsa_scsi_dev_t **added, **removed; 881 int nadded, nremoved; 882 struct Scsi_Host *sh = NULL; 883 884 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); 885 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); 886 887 if (!added || !removed) { 888 dev_warn(&h->pdev->dev, "out of memory in " 889 "adjust_hpsa_scsi_table\n"); 890 goto free_and_out; 891 } 892 893 spin_lock_irqsave(&h->devlock, flags); 894 895 /* find any devices in h->dev[] that are not in 896 * sd[] and remove them from h->dev[], and for any 897 * devices which have changed, remove the old device 898 * info and add the new device info. 899 * If minor device attributes change, just update 900 * the existing device structure. 901 */ 902 i = 0; 903 nremoved = 0; 904 nadded = 0; 905 while (i < h->ndevices) { 906 csd = h->dev[i]; 907 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); 908 if (device_change == DEVICE_NOT_FOUND) { 909 changes++; 910 hpsa_scsi_remove_entry(h, hostno, i, 911 removed, &nremoved); 912 continue; /* remove ^^^, hence i not incremented */ 913 } else if (device_change == DEVICE_CHANGED) { 914 changes++; 915 hpsa_scsi_replace_entry(h, hostno, i, sd[entry], 916 added, &nadded, removed, &nremoved); 917 /* Set it to NULL to prevent it from being freed 918 * at the bottom of hpsa_update_scsi_devices() 919 */ 920 sd[entry] = NULL; 921 } else if (device_change == DEVICE_UPDATED) { 922 hpsa_scsi_update_entry(h, hostno, i, sd[entry]); 923 } 924 i++; 925 } 926 927 /* Now, make sure every device listed in sd[] is also 928 * listed in h->dev[], adding them if they aren't found 929 */ 930 931 for (i = 0; i < nsds; i++) { 932 if (!sd[i]) /* if already added above. */ 933 continue; 934 device_change = hpsa_scsi_find_entry(sd[i], h->dev, 935 h->ndevices, &entry); 936 if (device_change == DEVICE_NOT_FOUND) { 937 changes++; 938 if (hpsa_scsi_add_entry(h, hostno, sd[i], 939 added, &nadded) != 0) 940 break; 941 sd[i] = NULL; /* prevent from being freed later. */ 942 } else if (device_change == DEVICE_CHANGED) { 943 /* should never happen... */ 944 changes++; 945 dev_warn(&h->pdev->dev, 946 "device unexpectedly changed.\n"); 947 /* but if it does happen, we just ignore that device */ 948 } 949 } 950 spin_unlock_irqrestore(&h->devlock, flags); 951 952 /* Don't notify scsi mid layer of any changes the first time through 953 * (or if there are no changes) scsi_scan_host will do it later the 954 * first time through. 955 */ 956 if (hostno == -1 || !changes) 957 goto free_and_out; 958 959 sh = h->scsi_host; 960 /* Notify scsi mid layer of any removed devices */ 961 for (i = 0; i < nremoved; i++) { 962 struct scsi_device *sdev = 963 scsi_device_lookup(sh, removed[i]->bus, 964 removed[i]->target, removed[i]->lun); 965 if (sdev != NULL) { 966 scsi_remove_device(sdev); 967 scsi_device_put(sdev); 968 } else { 969 /* We don't expect to get here. 970 * future cmds to this device will get selection 971 * timeout as if the device was gone. 972 */ 973 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " 974 " for removal.", hostno, removed[i]->bus, 975 removed[i]->target, removed[i]->lun); 976 } 977 kfree(removed[i]); 978 removed[i] = NULL; 979 } 980 981 /* Notify scsi mid layer of any added devices */ 982 for (i = 0; i < nadded; i++) { 983 if (scsi_add_device(sh, added[i]->bus, 984 added[i]->target, added[i]->lun) == 0) 985 continue; 986 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " 987 "device not added.\n", hostno, added[i]->bus, 988 added[i]->target, added[i]->lun); 989 /* now we have to remove it from h->dev, 990 * since it didn't get added to scsi mid layer 991 */ 992 fixup_botched_add(h, added[i]); 993 } 994 995 free_and_out: 996 kfree(added); 997 kfree(removed); 998 } 999 1000 /* 1001 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * 1002 * Assume's h->devlock is held. 1003 */ 1004 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, 1005 int bus, int target, int lun) 1006 { 1007 int i; 1008 struct hpsa_scsi_dev_t *sd; 1009 1010 for (i = 0; i < h->ndevices; i++) { 1011 sd = h->dev[i]; 1012 if (sd->bus == bus && sd->target == target && sd->lun == lun) 1013 return sd; 1014 } 1015 return NULL; 1016 } 1017 1018 /* link sdev->hostdata to our per-device structure. */ 1019 static int hpsa_slave_alloc(struct scsi_device *sdev) 1020 { 1021 struct hpsa_scsi_dev_t *sd; 1022 unsigned long flags; 1023 struct ctlr_info *h; 1024 1025 h = sdev_to_hba(sdev); 1026 spin_lock_irqsave(&h->devlock, flags); 1027 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), 1028 sdev_id(sdev), sdev->lun); 1029 if (sd != NULL) 1030 sdev->hostdata = sd; 1031 spin_unlock_irqrestore(&h->devlock, flags); 1032 return 0; 1033 } 1034 1035 static void hpsa_slave_destroy(struct scsi_device *sdev) 1036 { 1037 /* nothing to do. */ 1038 } 1039 1040 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) 1041 { 1042 int i; 1043 1044 if (!h->cmd_sg_list) 1045 return; 1046 for (i = 0; i < h->nr_cmds; i++) { 1047 kfree(h->cmd_sg_list[i]); 1048 h->cmd_sg_list[i] = NULL; 1049 } 1050 kfree(h->cmd_sg_list); 1051 h->cmd_sg_list = NULL; 1052 } 1053 1054 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) 1055 { 1056 int i; 1057 1058 if (h->chainsize <= 0) 1059 return 0; 1060 1061 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, 1062 GFP_KERNEL); 1063 if (!h->cmd_sg_list) 1064 return -ENOMEM; 1065 for (i = 0; i < h->nr_cmds; i++) { 1066 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * 1067 h->chainsize, GFP_KERNEL); 1068 if (!h->cmd_sg_list[i]) 1069 goto clean; 1070 } 1071 return 0; 1072 1073 clean: 1074 hpsa_free_sg_chain_blocks(h); 1075 return -ENOMEM; 1076 } 1077 1078 static void hpsa_map_sg_chain_block(struct ctlr_info *h, 1079 struct CommandList *c) 1080 { 1081 struct SGDescriptor *chain_sg, *chain_block; 1082 u64 temp64; 1083 1084 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1085 chain_block = h->cmd_sg_list[c->cmdindex]; 1086 chain_sg->Ext = HPSA_SG_CHAIN; 1087 chain_sg->Len = sizeof(*chain_sg) * 1088 (c->Header.SGTotal - h->max_cmd_sg_entries); 1089 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len, 1090 PCI_DMA_TODEVICE); 1091 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL); 1092 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL); 1093 } 1094 1095 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, 1096 struct CommandList *c) 1097 { 1098 struct SGDescriptor *chain_sg; 1099 union u64bit temp64; 1100 1101 if (c->Header.SGTotal <= h->max_cmd_sg_entries) 1102 return; 1103 1104 chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; 1105 temp64.val32.lower = chain_sg->Addr.lower; 1106 temp64.val32.upper = chain_sg->Addr.upper; 1107 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE); 1108 } 1109 1110 static void complete_scsi_command(struct CommandList *cp) 1111 { 1112 struct scsi_cmnd *cmd; 1113 struct ctlr_info *h; 1114 struct ErrorInfo *ei; 1115 1116 unsigned char sense_key; 1117 unsigned char asc; /* additional sense code */ 1118 unsigned char ascq; /* additional sense code qualifier */ 1119 unsigned long sense_data_size; 1120 1121 ei = cp->err_info; 1122 cmd = (struct scsi_cmnd *) cp->scsi_cmd; 1123 h = cp->h; 1124 1125 scsi_dma_unmap(cmd); /* undo the DMA mappings */ 1126 if (cp->Header.SGTotal > h->max_cmd_sg_entries) 1127 hpsa_unmap_sg_chain_block(h, cp); 1128 1129 cmd->result = (DID_OK << 16); /* host byte */ 1130 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ 1131 cmd->result |= ei->ScsiStatus; 1132 1133 /* copy the sense data whether we need to or not. */ 1134 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) 1135 sense_data_size = SCSI_SENSE_BUFFERSIZE; 1136 else 1137 sense_data_size = sizeof(ei->SenseInfo); 1138 if (ei->SenseLen < sense_data_size) 1139 sense_data_size = ei->SenseLen; 1140 1141 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); 1142 scsi_set_resid(cmd, ei->ResidualCnt); 1143 1144 if (ei->CommandStatus == 0) { 1145 cmd->scsi_done(cmd); 1146 cmd_free(h, cp); 1147 return; 1148 } 1149 1150 /* an error has occurred */ 1151 switch (ei->CommandStatus) { 1152 1153 case CMD_TARGET_STATUS: 1154 if (ei->ScsiStatus) { 1155 /* Get sense key */ 1156 sense_key = 0xf & ei->SenseInfo[2]; 1157 /* Get additional sense code */ 1158 asc = ei->SenseInfo[12]; 1159 /* Get addition sense code qualifier */ 1160 ascq = ei->SenseInfo[13]; 1161 } 1162 1163 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { 1164 if (check_for_unit_attention(h, cp)) { 1165 cmd->result = DID_SOFT_ERROR << 16; 1166 break; 1167 } 1168 if (sense_key == ILLEGAL_REQUEST) { 1169 /* 1170 * SCSI REPORT_LUNS is commonly unsupported on 1171 * Smart Array. Suppress noisy complaint. 1172 */ 1173 if (cp->Request.CDB[0] == REPORT_LUNS) 1174 break; 1175 1176 /* If ASC/ASCQ indicate Logical Unit 1177 * Not Supported condition, 1178 */ 1179 if ((asc == 0x25) && (ascq == 0x0)) { 1180 dev_warn(&h->pdev->dev, "cp %p " 1181 "has check condition\n", cp); 1182 break; 1183 } 1184 } 1185 1186 if (sense_key == NOT_READY) { 1187 /* If Sense is Not Ready, Logical Unit 1188 * Not ready, Manual Intervention 1189 * required 1190 */ 1191 if ((asc == 0x04) && (ascq == 0x03)) { 1192 dev_warn(&h->pdev->dev, "cp %p " 1193 "has check condition: unit " 1194 "not ready, manual " 1195 "intervention required\n", cp); 1196 break; 1197 } 1198 } 1199 if (sense_key == ABORTED_COMMAND) { 1200 /* Aborted command is retryable */ 1201 dev_warn(&h->pdev->dev, "cp %p " 1202 "has check condition: aborted command: " 1203 "ASC: 0x%x, ASCQ: 0x%x\n", 1204 cp, asc, ascq); 1205 cmd->result = DID_SOFT_ERROR << 16; 1206 break; 1207 } 1208 /* Must be some other type of check condition */ 1209 dev_dbg(&h->pdev->dev, "cp %p has check condition: " 1210 "unknown type: " 1211 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1212 "Returning result: 0x%x, " 1213 "cmd=[%02x %02x %02x %02x %02x " 1214 "%02x %02x %02x %02x %02x %02x " 1215 "%02x %02x %02x %02x %02x]\n", 1216 cp, sense_key, asc, ascq, 1217 cmd->result, 1218 cmd->cmnd[0], cmd->cmnd[1], 1219 cmd->cmnd[2], cmd->cmnd[3], 1220 cmd->cmnd[4], cmd->cmnd[5], 1221 cmd->cmnd[6], cmd->cmnd[7], 1222 cmd->cmnd[8], cmd->cmnd[9], 1223 cmd->cmnd[10], cmd->cmnd[11], 1224 cmd->cmnd[12], cmd->cmnd[13], 1225 cmd->cmnd[14], cmd->cmnd[15]); 1226 break; 1227 } 1228 1229 1230 /* Problem was not a check condition 1231 * Pass it up to the upper layers... 1232 */ 1233 if (ei->ScsiStatus) { 1234 dev_warn(&h->pdev->dev, "cp %p has status 0x%x " 1235 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " 1236 "Returning result: 0x%x\n", 1237 cp, ei->ScsiStatus, 1238 sense_key, asc, ascq, 1239 cmd->result); 1240 } else { /* scsi status is zero??? How??? */ 1241 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " 1242 "Returning no connection.\n", cp), 1243 1244 /* Ordinarily, this case should never happen, 1245 * but there is a bug in some released firmware 1246 * revisions that allows it to happen if, for 1247 * example, a 4100 backplane loses power and 1248 * the tape drive is in it. We assume that 1249 * it's a fatal error of some kind because we 1250 * can't show that it wasn't. We will make it 1251 * look like selection timeout since that is 1252 * the most common reason for this to occur, 1253 * and it's severe enough. 1254 */ 1255 1256 cmd->result = DID_NO_CONNECT << 16; 1257 } 1258 break; 1259 1260 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1261 break; 1262 case CMD_DATA_OVERRUN: 1263 dev_warn(&h->pdev->dev, "cp %p has" 1264 " completed with data overrun " 1265 "reported\n", cp); 1266 break; 1267 case CMD_INVALID: { 1268 /* print_bytes(cp, sizeof(*cp), 1, 0); 1269 print_cmd(cp); */ 1270 /* We get CMD_INVALID if you address a non-existent device 1271 * instead of a selection timeout (no response). You will 1272 * see this if you yank out a drive, then try to access it. 1273 * This is kind of a shame because it means that any other 1274 * CMD_INVALID (e.g. driver bug) will get interpreted as a 1275 * missing target. */ 1276 cmd->result = DID_NO_CONNECT << 16; 1277 } 1278 break; 1279 case CMD_PROTOCOL_ERR: 1280 dev_warn(&h->pdev->dev, "cp %p has " 1281 "protocol error \n", cp); 1282 break; 1283 case CMD_HARDWARE_ERR: 1284 cmd->result = DID_ERROR << 16; 1285 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); 1286 break; 1287 case CMD_CONNECTION_LOST: 1288 cmd->result = DID_ERROR << 16; 1289 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); 1290 break; 1291 case CMD_ABORTED: 1292 cmd->result = DID_ABORT << 16; 1293 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", 1294 cp, ei->ScsiStatus); 1295 break; 1296 case CMD_ABORT_FAILED: 1297 cmd->result = DID_ERROR << 16; 1298 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); 1299 break; 1300 case CMD_UNSOLICITED_ABORT: 1301 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ 1302 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " 1303 "abort\n", cp); 1304 break; 1305 case CMD_TIMEOUT: 1306 cmd->result = DID_TIME_OUT << 16; 1307 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); 1308 break; 1309 case CMD_UNABORTABLE: 1310 cmd->result = DID_ERROR << 16; 1311 dev_warn(&h->pdev->dev, "Command unabortable\n"); 1312 break; 1313 default: 1314 cmd->result = DID_ERROR << 16; 1315 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", 1316 cp, ei->CommandStatus); 1317 } 1318 cmd->scsi_done(cmd); 1319 cmd_free(h, cp); 1320 } 1321 1322 static void hpsa_pci_unmap(struct pci_dev *pdev, 1323 struct CommandList *c, int sg_used, int data_direction) 1324 { 1325 int i; 1326 union u64bit addr64; 1327 1328 for (i = 0; i < sg_used; i++) { 1329 addr64.val32.lower = c->SG[i].Addr.lower; 1330 addr64.val32.upper = c->SG[i].Addr.upper; 1331 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, 1332 data_direction); 1333 } 1334 } 1335 1336 static void hpsa_map_one(struct pci_dev *pdev, 1337 struct CommandList *cp, 1338 unsigned char *buf, 1339 size_t buflen, 1340 int data_direction) 1341 { 1342 u64 addr64; 1343 1344 if (buflen == 0 || data_direction == PCI_DMA_NONE) { 1345 cp->Header.SGList = 0; 1346 cp->Header.SGTotal = 0; 1347 return; 1348 } 1349 1350 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction); 1351 cp->SG[0].Addr.lower = 1352 (u32) (addr64 & (u64) 0x00000000FFFFFFFF); 1353 cp->SG[0].Addr.upper = 1354 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF); 1355 cp->SG[0].Len = buflen; 1356 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */ 1357 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */ 1358 } 1359 1360 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, 1361 struct CommandList *c) 1362 { 1363 DECLARE_COMPLETION_ONSTACK(wait); 1364 1365 c->waiting = &wait; 1366 enqueue_cmd_and_start_io(h, c); 1367 wait_for_completion(&wait); 1368 } 1369 1370 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, 1371 struct CommandList *c) 1372 { 1373 unsigned long flags; 1374 1375 /* If controller lockup detected, fake a hardware error. */ 1376 spin_lock_irqsave(&h->lock, flags); 1377 if (unlikely(h->lockup_detected)) { 1378 spin_unlock_irqrestore(&h->lock, flags); 1379 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 1380 } else { 1381 spin_unlock_irqrestore(&h->lock, flags); 1382 hpsa_scsi_do_simple_cmd_core(h, c); 1383 } 1384 } 1385 1386 #define MAX_DRIVER_CMD_RETRIES 25 1387 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, 1388 struct CommandList *c, int data_direction) 1389 { 1390 int backoff_time = 10, retry_count = 0; 1391 1392 do { 1393 memset(c->err_info, 0, sizeof(*c->err_info)); 1394 hpsa_scsi_do_simple_cmd_core(h, c); 1395 retry_count++; 1396 if (retry_count > 3) { 1397 msleep(backoff_time); 1398 if (backoff_time < 1000) 1399 backoff_time *= 2; 1400 } 1401 } while ((check_for_unit_attention(h, c) || 1402 check_for_busy(h, c)) && 1403 retry_count <= MAX_DRIVER_CMD_RETRIES); 1404 hpsa_pci_unmap(h->pdev, c, 1, data_direction); 1405 } 1406 1407 static void hpsa_scsi_interpret_error(struct CommandList *cp) 1408 { 1409 struct ErrorInfo *ei; 1410 struct device *d = &cp->h->pdev->dev; 1411 1412 ei = cp->err_info; 1413 switch (ei->CommandStatus) { 1414 case CMD_TARGET_STATUS: 1415 dev_warn(d, "cmd %p has completed with errors\n", cp); 1416 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, 1417 ei->ScsiStatus); 1418 if (ei->ScsiStatus == 0) 1419 dev_warn(d, "SCSI status is abnormally zero. " 1420 "(probably indicates selection timeout " 1421 "reported incorrectly due to a known " 1422 "firmware bug, circa July, 2001.)\n"); 1423 break; 1424 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ 1425 dev_info(d, "UNDERRUN\n"); 1426 break; 1427 case CMD_DATA_OVERRUN: 1428 dev_warn(d, "cp %p has completed with data overrun\n", cp); 1429 break; 1430 case CMD_INVALID: { 1431 /* controller unfortunately reports SCSI passthru's 1432 * to non-existent targets as invalid commands. 1433 */ 1434 dev_warn(d, "cp %p is reported invalid (probably means " 1435 "target device no longer present)\n", cp); 1436 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); 1437 print_cmd(cp); */ 1438 } 1439 break; 1440 case CMD_PROTOCOL_ERR: 1441 dev_warn(d, "cp %p has protocol error \n", cp); 1442 break; 1443 case CMD_HARDWARE_ERR: 1444 /* cmd->result = DID_ERROR << 16; */ 1445 dev_warn(d, "cp %p had hardware error\n", cp); 1446 break; 1447 case CMD_CONNECTION_LOST: 1448 dev_warn(d, "cp %p had connection lost\n", cp); 1449 break; 1450 case CMD_ABORTED: 1451 dev_warn(d, "cp %p was aborted\n", cp); 1452 break; 1453 case CMD_ABORT_FAILED: 1454 dev_warn(d, "cp %p reports abort failed\n", cp); 1455 break; 1456 case CMD_UNSOLICITED_ABORT: 1457 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); 1458 break; 1459 case CMD_TIMEOUT: 1460 dev_warn(d, "cp %p timed out\n", cp); 1461 break; 1462 case CMD_UNABORTABLE: 1463 dev_warn(d, "Command unabortable\n"); 1464 break; 1465 default: 1466 dev_warn(d, "cp %p returned unknown status %x\n", cp, 1467 ei->CommandStatus); 1468 } 1469 } 1470 1471 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, 1472 unsigned char page, unsigned char *buf, 1473 unsigned char bufsize) 1474 { 1475 int rc = IO_OK; 1476 struct CommandList *c; 1477 struct ErrorInfo *ei; 1478 1479 c = cmd_special_alloc(h); 1480 1481 if (c == NULL) { /* trouble... */ 1482 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1483 return -ENOMEM; 1484 } 1485 1486 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); 1487 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1488 ei = c->err_info; 1489 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { 1490 hpsa_scsi_interpret_error(c); 1491 rc = -1; 1492 } 1493 cmd_special_free(h, c); 1494 return rc; 1495 } 1496 1497 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) 1498 { 1499 int rc = IO_OK; 1500 struct CommandList *c; 1501 struct ErrorInfo *ei; 1502 1503 c = cmd_special_alloc(h); 1504 1505 if (c == NULL) { /* trouble... */ 1506 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1507 return -ENOMEM; 1508 } 1509 1510 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); 1511 hpsa_scsi_do_simple_cmd_core(h, c); 1512 /* no unmap needed here because no data xfer. */ 1513 1514 ei = c->err_info; 1515 if (ei->CommandStatus != 0) { 1516 hpsa_scsi_interpret_error(c); 1517 rc = -1; 1518 } 1519 cmd_special_free(h, c); 1520 return rc; 1521 } 1522 1523 static void hpsa_get_raid_level(struct ctlr_info *h, 1524 unsigned char *scsi3addr, unsigned char *raid_level) 1525 { 1526 int rc; 1527 unsigned char *buf; 1528 1529 *raid_level = RAID_UNKNOWN; 1530 buf = kzalloc(64, GFP_KERNEL); 1531 if (!buf) 1532 return; 1533 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); 1534 if (rc == 0) 1535 *raid_level = buf[8]; 1536 if (*raid_level > RAID_UNKNOWN) 1537 *raid_level = RAID_UNKNOWN; 1538 kfree(buf); 1539 return; 1540 } 1541 1542 /* Get the device id from inquiry page 0x83 */ 1543 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, 1544 unsigned char *device_id, int buflen) 1545 { 1546 int rc; 1547 unsigned char *buf; 1548 1549 if (buflen > 16) 1550 buflen = 16; 1551 buf = kzalloc(64, GFP_KERNEL); 1552 if (!buf) 1553 return -1; 1554 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); 1555 if (rc == 0) 1556 memcpy(device_id, &buf[8], buflen); 1557 kfree(buf); 1558 return rc != 0; 1559 } 1560 1561 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, 1562 struct ReportLUNdata *buf, int bufsize, 1563 int extended_response) 1564 { 1565 int rc = IO_OK; 1566 struct CommandList *c; 1567 unsigned char scsi3addr[8]; 1568 struct ErrorInfo *ei; 1569 1570 c = cmd_special_alloc(h); 1571 if (c == NULL) { /* trouble... */ 1572 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 1573 return -1; 1574 } 1575 /* address the controller */ 1576 memset(scsi3addr, 0, sizeof(scsi3addr)); 1577 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, 1578 buf, bufsize, 0, scsi3addr, TYPE_CMD); 1579 if (extended_response) 1580 c->Request.CDB[1] = extended_response; 1581 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); 1582 ei = c->err_info; 1583 if (ei->CommandStatus != 0 && 1584 ei->CommandStatus != CMD_DATA_UNDERRUN) { 1585 hpsa_scsi_interpret_error(c); 1586 rc = -1; 1587 } 1588 cmd_special_free(h, c); 1589 return rc; 1590 } 1591 1592 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, 1593 struct ReportLUNdata *buf, 1594 int bufsize, int extended_response) 1595 { 1596 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); 1597 } 1598 1599 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, 1600 struct ReportLUNdata *buf, int bufsize) 1601 { 1602 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); 1603 } 1604 1605 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, 1606 int bus, int target, int lun) 1607 { 1608 device->bus = bus; 1609 device->target = target; 1610 device->lun = lun; 1611 } 1612 1613 static int hpsa_update_device_info(struct ctlr_info *h, 1614 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, 1615 unsigned char *is_OBDR_device) 1616 { 1617 1618 #define OBDR_SIG_OFFSET 43 1619 #define OBDR_TAPE_SIG "$DR-10" 1620 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) 1621 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) 1622 1623 unsigned char *inq_buff; 1624 unsigned char *obdr_sig; 1625 1626 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); 1627 if (!inq_buff) 1628 goto bail_out; 1629 1630 /* Do an inquiry to the device to see what it is. */ 1631 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, 1632 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { 1633 /* Inquiry failed (msg printed already) */ 1634 dev_err(&h->pdev->dev, 1635 "hpsa_update_device_info: inquiry failed\n"); 1636 goto bail_out; 1637 } 1638 1639 this_device->devtype = (inq_buff[0] & 0x1f); 1640 memcpy(this_device->scsi3addr, scsi3addr, 8); 1641 memcpy(this_device->vendor, &inq_buff[8], 1642 sizeof(this_device->vendor)); 1643 memcpy(this_device->model, &inq_buff[16], 1644 sizeof(this_device->model)); 1645 memset(this_device->device_id, 0, 1646 sizeof(this_device->device_id)); 1647 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 1648 sizeof(this_device->device_id)); 1649 1650 if (this_device->devtype == TYPE_DISK && 1651 is_logical_dev_addr_mode(scsi3addr)) 1652 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); 1653 else 1654 this_device->raid_level = RAID_UNKNOWN; 1655 1656 if (is_OBDR_device) { 1657 /* See if this is a One-Button-Disaster-Recovery device 1658 * by looking for "$DR-10" at offset 43 in inquiry data. 1659 */ 1660 obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; 1661 *is_OBDR_device = (this_device->devtype == TYPE_ROM && 1662 strncmp(obdr_sig, OBDR_TAPE_SIG, 1663 OBDR_SIG_LEN) == 0); 1664 } 1665 1666 kfree(inq_buff); 1667 return 0; 1668 1669 bail_out: 1670 kfree(inq_buff); 1671 return 1; 1672 } 1673 1674 static unsigned char *ext_target_model[] = { 1675 "MSA2012", 1676 "MSA2024", 1677 "MSA2312", 1678 "MSA2324", 1679 "P2000 G3 SAS", 1680 NULL, 1681 }; 1682 1683 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) 1684 { 1685 int i; 1686 1687 for (i = 0; ext_target_model[i]; i++) 1688 if (strncmp(device->model, ext_target_model[i], 1689 strlen(ext_target_model[i])) == 0) 1690 return 1; 1691 return 0; 1692 } 1693 1694 /* Helper function to assign bus, target, lun mapping of devices. 1695 * Puts non-external target logical volumes on bus 0, external target logical 1696 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. 1697 * Logical drive target and lun are assigned at this time, but 1698 * physical device lun and target assignment are deferred (assigned 1699 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) 1700 */ 1701 static void figure_bus_target_lun(struct ctlr_info *h, 1702 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) 1703 { 1704 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); 1705 1706 if (!is_logical_dev_addr_mode(lunaddrbytes)) { 1707 /* physical device, target and lun filled in later */ 1708 if (is_hba_lunid(lunaddrbytes)) 1709 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); 1710 else 1711 /* defer target, lun assignment for physical devices */ 1712 hpsa_set_bus_target_lun(device, 2, -1, -1); 1713 return; 1714 } 1715 /* It's a logical device */ 1716 if (is_ext_target(h, device)) { 1717 /* external target way, put logicals on bus 1 1718 * and match target/lun numbers box 1719 * reports, other smart array, bus 0, target 0, match lunid 1720 */ 1721 hpsa_set_bus_target_lun(device, 1722 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); 1723 return; 1724 } 1725 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); 1726 } 1727 1728 /* 1729 * If there is no lun 0 on a target, linux won't find any devices. 1730 * For the external targets (arrays), we have to manually detect the enclosure 1731 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report 1732 * it for some reason. *tmpdevice is the target we're adding, 1733 * this_device is a pointer into the current element of currentsd[] 1734 * that we're building up in update_scsi_devices(), below. 1735 * lunzerobits is a bitmap that tracks which targets already have a 1736 * lun 0 assigned. 1737 * Returns 1 if an enclosure was added, 0 if not. 1738 */ 1739 static int add_ext_target_dev(struct ctlr_info *h, 1740 struct hpsa_scsi_dev_t *tmpdevice, 1741 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, 1742 unsigned long lunzerobits[], int *n_ext_target_devs) 1743 { 1744 unsigned char scsi3addr[8]; 1745 1746 if (test_bit(tmpdevice->target, lunzerobits)) 1747 return 0; /* There is already a lun 0 on this target. */ 1748 1749 if (!is_logical_dev_addr_mode(lunaddrbytes)) 1750 return 0; /* It's the logical targets that may lack lun 0. */ 1751 1752 if (!is_ext_target(h, tmpdevice)) 1753 return 0; /* Only external target devices have this problem. */ 1754 1755 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ 1756 return 0; 1757 1758 memset(scsi3addr, 0, 8); 1759 scsi3addr[3] = tmpdevice->target; 1760 if (is_hba_lunid(scsi3addr)) 1761 return 0; /* Don't add the RAID controller here. */ 1762 1763 if (is_scsi_rev_5(h)) 1764 return 0; /* p1210m doesn't need to do this. */ 1765 1766 if (*n_ext_target_devs >= MAX_EXT_TARGETS) { 1767 dev_warn(&h->pdev->dev, "Maximum number of external " 1768 "target devices exceeded. Check your hardware " 1769 "configuration."); 1770 return 0; 1771 } 1772 1773 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) 1774 return 0; 1775 (*n_ext_target_devs)++; 1776 hpsa_set_bus_target_lun(this_device, 1777 tmpdevice->bus, tmpdevice->target, 0); 1778 set_bit(tmpdevice->target, lunzerobits); 1779 return 1; 1780 } 1781 1782 /* 1783 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, 1784 * logdev. The number of luns in physdev and logdev are returned in 1785 * *nphysicals and *nlogicals, respectively. 1786 * Returns 0 on success, -1 otherwise. 1787 */ 1788 static int hpsa_gather_lun_info(struct ctlr_info *h, 1789 int reportlunsize, 1790 struct ReportLUNdata *physdev, u32 *nphysicals, 1791 struct ReportLUNdata *logdev, u32 *nlogicals) 1792 { 1793 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { 1794 dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); 1795 return -1; 1796 } 1797 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8; 1798 if (*nphysicals > HPSA_MAX_PHYS_LUN) { 1799 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." 1800 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1801 *nphysicals - HPSA_MAX_PHYS_LUN); 1802 *nphysicals = HPSA_MAX_PHYS_LUN; 1803 } 1804 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { 1805 dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); 1806 return -1; 1807 } 1808 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; 1809 /* Reject Logicals in excess of our max capability. */ 1810 if (*nlogicals > HPSA_MAX_LUN) { 1811 dev_warn(&h->pdev->dev, 1812 "maximum logical LUNs (%d) exceeded. " 1813 "%d LUNs ignored.\n", HPSA_MAX_LUN, 1814 *nlogicals - HPSA_MAX_LUN); 1815 *nlogicals = HPSA_MAX_LUN; 1816 } 1817 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { 1818 dev_warn(&h->pdev->dev, 1819 "maximum logical + physical LUNs (%d) exceeded. " 1820 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, 1821 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); 1822 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; 1823 } 1824 return 0; 1825 } 1826 1827 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i, 1828 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list, 1829 struct ReportLUNdata *logdev_list) 1830 { 1831 /* Helper function, figure out where the LUN ID info is coming from 1832 * given index i, lists of physical and logical devices, where in 1833 * the list the raid controller is supposed to appear (first or last) 1834 */ 1835 1836 int logicals_start = nphysicals + (raid_ctlr_position == 0); 1837 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); 1838 1839 if (i == raid_ctlr_position) 1840 return RAID_CTLR_LUNID; 1841 1842 if (i < logicals_start) 1843 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0]; 1844 1845 if (i < last_device) 1846 return &logdev_list->LUN[i - nphysicals - 1847 (raid_ctlr_position == 0)][0]; 1848 BUG(); 1849 return NULL; 1850 } 1851 1852 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) 1853 { 1854 /* the idea here is we could get notified 1855 * that some devices have changed, so we do a report 1856 * physical luns and report logical luns cmd, and adjust 1857 * our list of devices accordingly. 1858 * 1859 * The scsi3addr's of devices won't change so long as the 1860 * adapter is not reset. That means we can rescan and 1861 * tell which devices we already know about, vs. new 1862 * devices, vs. disappearing devices. 1863 */ 1864 struct ReportLUNdata *physdev_list = NULL; 1865 struct ReportLUNdata *logdev_list = NULL; 1866 u32 nphysicals = 0; 1867 u32 nlogicals = 0; 1868 u32 ndev_allocated = 0; 1869 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; 1870 int ncurrent = 0; 1871 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; 1872 int i, n_ext_target_devs, ndevs_to_allocate; 1873 int raid_ctlr_position; 1874 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); 1875 1876 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); 1877 physdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1878 logdev_list = kzalloc(reportlunsize, GFP_KERNEL); 1879 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); 1880 1881 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { 1882 dev_err(&h->pdev->dev, "out of memory\n"); 1883 goto out; 1884 } 1885 memset(lunzerobits, 0, sizeof(lunzerobits)); 1886 1887 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, 1888 logdev_list, &nlogicals)) 1889 goto out; 1890 1891 /* We might see up to the maximum number of logical and physical disks 1892 * plus external target devices, and a device for the local RAID 1893 * controller. 1894 */ 1895 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; 1896 1897 /* Allocate the per device structures */ 1898 for (i = 0; i < ndevs_to_allocate; i++) { 1899 if (i >= HPSA_MAX_DEVICES) { 1900 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." 1901 " %d devices ignored.\n", HPSA_MAX_DEVICES, 1902 ndevs_to_allocate - HPSA_MAX_DEVICES); 1903 break; 1904 } 1905 1906 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); 1907 if (!currentsd[i]) { 1908 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", 1909 __FILE__, __LINE__); 1910 goto out; 1911 } 1912 ndev_allocated++; 1913 } 1914 1915 if (unlikely(is_scsi_rev_5(h))) 1916 raid_ctlr_position = 0; 1917 else 1918 raid_ctlr_position = nphysicals + nlogicals; 1919 1920 /* adjust our table of devices */ 1921 n_ext_target_devs = 0; 1922 for (i = 0; i < nphysicals + nlogicals + 1; i++) { 1923 u8 *lunaddrbytes, is_OBDR = 0; 1924 1925 /* Figure out where the LUN ID info is coming from */ 1926 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, 1927 i, nphysicals, nlogicals, physdev_list, logdev_list); 1928 /* skip masked physical devices. */ 1929 if (lunaddrbytes[3] & 0xC0 && 1930 i < nphysicals + (raid_ctlr_position == 0)) 1931 continue; 1932 1933 /* Get device type, vendor, model, device id */ 1934 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, 1935 &is_OBDR)) 1936 continue; /* skip it if we can't talk to it. */ 1937 figure_bus_target_lun(h, lunaddrbytes, tmpdevice); 1938 this_device = currentsd[ncurrent]; 1939 1940 /* 1941 * For external target devices, we have to insert a LUN 0 which 1942 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there 1943 * is nonetheless an enclosure device there. We have to 1944 * present that otherwise linux won't find anything if 1945 * there is no lun 0. 1946 */ 1947 if (add_ext_target_dev(h, tmpdevice, this_device, 1948 lunaddrbytes, lunzerobits, 1949 &n_ext_target_devs)) { 1950 ncurrent++; 1951 this_device = currentsd[ncurrent]; 1952 } 1953 1954 *this_device = *tmpdevice; 1955 1956 switch (this_device->devtype) { 1957 case TYPE_ROM: 1958 /* We don't *really* support actual CD-ROM devices, 1959 * just "One Button Disaster Recovery" tape drive 1960 * which temporarily pretends to be a CD-ROM drive. 1961 * So we check that the device is really an OBDR tape 1962 * device by checking for "$DR-10" in bytes 43-48 of 1963 * the inquiry data. 1964 */ 1965 if (is_OBDR) 1966 ncurrent++; 1967 break; 1968 case TYPE_DISK: 1969 if (i < nphysicals) 1970 break; 1971 ncurrent++; 1972 break; 1973 case TYPE_TAPE: 1974 case TYPE_MEDIUM_CHANGER: 1975 ncurrent++; 1976 break; 1977 case TYPE_RAID: 1978 /* Only present the Smartarray HBA as a RAID controller. 1979 * If it's a RAID controller other than the HBA itself 1980 * (an external RAID controller, MSA500 or similar) 1981 * don't present it. 1982 */ 1983 if (!is_hba_lunid(lunaddrbytes)) 1984 break; 1985 ncurrent++; 1986 break; 1987 default: 1988 break; 1989 } 1990 if (ncurrent >= HPSA_MAX_DEVICES) 1991 break; 1992 } 1993 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); 1994 out: 1995 kfree(tmpdevice); 1996 for (i = 0; i < ndev_allocated; i++) 1997 kfree(currentsd[i]); 1998 kfree(currentsd); 1999 kfree(physdev_list); 2000 kfree(logdev_list); 2001 } 2002 2003 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci 2004 * dma mapping and fills in the scatter gather entries of the 2005 * hpsa command, cp. 2006 */ 2007 static int hpsa_scatter_gather(struct ctlr_info *h, 2008 struct CommandList *cp, 2009 struct scsi_cmnd *cmd) 2010 { 2011 unsigned int len; 2012 struct scatterlist *sg; 2013 u64 addr64; 2014 int use_sg, i, sg_index, chained; 2015 struct SGDescriptor *curr_sg; 2016 2017 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); 2018 2019 use_sg = scsi_dma_map(cmd); 2020 if (use_sg < 0) 2021 return use_sg; 2022 2023 if (!use_sg) 2024 goto sglist_finished; 2025 2026 curr_sg = cp->SG; 2027 chained = 0; 2028 sg_index = 0; 2029 scsi_for_each_sg(cmd, sg, use_sg, i) { 2030 if (i == h->max_cmd_sg_entries - 1 && 2031 use_sg > h->max_cmd_sg_entries) { 2032 chained = 1; 2033 curr_sg = h->cmd_sg_list[cp->cmdindex]; 2034 sg_index = 0; 2035 } 2036 addr64 = (u64) sg_dma_address(sg); 2037 len = sg_dma_len(sg); 2038 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL); 2039 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL); 2040 curr_sg->Len = len; 2041 curr_sg->Ext = 0; /* we are not chaining */ 2042 curr_sg++; 2043 } 2044 2045 if (use_sg + chained > h->maxSG) 2046 h->maxSG = use_sg + chained; 2047 2048 if (chained) { 2049 cp->Header.SGList = h->max_cmd_sg_entries; 2050 cp->Header.SGTotal = (u16) (use_sg + 1); 2051 hpsa_map_sg_chain_block(h, cp); 2052 return 0; 2053 } 2054 2055 sglist_finished: 2056 2057 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */ 2058 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */ 2059 return 0; 2060 } 2061 2062 2063 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd, 2064 void (*done)(struct scsi_cmnd *)) 2065 { 2066 struct ctlr_info *h; 2067 struct hpsa_scsi_dev_t *dev; 2068 unsigned char scsi3addr[8]; 2069 struct CommandList *c; 2070 unsigned long flags; 2071 2072 /* Get the ptr to our adapter structure out of cmd->host. */ 2073 h = sdev_to_hba(cmd->device); 2074 dev = cmd->device->hostdata; 2075 if (!dev) { 2076 cmd->result = DID_NO_CONNECT << 16; 2077 done(cmd); 2078 return 0; 2079 } 2080 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); 2081 2082 spin_lock_irqsave(&h->lock, flags); 2083 if (unlikely(h->lockup_detected)) { 2084 spin_unlock_irqrestore(&h->lock, flags); 2085 cmd->result = DID_ERROR << 16; 2086 done(cmd); 2087 return 0; 2088 } 2089 /* Need a lock as this is being allocated from the pool */ 2090 c = cmd_alloc(h); 2091 spin_unlock_irqrestore(&h->lock, flags); 2092 if (c == NULL) { /* trouble... */ 2093 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); 2094 return SCSI_MLQUEUE_HOST_BUSY; 2095 } 2096 2097 /* Fill in the command list header */ 2098 2099 cmd->scsi_done = done; /* save this for use by completion code */ 2100 2101 /* save c in case we have to abort it */ 2102 cmd->host_scribble = (unsigned char *) c; 2103 2104 c->cmd_type = CMD_SCSI; 2105 c->scsi_cmd = cmd; 2106 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2107 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); 2108 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT); 2109 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT; 2110 2111 /* Fill in the request block... */ 2112 2113 c->Request.Timeout = 0; 2114 memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); 2115 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); 2116 c->Request.CDBLen = cmd->cmd_len; 2117 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); 2118 c->Request.Type.Type = TYPE_CMD; 2119 c->Request.Type.Attribute = ATTR_SIMPLE; 2120 switch (cmd->sc_data_direction) { 2121 case DMA_TO_DEVICE: 2122 c->Request.Type.Direction = XFER_WRITE; 2123 break; 2124 case DMA_FROM_DEVICE: 2125 c->Request.Type.Direction = XFER_READ; 2126 break; 2127 case DMA_NONE: 2128 c->Request.Type.Direction = XFER_NONE; 2129 break; 2130 case DMA_BIDIRECTIONAL: 2131 /* This can happen if a buggy application does a scsi passthru 2132 * and sets both inlen and outlen to non-zero. ( see 2133 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) 2134 */ 2135 2136 c->Request.Type.Direction = XFER_RSVD; 2137 /* This is technically wrong, and hpsa controllers should 2138 * reject it with CMD_INVALID, which is the most correct 2139 * response, but non-fibre backends appear to let it 2140 * slide by, and give the same results as if this field 2141 * were set correctly. Either way is acceptable for 2142 * our purposes here. 2143 */ 2144 2145 break; 2146 2147 default: 2148 dev_err(&h->pdev->dev, "unknown data direction: %d\n", 2149 cmd->sc_data_direction); 2150 BUG(); 2151 break; 2152 } 2153 2154 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ 2155 cmd_free(h, c); 2156 return SCSI_MLQUEUE_HOST_BUSY; 2157 } 2158 enqueue_cmd_and_start_io(h, c); 2159 /* the cmd'll come back via intr handler in complete_scsi_command() */ 2160 return 0; 2161 } 2162 2163 static DEF_SCSI_QCMD(hpsa_scsi_queue_command) 2164 2165 static void hpsa_scan_start(struct Scsi_Host *sh) 2166 { 2167 struct ctlr_info *h = shost_to_hba(sh); 2168 unsigned long flags; 2169 2170 /* wait until any scan already in progress is finished. */ 2171 while (1) { 2172 spin_lock_irqsave(&h->scan_lock, flags); 2173 if (h->scan_finished) 2174 break; 2175 spin_unlock_irqrestore(&h->scan_lock, flags); 2176 wait_event(h->scan_wait_queue, h->scan_finished); 2177 /* Note: We don't need to worry about a race between this 2178 * thread and driver unload because the midlayer will 2179 * have incremented the reference count, so unload won't 2180 * happen if we're in here. 2181 */ 2182 } 2183 h->scan_finished = 0; /* mark scan as in progress */ 2184 spin_unlock_irqrestore(&h->scan_lock, flags); 2185 2186 hpsa_update_scsi_devices(h, h->scsi_host->host_no); 2187 2188 spin_lock_irqsave(&h->scan_lock, flags); 2189 h->scan_finished = 1; /* mark scan as finished. */ 2190 wake_up_all(&h->scan_wait_queue); 2191 spin_unlock_irqrestore(&h->scan_lock, flags); 2192 } 2193 2194 static int hpsa_scan_finished(struct Scsi_Host *sh, 2195 unsigned long elapsed_time) 2196 { 2197 struct ctlr_info *h = shost_to_hba(sh); 2198 unsigned long flags; 2199 int finished; 2200 2201 spin_lock_irqsave(&h->scan_lock, flags); 2202 finished = h->scan_finished; 2203 spin_unlock_irqrestore(&h->scan_lock, flags); 2204 return finished; 2205 } 2206 2207 static int hpsa_change_queue_depth(struct scsi_device *sdev, 2208 int qdepth, int reason) 2209 { 2210 struct ctlr_info *h = sdev_to_hba(sdev); 2211 2212 if (reason != SCSI_QDEPTH_DEFAULT) 2213 return -ENOTSUPP; 2214 2215 if (qdepth < 1) 2216 qdepth = 1; 2217 else 2218 if (qdepth > h->nr_cmds) 2219 qdepth = h->nr_cmds; 2220 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); 2221 return sdev->queue_depth; 2222 } 2223 2224 static void hpsa_unregister_scsi(struct ctlr_info *h) 2225 { 2226 /* we are being forcibly unloaded, and may not refuse. */ 2227 scsi_remove_host(h->scsi_host); 2228 scsi_host_put(h->scsi_host); 2229 h->scsi_host = NULL; 2230 } 2231 2232 static int hpsa_register_scsi(struct ctlr_info *h) 2233 { 2234 struct Scsi_Host *sh; 2235 int error; 2236 2237 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); 2238 if (sh == NULL) 2239 goto fail; 2240 2241 sh->io_port = 0; 2242 sh->n_io_port = 0; 2243 sh->this_id = -1; 2244 sh->max_channel = 3; 2245 sh->max_cmd_len = MAX_COMMAND_SIZE; 2246 sh->max_lun = HPSA_MAX_LUN; 2247 sh->max_id = HPSA_MAX_LUN; 2248 sh->can_queue = h->nr_cmds; 2249 sh->cmd_per_lun = h->nr_cmds; 2250 sh->sg_tablesize = h->maxsgentries; 2251 h->scsi_host = sh; 2252 sh->hostdata[0] = (unsigned long) h; 2253 sh->irq = h->intr[h->intr_mode]; 2254 sh->unique_id = sh->irq; 2255 error = scsi_add_host(sh, &h->pdev->dev); 2256 if (error) 2257 goto fail_host_put; 2258 scsi_scan_host(sh); 2259 return 0; 2260 2261 fail_host_put: 2262 dev_err(&h->pdev->dev, "%s: scsi_add_host" 2263 " failed for controller %d\n", __func__, h->ctlr); 2264 scsi_host_put(sh); 2265 return error; 2266 fail: 2267 dev_err(&h->pdev->dev, "%s: scsi_host_alloc" 2268 " failed for controller %d\n", __func__, h->ctlr); 2269 return -ENOMEM; 2270 } 2271 2272 static int wait_for_device_to_become_ready(struct ctlr_info *h, 2273 unsigned char lunaddr[]) 2274 { 2275 int rc = 0; 2276 int count = 0; 2277 int waittime = 1; /* seconds */ 2278 struct CommandList *c; 2279 2280 c = cmd_special_alloc(h); 2281 if (!c) { 2282 dev_warn(&h->pdev->dev, "out of memory in " 2283 "wait_for_device_to_become_ready.\n"); 2284 return IO_ERROR; 2285 } 2286 2287 /* Send test unit ready until device ready, or give up. */ 2288 while (count < HPSA_TUR_RETRY_LIMIT) { 2289 2290 /* Wait for a bit. do this first, because if we send 2291 * the TUR right away, the reset will just abort it. 2292 */ 2293 msleep(1000 * waittime); 2294 count++; 2295 2296 /* Increase wait time with each try, up to a point. */ 2297 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) 2298 waittime = waittime * 2; 2299 2300 /* Send the Test Unit Ready */ 2301 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); 2302 hpsa_scsi_do_simple_cmd_core(h, c); 2303 /* no unmap needed here because no data xfer. */ 2304 2305 if (c->err_info->CommandStatus == CMD_SUCCESS) 2306 break; 2307 2308 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 2309 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && 2310 (c->err_info->SenseInfo[2] == NO_SENSE || 2311 c->err_info->SenseInfo[2] == UNIT_ATTENTION)) 2312 break; 2313 2314 dev_warn(&h->pdev->dev, "waiting %d secs " 2315 "for device to become ready.\n", waittime); 2316 rc = 1; /* device not ready. */ 2317 } 2318 2319 if (rc) 2320 dev_warn(&h->pdev->dev, "giving up on device.\n"); 2321 else 2322 dev_warn(&h->pdev->dev, "device is ready.\n"); 2323 2324 cmd_special_free(h, c); 2325 return rc; 2326 } 2327 2328 /* Need at least one of these error handlers to keep ../scsi/hosts.c from 2329 * complaining. Doing a host- or bus-reset can't do anything good here. 2330 */ 2331 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) 2332 { 2333 int rc; 2334 struct ctlr_info *h; 2335 struct hpsa_scsi_dev_t *dev; 2336 2337 /* find the controller to which the command to be aborted was sent */ 2338 h = sdev_to_hba(scsicmd->device); 2339 if (h == NULL) /* paranoia */ 2340 return FAILED; 2341 dev = scsicmd->device->hostdata; 2342 if (!dev) { 2343 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " 2344 "device lookup failed.\n"); 2345 return FAILED; 2346 } 2347 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", 2348 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2349 /* send a reset to the SCSI LUN which the command was sent to */ 2350 rc = hpsa_send_reset(h, dev->scsi3addr); 2351 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) 2352 return SUCCESS; 2353 2354 dev_warn(&h->pdev->dev, "resetting device failed.\n"); 2355 return FAILED; 2356 } 2357 2358 static void swizzle_abort_tag(u8 *tag) 2359 { 2360 u8 original_tag[8]; 2361 2362 memcpy(original_tag, tag, 8); 2363 tag[0] = original_tag[3]; 2364 tag[1] = original_tag[2]; 2365 tag[2] = original_tag[1]; 2366 tag[3] = original_tag[0]; 2367 tag[4] = original_tag[7]; 2368 tag[5] = original_tag[6]; 2369 tag[6] = original_tag[5]; 2370 tag[7] = original_tag[4]; 2371 } 2372 2373 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, 2374 struct CommandList *abort, int swizzle) 2375 { 2376 int rc = IO_OK; 2377 struct CommandList *c; 2378 struct ErrorInfo *ei; 2379 2380 c = cmd_special_alloc(h); 2381 if (c == NULL) { /* trouble... */ 2382 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 2383 return -ENOMEM; 2384 } 2385 2386 fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG); 2387 if (swizzle) 2388 swizzle_abort_tag(&c->Request.CDB[4]); 2389 hpsa_scsi_do_simple_cmd_core(h, c); 2390 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", 2391 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower); 2392 /* no unmap needed here because no data xfer. */ 2393 2394 ei = c->err_info; 2395 switch (ei->CommandStatus) { 2396 case CMD_SUCCESS: 2397 break; 2398 case CMD_UNABORTABLE: /* Very common, don't make noise. */ 2399 rc = -1; 2400 break; 2401 default: 2402 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", 2403 __func__, abort->Header.Tag.upper, 2404 abort->Header.Tag.lower); 2405 hpsa_scsi_interpret_error(c); 2406 rc = -1; 2407 break; 2408 } 2409 cmd_special_free(h, c); 2410 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__, 2411 abort->Header.Tag.upper, abort->Header.Tag.lower); 2412 return rc; 2413 } 2414 2415 /* 2416 * hpsa_find_cmd_in_queue 2417 * 2418 * Used to determine whether a command (find) is still present 2419 * in queue_head. Optionally excludes the last element of queue_head. 2420 * 2421 * This is used to avoid unnecessary aborts. Commands in h->reqQ have 2422 * not yet been submitted, and so can be aborted by the driver without 2423 * sending an abort to the hardware. 2424 * 2425 * Returns pointer to command if found in queue, NULL otherwise. 2426 */ 2427 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, 2428 struct scsi_cmnd *find, struct list_head *queue_head) 2429 { 2430 unsigned long flags; 2431 struct CommandList *c = NULL; /* ptr into cmpQ */ 2432 2433 if (!find) 2434 return 0; 2435 spin_lock_irqsave(&h->lock, flags); 2436 list_for_each_entry(c, queue_head, list) { 2437 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ 2438 continue; 2439 if (c->scsi_cmd == find) { 2440 spin_unlock_irqrestore(&h->lock, flags); 2441 return c; 2442 } 2443 } 2444 spin_unlock_irqrestore(&h->lock, flags); 2445 return NULL; 2446 } 2447 2448 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, 2449 u8 *tag, struct list_head *queue_head) 2450 { 2451 unsigned long flags; 2452 struct CommandList *c; 2453 2454 spin_lock_irqsave(&h->lock, flags); 2455 list_for_each_entry(c, queue_head, list) { 2456 if (memcmp(&c->Header.Tag, tag, 8) != 0) 2457 continue; 2458 spin_unlock_irqrestore(&h->lock, flags); 2459 return c; 2460 } 2461 spin_unlock_irqrestore(&h->lock, flags); 2462 return NULL; 2463 } 2464 2465 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to 2466 * tell which kind we're dealing with, so we send the abort both ways. There 2467 * shouldn't be any collisions between swizzled and unswizzled tags due to the 2468 * way we construct our tags but we check anyway in case the assumptions which 2469 * make this true someday become false. 2470 */ 2471 static int hpsa_send_abort_both_ways(struct ctlr_info *h, 2472 unsigned char *scsi3addr, struct CommandList *abort) 2473 { 2474 u8 swizzled_tag[8]; 2475 struct CommandList *c; 2476 int rc = 0, rc2 = 0; 2477 2478 /* we do not expect to find the swizzled tag in our queue, but 2479 * check anyway just to be sure the assumptions which make this 2480 * the case haven't become wrong. 2481 */ 2482 memcpy(swizzled_tag, &abort->Request.CDB[4], 8); 2483 swizzle_abort_tag(swizzled_tag); 2484 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); 2485 if (c != NULL) { 2486 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); 2487 return hpsa_send_abort(h, scsi3addr, abort, 0); 2488 } 2489 rc = hpsa_send_abort(h, scsi3addr, abort, 0); 2490 2491 /* if the command is still in our queue, we can't conclude that it was 2492 * aborted (it might have just completed normally) but in any case 2493 * we don't need to try to abort it another way. 2494 */ 2495 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); 2496 if (c) 2497 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); 2498 return rc && rc2; 2499 } 2500 2501 /* Send an abort for the specified command. 2502 * If the device and controller support it, 2503 * send a task abort request. 2504 */ 2505 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) 2506 { 2507 2508 int i, rc; 2509 struct ctlr_info *h; 2510 struct hpsa_scsi_dev_t *dev; 2511 struct CommandList *abort; /* pointer to command to be aborted */ 2512 struct CommandList *found; 2513 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */ 2514 char msg[256]; /* For debug messaging. */ 2515 int ml = 0; 2516 2517 /* Find the controller of the command to be aborted */ 2518 h = sdev_to_hba(sc->device); 2519 if (WARN(h == NULL, 2520 "ABORT REQUEST FAILED, Controller lookup failed.\n")) 2521 return FAILED; 2522 2523 /* Check that controller supports some kind of task abort */ 2524 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && 2525 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) 2526 return FAILED; 2527 2528 memset(msg, 0, sizeof(msg)); 2529 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ", 2530 h->scsi_host->host_no, sc->device->channel, 2531 sc->device->id, sc->device->lun); 2532 2533 /* Find the device of the command to be aborted */ 2534 dev = sc->device->hostdata; 2535 if (!dev) { 2536 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", 2537 msg); 2538 return FAILED; 2539 } 2540 2541 /* Get SCSI command to be aborted */ 2542 abort = (struct CommandList *) sc->host_scribble; 2543 if (abort == NULL) { 2544 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", 2545 msg); 2546 return FAILED; 2547 } 2548 2549 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", 2550 abort->Header.Tag.upper, abort->Header.Tag.lower); 2551 as = (struct scsi_cmnd *) abort->scsi_cmd; 2552 if (as != NULL) 2553 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", 2554 as->cmnd[0], as->serial_number); 2555 dev_dbg(&h->pdev->dev, "%s\n", msg); 2556 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", 2557 h->scsi_host->host_no, dev->bus, dev->target, dev->lun); 2558 2559 /* Search reqQ to See if command is queued but not submitted, 2560 * if so, complete the command with aborted status and remove 2561 * it from the reqQ. 2562 */ 2563 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); 2564 if (found) { 2565 found->err_info->CommandStatus = CMD_ABORTED; 2566 finish_cmd(found); 2567 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", 2568 msg); 2569 return SUCCESS; 2570 } 2571 2572 /* not in reqQ, if also not in cmpQ, must have already completed */ 2573 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); 2574 if (!found) { 2575 dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n", 2576 msg); 2577 return SUCCESS; 2578 } 2579 2580 /* 2581 * Command is in flight, or possibly already completed 2582 * by the firmware (but not to the scsi mid layer) but we can't 2583 * distinguish which. Send the abort down. 2584 */ 2585 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); 2586 if (rc != 0) { 2587 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); 2588 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", 2589 h->scsi_host->host_no, 2590 dev->bus, dev->target, dev->lun); 2591 return FAILED; 2592 } 2593 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); 2594 2595 /* If the abort(s) above completed and actually aborted the 2596 * command, then the command to be aborted should already be 2597 * completed. If not, wait around a bit more to see if they 2598 * manage to complete normally. 2599 */ 2600 #define ABORT_COMPLETE_WAIT_SECS 30 2601 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { 2602 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); 2603 if (!found) 2604 return SUCCESS; 2605 msleep(100); 2606 } 2607 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", 2608 msg, ABORT_COMPLETE_WAIT_SECS); 2609 return FAILED; 2610 } 2611 2612 2613 /* 2614 * For operations that cannot sleep, a command block is allocated at init, 2615 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track 2616 * which ones are free or in use. Lock must be held when calling this. 2617 * cmd_free() is the complement. 2618 */ 2619 static struct CommandList *cmd_alloc(struct ctlr_info *h) 2620 { 2621 struct CommandList *c; 2622 int i; 2623 union u64bit temp64; 2624 dma_addr_t cmd_dma_handle, err_dma_handle; 2625 2626 do { 2627 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); 2628 if (i == h->nr_cmds) 2629 return NULL; 2630 } while (test_and_set_bit 2631 (i & (BITS_PER_LONG - 1), 2632 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); 2633 c = h->cmd_pool + i; 2634 memset(c, 0, sizeof(*c)); 2635 cmd_dma_handle = h->cmd_pool_dhandle 2636 + i * sizeof(*c); 2637 c->err_info = h->errinfo_pool + i; 2638 memset(c->err_info, 0, sizeof(*c->err_info)); 2639 err_dma_handle = h->errinfo_pool_dhandle 2640 + i * sizeof(*c->err_info); 2641 h->nr_allocs++; 2642 2643 c->cmdindex = i; 2644 2645 INIT_LIST_HEAD(&c->list); 2646 c->busaddr = (u32) cmd_dma_handle; 2647 temp64.val = (u64) err_dma_handle; 2648 c->ErrDesc.Addr.lower = temp64.val32.lower; 2649 c->ErrDesc.Addr.upper = temp64.val32.upper; 2650 c->ErrDesc.Len = sizeof(*c->err_info); 2651 2652 c->h = h; 2653 return c; 2654 } 2655 2656 /* For operations that can wait for kmalloc to possibly sleep, 2657 * this routine can be called. Lock need not be held to call 2658 * cmd_special_alloc. cmd_special_free() is the complement. 2659 */ 2660 static struct CommandList *cmd_special_alloc(struct ctlr_info *h) 2661 { 2662 struct CommandList *c; 2663 union u64bit temp64; 2664 dma_addr_t cmd_dma_handle, err_dma_handle; 2665 2666 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); 2667 if (c == NULL) 2668 return NULL; 2669 memset(c, 0, sizeof(*c)); 2670 2671 c->cmdindex = -1; 2672 2673 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), 2674 &err_dma_handle); 2675 2676 if (c->err_info == NULL) { 2677 pci_free_consistent(h->pdev, 2678 sizeof(*c), c, cmd_dma_handle); 2679 return NULL; 2680 } 2681 memset(c->err_info, 0, sizeof(*c->err_info)); 2682 2683 INIT_LIST_HEAD(&c->list); 2684 c->busaddr = (u32) cmd_dma_handle; 2685 temp64.val = (u64) err_dma_handle; 2686 c->ErrDesc.Addr.lower = temp64.val32.lower; 2687 c->ErrDesc.Addr.upper = temp64.val32.upper; 2688 c->ErrDesc.Len = sizeof(*c->err_info); 2689 2690 c->h = h; 2691 return c; 2692 } 2693 2694 static void cmd_free(struct ctlr_info *h, struct CommandList *c) 2695 { 2696 int i; 2697 2698 i = c - h->cmd_pool; 2699 clear_bit(i & (BITS_PER_LONG - 1), 2700 h->cmd_pool_bits + (i / BITS_PER_LONG)); 2701 h->nr_frees++; 2702 } 2703 2704 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) 2705 { 2706 union u64bit temp64; 2707 2708 temp64.val32.lower = c->ErrDesc.Addr.lower; 2709 temp64.val32.upper = c->ErrDesc.Addr.upper; 2710 pci_free_consistent(h->pdev, sizeof(*c->err_info), 2711 c->err_info, (dma_addr_t) temp64.val); 2712 pci_free_consistent(h->pdev, sizeof(*c), 2713 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); 2714 } 2715 2716 #ifdef CONFIG_COMPAT 2717 2718 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) 2719 { 2720 IOCTL32_Command_struct __user *arg32 = 2721 (IOCTL32_Command_struct __user *) arg; 2722 IOCTL_Command_struct arg64; 2723 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); 2724 int err; 2725 u32 cp; 2726 2727 memset(&arg64, 0, sizeof(arg64)); 2728 err = 0; 2729 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2730 sizeof(arg64.LUN_info)); 2731 err |= copy_from_user(&arg64.Request, &arg32->Request, 2732 sizeof(arg64.Request)); 2733 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2734 sizeof(arg64.error_info)); 2735 err |= get_user(arg64.buf_size, &arg32->buf_size); 2736 err |= get_user(cp, &arg32->buf); 2737 arg64.buf = compat_ptr(cp); 2738 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2739 2740 if (err) 2741 return -EFAULT; 2742 2743 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p); 2744 if (err) 2745 return err; 2746 err |= copy_in_user(&arg32->error_info, &p->error_info, 2747 sizeof(arg32->error_info)); 2748 if (err) 2749 return -EFAULT; 2750 return err; 2751 } 2752 2753 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, 2754 int cmd, void *arg) 2755 { 2756 BIG_IOCTL32_Command_struct __user *arg32 = 2757 (BIG_IOCTL32_Command_struct __user *) arg; 2758 BIG_IOCTL_Command_struct arg64; 2759 BIG_IOCTL_Command_struct __user *p = 2760 compat_alloc_user_space(sizeof(arg64)); 2761 int err; 2762 u32 cp; 2763 2764 memset(&arg64, 0, sizeof(arg64)); 2765 err = 0; 2766 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, 2767 sizeof(arg64.LUN_info)); 2768 err |= copy_from_user(&arg64.Request, &arg32->Request, 2769 sizeof(arg64.Request)); 2770 err |= copy_from_user(&arg64.error_info, &arg32->error_info, 2771 sizeof(arg64.error_info)); 2772 err |= get_user(arg64.buf_size, &arg32->buf_size); 2773 err |= get_user(arg64.malloc_size, &arg32->malloc_size); 2774 err |= get_user(cp, &arg32->buf); 2775 arg64.buf = compat_ptr(cp); 2776 err |= copy_to_user(p, &arg64, sizeof(arg64)); 2777 2778 if (err) 2779 return -EFAULT; 2780 2781 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); 2782 if (err) 2783 return err; 2784 err |= copy_in_user(&arg32->error_info, &p->error_info, 2785 sizeof(arg32->error_info)); 2786 if (err) 2787 return -EFAULT; 2788 return err; 2789 } 2790 2791 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) 2792 { 2793 switch (cmd) { 2794 case CCISS_GETPCIINFO: 2795 case CCISS_GETINTINFO: 2796 case CCISS_SETINTINFO: 2797 case CCISS_GETNODENAME: 2798 case CCISS_SETNODENAME: 2799 case CCISS_GETHEARTBEAT: 2800 case CCISS_GETBUSTYPES: 2801 case CCISS_GETFIRMVER: 2802 case CCISS_GETDRIVVER: 2803 case CCISS_REVALIDVOLS: 2804 case CCISS_DEREGDISK: 2805 case CCISS_REGNEWDISK: 2806 case CCISS_REGNEWD: 2807 case CCISS_RESCANDISK: 2808 case CCISS_GETLUNINFO: 2809 return hpsa_ioctl(dev, cmd, arg); 2810 2811 case CCISS_PASSTHRU32: 2812 return hpsa_ioctl32_passthru(dev, cmd, arg); 2813 case CCISS_BIG_PASSTHRU32: 2814 return hpsa_ioctl32_big_passthru(dev, cmd, arg); 2815 2816 default: 2817 return -ENOIOCTLCMD; 2818 } 2819 } 2820 #endif 2821 2822 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) 2823 { 2824 struct hpsa_pci_info pciinfo; 2825 2826 if (!argp) 2827 return -EINVAL; 2828 pciinfo.domain = pci_domain_nr(h->pdev->bus); 2829 pciinfo.bus = h->pdev->bus->number; 2830 pciinfo.dev_fn = h->pdev->devfn; 2831 pciinfo.board_id = h->board_id; 2832 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) 2833 return -EFAULT; 2834 return 0; 2835 } 2836 2837 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) 2838 { 2839 DriverVer_type DriverVer; 2840 unsigned char vmaj, vmin, vsubmin; 2841 int rc; 2842 2843 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", 2844 &vmaj, &vmin, &vsubmin); 2845 if (rc != 3) { 2846 dev_info(&h->pdev->dev, "driver version string '%s' " 2847 "unrecognized.", HPSA_DRIVER_VERSION); 2848 vmaj = 0; 2849 vmin = 0; 2850 vsubmin = 0; 2851 } 2852 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; 2853 if (!argp) 2854 return -EINVAL; 2855 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) 2856 return -EFAULT; 2857 return 0; 2858 } 2859 2860 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2861 { 2862 IOCTL_Command_struct iocommand; 2863 struct CommandList *c; 2864 char *buff = NULL; 2865 union u64bit temp64; 2866 2867 if (!argp) 2868 return -EINVAL; 2869 if (!capable(CAP_SYS_RAWIO)) 2870 return -EPERM; 2871 if (copy_from_user(&iocommand, argp, sizeof(iocommand))) 2872 return -EFAULT; 2873 if ((iocommand.buf_size < 1) && 2874 (iocommand.Request.Type.Direction != XFER_NONE)) { 2875 return -EINVAL; 2876 } 2877 if (iocommand.buf_size > 0) { 2878 buff = kmalloc(iocommand.buf_size, GFP_KERNEL); 2879 if (buff == NULL) 2880 return -EFAULT; 2881 if (iocommand.Request.Type.Direction == XFER_WRITE) { 2882 /* Copy the data into the buffer we created */ 2883 if (copy_from_user(buff, iocommand.buf, 2884 iocommand.buf_size)) { 2885 kfree(buff); 2886 return -EFAULT; 2887 } 2888 } else { 2889 memset(buff, 0, iocommand.buf_size); 2890 } 2891 } 2892 c = cmd_special_alloc(h); 2893 if (c == NULL) { 2894 kfree(buff); 2895 return -ENOMEM; 2896 } 2897 /* Fill in the command type */ 2898 c->cmd_type = CMD_IOCTL_PEND; 2899 /* Fill in Command Header */ 2900 c->Header.ReplyQueue = 0; /* unused in simple mode */ 2901 if (iocommand.buf_size > 0) { /* buffer to fill */ 2902 c->Header.SGList = 1; 2903 c->Header.SGTotal = 1; 2904 } else { /* no buffers to fill */ 2905 c->Header.SGList = 0; 2906 c->Header.SGTotal = 0; 2907 } 2908 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); 2909 /* use the kernel address the cmd block for tag */ 2910 c->Header.Tag.lower = c->busaddr; 2911 2912 /* Fill in Request block */ 2913 memcpy(&c->Request, &iocommand.Request, 2914 sizeof(c->Request)); 2915 2916 /* Fill in the scatter gather information */ 2917 if (iocommand.buf_size > 0) { 2918 temp64.val = pci_map_single(h->pdev, buff, 2919 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); 2920 c->SG[0].Addr.lower = temp64.val32.lower; 2921 c->SG[0].Addr.upper = temp64.val32.upper; 2922 c->SG[0].Len = iocommand.buf_size; 2923 c->SG[0].Ext = 0; /* we are not chaining*/ 2924 } 2925 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 2926 if (iocommand.buf_size > 0) 2927 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); 2928 check_ioctl_unit_attention(h, c); 2929 2930 /* Copy the error information out */ 2931 memcpy(&iocommand.error_info, c->err_info, 2932 sizeof(iocommand.error_info)); 2933 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { 2934 kfree(buff); 2935 cmd_special_free(h, c); 2936 return -EFAULT; 2937 } 2938 if (iocommand.Request.Type.Direction == XFER_READ && 2939 iocommand.buf_size > 0) { 2940 /* Copy the data out of the buffer we created */ 2941 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { 2942 kfree(buff); 2943 cmd_special_free(h, c); 2944 return -EFAULT; 2945 } 2946 } 2947 kfree(buff); 2948 cmd_special_free(h, c); 2949 return 0; 2950 } 2951 2952 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) 2953 { 2954 BIG_IOCTL_Command_struct *ioc; 2955 struct CommandList *c; 2956 unsigned char **buff = NULL; 2957 int *buff_size = NULL; 2958 union u64bit temp64; 2959 BYTE sg_used = 0; 2960 int status = 0; 2961 int i; 2962 u32 left; 2963 u32 sz; 2964 BYTE __user *data_ptr; 2965 2966 if (!argp) 2967 return -EINVAL; 2968 if (!capable(CAP_SYS_RAWIO)) 2969 return -EPERM; 2970 ioc = (BIG_IOCTL_Command_struct *) 2971 kmalloc(sizeof(*ioc), GFP_KERNEL); 2972 if (!ioc) { 2973 status = -ENOMEM; 2974 goto cleanup1; 2975 } 2976 if (copy_from_user(ioc, argp, sizeof(*ioc))) { 2977 status = -EFAULT; 2978 goto cleanup1; 2979 } 2980 if ((ioc->buf_size < 1) && 2981 (ioc->Request.Type.Direction != XFER_NONE)) { 2982 status = -EINVAL; 2983 goto cleanup1; 2984 } 2985 /* Check kmalloc limits using all SGs */ 2986 if (ioc->malloc_size > MAX_KMALLOC_SIZE) { 2987 status = -EINVAL; 2988 goto cleanup1; 2989 } 2990 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { 2991 status = -EINVAL; 2992 goto cleanup1; 2993 } 2994 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); 2995 if (!buff) { 2996 status = -ENOMEM; 2997 goto cleanup1; 2998 } 2999 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); 3000 if (!buff_size) { 3001 status = -ENOMEM; 3002 goto cleanup1; 3003 } 3004 left = ioc->buf_size; 3005 data_ptr = ioc->buf; 3006 while (left) { 3007 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; 3008 buff_size[sg_used] = sz; 3009 buff[sg_used] = kmalloc(sz, GFP_KERNEL); 3010 if (buff[sg_used] == NULL) { 3011 status = -ENOMEM; 3012 goto cleanup1; 3013 } 3014 if (ioc->Request.Type.Direction == XFER_WRITE) { 3015 if (copy_from_user(buff[sg_used], data_ptr, sz)) { 3016 status = -ENOMEM; 3017 goto cleanup1; 3018 } 3019 } else 3020 memset(buff[sg_used], 0, sz); 3021 left -= sz; 3022 data_ptr += sz; 3023 sg_used++; 3024 } 3025 c = cmd_special_alloc(h); 3026 if (c == NULL) { 3027 status = -ENOMEM; 3028 goto cleanup1; 3029 } 3030 c->cmd_type = CMD_IOCTL_PEND; 3031 c->Header.ReplyQueue = 0; 3032 c->Header.SGList = c->Header.SGTotal = sg_used; 3033 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); 3034 c->Header.Tag.lower = c->busaddr; 3035 memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); 3036 if (ioc->buf_size > 0) { 3037 int i; 3038 for (i = 0; i < sg_used; i++) { 3039 temp64.val = pci_map_single(h->pdev, buff[i], 3040 buff_size[i], PCI_DMA_BIDIRECTIONAL); 3041 c->SG[i].Addr.lower = temp64.val32.lower; 3042 c->SG[i].Addr.upper = temp64.val32.upper; 3043 c->SG[i].Len = buff_size[i]; 3044 /* we are not chaining */ 3045 c->SG[i].Ext = 0; 3046 } 3047 } 3048 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); 3049 if (sg_used) 3050 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); 3051 check_ioctl_unit_attention(h, c); 3052 /* Copy the error information out */ 3053 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); 3054 if (copy_to_user(argp, ioc, sizeof(*ioc))) { 3055 cmd_special_free(h, c); 3056 status = -EFAULT; 3057 goto cleanup1; 3058 } 3059 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) { 3060 /* Copy the data out of the buffer we created */ 3061 BYTE __user *ptr = ioc->buf; 3062 for (i = 0; i < sg_used; i++) { 3063 if (copy_to_user(ptr, buff[i], buff_size[i])) { 3064 cmd_special_free(h, c); 3065 status = -EFAULT; 3066 goto cleanup1; 3067 } 3068 ptr += buff_size[i]; 3069 } 3070 } 3071 cmd_special_free(h, c); 3072 status = 0; 3073 cleanup1: 3074 if (buff) { 3075 for (i = 0; i < sg_used; i++) 3076 kfree(buff[i]); 3077 kfree(buff); 3078 } 3079 kfree(buff_size); 3080 kfree(ioc); 3081 return status; 3082 } 3083 3084 static void check_ioctl_unit_attention(struct ctlr_info *h, 3085 struct CommandList *c) 3086 { 3087 if (c->err_info->CommandStatus == CMD_TARGET_STATUS && 3088 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) 3089 (void) check_for_unit_attention(h, c); 3090 } 3091 /* 3092 * ioctl 3093 */ 3094 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) 3095 { 3096 struct ctlr_info *h; 3097 void __user *argp = (void __user *)arg; 3098 3099 h = sdev_to_hba(dev); 3100 3101 switch (cmd) { 3102 case CCISS_DEREGDISK: 3103 case CCISS_REGNEWDISK: 3104 case CCISS_REGNEWD: 3105 hpsa_scan_start(h->scsi_host); 3106 return 0; 3107 case CCISS_GETPCIINFO: 3108 return hpsa_getpciinfo_ioctl(h, argp); 3109 case CCISS_GETDRIVVER: 3110 return hpsa_getdrivver_ioctl(h, argp); 3111 case CCISS_PASSTHRU: 3112 return hpsa_passthru_ioctl(h, argp); 3113 case CCISS_BIG_PASSTHRU: 3114 return hpsa_big_passthru_ioctl(h, argp); 3115 default: 3116 return -ENOTTY; 3117 } 3118 } 3119 3120 static int __devinit hpsa_send_host_reset(struct ctlr_info *h, 3121 unsigned char *scsi3addr, u8 reset_type) 3122 { 3123 struct CommandList *c; 3124 3125 c = cmd_alloc(h); 3126 if (!c) 3127 return -ENOMEM; 3128 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, 3129 RAID_CTLR_LUNID, TYPE_MSG); 3130 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ 3131 c->waiting = NULL; 3132 enqueue_cmd_and_start_io(h, c); 3133 /* Don't wait for completion, the reset won't complete. Don't free 3134 * the command either. This is the last command we will send before 3135 * re-initializing everything, so it doesn't matter and won't leak. 3136 */ 3137 return 0; 3138 } 3139 3140 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, 3141 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr, 3142 int cmd_type) 3143 { 3144 int pci_dir = XFER_NONE; 3145 struct CommandList *a; /* for commands to be aborted */ 3146 3147 c->cmd_type = CMD_IOCTL_PEND; 3148 c->Header.ReplyQueue = 0; 3149 if (buff != NULL && size > 0) { 3150 c->Header.SGList = 1; 3151 c->Header.SGTotal = 1; 3152 } else { 3153 c->Header.SGList = 0; 3154 c->Header.SGTotal = 0; 3155 } 3156 c->Header.Tag.lower = c->busaddr; 3157 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); 3158 3159 c->Request.Type.Type = cmd_type; 3160 if (cmd_type == TYPE_CMD) { 3161 switch (cmd) { 3162 case HPSA_INQUIRY: 3163 /* are we trying to read a vital product page */ 3164 if (page_code != 0) { 3165 c->Request.CDB[1] = 0x01; 3166 c->Request.CDB[2] = page_code; 3167 } 3168 c->Request.CDBLen = 6; 3169 c->Request.Type.Attribute = ATTR_SIMPLE; 3170 c->Request.Type.Direction = XFER_READ; 3171 c->Request.Timeout = 0; 3172 c->Request.CDB[0] = HPSA_INQUIRY; 3173 c->Request.CDB[4] = size & 0xFF; 3174 break; 3175 case HPSA_REPORT_LOG: 3176 case HPSA_REPORT_PHYS: 3177 /* Talking to controller so It's a physical command 3178 mode = 00 target = 0. Nothing to write. 3179 */ 3180 c->Request.CDBLen = 12; 3181 c->Request.Type.Attribute = ATTR_SIMPLE; 3182 c->Request.Type.Direction = XFER_READ; 3183 c->Request.Timeout = 0; 3184 c->Request.CDB[0] = cmd; 3185 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ 3186 c->Request.CDB[7] = (size >> 16) & 0xFF; 3187 c->Request.CDB[8] = (size >> 8) & 0xFF; 3188 c->Request.CDB[9] = size & 0xFF; 3189 break; 3190 case HPSA_CACHE_FLUSH: 3191 c->Request.CDBLen = 12; 3192 c->Request.Type.Attribute = ATTR_SIMPLE; 3193 c->Request.Type.Direction = XFER_WRITE; 3194 c->Request.Timeout = 0; 3195 c->Request.CDB[0] = BMIC_WRITE; 3196 c->Request.CDB[6] = BMIC_CACHE_FLUSH; 3197 c->Request.CDB[7] = (size >> 8) & 0xFF; 3198 c->Request.CDB[8] = size & 0xFF; 3199 break; 3200 case TEST_UNIT_READY: 3201 c->Request.CDBLen = 6; 3202 c->Request.Type.Attribute = ATTR_SIMPLE; 3203 c->Request.Type.Direction = XFER_NONE; 3204 c->Request.Timeout = 0; 3205 break; 3206 default: 3207 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); 3208 BUG(); 3209 return; 3210 } 3211 } else if (cmd_type == TYPE_MSG) { 3212 switch (cmd) { 3213 3214 case HPSA_DEVICE_RESET_MSG: 3215 c->Request.CDBLen = 16; 3216 c->Request.Type.Type = 1; /* It is a MSG not a CMD */ 3217 c->Request.Type.Attribute = ATTR_SIMPLE; 3218 c->Request.Type.Direction = XFER_NONE; 3219 c->Request.Timeout = 0; /* Don't time out */ 3220 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); 3221 c->Request.CDB[0] = cmd; 3222 c->Request.CDB[1] = 0x03; /* Reset target above */ 3223 /* If bytes 4-7 are zero, it means reset the */ 3224 /* LunID device */ 3225 c->Request.CDB[4] = 0x00; 3226 c->Request.CDB[5] = 0x00; 3227 c->Request.CDB[6] = 0x00; 3228 c->Request.CDB[7] = 0x00; 3229 break; 3230 case HPSA_ABORT_MSG: 3231 a = buff; /* point to command to be aborted */ 3232 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n", 3233 a->Header.Tag.upper, a->Header.Tag.lower, 3234 c->Header.Tag.upper, c->Header.Tag.lower); 3235 c->Request.CDBLen = 16; 3236 c->Request.Type.Type = TYPE_MSG; 3237 c->Request.Type.Attribute = ATTR_SIMPLE; 3238 c->Request.Type.Direction = XFER_WRITE; 3239 c->Request.Timeout = 0; /* Don't time out */ 3240 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; 3241 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; 3242 c->Request.CDB[2] = 0x00; /* reserved */ 3243 c->Request.CDB[3] = 0x00; /* reserved */ 3244 /* Tag to abort goes in CDB[4]-CDB[11] */ 3245 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF; 3246 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF; 3247 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF; 3248 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF; 3249 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF; 3250 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF; 3251 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF; 3252 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF; 3253 c->Request.CDB[12] = 0x00; /* reserved */ 3254 c->Request.CDB[13] = 0x00; /* reserved */ 3255 c->Request.CDB[14] = 0x00; /* reserved */ 3256 c->Request.CDB[15] = 0x00; /* reserved */ 3257 break; 3258 default: 3259 dev_warn(&h->pdev->dev, "unknown message type %d\n", 3260 cmd); 3261 BUG(); 3262 } 3263 } else { 3264 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); 3265 BUG(); 3266 } 3267 3268 switch (c->Request.Type.Direction) { 3269 case XFER_READ: 3270 pci_dir = PCI_DMA_FROMDEVICE; 3271 break; 3272 case XFER_WRITE: 3273 pci_dir = PCI_DMA_TODEVICE; 3274 break; 3275 case XFER_NONE: 3276 pci_dir = PCI_DMA_NONE; 3277 break; 3278 default: 3279 pci_dir = PCI_DMA_BIDIRECTIONAL; 3280 } 3281 3282 hpsa_map_one(h->pdev, c, buff, size, pci_dir); 3283 3284 return; 3285 } 3286 3287 /* 3288 * Map (physical) PCI mem into (virtual) kernel space 3289 */ 3290 static void __iomem *remap_pci_mem(ulong base, ulong size) 3291 { 3292 ulong page_base = ((ulong) base) & PAGE_MASK; 3293 ulong page_offs = ((ulong) base) - page_base; 3294 void __iomem *page_remapped = ioremap(page_base, page_offs + size); 3295 3296 return page_remapped ? (page_remapped + page_offs) : NULL; 3297 } 3298 3299 /* Takes cmds off the submission queue and sends them to the hardware, 3300 * then puts them on the queue of cmds waiting for completion. 3301 */ 3302 static void start_io(struct ctlr_info *h) 3303 { 3304 struct CommandList *c; 3305 3306 while (!list_empty(&h->reqQ)) { 3307 c = list_entry(h->reqQ.next, struct CommandList, list); 3308 /* can't do anything if fifo is full */ 3309 if ((h->access.fifo_full(h))) { 3310 dev_warn(&h->pdev->dev, "fifo full\n"); 3311 break; 3312 } 3313 3314 /* Get the first entry from the Request Q */ 3315 removeQ(c); 3316 h->Qdepth--; 3317 3318 /* Tell the controller execute command */ 3319 h->access.submit_command(h, c); 3320 3321 /* Put job onto the completed Q */ 3322 addQ(&h->cmpQ, c); 3323 } 3324 } 3325 3326 static inline unsigned long get_next_completion(struct ctlr_info *h) 3327 { 3328 return h->access.command_completed(h); 3329 } 3330 3331 static inline bool interrupt_pending(struct ctlr_info *h) 3332 { 3333 return h->access.intr_pending(h); 3334 } 3335 3336 static inline long interrupt_not_for_us(struct ctlr_info *h) 3337 { 3338 return (h->access.intr_pending(h) == 0) || 3339 (h->interrupts_enabled == 0); 3340 } 3341 3342 static inline int bad_tag(struct ctlr_info *h, u32 tag_index, 3343 u32 raw_tag) 3344 { 3345 if (unlikely(tag_index >= h->nr_cmds)) { 3346 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); 3347 return 1; 3348 } 3349 return 0; 3350 } 3351 3352 static inline void finish_cmd(struct CommandList *c) 3353 { 3354 removeQ(c); 3355 if (likely(c->cmd_type == CMD_SCSI)) 3356 complete_scsi_command(c); 3357 else if (c->cmd_type == CMD_IOCTL_PEND) 3358 complete(c->waiting); 3359 } 3360 3361 static inline u32 hpsa_tag_contains_index(u32 tag) 3362 { 3363 return tag & DIRECT_LOOKUP_BIT; 3364 } 3365 3366 static inline u32 hpsa_tag_to_index(u32 tag) 3367 { 3368 return tag >> DIRECT_LOOKUP_SHIFT; 3369 } 3370 3371 3372 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) 3373 { 3374 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) 3375 #define HPSA_SIMPLE_ERROR_BITS 0x03 3376 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) 3377 return tag & ~HPSA_SIMPLE_ERROR_BITS; 3378 return tag & ~HPSA_PERF_ERROR_BITS; 3379 } 3380 3381 /* process completion of an indexed ("direct lookup") command */ 3382 static inline u32 process_indexed_cmd(struct ctlr_info *h, 3383 u32 raw_tag) 3384 { 3385 u32 tag_index; 3386 struct CommandList *c; 3387 3388 tag_index = hpsa_tag_to_index(raw_tag); 3389 if (bad_tag(h, tag_index, raw_tag)) 3390 return next_command(h); 3391 c = h->cmd_pool + tag_index; 3392 finish_cmd(c); 3393 return next_command(h); 3394 } 3395 3396 /* process completion of a non-indexed command */ 3397 static inline u32 process_nonindexed_cmd(struct ctlr_info *h, 3398 u32 raw_tag) 3399 { 3400 u32 tag; 3401 struct CommandList *c = NULL; 3402 3403 tag = hpsa_tag_discard_error_bits(h, raw_tag); 3404 list_for_each_entry(c, &h->cmpQ, list) { 3405 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { 3406 finish_cmd(c); 3407 return next_command(h); 3408 } 3409 } 3410 bad_tag(h, h->nr_cmds + 1, raw_tag); 3411 return next_command(h); 3412 } 3413 3414 /* Some controllers, like p400, will give us one interrupt 3415 * after a soft reset, even if we turned interrupts off. 3416 * Only need to check for this in the hpsa_xxx_discard_completions 3417 * functions. 3418 */ 3419 static int ignore_bogus_interrupt(struct ctlr_info *h) 3420 { 3421 if (likely(!reset_devices)) 3422 return 0; 3423 3424 if (likely(h->interrupts_enabled)) 3425 return 0; 3426 3427 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " 3428 "(known firmware bug.) Ignoring.\n"); 3429 3430 return 1; 3431 } 3432 3433 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id) 3434 { 3435 struct ctlr_info *h = dev_id; 3436 unsigned long flags; 3437 u32 raw_tag; 3438 3439 if (ignore_bogus_interrupt(h)) 3440 return IRQ_NONE; 3441 3442 if (interrupt_not_for_us(h)) 3443 return IRQ_NONE; 3444 spin_lock_irqsave(&h->lock, flags); 3445 h->last_intr_timestamp = get_jiffies_64(); 3446 while (interrupt_pending(h)) { 3447 raw_tag = get_next_completion(h); 3448 while (raw_tag != FIFO_EMPTY) 3449 raw_tag = next_command(h); 3450 } 3451 spin_unlock_irqrestore(&h->lock, flags); 3452 return IRQ_HANDLED; 3453 } 3454 3455 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id) 3456 { 3457 struct ctlr_info *h = dev_id; 3458 unsigned long flags; 3459 u32 raw_tag; 3460 3461 if (ignore_bogus_interrupt(h)) 3462 return IRQ_NONE; 3463 3464 spin_lock_irqsave(&h->lock, flags); 3465 h->last_intr_timestamp = get_jiffies_64(); 3466 raw_tag = get_next_completion(h); 3467 while (raw_tag != FIFO_EMPTY) 3468 raw_tag = next_command(h); 3469 spin_unlock_irqrestore(&h->lock, flags); 3470 return IRQ_HANDLED; 3471 } 3472 3473 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id) 3474 { 3475 struct ctlr_info *h = dev_id; 3476 unsigned long flags; 3477 u32 raw_tag; 3478 3479 if (interrupt_not_for_us(h)) 3480 return IRQ_NONE; 3481 spin_lock_irqsave(&h->lock, flags); 3482 h->last_intr_timestamp = get_jiffies_64(); 3483 while (interrupt_pending(h)) { 3484 raw_tag = get_next_completion(h); 3485 while (raw_tag != FIFO_EMPTY) { 3486 if (hpsa_tag_contains_index(raw_tag)) 3487 raw_tag = process_indexed_cmd(h, raw_tag); 3488 else 3489 raw_tag = process_nonindexed_cmd(h, raw_tag); 3490 } 3491 } 3492 spin_unlock_irqrestore(&h->lock, flags); 3493 return IRQ_HANDLED; 3494 } 3495 3496 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id) 3497 { 3498 struct ctlr_info *h = dev_id; 3499 unsigned long flags; 3500 u32 raw_tag; 3501 3502 spin_lock_irqsave(&h->lock, flags); 3503 h->last_intr_timestamp = get_jiffies_64(); 3504 raw_tag = get_next_completion(h); 3505 while (raw_tag != FIFO_EMPTY) { 3506 if (hpsa_tag_contains_index(raw_tag)) 3507 raw_tag = process_indexed_cmd(h, raw_tag); 3508 else 3509 raw_tag = process_nonindexed_cmd(h, raw_tag); 3510 } 3511 spin_unlock_irqrestore(&h->lock, flags); 3512 return IRQ_HANDLED; 3513 } 3514 3515 /* Send a message CDB to the firmware. Careful, this only works 3516 * in simple mode, not performant mode due to the tag lookup. 3517 * We only ever use this immediately after a controller reset. 3518 */ 3519 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, 3520 unsigned char type) 3521 { 3522 struct Command { 3523 struct CommandListHeader CommandHeader; 3524 struct RequestBlock Request; 3525 struct ErrDescriptor ErrorDescriptor; 3526 }; 3527 struct Command *cmd; 3528 static const size_t cmd_sz = sizeof(*cmd) + 3529 sizeof(cmd->ErrorDescriptor); 3530 dma_addr_t paddr64; 3531 uint32_t paddr32, tag; 3532 void __iomem *vaddr; 3533 int i, err; 3534 3535 vaddr = pci_ioremap_bar(pdev, 0); 3536 if (vaddr == NULL) 3537 return -ENOMEM; 3538 3539 /* The Inbound Post Queue only accepts 32-bit physical addresses for the 3540 * CCISS commands, so they must be allocated from the lower 4GiB of 3541 * memory. 3542 */ 3543 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3544 if (err) { 3545 iounmap(vaddr); 3546 return -ENOMEM; 3547 } 3548 3549 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); 3550 if (cmd == NULL) { 3551 iounmap(vaddr); 3552 return -ENOMEM; 3553 } 3554 3555 /* This must fit, because of the 32-bit consistent DMA mask. Also, 3556 * although there's no guarantee, we assume that the address is at 3557 * least 4-byte aligned (most likely, it's page-aligned). 3558 */ 3559 paddr32 = paddr64; 3560 3561 cmd->CommandHeader.ReplyQueue = 0; 3562 cmd->CommandHeader.SGList = 0; 3563 cmd->CommandHeader.SGTotal = 0; 3564 cmd->CommandHeader.Tag.lower = paddr32; 3565 cmd->CommandHeader.Tag.upper = 0; 3566 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); 3567 3568 cmd->Request.CDBLen = 16; 3569 cmd->Request.Type.Type = TYPE_MSG; 3570 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; 3571 cmd->Request.Type.Direction = XFER_NONE; 3572 cmd->Request.Timeout = 0; /* Don't time out */ 3573 cmd->Request.CDB[0] = opcode; 3574 cmd->Request.CDB[1] = type; 3575 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ 3576 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); 3577 cmd->ErrorDescriptor.Addr.upper = 0; 3578 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); 3579 3580 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); 3581 3582 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { 3583 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); 3584 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) 3585 break; 3586 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); 3587 } 3588 3589 iounmap(vaddr); 3590 3591 /* we leak the DMA buffer here ... no choice since the controller could 3592 * still complete the command. 3593 */ 3594 if (i == HPSA_MSG_SEND_RETRY_LIMIT) { 3595 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", 3596 opcode, type); 3597 return -ETIMEDOUT; 3598 } 3599 3600 pci_free_consistent(pdev, cmd_sz, cmd, paddr64); 3601 3602 if (tag & HPSA_ERROR_BIT) { 3603 dev_err(&pdev->dev, "controller message %02x:%02x failed\n", 3604 opcode, type); 3605 return -EIO; 3606 } 3607 3608 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", 3609 opcode, type); 3610 return 0; 3611 } 3612 3613 #define hpsa_noop(p) hpsa_message(p, 3, 0) 3614 3615 static int hpsa_controller_hard_reset(struct pci_dev *pdev, 3616 void * __iomem vaddr, u32 use_doorbell) 3617 { 3618 u16 pmcsr; 3619 int pos; 3620 3621 if (use_doorbell) { 3622 /* For everything after the P600, the PCI power state method 3623 * of resetting the controller doesn't work, so we have this 3624 * other way using the doorbell register. 3625 */ 3626 dev_info(&pdev->dev, "using doorbell to reset controller\n"); 3627 writel(use_doorbell, vaddr + SA5_DOORBELL); 3628 } else { /* Try to do it the PCI power state way */ 3629 3630 /* Quoting from the Open CISS Specification: "The Power 3631 * Management Control/Status Register (CSR) controls the power 3632 * state of the device. The normal operating state is D0, 3633 * CSR=00h. The software off state is D3, CSR=03h. To reset 3634 * the controller, place the interface device in D3 then to D0, 3635 * this causes a secondary PCI reset which will reset the 3636 * controller." */ 3637 3638 pos = pci_find_capability(pdev, PCI_CAP_ID_PM); 3639 if (pos == 0) { 3640 dev_err(&pdev->dev, 3641 "hpsa_reset_controller: " 3642 "PCI PM not supported\n"); 3643 return -ENODEV; 3644 } 3645 dev_info(&pdev->dev, "using PCI PM to reset controller\n"); 3646 /* enter the D3hot power management state */ 3647 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); 3648 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3649 pmcsr |= PCI_D3hot; 3650 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3651 3652 msleep(500); 3653 3654 /* enter the D0 power management state */ 3655 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 3656 pmcsr |= PCI_D0; 3657 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); 3658 3659 /* 3660 * The P600 requires a small delay when changing states. 3661 * Otherwise we may think the board did not reset and we bail. 3662 * This for kdump only and is particular to the P600. 3663 */ 3664 msleep(500); 3665 } 3666 return 0; 3667 } 3668 3669 static __devinit void init_driver_version(char *driver_version, int len) 3670 { 3671 memset(driver_version, 0, len); 3672 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); 3673 } 3674 3675 static __devinit int write_driver_ver_to_cfgtable( 3676 struct CfgTable __iomem *cfgtable) 3677 { 3678 char *driver_version; 3679 int i, size = sizeof(cfgtable->driver_version); 3680 3681 driver_version = kmalloc(size, GFP_KERNEL); 3682 if (!driver_version) 3683 return -ENOMEM; 3684 3685 init_driver_version(driver_version, size); 3686 for (i = 0; i < size; i++) 3687 writeb(driver_version[i], &cfgtable->driver_version[i]); 3688 kfree(driver_version); 3689 return 0; 3690 } 3691 3692 static __devinit void read_driver_ver_from_cfgtable( 3693 struct CfgTable __iomem *cfgtable, unsigned char *driver_ver) 3694 { 3695 int i; 3696 3697 for (i = 0; i < sizeof(cfgtable->driver_version); i++) 3698 driver_ver[i] = readb(&cfgtable->driver_version[i]); 3699 } 3700 3701 static __devinit int controller_reset_failed( 3702 struct CfgTable __iomem *cfgtable) 3703 { 3704 3705 char *driver_ver, *old_driver_ver; 3706 int rc, size = sizeof(cfgtable->driver_version); 3707 3708 old_driver_ver = kmalloc(2 * size, GFP_KERNEL); 3709 if (!old_driver_ver) 3710 return -ENOMEM; 3711 driver_ver = old_driver_ver + size; 3712 3713 /* After a reset, the 32 bytes of "driver version" in the cfgtable 3714 * should have been changed, otherwise we know the reset failed. 3715 */ 3716 init_driver_version(old_driver_ver, size); 3717 read_driver_ver_from_cfgtable(cfgtable, driver_ver); 3718 rc = !memcmp(driver_ver, old_driver_ver, size); 3719 kfree(old_driver_ver); 3720 return rc; 3721 } 3722 /* This does a hard reset of the controller using PCI power management 3723 * states or the using the doorbell register. 3724 */ 3725 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) 3726 { 3727 u64 cfg_offset; 3728 u32 cfg_base_addr; 3729 u64 cfg_base_addr_index; 3730 void __iomem *vaddr; 3731 unsigned long paddr; 3732 u32 misc_fw_support; 3733 int rc; 3734 struct CfgTable __iomem *cfgtable; 3735 u32 use_doorbell; 3736 u32 board_id; 3737 u16 command_register; 3738 3739 /* For controllers as old as the P600, this is very nearly 3740 * the same thing as 3741 * 3742 * pci_save_state(pci_dev); 3743 * pci_set_power_state(pci_dev, PCI_D3hot); 3744 * pci_set_power_state(pci_dev, PCI_D0); 3745 * pci_restore_state(pci_dev); 3746 * 3747 * For controllers newer than the P600, the pci power state 3748 * method of resetting doesn't work so we have another way 3749 * using the doorbell register. 3750 */ 3751 3752 rc = hpsa_lookup_board_id(pdev, &board_id); 3753 if (rc < 0 || !ctlr_is_resettable(board_id)) { 3754 dev_warn(&pdev->dev, "Not resetting device.\n"); 3755 return -ENODEV; 3756 } 3757 3758 /* if controller is soft- but not hard resettable... */ 3759 if (!ctlr_is_hard_resettable(board_id)) 3760 return -ENOTSUPP; /* try soft reset later. */ 3761 3762 /* Save the PCI command register */ 3763 pci_read_config_word(pdev, 4, &command_register); 3764 /* Turn the board off. This is so that later pci_restore_state() 3765 * won't turn the board on before the rest of config space is ready. 3766 */ 3767 pci_disable_device(pdev); 3768 pci_save_state(pdev); 3769 3770 /* find the first memory BAR, so we can find the cfg table */ 3771 rc = hpsa_pci_find_memory_BAR(pdev, &paddr); 3772 if (rc) 3773 return rc; 3774 vaddr = remap_pci_mem(paddr, 0x250); 3775 if (!vaddr) 3776 return -ENOMEM; 3777 3778 /* find cfgtable in order to check if reset via doorbell is supported */ 3779 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, 3780 &cfg_base_addr_index, &cfg_offset); 3781 if (rc) 3782 goto unmap_vaddr; 3783 cfgtable = remap_pci_mem(pci_resource_start(pdev, 3784 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); 3785 if (!cfgtable) { 3786 rc = -ENOMEM; 3787 goto unmap_vaddr; 3788 } 3789 rc = write_driver_ver_to_cfgtable(cfgtable); 3790 if (rc) 3791 goto unmap_vaddr; 3792 3793 /* If reset via doorbell register is supported, use that. 3794 * There are two such methods. Favor the newest method. 3795 */ 3796 misc_fw_support = readl(&cfgtable->misc_fw_support); 3797 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; 3798 if (use_doorbell) { 3799 use_doorbell = DOORBELL_CTLR_RESET2; 3800 } else { 3801 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; 3802 if (use_doorbell) { 3803 dev_warn(&pdev->dev, "Soft reset not supported. " 3804 "Firmware update is required.\n"); 3805 rc = -ENOTSUPP; /* try soft reset */ 3806 goto unmap_cfgtable; 3807 } 3808 } 3809 3810 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); 3811 if (rc) 3812 goto unmap_cfgtable; 3813 3814 pci_restore_state(pdev); 3815 rc = pci_enable_device(pdev); 3816 if (rc) { 3817 dev_warn(&pdev->dev, "failed to enable device.\n"); 3818 goto unmap_cfgtable; 3819 } 3820 pci_write_config_word(pdev, 4, command_register); 3821 3822 /* Some devices (notably the HP Smart Array 5i Controller) 3823 need a little pause here */ 3824 msleep(HPSA_POST_RESET_PAUSE_MSECS); 3825 3826 /* Wait for board to become not ready, then ready. */ 3827 dev_info(&pdev->dev, "Waiting for board to reset.\n"); 3828 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY); 3829 if (rc) { 3830 dev_warn(&pdev->dev, 3831 "failed waiting for board to reset." 3832 " Will try soft reset.\n"); 3833 rc = -ENOTSUPP; /* Not expected, but try soft reset later */ 3834 goto unmap_cfgtable; 3835 } 3836 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); 3837 if (rc) { 3838 dev_warn(&pdev->dev, 3839 "failed waiting for board to become ready " 3840 "after hard reset\n"); 3841 goto unmap_cfgtable; 3842 } 3843 3844 rc = controller_reset_failed(vaddr); 3845 if (rc < 0) 3846 goto unmap_cfgtable; 3847 if (rc) { 3848 dev_warn(&pdev->dev, "Unable to successfully reset " 3849 "controller. Will try soft reset.\n"); 3850 rc = -ENOTSUPP; 3851 } else { 3852 dev_info(&pdev->dev, "board ready after hard reset.\n"); 3853 } 3854 3855 unmap_cfgtable: 3856 iounmap(cfgtable); 3857 3858 unmap_vaddr: 3859 iounmap(vaddr); 3860 return rc; 3861 } 3862 3863 /* 3864 * We cannot read the structure directly, for portability we must use 3865 * the io functions. 3866 * This is for debug only. 3867 */ 3868 static void print_cfg_table(struct device *dev, struct CfgTable *tb) 3869 { 3870 #ifdef HPSA_DEBUG 3871 int i; 3872 char temp_name[17]; 3873 3874 dev_info(dev, "Controller Configuration information\n"); 3875 dev_info(dev, "------------------------------------\n"); 3876 for (i = 0; i < 4; i++) 3877 temp_name[i] = readb(&(tb->Signature[i])); 3878 temp_name[4] = '\0'; 3879 dev_info(dev, " Signature = %s\n", temp_name); 3880 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); 3881 dev_info(dev, " Transport methods supported = 0x%x\n", 3882 readl(&(tb->TransportSupport))); 3883 dev_info(dev, " Transport methods active = 0x%x\n", 3884 readl(&(tb->TransportActive))); 3885 dev_info(dev, " Requested transport Method = 0x%x\n", 3886 readl(&(tb->HostWrite.TransportRequest))); 3887 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", 3888 readl(&(tb->HostWrite.CoalIntDelay))); 3889 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", 3890 readl(&(tb->HostWrite.CoalIntCount))); 3891 dev_info(dev, " Max outstanding commands = 0x%d\n", 3892 readl(&(tb->CmdsOutMax))); 3893 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); 3894 for (i = 0; i < 16; i++) 3895 temp_name[i] = readb(&(tb->ServerName[i])); 3896 temp_name[16] = '\0'; 3897 dev_info(dev, " Server Name = %s\n", temp_name); 3898 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", 3899 readl(&(tb->HeartBeat))); 3900 #endif /* HPSA_DEBUG */ 3901 } 3902 3903 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) 3904 { 3905 int i, offset, mem_type, bar_type; 3906 3907 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ 3908 return 0; 3909 offset = 0; 3910 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 3911 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; 3912 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) 3913 offset += 4; 3914 else { 3915 mem_type = pci_resource_flags(pdev, i) & 3916 PCI_BASE_ADDRESS_MEM_TYPE_MASK; 3917 switch (mem_type) { 3918 case PCI_BASE_ADDRESS_MEM_TYPE_32: 3919 case PCI_BASE_ADDRESS_MEM_TYPE_1M: 3920 offset += 4; /* 32 bit */ 3921 break; 3922 case PCI_BASE_ADDRESS_MEM_TYPE_64: 3923 offset += 8; 3924 break; 3925 default: /* reserved in PCI 2.2 */ 3926 dev_warn(&pdev->dev, 3927 "base address is invalid\n"); 3928 return -1; 3929 break; 3930 } 3931 } 3932 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) 3933 return i + 1; 3934 } 3935 return -1; 3936 } 3937 3938 /* If MSI/MSI-X is supported by the kernel we will try to enable it on 3939 * controllers that are capable. If not, we use IO-APIC mode. 3940 */ 3941 3942 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h) 3943 { 3944 #ifdef CONFIG_PCI_MSI 3945 int err; 3946 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, 3947 {0, 2}, {0, 3} 3948 }; 3949 3950 /* Some boards advertise MSI but don't really support it */ 3951 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || 3952 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) 3953 goto default_int_mode; 3954 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { 3955 dev_info(&h->pdev->dev, "MSIX\n"); 3956 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4); 3957 if (!err) { 3958 h->intr[0] = hpsa_msix_entries[0].vector; 3959 h->intr[1] = hpsa_msix_entries[1].vector; 3960 h->intr[2] = hpsa_msix_entries[2].vector; 3961 h->intr[3] = hpsa_msix_entries[3].vector; 3962 h->msix_vector = 1; 3963 return; 3964 } 3965 if (err > 0) { 3966 dev_warn(&h->pdev->dev, "only %d MSI-X vectors " 3967 "available\n", err); 3968 goto default_int_mode; 3969 } else { 3970 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", 3971 err); 3972 goto default_int_mode; 3973 } 3974 } 3975 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { 3976 dev_info(&h->pdev->dev, "MSI\n"); 3977 if (!pci_enable_msi(h->pdev)) 3978 h->msi_vector = 1; 3979 else 3980 dev_warn(&h->pdev->dev, "MSI init failed\n"); 3981 } 3982 default_int_mode: 3983 #endif /* CONFIG_PCI_MSI */ 3984 /* if we get here we're going to use the default interrupt mode */ 3985 h->intr[h->intr_mode] = h->pdev->irq; 3986 } 3987 3988 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) 3989 { 3990 int i; 3991 u32 subsystem_vendor_id, subsystem_device_id; 3992 3993 subsystem_vendor_id = pdev->subsystem_vendor; 3994 subsystem_device_id = pdev->subsystem_device; 3995 *board_id = ((subsystem_device_id << 16) & 0xffff0000) | 3996 subsystem_vendor_id; 3997 3998 for (i = 0; i < ARRAY_SIZE(products); i++) 3999 if (*board_id == products[i].board_id) 4000 return i; 4001 4002 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && 4003 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || 4004 !hpsa_allow_any) { 4005 dev_warn(&pdev->dev, "unrecognized board ID: " 4006 "0x%08x, ignoring.\n", *board_id); 4007 return -ENODEV; 4008 } 4009 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ 4010 } 4011 4012 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev, 4013 unsigned long *memory_bar) 4014 { 4015 int i; 4016 4017 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 4018 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { 4019 /* addressing mode bits already removed */ 4020 *memory_bar = pci_resource_start(pdev, i); 4021 dev_dbg(&pdev->dev, "memory BAR = %lx\n", 4022 *memory_bar); 4023 return 0; 4024 } 4025 dev_warn(&pdev->dev, "no memory BAR found\n"); 4026 return -ENODEV; 4027 } 4028 4029 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev, 4030 void __iomem *vaddr, int wait_for_ready) 4031 { 4032 int i, iterations; 4033 u32 scratchpad; 4034 if (wait_for_ready) 4035 iterations = HPSA_BOARD_READY_ITERATIONS; 4036 else 4037 iterations = HPSA_BOARD_NOT_READY_ITERATIONS; 4038 4039 for (i = 0; i < iterations; i++) { 4040 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); 4041 if (wait_for_ready) { 4042 if (scratchpad == HPSA_FIRMWARE_READY) 4043 return 0; 4044 } else { 4045 if (scratchpad != HPSA_FIRMWARE_READY) 4046 return 0; 4047 } 4048 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); 4049 } 4050 dev_warn(&pdev->dev, "board not ready, timed out.\n"); 4051 return -ENODEV; 4052 } 4053 4054 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev, 4055 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index, 4056 u64 *cfg_offset) 4057 { 4058 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); 4059 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); 4060 *cfg_base_addr &= (u32) 0x0000ffff; 4061 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); 4062 if (*cfg_base_addr_index == -1) { 4063 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); 4064 return -ENODEV; 4065 } 4066 return 0; 4067 } 4068 4069 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h) 4070 { 4071 u64 cfg_offset; 4072 u32 cfg_base_addr; 4073 u64 cfg_base_addr_index; 4074 u32 trans_offset; 4075 int rc; 4076 4077 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, 4078 &cfg_base_addr_index, &cfg_offset); 4079 if (rc) 4080 return rc; 4081 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, 4082 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); 4083 if (!h->cfgtable) 4084 return -ENOMEM; 4085 rc = write_driver_ver_to_cfgtable(h->cfgtable); 4086 if (rc) 4087 return rc; 4088 /* Find performant mode table. */ 4089 trans_offset = readl(&h->cfgtable->TransMethodOffset); 4090 h->transtable = remap_pci_mem(pci_resource_start(h->pdev, 4091 cfg_base_addr_index)+cfg_offset+trans_offset, 4092 sizeof(*h->transtable)); 4093 if (!h->transtable) 4094 return -ENOMEM; 4095 return 0; 4096 } 4097 4098 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) 4099 { 4100 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); 4101 4102 /* Limit commands in memory limited kdump scenario. */ 4103 if (reset_devices && h->max_commands > 32) 4104 h->max_commands = 32; 4105 4106 if (h->max_commands < 16) { 4107 dev_warn(&h->pdev->dev, "Controller reports " 4108 "max supported commands of %d, an obvious lie. " 4109 "Using 16. Ensure that firmware is up to date.\n", 4110 h->max_commands); 4111 h->max_commands = 16; 4112 } 4113 } 4114 4115 /* Interrogate the hardware for some limits: 4116 * max commands, max SG elements without chaining, and with chaining, 4117 * SG chain block size, etc. 4118 */ 4119 static void __devinit hpsa_find_board_params(struct ctlr_info *h) 4120 { 4121 hpsa_get_max_perf_mode_cmds(h); 4122 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ 4123 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); 4124 /* 4125 * Limit in-command s/g elements to 32 save dma'able memory. 4126 * Howvever spec says if 0, use 31 4127 */ 4128 h->max_cmd_sg_entries = 31; 4129 if (h->maxsgentries > 512) { 4130 h->max_cmd_sg_entries = 32; 4131 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1; 4132 h->maxsgentries--; /* save one for chain pointer */ 4133 } else { 4134 h->maxsgentries = 31; /* default to traditional values */ 4135 h->chainsize = 0; 4136 } 4137 4138 /* Find out what task management functions are supported and cache */ 4139 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); 4140 } 4141 4142 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) 4143 { 4144 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { 4145 dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); 4146 return false; 4147 } 4148 return true; 4149 } 4150 4151 /* Need to enable prefetch in the SCSI core for 6400 in x86 */ 4152 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h) 4153 { 4154 #ifdef CONFIG_X86 4155 u32 prefetch; 4156 4157 prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); 4158 prefetch |= 0x100; 4159 writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); 4160 #endif 4161 } 4162 4163 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result 4164 * in a prefetch beyond physical memory. 4165 */ 4166 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) 4167 { 4168 u32 dma_prefetch; 4169 4170 if (h->board_id != 0x3225103C) 4171 return; 4172 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); 4173 dma_prefetch |= 0x8000; 4174 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); 4175 } 4176 4177 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h) 4178 { 4179 int i; 4180 u32 doorbell_value; 4181 unsigned long flags; 4182 4183 /* under certain very rare conditions, this can take awhile. 4184 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right 4185 * as we enter this code.) 4186 */ 4187 for (i = 0; i < MAX_CONFIG_WAIT; i++) { 4188 spin_lock_irqsave(&h->lock, flags); 4189 doorbell_value = readl(h->vaddr + SA5_DOORBELL); 4190 spin_unlock_irqrestore(&h->lock, flags); 4191 if (!(doorbell_value & CFGTBL_ChangeReq)) 4192 break; 4193 /* delay and try again */ 4194 usleep_range(10000, 20000); 4195 } 4196 } 4197 4198 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h) 4199 { 4200 u32 trans_support; 4201 4202 trans_support = readl(&(h->cfgtable->TransportSupport)); 4203 if (!(trans_support & SIMPLE_MODE)) 4204 return -ENOTSUPP; 4205 4206 h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); 4207 /* Update the field, and then ring the doorbell */ 4208 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); 4209 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4210 hpsa_wait_for_mode_change_ack(h); 4211 print_cfg_table(&h->pdev->dev, h->cfgtable); 4212 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { 4213 dev_warn(&h->pdev->dev, 4214 "unable to get board into simple mode\n"); 4215 return -ENODEV; 4216 } 4217 h->transMethod = CFGTBL_Trans_Simple; 4218 return 0; 4219 } 4220 4221 static int __devinit hpsa_pci_init(struct ctlr_info *h) 4222 { 4223 int prod_index, err; 4224 4225 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); 4226 if (prod_index < 0) 4227 return -ENODEV; 4228 h->product_name = products[prod_index].product_name; 4229 h->access = *(products[prod_index].access); 4230 4231 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | 4232 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); 4233 4234 err = pci_enable_device(h->pdev); 4235 if (err) { 4236 dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); 4237 return err; 4238 } 4239 4240 /* Enable bus mastering (pci_disable_device may disable this) */ 4241 pci_set_master(h->pdev); 4242 4243 err = pci_request_regions(h->pdev, HPSA); 4244 if (err) { 4245 dev_err(&h->pdev->dev, 4246 "cannot obtain PCI resources, aborting\n"); 4247 return err; 4248 } 4249 hpsa_interrupt_mode(h); 4250 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); 4251 if (err) 4252 goto err_out_free_res; 4253 h->vaddr = remap_pci_mem(h->paddr, 0x250); 4254 if (!h->vaddr) { 4255 err = -ENOMEM; 4256 goto err_out_free_res; 4257 } 4258 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); 4259 if (err) 4260 goto err_out_free_res; 4261 err = hpsa_find_cfgtables(h); 4262 if (err) 4263 goto err_out_free_res; 4264 hpsa_find_board_params(h); 4265 4266 if (!hpsa_CISS_signature_present(h)) { 4267 err = -ENODEV; 4268 goto err_out_free_res; 4269 } 4270 hpsa_enable_scsi_prefetch(h); 4271 hpsa_p600_dma_prefetch_quirk(h); 4272 err = hpsa_enter_simple_mode(h); 4273 if (err) 4274 goto err_out_free_res; 4275 return 0; 4276 4277 err_out_free_res: 4278 if (h->transtable) 4279 iounmap(h->transtable); 4280 if (h->cfgtable) 4281 iounmap(h->cfgtable); 4282 if (h->vaddr) 4283 iounmap(h->vaddr); 4284 pci_disable_device(h->pdev); 4285 pci_release_regions(h->pdev); 4286 return err; 4287 } 4288 4289 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h) 4290 { 4291 int rc; 4292 4293 #define HBA_INQUIRY_BYTE_COUNT 64 4294 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); 4295 if (!h->hba_inquiry_data) 4296 return; 4297 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, 4298 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); 4299 if (rc != 0) { 4300 kfree(h->hba_inquiry_data); 4301 h->hba_inquiry_data = NULL; 4302 } 4303 } 4304 4305 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev) 4306 { 4307 int rc, i; 4308 4309 if (!reset_devices) 4310 return 0; 4311 4312 /* Reset the controller with a PCI power-cycle or via doorbell */ 4313 rc = hpsa_kdump_hard_reset_controller(pdev); 4314 4315 /* -ENOTSUPP here means we cannot reset the controller 4316 * but it's already (and still) up and running in 4317 * "performant mode". Or, it might be 640x, which can't reset 4318 * due to concerns about shared bbwc between 6402/6404 pair. 4319 */ 4320 if (rc == -ENOTSUPP) 4321 return rc; /* just try to do the kdump anyhow. */ 4322 if (rc) 4323 return -ENODEV; 4324 4325 /* Now try to get the controller to respond to a no-op */ 4326 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); 4327 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { 4328 if (hpsa_noop(pdev) == 0) 4329 break; 4330 else 4331 dev_warn(&pdev->dev, "no-op failed%s\n", 4332 (i < 11 ? "; re-trying" : "")); 4333 } 4334 return 0; 4335 } 4336 4337 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h) 4338 { 4339 h->cmd_pool_bits = kzalloc( 4340 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * 4341 sizeof(unsigned long), GFP_KERNEL); 4342 h->cmd_pool = pci_alloc_consistent(h->pdev, 4343 h->nr_cmds * sizeof(*h->cmd_pool), 4344 &(h->cmd_pool_dhandle)); 4345 h->errinfo_pool = pci_alloc_consistent(h->pdev, 4346 h->nr_cmds * sizeof(*h->errinfo_pool), 4347 &(h->errinfo_pool_dhandle)); 4348 if ((h->cmd_pool_bits == NULL) 4349 || (h->cmd_pool == NULL) 4350 || (h->errinfo_pool == NULL)) { 4351 dev_err(&h->pdev->dev, "out of memory in %s", __func__); 4352 return -ENOMEM; 4353 } 4354 return 0; 4355 } 4356 4357 static void hpsa_free_cmd_pool(struct ctlr_info *h) 4358 { 4359 kfree(h->cmd_pool_bits); 4360 if (h->cmd_pool) 4361 pci_free_consistent(h->pdev, 4362 h->nr_cmds * sizeof(struct CommandList), 4363 h->cmd_pool, h->cmd_pool_dhandle); 4364 if (h->errinfo_pool) 4365 pci_free_consistent(h->pdev, 4366 h->nr_cmds * sizeof(struct ErrorInfo), 4367 h->errinfo_pool, 4368 h->errinfo_pool_dhandle); 4369 } 4370 4371 static int hpsa_request_irq(struct ctlr_info *h, 4372 irqreturn_t (*msixhandler)(int, void *), 4373 irqreturn_t (*intxhandler)(int, void *)) 4374 { 4375 int rc; 4376 4377 if (h->msix_vector || h->msi_vector) 4378 rc = request_irq(h->intr[h->intr_mode], msixhandler, 4379 0, h->devname, h); 4380 else 4381 rc = request_irq(h->intr[h->intr_mode], intxhandler, 4382 IRQF_SHARED, h->devname, h); 4383 if (rc) { 4384 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", 4385 h->intr[h->intr_mode], h->devname); 4386 return -ENODEV; 4387 } 4388 return 0; 4389 } 4390 4391 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h) 4392 { 4393 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, 4394 HPSA_RESET_TYPE_CONTROLLER)) { 4395 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); 4396 return -EIO; 4397 } 4398 4399 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); 4400 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { 4401 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); 4402 return -1; 4403 } 4404 4405 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); 4406 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { 4407 dev_warn(&h->pdev->dev, "Board failed to become ready " 4408 "after soft reset.\n"); 4409 return -1; 4410 } 4411 4412 return 0; 4413 } 4414 4415 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) 4416 { 4417 free_irq(h->intr[h->intr_mode], h); 4418 #ifdef CONFIG_PCI_MSI 4419 if (h->msix_vector) 4420 pci_disable_msix(h->pdev); 4421 else if (h->msi_vector) 4422 pci_disable_msi(h->pdev); 4423 #endif /* CONFIG_PCI_MSI */ 4424 hpsa_free_sg_chain_blocks(h); 4425 hpsa_free_cmd_pool(h); 4426 kfree(h->blockFetchTable); 4427 pci_free_consistent(h->pdev, h->reply_pool_size, 4428 h->reply_pool, h->reply_pool_dhandle); 4429 if (h->vaddr) 4430 iounmap(h->vaddr); 4431 if (h->transtable) 4432 iounmap(h->transtable); 4433 if (h->cfgtable) 4434 iounmap(h->cfgtable); 4435 pci_release_regions(h->pdev); 4436 kfree(h); 4437 } 4438 4439 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h) 4440 { 4441 assert_spin_locked(&lockup_detector_lock); 4442 if (!hpsa_lockup_detector) 4443 return; 4444 if (h->lockup_detected) 4445 return; /* already stopped the lockup detector */ 4446 list_del(&h->lockup_list); 4447 } 4448 4449 /* Called when controller lockup detected. */ 4450 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) 4451 { 4452 struct CommandList *c = NULL; 4453 4454 assert_spin_locked(&h->lock); 4455 /* Mark all outstanding commands as failed and complete them. */ 4456 while (!list_empty(list)) { 4457 c = list_entry(list->next, struct CommandList, list); 4458 c->err_info->CommandStatus = CMD_HARDWARE_ERR; 4459 finish_cmd(c); 4460 } 4461 } 4462 4463 static void controller_lockup_detected(struct ctlr_info *h) 4464 { 4465 unsigned long flags; 4466 4467 assert_spin_locked(&lockup_detector_lock); 4468 remove_ctlr_from_lockup_detector_list(h); 4469 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4470 spin_lock_irqsave(&h->lock, flags); 4471 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); 4472 spin_unlock_irqrestore(&h->lock, flags); 4473 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", 4474 h->lockup_detected); 4475 pci_disable_device(h->pdev); 4476 spin_lock_irqsave(&h->lock, flags); 4477 fail_all_cmds_on_list(h, &h->cmpQ); 4478 fail_all_cmds_on_list(h, &h->reqQ); 4479 spin_unlock_irqrestore(&h->lock, flags); 4480 } 4481 4482 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ) 4483 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2) 4484 4485 static void detect_controller_lockup(struct ctlr_info *h) 4486 { 4487 u64 now; 4488 u32 heartbeat; 4489 unsigned long flags; 4490 4491 assert_spin_locked(&lockup_detector_lock); 4492 now = get_jiffies_64(); 4493 /* If we've received an interrupt recently, we're ok. */ 4494 if (time_after64(h->last_intr_timestamp + 4495 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now)) 4496 return; 4497 4498 /* 4499 * If we've already checked the heartbeat recently, we're ok. 4500 * This could happen if someone sends us a signal. We 4501 * otherwise don't care about signals in this thread. 4502 */ 4503 if (time_after64(h->last_heartbeat_timestamp + 4504 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now)) 4505 return; 4506 4507 /* If heartbeat has not changed since we last looked, we're not ok. */ 4508 spin_lock_irqsave(&h->lock, flags); 4509 heartbeat = readl(&h->cfgtable->HeartBeat); 4510 spin_unlock_irqrestore(&h->lock, flags); 4511 if (h->last_heartbeat == heartbeat) { 4512 controller_lockup_detected(h); 4513 return; 4514 } 4515 4516 /* We're ok. */ 4517 h->last_heartbeat = heartbeat; 4518 h->last_heartbeat_timestamp = now; 4519 } 4520 4521 static int detect_controller_lockup_thread(void *notused) 4522 { 4523 struct ctlr_info *h; 4524 unsigned long flags; 4525 4526 while (1) { 4527 struct list_head *this, *tmp; 4528 4529 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL); 4530 if (kthread_should_stop()) 4531 break; 4532 spin_lock_irqsave(&lockup_detector_lock, flags); 4533 list_for_each_safe(this, tmp, &hpsa_ctlr_list) { 4534 h = list_entry(this, struct ctlr_info, lockup_list); 4535 detect_controller_lockup(h); 4536 } 4537 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4538 } 4539 return 0; 4540 } 4541 4542 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h) 4543 { 4544 unsigned long flags; 4545 4546 spin_lock_irqsave(&lockup_detector_lock, flags); 4547 list_add_tail(&h->lockup_list, &hpsa_ctlr_list); 4548 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4549 } 4550 4551 static void start_controller_lockup_detector(struct ctlr_info *h) 4552 { 4553 /* Start the lockup detector thread if not already started */ 4554 if (!hpsa_lockup_detector) { 4555 spin_lock_init(&lockup_detector_lock); 4556 hpsa_lockup_detector = 4557 kthread_run(detect_controller_lockup_thread, 4558 NULL, HPSA); 4559 } 4560 if (!hpsa_lockup_detector) { 4561 dev_warn(&h->pdev->dev, 4562 "Could not start lockup detector thread\n"); 4563 return; 4564 } 4565 add_ctlr_to_lockup_detector_list(h); 4566 } 4567 4568 static void stop_controller_lockup_detector(struct ctlr_info *h) 4569 { 4570 unsigned long flags; 4571 4572 spin_lock_irqsave(&lockup_detector_lock, flags); 4573 remove_ctlr_from_lockup_detector_list(h); 4574 /* If the list of ctlr's to monitor is empty, stop the thread */ 4575 if (list_empty(&hpsa_ctlr_list)) { 4576 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4577 kthread_stop(hpsa_lockup_detector); 4578 spin_lock_irqsave(&lockup_detector_lock, flags); 4579 hpsa_lockup_detector = NULL; 4580 } 4581 spin_unlock_irqrestore(&lockup_detector_lock, flags); 4582 } 4583 4584 static int __devinit hpsa_init_one(struct pci_dev *pdev, 4585 const struct pci_device_id *ent) 4586 { 4587 int dac, rc; 4588 struct ctlr_info *h; 4589 int try_soft_reset = 0; 4590 unsigned long flags; 4591 4592 if (number_of_controllers == 0) 4593 printk(KERN_INFO DRIVER_NAME "\n"); 4594 4595 rc = hpsa_init_reset_devices(pdev); 4596 if (rc) { 4597 if (rc != -ENOTSUPP) 4598 return rc; 4599 /* If the reset fails in a particular way (it has no way to do 4600 * a proper hard reset, so returns -ENOTSUPP) we can try to do 4601 * a soft reset once we get the controller configured up to the 4602 * point that it can accept a command. 4603 */ 4604 try_soft_reset = 1; 4605 rc = 0; 4606 } 4607 4608 reinit_after_soft_reset: 4609 4610 /* Command structures must be aligned on a 32-byte boundary because 4611 * the 5 lower bits of the address are used by the hardware. and by 4612 * the driver. See comments in hpsa.h for more info. 4613 */ 4614 #define COMMANDLIST_ALIGNMENT 32 4615 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); 4616 h = kzalloc(sizeof(*h), GFP_KERNEL); 4617 if (!h) 4618 return -ENOMEM; 4619 4620 h->pdev = pdev; 4621 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; 4622 INIT_LIST_HEAD(&h->cmpQ); 4623 INIT_LIST_HEAD(&h->reqQ); 4624 spin_lock_init(&h->lock); 4625 spin_lock_init(&h->scan_lock); 4626 rc = hpsa_pci_init(h); 4627 if (rc != 0) 4628 goto clean1; 4629 4630 sprintf(h->devname, HPSA "%d", number_of_controllers); 4631 h->ctlr = number_of_controllers; 4632 number_of_controllers++; 4633 4634 /* configure PCI DMA stuff */ 4635 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); 4636 if (rc == 0) { 4637 dac = 1; 4638 } else { 4639 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4640 if (rc == 0) { 4641 dac = 0; 4642 } else { 4643 dev_err(&pdev->dev, "no suitable DMA available\n"); 4644 goto clean1; 4645 } 4646 } 4647 4648 /* make sure the board interrupts are off */ 4649 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4650 4651 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) 4652 goto clean2; 4653 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", 4654 h->devname, pdev->device, 4655 h->intr[h->intr_mode], dac ? "" : " not"); 4656 if (hpsa_allocate_cmd_pool(h)) 4657 goto clean4; 4658 if (hpsa_allocate_sg_chain_blocks(h)) 4659 goto clean4; 4660 init_waitqueue_head(&h->scan_wait_queue); 4661 h->scan_finished = 1; /* no scan currently in progress */ 4662 4663 pci_set_drvdata(pdev, h); 4664 h->ndevices = 0; 4665 h->scsi_host = NULL; 4666 spin_lock_init(&h->devlock); 4667 hpsa_put_ctlr_into_performant_mode(h); 4668 4669 /* At this point, the controller is ready to take commands. 4670 * Now, if reset_devices and the hard reset didn't work, try 4671 * the soft reset and see if that works. 4672 */ 4673 if (try_soft_reset) { 4674 4675 /* This is kind of gross. We may or may not get a completion 4676 * from the soft reset command, and if we do, then the value 4677 * from the fifo may or may not be valid. So, we wait 10 secs 4678 * after the reset throwing away any completions we get during 4679 * that time. Unregister the interrupt handler and register 4680 * fake ones to scoop up any residual completions. 4681 */ 4682 spin_lock_irqsave(&h->lock, flags); 4683 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4684 spin_unlock_irqrestore(&h->lock, flags); 4685 free_irq(h->intr[h->intr_mode], h); 4686 rc = hpsa_request_irq(h, hpsa_msix_discard_completions, 4687 hpsa_intx_discard_completions); 4688 if (rc) { 4689 dev_warn(&h->pdev->dev, "Failed to request_irq after " 4690 "soft reset.\n"); 4691 goto clean4; 4692 } 4693 4694 rc = hpsa_kdump_soft_reset(h); 4695 if (rc) 4696 /* Neither hard nor soft reset worked, we're hosed. */ 4697 goto clean4; 4698 4699 dev_info(&h->pdev->dev, "Board READY.\n"); 4700 dev_info(&h->pdev->dev, 4701 "Waiting for stale completions to drain.\n"); 4702 h->access.set_intr_mask(h, HPSA_INTR_ON); 4703 msleep(10000); 4704 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4705 4706 rc = controller_reset_failed(h->cfgtable); 4707 if (rc) 4708 dev_info(&h->pdev->dev, 4709 "Soft reset appears to have failed.\n"); 4710 4711 /* since the controller's reset, we have to go back and re-init 4712 * everything. Easiest to just forget what we've done and do it 4713 * all over again. 4714 */ 4715 hpsa_undo_allocations_after_kdump_soft_reset(h); 4716 try_soft_reset = 0; 4717 if (rc) 4718 /* don't go to clean4, we already unallocated */ 4719 return -ENODEV; 4720 4721 goto reinit_after_soft_reset; 4722 } 4723 4724 /* Turn the interrupts on so we can service requests */ 4725 h->access.set_intr_mask(h, HPSA_INTR_ON); 4726 4727 hpsa_hba_inquiry(h); 4728 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ 4729 start_controller_lockup_detector(h); 4730 return 1; 4731 4732 clean4: 4733 hpsa_free_sg_chain_blocks(h); 4734 hpsa_free_cmd_pool(h); 4735 free_irq(h->intr[h->intr_mode], h); 4736 clean2: 4737 clean1: 4738 kfree(h); 4739 return rc; 4740 } 4741 4742 static void hpsa_flush_cache(struct ctlr_info *h) 4743 { 4744 char *flush_buf; 4745 struct CommandList *c; 4746 4747 flush_buf = kzalloc(4, GFP_KERNEL); 4748 if (!flush_buf) 4749 return; 4750 4751 c = cmd_special_alloc(h); 4752 if (!c) { 4753 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); 4754 goto out_of_memory; 4755 } 4756 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, 4757 RAID_CTLR_LUNID, TYPE_CMD); 4758 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); 4759 if (c->err_info->CommandStatus != 0) 4760 dev_warn(&h->pdev->dev, 4761 "error flushing cache on controller\n"); 4762 cmd_special_free(h, c); 4763 out_of_memory: 4764 kfree(flush_buf); 4765 } 4766 4767 static void hpsa_shutdown(struct pci_dev *pdev) 4768 { 4769 struct ctlr_info *h; 4770 4771 h = pci_get_drvdata(pdev); 4772 /* Turn board interrupts off and send the flush cache command 4773 * sendcmd will turn off interrupt, and send the flush... 4774 * To write all data in the battery backed cache to disks 4775 */ 4776 hpsa_flush_cache(h); 4777 h->access.set_intr_mask(h, HPSA_INTR_OFF); 4778 free_irq(h->intr[h->intr_mode], h); 4779 #ifdef CONFIG_PCI_MSI 4780 if (h->msix_vector) 4781 pci_disable_msix(h->pdev); 4782 else if (h->msi_vector) 4783 pci_disable_msi(h->pdev); 4784 #endif /* CONFIG_PCI_MSI */ 4785 } 4786 4787 static void __devexit hpsa_free_device_info(struct ctlr_info *h) 4788 { 4789 int i; 4790 4791 for (i = 0; i < h->ndevices; i++) 4792 kfree(h->dev[i]); 4793 } 4794 4795 static void __devexit hpsa_remove_one(struct pci_dev *pdev) 4796 { 4797 struct ctlr_info *h; 4798 4799 if (pci_get_drvdata(pdev) == NULL) { 4800 dev_err(&pdev->dev, "unable to remove device\n"); 4801 return; 4802 } 4803 h = pci_get_drvdata(pdev); 4804 stop_controller_lockup_detector(h); 4805 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ 4806 hpsa_shutdown(pdev); 4807 iounmap(h->vaddr); 4808 iounmap(h->transtable); 4809 iounmap(h->cfgtable); 4810 hpsa_free_device_info(h); 4811 hpsa_free_sg_chain_blocks(h); 4812 pci_free_consistent(h->pdev, 4813 h->nr_cmds * sizeof(struct CommandList), 4814 h->cmd_pool, h->cmd_pool_dhandle); 4815 pci_free_consistent(h->pdev, 4816 h->nr_cmds * sizeof(struct ErrorInfo), 4817 h->errinfo_pool, h->errinfo_pool_dhandle); 4818 pci_free_consistent(h->pdev, h->reply_pool_size, 4819 h->reply_pool, h->reply_pool_dhandle); 4820 kfree(h->cmd_pool_bits); 4821 kfree(h->blockFetchTable); 4822 kfree(h->hba_inquiry_data); 4823 pci_disable_device(pdev); 4824 pci_release_regions(pdev); 4825 pci_set_drvdata(pdev, NULL); 4826 kfree(h); 4827 } 4828 4829 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, 4830 __attribute__((unused)) pm_message_t state) 4831 { 4832 return -ENOSYS; 4833 } 4834 4835 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) 4836 { 4837 return -ENOSYS; 4838 } 4839 4840 static struct pci_driver hpsa_pci_driver = { 4841 .name = HPSA, 4842 .probe = hpsa_init_one, 4843 .remove = __devexit_p(hpsa_remove_one), 4844 .id_table = hpsa_pci_device_id, /* id_table */ 4845 .shutdown = hpsa_shutdown, 4846 .suspend = hpsa_suspend, 4847 .resume = hpsa_resume, 4848 }; 4849 4850 /* Fill in bucket_map[], given nsgs (the max number of 4851 * scatter gather elements supported) and bucket[], 4852 * which is an array of 8 integers. The bucket[] array 4853 * contains 8 different DMA transfer sizes (in 16 4854 * byte increments) which the controller uses to fetch 4855 * commands. This function fills in bucket_map[], which 4856 * maps a given number of scatter gather elements to one of 4857 * the 8 DMA transfer sizes. The point of it is to allow the 4858 * controller to only do as much DMA as needed to fetch the 4859 * command, with the DMA transfer size encoded in the lower 4860 * bits of the command address. 4861 */ 4862 static void calc_bucket_map(int bucket[], int num_buckets, 4863 int nsgs, int *bucket_map) 4864 { 4865 int i, j, b, size; 4866 4867 /* even a command with 0 SGs requires 4 blocks */ 4868 #define MINIMUM_TRANSFER_BLOCKS 4 4869 #define NUM_BUCKETS 8 4870 /* Note, bucket_map must have nsgs+1 entries. */ 4871 for (i = 0; i <= nsgs; i++) { 4872 /* Compute size of a command with i SG entries */ 4873 size = i + MINIMUM_TRANSFER_BLOCKS; 4874 b = num_buckets; /* Assume the biggest bucket */ 4875 /* Find the bucket that is just big enough */ 4876 for (j = 0; j < 8; j++) { 4877 if (bucket[j] >= size) { 4878 b = j; 4879 break; 4880 } 4881 } 4882 /* for a command with i SG entries, use bucket b. */ 4883 bucket_map[i] = b; 4884 } 4885 } 4886 4887 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h, 4888 u32 use_short_tags) 4889 { 4890 int i; 4891 unsigned long register_value; 4892 4893 /* This is a bit complicated. There are 8 registers on 4894 * the controller which we write to to tell it 8 different 4895 * sizes of commands which there may be. It's a way of 4896 * reducing the DMA done to fetch each command. Encoded into 4897 * each command's tag are 3 bits which communicate to the controller 4898 * which of the eight sizes that command fits within. The size of 4899 * each command depends on how many scatter gather entries there are. 4900 * Each SG entry requires 16 bytes. The eight registers are programmed 4901 * with the number of 16-byte blocks a command of that size requires. 4902 * The smallest command possible requires 5 such 16 byte blocks. 4903 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte 4904 * blocks. Note, this only extends to the SG entries contained 4905 * within the command block, and does not extend to chained blocks 4906 * of SG elements. bft[] contains the eight values we write to 4907 * the registers. They are not evenly distributed, but have more 4908 * sizes for small commands, and fewer sizes for larger commands. 4909 */ 4910 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; 4911 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); 4912 /* 5 = 1 s/g entry or 4k 4913 * 6 = 2 s/g entry or 8k 4914 * 8 = 4 s/g entry or 16k 4915 * 10 = 6 s/g entry or 24k 4916 */ 4917 4918 h->reply_pool_wraparound = 1; /* spec: init to 1 */ 4919 4920 /* Controller spec: zero out this buffer. */ 4921 memset(h->reply_pool, 0, h->reply_pool_size); 4922 h->reply_pool_head = h->reply_pool; 4923 4924 bft[7] = SG_ENTRIES_IN_CMD + 4; 4925 calc_bucket_map(bft, ARRAY_SIZE(bft), 4926 SG_ENTRIES_IN_CMD, h->blockFetchTable); 4927 for (i = 0; i < 8; i++) 4928 writel(bft[i], &h->transtable->BlockFetch[i]); 4929 4930 /* size of controller ring buffer */ 4931 writel(h->max_commands, &h->transtable->RepQSize); 4932 writel(1, &h->transtable->RepQCount); 4933 writel(0, &h->transtable->RepQCtrAddrLow32); 4934 writel(0, &h->transtable->RepQCtrAddrHigh32); 4935 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32); 4936 writel(0, &h->transtable->RepQAddr0High32); 4937 writel(CFGTBL_Trans_Performant | use_short_tags, 4938 &(h->cfgtable->HostWrite.TransportRequest)); 4939 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); 4940 hpsa_wait_for_mode_change_ack(h); 4941 register_value = readl(&(h->cfgtable->TransportActive)); 4942 if (!(register_value & CFGTBL_Trans_Performant)) { 4943 dev_warn(&h->pdev->dev, "unable to get board into" 4944 " performant mode\n"); 4945 return; 4946 } 4947 /* Change the access methods to the performant access methods */ 4948 h->access = SA5_performant_access; 4949 h->transMethod = CFGTBL_Trans_Performant; 4950 } 4951 4952 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) 4953 { 4954 u32 trans_support; 4955 4956 if (hpsa_simple_mode) 4957 return; 4958 4959 trans_support = readl(&(h->cfgtable->TransportSupport)); 4960 if (!(trans_support & PERFORMANT_MODE)) 4961 return; 4962 4963 hpsa_get_max_perf_mode_cmds(h); 4964 /* Performant mode ring buffer and supporting data structures */ 4965 h->reply_pool_size = h->max_commands * sizeof(u64); 4966 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size, 4967 &(h->reply_pool_dhandle)); 4968 4969 /* Need a block fetch table for performant mode */ 4970 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * 4971 sizeof(u32)), GFP_KERNEL); 4972 4973 if ((h->reply_pool == NULL) 4974 || (h->blockFetchTable == NULL)) 4975 goto clean_up; 4976 4977 hpsa_enter_performant_mode(h, 4978 trans_support & CFGTBL_Trans_use_short_tags); 4979 4980 return; 4981 4982 clean_up: 4983 if (h->reply_pool) 4984 pci_free_consistent(h->pdev, h->reply_pool_size, 4985 h->reply_pool, h->reply_pool_dhandle); 4986 kfree(h->blockFetchTable); 4987 } 4988 4989 /* 4990 * This is it. Register the PCI driver information for the cards we control 4991 * the OS will call our registered routines when it finds one of our cards. 4992 */ 4993 static int __init hpsa_init(void) 4994 { 4995 return pci_register_driver(&hpsa_pci_driver); 4996 } 4997 4998 static void __exit hpsa_cleanup(void) 4999 { 5000 pci_unregister_driver(&hpsa_pci_driver); 5001 } 5002 5003 module_init(hpsa_init); 5004 module_exit(hpsa_cleanup); 5005