xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 6cba3f1972de14421ef4cf4b46a15cc5d604e791)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 	HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 		"Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 	"Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
103 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 	{0,}
105 };
106 
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108 
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114 	{0x3241103C, "Smart Array P212", &SA5_access},
115 	{0x3243103C, "Smart Array P410", &SA5_access},
116 	{0x3245103C, "Smart Array P410i", &SA5_access},
117 	{0x3247103C, "Smart Array P411", &SA5_access},
118 	{0x3249103C, "Smart Array P812", &SA5_access},
119 	{0x324a103C, "Smart Array P712m", &SA5_access},
120 	{0x324b103C, "Smart Array P711m", &SA5_access},
121 	{0x3350103C, "Smart Array", &SA5_access},
122 	{0x3351103C, "Smart Array", &SA5_access},
123 	{0x3352103C, "Smart Array", &SA5_access},
124 	{0x3353103C, "Smart Array", &SA5_access},
125 	{0x3354103C, "Smart Array", &SA5_access},
126 	{0x3355103C, "Smart Array", &SA5_access},
127 	{0x3356103C, "Smart Array", &SA5_access},
128 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130 
131 static int number_of_controllers;
132 
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136 
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141 
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145 
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152 	int cmd_type);
153 
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157 	unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159 	int qdepth, int reason);
160 
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
163 static int hpsa_slave_alloc(struct scsi_device *sdev);
164 static void hpsa_slave_destroy(struct scsi_device *sdev);
165 
166 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
167 static int check_for_unit_attention(struct ctlr_info *h,
168 	struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170 	struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173 	int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178 	u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180 	unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
183 	void __iomem *vaddr, int wait_for_ready);
184 static inline void finish_cmd(struct CommandList *c);
185 #define BOARD_NOT_READY 0
186 #define BOARD_READY 1
187 
188 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
189 {
190 	unsigned long *priv = shost_priv(sdev->host);
191 	return (struct ctlr_info *) *priv;
192 }
193 
194 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
195 {
196 	unsigned long *priv = shost_priv(sh);
197 	return (struct ctlr_info *) *priv;
198 }
199 
200 static int check_for_unit_attention(struct ctlr_info *h,
201 	struct CommandList *c)
202 {
203 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
204 		return 0;
205 
206 	switch (c->err_info->SenseInfo[12]) {
207 	case STATE_CHANGED:
208 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
209 			"detected, command retried\n", h->ctlr);
210 		break;
211 	case LUN_FAILED:
212 		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
213 			"detected, action required\n", h->ctlr);
214 		break;
215 	case REPORT_LUNS_CHANGED:
216 		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
217 			"changed, action required\n", h->ctlr);
218 	/*
219 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
220 	 * target (array) devices.
221 	 */
222 		break;
223 	case POWER_OR_RESET:
224 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
225 			"or device reset detected\n", h->ctlr);
226 		break;
227 	case UNIT_ATTENTION_CLEARED:
228 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
229 		    "cleared by another initiator\n", h->ctlr);
230 		break;
231 	default:
232 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
233 			"unit attention detected\n", h->ctlr);
234 		break;
235 	}
236 	return 1;
237 }
238 
239 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
240 {
241 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
242 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
243 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
244 		return 0;
245 	dev_warn(&h->pdev->dev, HPSA "device busy");
246 	return 1;
247 }
248 
249 static ssize_t host_store_rescan(struct device *dev,
250 				 struct device_attribute *attr,
251 				 const char *buf, size_t count)
252 {
253 	struct ctlr_info *h;
254 	struct Scsi_Host *shost = class_to_shost(dev);
255 	h = shost_to_hba(shost);
256 	hpsa_scan_start(h->scsi_host);
257 	return count;
258 }
259 
260 static ssize_t host_show_firmware_revision(struct device *dev,
261 	     struct device_attribute *attr, char *buf)
262 {
263 	struct ctlr_info *h;
264 	struct Scsi_Host *shost = class_to_shost(dev);
265 	unsigned char *fwrev;
266 
267 	h = shost_to_hba(shost);
268 	if (!h->hba_inquiry_data)
269 		return 0;
270 	fwrev = &h->hba_inquiry_data[32];
271 	return snprintf(buf, 20, "%c%c%c%c\n",
272 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
273 }
274 
275 static ssize_t host_show_commands_outstanding(struct device *dev,
276 	     struct device_attribute *attr, char *buf)
277 {
278 	struct Scsi_Host *shost = class_to_shost(dev);
279 	struct ctlr_info *h = shost_to_hba(shost);
280 
281 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
282 }
283 
284 static ssize_t host_show_transport_mode(struct device *dev,
285 	struct device_attribute *attr, char *buf)
286 {
287 	struct ctlr_info *h;
288 	struct Scsi_Host *shost = class_to_shost(dev);
289 
290 	h = shost_to_hba(shost);
291 	return snprintf(buf, 20, "%s\n",
292 		h->transMethod & CFGTBL_Trans_Performant ?
293 			"performant" : "simple");
294 }
295 
296 /* List of controllers which cannot be hard reset on kexec with reset_devices */
297 static u32 unresettable_controller[] = {
298 	0x324a103C, /* Smart Array P712m */
299 	0x324b103C, /* SmartArray P711m */
300 	0x3223103C, /* Smart Array P800 */
301 	0x3234103C, /* Smart Array P400 */
302 	0x3235103C, /* Smart Array P400i */
303 	0x3211103C, /* Smart Array E200i */
304 	0x3212103C, /* Smart Array E200 */
305 	0x3213103C, /* Smart Array E200i */
306 	0x3214103C, /* Smart Array E200i */
307 	0x3215103C, /* Smart Array E200i */
308 	0x3237103C, /* Smart Array E500 */
309 	0x323D103C, /* Smart Array P700m */
310 	0x40800E11, /* Smart Array 5i */
311 	0x409C0E11, /* Smart Array 6400 */
312 	0x409D0E11, /* Smart Array 6400 EM */
313 	0x40700E11, /* Smart Array 5300 */
314 	0x40820E11, /* Smart Array 532 */
315 	0x40830E11, /* Smart Array 5312 */
316 	0x409A0E11, /* Smart Array 641 */
317 	0x409B0E11, /* Smart Array 642 */
318 	0x40910E11, /* Smart Array 6i */
319 };
320 
321 /* List of controllers which cannot even be soft reset */
322 static u32 soft_unresettable_controller[] = {
323 	0x40800E11, /* Smart Array 5i */
324 	0x40700E11, /* Smart Array 5300 */
325 	0x40820E11, /* Smart Array 532 */
326 	0x40830E11, /* Smart Array 5312 */
327 	0x409A0E11, /* Smart Array 641 */
328 	0x409B0E11, /* Smart Array 642 */
329 	0x40910E11, /* Smart Array 6i */
330 	/* Exclude 640x boards.  These are two pci devices in one slot
331 	 * which share a battery backed cache module.  One controls the
332 	 * cache, the other accesses the cache through the one that controls
333 	 * it.  If we reset the one controlling the cache, the other will
334 	 * likely not be happy.  Just forbid resetting this conjoined mess.
335 	 * The 640x isn't really supported by hpsa anyway.
336 	 */
337 	0x409C0E11, /* Smart Array 6400 */
338 	0x409D0E11, /* Smart Array 6400 EM */
339 };
340 
341 static int ctlr_is_hard_resettable(u32 board_id)
342 {
343 	int i;
344 
345 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
346 		if (unresettable_controller[i] == board_id)
347 			return 0;
348 	return 1;
349 }
350 
351 static int ctlr_is_soft_resettable(u32 board_id)
352 {
353 	int i;
354 
355 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
356 		if (soft_unresettable_controller[i] == board_id)
357 			return 0;
358 	return 1;
359 }
360 
361 static int ctlr_is_resettable(u32 board_id)
362 {
363 	return ctlr_is_hard_resettable(board_id) ||
364 		ctlr_is_soft_resettable(board_id);
365 }
366 
367 static ssize_t host_show_resettable(struct device *dev,
368 	struct device_attribute *attr, char *buf)
369 {
370 	struct ctlr_info *h;
371 	struct Scsi_Host *shost = class_to_shost(dev);
372 
373 	h = shost_to_hba(shost);
374 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
375 }
376 
377 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
378 {
379 	return (scsi3addr[3] & 0xC0) == 0x40;
380 }
381 
382 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
383 	"UNKNOWN"
384 };
385 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
386 
387 static ssize_t raid_level_show(struct device *dev,
388 	     struct device_attribute *attr, char *buf)
389 {
390 	ssize_t l = 0;
391 	unsigned char rlevel;
392 	struct ctlr_info *h;
393 	struct scsi_device *sdev;
394 	struct hpsa_scsi_dev_t *hdev;
395 	unsigned long flags;
396 
397 	sdev = to_scsi_device(dev);
398 	h = sdev_to_hba(sdev);
399 	spin_lock_irqsave(&h->lock, flags);
400 	hdev = sdev->hostdata;
401 	if (!hdev) {
402 		spin_unlock_irqrestore(&h->lock, flags);
403 		return -ENODEV;
404 	}
405 
406 	/* Is this even a logical drive? */
407 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
408 		spin_unlock_irqrestore(&h->lock, flags);
409 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
410 		return l;
411 	}
412 
413 	rlevel = hdev->raid_level;
414 	spin_unlock_irqrestore(&h->lock, flags);
415 	if (rlevel > RAID_UNKNOWN)
416 		rlevel = RAID_UNKNOWN;
417 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
418 	return l;
419 }
420 
421 static ssize_t lunid_show(struct device *dev,
422 	     struct device_attribute *attr, char *buf)
423 {
424 	struct ctlr_info *h;
425 	struct scsi_device *sdev;
426 	struct hpsa_scsi_dev_t *hdev;
427 	unsigned long flags;
428 	unsigned char lunid[8];
429 
430 	sdev = to_scsi_device(dev);
431 	h = sdev_to_hba(sdev);
432 	spin_lock_irqsave(&h->lock, flags);
433 	hdev = sdev->hostdata;
434 	if (!hdev) {
435 		spin_unlock_irqrestore(&h->lock, flags);
436 		return -ENODEV;
437 	}
438 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
439 	spin_unlock_irqrestore(&h->lock, flags);
440 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
441 		lunid[0], lunid[1], lunid[2], lunid[3],
442 		lunid[4], lunid[5], lunid[6], lunid[7]);
443 }
444 
445 static ssize_t unique_id_show(struct device *dev,
446 	     struct device_attribute *attr, char *buf)
447 {
448 	struct ctlr_info *h;
449 	struct scsi_device *sdev;
450 	struct hpsa_scsi_dev_t *hdev;
451 	unsigned long flags;
452 	unsigned char sn[16];
453 
454 	sdev = to_scsi_device(dev);
455 	h = sdev_to_hba(sdev);
456 	spin_lock_irqsave(&h->lock, flags);
457 	hdev = sdev->hostdata;
458 	if (!hdev) {
459 		spin_unlock_irqrestore(&h->lock, flags);
460 		return -ENODEV;
461 	}
462 	memcpy(sn, hdev->device_id, sizeof(sn));
463 	spin_unlock_irqrestore(&h->lock, flags);
464 	return snprintf(buf, 16 * 2 + 2,
465 			"%02X%02X%02X%02X%02X%02X%02X%02X"
466 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
467 			sn[0], sn[1], sn[2], sn[3],
468 			sn[4], sn[5], sn[6], sn[7],
469 			sn[8], sn[9], sn[10], sn[11],
470 			sn[12], sn[13], sn[14], sn[15]);
471 }
472 
473 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
474 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
475 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
476 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
477 static DEVICE_ATTR(firmware_revision, S_IRUGO,
478 	host_show_firmware_revision, NULL);
479 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
480 	host_show_commands_outstanding, NULL);
481 static DEVICE_ATTR(transport_mode, S_IRUGO,
482 	host_show_transport_mode, NULL);
483 static DEVICE_ATTR(resettable, S_IRUGO,
484 	host_show_resettable, NULL);
485 
486 static struct device_attribute *hpsa_sdev_attrs[] = {
487 	&dev_attr_raid_level,
488 	&dev_attr_lunid,
489 	&dev_attr_unique_id,
490 	NULL,
491 };
492 
493 static struct device_attribute *hpsa_shost_attrs[] = {
494 	&dev_attr_rescan,
495 	&dev_attr_firmware_revision,
496 	&dev_attr_commands_outstanding,
497 	&dev_attr_transport_mode,
498 	&dev_attr_resettable,
499 	NULL,
500 };
501 
502 static struct scsi_host_template hpsa_driver_template = {
503 	.module			= THIS_MODULE,
504 	.name			= HPSA,
505 	.proc_name		= HPSA,
506 	.queuecommand		= hpsa_scsi_queue_command,
507 	.scan_start		= hpsa_scan_start,
508 	.scan_finished		= hpsa_scan_finished,
509 	.change_queue_depth	= hpsa_change_queue_depth,
510 	.this_id		= -1,
511 	.use_clustering		= ENABLE_CLUSTERING,
512 	.eh_abort_handler	= hpsa_eh_abort_handler,
513 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
514 	.ioctl			= hpsa_ioctl,
515 	.slave_alloc		= hpsa_slave_alloc,
516 	.slave_destroy		= hpsa_slave_destroy,
517 #ifdef CONFIG_COMPAT
518 	.compat_ioctl		= hpsa_compat_ioctl,
519 #endif
520 	.sdev_attrs = hpsa_sdev_attrs,
521 	.shost_attrs = hpsa_shost_attrs,
522 	.max_sectors = 8192,
523 };
524 
525 
526 /* Enqueuing and dequeuing functions for cmdlists. */
527 static inline void addQ(struct list_head *list, struct CommandList *c)
528 {
529 	list_add_tail(&c->list, list);
530 }
531 
532 static inline u32 next_command(struct ctlr_info *h)
533 {
534 	u32 a;
535 
536 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
537 		return h->access.command_completed(h);
538 
539 	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
540 		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
541 		(h->reply_pool_head)++;
542 		h->commands_outstanding--;
543 	} else {
544 		a = FIFO_EMPTY;
545 	}
546 	/* Check for wraparound */
547 	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
548 		h->reply_pool_head = h->reply_pool;
549 		h->reply_pool_wraparound ^= 1;
550 	}
551 	return a;
552 }
553 
554 /* set_performant_mode: Modify the tag for cciss performant
555  * set bit 0 for pull model, bits 3-1 for block fetch
556  * register number
557  */
558 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
559 {
560 	if (likely(h->transMethod & CFGTBL_Trans_Performant))
561 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
562 }
563 
564 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
565 	struct CommandList *c)
566 {
567 	unsigned long flags;
568 
569 	set_performant_mode(h, c);
570 	spin_lock_irqsave(&h->lock, flags);
571 	addQ(&h->reqQ, c);
572 	h->Qdepth++;
573 	start_io(h);
574 	spin_unlock_irqrestore(&h->lock, flags);
575 }
576 
577 static inline void removeQ(struct CommandList *c)
578 {
579 	if (WARN_ON(list_empty(&c->list)))
580 		return;
581 	list_del_init(&c->list);
582 }
583 
584 static inline int is_hba_lunid(unsigned char scsi3addr[])
585 {
586 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
587 }
588 
589 static inline int is_scsi_rev_5(struct ctlr_info *h)
590 {
591 	if (!h->hba_inquiry_data)
592 		return 0;
593 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
594 		return 1;
595 	return 0;
596 }
597 
598 static int hpsa_find_target_lun(struct ctlr_info *h,
599 	unsigned char scsi3addr[], int bus, int *target, int *lun)
600 {
601 	/* finds an unused bus, target, lun for a new physical device
602 	 * assumes h->devlock is held
603 	 */
604 	int i, found = 0;
605 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
606 
607 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
608 
609 	for (i = 0; i < h->ndevices; i++) {
610 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
611 			__set_bit(h->dev[i]->target, lun_taken);
612 	}
613 
614 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
615 	if (i < HPSA_MAX_DEVICES) {
616 		/* *bus = 1; */
617 		*target = i;
618 		*lun = 0;
619 		found = 1;
620 	}
621 	return !found;
622 }
623 
624 /* Add an entry into h->dev[] array. */
625 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
626 		struct hpsa_scsi_dev_t *device,
627 		struct hpsa_scsi_dev_t *added[], int *nadded)
628 {
629 	/* assumes h->devlock is held */
630 	int n = h->ndevices;
631 	int i;
632 	unsigned char addr1[8], addr2[8];
633 	struct hpsa_scsi_dev_t *sd;
634 
635 	if (n >= HPSA_MAX_DEVICES) {
636 		dev_err(&h->pdev->dev, "too many devices, some will be "
637 			"inaccessible.\n");
638 		return -1;
639 	}
640 
641 	/* physical devices do not have lun or target assigned until now. */
642 	if (device->lun != -1)
643 		/* Logical device, lun is already assigned. */
644 		goto lun_assigned;
645 
646 	/* If this device a non-zero lun of a multi-lun device
647 	 * byte 4 of the 8-byte LUN addr will contain the logical
648 	 * unit no, zero otherise.
649 	 */
650 	if (device->scsi3addr[4] == 0) {
651 		/* This is not a non-zero lun of a multi-lun device */
652 		if (hpsa_find_target_lun(h, device->scsi3addr,
653 			device->bus, &device->target, &device->lun) != 0)
654 			return -1;
655 		goto lun_assigned;
656 	}
657 
658 	/* This is a non-zero lun of a multi-lun device.
659 	 * Search through our list and find the device which
660 	 * has the same 8 byte LUN address, excepting byte 4.
661 	 * Assign the same bus and target for this new LUN.
662 	 * Use the logical unit number from the firmware.
663 	 */
664 	memcpy(addr1, device->scsi3addr, 8);
665 	addr1[4] = 0;
666 	for (i = 0; i < n; i++) {
667 		sd = h->dev[i];
668 		memcpy(addr2, sd->scsi3addr, 8);
669 		addr2[4] = 0;
670 		/* differ only in byte 4? */
671 		if (memcmp(addr1, addr2, 8) == 0) {
672 			device->bus = sd->bus;
673 			device->target = sd->target;
674 			device->lun = device->scsi3addr[4];
675 			break;
676 		}
677 	}
678 	if (device->lun == -1) {
679 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
680 			" suspect firmware bug or unsupported hardware "
681 			"configuration.\n");
682 			return -1;
683 	}
684 
685 lun_assigned:
686 
687 	h->dev[n] = device;
688 	h->ndevices++;
689 	added[*nadded] = device;
690 	(*nadded)++;
691 
692 	/* initially, (before registering with scsi layer) we don't
693 	 * know our hostno and we don't want to print anything first
694 	 * time anyway (the scsi layer's inquiries will show that info)
695 	 */
696 	/* if (hostno != -1) */
697 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
698 			scsi_device_type(device->devtype), hostno,
699 			device->bus, device->target, device->lun);
700 	return 0;
701 }
702 
703 /* Update an entry in h->dev[] array. */
704 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
705 	int entry, struct hpsa_scsi_dev_t *new_entry)
706 {
707 	/* assumes h->devlock is held */
708 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
709 
710 	/* Raid level changed. */
711 	h->dev[entry]->raid_level = new_entry->raid_level;
712 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
713 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
714 		new_entry->target, new_entry->lun);
715 }
716 
717 /* Replace an entry from h->dev[] array. */
718 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
719 	int entry, struct hpsa_scsi_dev_t *new_entry,
720 	struct hpsa_scsi_dev_t *added[], int *nadded,
721 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
722 {
723 	/* assumes h->devlock is held */
724 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
725 	removed[*nremoved] = h->dev[entry];
726 	(*nremoved)++;
727 
728 	/*
729 	 * New physical devices won't have target/lun assigned yet
730 	 * so we need to preserve the values in the slot we are replacing.
731 	 */
732 	if (new_entry->target == -1) {
733 		new_entry->target = h->dev[entry]->target;
734 		new_entry->lun = h->dev[entry]->lun;
735 	}
736 
737 	h->dev[entry] = new_entry;
738 	added[*nadded] = new_entry;
739 	(*nadded)++;
740 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
741 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
742 			new_entry->target, new_entry->lun);
743 }
744 
745 /* Remove an entry from h->dev[] array. */
746 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
747 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
748 {
749 	/* assumes h->devlock is held */
750 	int i;
751 	struct hpsa_scsi_dev_t *sd;
752 
753 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
754 
755 	sd = h->dev[entry];
756 	removed[*nremoved] = h->dev[entry];
757 	(*nremoved)++;
758 
759 	for (i = entry; i < h->ndevices-1; i++)
760 		h->dev[i] = h->dev[i+1];
761 	h->ndevices--;
762 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
763 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
764 		sd->lun);
765 }
766 
767 #define SCSI3ADDR_EQ(a, b) ( \
768 	(a)[7] == (b)[7] && \
769 	(a)[6] == (b)[6] && \
770 	(a)[5] == (b)[5] && \
771 	(a)[4] == (b)[4] && \
772 	(a)[3] == (b)[3] && \
773 	(a)[2] == (b)[2] && \
774 	(a)[1] == (b)[1] && \
775 	(a)[0] == (b)[0])
776 
777 static void fixup_botched_add(struct ctlr_info *h,
778 	struct hpsa_scsi_dev_t *added)
779 {
780 	/* called when scsi_add_device fails in order to re-adjust
781 	 * h->dev[] to match the mid layer's view.
782 	 */
783 	unsigned long flags;
784 	int i, j;
785 
786 	spin_lock_irqsave(&h->lock, flags);
787 	for (i = 0; i < h->ndevices; i++) {
788 		if (h->dev[i] == added) {
789 			for (j = i; j < h->ndevices-1; j++)
790 				h->dev[j] = h->dev[j+1];
791 			h->ndevices--;
792 			break;
793 		}
794 	}
795 	spin_unlock_irqrestore(&h->lock, flags);
796 	kfree(added);
797 }
798 
799 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
800 	struct hpsa_scsi_dev_t *dev2)
801 {
802 	/* we compare everything except lun and target as these
803 	 * are not yet assigned.  Compare parts likely
804 	 * to differ first
805 	 */
806 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
807 		sizeof(dev1->scsi3addr)) != 0)
808 		return 0;
809 	if (memcmp(dev1->device_id, dev2->device_id,
810 		sizeof(dev1->device_id)) != 0)
811 		return 0;
812 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
813 		return 0;
814 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
815 		return 0;
816 	if (dev1->devtype != dev2->devtype)
817 		return 0;
818 	if (dev1->bus != dev2->bus)
819 		return 0;
820 	return 1;
821 }
822 
823 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
824 	struct hpsa_scsi_dev_t *dev2)
825 {
826 	/* Device attributes that can change, but don't mean
827 	 * that the device is a different device, nor that the OS
828 	 * needs to be told anything about the change.
829 	 */
830 	if (dev1->raid_level != dev2->raid_level)
831 		return 1;
832 	return 0;
833 }
834 
835 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
836  * and return needle location in *index.  If scsi3addr matches, but not
837  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
838  * location in *index.
839  * In the case of a minor device attribute change, such as RAID level, just
840  * return DEVICE_UPDATED, along with the updated device's location in index.
841  * If needle not found, return DEVICE_NOT_FOUND.
842  */
843 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
844 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
845 	int *index)
846 {
847 	int i;
848 #define DEVICE_NOT_FOUND 0
849 #define DEVICE_CHANGED 1
850 #define DEVICE_SAME 2
851 #define DEVICE_UPDATED 3
852 	for (i = 0; i < haystack_size; i++) {
853 		if (haystack[i] == NULL) /* previously removed. */
854 			continue;
855 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
856 			*index = i;
857 			if (device_is_the_same(needle, haystack[i])) {
858 				if (device_updated(needle, haystack[i]))
859 					return DEVICE_UPDATED;
860 				return DEVICE_SAME;
861 			} else {
862 				return DEVICE_CHANGED;
863 			}
864 		}
865 	}
866 	*index = -1;
867 	return DEVICE_NOT_FOUND;
868 }
869 
870 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
871 	struct hpsa_scsi_dev_t *sd[], int nsds)
872 {
873 	/* sd contains scsi3 addresses and devtypes, and inquiry
874 	 * data.  This function takes what's in sd to be the current
875 	 * reality and updates h->dev[] to reflect that reality.
876 	 */
877 	int i, entry, device_change, changes = 0;
878 	struct hpsa_scsi_dev_t *csd;
879 	unsigned long flags;
880 	struct hpsa_scsi_dev_t **added, **removed;
881 	int nadded, nremoved;
882 	struct Scsi_Host *sh = NULL;
883 
884 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
885 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
886 
887 	if (!added || !removed) {
888 		dev_warn(&h->pdev->dev, "out of memory in "
889 			"adjust_hpsa_scsi_table\n");
890 		goto free_and_out;
891 	}
892 
893 	spin_lock_irqsave(&h->devlock, flags);
894 
895 	/* find any devices in h->dev[] that are not in
896 	 * sd[] and remove them from h->dev[], and for any
897 	 * devices which have changed, remove the old device
898 	 * info and add the new device info.
899 	 * If minor device attributes change, just update
900 	 * the existing device structure.
901 	 */
902 	i = 0;
903 	nremoved = 0;
904 	nadded = 0;
905 	while (i < h->ndevices) {
906 		csd = h->dev[i];
907 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
908 		if (device_change == DEVICE_NOT_FOUND) {
909 			changes++;
910 			hpsa_scsi_remove_entry(h, hostno, i,
911 				removed, &nremoved);
912 			continue; /* remove ^^^, hence i not incremented */
913 		} else if (device_change == DEVICE_CHANGED) {
914 			changes++;
915 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
916 				added, &nadded, removed, &nremoved);
917 			/* Set it to NULL to prevent it from being freed
918 			 * at the bottom of hpsa_update_scsi_devices()
919 			 */
920 			sd[entry] = NULL;
921 		} else if (device_change == DEVICE_UPDATED) {
922 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
923 		}
924 		i++;
925 	}
926 
927 	/* Now, make sure every device listed in sd[] is also
928 	 * listed in h->dev[], adding them if they aren't found
929 	 */
930 
931 	for (i = 0; i < nsds; i++) {
932 		if (!sd[i]) /* if already added above. */
933 			continue;
934 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
935 					h->ndevices, &entry);
936 		if (device_change == DEVICE_NOT_FOUND) {
937 			changes++;
938 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
939 				added, &nadded) != 0)
940 				break;
941 			sd[i] = NULL; /* prevent from being freed later. */
942 		} else if (device_change == DEVICE_CHANGED) {
943 			/* should never happen... */
944 			changes++;
945 			dev_warn(&h->pdev->dev,
946 				"device unexpectedly changed.\n");
947 			/* but if it does happen, we just ignore that device */
948 		}
949 	}
950 	spin_unlock_irqrestore(&h->devlock, flags);
951 
952 	/* Don't notify scsi mid layer of any changes the first time through
953 	 * (or if there are no changes) scsi_scan_host will do it later the
954 	 * first time through.
955 	 */
956 	if (hostno == -1 || !changes)
957 		goto free_and_out;
958 
959 	sh = h->scsi_host;
960 	/* Notify scsi mid layer of any removed devices */
961 	for (i = 0; i < nremoved; i++) {
962 		struct scsi_device *sdev =
963 			scsi_device_lookup(sh, removed[i]->bus,
964 				removed[i]->target, removed[i]->lun);
965 		if (sdev != NULL) {
966 			scsi_remove_device(sdev);
967 			scsi_device_put(sdev);
968 		} else {
969 			/* We don't expect to get here.
970 			 * future cmds to this device will get selection
971 			 * timeout as if the device was gone.
972 			 */
973 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
974 				" for removal.", hostno, removed[i]->bus,
975 				removed[i]->target, removed[i]->lun);
976 		}
977 		kfree(removed[i]);
978 		removed[i] = NULL;
979 	}
980 
981 	/* Notify scsi mid layer of any added devices */
982 	for (i = 0; i < nadded; i++) {
983 		if (scsi_add_device(sh, added[i]->bus,
984 			added[i]->target, added[i]->lun) == 0)
985 			continue;
986 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
987 			"device not added.\n", hostno, added[i]->bus,
988 			added[i]->target, added[i]->lun);
989 		/* now we have to remove it from h->dev,
990 		 * since it didn't get added to scsi mid layer
991 		 */
992 		fixup_botched_add(h, added[i]);
993 	}
994 
995 free_and_out:
996 	kfree(added);
997 	kfree(removed);
998 }
999 
1000 /*
1001  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1002  * Assume's h->devlock is held.
1003  */
1004 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1005 	int bus, int target, int lun)
1006 {
1007 	int i;
1008 	struct hpsa_scsi_dev_t *sd;
1009 
1010 	for (i = 0; i < h->ndevices; i++) {
1011 		sd = h->dev[i];
1012 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1013 			return sd;
1014 	}
1015 	return NULL;
1016 }
1017 
1018 /* link sdev->hostdata to our per-device structure. */
1019 static int hpsa_slave_alloc(struct scsi_device *sdev)
1020 {
1021 	struct hpsa_scsi_dev_t *sd;
1022 	unsigned long flags;
1023 	struct ctlr_info *h;
1024 
1025 	h = sdev_to_hba(sdev);
1026 	spin_lock_irqsave(&h->devlock, flags);
1027 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1028 		sdev_id(sdev), sdev->lun);
1029 	if (sd != NULL)
1030 		sdev->hostdata = sd;
1031 	spin_unlock_irqrestore(&h->devlock, flags);
1032 	return 0;
1033 }
1034 
1035 static void hpsa_slave_destroy(struct scsi_device *sdev)
1036 {
1037 	/* nothing to do. */
1038 }
1039 
1040 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1041 {
1042 	int i;
1043 
1044 	if (!h->cmd_sg_list)
1045 		return;
1046 	for (i = 0; i < h->nr_cmds; i++) {
1047 		kfree(h->cmd_sg_list[i]);
1048 		h->cmd_sg_list[i] = NULL;
1049 	}
1050 	kfree(h->cmd_sg_list);
1051 	h->cmd_sg_list = NULL;
1052 }
1053 
1054 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1055 {
1056 	int i;
1057 
1058 	if (h->chainsize <= 0)
1059 		return 0;
1060 
1061 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1062 				GFP_KERNEL);
1063 	if (!h->cmd_sg_list)
1064 		return -ENOMEM;
1065 	for (i = 0; i < h->nr_cmds; i++) {
1066 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1067 						h->chainsize, GFP_KERNEL);
1068 		if (!h->cmd_sg_list[i])
1069 			goto clean;
1070 	}
1071 	return 0;
1072 
1073 clean:
1074 	hpsa_free_sg_chain_blocks(h);
1075 	return -ENOMEM;
1076 }
1077 
1078 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1079 	struct CommandList *c)
1080 {
1081 	struct SGDescriptor *chain_sg, *chain_block;
1082 	u64 temp64;
1083 
1084 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1085 	chain_block = h->cmd_sg_list[c->cmdindex];
1086 	chain_sg->Ext = HPSA_SG_CHAIN;
1087 	chain_sg->Len = sizeof(*chain_sg) *
1088 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1089 	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1090 				PCI_DMA_TODEVICE);
1091 	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1092 	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1093 }
1094 
1095 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1096 	struct CommandList *c)
1097 {
1098 	struct SGDescriptor *chain_sg;
1099 	union u64bit temp64;
1100 
1101 	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1102 		return;
1103 
1104 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1105 	temp64.val32.lower = chain_sg->Addr.lower;
1106 	temp64.val32.upper = chain_sg->Addr.upper;
1107 	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1108 }
1109 
1110 static void complete_scsi_command(struct CommandList *cp)
1111 {
1112 	struct scsi_cmnd *cmd;
1113 	struct ctlr_info *h;
1114 	struct ErrorInfo *ei;
1115 
1116 	unsigned char sense_key;
1117 	unsigned char asc;      /* additional sense code */
1118 	unsigned char ascq;     /* additional sense code qualifier */
1119 	unsigned long sense_data_size;
1120 
1121 	ei = cp->err_info;
1122 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1123 	h = cp->h;
1124 
1125 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1126 	if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1127 		hpsa_unmap_sg_chain_block(h, cp);
1128 
1129 	cmd->result = (DID_OK << 16); 		/* host byte */
1130 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1131 	cmd->result |= ei->ScsiStatus;
1132 
1133 	/* copy the sense data whether we need to or not. */
1134 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1135 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1136 	else
1137 		sense_data_size = sizeof(ei->SenseInfo);
1138 	if (ei->SenseLen < sense_data_size)
1139 		sense_data_size = ei->SenseLen;
1140 
1141 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1142 	scsi_set_resid(cmd, ei->ResidualCnt);
1143 
1144 	if (ei->CommandStatus == 0) {
1145 		cmd->scsi_done(cmd);
1146 		cmd_free(h, cp);
1147 		return;
1148 	}
1149 
1150 	/* an error has occurred */
1151 	switch (ei->CommandStatus) {
1152 
1153 	case CMD_TARGET_STATUS:
1154 		if (ei->ScsiStatus) {
1155 			/* Get sense key */
1156 			sense_key = 0xf & ei->SenseInfo[2];
1157 			/* Get additional sense code */
1158 			asc = ei->SenseInfo[12];
1159 			/* Get addition sense code qualifier */
1160 			ascq = ei->SenseInfo[13];
1161 		}
1162 
1163 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1164 			if (check_for_unit_attention(h, cp)) {
1165 				cmd->result = DID_SOFT_ERROR << 16;
1166 				break;
1167 			}
1168 			if (sense_key == ILLEGAL_REQUEST) {
1169 				/*
1170 				 * SCSI REPORT_LUNS is commonly unsupported on
1171 				 * Smart Array.  Suppress noisy complaint.
1172 				 */
1173 				if (cp->Request.CDB[0] == REPORT_LUNS)
1174 					break;
1175 
1176 				/* If ASC/ASCQ indicate Logical Unit
1177 				 * Not Supported condition,
1178 				 */
1179 				if ((asc == 0x25) && (ascq == 0x0)) {
1180 					dev_warn(&h->pdev->dev, "cp %p "
1181 						"has check condition\n", cp);
1182 					break;
1183 				}
1184 			}
1185 
1186 			if (sense_key == NOT_READY) {
1187 				/* If Sense is Not Ready, Logical Unit
1188 				 * Not ready, Manual Intervention
1189 				 * required
1190 				 */
1191 				if ((asc == 0x04) && (ascq == 0x03)) {
1192 					dev_warn(&h->pdev->dev, "cp %p "
1193 						"has check condition: unit "
1194 						"not ready, manual "
1195 						"intervention required\n", cp);
1196 					break;
1197 				}
1198 			}
1199 			if (sense_key == ABORTED_COMMAND) {
1200 				/* Aborted command is retryable */
1201 				dev_warn(&h->pdev->dev, "cp %p "
1202 					"has check condition: aborted command: "
1203 					"ASC: 0x%x, ASCQ: 0x%x\n",
1204 					cp, asc, ascq);
1205 				cmd->result = DID_SOFT_ERROR << 16;
1206 				break;
1207 			}
1208 			/* Must be some other type of check condition */
1209 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1210 					"unknown type: "
1211 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1212 					"Returning result: 0x%x, "
1213 					"cmd=[%02x %02x %02x %02x %02x "
1214 					"%02x %02x %02x %02x %02x %02x "
1215 					"%02x %02x %02x %02x %02x]\n",
1216 					cp, sense_key, asc, ascq,
1217 					cmd->result,
1218 					cmd->cmnd[0], cmd->cmnd[1],
1219 					cmd->cmnd[2], cmd->cmnd[3],
1220 					cmd->cmnd[4], cmd->cmnd[5],
1221 					cmd->cmnd[6], cmd->cmnd[7],
1222 					cmd->cmnd[8], cmd->cmnd[9],
1223 					cmd->cmnd[10], cmd->cmnd[11],
1224 					cmd->cmnd[12], cmd->cmnd[13],
1225 					cmd->cmnd[14], cmd->cmnd[15]);
1226 			break;
1227 		}
1228 
1229 
1230 		/* Problem was not a check condition
1231 		 * Pass it up to the upper layers...
1232 		 */
1233 		if (ei->ScsiStatus) {
1234 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1235 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1236 				"Returning result: 0x%x\n",
1237 				cp, ei->ScsiStatus,
1238 				sense_key, asc, ascq,
1239 				cmd->result);
1240 		} else {  /* scsi status is zero??? How??? */
1241 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1242 				"Returning no connection.\n", cp),
1243 
1244 			/* Ordinarily, this case should never happen,
1245 			 * but there is a bug in some released firmware
1246 			 * revisions that allows it to happen if, for
1247 			 * example, a 4100 backplane loses power and
1248 			 * the tape drive is in it.  We assume that
1249 			 * it's a fatal error of some kind because we
1250 			 * can't show that it wasn't. We will make it
1251 			 * look like selection timeout since that is
1252 			 * the most common reason for this to occur,
1253 			 * and it's severe enough.
1254 			 */
1255 
1256 			cmd->result = DID_NO_CONNECT << 16;
1257 		}
1258 		break;
1259 
1260 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1261 		break;
1262 	case CMD_DATA_OVERRUN:
1263 		dev_warn(&h->pdev->dev, "cp %p has"
1264 			" completed with data overrun "
1265 			"reported\n", cp);
1266 		break;
1267 	case CMD_INVALID: {
1268 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1269 		print_cmd(cp); */
1270 		/* We get CMD_INVALID if you address a non-existent device
1271 		 * instead of a selection timeout (no response).  You will
1272 		 * see this if you yank out a drive, then try to access it.
1273 		 * This is kind of a shame because it means that any other
1274 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1275 		 * missing target. */
1276 		cmd->result = DID_NO_CONNECT << 16;
1277 	}
1278 		break;
1279 	case CMD_PROTOCOL_ERR:
1280 		dev_warn(&h->pdev->dev, "cp %p has "
1281 			"protocol error \n", cp);
1282 		break;
1283 	case CMD_HARDWARE_ERR:
1284 		cmd->result = DID_ERROR << 16;
1285 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1286 		break;
1287 	case CMD_CONNECTION_LOST:
1288 		cmd->result = DID_ERROR << 16;
1289 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1290 		break;
1291 	case CMD_ABORTED:
1292 		cmd->result = DID_ABORT << 16;
1293 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1294 				cp, ei->ScsiStatus);
1295 		break;
1296 	case CMD_ABORT_FAILED:
1297 		cmd->result = DID_ERROR << 16;
1298 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1299 		break;
1300 	case CMD_UNSOLICITED_ABORT:
1301 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1302 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1303 			"abort\n", cp);
1304 		break;
1305 	case CMD_TIMEOUT:
1306 		cmd->result = DID_TIME_OUT << 16;
1307 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1308 		break;
1309 	case CMD_UNABORTABLE:
1310 		cmd->result = DID_ERROR << 16;
1311 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1312 		break;
1313 	default:
1314 		cmd->result = DID_ERROR << 16;
1315 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1316 				cp, ei->CommandStatus);
1317 	}
1318 	cmd->scsi_done(cmd);
1319 	cmd_free(h, cp);
1320 }
1321 
1322 static void hpsa_pci_unmap(struct pci_dev *pdev,
1323 	struct CommandList *c, int sg_used, int data_direction)
1324 {
1325 	int i;
1326 	union u64bit addr64;
1327 
1328 	for (i = 0; i < sg_used; i++) {
1329 		addr64.val32.lower = c->SG[i].Addr.lower;
1330 		addr64.val32.upper = c->SG[i].Addr.upper;
1331 		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1332 			data_direction);
1333 	}
1334 }
1335 
1336 static void hpsa_map_one(struct pci_dev *pdev,
1337 		struct CommandList *cp,
1338 		unsigned char *buf,
1339 		size_t buflen,
1340 		int data_direction)
1341 {
1342 	u64 addr64;
1343 
1344 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1345 		cp->Header.SGList = 0;
1346 		cp->Header.SGTotal = 0;
1347 		return;
1348 	}
1349 
1350 	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1351 	cp->SG[0].Addr.lower =
1352 	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1353 	cp->SG[0].Addr.upper =
1354 	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1355 	cp->SG[0].Len = buflen;
1356 	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1357 	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1358 }
1359 
1360 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1361 	struct CommandList *c)
1362 {
1363 	DECLARE_COMPLETION_ONSTACK(wait);
1364 
1365 	c->waiting = &wait;
1366 	enqueue_cmd_and_start_io(h, c);
1367 	wait_for_completion(&wait);
1368 }
1369 
1370 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1371 	struct CommandList *c)
1372 {
1373 	unsigned long flags;
1374 
1375 	/* If controller lockup detected, fake a hardware error. */
1376 	spin_lock_irqsave(&h->lock, flags);
1377 	if (unlikely(h->lockup_detected)) {
1378 		spin_unlock_irqrestore(&h->lock, flags);
1379 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1380 	} else {
1381 		spin_unlock_irqrestore(&h->lock, flags);
1382 		hpsa_scsi_do_simple_cmd_core(h, c);
1383 	}
1384 }
1385 
1386 #define MAX_DRIVER_CMD_RETRIES 25
1387 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1388 	struct CommandList *c, int data_direction)
1389 {
1390 	int backoff_time = 10, retry_count = 0;
1391 
1392 	do {
1393 		memset(c->err_info, 0, sizeof(*c->err_info));
1394 		hpsa_scsi_do_simple_cmd_core(h, c);
1395 		retry_count++;
1396 		if (retry_count > 3) {
1397 			msleep(backoff_time);
1398 			if (backoff_time < 1000)
1399 				backoff_time *= 2;
1400 		}
1401 	} while ((check_for_unit_attention(h, c) ||
1402 			check_for_busy(h, c)) &&
1403 			retry_count <= MAX_DRIVER_CMD_RETRIES);
1404 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1405 }
1406 
1407 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1408 {
1409 	struct ErrorInfo *ei;
1410 	struct device *d = &cp->h->pdev->dev;
1411 
1412 	ei = cp->err_info;
1413 	switch (ei->CommandStatus) {
1414 	case CMD_TARGET_STATUS:
1415 		dev_warn(d, "cmd %p has completed with errors\n", cp);
1416 		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1417 				ei->ScsiStatus);
1418 		if (ei->ScsiStatus == 0)
1419 			dev_warn(d, "SCSI status is abnormally zero.  "
1420 			"(probably indicates selection timeout "
1421 			"reported incorrectly due to a known "
1422 			"firmware bug, circa July, 2001.)\n");
1423 		break;
1424 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1425 			dev_info(d, "UNDERRUN\n");
1426 		break;
1427 	case CMD_DATA_OVERRUN:
1428 		dev_warn(d, "cp %p has completed with data overrun\n", cp);
1429 		break;
1430 	case CMD_INVALID: {
1431 		/* controller unfortunately reports SCSI passthru's
1432 		 * to non-existent targets as invalid commands.
1433 		 */
1434 		dev_warn(d, "cp %p is reported invalid (probably means "
1435 			"target device no longer present)\n", cp);
1436 		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1437 		print_cmd(cp);  */
1438 		}
1439 		break;
1440 	case CMD_PROTOCOL_ERR:
1441 		dev_warn(d, "cp %p has protocol error \n", cp);
1442 		break;
1443 	case CMD_HARDWARE_ERR:
1444 		/* cmd->result = DID_ERROR << 16; */
1445 		dev_warn(d, "cp %p had hardware error\n", cp);
1446 		break;
1447 	case CMD_CONNECTION_LOST:
1448 		dev_warn(d, "cp %p had connection lost\n", cp);
1449 		break;
1450 	case CMD_ABORTED:
1451 		dev_warn(d, "cp %p was aborted\n", cp);
1452 		break;
1453 	case CMD_ABORT_FAILED:
1454 		dev_warn(d, "cp %p reports abort failed\n", cp);
1455 		break;
1456 	case CMD_UNSOLICITED_ABORT:
1457 		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1458 		break;
1459 	case CMD_TIMEOUT:
1460 		dev_warn(d, "cp %p timed out\n", cp);
1461 		break;
1462 	case CMD_UNABORTABLE:
1463 		dev_warn(d, "Command unabortable\n");
1464 		break;
1465 	default:
1466 		dev_warn(d, "cp %p returned unknown status %x\n", cp,
1467 				ei->CommandStatus);
1468 	}
1469 }
1470 
1471 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1472 			unsigned char page, unsigned char *buf,
1473 			unsigned char bufsize)
1474 {
1475 	int rc = IO_OK;
1476 	struct CommandList *c;
1477 	struct ErrorInfo *ei;
1478 
1479 	c = cmd_special_alloc(h);
1480 
1481 	if (c == NULL) {			/* trouble... */
1482 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1483 		return -ENOMEM;
1484 	}
1485 
1486 	fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1487 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1488 	ei = c->err_info;
1489 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1490 		hpsa_scsi_interpret_error(c);
1491 		rc = -1;
1492 	}
1493 	cmd_special_free(h, c);
1494 	return rc;
1495 }
1496 
1497 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1498 {
1499 	int rc = IO_OK;
1500 	struct CommandList *c;
1501 	struct ErrorInfo *ei;
1502 
1503 	c = cmd_special_alloc(h);
1504 
1505 	if (c == NULL) {			/* trouble... */
1506 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1507 		return -ENOMEM;
1508 	}
1509 
1510 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1511 	hpsa_scsi_do_simple_cmd_core(h, c);
1512 	/* no unmap needed here because no data xfer. */
1513 
1514 	ei = c->err_info;
1515 	if (ei->CommandStatus != 0) {
1516 		hpsa_scsi_interpret_error(c);
1517 		rc = -1;
1518 	}
1519 	cmd_special_free(h, c);
1520 	return rc;
1521 }
1522 
1523 static void hpsa_get_raid_level(struct ctlr_info *h,
1524 	unsigned char *scsi3addr, unsigned char *raid_level)
1525 {
1526 	int rc;
1527 	unsigned char *buf;
1528 
1529 	*raid_level = RAID_UNKNOWN;
1530 	buf = kzalloc(64, GFP_KERNEL);
1531 	if (!buf)
1532 		return;
1533 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1534 	if (rc == 0)
1535 		*raid_level = buf[8];
1536 	if (*raid_level > RAID_UNKNOWN)
1537 		*raid_level = RAID_UNKNOWN;
1538 	kfree(buf);
1539 	return;
1540 }
1541 
1542 /* Get the device id from inquiry page 0x83 */
1543 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1544 	unsigned char *device_id, int buflen)
1545 {
1546 	int rc;
1547 	unsigned char *buf;
1548 
1549 	if (buflen > 16)
1550 		buflen = 16;
1551 	buf = kzalloc(64, GFP_KERNEL);
1552 	if (!buf)
1553 		return -1;
1554 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1555 	if (rc == 0)
1556 		memcpy(device_id, &buf[8], buflen);
1557 	kfree(buf);
1558 	return rc != 0;
1559 }
1560 
1561 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1562 		struct ReportLUNdata *buf, int bufsize,
1563 		int extended_response)
1564 {
1565 	int rc = IO_OK;
1566 	struct CommandList *c;
1567 	unsigned char scsi3addr[8];
1568 	struct ErrorInfo *ei;
1569 
1570 	c = cmd_special_alloc(h);
1571 	if (c == NULL) {			/* trouble... */
1572 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1573 		return -1;
1574 	}
1575 	/* address the controller */
1576 	memset(scsi3addr, 0, sizeof(scsi3addr));
1577 	fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1578 		buf, bufsize, 0, scsi3addr, TYPE_CMD);
1579 	if (extended_response)
1580 		c->Request.CDB[1] = extended_response;
1581 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1582 	ei = c->err_info;
1583 	if (ei->CommandStatus != 0 &&
1584 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
1585 		hpsa_scsi_interpret_error(c);
1586 		rc = -1;
1587 	}
1588 	cmd_special_free(h, c);
1589 	return rc;
1590 }
1591 
1592 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1593 		struct ReportLUNdata *buf,
1594 		int bufsize, int extended_response)
1595 {
1596 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1597 }
1598 
1599 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1600 		struct ReportLUNdata *buf, int bufsize)
1601 {
1602 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1603 }
1604 
1605 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1606 	int bus, int target, int lun)
1607 {
1608 	device->bus = bus;
1609 	device->target = target;
1610 	device->lun = lun;
1611 }
1612 
1613 static int hpsa_update_device_info(struct ctlr_info *h,
1614 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1615 	unsigned char *is_OBDR_device)
1616 {
1617 
1618 #define OBDR_SIG_OFFSET 43
1619 #define OBDR_TAPE_SIG "$DR-10"
1620 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1621 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1622 
1623 	unsigned char *inq_buff;
1624 	unsigned char *obdr_sig;
1625 
1626 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1627 	if (!inq_buff)
1628 		goto bail_out;
1629 
1630 	/* Do an inquiry to the device to see what it is. */
1631 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1632 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1633 		/* Inquiry failed (msg printed already) */
1634 		dev_err(&h->pdev->dev,
1635 			"hpsa_update_device_info: inquiry failed\n");
1636 		goto bail_out;
1637 	}
1638 
1639 	this_device->devtype = (inq_buff[0] & 0x1f);
1640 	memcpy(this_device->scsi3addr, scsi3addr, 8);
1641 	memcpy(this_device->vendor, &inq_buff[8],
1642 		sizeof(this_device->vendor));
1643 	memcpy(this_device->model, &inq_buff[16],
1644 		sizeof(this_device->model));
1645 	memset(this_device->device_id, 0,
1646 		sizeof(this_device->device_id));
1647 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1648 		sizeof(this_device->device_id));
1649 
1650 	if (this_device->devtype == TYPE_DISK &&
1651 		is_logical_dev_addr_mode(scsi3addr))
1652 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1653 	else
1654 		this_device->raid_level = RAID_UNKNOWN;
1655 
1656 	if (is_OBDR_device) {
1657 		/* See if this is a One-Button-Disaster-Recovery device
1658 		 * by looking for "$DR-10" at offset 43 in inquiry data.
1659 		 */
1660 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1661 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1662 					strncmp(obdr_sig, OBDR_TAPE_SIG,
1663 						OBDR_SIG_LEN) == 0);
1664 	}
1665 
1666 	kfree(inq_buff);
1667 	return 0;
1668 
1669 bail_out:
1670 	kfree(inq_buff);
1671 	return 1;
1672 }
1673 
1674 static unsigned char *ext_target_model[] = {
1675 	"MSA2012",
1676 	"MSA2024",
1677 	"MSA2312",
1678 	"MSA2324",
1679 	"P2000 G3 SAS",
1680 	NULL,
1681 };
1682 
1683 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1684 {
1685 	int i;
1686 
1687 	for (i = 0; ext_target_model[i]; i++)
1688 		if (strncmp(device->model, ext_target_model[i],
1689 			strlen(ext_target_model[i])) == 0)
1690 			return 1;
1691 	return 0;
1692 }
1693 
1694 /* Helper function to assign bus, target, lun mapping of devices.
1695  * Puts non-external target logical volumes on bus 0, external target logical
1696  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1697  * Logical drive target and lun are assigned at this time, but
1698  * physical device lun and target assignment are deferred (assigned
1699  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1700  */
1701 static void figure_bus_target_lun(struct ctlr_info *h,
1702 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1703 {
1704 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1705 
1706 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1707 		/* physical device, target and lun filled in later */
1708 		if (is_hba_lunid(lunaddrbytes))
1709 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1710 		else
1711 			/* defer target, lun assignment for physical devices */
1712 			hpsa_set_bus_target_lun(device, 2, -1, -1);
1713 		return;
1714 	}
1715 	/* It's a logical device */
1716 	if (is_ext_target(h, device)) {
1717 		/* external target way, put logicals on bus 1
1718 		 * and match target/lun numbers box
1719 		 * reports, other smart array, bus 0, target 0, match lunid
1720 		 */
1721 		hpsa_set_bus_target_lun(device,
1722 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1723 		return;
1724 	}
1725 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1726 }
1727 
1728 /*
1729  * If there is no lun 0 on a target, linux won't find any devices.
1730  * For the external targets (arrays), we have to manually detect the enclosure
1731  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1732  * it for some reason.  *tmpdevice is the target we're adding,
1733  * this_device is a pointer into the current element of currentsd[]
1734  * that we're building up in update_scsi_devices(), below.
1735  * lunzerobits is a bitmap that tracks which targets already have a
1736  * lun 0 assigned.
1737  * Returns 1 if an enclosure was added, 0 if not.
1738  */
1739 static int add_ext_target_dev(struct ctlr_info *h,
1740 	struct hpsa_scsi_dev_t *tmpdevice,
1741 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1742 	unsigned long lunzerobits[], int *n_ext_target_devs)
1743 {
1744 	unsigned char scsi3addr[8];
1745 
1746 	if (test_bit(tmpdevice->target, lunzerobits))
1747 		return 0; /* There is already a lun 0 on this target. */
1748 
1749 	if (!is_logical_dev_addr_mode(lunaddrbytes))
1750 		return 0; /* It's the logical targets that may lack lun 0. */
1751 
1752 	if (!is_ext_target(h, tmpdevice))
1753 		return 0; /* Only external target devices have this problem. */
1754 
1755 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1756 		return 0;
1757 
1758 	memset(scsi3addr, 0, 8);
1759 	scsi3addr[3] = tmpdevice->target;
1760 	if (is_hba_lunid(scsi3addr))
1761 		return 0; /* Don't add the RAID controller here. */
1762 
1763 	if (is_scsi_rev_5(h))
1764 		return 0; /* p1210m doesn't need to do this. */
1765 
1766 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1767 		dev_warn(&h->pdev->dev, "Maximum number of external "
1768 			"target devices exceeded.  Check your hardware "
1769 			"configuration.");
1770 		return 0;
1771 	}
1772 
1773 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1774 		return 0;
1775 	(*n_ext_target_devs)++;
1776 	hpsa_set_bus_target_lun(this_device,
1777 				tmpdevice->bus, tmpdevice->target, 0);
1778 	set_bit(tmpdevice->target, lunzerobits);
1779 	return 1;
1780 }
1781 
1782 /*
1783  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1784  * logdev.  The number of luns in physdev and logdev are returned in
1785  * *nphysicals and *nlogicals, respectively.
1786  * Returns 0 on success, -1 otherwise.
1787  */
1788 static int hpsa_gather_lun_info(struct ctlr_info *h,
1789 	int reportlunsize,
1790 	struct ReportLUNdata *physdev, u32 *nphysicals,
1791 	struct ReportLUNdata *logdev, u32 *nlogicals)
1792 {
1793 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1794 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1795 		return -1;
1796 	}
1797 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1798 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1799 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1800 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1801 			*nphysicals - HPSA_MAX_PHYS_LUN);
1802 		*nphysicals = HPSA_MAX_PHYS_LUN;
1803 	}
1804 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1805 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1806 		return -1;
1807 	}
1808 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1809 	/* Reject Logicals in excess of our max capability. */
1810 	if (*nlogicals > HPSA_MAX_LUN) {
1811 		dev_warn(&h->pdev->dev,
1812 			"maximum logical LUNs (%d) exceeded.  "
1813 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
1814 			*nlogicals - HPSA_MAX_LUN);
1815 			*nlogicals = HPSA_MAX_LUN;
1816 	}
1817 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1818 		dev_warn(&h->pdev->dev,
1819 			"maximum logical + physical LUNs (%d) exceeded. "
1820 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1821 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1822 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1823 	}
1824 	return 0;
1825 }
1826 
1827 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1828 	int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1829 	struct ReportLUNdata *logdev_list)
1830 {
1831 	/* Helper function, figure out where the LUN ID info is coming from
1832 	 * given index i, lists of physical and logical devices, where in
1833 	 * the list the raid controller is supposed to appear (first or last)
1834 	 */
1835 
1836 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
1837 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1838 
1839 	if (i == raid_ctlr_position)
1840 		return RAID_CTLR_LUNID;
1841 
1842 	if (i < logicals_start)
1843 		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1844 
1845 	if (i < last_device)
1846 		return &logdev_list->LUN[i - nphysicals -
1847 			(raid_ctlr_position == 0)][0];
1848 	BUG();
1849 	return NULL;
1850 }
1851 
1852 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1853 {
1854 	/* the idea here is we could get notified
1855 	 * that some devices have changed, so we do a report
1856 	 * physical luns and report logical luns cmd, and adjust
1857 	 * our list of devices accordingly.
1858 	 *
1859 	 * The scsi3addr's of devices won't change so long as the
1860 	 * adapter is not reset.  That means we can rescan and
1861 	 * tell which devices we already know about, vs. new
1862 	 * devices, vs.  disappearing devices.
1863 	 */
1864 	struct ReportLUNdata *physdev_list = NULL;
1865 	struct ReportLUNdata *logdev_list = NULL;
1866 	u32 nphysicals = 0;
1867 	u32 nlogicals = 0;
1868 	u32 ndev_allocated = 0;
1869 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1870 	int ncurrent = 0;
1871 	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1872 	int i, n_ext_target_devs, ndevs_to_allocate;
1873 	int raid_ctlr_position;
1874 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1875 
1876 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1877 	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1878 	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1879 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1880 
1881 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1882 		dev_err(&h->pdev->dev, "out of memory\n");
1883 		goto out;
1884 	}
1885 	memset(lunzerobits, 0, sizeof(lunzerobits));
1886 
1887 	if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1888 			logdev_list, &nlogicals))
1889 		goto out;
1890 
1891 	/* We might see up to the maximum number of logical and physical disks
1892 	 * plus external target devices, and a device for the local RAID
1893 	 * controller.
1894 	 */
1895 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1896 
1897 	/* Allocate the per device structures */
1898 	for (i = 0; i < ndevs_to_allocate; i++) {
1899 		if (i >= HPSA_MAX_DEVICES) {
1900 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1901 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
1902 				ndevs_to_allocate - HPSA_MAX_DEVICES);
1903 			break;
1904 		}
1905 
1906 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1907 		if (!currentsd[i]) {
1908 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1909 				__FILE__, __LINE__);
1910 			goto out;
1911 		}
1912 		ndev_allocated++;
1913 	}
1914 
1915 	if (unlikely(is_scsi_rev_5(h)))
1916 		raid_ctlr_position = 0;
1917 	else
1918 		raid_ctlr_position = nphysicals + nlogicals;
1919 
1920 	/* adjust our table of devices */
1921 	n_ext_target_devs = 0;
1922 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1923 		u8 *lunaddrbytes, is_OBDR = 0;
1924 
1925 		/* Figure out where the LUN ID info is coming from */
1926 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1927 			i, nphysicals, nlogicals, physdev_list, logdev_list);
1928 		/* skip masked physical devices. */
1929 		if (lunaddrbytes[3] & 0xC0 &&
1930 			i < nphysicals + (raid_ctlr_position == 0))
1931 			continue;
1932 
1933 		/* Get device type, vendor, model, device id */
1934 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1935 							&is_OBDR))
1936 			continue; /* skip it if we can't talk to it. */
1937 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1938 		this_device = currentsd[ncurrent];
1939 
1940 		/*
1941 		 * For external target devices, we have to insert a LUN 0 which
1942 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1943 		 * is nonetheless an enclosure device there.  We have to
1944 		 * present that otherwise linux won't find anything if
1945 		 * there is no lun 0.
1946 		 */
1947 		if (add_ext_target_dev(h, tmpdevice, this_device,
1948 				lunaddrbytes, lunzerobits,
1949 				&n_ext_target_devs)) {
1950 			ncurrent++;
1951 			this_device = currentsd[ncurrent];
1952 		}
1953 
1954 		*this_device = *tmpdevice;
1955 
1956 		switch (this_device->devtype) {
1957 		case TYPE_ROM:
1958 			/* We don't *really* support actual CD-ROM devices,
1959 			 * just "One Button Disaster Recovery" tape drive
1960 			 * which temporarily pretends to be a CD-ROM drive.
1961 			 * So we check that the device is really an OBDR tape
1962 			 * device by checking for "$DR-10" in bytes 43-48 of
1963 			 * the inquiry data.
1964 			 */
1965 			if (is_OBDR)
1966 				ncurrent++;
1967 			break;
1968 		case TYPE_DISK:
1969 			if (i < nphysicals)
1970 				break;
1971 			ncurrent++;
1972 			break;
1973 		case TYPE_TAPE:
1974 		case TYPE_MEDIUM_CHANGER:
1975 			ncurrent++;
1976 			break;
1977 		case TYPE_RAID:
1978 			/* Only present the Smartarray HBA as a RAID controller.
1979 			 * If it's a RAID controller other than the HBA itself
1980 			 * (an external RAID controller, MSA500 or similar)
1981 			 * don't present it.
1982 			 */
1983 			if (!is_hba_lunid(lunaddrbytes))
1984 				break;
1985 			ncurrent++;
1986 			break;
1987 		default:
1988 			break;
1989 		}
1990 		if (ncurrent >= HPSA_MAX_DEVICES)
1991 			break;
1992 	}
1993 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1994 out:
1995 	kfree(tmpdevice);
1996 	for (i = 0; i < ndev_allocated; i++)
1997 		kfree(currentsd[i]);
1998 	kfree(currentsd);
1999 	kfree(physdev_list);
2000 	kfree(logdev_list);
2001 }
2002 
2003 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2004  * dma mapping  and fills in the scatter gather entries of the
2005  * hpsa command, cp.
2006  */
2007 static int hpsa_scatter_gather(struct ctlr_info *h,
2008 		struct CommandList *cp,
2009 		struct scsi_cmnd *cmd)
2010 {
2011 	unsigned int len;
2012 	struct scatterlist *sg;
2013 	u64 addr64;
2014 	int use_sg, i, sg_index, chained;
2015 	struct SGDescriptor *curr_sg;
2016 
2017 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2018 
2019 	use_sg = scsi_dma_map(cmd);
2020 	if (use_sg < 0)
2021 		return use_sg;
2022 
2023 	if (!use_sg)
2024 		goto sglist_finished;
2025 
2026 	curr_sg = cp->SG;
2027 	chained = 0;
2028 	sg_index = 0;
2029 	scsi_for_each_sg(cmd, sg, use_sg, i) {
2030 		if (i == h->max_cmd_sg_entries - 1 &&
2031 			use_sg > h->max_cmd_sg_entries) {
2032 			chained = 1;
2033 			curr_sg = h->cmd_sg_list[cp->cmdindex];
2034 			sg_index = 0;
2035 		}
2036 		addr64 = (u64) sg_dma_address(sg);
2037 		len  = sg_dma_len(sg);
2038 		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2039 		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2040 		curr_sg->Len = len;
2041 		curr_sg->Ext = 0;  /* we are not chaining */
2042 		curr_sg++;
2043 	}
2044 
2045 	if (use_sg + chained > h->maxSG)
2046 		h->maxSG = use_sg + chained;
2047 
2048 	if (chained) {
2049 		cp->Header.SGList = h->max_cmd_sg_entries;
2050 		cp->Header.SGTotal = (u16) (use_sg + 1);
2051 		hpsa_map_sg_chain_block(h, cp);
2052 		return 0;
2053 	}
2054 
2055 sglist_finished:
2056 
2057 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2058 	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2059 	return 0;
2060 }
2061 
2062 
2063 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2064 	void (*done)(struct scsi_cmnd *))
2065 {
2066 	struct ctlr_info *h;
2067 	struct hpsa_scsi_dev_t *dev;
2068 	unsigned char scsi3addr[8];
2069 	struct CommandList *c;
2070 	unsigned long flags;
2071 
2072 	/* Get the ptr to our adapter structure out of cmd->host. */
2073 	h = sdev_to_hba(cmd->device);
2074 	dev = cmd->device->hostdata;
2075 	if (!dev) {
2076 		cmd->result = DID_NO_CONNECT << 16;
2077 		done(cmd);
2078 		return 0;
2079 	}
2080 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2081 
2082 	spin_lock_irqsave(&h->lock, flags);
2083 	if (unlikely(h->lockup_detected)) {
2084 		spin_unlock_irqrestore(&h->lock, flags);
2085 		cmd->result = DID_ERROR << 16;
2086 		done(cmd);
2087 		return 0;
2088 	}
2089 	/* Need a lock as this is being allocated from the pool */
2090 	c = cmd_alloc(h);
2091 	spin_unlock_irqrestore(&h->lock, flags);
2092 	if (c == NULL) {			/* trouble... */
2093 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2094 		return SCSI_MLQUEUE_HOST_BUSY;
2095 	}
2096 
2097 	/* Fill in the command list header */
2098 
2099 	cmd->scsi_done = done;    /* save this for use by completion code */
2100 
2101 	/* save c in case we have to abort it  */
2102 	cmd->host_scribble = (unsigned char *) c;
2103 
2104 	c->cmd_type = CMD_SCSI;
2105 	c->scsi_cmd = cmd;
2106 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
2107 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2108 	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2109 	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2110 
2111 	/* Fill in the request block... */
2112 
2113 	c->Request.Timeout = 0;
2114 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2115 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2116 	c->Request.CDBLen = cmd->cmd_len;
2117 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2118 	c->Request.Type.Type = TYPE_CMD;
2119 	c->Request.Type.Attribute = ATTR_SIMPLE;
2120 	switch (cmd->sc_data_direction) {
2121 	case DMA_TO_DEVICE:
2122 		c->Request.Type.Direction = XFER_WRITE;
2123 		break;
2124 	case DMA_FROM_DEVICE:
2125 		c->Request.Type.Direction = XFER_READ;
2126 		break;
2127 	case DMA_NONE:
2128 		c->Request.Type.Direction = XFER_NONE;
2129 		break;
2130 	case DMA_BIDIRECTIONAL:
2131 		/* This can happen if a buggy application does a scsi passthru
2132 		 * and sets both inlen and outlen to non-zero. ( see
2133 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2134 		 */
2135 
2136 		c->Request.Type.Direction = XFER_RSVD;
2137 		/* This is technically wrong, and hpsa controllers should
2138 		 * reject it with CMD_INVALID, which is the most correct
2139 		 * response, but non-fibre backends appear to let it
2140 		 * slide by, and give the same results as if this field
2141 		 * were set correctly.  Either way is acceptable for
2142 		 * our purposes here.
2143 		 */
2144 
2145 		break;
2146 
2147 	default:
2148 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2149 			cmd->sc_data_direction);
2150 		BUG();
2151 		break;
2152 	}
2153 
2154 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2155 		cmd_free(h, c);
2156 		return SCSI_MLQUEUE_HOST_BUSY;
2157 	}
2158 	enqueue_cmd_and_start_io(h, c);
2159 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
2160 	return 0;
2161 }
2162 
2163 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2164 
2165 static void hpsa_scan_start(struct Scsi_Host *sh)
2166 {
2167 	struct ctlr_info *h = shost_to_hba(sh);
2168 	unsigned long flags;
2169 
2170 	/* wait until any scan already in progress is finished. */
2171 	while (1) {
2172 		spin_lock_irqsave(&h->scan_lock, flags);
2173 		if (h->scan_finished)
2174 			break;
2175 		spin_unlock_irqrestore(&h->scan_lock, flags);
2176 		wait_event(h->scan_wait_queue, h->scan_finished);
2177 		/* Note: We don't need to worry about a race between this
2178 		 * thread and driver unload because the midlayer will
2179 		 * have incremented the reference count, so unload won't
2180 		 * happen if we're in here.
2181 		 */
2182 	}
2183 	h->scan_finished = 0; /* mark scan as in progress */
2184 	spin_unlock_irqrestore(&h->scan_lock, flags);
2185 
2186 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2187 
2188 	spin_lock_irqsave(&h->scan_lock, flags);
2189 	h->scan_finished = 1; /* mark scan as finished. */
2190 	wake_up_all(&h->scan_wait_queue);
2191 	spin_unlock_irqrestore(&h->scan_lock, flags);
2192 }
2193 
2194 static int hpsa_scan_finished(struct Scsi_Host *sh,
2195 	unsigned long elapsed_time)
2196 {
2197 	struct ctlr_info *h = shost_to_hba(sh);
2198 	unsigned long flags;
2199 	int finished;
2200 
2201 	spin_lock_irqsave(&h->scan_lock, flags);
2202 	finished = h->scan_finished;
2203 	spin_unlock_irqrestore(&h->scan_lock, flags);
2204 	return finished;
2205 }
2206 
2207 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2208 	int qdepth, int reason)
2209 {
2210 	struct ctlr_info *h = sdev_to_hba(sdev);
2211 
2212 	if (reason != SCSI_QDEPTH_DEFAULT)
2213 		return -ENOTSUPP;
2214 
2215 	if (qdepth < 1)
2216 		qdepth = 1;
2217 	else
2218 		if (qdepth > h->nr_cmds)
2219 			qdepth = h->nr_cmds;
2220 	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2221 	return sdev->queue_depth;
2222 }
2223 
2224 static void hpsa_unregister_scsi(struct ctlr_info *h)
2225 {
2226 	/* we are being forcibly unloaded, and may not refuse. */
2227 	scsi_remove_host(h->scsi_host);
2228 	scsi_host_put(h->scsi_host);
2229 	h->scsi_host = NULL;
2230 }
2231 
2232 static int hpsa_register_scsi(struct ctlr_info *h)
2233 {
2234 	struct Scsi_Host *sh;
2235 	int error;
2236 
2237 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2238 	if (sh == NULL)
2239 		goto fail;
2240 
2241 	sh->io_port = 0;
2242 	sh->n_io_port = 0;
2243 	sh->this_id = -1;
2244 	sh->max_channel = 3;
2245 	sh->max_cmd_len = MAX_COMMAND_SIZE;
2246 	sh->max_lun = HPSA_MAX_LUN;
2247 	sh->max_id = HPSA_MAX_LUN;
2248 	sh->can_queue = h->nr_cmds;
2249 	sh->cmd_per_lun = h->nr_cmds;
2250 	sh->sg_tablesize = h->maxsgentries;
2251 	h->scsi_host = sh;
2252 	sh->hostdata[0] = (unsigned long) h;
2253 	sh->irq = h->intr[h->intr_mode];
2254 	sh->unique_id = sh->irq;
2255 	error = scsi_add_host(sh, &h->pdev->dev);
2256 	if (error)
2257 		goto fail_host_put;
2258 	scsi_scan_host(sh);
2259 	return 0;
2260 
2261  fail_host_put:
2262 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
2263 		" failed for controller %d\n", __func__, h->ctlr);
2264 	scsi_host_put(sh);
2265 	return error;
2266  fail:
2267 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2268 		" failed for controller %d\n", __func__, h->ctlr);
2269 	return -ENOMEM;
2270 }
2271 
2272 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2273 	unsigned char lunaddr[])
2274 {
2275 	int rc = 0;
2276 	int count = 0;
2277 	int waittime = 1; /* seconds */
2278 	struct CommandList *c;
2279 
2280 	c = cmd_special_alloc(h);
2281 	if (!c) {
2282 		dev_warn(&h->pdev->dev, "out of memory in "
2283 			"wait_for_device_to_become_ready.\n");
2284 		return IO_ERROR;
2285 	}
2286 
2287 	/* Send test unit ready until device ready, or give up. */
2288 	while (count < HPSA_TUR_RETRY_LIMIT) {
2289 
2290 		/* Wait for a bit.  do this first, because if we send
2291 		 * the TUR right away, the reset will just abort it.
2292 		 */
2293 		msleep(1000 * waittime);
2294 		count++;
2295 
2296 		/* Increase wait time with each try, up to a point. */
2297 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2298 			waittime = waittime * 2;
2299 
2300 		/* Send the Test Unit Ready */
2301 		fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2302 		hpsa_scsi_do_simple_cmd_core(h, c);
2303 		/* no unmap needed here because no data xfer. */
2304 
2305 		if (c->err_info->CommandStatus == CMD_SUCCESS)
2306 			break;
2307 
2308 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2309 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2310 			(c->err_info->SenseInfo[2] == NO_SENSE ||
2311 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2312 			break;
2313 
2314 		dev_warn(&h->pdev->dev, "waiting %d secs "
2315 			"for device to become ready.\n", waittime);
2316 		rc = 1; /* device not ready. */
2317 	}
2318 
2319 	if (rc)
2320 		dev_warn(&h->pdev->dev, "giving up on device.\n");
2321 	else
2322 		dev_warn(&h->pdev->dev, "device is ready.\n");
2323 
2324 	cmd_special_free(h, c);
2325 	return rc;
2326 }
2327 
2328 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2329  * complaining.  Doing a host- or bus-reset can't do anything good here.
2330  */
2331 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2332 {
2333 	int rc;
2334 	struct ctlr_info *h;
2335 	struct hpsa_scsi_dev_t *dev;
2336 
2337 	/* find the controller to which the command to be aborted was sent */
2338 	h = sdev_to_hba(scsicmd->device);
2339 	if (h == NULL) /* paranoia */
2340 		return FAILED;
2341 	dev = scsicmd->device->hostdata;
2342 	if (!dev) {
2343 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2344 			"device lookup failed.\n");
2345 		return FAILED;
2346 	}
2347 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2348 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2349 	/* send a reset to the SCSI LUN which the command was sent to */
2350 	rc = hpsa_send_reset(h, dev->scsi3addr);
2351 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2352 		return SUCCESS;
2353 
2354 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
2355 	return FAILED;
2356 }
2357 
2358 static void swizzle_abort_tag(u8 *tag)
2359 {
2360 	u8 original_tag[8];
2361 
2362 	memcpy(original_tag, tag, 8);
2363 	tag[0] = original_tag[3];
2364 	tag[1] = original_tag[2];
2365 	tag[2] = original_tag[1];
2366 	tag[3] = original_tag[0];
2367 	tag[4] = original_tag[7];
2368 	tag[5] = original_tag[6];
2369 	tag[6] = original_tag[5];
2370 	tag[7] = original_tag[4];
2371 }
2372 
2373 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2374 	struct CommandList *abort, int swizzle)
2375 {
2376 	int rc = IO_OK;
2377 	struct CommandList *c;
2378 	struct ErrorInfo *ei;
2379 
2380 	c = cmd_special_alloc(h);
2381 	if (c == NULL) {	/* trouble... */
2382 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2383 		return -ENOMEM;
2384 	}
2385 
2386 	fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2387 	if (swizzle)
2388 		swizzle_abort_tag(&c->Request.CDB[4]);
2389 	hpsa_scsi_do_simple_cmd_core(h, c);
2390 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2391 		__func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2392 	/* no unmap needed here because no data xfer. */
2393 
2394 	ei = c->err_info;
2395 	switch (ei->CommandStatus) {
2396 	case CMD_SUCCESS:
2397 		break;
2398 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
2399 		rc = -1;
2400 		break;
2401 	default:
2402 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2403 			__func__, abort->Header.Tag.upper,
2404 			abort->Header.Tag.lower);
2405 		hpsa_scsi_interpret_error(c);
2406 		rc = -1;
2407 		break;
2408 	}
2409 	cmd_special_free(h, c);
2410 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2411 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2412 	return rc;
2413 }
2414 
2415 /*
2416  * hpsa_find_cmd_in_queue
2417  *
2418  * Used to determine whether a command (find) is still present
2419  * in queue_head.   Optionally excludes the last element of queue_head.
2420  *
2421  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2422  * not yet been submitted, and so can be aborted by the driver without
2423  * sending an abort to the hardware.
2424  *
2425  * Returns pointer to command if found in queue, NULL otherwise.
2426  */
2427 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2428 			struct scsi_cmnd *find, struct list_head *queue_head)
2429 {
2430 	unsigned long flags;
2431 	struct CommandList *c = NULL;	/* ptr into cmpQ */
2432 
2433 	if (!find)
2434 		return 0;
2435 	spin_lock_irqsave(&h->lock, flags);
2436 	list_for_each_entry(c, queue_head, list) {
2437 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2438 			continue;
2439 		if (c->scsi_cmd == find) {
2440 			spin_unlock_irqrestore(&h->lock, flags);
2441 			return c;
2442 		}
2443 	}
2444 	spin_unlock_irqrestore(&h->lock, flags);
2445 	return NULL;
2446 }
2447 
2448 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2449 					u8 *tag, struct list_head *queue_head)
2450 {
2451 	unsigned long flags;
2452 	struct CommandList *c;
2453 
2454 	spin_lock_irqsave(&h->lock, flags);
2455 	list_for_each_entry(c, queue_head, list) {
2456 		if (memcmp(&c->Header.Tag, tag, 8) != 0)
2457 			continue;
2458 		spin_unlock_irqrestore(&h->lock, flags);
2459 		return c;
2460 	}
2461 	spin_unlock_irqrestore(&h->lock, flags);
2462 	return NULL;
2463 }
2464 
2465 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2466  * tell which kind we're dealing with, so we send the abort both ways.  There
2467  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2468  * way we construct our tags but we check anyway in case the assumptions which
2469  * make this true someday become false.
2470  */
2471 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2472 	unsigned char *scsi3addr, struct CommandList *abort)
2473 {
2474 	u8 swizzled_tag[8];
2475 	struct CommandList *c;
2476 	int rc = 0, rc2 = 0;
2477 
2478 	/* we do not expect to find the swizzled tag in our queue, but
2479 	 * check anyway just to be sure the assumptions which make this
2480 	 * the case haven't become wrong.
2481 	 */
2482 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2483 	swizzle_abort_tag(swizzled_tag);
2484 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2485 	if (c != NULL) {
2486 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2487 		return hpsa_send_abort(h, scsi3addr, abort, 0);
2488 	}
2489 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2490 
2491 	/* if the command is still in our queue, we can't conclude that it was
2492 	 * aborted (it might have just completed normally) but in any case
2493 	 * we don't need to try to abort it another way.
2494 	 */
2495 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2496 	if (c)
2497 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2498 	return rc && rc2;
2499 }
2500 
2501 /* Send an abort for the specified command.
2502  *	If the device and controller support it,
2503  *		send a task abort request.
2504  */
2505 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2506 {
2507 
2508 	int i, rc;
2509 	struct ctlr_info *h;
2510 	struct hpsa_scsi_dev_t *dev;
2511 	struct CommandList *abort; /* pointer to command to be aborted */
2512 	struct CommandList *found;
2513 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
2514 	char msg[256];		/* For debug messaging. */
2515 	int ml = 0;
2516 
2517 	/* Find the controller of the command to be aborted */
2518 	h = sdev_to_hba(sc->device);
2519 	if (WARN(h == NULL,
2520 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
2521 		return FAILED;
2522 
2523 	/* Check that controller supports some kind of task abort */
2524 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2525 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2526 		return FAILED;
2527 
2528 	memset(msg, 0, sizeof(msg));
2529 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2530 		h->scsi_host->host_no, sc->device->channel,
2531 		sc->device->id, sc->device->lun);
2532 
2533 	/* Find the device of the command to be aborted */
2534 	dev = sc->device->hostdata;
2535 	if (!dev) {
2536 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2537 				msg);
2538 		return FAILED;
2539 	}
2540 
2541 	/* Get SCSI command to be aborted */
2542 	abort = (struct CommandList *) sc->host_scribble;
2543 	if (abort == NULL) {
2544 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2545 				msg);
2546 		return FAILED;
2547 	}
2548 
2549 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2550 		abort->Header.Tag.upper, abort->Header.Tag.lower);
2551 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
2552 	if (as != NULL)
2553 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2554 			as->cmnd[0], as->serial_number);
2555 	dev_dbg(&h->pdev->dev, "%s\n", msg);
2556 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2557 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2558 
2559 	/* Search reqQ to See if command is queued but not submitted,
2560 	 * if so, complete the command with aborted status and remove
2561 	 * it from the reqQ.
2562 	 */
2563 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2564 	if (found) {
2565 		found->err_info->CommandStatus = CMD_ABORTED;
2566 		finish_cmd(found);
2567 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2568 				msg);
2569 		return SUCCESS;
2570 	}
2571 
2572 	/* not in reqQ, if also not in cmpQ, must have already completed */
2573 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2574 	if (!found)  {
2575 		dev_dbg(&h->pdev->dev, "%s Request FAILED (not known to driver).\n",
2576 				msg);
2577 		return SUCCESS;
2578 	}
2579 
2580 	/*
2581 	 * Command is in flight, or possibly already completed
2582 	 * by the firmware (but not to the scsi mid layer) but we can't
2583 	 * distinguish which.  Send the abort down.
2584 	 */
2585 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2586 	if (rc != 0) {
2587 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2588 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2589 			h->scsi_host->host_no,
2590 			dev->bus, dev->target, dev->lun);
2591 		return FAILED;
2592 	}
2593 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2594 
2595 	/* If the abort(s) above completed and actually aborted the
2596 	 * command, then the command to be aborted should already be
2597 	 * completed.  If not, wait around a bit more to see if they
2598 	 * manage to complete normally.
2599 	 */
2600 #define ABORT_COMPLETE_WAIT_SECS 30
2601 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2602 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2603 		if (!found)
2604 			return SUCCESS;
2605 		msleep(100);
2606 	}
2607 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2608 		msg, ABORT_COMPLETE_WAIT_SECS);
2609 	return FAILED;
2610 }
2611 
2612 
2613 /*
2614  * For operations that cannot sleep, a command block is allocated at init,
2615  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2616  * which ones are free or in use.  Lock must be held when calling this.
2617  * cmd_free() is the complement.
2618  */
2619 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2620 {
2621 	struct CommandList *c;
2622 	int i;
2623 	union u64bit temp64;
2624 	dma_addr_t cmd_dma_handle, err_dma_handle;
2625 
2626 	do {
2627 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2628 		if (i == h->nr_cmds)
2629 			return NULL;
2630 	} while (test_and_set_bit
2631 		 (i & (BITS_PER_LONG - 1),
2632 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2633 	c = h->cmd_pool + i;
2634 	memset(c, 0, sizeof(*c));
2635 	cmd_dma_handle = h->cmd_pool_dhandle
2636 	    + i * sizeof(*c);
2637 	c->err_info = h->errinfo_pool + i;
2638 	memset(c->err_info, 0, sizeof(*c->err_info));
2639 	err_dma_handle = h->errinfo_pool_dhandle
2640 	    + i * sizeof(*c->err_info);
2641 	h->nr_allocs++;
2642 
2643 	c->cmdindex = i;
2644 
2645 	INIT_LIST_HEAD(&c->list);
2646 	c->busaddr = (u32) cmd_dma_handle;
2647 	temp64.val = (u64) err_dma_handle;
2648 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2649 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2650 	c->ErrDesc.Len = sizeof(*c->err_info);
2651 
2652 	c->h = h;
2653 	return c;
2654 }
2655 
2656 /* For operations that can wait for kmalloc to possibly sleep,
2657  * this routine can be called. Lock need not be held to call
2658  * cmd_special_alloc. cmd_special_free() is the complement.
2659  */
2660 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2661 {
2662 	struct CommandList *c;
2663 	union u64bit temp64;
2664 	dma_addr_t cmd_dma_handle, err_dma_handle;
2665 
2666 	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2667 	if (c == NULL)
2668 		return NULL;
2669 	memset(c, 0, sizeof(*c));
2670 
2671 	c->cmdindex = -1;
2672 
2673 	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2674 		    &err_dma_handle);
2675 
2676 	if (c->err_info == NULL) {
2677 		pci_free_consistent(h->pdev,
2678 			sizeof(*c), c, cmd_dma_handle);
2679 		return NULL;
2680 	}
2681 	memset(c->err_info, 0, sizeof(*c->err_info));
2682 
2683 	INIT_LIST_HEAD(&c->list);
2684 	c->busaddr = (u32) cmd_dma_handle;
2685 	temp64.val = (u64) err_dma_handle;
2686 	c->ErrDesc.Addr.lower = temp64.val32.lower;
2687 	c->ErrDesc.Addr.upper = temp64.val32.upper;
2688 	c->ErrDesc.Len = sizeof(*c->err_info);
2689 
2690 	c->h = h;
2691 	return c;
2692 }
2693 
2694 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2695 {
2696 	int i;
2697 
2698 	i = c - h->cmd_pool;
2699 	clear_bit(i & (BITS_PER_LONG - 1),
2700 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2701 	h->nr_frees++;
2702 }
2703 
2704 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2705 {
2706 	union u64bit temp64;
2707 
2708 	temp64.val32.lower = c->ErrDesc.Addr.lower;
2709 	temp64.val32.upper = c->ErrDesc.Addr.upper;
2710 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
2711 			    c->err_info, (dma_addr_t) temp64.val);
2712 	pci_free_consistent(h->pdev, sizeof(*c),
2713 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2714 }
2715 
2716 #ifdef CONFIG_COMPAT
2717 
2718 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2719 {
2720 	IOCTL32_Command_struct __user *arg32 =
2721 	    (IOCTL32_Command_struct __user *) arg;
2722 	IOCTL_Command_struct arg64;
2723 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2724 	int err;
2725 	u32 cp;
2726 
2727 	memset(&arg64, 0, sizeof(arg64));
2728 	err = 0;
2729 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2730 			   sizeof(arg64.LUN_info));
2731 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2732 			   sizeof(arg64.Request));
2733 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2734 			   sizeof(arg64.error_info));
2735 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2736 	err |= get_user(cp, &arg32->buf);
2737 	arg64.buf = compat_ptr(cp);
2738 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2739 
2740 	if (err)
2741 		return -EFAULT;
2742 
2743 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2744 	if (err)
2745 		return err;
2746 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2747 			 sizeof(arg32->error_info));
2748 	if (err)
2749 		return -EFAULT;
2750 	return err;
2751 }
2752 
2753 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2754 	int cmd, void *arg)
2755 {
2756 	BIG_IOCTL32_Command_struct __user *arg32 =
2757 	    (BIG_IOCTL32_Command_struct __user *) arg;
2758 	BIG_IOCTL_Command_struct arg64;
2759 	BIG_IOCTL_Command_struct __user *p =
2760 	    compat_alloc_user_space(sizeof(arg64));
2761 	int err;
2762 	u32 cp;
2763 
2764 	memset(&arg64, 0, sizeof(arg64));
2765 	err = 0;
2766 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2767 			   sizeof(arg64.LUN_info));
2768 	err |= copy_from_user(&arg64.Request, &arg32->Request,
2769 			   sizeof(arg64.Request));
2770 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2771 			   sizeof(arg64.error_info));
2772 	err |= get_user(arg64.buf_size, &arg32->buf_size);
2773 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2774 	err |= get_user(cp, &arg32->buf);
2775 	arg64.buf = compat_ptr(cp);
2776 	err |= copy_to_user(p, &arg64, sizeof(arg64));
2777 
2778 	if (err)
2779 		return -EFAULT;
2780 
2781 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2782 	if (err)
2783 		return err;
2784 	err |= copy_in_user(&arg32->error_info, &p->error_info,
2785 			 sizeof(arg32->error_info));
2786 	if (err)
2787 		return -EFAULT;
2788 	return err;
2789 }
2790 
2791 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2792 {
2793 	switch (cmd) {
2794 	case CCISS_GETPCIINFO:
2795 	case CCISS_GETINTINFO:
2796 	case CCISS_SETINTINFO:
2797 	case CCISS_GETNODENAME:
2798 	case CCISS_SETNODENAME:
2799 	case CCISS_GETHEARTBEAT:
2800 	case CCISS_GETBUSTYPES:
2801 	case CCISS_GETFIRMVER:
2802 	case CCISS_GETDRIVVER:
2803 	case CCISS_REVALIDVOLS:
2804 	case CCISS_DEREGDISK:
2805 	case CCISS_REGNEWDISK:
2806 	case CCISS_REGNEWD:
2807 	case CCISS_RESCANDISK:
2808 	case CCISS_GETLUNINFO:
2809 		return hpsa_ioctl(dev, cmd, arg);
2810 
2811 	case CCISS_PASSTHRU32:
2812 		return hpsa_ioctl32_passthru(dev, cmd, arg);
2813 	case CCISS_BIG_PASSTHRU32:
2814 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2815 
2816 	default:
2817 		return -ENOIOCTLCMD;
2818 	}
2819 }
2820 #endif
2821 
2822 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2823 {
2824 	struct hpsa_pci_info pciinfo;
2825 
2826 	if (!argp)
2827 		return -EINVAL;
2828 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
2829 	pciinfo.bus = h->pdev->bus->number;
2830 	pciinfo.dev_fn = h->pdev->devfn;
2831 	pciinfo.board_id = h->board_id;
2832 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2833 		return -EFAULT;
2834 	return 0;
2835 }
2836 
2837 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2838 {
2839 	DriverVer_type DriverVer;
2840 	unsigned char vmaj, vmin, vsubmin;
2841 	int rc;
2842 
2843 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2844 		&vmaj, &vmin, &vsubmin);
2845 	if (rc != 3) {
2846 		dev_info(&h->pdev->dev, "driver version string '%s' "
2847 			"unrecognized.", HPSA_DRIVER_VERSION);
2848 		vmaj = 0;
2849 		vmin = 0;
2850 		vsubmin = 0;
2851 	}
2852 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2853 	if (!argp)
2854 		return -EINVAL;
2855 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2856 		return -EFAULT;
2857 	return 0;
2858 }
2859 
2860 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2861 {
2862 	IOCTL_Command_struct iocommand;
2863 	struct CommandList *c;
2864 	char *buff = NULL;
2865 	union u64bit temp64;
2866 
2867 	if (!argp)
2868 		return -EINVAL;
2869 	if (!capable(CAP_SYS_RAWIO))
2870 		return -EPERM;
2871 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2872 		return -EFAULT;
2873 	if ((iocommand.buf_size < 1) &&
2874 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
2875 		return -EINVAL;
2876 	}
2877 	if (iocommand.buf_size > 0) {
2878 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2879 		if (buff == NULL)
2880 			return -EFAULT;
2881 		if (iocommand.Request.Type.Direction == XFER_WRITE) {
2882 			/* Copy the data into the buffer we created */
2883 			if (copy_from_user(buff, iocommand.buf,
2884 				iocommand.buf_size)) {
2885 				kfree(buff);
2886 				return -EFAULT;
2887 			}
2888 		} else {
2889 			memset(buff, 0, iocommand.buf_size);
2890 		}
2891 	}
2892 	c = cmd_special_alloc(h);
2893 	if (c == NULL) {
2894 		kfree(buff);
2895 		return -ENOMEM;
2896 	}
2897 	/* Fill in the command type */
2898 	c->cmd_type = CMD_IOCTL_PEND;
2899 	/* Fill in Command Header */
2900 	c->Header.ReplyQueue = 0; /* unused in simple mode */
2901 	if (iocommand.buf_size > 0) {	/* buffer to fill */
2902 		c->Header.SGList = 1;
2903 		c->Header.SGTotal = 1;
2904 	} else	{ /* no buffers to fill */
2905 		c->Header.SGList = 0;
2906 		c->Header.SGTotal = 0;
2907 	}
2908 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2909 	/* use the kernel address the cmd block for tag */
2910 	c->Header.Tag.lower = c->busaddr;
2911 
2912 	/* Fill in Request block */
2913 	memcpy(&c->Request, &iocommand.Request,
2914 		sizeof(c->Request));
2915 
2916 	/* Fill in the scatter gather information */
2917 	if (iocommand.buf_size > 0) {
2918 		temp64.val = pci_map_single(h->pdev, buff,
2919 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2920 		c->SG[0].Addr.lower = temp64.val32.lower;
2921 		c->SG[0].Addr.upper = temp64.val32.upper;
2922 		c->SG[0].Len = iocommand.buf_size;
2923 		c->SG[0].Ext = 0; /* we are not chaining*/
2924 	}
2925 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2926 	if (iocommand.buf_size > 0)
2927 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2928 	check_ioctl_unit_attention(h, c);
2929 
2930 	/* Copy the error information out */
2931 	memcpy(&iocommand.error_info, c->err_info,
2932 		sizeof(iocommand.error_info));
2933 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2934 		kfree(buff);
2935 		cmd_special_free(h, c);
2936 		return -EFAULT;
2937 	}
2938 	if (iocommand.Request.Type.Direction == XFER_READ &&
2939 		iocommand.buf_size > 0) {
2940 		/* Copy the data out of the buffer we created */
2941 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2942 			kfree(buff);
2943 			cmd_special_free(h, c);
2944 			return -EFAULT;
2945 		}
2946 	}
2947 	kfree(buff);
2948 	cmd_special_free(h, c);
2949 	return 0;
2950 }
2951 
2952 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2953 {
2954 	BIG_IOCTL_Command_struct *ioc;
2955 	struct CommandList *c;
2956 	unsigned char **buff = NULL;
2957 	int *buff_size = NULL;
2958 	union u64bit temp64;
2959 	BYTE sg_used = 0;
2960 	int status = 0;
2961 	int i;
2962 	u32 left;
2963 	u32 sz;
2964 	BYTE __user *data_ptr;
2965 
2966 	if (!argp)
2967 		return -EINVAL;
2968 	if (!capable(CAP_SYS_RAWIO))
2969 		return -EPERM;
2970 	ioc = (BIG_IOCTL_Command_struct *)
2971 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
2972 	if (!ioc) {
2973 		status = -ENOMEM;
2974 		goto cleanup1;
2975 	}
2976 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2977 		status = -EFAULT;
2978 		goto cleanup1;
2979 	}
2980 	if ((ioc->buf_size < 1) &&
2981 	    (ioc->Request.Type.Direction != XFER_NONE)) {
2982 		status = -EINVAL;
2983 		goto cleanup1;
2984 	}
2985 	/* Check kmalloc limits  using all SGs */
2986 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2987 		status = -EINVAL;
2988 		goto cleanup1;
2989 	}
2990 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2991 		status = -EINVAL;
2992 		goto cleanup1;
2993 	}
2994 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2995 	if (!buff) {
2996 		status = -ENOMEM;
2997 		goto cleanup1;
2998 	}
2999 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3000 	if (!buff_size) {
3001 		status = -ENOMEM;
3002 		goto cleanup1;
3003 	}
3004 	left = ioc->buf_size;
3005 	data_ptr = ioc->buf;
3006 	while (left) {
3007 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3008 		buff_size[sg_used] = sz;
3009 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3010 		if (buff[sg_used] == NULL) {
3011 			status = -ENOMEM;
3012 			goto cleanup1;
3013 		}
3014 		if (ioc->Request.Type.Direction == XFER_WRITE) {
3015 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3016 				status = -ENOMEM;
3017 				goto cleanup1;
3018 			}
3019 		} else
3020 			memset(buff[sg_used], 0, sz);
3021 		left -= sz;
3022 		data_ptr += sz;
3023 		sg_used++;
3024 	}
3025 	c = cmd_special_alloc(h);
3026 	if (c == NULL) {
3027 		status = -ENOMEM;
3028 		goto cleanup1;
3029 	}
3030 	c->cmd_type = CMD_IOCTL_PEND;
3031 	c->Header.ReplyQueue = 0;
3032 	c->Header.SGList = c->Header.SGTotal = sg_used;
3033 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3034 	c->Header.Tag.lower = c->busaddr;
3035 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3036 	if (ioc->buf_size > 0) {
3037 		int i;
3038 		for (i = 0; i < sg_used; i++) {
3039 			temp64.val = pci_map_single(h->pdev, buff[i],
3040 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3041 			c->SG[i].Addr.lower = temp64.val32.lower;
3042 			c->SG[i].Addr.upper = temp64.val32.upper;
3043 			c->SG[i].Len = buff_size[i];
3044 			/* we are not chaining */
3045 			c->SG[i].Ext = 0;
3046 		}
3047 	}
3048 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3049 	if (sg_used)
3050 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3051 	check_ioctl_unit_attention(h, c);
3052 	/* Copy the error information out */
3053 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3054 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3055 		cmd_special_free(h, c);
3056 		status = -EFAULT;
3057 		goto cleanup1;
3058 	}
3059 	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3060 		/* Copy the data out of the buffer we created */
3061 		BYTE __user *ptr = ioc->buf;
3062 		for (i = 0; i < sg_used; i++) {
3063 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
3064 				cmd_special_free(h, c);
3065 				status = -EFAULT;
3066 				goto cleanup1;
3067 			}
3068 			ptr += buff_size[i];
3069 		}
3070 	}
3071 	cmd_special_free(h, c);
3072 	status = 0;
3073 cleanup1:
3074 	if (buff) {
3075 		for (i = 0; i < sg_used; i++)
3076 			kfree(buff[i]);
3077 		kfree(buff);
3078 	}
3079 	kfree(buff_size);
3080 	kfree(ioc);
3081 	return status;
3082 }
3083 
3084 static void check_ioctl_unit_attention(struct ctlr_info *h,
3085 	struct CommandList *c)
3086 {
3087 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3088 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3089 		(void) check_for_unit_attention(h, c);
3090 }
3091 /*
3092  * ioctl
3093  */
3094 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3095 {
3096 	struct ctlr_info *h;
3097 	void __user *argp = (void __user *)arg;
3098 
3099 	h = sdev_to_hba(dev);
3100 
3101 	switch (cmd) {
3102 	case CCISS_DEREGDISK:
3103 	case CCISS_REGNEWDISK:
3104 	case CCISS_REGNEWD:
3105 		hpsa_scan_start(h->scsi_host);
3106 		return 0;
3107 	case CCISS_GETPCIINFO:
3108 		return hpsa_getpciinfo_ioctl(h, argp);
3109 	case CCISS_GETDRIVVER:
3110 		return hpsa_getdrivver_ioctl(h, argp);
3111 	case CCISS_PASSTHRU:
3112 		return hpsa_passthru_ioctl(h, argp);
3113 	case CCISS_BIG_PASSTHRU:
3114 		return hpsa_big_passthru_ioctl(h, argp);
3115 	default:
3116 		return -ENOTTY;
3117 	}
3118 }
3119 
3120 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3121 	unsigned char *scsi3addr, u8 reset_type)
3122 {
3123 	struct CommandList *c;
3124 
3125 	c = cmd_alloc(h);
3126 	if (!c)
3127 		return -ENOMEM;
3128 	fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3129 		RAID_CTLR_LUNID, TYPE_MSG);
3130 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3131 	c->waiting = NULL;
3132 	enqueue_cmd_and_start_io(h, c);
3133 	/* Don't wait for completion, the reset won't complete.  Don't free
3134 	 * the command either.  This is the last command we will send before
3135 	 * re-initializing everything, so it doesn't matter and won't leak.
3136 	 */
3137 	return 0;
3138 }
3139 
3140 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3141 	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3142 	int cmd_type)
3143 {
3144 	int pci_dir = XFER_NONE;
3145 	struct CommandList *a; /* for commands to be aborted */
3146 
3147 	c->cmd_type = CMD_IOCTL_PEND;
3148 	c->Header.ReplyQueue = 0;
3149 	if (buff != NULL && size > 0) {
3150 		c->Header.SGList = 1;
3151 		c->Header.SGTotal = 1;
3152 	} else {
3153 		c->Header.SGList = 0;
3154 		c->Header.SGTotal = 0;
3155 	}
3156 	c->Header.Tag.lower = c->busaddr;
3157 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3158 
3159 	c->Request.Type.Type = cmd_type;
3160 	if (cmd_type == TYPE_CMD) {
3161 		switch (cmd) {
3162 		case HPSA_INQUIRY:
3163 			/* are we trying to read a vital product page */
3164 			if (page_code != 0) {
3165 				c->Request.CDB[1] = 0x01;
3166 				c->Request.CDB[2] = page_code;
3167 			}
3168 			c->Request.CDBLen = 6;
3169 			c->Request.Type.Attribute = ATTR_SIMPLE;
3170 			c->Request.Type.Direction = XFER_READ;
3171 			c->Request.Timeout = 0;
3172 			c->Request.CDB[0] = HPSA_INQUIRY;
3173 			c->Request.CDB[4] = size & 0xFF;
3174 			break;
3175 		case HPSA_REPORT_LOG:
3176 		case HPSA_REPORT_PHYS:
3177 			/* Talking to controller so It's a physical command
3178 			   mode = 00 target = 0.  Nothing to write.
3179 			 */
3180 			c->Request.CDBLen = 12;
3181 			c->Request.Type.Attribute = ATTR_SIMPLE;
3182 			c->Request.Type.Direction = XFER_READ;
3183 			c->Request.Timeout = 0;
3184 			c->Request.CDB[0] = cmd;
3185 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3186 			c->Request.CDB[7] = (size >> 16) & 0xFF;
3187 			c->Request.CDB[8] = (size >> 8) & 0xFF;
3188 			c->Request.CDB[9] = size & 0xFF;
3189 			break;
3190 		case HPSA_CACHE_FLUSH:
3191 			c->Request.CDBLen = 12;
3192 			c->Request.Type.Attribute = ATTR_SIMPLE;
3193 			c->Request.Type.Direction = XFER_WRITE;
3194 			c->Request.Timeout = 0;
3195 			c->Request.CDB[0] = BMIC_WRITE;
3196 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3197 			c->Request.CDB[7] = (size >> 8) & 0xFF;
3198 			c->Request.CDB[8] = size & 0xFF;
3199 			break;
3200 		case TEST_UNIT_READY:
3201 			c->Request.CDBLen = 6;
3202 			c->Request.Type.Attribute = ATTR_SIMPLE;
3203 			c->Request.Type.Direction = XFER_NONE;
3204 			c->Request.Timeout = 0;
3205 			break;
3206 		default:
3207 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3208 			BUG();
3209 			return;
3210 		}
3211 	} else if (cmd_type == TYPE_MSG) {
3212 		switch (cmd) {
3213 
3214 		case  HPSA_DEVICE_RESET_MSG:
3215 			c->Request.CDBLen = 16;
3216 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3217 			c->Request.Type.Attribute = ATTR_SIMPLE;
3218 			c->Request.Type.Direction = XFER_NONE;
3219 			c->Request.Timeout = 0; /* Don't time out */
3220 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3221 			c->Request.CDB[0] =  cmd;
3222 			c->Request.CDB[1] = 0x03;  /* Reset target above */
3223 			/* If bytes 4-7 are zero, it means reset the */
3224 			/* LunID device */
3225 			c->Request.CDB[4] = 0x00;
3226 			c->Request.CDB[5] = 0x00;
3227 			c->Request.CDB[6] = 0x00;
3228 			c->Request.CDB[7] = 0x00;
3229 			break;
3230 		case  HPSA_ABORT_MSG:
3231 			a = buff;       /* point to command to be aborted */
3232 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3233 				a->Header.Tag.upper, a->Header.Tag.lower,
3234 				c->Header.Tag.upper, c->Header.Tag.lower);
3235 			c->Request.CDBLen = 16;
3236 			c->Request.Type.Type = TYPE_MSG;
3237 			c->Request.Type.Attribute = ATTR_SIMPLE;
3238 			c->Request.Type.Direction = XFER_WRITE;
3239 			c->Request.Timeout = 0; /* Don't time out */
3240 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3241 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3242 			c->Request.CDB[2] = 0x00; /* reserved */
3243 			c->Request.CDB[3] = 0x00; /* reserved */
3244 			/* Tag to abort goes in CDB[4]-CDB[11] */
3245 			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3246 			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3247 			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3248 			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3249 			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3250 			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3251 			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3252 			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3253 			c->Request.CDB[12] = 0x00; /* reserved */
3254 			c->Request.CDB[13] = 0x00; /* reserved */
3255 			c->Request.CDB[14] = 0x00; /* reserved */
3256 			c->Request.CDB[15] = 0x00; /* reserved */
3257 		break;
3258 		default:
3259 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
3260 				cmd);
3261 			BUG();
3262 		}
3263 	} else {
3264 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3265 		BUG();
3266 	}
3267 
3268 	switch (c->Request.Type.Direction) {
3269 	case XFER_READ:
3270 		pci_dir = PCI_DMA_FROMDEVICE;
3271 		break;
3272 	case XFER_WRITE:
3273 		pci_dir = PCI_DMA_TODEVICE;
3274 		break;
3275 	case XFER_NONE:
3276 		pci_dir = PCI_DMA_NONE;
3277 		break;
3278 	default:
3279 		pci_dir = PCI_DMA_BIDIRECTIONAL;
3280 	}
3281 
3282 	hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3283 
3284 	return;
3285 }
3286 
3287 /*
3288  * Map (physical) PCI mem into (virtual) kernel space
3289  */
3290 static void __iomem *remap_pci_mem(ulong base, ulong size)
3291 {
3292 	ulong page_base = ((ulong) base) & PAGE_MASK;
3293 	ulong page_offs = ((ulong) base) - page_base;
3294 	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3295 
3296 	return page_remapped ? (page_remapped + page_offs) : NULL;
3297 }
3298 
3299 /* Takes cmds off the submission queue and sends them to the hardware,
3300  * then puts them on the queue of cmds waiting for completion.
3301  */
3302 static void start_io(struct ctlr_info *h)
3303 {
3304 	struct CommandList *c;
3305 
3306 	while (!list_empty(&h->reqQ)) {
3307 		c = list_entry(h->reqQ.next, struct CommandList, list);
3308 		/* can't do anything if fifo is full */
3309 		if ((h->access.fifo_full(h))) {
3310 			dev_warn(&h->pdev->dev, "fifo full\n");
3311 			break;
3312 		}
3313 
3314 		/* Get the first entry from the Request Q */
3315 		removeQ(c);
3316 		h->Qdepth--;
3317 
3318 		/* Tell the controller execute command */
3319 		h->access.submit_command(h, c);
3320 
3321 		/* Put job onto the completed Q */
3322 		addQ(&h->cmpQ, c);
3323 	}
3324 }
3325 
3326 static inline unsigned long get_next_completion(struct ctlr_info *h)
3327 {
3328 	return h->access.command_completed(h);
3329 }
3330 
3331 static inline bool interrupt_pending(struct ctlr_info *h)
3332 {
3333 	return h->access.intr_pending(h);
3334 }
3335 
3336 static inline long interrupt_not_for_us(struct ctlr_info *h)
3337 {
3338 	return (h->access.intr_pending(h) == 0) ||
3339 		(h->interrupts_enabled == 0);
3340 }
3341 
3342 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3343 	u32 raw_tag)
3344 {
3345 	if (unlikely(tag_index >= h->nr_cmds)) {
3346 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3347 		return 1;
3348 	}
3349 	return 0;
3350 }
3351 
3352 static inline void finish_cmd(struct CommandList *c)
3353 {
3354 	removeQ(c);
3355 	if (likely(c->cmd_type == CMD_SCSI))
3356 		complete_scsi_command(c);
3357 	else if (c->cmd_type == CMD_IOCTL_PEND)
3358 		complete(c->waiting);
3359 }
3360 
3361 static inline u32 hpsa_tag_contains_index(u32 tag)
3362 {
3363 	return tag & DIRECT_LOOKUP_BIT;
3364 }
3365 
3366 static inline u32 hpsa_tag_to_index(u32 tag)
3367 {
3368 	return tag >> DIRECT_LOOKUP_SHIFT;
3369 }
3370 
3371 
3372 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3373 {
3374 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3375 #define HPSA_SIMPLE_ERROR_BITS 0x03
3376 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3377 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
3378 	return tag & ~HPSA_PERF_ERROR_BITS;
3379 }
3380 
3381 /* process completion of an indexed ("direct lookup") command */
3382 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3383 	u32 raw_tag)
3384 {
3385 	u32 tag_index;
3386 	struct CommandList *c;
3387 
3388 	tag_index = hpsa_tag_to_index(raw_tag);
3389 	if (bad_tag(h, tag_index, raw_tag))
3390 		return next_command(h);
3391 	c = h->cmd_pool + tag_index;
3392 	finish_cmd(c);
3393 	return next_command(h);
3394 }
3395 
3396 /* process completion of a non-indexed command */
3397 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3398 	u32 raw_tag)
3399 {
3400 	u32 tag;
3401 	struct CommandList *c = NULL;
3402 
3403 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3404 	list_for_each_entry(c, &h->cmpQ, list) {
3405 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3406 			finish_cmd(c);
3407 			return next_command(h);
3408 		}
3409 	}
3410 	bad_tag(h, h->nr_cmds + 1, raw_tag);
3411 	return next_command(h);
3412 }
3413 
3414 /* Some controllers, like p400, will give us one interrupt
3415  * after a soft reset, even if we turned interrupts off.
3416  * Only need to check for this in the hpsa_xxx_discard_completions
3417  * functions.
3418  */
3419 static int ignore_bogus_interrupt(struct ctlr_info *h)
3420 {
3421 	if (likely(!reset_devices))
3422 		return 0;
3423 
3424 	if (likely(h->interrupts_enabled))
3425 		return 0;
3426 
3427 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3428 		"(known firmware bug.)  Ignoring.\n");
3429 
3430 	return 1;
3431 }
3432 
3433 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3434 {
3435 	struct ctlr_info *h = dev_id;
3436 	unsigned long flags;
3437 	u32 raw_tag;
3438 
3439 	if (ignore_bogus_interrupt(h))
3440 		return IRQ_NONE;
3441 
3442 	if (interrupt_not_for_us(h))
3443 		return IRQ_NONE;
3444 	spin_lock_irqsave(&h->lock, flags);
3445 	h->last_intr_timestamp = get_jiffies_64();
3446 	while (interrupt_pending(h)) {
3447 		raw_tag = get_next_completion(h);
3448 		while (raw_tag != FIFO_EMPTY)
3449 			raw_tag = next_command(h);
3450 	}
3451 	spin_unlock_irqrestore(&h->lock, flags);
3452 	return IRQ_HANDLED;
3453 }
3454 
3455 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3456 {
3457 	struct ctlr_info *h = dev_id;
3458 	unsigned long flags;
3459 	u32 raw_tag;
3460 
3461 	if (ignore_bogus_interrupt(h))
3462 		return IRQ_NONE;
3463 
3464 	spin_lock_irqsave(&h->lock, flags);
3465 	h->last_intr_timestamp = get_jiffies_64();
3466 	raw_tag = get_next_completion(h);
3467 	while (raw_tag != FIFO_EMPTY)
3468 		raw_tag = next_command(h);
3469 	spin_unlock_irqrestore(&h->lock, flags);
3470 	return IRQ_HANDLED;
3471 }
3472 
3473 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3474 {
3475 	struct ctlr_info *h = dev_id;
3476 	unsigned long flags;
3477 	u32 raw_tag;
3478 
3479 	if (interrupt_not_for_us(h))
3480 		return IRQ_NONE;
3481 	spin_lock_irqsave(&h->lock, flags);
3482 	h->last_intr_timestamp = get_jiffies_64();
3483 	while (interrupt_pending(h)) {
3484 		raw_tag = get_next_completion(h);
3485 		while (raw_tag != FIFO_EMPTY) {
3486 			if (hpsa_tag_contains_index(raw_tag))
3487 				raw_tag = process_indexed_cmd(h, raw_tag);
3488 			else
3489 				raw_tag = process_nonindexed_cmd(h, raw_tag);
3490 		}
3491 	}
3492 	spin_unlock_irqrestore(&h->lock, flags);
3493 	return IRQ_HANDLED;
3494 }
3495 
3496 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3497 {
3498 	struct ctlr_info *h = dev_id;
3499 	unsigned long flags;
3500 	u32 raw_tag;
3501 
3502 	spin_lock_irqsave(&h->lock, flags);
3503 	h->last_intr_timestamp = get_jiffies_64();
3504 	raw_tag = get_next_completion(h);
3505 	while (raw_tag != FIFO_EMPTY) {
3506 		if (hpsa_tag_contains_index(raw_tag))
3507 			raw_tag = process_indexed_cmd(h, raw_tag);
3508 		else
3509 			raw_tag = process_nonindexed_cmd(h, raw_tag);
3510 	}
3511 	spin_unlock_irqrestore(&h->lock, flags);
3512 	return IRQ_HANDLED;
3513 }
3514 
3515 /* Send a message CDB to the firmware. Careful, this only works
3516  * in simple mode, not performant mode due to the tag lookup.
3517  * We only ever use this immediately after a controller reset.
3518  */
3519 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3520 						unsigned char type)
3521 {
3522 	struct Command {
3523 		struct CommandListHeader CommandHeader;
3524 		struct RequestBlock Request;
3525 		struct ErrDescriptor ErrorDescriptor;
3526 	};
3527 	struct Command *cmd;
3528 	static const size_t cmd_sz = sizeof(*cmd) +
3529 					sizeof(cmd->ErrorDescriptor);
3530 	dma_addr_t paddr64;
3531 	uint32_t paddr32, tag;
3532 	void __iomem *vaddr;
3533 	int i, err;
3534 
3535 	vaddr = pci_ioremap_bar(pdev, 0);
3536 	if (vaddr == NULL)
3537 		return -ENOMEM;
3538 
3539 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
3540 	 * CCISS commands, so they must be allocated from the lower 4GiB of
3541 	 * memory.
3542 	 */
3543 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3544 	if (err) {
3545 		iounmap(vaddr);
3546 		return -ENOMEM;
3547 	}
3548 
3549 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3550 	if (cmd == NULL) {
3551 		iounmap(vaddr);
3552 		return -ENOMEM;
3553 	}
3554 
3555 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
3556 	 * although there's no guarantee, we assume that the address is at
3557 	 * least 4-byte aligned (most likely, it's page-aligned).
3558 	 */
3559 	paddr32 = paddr64;
3560 
3561 	cmd->CommandHeader.ReplyQueue = 0;
3562 	cmd->CommandHeader.SGList = 0;
3563 	cmd->CommandHeader.SGTotal = 0;
3564 	cmd->CommandHeader.Tag.lower = paddr32;
3565 	cmd->CommandHeader.Tag.upper = 0;
3566 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3567 
3568 	cmd->Request.CDBLen = 16;
3569 	cmd->Request.Type.Type = TYPE_MSG;
3570 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3571 	cmd->Request.Type.Direction = XFER_NONE;
3572 	cmd->Request.Timeout = 0; /* Don't time out */
3573 	cmd->Request.CDB[0] = opcode;
3574 	cmd->Request.CDB[1] = type;
3575 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3576 	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3577 	cmd->ErrorDescriptor.Addr.upper = 0;
3578 	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3579 
3580 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3581 
3582 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3583 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3584 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3585 			break;
3586 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3587 	}
3588 
3589 	iounmap(vaddr);
3590 
3591 	/* we leak the DMA buffer here ... no choice since the controller could
3592 	 *  still complete the command.
3593 	 */
3594 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3595 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3596 			opcode, type);
3597 		return -ETIMEDOUT;
3598 	}
3599 
3600 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3601 
3602 	if (tag & HPSA_ERROR_BIT) {
3603 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3604 			opcode, type);
3605 		return -EIO;
3606 	}
3607 
3608 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3609 		opcode, type);
3610 	return 0;
3611 }
3612 
3613 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3614 
3615 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3616 	void * __iomem vaddr, u32 use_doorbell)
3617 {
3618 	u16 pmcsr;
3619 	int pos;
3620 
3621 	if (use_doorbell) {
3622 		/* For everything after the P600, the PCI power state method
3623 		 * of resetting the controller doesn't work, so we have this
3624 		 * other way using the doorbell register.
3625 		 */
3626 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3627 		writel(use_doorbell, vaddr + SA5_DOORBELL);
3628 	} else { /* Try to do it the PCI power state way */
3629 
3630 		/* Quoting from the Open CISS Specification: "The Power
3631 		 * Management Control/Status Register (CSR) controls the power
3632 		 * state of the device.  The normal operating state is D0,
3633 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3634 		 * the controller, place the interface device in D3 then to D0,
3635 		 * this causes a secondary PCI reset which will reset the
3636 		 * controller." */
3637 
3638 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3639 		if (pos == 0) {
3640 			dev_err(&pdev->dev,
3641 				"hpsa_reset_controller: "
3642 				"PCI PM not supported\n");
3643 			return -ENODEV;
3644 		}
3645 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3646 		/* enter the D3hot power management state */
3647 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3648 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3649 		pmcsr |= PCI_D3hot;
3650 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3651 
3652 		msleep(500);
3653 
3654 		/* enter the D0 power management state */
3655 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3656 		pmcsr |= PCI_D0;
3657 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3658 
3659 		/*
3660 		 * The P600 requires a small delay when changing states.
3661 		 * Otherwise we may think the board did not reset and we bail.
3662 		 * This for kdump only and is particular to the P600.
3663 		 */
3664 		msleep(500);
3665 	}
3666 	return 0;
3667 }
3668 
3669 static __devinit void init_driver_version(char *driver_version, int len)
3670 {
3671 	memset(driver_version, 0, len);
3672 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3673 }
3674 
3675 static __devinit int write_driver_ver_to_cfgtable(
3676 	struct CfgTable __iomem *cfgtable)
3677 {
3678 	char *driver_version;
3679 	int i, size = sizeof(cfgtable->driver_version);
3680 
3681 	driver_version = kmalloc(size, GFP_KERNEL);
3682 	if (!driver_version)
3683 		return -ENOMEM;
3684 
3685 	init_driver_version(driver_version, size);
3686 	for (i = 0; i < size; i++)
3687 		writeb(driver_version[i], &cfgtable->driver_version[i]);
3688 	kfree(driver_version);
3689 	return 0;
3690 }
3691 
3692 static __devinit void read_driver_ver_from_cfgtable(
3693 	struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3694 {
3695 	int i;
3696 
3697 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3698 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
3699 }
3700 
3701 static __devinit int controller_reset_failed(
3702 	struct CfgTable __iomem *cfgtable)
3703 {
3704 
3705 	char *driver_ver, *old_driver_ver;
3706 	int rc, size = sizeof(cfgtable->driver_version);
3707 
3708 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3709 	if (!old_driver_ver)
3710 		return -ENOMEM;
3711 	driver_ver = old_driver_ver + size;
3712 
3713 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
3714 	 * should have been changed, otherwise we know the reset failed.
3715 	 */
3716 	init_driver_version(old_driver_ver, size);
3717 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3718 	rc = !memcmp(driver_ver, old_driver_ver, size);
3719 	kfree(old_driver_ver);
3720 	return rc;
3721 }
3722 /* This does a hard reset of the controller using PCI power management
3723  * states or the using the doorbell register.
3724  */
3725 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3726 {
3727 	u64 cfg_offset;
3728 	u32 cfg_base_addr;
3729 	u64 cfg_base_addr_index;
3730 	void __iomem *vaddr;
3731 	unsigned long paddr;
3732 	u32 misc_fw_support;
3733 	int rc;
3734 	struct CfgTable __iomem *cfgtable;
3735 	u32 use_doorbell;
3736 	u32 board_id;
3737 	u16 command_register;
3738 
3739 	/* For controllers as old as the P600, this is very nearly
3740 	 * the same thing as
3741 	 *
3742 	 * pci_save_state(pci_dev);
3743 	 * pci_set_power_state(pci_dev, PCI_D3hot);
3744 	 * pci_set_power_state(pci_dev, PCI_D0);
3745 	 * pci_restore_state(pci_dev);
3746 	 *
3747 	 * For controllers newer than the P600, the pci power state
3748 	 * method of resetting doesn't work so we have another way
3749 	 * using the doorbell register.
3750 	 */
3751 
3752 	rc = hpsa_lookup_board_id(pdev, &board_id);
3753 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
3754 		dev_warn(&pdev->dev, "Not resetting device.\n");
3755 		return -ENODEV;
3756 	}
3757 
3758 	/* if controller is soft- but not hard resettable... */
3759 	if (!ctlr_is_hard_resettable(board_id))
3760 		return -ENOTSUPP; /* try soft reset later. */
3761 
3762 	/* Save the PCI command register */
3763 	pci_read_config_word(pdev, 4, &command_register);
3764 	/* Turn the board off.  This is so that later pci_restore_state()
3765 	 * won't turn the board on before the rest of config space is ready.
3766 	 */
3767 	pci_disable_device(pdev);
3768 	pci_save_state(pdev);
3769 
3770 	/* find the first memory BAR, so we can find the cfg table */
3771 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3772 	if (rc)
3773 		return rc;
3774 	vaddr = remap_pci_mem(paddr, 0x250);
3775 	if (!vaddr)
3776 		return -ENOMEM;
3777 
3778 	/* find cfgtable in order to check if reset via doorbell is supported */
3779 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3780 					&cfg_base_addr_index, &cfg_offset);
3781 	if (rc)
3782 		goto unmap_vaddr;
3783 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
3784 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3785 	if (!cfgtable) {
3786 		rc = -ENOMEM;
3787 		goto unmap_vaddr;
3788 	}
3789 	rc = write_driver_ver_to_cfgtable(cfgtable);
3790 	if (rc)
3791 		goto unmap_vaddr;
3792 
3793 	/* If reset via doorbell register is supported, use that.
3794 	 * There are two such methods.  Favor the newest method.
3795 	 */
3796 	misc_fw_support = readl(&cfgtable->misc_fw_support);
3797 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3798 	if (use_doorbell) {
3799 		use_doorbell = DOORBELL_CTLR_RESET2;
3800 	} else {
3801 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3802 		if (use_doorbell) {
3803 			dev_warn(&pdev->dev, "Soft reset not supported. "
3804 				"Firmware update is required.\n");
3805 			rc = -ENOTSUPP; /* try soft reset */
3806 			goto unmap_cfgtable;
3807 		}
3808 	}
3809 
3810 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3811 	if (rc)
3812 		goto unmap_cfgtable;
3813 
3814 	pci_restore_state(pdev);
3815 	rc = pci_enable_device(pdev);
3816 	if (rc) {
3817 		dev_warn(&pdev->dev, "failed to enable device.\n");
3818 		goto unmap_cfgtable;
3819 	}
3820 	pci_write_config_word(pdev, 4, command_register);
3821 
3822 	/* Some devices (notably the HP Smart Array 5i Controller)
3823 	   need a little pause here */
3824 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
3825 
3826 	/* Wait for board to become not ready, then ready. */
3827 	dev_info(&pdev->dev, "Waiting for board to reset.\n");
3828 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3829 	if (rc) {
3830 		dev_warn(&pdev->dev,
3831 			"failed waiting for board to reset."
3832 			" Will try soft reset.\n");
3833 		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3834 		goto unmap_cfgtable;
3835 	}
3836 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3837 	if (rc) {
3838 		dev_warn(&pdev->dev,
3839 			"failed waiting for board to become ready "
3840 			"after hard reset\n");
3841 		goto unmap_cfgtable;
3842 	}
3843 
3844 	rc = controller_reset_failed(vaddr);
3845 	if (rc < 0)
3846 		goto unmap_cfgtable;
3847 	if (rc) {
3848 		dev_warn(&pdev->dev, "Unable to successfully reset "
3849 			"controller. Will try soft reset.\n");
3850 		rc = -ENOTSUPP;
3851 	} else {
3852 		dev_info(&pdev->dev, "board ready after hard reset.\n");
3853 	}
3854 
3855 unmap_cfgtable:
3856 	iounmap(cfgtable);
3857 
3858 unmap_vaddr:
3859 	iounmap(vaddr);
3860 	return rc;
3861 }
3862 
3863 /*
3864  *  We cannot read the structure directly, for portability we must use
3865  *   the io functions.
3866  *   This is for debug only.
3867  */
3868 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3869 {
3870 #ifdef HPSA_DEBUG
3871 	int i;
3872 	char temp_name[17];
3873 
3874 	dev_info(dev, "Controller Configuration information\n");
3875 	dev_info(dev, "------------------------------------\n");
3876 	for (i = 0; i < 4; i++)
3877 		temp_name[i] = readb(&(tb->Signature[i]));
3878 	temp_name[4] = '\0';
3879 	dev_info(dev, "   Signature = %s\n", temp_name);
3880 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3881 	dev_info(dev, "   Transport methods supported = 0x%x\n",
3882 	       readl(&(tb->TransportSupport)));
3883 	dev_info(dev, "   Transport methods active = 0x%x\n",
3884 	       readl(&(tb->TransportActive)));
3885 	dev_info(dev, "   Requested transport Method = 0x%x\n",
3886 	       readl(&(tb->HostWrite.TransportRequest)));
3887 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3888 	       readl(&(tb->HostWrite.CoalIntDelay)));
3889 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3890 	       readl(&(tb->HostWrite.CoalIntCount)));
3891 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
3892 	       readl(&(tb->CmdsOutMax)));
3893 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3894 	for (i = 0; i < 16; i++)
3895 		temp_name[i] = readb(&(tb->ServerName[i]));
3896 	temp_name[16] = '\0';
3897 	dev_info(dev, "   Server Name = %s\n", temp_name);
3898 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3899 		readl(&(tb->HeartBeat)));
3900 #endif				/* HPSA_DEBUG */
3901 }
3902 
3903 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3904 {
3905 	int i, offset, mem_type, bar_type;
3906 
3907 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3908 		return 0;
3909 	offset = 0;
3910 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3911 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3912 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3913 			offset += 4;
3914 		else {
3915 			mem_type = pci_resource_flags(pdev, i) &
3916 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3917 			switch (mem_type) {
3918 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3919 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3920 				offset += 4;	/* 32 bit */
3921 				break;
3922 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3923 				offset += 8;
3924 				break;
3925 			default:	/* reserved in PCI 2.2 */
3926 				dev_warn(&pdev->dev,
3927 				       "base address is invalid\n");
3928 				return -1;
3929 				break;
3930 			}
3931 		}
3932 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3933 			return i + 1;
3934 	}
3935 	return -1;
3936 }
3937 
3938 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3939  * controllers that are capable. If not, we use IO-APIC mode.
3940  */
3941 
3942 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3943 {
3944 #ifdef CONFIG_PCI_MSI
3945 	int err;
3946 	struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3947 	{0, 2}, {0, 3}
3948 	};
3949 
3950 	/* Some boards advertise MSI but don't really support it */
3951 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3952 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3953 		goto default_int_mode;
3954 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3955 		dev_info(&h->pdev->dev, "MSIX\n");
3956 		err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3957 		if (!err) {
3958 			h->intr[0] = hpsa_msix_entries[0].vector;
3959 			h->intr[1] = hpsa_msix_entries[1].vector;
3960 			h->intr[2] = hpsa_msix_entries[2].vector;
3961 			h->intr[3] = hpsa_msix_entries[3].vector;
3962 			h->msix_vector = 1;
3963 			return;
3964 		}
3965 		if (err > 0) {
3966 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3967 			       "available\n", err);
3968 			goto default_int_mode;
3969 		} else {
3970 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3971 			       err);
3972 			goto default_int_mode;
3973 		}
3974 	}
3975 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3976 		dev_info(&h->pdev->dev, "MSI\n");
3977 		if (!pci_enable_msi(h->pdev))
3978 			h->msi_vector = 1;
3979 		else
3980 			dev_warn(&h->pdev->dev, "MSI init failed\n");
3981 	}
3982 default_int_mode:
3983 #endif				/* CONFIG_PCI_MSI */
3984 	/* if we get here we're going to use the default interrupt mode */
3985 	h->intr[h->intr_mode] = h->pdev->irq;
3986 }
3987 
3988 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3989 {
3990 	int i;
3991 	u32 subsystem_vendor_id, subsystem_device_id;
3992 
3993 	subsystem_vendor_id = pdev->subsystem_vendor;
3994 	subsystem_device_id = pdev->subsystem_device;
3995 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3996 		    subsystem_vendor_id;
3997 
3998 	for (i = 0; i < ARRAY_SIZE(products); i++)
3999 		if (*board_id == products[i].board_id)
4000 			return i;
4001 
4002 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4003 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4004 		!hpsa_allow_any) {
4005 		dev_warn(&pdev->dev, "unrecognized board ID: "
4006 			"0x%08x, ignoring.\n", *board_id);
4007 			return -ENODEV;
4008 	}
4009 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4010 }
4011 
4012 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4013 	unsigned long *memory_bar)
4014 {
4015 	int i;
4016 
4017 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4018 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4019 			/* addressing mode bits already removed */
4020 			*memory_bar = pci_resource_start(pdev, i);
4021 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4022 				*memory_bar);
4023 			return 0;
4024 		}
4025 	dev_warn(&pdev->dev, "no memory BAR found\n");
4026 	return -ENODEV;
4027 }
4028 
4029 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4030 	void __iomem *vaddr, int wait_for_ready)
4031 {
4032 	int i, iterations;
4033 	u32 scratchpad;
4034 	if (wait_for_ready)
4035 		iterations = HPSA_BOARD_READY_ITERATIONS;
4036 	else
4037 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4038 
4039 	for (i = 0; i < iterations; i++) {
4040 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4041 		if (wait_for_ready) {
4042 			if (scratchpad == HPSA_FIRMWARE_READY)
4043 				return 0;
4044 		} else {
4045 			if (scratchpad != HPSA_FIRMWARE_READY)
4046 				return 0;
4047 		}
4048 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4049 	}
4050 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4051 	return -ENODEV;
4052 }
4053 
4054 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4055 	void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4056 	u64 *cfg_offset)
4057 {
4058 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4059 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4060 	*cfg_base_addr &= (u32) 0x0000ffff;
4061 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4062 	if (*cfg_base_addr_index == -1) {
4063 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4064 		return -ENODEV;
4065 	}
4066 	return 0;
4067 }
4068 
4069 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4070 {
4071 	u64 cfg_offset;
4072 	u32 cfg_base_addr;
4073 	u64 cfg_base_addr_index;
4074 	u32 trans_offset;
4075 	int rc;
4076 
4077 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4078 		&cfg_base_addr_index, &cfg_offset);
4079 	if (rc)
4080 		return rc;
4081 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4082 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4083 	if (!h->cfgtable)
4084 		return -ENOMEM;
4085 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4086 	if (rc)
4087 		return rc;
4088 	/* Find performant mode table. */
4089 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4090 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4091 				cfg_base_addr_index)+cfg_offset+trans_offset,
4092 				sizeof(*h->transtable));
4093 	if (!h->transtable)
4094 		return -ENOMEM;
4095 	return 0;
4096 }
4097 
4098 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4099 {
4100 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4101 
4102 	/* Limit commands in memory limited kdump scenario. */
4103 	if (reset_devices && h->max_commands > 32)
4104 		h->max_commands = 32;
4105 
4106 	if (h->max_commands < 16) {
4107 		dev_warn(&h->pdev->dev, "Controller reports "
4108 			"max supported commands of %d, an obvious lie. "
4109 			"Using 16.  Ensure that firmware is up to date.\n",
4110 			h->max_commands);
4111 		h->max_commands = 16;
4112 	}
4113 }
4114 
4115 /* Interrogate the hardware for some limits:
4116  * max commands, max SG elements without chaining, and with chaining,
4117  * SG chain block size, etc.
4118  */
4119 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4120 {
4121 	hpsa_get_max_perf_mode_cmds(h);
4122 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4123 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4124 	/*
4125 	 * Limit in-command s/g elements to 32 save dma'able memory.
4126 	 * Howvever spec says if 0, use 31
4127 	 */
4128 	h->max_cmd_sg_entries = 31;
4129 	if (h->maxsgentries > 512) {
4130 		h->max_cmd_sg_entries = 32;
4131 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4132 		h->maxsgentries--; /* save one for chain pointer */
4133 	} else {
4134 		h->maxsgentries = 31; /* default to traditional values */
4135 		h->chainsize = 0;
4136 	}
4137 
4138 	/* Find out what task management functions are supported and cache */
4139 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4140 }
4141 
4142 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4143 {
4144 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4145 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4146 		return false;
4147 	}
4148 	return true;
4149 }
4150 
4151 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4152 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4153 {
4154 #ifdef CONFIG_X86
4155 	u32 prefetch;
4156 
4157 	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4158 	prefetch |= 0x100;
4159 	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4160 #endif
4161 }
4162 
4163 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4164  * in a prefetch beyond physical memory.
4165  */
4166 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4167 {
4168 	u32 dma_prefetch;
4169 
4170 	if (h->board_id != 0x3225103C)
4171 		return;
4172 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4173 	dma_prefetch |= 0x8000;
4174 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4175 }
4176 
4177 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4178 {
4179 	int i;
4180 	u32 doorbell_value;
4181 	unsigned long flags;
4182 
4183 	/* under certain very rare conditions, this can take awhile.
4184 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4185 	 * as we enter this code.)
4186 	 */
4187 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4188 		spin_lock_irqsave(&h->lock, flags);
4189 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4190 		spin_unlock_irqrestore(&h->lock, flags);
4191 		if (!(doorbell_value & CFGTBL_ChangeReq))
4192 			break;
4193 		/* delay and try again */
4194 		usleep_range(10000, 20000);
4195 	}
4196 }
4197 
4198 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4199 {
4200 	u32 trans_support;
4201 
4202 	trans_support = readl(&(h->cfgtable->TransportSupport));
4203 	if (!(trans_support & SIMPLE_MODE))
4204 		return -ENOTSUPP;
4205 
4206 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4207 	/* Update the field, and then ring the doorbell */
4208 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4209 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4210 	hpsa_wait_for_mode_change_ack(h);
4211 	print_cfg_table(&h->pdev->dev, h->cfgtable);
4212 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4213 		dev_warn(&h->pdev->dev,
4214 			"unable to get board into simple mode\n");
4215 		return -ENODEV;
4216 	}
4217 	h->transMethod = CFGTBL_Trans_Simple;
4218 	return 0;
4219 }
4220 
4221 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4222 {
4223 	int prod_index, err;
4224 
4225 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4226 	if (prod_index < 0)
4227 		return -ENODEV;
4228 	h->product_name = products[prod_index].product_name;
4229 	h->access = *(products[prod_index].access);
4230 
4231 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4232 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4233 
4234 	err = pci_enable_device(h->pdev);
4235 	if (err) {
4236 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4237 		return err;
4238 	}
4239 
4240 	/* Enable bus mastering (pci_disable_device may disable this) */
4241 	pci_set_master(h->pdev);
4242 
4243 	err = pci_request_regions(h->pdev, HPSA);
4244 	if (err) {
4245 		dev_err(&h->pdev->dev,
4246 			"cannot obtain PCI resources, aborting\n");
4247 		return err;
4248 	}
4249 	hpsa_interrupt_mode(h);
4250 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4251 	if (err)
4252 		goto err_out_free_res;
4253 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4254 	if (!h->vaddr) {
4255 		err = -ENOMEM;
4256 		goto err_out_free_res;
4257 	}
4258 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4259 	if (err)
4260 		goto err_out_free_res;
4261 	err = hpsa_find_cfgtables(h);
4262 	if (err)
4263 		goto err_out_free_res;
4264 	hpsa_find_board_params(h);
4265 
4266 	if (!hpsa_CISS_signature_present(h)) {
4267 		err = -ENODEV;
4268 		goto err_out_free_res;
4269 	}
4270 	hpsa_enable_scsi_prefetch(h);
4271 	hpsa_p600_dma_prefetch_quirk(h);
4272 	err = hpsa_enter_simple_mode(h);
4273 	if (err)
4274 		goto err_out_free_res;
4275 	return 0;
4276 
4277 err_out_free_res:
4278 	if (h->transtable)
4279 		iounmap(h->transtable);
4280 	if (h->cfgtable)
4281 		iounmap(h->cfgtable);
4282 	if (h->vaddr)
4283 		iounmap(h->vaddr);
4284 	pci_disable_device(h->pdev);
4285 	pci_release_regions(h->pdev);
4286 	return err;
4287 }
4288 
4289 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4290 {
4291 	int rc;
4292 
4293 #define HBA_INQUIRY_BYTE_COUNT 64
4294 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4295 	if (!h->hba_inquiry_data)
4296 		return;
4297 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4298 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4299 	if (rc != 0) {
4300 		kfree(h->hba_inquiry_data);
4301 		h->hba_inquiry_data = NULL;
4302 	}
4303 }
4304 
4305 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4306 {
4307 	int rc, i;
4308 
4309 	if (!reset_devices)
4310 		return 0;
4311 
4312 	/* Reset the controller with a PCI power-cycle or via doorbell */
4313 	rc = hpsa_kdump_hard_reset_controller(pdev);
4314 
4315 	/* -ENOTSUPP here means we cannot reset the controller
4316 	 * but it's already (and still) up and running in
4317 	 * "performant mode".  Or, it might be 640x, which can't reset
4318 	 * due to concerns about shared bbwc between 6402/6404 pair.
4319 	 */
4320 	if (rc == -ENOTSUPP)
4321 		return rc; /* just try to do the kdump anyhow. */
4322 	if (rc)
4323 		return -ENODEV;
4324 
4325 	/* Now try to get the controller to respond to a no-op */
4326 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4327 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4328 		if (hpsa_noop(pdev) == 0)
4329 			break;
4330 		else
4331 			dev_warn(&pdev->dev, "no-op failed%s\n",
4332 					(i < 11 ? "; re-trying" : ""));
4333 	}
4334 	return 0;
4335 }
4336 
4337 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4338 {
4339 	h->cmd_pool_bits = kzalloc(
4340 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4341 		sizeof(unsigned long), GFP_KERNEL);
4342 	h->cmd_pool = pci_alloc_consistent(h->pdev,
4343 		    h->nr_cmds * sizeof(*h->cmd_pool),
4344 		    &(h->cmd_pool_dhandle));
4345 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4346 		    h->nr_cmds * sizeof(*h->errinfo_pool),
4347 		    &(h->errinfo_pool_dhandle));
4348 	if ((h->cmd_pool_bits == NULL)
4349 	    || (h->cmd_pool == NULL)
4350 	    || (h->errinfo_pool == NULL)) {
4351 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4352 		return -ENOMEM;
4353 	}
4354 	return 0;
4355 }
4356 
4357 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4358 {
4359 	kfree(h->cmd_pool_bits);
4360 	if (h->cmd_pool)
4361 		pci_free_consistent(h->pdev,
4362 			    h->nr_cmds * sizeof(struct CommandList),
4363 			    h->cmd_pool, h->cmd_pool_dhandle);
4364 	if (h->errinfo_pool)
4365 		pci_free_consistent(h->pdev,
4366 			    h->nr_cmds * sizeof(struct ErrorInfo),
4367 			    h->errinfo_pool,
4368 			    h->errinfo_pool_dhandle);
4369 }
4370 
4371 static int hpsa_request_irq(struct ctlr_info *h,
4372 	irqreturn_t (*msixhandler)(int, void *),
4373 	irqreturn_t (*intxhandler)(int, void *))
4374 {
4375 	int rc;
4376 
4377 	if (h->msix_vector || h->msi_vector)
4378 		rc = request_irq(h->intr[h->intr_mode], msixhandler,
4379 				0, h->devname, h);
4380 	else
4381 		rc = request_irq(h->intr[h->intr_mode], intxhandler,
4382 				IRQF_SHARED, h->devname, h);
4383 	if (rc) {
4384 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4385 		       h->intr[h->intr_mode], h->devname);
4386 		return -ENODEV;
4387 	}
4388 	return 0;
4389 }
4390 
4391 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4392 {
4393 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4394 		HPSA_RESET_TYPE_CONTROLLER)) {
4395 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4396 		return -EIO;
4397 	}
4398 
4399 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4400 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4401 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4402 		return -1;
4403 	}
4404 
4405 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4406 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4407 		dev_warn(&h->pdev->dev, "Board failed to become ready "
4408 			"after soft reset.\n");
4409 		return -1;
4410 	}
4411 
4412 	return 0;
4413 }
4414 
4415 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4416 {
4417 	free_irq(h->intr[h->intr_mode], h);
4418 #ifdef CONFIG_PCI_MSI
4419 	if (h->msix_vector)
4420 		pci_disable_msix(h->pdev);
4421 	else if (h->msi_vector)
4422 		pci_disable_msi(h->pdev);
4423 #endif /* CONFIG_PCI_MSI */
4424 	hpsa_free_sg_chain_blocks(h);
4425 	hpsa_free_cmd_pool(h);
4426 	kfree(h->blockFetchTable);
4427 	pci_free_consistent(h->pdev, h->reply_pool_size,
4428 		h->reply_pool, h->reply_pool_dhandle);
4429 	if (h->vaddr)
4430 		iounmap(h->vaddr);
4431 	if (h->transtable)
4432 		iounmap(h->transtable);
4433 	if (h->cfgtable)
4434 		iounmap(h->cfgtable);
4435 	pci_release_regions(h->pdev);
4436 	kfree(h);
4437 }
4438 
4439 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4440 {
4441 	assert_spin_locked(&lockup_detector_lock);
4442 	if (!hpsa_lockup_detector)
4443 		return;
4444 	if (h->lockup_detected)
4445 		return; /* already stopped the lockup detector */
4446 	list_del(&h->lockup_list);
4447 }
4448 
4449 /* Called when controller lockup detected. */
4450 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4451 {
4452 	struct CommandList *c = NULL;
4453 
4454 	assert_spin_locked(&h->lock);
4455 	/* Mark all outstanding commands as failed and complete them. */
4456 	while (!list_empty(list)) {
4457 		c = list_entry(list->next, struct CommandList, list);
4458 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4459 		finish_cmd(c);
4460 	}
4461 }
4462 
4463 static void controller_lockup_detected(struct ctlr_info *h)
4464 {
4465 	unsigned long flags;
4466 
4467 	assert_spin_locked(&lockup_detector_lock);
4468 	remove_ctlr_from_lockup_detector_list(h);
4469 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4470 	spin_lock_irqsave(&h->lock, flags);
4471 	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4472 	spin_unlock_irqrestore(&h->lock, flags);
4473 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4474 			h->lockup_detected);
4475 	pci_disable_device(h->pdev);
4476 	spin_lock_irqsave(&h->lock, flags);
4477 	fail_all_cmds_on_list(h, &h->cmpQ);
4478 	fail_all_cmds_on_list(h, &h->reqQ);
4479 	spin_unlock_irqrestore(&h->lock, flags);
4480 }
4481 
4482 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4483 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4484 
4485 static void detect_controller_lockup(struct ctlr_info *h)
4486 {
4487 	u64 now;
4488 	u32 heartbeat;
4489 	unsigned long flags;
4490 
4491 	assert_spin_locked(&lockup_detector_lock);
4492 	now = get_jiffies_64();
4493 	/* If we've received an interrupt recently, we're ok. */
4494 	if (time_after64(h->last_intr_timestamp +
4495 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4496 		return;
4497 
4498 	/*
4499 	 * If we've already checked the heartbeat recently, we're ok.
4500 	 * This could happen if someone sends us a signal. We
4501 	 * otherwise don't care about signals in this thread.
4502 	 */
4503 	if (time_after64(h->last_heartbeat_timestamp +
4504 				(HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4505 		return;
4506 
4507 	/* If heartbeat has not changed since we last looked, we're not ok. */
4508 	spin_lock_irqsave(&h->lock, flags);
4509 	heartbeat = readl(&h->cfgtable->HeartBeat);
4510 	spin_unlock_irqrestore(&h->lock, flags);
4511 	if (h->last_heartbeat == heartbeat) {
4512 		controller_lockup_detected(h);
4513 		return;
4514 	}
4515 
4516 	/* We're ok. */
4517 	h->last_heartbeat = heartbeat;
4518 	h->last_heartbeat_timestamp = now;
4519 }
4520 
4521 static int detect_controller_lockup_thread(void *notused)
4522 {
4523 	struct ctlr_info *h;
4524 	unsigned long flags;
4525 
4526 	while (1) {
4527 		struct list_head *this, *tmp;
4528 
4529 		schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4530 		if (kthread_should_stop())
4531 			break;
4532 		spin_lock_irqsave(&lockup_detector_lock, flags);
4533 		list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4534 			h = list_entry(this, struct ctlr_info, lockup_list);
4535 			detect_controller_lockup(h);
4536 		}
4537 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4538 	}
4539 	return 0;
4540 }
4541 
4542 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4543 {
4544 	unsigned long flags;
4545 
4546 	spin_lock_irqsave(&lockup_detector_lock, flags);
4547 	list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4548 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4549 }
4550 
4551 static void start_controller_lockup_detector(struct ctlr_info *h)
4552 {
4553 	/* Start the lockup detector thread if not already started */
4554 	if (!hpsa_lockup_detector) {
4555 		spin_lock_init(&lockup_detector_lock);
4556 		hpsa_lockup_detector =
4557 			kthread_run(detect_controller_lockup_thread,
4558 						NULL, HPSA);
4559 	}
4560 	if (!hpsa_lockup_detector) {
4561 		dev_warn(&h->pdev->dev,
4562 			"Could not start lockup detector thread\n");
4563 		return;
4564 	}
4565 	add_ctlr_to_lockup_detector_list(h);
4566 }
4567 
4568 static void stop_controller_lockup_detector(struct ctlr_info *h)
4569 {
4570 	unsigned long flags;
4571 
4572 	spin_lock_irqsave(&lockup_detector_lock, flags);
4573 	remove_ctlr_from_lockup_detector_list(h);
4574 	/* If the list of ctlr's to monitor is empty, stop the thread */
4575 	if (list_empty(&hpsa_ctlr_list)) {
4576 		spin_unlock_irqrestore(&lockup_detector_lock, flags);
4577 		kthread_stop(hpsa_lockup_detector);
4578 		spin_lock_irqsave(&lockup_detector_lock, flags);
4579 		hpsa_lockup_detector = NULL;
4580 	}
4581 	spin_unlock_irqrestore(&lockup_detector_lock, flags);
4582 }
4583 
4584 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4585 				    const struct pci_device_id *ent)
4586 {
4587 	int dac, rc;
4588 	struct ctlr_info *h;
4589 	int try_soft_reset = 0;
4590 	unsigned long flags;
4591 
4592 	if (number_of_controllers == 0)
4593 		printk(KERN_INFO DRIVER_NAME "\n");
4594 
4595 	rc = hpsa_init_reset_devices(pdev);
4596 	if (rc) {
4597 		if (rc != -ENOTSUPP)
4598 			return rc;
4599 		/* If the reset fails in a particular way (it has no way to do
4600 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4601 		 * a soft reset once we get the controller configured up to the
4602 		 * point that it can accept a command.
4603 		 */
4604 		try_soft_reset = 1;
4605 		rc = 0;
4606 	}
4607 
4608 reinit_after_soft_reset:
4609 
4610 	/* Command structures must be aligned on a 32-byte boundary because
4611 	 * the 5 lower bits of the address are used by the hardware. and by
4612 	 * the driver.  See comments in hpsa.h for more info.
4613 	 */
4614 #define COMMANDLIST_ALIGNMENT 32
4615 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4616 	h = kzalloc(sizeof(*h), GFP_KERNEL);
4617 	if (!h)
4618 		return -ENOMEM;
4619 
4620 	h->pdev = pdev;
4621 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4622 	INIT_LIST_HEAD(&h->cmpQ);
4623 	INIT_LIST_HEAD(&h->reqQ);
4624 	spin_lock_init(&h->lock);
4625 	spin_lock_init(&h->scan_lock);
4626 	rc = hpsa_pci_init(h);
4627 	if (rc != 0)
4628 		goto clean1;
4629 
4630 	sprintf(h->devname, HPSA "%d", number_of_controllers);
4631 	h->ctlr = number_of_controllers;
4632 	number_of_controllers++;
4633 
4634 	/* configure PCI DMA stuff */
4635 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4636 	if (rc == 0) {
4637 		dac = 1;
4638 	} else {
4639 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4640 		if (rc == 0) {
4641 			dac = 0;
4642 		} else {
4643 			dev_err(&pdev->dev, "no suitable DMA available\n");
4644 			goto clean1;
4645 		}
4646 	}
4647 
4648 	/* make sure the board interrupts are off */
4649 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4650 
4651 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4652 		goto clean2;
4653 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4654 	       h->devname, pdev->device,
4655 	       h->intr[h->intr_mode], dac ? "" : " not");
4656 	if (hpsa_allocate_cmd_pool(h))
4657 		goto clean4;
4658 	if (hpsa_allocate_sg_chain_blocks(h))
4659 		goto clean4;
4660 	init_waitqueue_head(&h->scan_wait_queue);
4661 	h->scan_finished = 1; /* no scan currently in progress */
4662 
4663 	pci_set_drvdata(pdev, h);
4664 	h->ndevices = 0;
4665 	h->scsi_host = NULL;
4666 	spin_lock_init(&h->devlock);
4667 	hpsa_put_ctlr_into_performant_mode(h);
4668 
4669 	/* At this point, the controller is ready to take commands.
4670 	 * Now, if reset_devices and the hard reset didn't work, try
4671 	 * the soft reset and see if that works.
4672 	 */
4673 	if (try_soft_reset) {
4674 
4675 		/* This is kind of gross.  We may or may not get a completion
4676 		 * from the soft reset command, and if we do, then the value
4677 		 * from the fifo may or may not be valid.  So, we wait 10 secs
4678 		 * after the reset throwing away any completions we get during
4679 		 * that time.  Unregister the interrupt handler and register
4680 		 * fake ones to scoop up any residual completions.
4681 		 */
4682 		spin_lock_irqsave(&h->lock, flags);
4683 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4684 		spin_unlock_irqrestore(&h->lock, flags);
4685 		free_irq(h->intr[h->intr_mode], h);
4686 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4687 					hpsa_intx_discard_completions);
4688 		if (rc) {
4689 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
4690 				"soft reset.\n");
4691 			goto clean4;
4692 		}
4693 
4694 		rc = hpsa_kdump_soft_reset(h);
4695 		if (rc)
4696 			/* Neither hard nor soft reset worked, we're hosed. */
4697 			goto clean4;
4698 
4699 		dev_info(&h->pdev->dev, "Board READY.\n");
4700 		dev_info(&h->pdev->dev,
4701 			"Waiting for stale completions to drain.\n");
4702 		h->access.set_intr_mask(h, HPSA_INTR_ON);
4703 		msleep(10000);
4704 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
4705 
4706 		rc = controller_reset_failed(h->cfgtable);
4707 		if (rc)
4708 			dev_info(&h->pdev->dev,
4709 				"Soft reset appears to have failed.\n");
4710 
4711 		/* since the controller's reset, we have to go back and re-init
4712 		 * everything.  Easiest to just forget what we've done and do it
4713 		 * all over again.
4714 		 */
4715 		hpsa_undo_allocations_after_kdump_soft_reset(h);
4716 		try_soft_reset = 0;
4717 		if (rc)
4718 			/* don't go to clean4, we already unallocated */
4719 			return -ENODEV;
4720 
4721 		goto reinit_after_soft_reset;
4722 	}
4723 
4724 	/* Turn the interrupts on so we can service requests */
4725 	h->access.set_intr_mask(h, HPSA_INTR_ON);
4726 
4727 	hpsa_hba_inquiry(h);
4728 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
4729 	start_controller_lockup_detector(h);
4730 	return 1;
4731 
4732 clean4:
4733 	hpsa_free_sg_chain_blocks(h);
4734 	hpsa_free_cmd_pool(h);
4735 	free_irq(h->intr[h->intr_mode], h);
4736 clean2:
4737 clean1:
4738 	kfree(h);
4739 	return rc;
4740 }
4741 
4742 static void hpsa_flush_cache(struct ctlr_info *h)
4743 {
4744 	char *flush_buf;
4745 	struct CommandList *c;
4746 
4747 	flush_buf = kzalloc(4, GFP_KERNEL);
4748 	if (!flush_buf)
4749 		return;
4750 
4751 	c = cmd_special_alloc(h);
4752 	if (!c) {
4753 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4754 		goto out_of_memory;
4755 	}
4756 	fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4757 		RAID_CTLR_LUNID, TYPE_CMD);
4758 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4759 	if (c->err_info->CommandStatus != 0)
4760 		dev_warn(&h->pdev->dev,
4761 			"error flushing cache on controller\n");
4762 	cmd_special_free(h, c);
4763 out_of_memory:
4764 	kfree(flush_buf);
4765 }
4766 
4767 static void hpsa_shutdown(struct pci_dev *pdev)
4768 {
4769 	struct ctlr_info *h;
4770 
4771 	h = pci_get_drvdata(pdev);
4772 	/* Turn board interrupts off  and send the flush cache command
4773 	 * sendcmd will turn off interrupt, and send the flush...
4774 	 * To write all data in the battery backed cache to disks
4775 	 */
4776 	hpsa_flush_cache(h);
4777 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
4778 	free_irq(h->intr[h->intr_mode], h);
4779 #ifdef CONFIG_PCI_MSI
4780 	if (h->msix_vector)
4781 		pci_disable_msix(h->pdev);
4782 	else if (h->msi_vector)
4783 		pci_disable_msi(h->pdev);
4784 #endif				/* CONFIG_PCI_MSI */
4785 }
4786 
4787 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4788 {
4789 	int i;
4790 
4791 	for (i = 0; i < h->ndevices; i++)
4792 		kfree(h->dev[i]);
4793 }
4794 
4795 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4796 {
4797 	struct ctlr_info *h;
4798 
4799 	if (pci_get_drvdata(pdev) == NULL) {
4800 		dev_err(&pdev->dev, "unable to remove device\n");
4801 		return;
4802 	}
4803 	h = pci_get_drvdata(pdev);
4804 	stop_controller_lockup_detector(h);
4805 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
4806 	hpsa_shutdown(pdev);
4807 	iounmap(h->vaddr);
4808 	iounmap(h->transtable);
4809 	iounmap(h->cfgtable);
4810 	hpsa_free_device_info(h);
4811 	hpsa_free_sg_chain_blocks(h);
4812 	pci_free_consistent(h->pdev,
4813 		h->nr_cmds * sizeof(struct CommandList),
4814 		h->cmd_pool, h->cmd_pool_dhandle);
4815 	pci_free_consistent(h->pdev,
4816 		h->nr_cmds * sizeof(struct ErrorInfo),
4817 		h->errinfo_pool, h->errinfo_pool_dhandle);
4818 	pci_free_consistent(h->pdev, h->reply_pool_size,
4819 		h->reply_pool, h->reply_pool_dhandle);
4820 	kfree(h->cmd_pool_bits);
4821 	kfree(h->blockFetchTable);
4822 	kfree(h->hba_inquiry_data);
4823 	pci_disable_device(pdev);
4824 	pci_release_regions(pdev);
4825 	pci_set_drvdata(pdev, NULL);
4826 	kfree(h);
4827 }
4828 
4829 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4830 	__attribute__((unused)) pm_message_t state)
4831 {
4832 	return -ENOSYS;
4833 }
4834 
4835 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4836 {
4837 	return -ENOSYS;
4838 }
4839 
4840 static struct pci_driver hpsa_pci_driver = {
4841 	.name = HPSA,
4842 	.probe = hpsa_init_one,
4843 	.remove = __devexit_p(hpsa_remove_one),
4844 	.id_table = hpsa_pci_device_id,	/* id_table */
4845 	.shutdown = hpsa_shutdown,
4846 	.suspend = hpsa_suspend,
4847 	.resume = hpsa_resume,
4848 };
4849 
4850 /* Fill in bucket_map[], given nsgs (the max number of
4851  * scatter gather elements supported) and bucket[],
4852  * which is an array of 8 integers.  The bucket[] array
4853  * contains 8 different DMA transfer sizes (in 16
4854  * byte increments) which the controller uses to fetch
4855  * commands.  This function fills in bucket_map[], which
4856  * maps a given number of scatter gather elements to one of
4857  * the 8 DMA transfer sizes.  The point of it is to allow the
4858  * controller to only do as much DMA as needed to fetch the
4859  * command, with the DMA transfer size encoded in the lower
4860  * bits of the command address.
4861  */
4862 static void  calc_bucket_map(int bucket[], int num_buckets,
4863 	int nsgs, int *bucket_map)
4864 {
4865 	int i, j, b, size;
4866 
4867 	/* even a command with 0 SGs requires 4 blocks */
4868 #define MINIMUM_TRANSFER_BLOCKS 4
4869 #define NUM_BUCKETS 8
4870 	/* Note, bucket_map must have nsgs+1 entries. */
4871 	for (i = 0; i <= nsgs; i++) {
4872 		/* Compute size of a command with i SG entries */
4873 		size = i + MINIMUM_TRANSFER_BLOCKS;
4874 		b = num_buckets; /* Assume the biggest bucket */
4875 		/* Find the bucket that is just big enough */
4876 		for (j = 0; j < 8; j++) {
4877 			if (bucket[j] >= size) {
4878 				b = j;
4879 				break;
4880 			}
4881 		}
4882 		/* for a command with i SG entries, use bucket b. */
4883 		bucket_map[i] = b;
4884 	}
4885 }
4886 
4887 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4888 	u32 use_short_tags)
4889 {
4890 	int i;
4891 	unsigned long register_value;
4892 
4893 	/* This is a bit complicated.  There are 8 registers on
4894 	 * the controller which we write to to tell it 8 different
4895 	 * sizes of commands which there may be.  It's a way of
4896 	 * reducing the DMA done to fetch each command.  Encoded into
4897 	 * each command's tag are 3 bits which communicate to the controller
4898 	 * which of the eight sizes that command fits within.  The size of
4899 	 * each command depends on how many scatter gather entries there are.
4900 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
4901 	 * with the number of 16-byte blocks a command of that size requires.
4902 	 * The smallest command possible requires 5 such 16 byte blocks.
4903 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4904 	 * blocks.  Note, this only extends to the SG entries contained
4905 	 * within the command block, and does not extend to chained blocks
4906 	 * of SG elements.   bft[] contains the eight values we write to
4907 	 * the registers.  They are not evenly distributed, but have more
4908 	 * sizes for small commands, and fewer sizes for larger commands.
4909 	 */
4910 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4911 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4912 	/*  5 = 1 s/g entry or 4k
4913 	 *  6 = 2 s/g entry or 8k
4914 	 *  8 = 4 s/g entry or 16k
4915 	 * 10 = 6 s/g entry or 24k
4916 	 */
4917 
4918 	h->reply_pool_wraparound = 1; /* spec: init to 1 */
4919 
4920 	/* Controller spec: zero out this buffer. */
4921 	memset(h->reply_pool, 0, h->reply_pool_size);
4922 	h->reply_pool_head = h->reply_pool;
4923 
4924 	bft[7] = SG_ENTRIES_IN_CMD + 4;
4925 	calc_bucket_map(bft, ARRAY_SIZE(bft),
4926 				SG_ENTRIES_IN_CMD, h->blockFetchTable);
4927 	for (i = 0; i < 8; i++)
4928 		writel(bft[i], &h->transtable->BlockFetch[i]);
4929 
4930 	/* size of controller ring buffer */
4931 	writel(h->max_commands, &h->transtable->RepQSize);
4932 	writel(1, &h->transtable->RepQCount);
4933 	writel(0, &h->transtable->RepQCtrAddrLow32);
4934 	writel(0, &h->transtable->RepQCtrAddrHigh32);
4935 	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4936 	writel(0, &h->transtable->RepQAddr0High32);
4937 	writel(CFGTBL_Trans_Performant | use_short_tags,
4938 		&(h->cfgtable->HostWrite.TransportRequest));
4939 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4940 	hpsa_wait_for_mode_change_ack(h);
4941 	register_value = readl(&(h->cfgtable->TransportActive));
4942 	if (!(register_value & CFGTBL_Trans_Performant)) {
4943 		dev_warn(&h->pdev->dev, "unable to get board into"
4944 					" performant mode\n");
4945 		return;
4946 	}
4947 	/* Change the access methods to the performant access methods */
4948 	h->access = SA5_performant_access;
4949 	h->transMethod = CFGTBL_Trans_Performant;
4950 }
4951 
4952 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4953 {
4954 	u32 trans_support;
4955 
4956 	if (hpsa_simple_mode)
4957 		return;
4958 
4959 	trans_support = readl(&(h->cfgtable->TransportSupport));
4960 	if (!(trans_support & PERFORMANT_MODE))
4961 		return;
4962 
4963 	hpsa_get_max_perf_mode_cmds(h);
4964 	/* Performant mode ring buffer and supporting data structures */
4965 	h->reply_pool_size = h->max_commands * sizeof(u64);
4966 	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4967 				&(h->reply_pool_dhandle));
4968 
4969 	/* Need a block fetch table for performant mode */
4970 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4971 				sizeof(u32)), GFP_KERNEL);
4972 
4973 	if ((h->reply_pool == NULL)
4974 		|| (h->blockFetchTable == NULL))
4975 		goto clean_up;
4976 
4977 	hpsa_enter_performant_mode(h,
4978 		trans_support & CFGTBL_Trans_use_short_tags);
4979 
4980 	return;
4981 
4982 clean_up:
4983 	if (h->reply_pool)
4984 		pci_free_consistent(h->pdev, h->reply_pool_size,
4985 			h->reply_pool, h->reply_pool_dhandle);
4986 	kfree(h->blockFetchTable);
4987 }
4988 
4989 /*
4990  *  This is it.  Register the PCI driver information for the cards we control
4991  *  the OS will call our registered routines when it finds one of our cards.
4992  */
4993 static int __init hpsa_init(void)
4994 {
4995 	return pci_register_driver(&hpsa_pci_driver);
4996 }
4997 
4998 static void __exit hpsa_cleanup(void)
4999 {
5000 	pci_unregister_driver(&hpsa_pci_driver);
5001 }
5002 
5003 module_init(hpsa_init);
5004 module_exit(hpsa_cleanup);
5005