xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 5ca0120447ae8d485e2ee5100f25b6645e3e320f)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_dbg.h>
45 #include <linux/cciss_ioctl.h>
46 #include <linux/string.h>
47 #include <linux/bitmap.h>
48 #include <linux/atomic.h>
49 #include <linux/jiffies.h>
50 #include <linux/percpu-defs.h>
51 #include <linux/percpu.h>
52 #include <asm/unaligned.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56 
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.10-0"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61 
62 /* How long to wait for CISS doorbell communication */
63 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
64 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
65 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
66 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
67 #define MAX_IOCTL_CONFIG_WAIT 1000
68 
69 /*define how many times we will try a command because of bus resets */
70 #define MAX_CMD_RETRIES 3
71 
72 /* Embedded module documentation macros - see modules.h */
73 MODULE_AUTHOR("Hewlett-Packard Company");
74 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
75 	HPSA_DRIVER_VERSION);
76 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
77 MODULE_VERSION(HPSA_DRIVER_VERSION);
78 MODULE_LICENSE("GPL");
79 
80 static int hpsa_allow_any;
81 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_allow_any,
83 		"Allow hpsa driver to access unknown HP Smart Array hardware");
84 static int hpsa_simple_mode;
85 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_simple_mode,
87 	"Use 'simple mode' rather than 'performant mode'");
88 
89 /* define the PCI info for the cards we can control */
90 static const struct pci_device_id hpsa_pci_device_id[] = {
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
131 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
132 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
133 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
134 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
137 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
138 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
139 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
140 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
141 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
142 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
143 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
144 	{0,}
145 };
146 
147 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
148 
149 /*  board_id = Subsystem Device ID & Vendor ID
150  *  product = Marketing Name for the board
151  *  access = Address of the struct of function pointers
152  */
153 static struct board_type products[] = {
154 	{0x3241103C, "Smart Array P212", &SA5_access},
155 	{0x3243103C, "Smart Array P410", &SA5_access},
156 	{0x3245103C, "Smart Array P410i", &SA5_access},
157 	{0x3247103C, "Smart Array P411", &SA5_access},
158 	{0x3249103C, "Smart Array P812", &SA5_access},
159 	{0x324A103C, "Smart Array P712m", &SA5_access},
160 	{0x324B103C, "Smart Array P711m", &SA5_access},
161 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
162 	{0x3350103C, "Smart Array P222", &SA5_access},
163 	{0x3351103C, "Smart Array P420", &SA5_access},
164 	{0x3352103C, "Smart Array P421", &SA5_access},
165 	{0x3353103C, "Smart Array P822", &SA5_access},
166 	{0x3354103C, "Smart Array P420i", &SA5_access},
167 	{0x3355103C, "Smart Array P220i", &SA5_access},
168 	{0x3356103C, "Smart Array P721m", &SA5_access},
169 	{0x1921103C, "Smart Array P830i", &SA5_access},
170 	{0x1922103C, "Smart Array P430", &SA5_access},
171 	{0x1923103C, "Smart Array P431", &SA5_access},
172 	{0x1924103C, "Smart Array P830", &SA5_access},
173 	{0x1926103C, "Smart Array P731m", &SA5_access},
174 	{0x1928103C, "Smart Array P230i", &SA5_access},
175 	{0x1929103C, "Smart Array P530", &SA5_access},
176 	{0x21BD103C, "Smart Array P244br", &SA5_access},
177 	{0x21BE103C, "Smart Array P741m", &SA5_access},
178 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
179 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
180 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
181 	{0x21C2103C, "Smart Array P440", &SA5_access},
182 	{0x21C3103C, "Smart Array P441", &SA5_access},
183 	{0x21C4103C, "Smart Array", &SA5_access},
184 	{0x21C5103C, "Smart Array P841", &SA5_access},
185 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
186 	{0x21C7103C, "Smart HBA H240", &SA5_access},
187 	{0x21C8103C, "Smart HBA H241", &SA5_access},
188 	{0x21C9103C, "Smart Array", &SA5_access},
189 	{0x21CA103C, "Smart Array P246br", &SA5_access},
190 	{0x21CB103C, "Smart Array P840", &SA5_access},
191 	{0x21CC103C, "Smart Array", &SA5_access},
192 	{0x21CD103C, "Smart Array", &SA5_access},
193 	{0x21CE103C, "Smart HBA", &SA5_access},
194 	{0x05809005, "SmartHBA-SA", &SA5_access},
195 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
196 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
197 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
198 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
199 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
200 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
201 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
202 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
203 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
204 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
205 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
206 };
207 
208 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
209 static const struct scsi_cmnd hpsa_cmd_busy;
210 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
211 static const struct scsi_cmnd hpsa_cmd_idle;
212 static int number_of_controllers;
213 
214 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
215 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
216 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
217 
218 #ifdef CONFIG_COMPAT
219 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
220 	void __user *arg);
221 #endif
222 
223 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
224 static struct CommandList *cmd_alloc(struct ctlr_info *h);
225 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
226 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
227 					    struct scsi_cmnd *scmd);
228 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
229 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
230 	int cmd_type);
231 static void hpsa_free_cmd_pool(struct ctlr_info *h);
232 #define VPD_PAGE (1 << 8)
233 
234 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
235 static void hpsa_scan_start(struct Scsi_Host *);
236 static int hpsa_scan_finished(struct Scsi_Host *sh,
237 	unsigned long elapsed_time);
238 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
239 
240 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
241 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
242 static int hpsa_slave_alloc(struct scsi_device *sdev);
243 static int hpsa_slave_configure(struct scsi_device *sdev);
244 static void hpsa_slave_destroy(struct scsi_device *sdev);
245 
246 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
247 static int check_for_unit_attention(struct ctlr_info *h,
248 	struct CommandList *c);
249 static void check_ioctl_unit_attention(struct ctlr_info *h,
250 	struct CommandList *c);
251 /* performant mode helper functions */
252 static void calc_bucket_map(int *bucket, int num_buckets,
253 	int nsgs, int min_blocks, u32 *bucket_map);
254 static void hpsa_free_performant_mode(struct ctlr_info *h);
255 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
256 static inline u32 next_command(struct ctlr_info *h, u8 q);
257 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
258 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
259 			       u64 *cfg_offset);
260 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
261 				    unsigned long *memory_bar);
262 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
263 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
264 				     int wait_for_ready);
265 static inline void finish_cmd(struct CommandList *c);
266 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
267 #define BOARD_NOT_READY 0
268 #define BOARD_READY 1
269 static void hpsa_drain_accel_commands(struct ctlr_info *h);
270 static void hpsa_flush_cache(struct ctlr_info *h);
271 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
272 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
273 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
274 static void hpsa_command_resubmit_worker(struct work_struct *work);
275 static u32 lockup_detected(struct ctlr_info *h);
276 static int detect_controller_lockup(struct ctlr_info *h);
277 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device);
278 
279 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
280 {
281 	unsigned long *priv = shost_priv(sdev->host);
282 	return (struct ctlr_info *) *priv;
283 }
284 
285 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
286 {
287 	unsigned long *priv = shost_priv(sh);
288 	return (struct ctlr_info *) *priv;
289 }
290 
291 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
292 {
293 	return c->scsi_cmd == SCSI_CMD_IDLE;
294 }
295 
296 static inline bool hpsa_is_pending_event(struct CommandList *c)
297 {
298 	return c->abort_pending || c->reset_pending;
299 }
300 
301 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
302 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
303 			u8 *sense_key, u8 *asc, u8 *ascq)
304 {
305 	struct scsi_sense_hdr sshdr;
306 	bool rc;
307 
308 	*sense_key = -1;
309 	*asc = -1;
310 	*ascq = -1;
311 
312 	if (sense_data_len < 1)
313 		return;
314 
315 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
316 	if (rc) {
317 		*sense_key = sshdr.sense_key;
318 		*asc = sshdr.asc;
319 		*ascq = sshdr.ascq;
320 	}
321 }
322 
323 static int check_for_unit_attention(struct ctlr_info *h,
324 	struct CommandList *c)
325 {
326 	u8 sense_key, asc, ascq;
327 	int sense_len;
328 
329 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
330 		sense_len = sizeof(c->err_info->SenseInfo);
331 	else
332 		sense_len = c->err_info->SenseLen;
333 
334 	decode_sense_data(c->err_info->SenseInfo, sense_len,
335 				&sense_key, &asc, &ascq);
336 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
337 		return 0;
338 
339 	switch (asc) {
340 	case STATE_CHANGED:
341 		dev_warn(&h->pdev->dev,
342 			"%s: a state change detected, command retried\n",
343 			h->devname);
344 		break;
345 	case LUN_FAILED:
346 		dev_warn(&h->pdev->dev,
347 			"%s: LUN failure detected\n", h->devname);
348 		break;
349 	case REPORT_LUNS_CHANGED:
350 		dev_warn(&h->pdev->dev,
351 			"%s: report LUN data changed\n", h->devname);
352 	/*
353 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
354 	 * target (array) devices.
355 	 */
356 		break;
357 	case POWER_OR_RESET:
358 		dev_warn(&h->pdev->dev,
359 			"%s: a power on or device reset detected\n",
360 			h->devname);
361 		break;
362 	case UNIT_ATTENTION_CLEARED:
363 		dev_warn(&h->pdev->dev,
364 			"%s: unit attention cleared by another initiator\n",
365 			h->devname);
366 		break;
367 	default:
368 		dev_warn(&h->pdev->dev,
369 			"%s: unknown unit attention detected\n",
370 			h->devname);
371 		break;
372 	}
373 	return 1;
374 }
375 
376 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
377 {
378 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
379 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
380 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
381 		return 0;
382 	dev_warn(&h->pdev->dev, HPSA "device busy");
383 	return 1;
384 }
385 
386 static u32 lockup_detected(struct ctlr_info *h);
387 static ssize_t host_show_lockup_detected(struct device *dev,
388 		struct device_attribute *attr, char *buf)
389 {
390 	int ld;
391 	struct ctlr_info *h;
392 	struct Scsi_Host *shost = class_to_shost(dev);
393 
394 	h = shost_to_hba(shost);
395 	ld = lockup_detected(h);
396 
397 	return sprintf(buf, "ld=%d\n", ld);
398 }
399 
400 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
401 					 struct device_attribute *attr,
402 					 const char *buf, size_t count)
403 {
404 	int status, len;
405 	struct ctlr_info *h;
406 	struct Scsi_Host *shost = class_to_shost(dev);
407 	char tmpbuf[10];
408 
409 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
410 		return -EACCES;
411 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
412 	strncpy(tmpbuf, buf, len);
413 	tmpbuf[len] = '\0';
414 	if (sscanf(tmpbuf, "%d", &status) != 1)
415 		return -EINVAL;
416 	h = shost_to_hba(shost);
417 	h->acciopath_status = !!status;
418 	dev_warn(&h->pdev->dev,
419 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
420 		h->acciopath_status ? "enabled" : "disabled");
421 	return count;
422 }
423 
424 static ssize_t host_store_raid_offload_debug(struct device *dev,
425 					 struct device_attribute *attr,
426 					 const char *buf, size_t count)
427 {
428 	int debug_level, len;
429 	struct ctlr_info *h;
430 	struct Scsi_Host *shost = class_to_shost(dev);
431 	char tmpbuf[10];
432 
433 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434 		return -EACCES;
435 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436 	strncpy(tmpbuf, buf, len);
437 	tmpbuf[len] = '\0';
438 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
439 		return -EINVAL;
440 	if (debug_level < 0)
441 		debug_level = 0;
442 	h = shost_to_hba(shost);
443 	h->raid_offload_debug = debug_level;
444 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
445 		h->raid_offload_debug);
446 	return count;
447 }
448 
449 static ssize_t host_store_rescan(struct device *dev,
450 				 struct device_attribute *attr,
451 				 const char *buf, size_t count)
452 {
453 	struct ctlr_info *h;
454 	struct Scsi_Host *shost = class_to_shost(dev);
455 	h = shost_to_hba(shost);
456 	hpsa_scan_start(h->scsi_host);
457 	return count;
458 }
459 
460 static ssize_t host_show_firmware_revision(struct device *dev,
461 	     struct device_attribute *attr, char *buf)
462 {
463 	struct ctlr_info *h;
464 	struct Scsi_Host *shost = class_to_shost(dev);
465 	unsigned char *fwrev;
466 
467 	h = shost_to_hba(shost);
468 	if (!h->hba_inquiry_data)
469 		return 0;
470 	fwrev = &h->hba_inquiry_data[32];
471 	return snprintf(buf, 20, "%c%c%c%c\n",
472 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
473 }
474 
475 static ssize_t host_show_commands_outstanding(struct device *dev,
476 	     struct device_attribute *attr, char *buf)
477 {
478 	struct Scsi_Host *shost = class_to_shost(dev);
479 	struct ctlr_info *h = shost_to_hba(shost);
480 
481 	return snprintf(buf, 20, "%d\n",
482 			atomic_read(&h->commands_outstanding));
483 }
484 
485 static ssize_t host_show_transport_mode(struct device *dev,
486 	struct device_attribute *attr, char *buf)
487 {
488 	struct ctlr_info *h;
489 	struct Scsi_Host *shost = class_to_shost(dev);
490 
491 	h = shost_to_hba(shost);
492 	return snprintf(buf, 20, "%s\n",
493 		h->transMethod & CFGTBL_Trans_Performant ?
494 			"performant" : "simple");
495 }
496 
497 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
498 	struct device_attribute *attr, char *buf)
499 {
500 	struct ctlr_info *h;
501 	struct Scsi_Host *shost = class_to_shost(dev);
502 
503 	h = shost_to_hba(shost);
504 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
505 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
506 }
507 
508 /* List of controllers which cannot be hard reset on kexec with reset_devices */
509 static u32 unresettable_controller[] = {
510 	0x324a103C, /* Smart Array P712m */
511 	0x324b103C, /* Smart Array P711m */
512 	0x3223103C, /* Smart Array P800 */
513 	0x3234103C, /* Smart Array P400 */
514 	0x3235103C, /* Smart Array P400i */
515 	0x3211103C, /* Smart Array E200i */
516 	0x3212103C, /* Smart Array E200 */
517 	0x3213103C, /* Smart Array E200i */
518 	0x3214103C, /* Smart Array E200i */
519 	0x3215103C, /* Smart Array E200i */
520 	0x3237103C, /* Smart Array E500 */
521 	0x323D103C, /* Smart Array P700m */
522 	0x40800E11, /* Smart Array 5i */
523 	0x409C0E11, /* Smart Array 6400 */
524 	0x409D0E11, /* Smart Array 6400 EM */
525 	0x40700E11, /* Smart Array 5300 */
526 	0x40820E11, /* Smart Array 532 */
527 	0x40830E11, /* Smart Array 5312 */
528 	0x409A0E11, /* Smart Array 641 */
529 	0x409B0E11, /* Smart Array 642 */
530 	0x40910E11, /* Smart Array 6i */
531 };
532 
533 /* List of controllers which cannot even be soft reset */
534 static u32 soft_unresettable_controller[] = {
535 	0x40800E11, /* Smart Array 5i */
536 	0x40700E11, /* Smart Array 5300 */
537 	0x40820E11, /* Smart Array 532 */
538 	0x40830E11, /* Smart Array 5312 */
539 	0x409A0E11, /* Smart Array 641 */
540 	0x409B0E11, /* Smart Array 642 */
541 	0x40910E11, /* Smart Array 6i */
542 	/* Exclude 640x boards.  These are two pci devices in one slot
543 	 * which share a battery backed cache module.  One controls the
544 	 * cache, the other accesses the cache through the one that controls
545 	 * it.  If we reset the one controlling the cache, the other will
546 	 * likely not be happy.  Just forbid resetting this conjoined mess.
547 	 * The 640x isn't really supported by hpsa anyway.
548 	 */
549 	0x409C0E11, /* Smart Array 6400 */
550 	0x409D0E11, /* Smart Array 6400 EM */
551 };
552 
553 static u32 needs_abort_tags_swizzled[] = {
554 	0x323D103C, /* Smart Array P700m */
555 	0x324a103C, /* Smart Array P712m */
556 	0x324b103C, /* SmartArray P711m */
557 };
558 
559 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
560 {
561 	int i;
562 
563 	for (i = 0; i < nelems; i++)
564 		if (a[i] == board_id)
565 			return 1;
566 	return 0;
567 }
568 
569 static int ctlr_is_hard_resettable(u32 board_id)
570 {
571 	return !board_id_in_array(unresettable_controller,
572 			ARRAY_SIZE(unresettable_controller), board_id);
573 }
574 
575 static int ctlr_is_soft_resettable(u32 board_id)
576 {
577 	return !board_id_in_array(soft_unresettable_controller,
578 			ARRAY_SIZE(soft_unresettable_controller), board_id);
579 }
580 
581 static int ctlr_is_resettable(u32 board_id)
582 {
583 	return ctlr_is_hard_resettable(board_id) ||
584 		ctlr_is_soft_resettable(board_id);
585 }
586 
587 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
588 {
589 	return board_id_in_array(needs_abort_tags_swizzled,
590 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
591 }
592 
593 static ssize_t host_show_resettable(struct device *dev,
594 	struct device_attribute *attr, char *buf)
595 {
596 	struct ctlr_info *h;
597 	struct Scsi_Host *shost = class_to_shost(dev);
598 
599 	h = shost_to_hba(shost);
600 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
601 }
602 
603 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
604 {
605 	return (scsi3addr[3] & 0xC0) == 0x40;
606 }
607 
608 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
609 	"1(+0)ADM", "UNKNOWN"
610 };
611 #define HPSA_RAID_0	0
612 #define HPSA_RAID_4	1
613 #define HPSA_RAID_1	2	/* also used for RAID 10 */
614 #define HPSA_RAID_5	3	/* also used for RAID 50 */
615 #define HPSA_RAID_51	4
616 #define HPSA_RAID_6	5	/* also used for RAID 60 */
617 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
618 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
619 
620 static ssize_t raid_level_show(struct device *dev,
621 	     struct device_attribute *attr, char *buf)
622 {
623 	ssize_t l = 0;
624 	unsigned char rlevel;
625 	struct ctlr_info *h;
626 	struct scsi_device *sdev;
627 	struct hpsa_scsi_dev_t *hdev;
628 	unsigned long flags;
629 
630 	sdev = to_scsi_device(dev);
631 	h = sdev_to_hba(sdev);
632 	spin_lock_irqsave(&h->lock, flags);
633 	hdev = sdev->hostdata;
634 	if (!hdev) {
635 		spin_unlock_irqrestore(&h->lock, flags);
636 		return -ENODEV;
637 	}
638 
639 	/* Is this even a logical drive? */
640 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
641 		spin_unlock_irqrestore(&h->lock, flags);
642 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
643 		return l;
644 	}
645 
646 	rlevel = hdev->raid_level;
647 	spin_unlock_irqrestore(&h->lock, flags);
648 	if (rlevel > RAID_UNKNOWN)
649 		rlevel = RAID_UNKNOWN;
650 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
651 	return l;
652 }
653 
654 static ssize_t lunid_show(struct device *dev,
655 	     struct device_attribute *attr, char *buf)
656 {
657 	struct ctlr_info *h;
658 	struct scsi_device *sdev;
659 	struct hpsa_scsi_dev_t *hdev;
660 	unsigned long flags;
661 	unsigned char lunid[8];
662 
663 	sdev = to_scsi_device(dev);
664 	h = sdev_to_hba(sdev);
665 	spin_lock_irqsave(&h->lock, flags);
666 	hdev = sdev->hostdata;
667 	if (!hdev) {
668 		spin_unlock_irqrestore(&h->lock, flags);
669 		return -ENODEV;
670 	}
671 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
672 	spin_unlock_irqrestore(&h->lock, flags);
673 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
674 		lunid[0], lunid[1], lunid[2], lunid[3],
675 		lunid[4], lunid[5], lunid[6], lunid[7]);
676 }
677 
678 static ssize_t unique_id_show(struct device *dev,
679 	     struct device_attribute *attr, char *buf)
680 {
681 	struct ctlr_info *h;
682 	struct scsi_device *sdev;
683 	struct hpsa_scsi_dev_t *hdev;
684 	unsigned long flags;
685 	unsigned char sn[16];
686 
687 	sdev = to_scsi_device(dev);
688 	h = sdev_to_hba(sdev);
689 	spin_lock_irqsave(&h->lock, flags);
690 	hdev = sdev->hostdata;
691 	if (!hdev) {
692 		spin_unlock_irqrestore(&h->lock, flags);
693 		return -ENODEV;
694 	}
695 	memcpy(sn, hdev->device_id, sizeof(sn));
696 	spin_unlock_irqrestore(&h->lock, flags);
697 	return snprintf(buf, 16 * 2 + 2,
698 			"%02X%02X%02X%02X%02X%02X%02X%02X"
699 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
700 			sn[0], sn[1], sn[2], sn[3],
701 			sn[4], sn[5], sn[6], sn[7],
702 			sn[8], sn[9], sn[10], sn[11],
703 			sn[12], sn[13], sn[14], sn[15]);
704 }
705 
706 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
707 	     struct device_attribute *attr, char *buf)
708 {
709 	struct ctlr_info *h;
710 	struct scsi_device *sdev;
711 	struct hpsa_scsi_dev_t *hdev;
712 	unsigned long flags;
713 	int offload_enabled;
714 
715 	sdev = to_scsi_device(dev);
716 	h = sdev_to_hba(sdev);
717 	spin_lock_irqsave(&h->lock, flags);
718 	hdev = sdev->hostdata;
719 	if (!hdev) {
720 		spin_unlock_irqrestore(&h->lock, flags);
721 		return -ENODEV;
722 	}
723 	offload_enabled = hdev->offload_enabled;
724 	spin_unlock_irqrestore(&h->lock, flags);
725 	return snprintf(buf, 20, "%d\n", offload_enabled);
726 }
727 
728 #define MAX_PATHS 8
729 #define PATH_STRING_LEN 50
730 
731 static ssize_t path_info_show(struct device *dev,
732 	     struct device_attribute *attr, char *buf)
733 {
734 	struct ctlr_info *h;
735 	struct scsi_device *sdev;
736 	struct hpsa_scsi_dev_t *hdev;
737 	unsigned long flags;
738 	int i;
739 	int output_len = 0;
740 	u8 box;
741 	u8 bay;
742 	u8 path_map_index = 0;
743 	char *active;
744 	unsigned char phys_connector[2];
745 	unsigned char path[MAX_PATHS][PATH_STRING_LEN];
746 
747 	memset(path, 0, MAX_PATHS * PATH_STRING_LEN);
748 	sdev = to_scsi_device(dev);
749 	h = sdev_to_hba(sdev);
750 	spin_lock_irqsave(&h->devlock, flags);
751 	hdev = sdev->hostdata;
752 	if (!hdev) {
753 		spin_unlock_irqrestore(&h->devlock, flags);
754 		return -ENODEV;
755 	}
756 
757 	bay = hdev->bay;
758 	for (i = 0; i < MAX_PATHS; i++) {
759 		path_map_index = 1<<i;
760 		if (i == hdev->active_path_index)
761 			active = "Active";
762 		else if (hdev->path_map & path_map_index)
763 			active = "Inactive";
764 		else
765 			continue;
766 
767 		output_len = snprintf(path[i],
768 				PATH_STRING_LEN, "[%d:%d:%d:%d] %20.20s ",
769 				h->scsi_host->host_no,
770 				hdev->bus, hdev->target, hdev->lun,
771 				scsi_device_type(hdev->devtype));
772 
773 		if (is_ext_target(h, hdev) ||
774 			(hdev->devtype == TYPE_RAID) ||
775 			is_logical_dev_addr_mode(hdev->scsi3addr)) {
776 			output_len += snprintf(path[i] + output_len,
777 						PATH_STRING_LEN, "%s\n",
778 						active);
779 			continue;
780 		}
781 
782 		box = hdev->box[i];
783 		memcpy(&phys_connector, &hdev->phys_connector[i],
784 			sizeof(phys_connector));
785 		if (phys_connector[0] < '0')
786 			phys_connector[0] = '0';
787 		if (phys_connector[1] < '0')
788 			phys_connector[1] = '0';
789 		if (hdev->phys_connector[i] > 0)
790 			output_len += snprintf(path[i] + output_len,
791 				PATH_STRING_LEN,
792 				"PORT: %.2s ",
793 				phys_connector);
794 		if (hdev->devtype == TYPE_DISK &&
795 			hdev->expose_state != HPSA_DO_NOT_EXPOSE) {
796 			if (box == 0 || box == 0xFF) {
797 				output_len += snprintf(path[i] + output_len,
798 					PATH_STRING_LEN,
799 					"BAY: %hhu %s\n",
800 					bay, active);
801 			} else {
802 				output_len += snprintf(path[i] + output_len,
803 					PATH_STRING_LEN,
804 					"BOX: %hhu BAY: %hhu %s\n",
805 					box, bay, active);
806 			}
807 		} else if (box != 0 && box != 0xFF) {
808 			output_len += snprintf(path[i] + output_len,
809 				PATH_STRING_LEN, "BOX: %hhu %s\n",
810 				box, active);
811 		} else
812 			output_len += snprintf(path[i] + output_len,
813 				PATH_STRING_LEN, "%s\n", active);
814 	}
815 
816 	spin_unlock_irqrestore(&h->devlock, flags);
817 	return snprintf(buf, output_len+1, "%s%s%s%s%s%s%s%s",
818 		path[0], path[1], path[2], path[3],
819 		path[4], path[5], path[6], path[7]);
820 }
821 
822 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
823 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
824 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
825 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
826 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
827 			host_show_hp_ssd_smart_path_enabled, NULL);
828 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
829 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
830 		host_show_hp_ssd_smart_path_status,
831 		host_store_hp_ssd_smart_path_status);
832 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
833 			host_store_raid_offload_debug);
834 static DEVICE_ATTR(firmware_revision, S_IRUGO,
835 	host_show_firmware_revision, NULL);
836 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
837 	host_show_commands_outstanding, NULL);
838 static DEVICE_ATTR(transport_mode, S_IRUGO,
839 	host_show_transport_mode, NULL);
840 static DEVICE_ATTR(resettable, S_IRUGO,
841 	host_show_resettable, NULL);
842 static DEVICE_ATTR(lockup_detected, S_IRUGO,
843 	host_show_lockup_detected, NULL);
844 
845 static struct device_attribute *hpsa_sdev_attrs[] = {
846 	&dev_attr_raid_level,
847 	&dev_attr_lunid,
848 	&dev_attr_unique_id,
849 	&dev_attr_hp_ssd_smart_path_enabled,
850 	&dev_attr_path_info,
851 	&dev_attr_lockup_detected,
852 	NULL,
853 };
854 
855 static struct device_attribute *hpsa_shost_attrs[] = {
856 	&dev_attr_rescan,
857 	&dev_attr_firmware_revision,
858 	&dev_attr_commands_outstanding,
859 	&dev_attr_transport_mode,
860 	&dev_attr_resettable,
861 	&dev_attr_hp_ssd_smart_path_status,
862 	&dev_attr_raid_offload_debug,
863 	NULL,
864 };
865 
866 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
867 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
868 
869 static struct scsi_host_template hpsa_driver_template = {
870 	.module			= THIS_MODULE,
871 	.name			= HPSA,
872 	.proc_name		= HPSA,
873 	.queuecommand		= hpsa_scsi_queue_command,
874 	.scan_start		= hpsa_scan_start,
875 	.scan_finished		= hpsa_scan_finished,
876 	.change_queue_depth	= hpsa_change_queue_depth,
877 	.this_id		= -1,
878 	.use_clustering		= ENABLE_CLUSTERING,
879 	.eh_abort_handler	= hpsa_eh_abort_handler,
880 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
881 	.ioctl			= hpsa_ioctl,
882 	.slave_alloc		= hpsa_slave_alloc,
883 	.slave_configure	= hpsa_slave_configure,
884 	.slave_destroy		= hpsa_slave_destroy,
885 #ifdef CONFIG_COMPAT
886 	.compat_ioctl		= hpsa_compat_ioctl,
887 #endif
888 	.sdev_attrs = hpsa_sdev_attrs,
889 	.shost_attrs = hpsa_shost_attrs,
890 	.max_sectors = 8192,
891 	.no_write_same = 1,
892 };
893 
894 static inline u32 next_command(struct ctlr_info *h, u8 q)
895 {
896 	u32 a;
897 	struct reply_queue_buffer *rq = &h->reply_queue[q];
898 
899 	if (h->transMethod & CFGTBL_Trans_io_accel1)
900 		return h->access.command_completed(h, q);
901 
902 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
903 		return h->access.command_completed(h, q);
904 
905 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
906 		a = rq->head[rq->current_entry];
907 		rq->current_entry++;
908 		atomic_dec(&h->commands_outstanding);
909 	} else {
910 		a = FIFO_EMPTY;
911 	}
912 	/* Check for wraparound */
913 	if (rq->current_entry == h->max_commands) {
914 		rq->current_entry = 0;
915 		rq->wraparound ^= 1;
916 	}
917 	return a;
918 }
919 
920 /*
921  * There are some special bits in the bus address of the
922  * command that we have to set for the controller to know
923  * how to process the command:
924  *
925  * Normal performant mode:
926  * bit 0: 1 means performant mode, 0 means simple mode.
927  * bits 1-3 = block fetch table entry
928  * bits 4-6 = command type (== 0)
929  *
930  * ioaccel1 mode:
931  * bit 0 = "performant mode" bit.
932  * bits 1-3 = block fetch table entry
933  * bits 4-6 = command type (== 110)
934  * (command type is needed because ioaccel1 mode
935  * commands are submitted through the same register as normal
936  * mode commands, so this is how the controller knows whether
937  * the command is normal mode or ioaccel1 mode.)
938  *
939  * ioaccel2 mode:
940  * bit 0 = "performant mode" bit.
941  * bits 1-4 = block fetch table entry (note extra bit)
942  * bits 4-6 = not needed, because ioaccel2 mode has
943  * a separate special register for submitting commands.
944  */
945 
946 /*
947  * set_performant_mode: Modify the tag for cciss performant
948  * set bit 0 for pull model, bits 3-1 for block fetch
949  * register number
950  */
951 #define DEFAULT_REPLY_QUEUE (-1)
952 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
953 					int reply_queue)
954 {
955 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
956 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
957 		if (unlikely(!h->msix_vector))
958 			return;
959 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
960 			c->Header.ReplyQueue =
961 				raw_smp_processor_id() % h->nreply_queues;
962 		else
963 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
964 	}
965 }
966 
967 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
968 						struct CommandList *c,
969 						int reply_queue)
970 {
971 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
972 
973 	/*
974 	 * Tell the controller to post the reply to the queue for this
975 	 * processor.  This seems to give the best I/O throughput.
976 	 */
977 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
978 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
979 	else
980 		cp->ReplyQueue = reply_queue % h->nreply_queues;
981 	/*
982 	 * Set the bits in the address sent down to include:
983 	 *  - performant mode bit (bit 0)
984 	 *  - pull count (bits 1-3)
985 	 *  - command type (bits 4-6)
986 	 */
987 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
988 					IOACCEL1_BUSADDR_CMDTYPE;
989 }
990 
991 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
992 						struct CommandList *c,
993 						int reply_queue)
994 {
995 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
996 		&h->ioaccel2_cmd_pool[c->cmdindex];
997 
998 	/* Tell the controller to post the reply to the queue for this
999 	 * processor.  This seems to give the best I/O throughput.
1000 	 */
1001 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1002 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1003 	else
1004 		cp->reply_queue = reply_queue % h->nreply_queues;
1005 	/* Set the bits in the address sent down to include:
1006 	 *  - performant mode bit not used in ioaccel mode 2
1007 	 *  - pull count (bits 0-3)
1008 	 *  - command type isn't needed for ioaccel2
1009 	 */
1010 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1011 }
1012 
1013 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1014 						struct CommandList *c,
1015 						int reply_queue)
1016 {
1017 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1018 
1019 	/*
1020 	 * Tell the controller to post the reply to the queue for this
1021 	 * processor.  This seems to give the best I/O throughput.
1022 	 */
1023 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1024 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1025 	else
1026 		cp->reply_queue = reply_queue % h->nreply_queues;
1027 	/*
1028 	 * Set the bits in the address sent down to include:
1029 	 *  - performant mode bit not used in ioaccel mode 2
1030 	 *  - pull count (bits 0-3)
1031 	 *  - command type isn't needed for ioaccel2
1032 	 */
1033 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1034 }
1035 
1036 static int is_firmware_flash_cmd(u8 *cdb)
1037 {
1038 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1039 }
1040 
1041 /*
1042  * During firmware flash, the heartbeat register may not update as frequently
1043  * as it should.  So we dial down lockup detection during firmware flash. and
1044  * dial it back up when firmware flash completes.
1045  */
1046 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1047 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1048 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1049 		struct CommandList *c)
1050 {
1051 	if (!is_firmware_flash_cmd(c->Request.CDB))
1052 		return;
1053 	atomic_inc(&h->firmware_flash_in_progress);
1054 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1055 }
1056 
1057 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1058 		struct CommandList *c)
1059 {
1060 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1061 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1062 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1063 }
1064 
1065 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1066 	struct CommandList *c, int reply_queue)
1067 {
1068 	dial_down_lockup_detection_during_fw_flash(h, c);
1069 	atomic_inc(&h->commands_outstanding);
1070 	switch (c->cmd_type) {
1071 	case CMD_IOACCEL1:
1072 		set_ioaccel1_performant_mode(h, c, reply_queue);
1073 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1074 		break;
1075 	case CMD_IOACCEL2:
1076 		set_ioaccel2_performant_mode(h, c, reply_queue);
1077 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1078 		break;
1079 	case IOACCEL2_TMF:
1080 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1081 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1082 		break;
1083 	default:
1084 		set_performant_mode(h, c, reply_queue);
1085 		h->access.submit_command(h, c);
1086 	}
1087 }
1088 
1089 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1090 {
1091 	if (unlikely(hpsa_is_pending_event(c)))
1092 		return finish_cmd(c);
1093 
1094 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1095 }
1096 
1097 static inline int is_hba_lunid(unsigned char scsi3addr[])
1098 {
1099 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1100 }
1101 
1102 static inline int is_scsi_rev_5(struct ctlr_info *h)
1103 {
1104 	if (!h->hba_inquiry_data)
1105 		return 0;
1106 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1107 		return 1;
1108 	return 0;
1109 }
1110 
1111 static int hpsa_find_target_lun(struct ctlr_info *h,
1112 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1113 {
1114 	/* finds an unused bus, target, lun for a new physical device
1115 	 * assumes h->devlock is held
1116 	 */
1117 	int i, found = 0;
1118 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1119 
1120 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1121 
1122 	for (i = 0; i < h->ndevices; i++) {
1123 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1124 			__set_bit(h->dev[i]->target, lun_taken);
1125 	}
1126 
1127 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1128 	if (i < HPSA_MAX_DEVICES) {
1129 		/* *bus = 1; */
1130 		*target = i;
1131 		*lun = 0;
1132 		found = 1;
1133 	}
1134 	return !found;
1135 }
1136 
1137 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1138 	struct hpsa_scsi_dev_t *dev, char *description)
1139 {
1140 	dev_printk(level, &h->pdev->dev,
1141 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1142 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1143 			description,
1144 			scsi_device_type(dev->devtype),
1145 			dev->vendor,
1146 			dev->model,
1147 			dev->raid_level > RAID_UNKNOWN ?
1148 				"RAID-?" : raid_label[dev->raid_level],
1149 			dev->offload_config ? '+' : '-',
1150 			dev->offload_enabled ? '+' : '-',
1151 			dev->expose_state);
1152 }
1153 
1154 /* Add an entry into h->dev[] array. */
1155 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1156 		struct hpsa_scsi_dev_t *device,
1157 		struct hpsa_scsi_dev_t *added[], int *nadded)
1158 {
1159 	/* assumes h->devlock is held */
1160 	int n = h->ndevices;
1161 	int i;
1162 	unsigned char addr1[8], addr2[8];
1163 	struct hpsa_scsi_dev_t *sd;
1164 
1165 	if (n >= HPSA_MAX_DEVICES) {
1166 		dev_err(&h->pdev->dev, "too many devices, some will be "
1167 			"inaccessible.\n");
1168 		return -1;
1169 	}
1170 
1171 	/* physical devices do not have lun or target assigned until now. */
1172 	if (device->lun != -1)
1173 		/* Logical device, lun is already assigned. */
1174 		goto lun_assigned;
1175 
1176 	/* If this device a non-zero lun of a multi-lun device
1177 	 * byte 4 of the 8-byte LUN addr will contain the logical
1178 	 * unit no, zero otherwise.
1179 	 */
1180 	if (device->scsi3addr[4] == 0) {
1181 		/* This is not a non-zero lun of a multi-lun device */
1182 		if (hpsa_find_target_lun(h, device->scsi3addr,
1183 			device->bus, &device->target, &device->lun) != 0)
1184 			return -1;
1185 		goto lun_assigned;
1186 	}
1187 
1188 	/* This is a non-zero lun of a multi-lun device.
1189 	 * Search through our list and find the device which
1190 	 * has the same 8 byte LUN address, excepting byte 4.
1191 	 * Assign the same bus and target for this new LUN.
1192 	 * Use the logical unit number from the firmware.
1193 	 */
1194 	memcpy(addr1, device->scsi3addr, 8);
1195 	addr1[4] = 0;
1196 	for (i = 0; i < n; i++) {
1197 		sd = h->dev[i];
1198 		memcpy(addr2, sd->scsi3addr, 8);
1199 		addr2[4] = 0;
1200 		/* differ only in byte 4? */
1201 		if (memcmp(addr1, addr2, 8) == 0) {
1202 			device->bus = sd->bus;
1203 			device->target = sd->target;
1204 			device->lun = device->scsi3addr[4];
1205 			break;
1206 		}
1207 	}
1208 	if (device->lun == -1) {
1209 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1210 			" suspect firmware bug or unsupported hardware "
1211 			"configuration.\n");
1212 			return -1;
1213 	}
1214 
1215 lun_assigned:
1216 
1217 	h->dev[n] = device;
1218 	h->ndevices++;
1219 	added[*nadded] = device;
1220 	(*nadded)++;
1221 	hpsa_show_dev_msg(KERN_INFO, h, device,
1222 		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1223 	device->offload_to_be_enabled = device->offload_enabled;
1224 	device->offload_enabled = 0;
1225 	return 0;
1226 }
1227 
1228 /* Update an entry in h->dev[] array. */
1229 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1230 	int entry, struct hpsa_scsi_dev_t *new_entry)
1231 {
1232 	int offload_enabled;
1233 	/* assumes h->devlock is held */
1234 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1235 
1236 	/* Raid level changed. */
1237 	h->dev[entry]->raid_level = new_entry->raid_level;
1238 
1239 	/* Raid offload parameters changed.  Careful about the ordering. */
1240 	if (new_entry->offload_config && new_entry->offload_enabled) {
1241 		/*
1242 		 * if drive is newly offload_enabled, we want to copy the
1243 		 * raid map data first.  If previously offload_enabled and
1244 		 * offload_config were set, raid map data had better be
1245 		 * the same as it was before.  if raid map data is changed
1246 		 * then it had better be the case that
1247 		 * h->dev[entry]->offload_enabled is currently 0.
1248 		 */
1249 		h->dev[entry]->raid_map = new_entry->raid_map;
1250 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1251 	}
1252 	if (new_entry->hba_ioaccel_enabled) {
1253 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1254 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1255 	}
1256 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1257 	h->dev[entry]->offload_config = new_entry->offload_config;
1258 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1259 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1260 
1261 	/*
1262 	 * We can turn off ioaccel offload now, but need to delay turning
1263 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1264 	 * can't do that until all the devices are updated.
1265 	 */
1266 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1267 	if (!new_entry->offload_enabled)
1268 		h->dev[entry]->offload_enabled = 0;
1269 
1270 	offload_enabled = h->dev[entry]->offload_enabled;
1271 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1272 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1273 	h->dev[entry]->offload_enabled = offload_enabled;
1274 }
1275 
1276 /* Replace an entry from h->dev[] array. */
1277 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1278 	int entry, struct hpsa_scsi_dev_t *new_entry,
1279 	struct hpsa_scsi_dev_t *added[], int *nadded,
1280 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1281 {
1282 	/* assumes h->devlock is held */
1283 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1284 	removed[*nremoved] = h->dev[entry];
1285 	(*nremoved)++;
1286 
1287 	/*
1288 	 * New physical devices won't have target/lun assigned yet
1289 	 * so we need to preserve the values in the slot we are replacing.
1290 	 */
1291 	if (new_entry->target == -1) {
1292 		new_entry->target = h->dev[entry]->target;
1293 		new_entry->lun = h->dev[entry]->lun;
1294 	}
1295 
1296 	h->dev[entry] = new_entry;
1297 	added[*nadded] = new_entry;
1298 	(*nadded)++;
1299 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1300 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1301 	new_entry->offload_enabled = 0;
1302 }
1303 
1304 /* Remove an entry from h->dev[] array. */
1305 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1306 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1307 {
1308 	/* assumes h->devlock is held */
1309 	int i;
1310 	struct hpsa_scsi_dev_t *sd;
1311 
1312 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1313 
1314 	sd = h->dev[entry];
1315 	removed[*nremoved] = h->dev[entry];
1316 	(*nremoved)++;
1317 
1318 	for (i = entry; i < h->ndevices-1; i++)
1319 		h->dev[i] = h->dev[i+1];
1320 	h->ndevices--;
1321 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1322 }
1323 
1324 #define SCSI3ADDR_EQ(a, b) ( \
1325 	(a)[7] == (b)[7] && \
1326 	(a)[6] == (b)[6] && \
1327 	(a)[5] == (b)[5] && \
1328 	(a)[4] == (b)[4] && \
1329 	(a)[3] == (b)[3] && \
1330 	(a)[2] == (b)[2] && \
1331 	(a)[1] == (b)[1] && \
1332 	(a)[0] == (b)[0])
1333 
1334 static void fixup_botched_add(struct ctlr_info *h,
1335 	struct hpsa_scsi_dev_t *added)
1336 {
1337 	/* called when scsi_add_device fails in order to re-adjust
1338 	 * h->dev[] to match the mid layer's view.
1339 	 */
1340 	unsigned long flags;
1341 	int i, j;
1342 
1343 	spin_lock_irqsave(&h->lock, flags);
1344 	for (i = 0; i < h->ndevices; i++) {
1345 		if (h->dev[i] == added) {
1346 			for (j = i; j < h->ndevices-1; j++)
1347 				h->dev[j] = h->dev[j+1];
1348 			h->ndevices--;
1349 			break;
1350 		}
1351 	}
1352 	spin_unlock_irqrestore(&h->lock, flags);
1353 	kfree(added);
1354 }
1355 
1356 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1357 	struct hpsa_scsi_dev_t *dev2)
1358 {
1359 	/* we compare everything except lun and target as these
1360 	 * are not yet assigned.  Compare parts likely
1361 	 * to differ first
1362 	 */
1363 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1364 		sizeof(dev1->scsi3addr)) != 0)
1365 		return 0;
1366 	if (memcmp(dev1->device_id, dev2->device_id,
1367 		sizeof(dev1->device_id)) != 0)
1368 		return 0;
1369 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1370 		return 0;
1371 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1372 		return 0;
1373 	if (dev1->devtype != dev2->devtype)
1374 		return 0;
1375 	if (dev1->bus != dev2->bus)
1376 		return 0;
1377 	return 1;
1378 }
1379 
1380 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1381 	struct hpsa_scsi_dev_t *dev2)
1382 {
1383 	/* Device attributes that can change, but don't mean
1384 	 * that the device is a different device, nor that the OS
1385 	 * needs to be told anything about the change.
1386 	 */
1387 	if (dev1->raid_level != dev2->raid_level)
1388 		return 1;
1389 	if (dev1->offload_config != dev2->offload_config)
1390 		return 1;
1391 	if (dev1->offload_enabled != dev2->offload_enabled)
1392 		return 1;
1393 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1394 		if (dev1->queue_depth != dev2->queue_depth)
1395 			return 1;
1396 	return 0;
1397 }
1398 
1399 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1400  * and return needle location in *index.  If scsi3addr matches, but not
1401  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1402  * location in *index.
1403  * In the case of a minor device attribute change, such as RAID level, just
1404  * return DEVICE_UPDATED, along with the updated device's location in index.
1405  * If needle not found, return DEVICE_NOT_FOUND.
1406  */
1407 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1408 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1409 	int *index)
1410 {
1411 	int i;
1412 #define DEVICE_NOT_FOUND 0
1413 #define DEVICE_CHANGED 1
1414 #define DEVICE_SAME 2
1415 #define DEVICE_UPDATED 3
1416 	for (i = 0; i < haystack_size; i++) {
1417 		if (haystack[i] == NULL) /* previously removed. */
1418 			continue;
1419 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1420 			*index = i;
1421 			if (device_is_the_same(needle, haystack[i])) {
1422 				if (device_updated(needle, haystack[i]))
1423 					return DEVICE_UPDATED;
1424 				return DEVICE_SAME;
1425 			} else {
1426 				/* Keep offline devices offline */
1427 				if (needle->volume_offline)
1428 					return DEVICE_NOT_FOUND;
1429 				return DEVICE_CHANGED;
1430 			}
1431 		}
1432 	}
1433 	*index = -1;
1434 	return DEVICE_NOT_FOUND;
1435 }
1436 
1437 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1438 					unsigned char scsi3addr[])
1439 {
1440 	struct offline_device_entry *device;
1441 	unsigned long flags;
1442 
1443 	/* Check to see if device is already on the list */
1444 	spin_lock_irqsave(&h->offline_device_lock, flags);
1445 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1446 		if (memcmp(device->scsi3addr, scsi3addr,
1447 			sizeof(device->scsi3addr)) == 0) {
1448 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1449 			return;
1450 		}
1451 	}
1452 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1453 
1454 	/* Device is not on the list, add it. */
1455 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1456 	if (!device) {
1457 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1458 		return;
1459 	}
1460 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1461 	spin_lock_irqsave(&h->offline_device_lock, flags);
1462 	list_add_tail(&device->offline_list, &h->offline_device_list);
1463 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1464 }
1465 
1466 /* Print a message explaining various offline volume states */
1467 static void hpsa_show_volume_status(struct ctlr_info *h,
1468 	struct hpsa_scsi_dev_t *sd)
1469 {
1470 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1471 		dev_info(&h->pdev->dev,
1472 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1473 			h->scsi_host->host_no,
1474 			sd->bus, sd->target, sd->lun);
1475 	switch (sd->volume_offline) {
1476 	case HPSA_LV_OK:
1477 		break;
1478 	case HPSA_LV_UNDERGOING_ERASE:
1479 		dev_info(&h->pdev->dev,
1480 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1481 			h->scsi_host->host_no,
1482 			sd->bus, sd->target, sd->lun);
1483 		break;
1484 	case HPSA_LV_NOT_AVAILABLE:
1485 		dev_info(&h->pdev->dev,
1486 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1487 			h->scsi_host->host_no,
1488 			sd->bus, sd->target, sd->lun);
1489 		break;
1490 	case HPSA_LV_UNDERGOING_RPI:
1491 		dev_info(&h->pdev->dev,
1492 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1493 			h->scsi_host->host_no,
1494 			sd->bus, sd->target, sd->lun);
1495 		break;
1496 	case HPSA_LV_PENDING_RPI:
1497 		dev_info(&h->pdev->dev,
1498 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1499 			h->scsi_host->host_no,
1500 			sd->bus, sd->target, sd->lun);
1501 		break;
1502 	case HPSA_LV_ENCRYPTED_NO_KEY:
1503 		dev_info(&h->pdev->dev,
1504 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1505 			h->scsi_host->host_no,
1506 			sd->bus, sd->target, sd->lun);
1507 		break;
1508 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1509 		dev_info(&h->pdev->dev,
1510 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1511 			h->scsi_host->host_no,
1512 			sd->bus, sd->target, sd->lun);
1513 		break;
1514 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1515 		dev_info(&h->pdev->dev,
1516 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1517 			h->scsi_host->host_no,
1518 			sd->bus, sd->target, sd->lun);
1519 		break;
1520 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1521 		dev_info(&h->pdev->dev,
1522 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1523 			h->scsi_host->host_no,
1524 			sd->bus, sd->target, sd->lun);
1525 		break;
1526 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1527 		dev_info(&h->pdev->dev,
1528 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1529 			h->scsi_host->host_no,
1530 			sd->bus, sd->target, sd->lun);
1531 		break;
1532 	case HPSA_LV_PENDING_ENCRYPTION:
1533 		dev_info(&h->pdev->dev,
1534 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1535 			h->scsi_host->host_no,
1536 			sd->bus, sd->target, sd->lun);
1537 		break;
1538 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1539 		dev_info(&h->pdev->dev,
1540 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1541 			h->scsi_host->host_no,
1542 			sd->bus, sd->target, sd->lun);
1543 		break;
1544 	}
1545 }
1546 
1547 /*
1548  * Figure the list of physical drive pointers for a logical drive with
1549  * raid offload configured.
1550  */
1551 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1552 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1553 				struct hpsa_scsi_dev_t *logical_drive)
1554 {
1555 	struct raid_map_data *map = &logical_drive->raid_map;
1556 	struct raid_map_disk_data *dd = &map->data[0];
1557 	int i, j;
1558 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1559 				le16_to_cpu(map->metadata_disks_per_row);
1560 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1561 				le16_to_cpu(map->layout_map_count) *
1562 				total_disks_per_row;
1563 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1564 				total_disks_per_row;
1565 	int qdepth;
1566 
1567 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1568 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1569 
1570 	logical_drive->nphysical_disks = nraid_map_entries;
1571 
1572 	qdepth = 0;
1573 	for (i = 0; i < nraid_map_entries; i++) {
1574 		logical_drive->phys_disk[i] = NULL;
1575 		if (!logical_drive->offload_config)
1576 			continue;
1577 		for (j = 0; j < ndevices; j++) {
1578 			if (dev[j]->devtype != TYPE_DISK)
1579 				continue;
1580 			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1581 				continue;
1582 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1583 				continue;
1584 
1585 			logical_drive->phys_disk[i] = dev[j];
1586 			if (i < nphys_disk)
1587 				qdepth = min(h->nr_cmds, qdepth +
1588 				    logical_drive->phys_disk[i]->queue_depth);
1589 			break;
1590 		}
1591 
1592 		/*
1593 		 * This can happen if a physical drive is removed and
1594 		 * the logical drive is degraded.  In that case, the RAID
1595 		 * map data will refer to a physical disk which isn't actually
1596 		 * present.  And in that case offload_enabled should already
1597 		 * be 0, but we'll turn it off here just in case
1598 		 */
1599 		if (!logical_drive->phys_disk[i]) {
1600 			logical_drive->offload_enabled = 0;
1601 			logical_drive->offload_to_be_enabled = 0;
1602 			logical_drive->queue_depth = 8;
1603 		}
1604 	}
1605 	if (nraid_map_entries)
1606 		/*
1607 		 * This is correct for reads, too high for full stripe writes,
1608 		 * way too high for partial stripe writes
1609 		 */
1610 		logical_drive->queue_depth = qdepth;
1611 	else
1612 		logical_drive->queue_depth = h->nr_cmds;
1613 }
1614 
1615 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1616 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1617 {
1618 	int i;
1619 
1620 	for (i = 0; i < ndevices; i++) {
1621 		if (dev[i]->devtype != TYPE_DISK)
1622 			continue;
1623 		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1624 			continue;
1625 
1626 		/*
1627 		 * If offload is currently enabled, the RAID map and
1628 		 * phys_disk[] assignment *better* not be changing
1629 		 * and since it isn't changing, we do not need to
1630 		 * update it.
1631 		 */
1632 		if (dev[i]->offload_enabled)
1633 			continue;
1634 
1635 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1636 	}
1637 }
1638 
1639 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1640 	struct hpsa_scsi_dev_t *sd[], int nsds)
1641 {
1642 	/* sd contains scsi3 addresses and devtypes, and inquiry
1643 	 * data.  This function takes what's in sd to be the current
1644 	 * reality and updates h->dev[] to reflect that reality.
1645 	 */
1646 	int i, entry, device_change, changes = 0;
1647 	struct hpsa_scsi_dev_t *csd;
1648 	unsigned long flags;
1649 	struct hpsa_scsi_dev_t **added, **removed;
1650 	int nadded, nremoved;
1651 	struct Scsi_Host *sh = NULL;
1652 
1653 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1654 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1655 
1656 	if (!added || !removed) {
1657 		dev_warn(&h->pdev->dev, "out of memory in "
1658 			"adjust_hpsa_scsi_table\n");
1659 		goto free_and_out;
1660 	}
1661 
1662 	spin_lock_irqsave(&h->devlock, flags);
1663 
1664 	/* find any devices in h->dev[] that are not in
1665 	 * sd[] and remove them from h->dev[], and for any
1666 	 * devices which have changed, remove the old device
1667 	 * info and add the new device info.
1668 	 * If minor device attributes change, just update
1669 	 * the existing device structure.
1670 	 */
1671 	i = 0;
1672 	nremoved = 0;
1673 	nadded = 0;
1674 	while (i < h->ndevices) {
1675 		csd = h->dev[i];
1676 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1677 		if (device_change == DEVICE_NOT_FOUND) {
1678 			changes++;
1679 			hpsa_scsi_remove_entry(h, hostno, i,
1680 				removed, &nremoved);
1681 			continue; /* remove ^^^, hence i not incremented */
1682 		} else if (device_change == DEVICE_CHANGED) {
1683 			changes++;
1684 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1685 				added, &nadded, removed, &nremoved);
1686 			/* Set it to NULL to prevent it from being freed
1687 			 * at the bottom of hpsa_update_scsi_devices()
1688 			 */
1689 			sd[entry] = NULL;
1690 		} else if (device_change == DEVICE_UPDATED) {
1691 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1692 		}
1693 		i++;
1694 	}
1695 
1696 	/* Now, make sure every device listed in sd[] is also
1697 	 * listed in h->dev[], adding them if they aren't found
1698 	 */
1699 
1700 	for (i = 0; i < nsds; i++) {
1701 		if (!sd[i]) /* if already added above. */
1702 			continue;
1703 
1704 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1705 		 * as the SCSI mid-layer does not handle such devices well.
1706 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1707 		 * at 160Hz, and prevents the system from coming up.
1708 		 */
1709 		if (sd[i]->volume_offline) {
1710 			hpsa_show_volume_status(h, sd[i]);
1711 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1712 			continue;
1713 		}
1714 
1715 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1716 					h->ndevices, &entry);
1717 		if (device_change == DEVICE_NOT_FOUND) {
1718 			changes++;
1719 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1720 				added, &nadded) != 0)
1721 				break;
1722 			sd[i] = NULL; /* prevent from being freed later. */
1723 		} else if (device_change == DEVICE_CHANGED) {
1724 			/* should never happen... */
1725 			changes++;
1726 			dev_warn(&h->pdev->dev,
1727 				"device unexpectedly changed.\n");
1728 			/* but if it does happen, we just ignore that device */
1729 		}
1730 	}
1731 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1732 
1733 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1734 	 * any logical drives that need it enabled.
1735 	 */
1736 	for (i = 0; i < h->ndevices; i++)
1737 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1738 
1739 	spin_unlock_irqrestore(&h->devlock, flags);
1740 
1741 	/* Monitor devices which are in one of several NOT READY states to be
1742 	 * brought online later. This must be done without holding h->devlock,
1743 	 * so don't touch h->dev[]
1744 	 */
1745 	for (i = 0; i < nsds; i++) {
1746 		if (!sd[i]) /* if already added above. */
1747 			continue;
1748 		if (sd[i]->volume_offline)
1749 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1750 	}
1751 
1752 	/* Don't notify scsi mid layer of any changes the first time through
1753 	 * (or if there are no changes) scsi_scan_host will do it later the
1754 	 * first time through.
1755 	 */
1756 	if (hostno == -1 || !changes)
1757 		goto free_and_out;
1758 
1759 	sh = h->scsi_host;
1760 	/* Notify scsi mid layer of any removed devices */
1761 	for (i = 0; i < nremoved; i++) {
1762 		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1763 			struct scsi_device *sdev =
1764 				scsi_device_lookup(sh, removed[i]->bus,
1765 					removed[i]->target, removed[i]->lun);
1766 			if (sdev != NULL) {
1767 				scsi_remove_device(sdev);
1768 				scsi_device_put(sdev);
1769 			} else {
1770 				/*
1771 				 * We don't expect to get here.
1772 				 * future cmds to this device will get selection
1773 				 * timeout as if the device was gone.
1774 				 */
1775 				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1776 					"didn't find device for removal.");
1777 			}
1778 		}
1779 		kfree(removed[i]);
1780 		removed[i] = NULL;
1781 	}
1782 
1783 	/* Notify scsi mid layer of any added devices */
1784 	for (i = 0; i < nadded; i++) {
1785 		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1786 			continue;
1787 		if (scsi_add_device(sh, added[i]->bus,
1788 			added[i]->target, added[i]->lun) == 0)
1789 			continue;
1790 		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1791 					"addition failed, device not added.");
1792 		/* now we have to remove it from h->dev,
1793 		 * since it didn't get added to scsi mid layer
1794 		 */
1795 		fixup_botched_add(h, added[i]);
1796 		added[i] = NULL;
1797 	}
1798 
1799 free_and_out:
1800 	kfree(added);
1801 	kfree(removed);
1802 }
1803 
1804 /*
1805  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1806  * Assume's h->devlock is held.
1807  */
1808 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1809 	int bus, int target, int lun)
1810 {
1811 	int i;
1812 	struct hpsa_scsi_dev_t *sd;
1813 
1814 	for (i = 0; i < h->ndevices; i++) {
1815 		sd = h->dev[i];
1816 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1817 			return sd;
1818 	}
1819 	return NULL;
1820 }
1821 
1822 static int hpsa_slave_alloc(struct scsi_device *sdev)
1823 {
1824 	struct hpsa_scsi_dev_t *sd;
1825 	unsigned long flags;
1826 	struct ctlr_info *h;
1827 
1828 	h = sdev_to_hba(sdev);
1829 	spin_lock_irqsave(&h->devlock, flags);
1830 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1831 		sdev_id(sdev), sdev->lun);
1832 	if (likely(sd)) {
1833 		atomic_set(&sd->ioaccel_cmds_out, 0);
1834 		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1835 	} else
1836 		sdev->hostdata = NULL;
1837 	spin_unlock_irqrestore(&h->devlock, flags);
1838 	return 0;
1839 }
1840 
1841 /* configure scsi device based on internal per-device structure */
1842 static int hpsa_slave_configure(struct scsi_device *sdev)
1843 {
1844 	struct hpsa_scsi_dev_t *sd;
1845 	int queue_depth;
1846 
1847 	sd = sdev->hostdata;
1848 	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1849 
1850 	if (sd)
1851 		queue_depth = sd->queue_depth != 0 ?
1852 			sd->queue_depth : sdev->host->can_queue;
1853 	else
1854 		queue_depth = sdev->host->can_queue;
1855 
1856 	scsi_change_queue_depth(sdev, queue_depth);
1857 
1858 	return 0;
1859 }
1860 
1861 static void hpsa_slave_destroy(struct scsi_device *sdev)
1862 {
1863 	/* nothing to do. */
1864 }
1865 
1866 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1867 {
1868 	int i;
1869 
1870 	if (!h->ioaccel2_cmd_sg_list)
1871 		return;
1872 	for (i = 0; i < h->nr_cmds; i++) {
1873 		kfree(h->ioaccel2_cmd_sg_list[i]);
1874 		h->ioaccel2_cmd_sg_list[i] = NULL;
1875 	}
1876 	kfree(h->ioaccel2_cmd_sg_list);
1877 	h->ioaccel2_cmd_sg_list = NULL;
1878 }
1879 
1880 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1881 {
1882 	int i;
1883 
1884 	if (h->chainsize <= 0)
1885 		return 0;
1886 
1887 	h->ioaccel2_cmd_sg_list =
1888 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1889 					GFP_KERNEL);
1890 	if (!h->ioaccel2_cmd_sg_list)
1891 		return -ENOMEM;
1892 	for (i = 0; i < h->nr_cmds; i++) {
1893 		h->ioaccel2_cmd_sg_list[i] =
1894 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1895 					h->maxsgentries, GFP_KERNEL);
1896 		if (!h->ioaccel2_cmd_sg_list[i])
1897 			goto clean;
1898 	}
1899 	return 0;
1900 
1901 clean:
1902 	hpsa_free_ioaccel2_sg_chain_blocks(h);
1903 	return -ENOMEM;
1904 }
1905 
1906 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1907 {
1908 	int i;
1909 
1910 	if (!h->cmd_sg_list)
1911 		return;
1912 	for (i = 0; i < h->nr_cmds; i++) {
1913 		kfree(h->cmd_sg_list[i]);
1914 		h->cmd_sg_list[i] = NULL;
1915 	}
1916 	kfree(h->cmd_sg_list);
1917 	h->cmd_sg_list = NULL;
1918 }
1919 
1920 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1921 {
1922 	int i;
1923 
1924 	if (h->chainsize <= 0)
1925 		return 0;
1926 
1927 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1928 				GFP_KERNEL);
1929 	if (!h->cmd_sg_list) {
1930 		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1931 		return -ENOMEM;
1932 	}
1933 	for (i = 0; i < h->nr_cmds; i++) {
1934 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1935 						h->chainsize, GFP_KERNEL);
1936 		if (!h->cmd_sg_list[i]) {
1937 			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1938 			goto clean;
1939 		}
1940 	}
1941 	return 0;
1942 
1943 clean:
1944 	hpsa_free_sg_chain_blocks(h);
1945 	return -ENOMEM;
1946 }
1947 
1948 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1949 	struct io_accel2_cmd *cp, struct CommandList *c)
1950 {
1951 	struct ioaccel2_sg_element *chain_block;
1952 	u64 temp64;
1953 	u32 chain_size;
1954 
1955 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1956 	chain_size = le32_to_cpu(cp->data_len);
1957 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1958 				PCI_DMA_TODEVICE);
1959 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1960 		/* prevent subsequent unmapping */
1961 		cp->sg->address = 0;
1962 		return -1;
1963 	}
1964 	cp->sg->address = cpu_to_le64(temp64);
1965 	return 0;
1966 }
1967 
1968 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1969 	struct io_accel2_cmd *cp)
1970 {
1971 	struct ioaccel2_sg_element *chain_sg;
1972 	u64 temp64;
1973 	u32 chain_size;
1974 
1975 	chain_sg = cp->sg;
1976 	temp64 = le64_to_cpu(chain_sg->address);
1977 	chain_size = le32_to_cpu(cp->data_len);
1978 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1979 }
1980 
1981 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1982 	struct CommandList *c)
1983 {
1984 	struct SGDescriptor *chain_sg, *chain_block;
1985 	u64 temp64;
1986 	u32 chain_len;
1987 
1988 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1989 	chain_block = h->cmd_sg_list[c->cmdindex];
1990 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1991 	chain_len = sizeof(*chain_sg) *
1992 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1993 	chain_sg->Len = cpu_to_le32(chain_len);
1994 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1995 				PCI_DMA_TODEVICE);
1996 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1997 		/* prevent subsequent unmapping */
1998 		chain_sg->Addr = cpu_to_le64(0);
1999 		return -1;
2000 	}
2001 	chain_sg->Addr = cpu_to_le64(temp64);
2002 	return 0;
2003 }
2004 
2005 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2006 	struct CommandList *c)
2007 {
2008 	struct SGDescriptor *chain_sg;
2009 
2010 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2011 		return;
2012 
2013 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2014 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2015 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2016 }
2017 
2018 
2019 /* Decode the various types of errors on ioaccel2 path.
2020  * Return 1 for any error that should generate a RAID path retry.
2021  * Return 0 for errors that don't require a RAID path retry.
2022  */
2023 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2024 					struct CommandList *c,
2025 					struct scsi_cmnd *cmd,
2026 					struct io_accel2_cmd *c2)
2027 {
2028 	int data_len;
2029 	int retry = 0;
2030 	u32 ioaccel2_resid = 0;
2031 
2032 	switch (c2->error_data.serv_response) {
2033 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2034 		switch (c2->error_data.status) {
2035 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2036 			break;
2037 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2038 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2039 			if (c2->error_data.data_present !=
2040 					IOACCEL2_SENSE_DATA_PRESENT) {
2041 				memset(cmd->sense_buffer, 0,
2042 					SCSI_SENSE_BUFFERSIZE);
2043 				break;
2044 			}
2045 			/* copy the sense data */
2046 			data_len = c2->error_data.sense_data_len;
2047 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2048 				data_len = SCSI_SENSE_BUFFERSIZE;
2049 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2050 				data_len =
2051 					sizeof(c2->error_data.sense_data_buff);
2052 			memcpy(cmd->sense_buffer,
2053 				c2->error_data.sense_data_buff, data_len);
2054 			retry = 1;
2055 			break;
2056 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2057 			retry = 1;
2058 			break;
2059 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2060 			retry = 1;
2061 			break;
2062 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2063 			retry = 1;
2064 			break;
2065 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2066 			retry = 1;
2067 			break;
2068 		default:
2069 			retry = 1;
2070 			break;
2071 		}
2072 		break;
2073 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2074 		switch (c2->error_data.status) {
2075 		case IOACCEL2_STATUS_SR_IO_ERROR:
2076 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2077 		case IOACCEL2_STATUS_SR_OVERRUN:
2078 			retry = 1;
2079 			break;
2080 		case IOACCEL2_STATUS_SR_UNDERRUN:
2081 			cmd->result = (DID_OK << 16);		/* host byte */
2082 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2083 			ioaccel2_resid = get_unaligned_le32(
2084 						&c2->error_data.resid_cnt[0]);
2085 			scsi_set_resid(cmd, ioaccel2_resid);
2086 			break;
2087 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2088 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2089 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2090 			/* We will get an event from ctlr to trigger rescan */
2091 			retry = 1;
2092 			break;
2093 		default:
2094 			retry = 1;
2095 		}
2096 		break;
2097 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2098 		break;
2099 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2100 		break;
2101 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2102 		retry = 1;
2103 		break;
2104 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2105 		break;
2106 	default:
2107 		retry = 1;
2108 		break;
2109 	}
2110 
2111 	return retry;	/* retry on raid path? */
2112 }
2113 
2114 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2115 		struct CommandList *c)
2116 {
2117 	bool do_wake = false;
2118 
2119 	/*
2120 	 * Prevent the following race in the abort handler:
2121 	 *
2122 	 * 1. LLD is requested to abort a SCSI command
2123 	 * 2. The SCSI command completes
2124 	 * 3. The struct CommandList associated with step 2 is made available
2125 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2126 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2127 	 *    finds struct CommandList and tries to aborts it
2128 	 * Now we have aborted the wrong command.
2129 	 *
2130 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2131 	 * this command has completed.  Then, check to see if the handler is
2132 	 * waiting for this command, and, if so, wake it.
2133 	 */
2134 	c->scsi_cmd = SCSI_CMD_IDLE;
2135 	mb();	/* Declare command idle before checking for pending events. */
2136 	if (c->abort_pending) {
2137 		do_wake = true;
2138 		c->abort_pending = false;
2139 	}
2140 	if (c->reset_pending) {
2141 		unsigned long flags;
2142 		struct hpsa_scsi_dev_t *dev;
2143 
2144 		/*
2145 		 * There appears to be a reset pending; lock the lock and
2146 		 * reconfirm.  If so, then decrement the count of outstanding
2147 		 * commands and wake the reset command if this is the last one.
2148 		 */
2149 		spin_lock_irqsave(&h->lock, flags);
2150 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2151 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2152 			do_wake = true;
2153 		c->reset_pending = NULL;
2154 		spin_unlock_irqrestore(&h->lock, flags);
2155 	}
2156 
2157 	if (do_wake)
2158 		wake_up_all(&h->event_sync_wait_queue);
2159 }
2160 
2161 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2162 				      struct CommandList *c)
2163 {
2164 	hpsa_cmd_resolve_events(h, c);
2165 	cmd_tagged_free(h, c);
2166 }
2167 
2168 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2169 		struct CommandList *c, struct scsi_cmnd *cmd)
2170 {
2171 	hpsa_cmd_resolve_and_free(h, c);
2172 	cmd->scsi_done(cmd);
2173 }
2174 
2175 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2176 {
2177 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2178 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2179 }
2180 
2181 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2182 {
2183 	cmd->result = DID_ABORT << 16;
2184 }
2185 
2186 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2187 				    struct scsi_cmnd *cmd)
2188 {
2189 	hpsa_set_scsi_cmd_aborted(cmd);
2190 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2191 			 c->Request.CDB, c->err_info->ScsiStatus);
2192 	hpsa_cmd_resolve_and_free(h, c);
2193 }
2194 
2195 static void process_ioaccel2_completion(struct ctlr_info *h,
2196 		struct CommandList *c, struct scsi_cmnd *cmd,
2197 		struct hpsa_scsi_dev_t *dev)
2198 {
2199 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2200 
2201 	/* check for good status */
2202 	if (likely(c2->error_data.serv_response == 0 &&
2203 			c2->error_data.status == 0))
2204 		return hpsa_cmd_free_and_done(h, c, cmd);
2205 
2206 	/*
2207 	 * Any RAID offload error results in retry which will use
2208 	 * the normal I/O path so the controller can handle whatever's
2209 	 * wrong.
2210 	 */
2211 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2212 		c2->error_data.serv_response ==
2213 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2214 		if (c2->error_data.status ==
2215 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2216 			dev->offload_enabled = 0;
2217 
2218 		return hpsa_retry_cmd(h, c);
2219 	}
2220 
2221 	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2222 		return hpsa_retry_cmd(h, c);
2223 
2224 	return hpsa_cmd_free_and_done(h, c, cmd);
2225 }
2226 
2227 /* Returns 0 on success, < 0 otherwise. */
2228 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2229 					struct CommandList *cp)
2230 {
2231 	u8 tmf_status = cp->err_info->ScsiStatus;
2232 
2233 	switch (tmf_status) {
2234 	case CISS_TMF_COMPLETE:
2235 		/*
2236 		 * CISS_TMF_COMPLETE never happens, instead,
2237 		 * ei->CommandStatus == 0 for this case.
2238 		 */
2239 	case CISS_TMF_SUCCESS:
2240 		return 0;
2241 	case CISS_TMF_INVALID_FRAME:
2242 	case CISS_TMF_NOT_SUPPORTED:
2243 	case CISS_TMF_FAILED:
2244 	case CISS_TMF_WRONG_LUN:
2245 	case CISS_TMF_OVERLAPPED_TAG:
2246 		break;
2247 	default:
2248 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2249 				tmf_status);
2250 		break;
2251 	}
2252 	return -tmf_status;
2253 }
2254 
2255 static void complete_scsi_command(struct CommandList *cp)
2256 {
2257 	struct scsi_cmnd *cmd;
2258 	struct ctlr_info *h;
2259 	struct ErrorInfo *ei;
2260 	struct hpsa_scsi_dev_t *dev;
2261 	struct io_accel2_cmd *c2;
2262 
2263 	u8 sense_key;
2264 	u8 asc;      /* additional sense code */
2265 	u8 ascq;     /* additional sense code qualifier */
2266 	unsigned long sense_data_size;
2267 
2268 	ei = cp->err_info;
2269 	cmd = cp->scsi_cmd;
2270 	h = cp->h;
2271 	dev = cmd->device->hostdata;
2272 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2273 
2274 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2275 	if ((cp->cmd_type == CMD_SCSI) &&
2276 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2277 		hpsa_unmap_sg_chain_block(h, cp);
2278 
2279 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2280 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2281 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2282 
2283 	cmd->result = (DID_OK << 16); 		/* host byte */
2284 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2285 
2286 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2287 		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2288 
2289 	/*
2290 	 * We check for lockup status here as it may be set for
2291 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2292 	 * fail_all_oustanding_cmds()
2293 	 */
2294 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2295 		/* DID_NO_CONNECT will prevent a retry */
2296 		cmd->result = DID_NO_CONNECT << 16;
2297 		return hpsa_cmd_free_and_done(h, cp, cmd);
2298 	}
2299 
2300 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2301 		if (cp->reset_pending)
2302 			return hpsa_cmd_resolve_and_free(h, cp);
2303 		if (cp->abort_pending)
2304 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2305 	}
2306 
2307 	if (cp->cmd_type == CMD_IOACCEL2)
2308 		return process_ioaccel2_completion(h, cp, cmd, dev);
2309 
2310 	scsi_set_resid(cmd, ei->ResidualCnt);
2311 	if (ei->CommandStatus == 0)
2312 		return hpsa_cmd_free_and_done(h, cp, cmd);
2313 
2314 	/* For I/O accelerator commands, copy over some fields to the normal
2315 	 * CISS header used below for error handling.
2316 	 */
2317 	if (cp->cmd_type == CMD_IOACCEL1) {
2318 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2319 		cp->Header.SGList = scsi_sg_count(cmd);
2320 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2321 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2322 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2323 		cp->Header.tag = c->tag;
2324 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2325 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2326 
2327 		/* Any RAID offload error results in retry which will use
2328 		 * the normal I/O path so the controller can handle whatever's
2329 		 * wrong.
2330 		 */
2331 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2332 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2333 				dev->offload_enabled = 0;
2334 			return hpsa_retry_cmd(h, cp);
2335 		}
2336 	}
2337 
2338 	/* an error has occurred */
2339 	switch (ei->CommandStatus) {
2340 
2341 	case CMD_TARGET_STATUS:
2342 		cmd->result |= ei->ScsiStatus;
2343 		/* copy the sense data */
2344 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2345 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2346 		else
2347 			sense_data_size = sizeof(ei->SenseInfo);
2348 		if (ei->SenseLen < sense_data_size)
2349 			sense_data_size = ei->SenseLen;
2350 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2351 		if (ei->ScsiStatus)
2352 			decode_sense_data(ei->SenseInfo, sense_data_size,
2353 				&sense_key, &asc, &ascq);
2354 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2355 			if (sense_key == ABORTED_COMMAND) {
2356 				cmd->result |= DID_SOFT_ERROR << 16;
2357 				break;
2358 			}
2359 			break;
2360 		}
2361 		/* Problem was not a check condition
2362 		 * Pass it up to the upper layers...
2363 		 */
2364 		if (ei->ScsiStatus) {
2365 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2366 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2367 				"Returning result: 0x%x\n",
2368 				cp, ei->ScsiStatus,
2369 				sense_key, asc, ascq,
2370 				cmd->result);
2371 		} else {  /* scsi status is zero??? How??? */
2372 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2373 				"Returning no connection.\n", cp),
2374 
2375 			/* Ordinarily, this case should never happen,
2376 			 * but there is a bug in some released firmware
2377 			 * revisions that allows it to happen if, for
2378 			 * example, a 4100 backplane loses power and
2379 			 * the tape drive is in it.  We assume that
2380 			 * it's a fatal error of some kind because we
2381 			 * can't show that it wasn't. We will make it
2382 			 * look like selection timeout since that is
2383 			 * the most common reason for this to occur,
2384 			 * and it's severe enough.
2385 			 */
2386 
2387 			cmd->result = DID_NO_CONNECT << 16;
2388 		}
2389 		break;
2390 
2391 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2392 		break;
2393 	case CMD_DATA_OVERRUN:
2394 		dev_warn(&h->pdev->dev,
2395 			"CDB %16phN data overrun\n", cp->Request.CDB);
2396 		break;
2397 	case CMD_INVALID: {
2398 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2399 		print_cmd(cp); */
2400 		/* We get CMD_INVALID if you address a non-existent device
2401 		 * instead of a selection timeout (no response).  You will
2402 		 * see this if you yank out a drive, then try to access it.
2403 		 * This is kind of a shame because it means that any other
2404 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2405 		 * missing target. */
2406 		cmd->result = DID_NO_CONNECT << 16;
2407 	}
2408 		break;
2409 	case CMD_PROTOCOL_ERR:
2410 		cmd->result = DID_ERROR << 16;
2411 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2412 				cp->Request.CDB);
2413 		break;
2414 	case CMD_HARDWARE_ERR:
2415 		cmd->result = DID_ERROR << 16;
2416 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2417 			cp->Request.CDB);
2418 		break;
2419 	case CMD_CONNECTION_LOST:
2420 		cmd->result = DID_ERROR << 16;
2421 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2422 			cp->Request.CDB);
2423 		break;
2424 	case CMD_ABORTED:
2425 		/* Return now to avoid calling scsi_done(). */
2426 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2427 	case CMD_ABORT_FAILED:
2428 		cmd->result = DID_ERROR << 16;
2429 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2430 			cp->Request.CDB);
2431 		break;
2432 	case CMD_UNSOLICITED_ABORT:
2433 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2434 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2435 			cp->Request.CDB);
2436 		break;
2437 	case CMD_TIMEOUT:
2438 		cmd->result = DID_TIME_OUT << 16;
2439 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2440 			cp->Request.CDB);
2441 		break;
2442 	case CMD_UNABORTABLE:
2443 		cmd->result = DID_ERROR << 16;
2444 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2445 		break;
2446 	case CMD_TMF_STATUS:
2447 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2448 			cmd->result = DID_ERROR << 16;
2449 		break;
2450 	case CMD_IOACCEL_DISABLED:
2451 		/* This only handles the direct pass-through case since RAID
2452 		 * offload is handled above.  Just attempt a retry.
2453 		 */
2454 		cmd->result = DID_SOFT_ERROR << 16;
2455 		dev_warn(&h->pdev->dev,
2456 				"cp %p had HP SSD Smart Path error\n", cp);
2457 		break;
2458 	default:
2459 		cmd->result = DID_ERROR << 16;
2460 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2461 				cp, ei->CommandStatus);
2462 	}
2463 
2464 	return hpsa_cmd_free_and_done(h, cp, cmd);
2465 }
2466 
2467 static void hpsa_pci_unmap(struct pci_dev *pdev,
2468 	struct CommandList *c, int sg_used, int data_direction)
2469 {
2470 	int i;
2471 
2472 	for (i = 0; i < sg_used; i++)
2473 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2474 				le32_to_cpu(c->SG[i].Len),
2475 				data_direction);
2476 }
2477 
2478 static int hpsa_map_one(struct pci_dev *pdev,
2479 		struct CommandList *cp,
2480 		unsigned char *buf,
2481 		size_t buflen,
2482 		int data_direction)
2483 {
2484 	u64 addr64;
2485 
2486 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2487 		cp->Header.SGList = 0;
2488 		cp->Header.SGTotal = cpu_to_le16(0);
2489 		return 0;
2490 	}
2491 
2492 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2493 	if (dma_mapping_error(&pdev->dev, addr64)) {
2494 		/* Prevent subsequent unmap of something never mapped */
2495 		cp->Header.SGList = 0;
2496 		cp->Header.SGTotal = cpu_to_le16(0);
2497 		return -1;
2498 	}
2499 	cp->SG[0].Addr = cpu_to_le64(addr64);
2500 	cp->SG[0].Len = cpu_to_le32(buflen);
2501 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2502 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2503 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2504 	return 0;
2505 }
2506 
2507 #define NO_TIMEOUT ((unsigned long) -1)
2508 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2509 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2510 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2511 {
2512 	DECLARE_COMPLETION_ONSTACK(wait);
2513 
2514 	c->waiting = &wait;
2515 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2516 	if (timeout_msecs == NO_TIMEOUT) {
2517 		/* TODO: get rid of this no-timeout thing */
2518 		wait_for_completion_io(&wait);
2519 		return IO_OK;
2520 	}
2521 	if (!wait_for_completion_io_timeout(&wait,
2522 					msecs_to_jiffies(timeout_msecs))) {
2523 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2524 		return -ETIMEDOUT;
2525 	}
2526 	return IO_OK;
2527 }
2528 
2529 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2530 				   int reply_queue, unsigned long timeout_msecs)
2531 {
2532 	if (unlikely(lockup_detected(h))) {
2533 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2534 		return IO_OK;
2535 	}
2536 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2537 }
2538 
2539 static u32 lockup_detected(struct ctlr_info *h)
2540 {
2541 	int cpu;
2542 	u32 rc, *lockup_detected;
2543 
2544 	cpu = get_cpu();
2545 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2546 	rc = *lockup_detected;
2547 	put_cpu();
2548 	return rc;
2549 }
2550 
2551 #define MAX_DRIVER_CMD_RETRIES 25
2552 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2553 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2554 {
2555 	int backoff_time = 10, retry_count = 0;
2556 	int rc;
2557 
2558 	do {
2559 		memset(c->err_info, 0, sizeof(*c->err_info));
2560 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2561 						  timeout_msecs);
2562 		if (rc)
2563 			break;
2564 		retry_count++;
2565 		if (retry_count > 3) {
2566 			msleep(backoff_time);
2567 			if (backoff_time < 1000)
2568 				backoff_time *= 2;
2569 		}
2570 	} while ((check_for_unit_attention(h, c) ||
2571 			check_for_busy(h, c)) &&
2572 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2573 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2574 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2575 		rc = -EIO;
2576 	return rc;
2577 }
2578 
2579 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2580 				struct CommandList *c)
2581 {
2582 	const u8 *cdb = c->Request.CDB;
2583 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2584 
2585 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2586 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2587 		txt, lun[0], lun[1], lun[2], lun[3],
2588 		lun[4], lun[5], lun[6], lun[7],
2589 		cdb[0], cdb[1], cdb[2], cdb[3],
2590 		cdb[4], cdb[5], cdb[6], cdb[7],
2591 		cdb[8], cdb[9], cdb[10], cdb[11],
2592 		cdb[12], cdb[13], cdb[14], cdb[15]);
2593 }
2594 
2595 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2596 			struct CommandList *cp)
2597 {
2598 	const struct ErrorInfo *ei = cp->err_info;
2599 	struct device *d = &cp->h->pdev->dev;
2600 	u8 sense_key, asc, ascq;
2601 	int sense_len;
2602 
2603 	switch (ei->CommandStatus) {
2604 	case CMD_TARGET_STATUS:
2605 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2606 			sense_len = sizeof(ei->SenseInfo);
2607 		else
2608 			sense_len = ei->SenseLen;
2609 		decode_sense_data(ei->SenseInfo, sense_len,
2610 					&sense_key, &asc, &ascq);
2611 		hpsa_print_cmd(h, "SCSI status", cp);
2612 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2613 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2614 				sense_key, asc, ascq);
2615 		else
2616 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2617 		if (ei->ScsiStatus == 0)
2618 			dev_warn(d, "SCSI status is abnormally zero.  "
2619 			"(probably indicates selection timeout "
2620 			"reported incorrectly due to a known "
2621 			"firmware bug, circa July, 2001.)\n");
2622 		break;
2623 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2624 		break;
2625 	case CMD_DATA_OVERRUN:
2626 		hpsa_print_cmd(h, "overrun condition", cp);
2627 		break;
2628 	case CMD_INVALID: {
2629 		/* controller unfortunately reports SCSI passthru's
2630 		 * to non-existent targets as invalid commands.
2631 		 */
2632 		hpsa_print_cmd(h, "invalid command", cp);
2633 		dev_warn(d, "probably means device no longer present\n");
2634 		}
2635 		break;
2636 	case CMD_PROTOCOL_ERR:
2637 		hpsa_print_cmd(h, "protocol error", cp);
2638 		break;
2639 	case CMD_HARDWARE_ERR:
2640 		hpsa_print_cmd(h, "hardware error", cp);
2641 		break;
2642 	case CMD_CONNECTION_LOST:
2643 		hpsa_print_cmd(h, "connection lost", cp);
2644 		break;
2645 	case CMD_ABORTED:
2646 		hpsa_print_cmd(h, "aborted", cp);
2647 		break;
2648 	case CMD_ABORT_FAILED:
2649 		hpsa_print_cmd(h, "abort failed", cp);
2650 		break;
2651 	case CMD_UNSOLICITED_ABORT:
2652 		hpsa_print_cmd(h, "unsolicited abort", cp);
2653 		break;
2654 	case CMD_TIMEOUT:
2655 		hpsa_print_cmd(h, "timed out", cp);
2656 		break;
2657 	case CMD_UNABORTABLE:
2658 		hpsa_print_cmd(h, "unabortable", cp);
2659 		break;
2660 	case CMD_CTLR_LOCKUP:
2661 		hpsa_print_cmd(h, "controller lockup detected", cp);
2662 		break;
2663 	default:
2664 		hpsa_print_cmd(h, "unknown status", cp);
2665 		dev_warn(d, "Unknown command status %x\n",
2666 				ei->CommandStatus);
2667 	}
2668 }
2669 
2670 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2671 			u16 page, unsigned char *buf,
2672 			unsigned char bufsize)
2673 {
2674 	int rc = IO_OK;
2675 	struct CommandList *c;
2676 	struct ErrorInfo *ei;
2677 
2678 	c = cmd_alloc(h);
2679 
2680 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2681 			page, scsi3addr, TYPE_CMD)) {
2682 		rc = -1;
2683 		goto out;
2684 	}
2685 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2686 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2687 	if (rc)
2688 		goto out;
2689 	ei = c->err_info;
2690 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2691 		hpsa_scsi_interpret_error(h, c);
2692 		rc = -1;
2693 	}
2694 out:
2695 	cmd_free(h, c);
2696 	return rc;
2697 }
2698 
2699 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2700 	u8 reset_type, int reply_queue)
2701 {
2702 	int rc = IO_OK;
2703 	struct CommandList *c;
2704 	struct ErrorInfo *ei;
2705 
2706 	c = cmd_alloc(h);
2707 
2708 
2709 	/* fill_cmd can't fail here, no data buffer to map. */
2710 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2711 			scsi3addr, TYPE_MSG);
2712 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2713 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2714 	if (rc) {
2715 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2716 		goto out;
2717 	}
2718 	/* no unmap needed here because no data xfer. */
2719 
2720 	ei = c->err_info;
2721 	if (ei->CommandStatus != 0) {
2722 		hpsa_scsi_interpret_error(h, c);
2723 		rc = -1;
2724 	}
2725 out:
2726 	cmd_free(h, c);
2727 	return rc;
2728 }
2729 
2730 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2731 			       struct hpsa_scsi_dev_t *dev,
2732 			       unsigned char *scsi3addr)
2733 {
2734 	int i;
2735 	bool match = false;
2736 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2737 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2738 
2739 	if (hpsa_is_cmd_idle(c))
2740 		return false;
2741 
2742 	switch (c->cmd_type) {
2743 	case CMD_SCSI:
2744 	case CMD_IOCTL_PEND:
2745 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2746 				sizeof(c->Header.LUN.LunAddrBytes));
2747 		break;
2748 
2749 	case CMD_IOACCEL1:
2750 	case CMD_IOACCEL2:
2751 		if (c->phys_disk == dev) {
2752 			/* HBA mode match */
2753 			match = true;
2754 		} else {
2755 			/* Possible RAID mode -- check each phys dev. */
2756 			/* FIXME:  Do we need to take out a lock here?  If
2757 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2758 			 * instead. */
2759 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
2760 				/* FIXME: an alternate test might be
2761 				 *
2762 				 * match = dev->phys_disk[i]->ioaccel_handle
2763 				 *              == c2->scsi_nexus;      */
2764 				match = dev->phys_disk[i] == c->phys_disk;
2765 			}
2766 		}
2767 		break;
2768 
2769 	case IOACCEL2_TMF:
2770 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
2771 			match = dev->phys_disk[i]->ioaccel_handle ==
2772 					le32_to_cpu(ac->it_nexus);
2773 		}
2774 		break;
2775 
2776 	case 0:		/* The command is in the middle of being initialized. */
2777 		match = false;
2778 		break;
2779 
2780 	default:
2781 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2782 			c->cmd_type);
2783 		BUG();
2784 	}
2785 
2786 	return match;
2787 }
2788 
2789 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2790 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2791 {
2792 	int i;
2793 	int rc = 0;
2794 
2795 	/* We can really only handle one reset at a time */
2796 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2797 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2798 		return -EINTR;
2799 	}
2800 
2801 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2802 
2803 	for (i = 0; i < h->nr_cmds; i++) {
2804 		struct CommandList *c = h->cmd_pool + i;
2805 		int refcount = atomic_inc_return(&c->refcount);
2806 
2807 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2808 			unsigned long flags;
2809 
2810 			/*
2811 			 * Mark the target command as having a reset pending,
2812 			 * then lock a lock so that the command cannot complete
2813 			 * while we're considering it.  If the command is not
2814 			 * idle then count it; otherwise revoke the event.
2815 			 */
2816 			c->reset_pending = dev;
2817 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
2818 			if (!hpsa_is_cmd_idle(c))
2819 				atomic_inc(&dev->reset_cmds_out);
2820 			else
2821 				c->reset_pending = NULL;
2822 			spin_unlock_irqrestore(&h->lock, flags);
2823 		}
2824 
2825 		cmd_free(h, c);
2826 	}
2827 
2828 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2829 	if (!rc)
2830 		wait_event(h->event_sync_wait_queue,
2831 			atomic_read(&dev->reset_cmds_out) == 0 ||
2832 			lockup_detected(h));
2833 
2834 	if (unlikely(lockup_detected(h))) {
2835 		dev_warn(&h->pdev->dev,
2836 			 "Controller lockup detected during reset wait\n");
2837 		rc = -ENODEV;
2838 	}
2839 
2840 	if (unlikely(rc))
2841 		atomic_set(&dev->reset_cmds_out, 0);
2842 
2843 	mutex_unlock(&h->reset_mutex);
2844 	return rc;
2845 }
2846 
2847 static void hpsa_get_raid_level(struct ctlr_info *h,
2848 	unsigned char *scsi3addr, unsigned char *raid_level)
2849 {
2850 	int rc;
2851 	unsigned char *buf;
2852 
2853 	*raid_level = RAID_UNKNOWN;
2854 	buf = kzalloc(64, GFP_KERNEL);
2855 	if (!buf)
2856 		return;
2857 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2858 	if (rc == 0)
2859 		*raid_level = buf[8];
2860 	if (*raid_level > RAID_UNKNOWN)
2861 		*raid_level = RAID_UNKNOWN;
2862 	kfree(buf);
2863 	return;
2864 }
2865 
2866 #define HPSA_MAP_DEBUG
2867 #ifdef HPSA_MAP_DEBUG
2868 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2869 				struct raid_map_data *map_buff)
2870 {
2871 	struct raid_map_disk_data *dd = &map_buff->data[0];
2872 	int map, row, col;
2873 	u16 map_cnt, row_cnt, disks_per_row;
2874 
2875 	if (rc != 0)
2876 		return;
2877 
2878 	/* Show details only if debugging has been activated. */
2879 	if (h->raid_offload_debug < 2)
2880 		return;
2881 
2882 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2883 				le32_to_cpu(map_buff->structure_size));
2884 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2885 			le32_to_cpu(map_buff->volume_blk_size));
2886 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2887 			le64_to_cpu(map_buff->volume_blk_cnt));
2888 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2889 			map_buff->phys_blk_shift);
2890 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2891 			map_buff->parity_rotation_shift);
2892 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2893 			le16_to_cpu(map_buff->strip_size));
2894 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2895 			le64_to_cpu(map_buff->disk_starting_blk));
2896 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2897 			le64_to_cpu(map_buff->disk_blk_cnt));
2898 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2899 			le16_to_cpu(map_buff->data_disks_per_row));
2900 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2901 			le16_to_cpu(map_buff->metadata_disks_per_row));
2902 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2903 			le16_to_cpu(map_buff->row_cnt));
2904 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2905 			le16_to_cpu(map_buff->layout_map_count));
2906 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2907 			le16_to_cpu(map_buff->flags));
2908 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
2909 			le16_to_cpu(map_buff->flags) &
2910 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2911 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2912 			le16_to_cpu(map_buff->dekindex));
2913 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2914 	for (map = 0; map < map_cnt; map++) {
2915 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2916 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2917 		for (row = 0; row < row_cnt; row++) {
2918 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2919 			disks_per_row =
2920 				le16_to_cpu(map_buff->data_disks_per_row);
2921 			for (col = 0; col < disks_per_row; col++, dd++)
2922 				dev_info(&h->pdev->dev,
2923 					"    D%02u: h=0x%04x xor=%u,%u\n",
2924 					col, dd->ioaccel_handle,
2925 					dd->xor_mult[0], dd->xor_mult[1]);
2926 			disks_per_row =
2927 				le16_to_cpu(map_buff->metadata_disks_per_row);
2928 			for (col = 0; col < disks_per_row; col++, dd++)
2929 				dev_info(&h->pdev->dev,
2930 					"    M%02u: h=0x%04x xor=%u,%u\n",
2931 					col, dd->ioaccel_handle,
2932 					dd->xor_mult[0], dd->xor_mult[1]);
2933 		}
2934 	}
2935 }
2936 #else
2937 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2938 			__attribute__((unused)) int rc,
2939 			__attribute__((unused)) struct raid_map_data *map_buff)
2940 {
2941 }
2942 #endif
2943 
2944 static int hpsa_get_raid_map(struct ctlr_info *h,
2945 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2946 {
2947 	int rc = 0;
2948 	struct CommandList *c;
2949 	struct ErrorInfo *ei;
2950 
2951 	c = cmd_alloc(h);
2952 
2953 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2954 			sizeof(this_device->raid_map), 0,
2955 			scsi3addr, TYPE_CMD)) {
2956 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2957 		cmd_free(h, c);
2958 		return -1;
2959 	}
2960 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2961 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2962 	if (rc)
2963 		goto out;
2964 	ei = c->err_info;
2965 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2966 		hpsa_scsi_interpret_error(h, c);
2967 		rc = -1;
2968 		goto out;
2969 	}
2970 	cmd_free(h, c);
2971 
2972 	/* @todo in the future, dynamically allocate RAID map memory */
2973 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2974 				sizeof(this_device->raid_map)) {
2975 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2976 		rc = -1;
2977 	}
2978 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2979 	return rc;
2980 out:
2981 	cmd_free(h, c);
2982 	return rc;
2983 }
2984 
2985 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2986 		unsigned char scsi3addr[], u16 bmic_device_index,
2987 		struct bmic_identify_physical_device *buf, size_t bufsize)
2988 {
2989 	int rc = IO_OK;
2990 	struct CommandList *c;
2991 	struct ErrorInfo *ei;
2992 
2993 	c = cmd_alloc(h);
2994 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2995 		0, RAID_CTLR_LUNID, TYPE_CMD);
2996 	if (rc)
2997 		goto out;
2998 
2999 	c->Request.CDB[2] = bmic_device_index & 0xff;
3000 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3001 
3002 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3003 						NO_TIMEOUT);
3004 	ei = c->err_info;
3005 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3006 		hpsa_scsi_interpret_error(h, c);
3007 		rc = -1;
3008 	}
3009 out:
3010 	cmd_free(h, c);
3011 	return rc;
3012 }
3013 
3014 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3015 	unsigned char scsi3addr[], u8 page)
3016 {
3017 	int rc;
3018 	int i;
3019 	int pages;
3020 	unsigned char *buf, bufsize;
3021 
3022 	buf = kzalloc(256, GFP_KERNEL);
3023 	if (!buf)
3024 		return 0;
3025 
3026 	/* Get the size of the page list first */
3027 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3028 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3029 				buf, HPSA_VPD_HEADER_SZ);
3030 	if (rc != 0)
3031 		goto exit_unsupported;
3032 	pages = buf[3];
3033 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3034 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3035 	else
3036 		bufsize = 255;
3037 
3038 	/* Get the whole VPD page list */
3039 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3040 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3041 				buf, bufsize);
3042 	if (rc != 0)
3043 		goto exit_unsupported;
3044 
3045 	pages = buf[3];
3046 	for (i = 1; i <= pages; i++)
3047 		if (buf[3 + i] == page)
3048 			goto exit_supported;
3049 exit_unsupported:
3050 	kfree(buf);
3051 	return 0;
3052 exit_supported:
3053 	kfree(buf);
3054 	return 1;
3055 }
3056 
3057 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3058 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3059 {
3060 	int rc;
3061 	unsigned char *buf;
3062 	u8 ioaccel_status;
3063 
3064 	this_device->offload_config = 0;
3065 	this_device->offload_enabled = 0;
3066 	this_device->offload_to_be_enabled = 0;
3067 
3068 	buf = kzalloc(64, GFP_KERNEL);
3069 	if (!buf)
3070 		return;
3071 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3072 		goto out;
3073 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3074 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3075 	if (rc != 0)
3076 		goto out;
3077 
3078 #define IOACCEL_STATUS_BYTE 4
3079 #define OFFLOAD_CONFIGURED_BIT 0x01
3080 #define OFFLOAD_ENABLED_BIT 0x02
3081 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3082 	this_device->offload_config =
3083 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3084 	if (this_device->offload_config) {
3085 		this_device->offload_enabled =
3086 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3087 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3088 			this_device->offload_enabled = 0;
3089 	}
3090 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3091 out:
3092 	kfree(buf);
3093 	return;
3094 }
3095 
3096 /* Get the device id from inquiry page 0x83 */
3097 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3098 	unsigned char *device_id, int buflen)
3099 {
3100 	int rc;
3101 	unsigned char *buf;
3102 
3103 	if (buflen > 16)
3104 		buflen = 16;
3105 	buf = kzalloc(64, GFP_KERNEL);
3106 	if (!buf)
3107 		return -ENOMEM;
3108 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3109 	if (rc == 0)
3110 		memcpy(device_id, &buf[8], buflen);
3111 	kfree(buf);
3112 	return rc != 0;
3113 }
3114 
3115 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3116 		void *buf, int bufsize,
3117 		int extended_response)
3118 {
3119 	int rc = IO_OK;
3120 	struct CommandList *c;
3121 	unsigned char scsi3addr[8];
3122 	struct ErrorInfo *ei;
3123 
3124 	c = cmd_alloc(h);
3125 
3126 	/* address the controller */
3127 	memset(scsi3addr, 0, sizeof(scsi3addr));
3128 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3129 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3130 		rc = -1;
3131 		goto out;
3132 	}
3133 	if (extended_response)
3134 		c->Request.CDB[1] = extended_response;
3135 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3136 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3137 	if (rc)
3138 		goto out;
3139 	ei = c->err_info;
3140 	if (ei->CommandStatus != 0 &&
3141 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3142 		hpsa_scsi_interpret_error(h, c);
3143 		rc = -1;
3144 	} else {
3145 		struct ReportLUNdata *rld = buf;
3146 
3147 		if (rld->extended_response_flag != extended_response) {
3148 			dev_err(&h->pdev->dev,
3149 				"report luns requested format %u, got %u\n",
3150 				extended_response,
3151 				rld->extended_response_flag);
3152 			rc = -1;
3153 		}
3154 	}
3155 out:
3156 	cmd_free(h, c);
3157 	return rc;
3158 }
3159 
3160 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3161 		struct ReportExtendedLUNdata *buf, int bufsize)
3162 {
3163 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3164 						HPSA_REPORT_PHYS_EXTENDED);
3165 }
3166 
3167 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3168 		struct ReportLUNdata *buf, int bufsize)
3169 {
3170 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3171 }
3172 
3173 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3174 	int bus, int target, int lun)
3175 {
3176 	device->bus = bus;
3177 	device->target = target;
3178 	device->lun = lun;
3179 }
3180 
3181 /* Use VPD inquiry to get details of volume status */
3182 static int hpsa_get_volume_status(struct ctlr_info *h,
3183 					unsigned char scsi3addr[])
3184 {
3185 	int rc;
3186 	int status;
3187 	int size;
3188 	unsigned char *buf;
3189 
3190 	buf = kzalloc(64, GFP_KERNEL);
3191 	if (!buf)
3192 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3193 
3194 	/* Does controller have VPD for logical volume status? */
3195 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3196 		goto exit_failed;
3197 
3198 	/* Get the size of the VPD return buffer */
3199 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3200 					buf, HPSA_VPD_HEADER_SZ);
3201 	if (rc != 0)
3202 		goto exit_failed;
3203 	size = buf[3];
3204 
3205 	/* Now get the whole VPD buffer */
3206 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3207 					buf, size + HPSA_VPD_HEADER_SZ);
3208 	if (rc != 0)
3209 		goto exit_failed;
3210 	status = buf[4]; /* status byte */
3211 
3212 	kfree(buf);
3213 	return status;
3214 exit_failed:
3215 	kfree(buf);
3216 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3217 }
3218 
3219 /* Determine offline status of a volume.
3220  * Return either:
3221  *  0 (not offline)
3222  *  0xff (offline for unknown reasons)
3223  *  # (integer code indicating one of several NOT READY states
3224  *     describing why a volume is to be kept offline)
3225  */
3226 static int hpsa_volume_offline(struct ctlr_info *h,
3227 					unsigned char scsi3addr[])
3228 {
3229 	struct CommandList *c;
3230 	unsigned char *sense;
3231 	u8 sense_key, asc, ascq;
3232 	int sense_len;
3233 	int rc, ldstat = 0;
3234 	u16 cmd_status;
3235 	u8 scsi_status;
3236 #define ASC_LUN_NOT_READY 0x04
3237 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3238 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3239 
3240 	c = cmd_alloc(h);
3241 
3242 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3243 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3244 	if (rc) {
3245 		cmd_free(h, c);
3246 		return 0;
3247 	}
3248 	sense = c->err_info->SenseInfo;
3249 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3250 		sense_len = sizeof(c->err_info->SenseInfo);
3251 	else
3252 		sense_len = c->err_info->SenseLen;
3253 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3254 	cmd_status = c->err_info->CommandStatus;
3255 	scsi_status = c->err_info->ScsiStatus;
3256 	cmd_free(h, c);
3257 	/* Is the volume 'not ready'? */
3258 	if (cmd_status != CMD_TARGET_STATUS ||
3259 		scsi_status != SAM_STAT_CHECK_CONDITION ||
3260 		sense_key != NOT_READY ||
3261 		asc != ASC_LUN_NOT_READY)  {
3262 		return 0;
3263 	}
3264 
3265 	/* Determine the reason for not ready state */
3266 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3267 
3268 	/* Keep volume offline in certain cases: */
3269 	switch (ldstat) {
3270 	case HPSA_LV_UNDERGOING_ERASE:
3271 	case HPSA_LV_NOT_AVAILABLE:
3272 	case HPSA_LV_UNDERGOING_RPI:
3273 	case HPSA_LV_PENDING_RPI:
3274 	case HPSA_LV_ENCRYPTED_NO_KEY:
3275 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3276 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3277 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3278 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3279 		return ldstat;
3280 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3281 		/* If VPD status page isn't available,
3282 		 * use ASC/ASCQ to determine state
3283 		 */
3284 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3285 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3286 			return ldstat;
3287 		break;
3288 	default:
3289 		break;
3290 	}
3291 	return 0;
3292 }
3293 
3294 /*
3295  * Find out if a logical device supports aborts by simply trying one.
3296  * Smart Array may claim not to support aborts on logical drives, but
3297  * if a MSA2000 * is connected, the drives on that will be presented
3298  * by the Smart Array as logical drives, and aborts may be sent to
3299  * those devices successfully.  So the simplest way to find out is
3300  * to simply try an abort and see how the device responds.
3301  */
3302 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3303 					unsigned char *scsi3addr)
3304 {
3305 	struct CommandList *c;
3306 	struct ErrorInfo *ei;
3307 	int rc = 0;
3308 
3309 	u64 tag = (u64) -1; /* bogus tag */
3310 
3311 	/* Assume that physical devices support aborts */
3312 	if (!is_logical_dev_addr_mode(scsi3addr))
3313 		return 1;
3314 
3315 	c = cmd_alloc(h);
3316 
3317 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3318 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3319 	/* no unmap needed here because no data xfer. */
3320 	ei = c->err_info;
3321 	switch (ei->CommandStatus) {
3322 	case CMD_INVALID:
3323 		rc = 0;
3324 		break;
3325 	case CMD_UNABORTABLE:
3326 	case CMD_ABORT_FAILED:
3327 		rc = 1;
3328 		break;
3329 	case CMD_TMF_STATUS:
3330 		rc = hpsa_evaluate_tmf_status(h, c);
3331 		break;
3332 	default:
3333 		rc = 0;
3334 		break;
3335 	}
3336 	cmd_free(h, c);
3337 	return rc;
3338 }
3339 
3340 static int hpsa_update_device_info(struct ctlr_info *h,
3341 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3342 	unsigned char *is_OBDR_device)
3343 {
3344 
3345 #define OBDR_SIG_OFFSET 43
3346 #define OBDR_TAPE_SIG "$DR-10"
3347 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3348 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3349 
3350 	unsigned char *inq_buff;
3351 	unsigned char *obdr_sig;
3352 
3353 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3354 	if (!inq_buff)
3355 		goto bail_out;
3356 
3357 	/* Do an inquiry to the device to see what it is. */
3358 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3359 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3360 		/* Inquiry failed (msg printed already) */
3361 		dev_err(&h->pdev->dev,
3362 			"hpsa_update_device_info: inquiry failed\n");
3363 		goto bail_out;
3364 	}
3365 
3366 	this_device->devtype = (inq_buff[0] & 0x1f);
3367 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3368 	memcpy(this_device->vendor, &inq_buff[8],
3369 		sizeof(this_device->vendor));
3370 	memcpy(this_device->model, &inq_buff[16],
3371 		sizeof(this_device->model));
3372 	memset(this_device->device_id, 0,
3373 		sizeof(this_device->device_id));
3374 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3375 		sizeof(this_device->device_id));
3376 
3377 	if (this_device->devtype == TYPE_DISK &&
3378 		is_logical_dev_addr_mode(scsi3addr)) {
3379 		int volume_offline;
3380 
3381 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3382 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3383 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3384 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3385 		if (volume_offline < 0 || volume_offline > 0xff)
3386 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3387 		this_device->volume_offline = volume_offline & 0xff;
3388 	} else {
3389 		this_device->raid_level = RAID_UNKNOWN;
3390 		this_device->offload_config = 0;
3391 		this_device->offload_enabled = 0;
3392 		this_device->offload_to_be_enabled = 0;
3393 		this_device->hba_ioaccel_enabled = 0;
3394 		this_device->volume_offline = 0;
3395 		this_device->queue_depth = h->nr_cmds;
3396 	}
3397 
3398 	if (is_OBDR_device) {
3399 		/* See if this is a One-Button-Disaster-Recovery device
3400 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3401 		 */
3402 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3403 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3404 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3405 						OBDR_SIG_LEN) == 0);
3406 	}
3407 	kfree(inq_buff);
3408 	return 0;
3409 
3410 bail_out:
3411 	kfree(inq_buff);
3412 	return 1;
3413 }
3414 
3415 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3416 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3417 {
3418 	unsigned long flags;
3419 	int rc, entry;
3420 	/*
3421 	 * See if this device supports aborts.  If we already know
3422 	 * the device, we already know if it supports aborts, otherwise
3423 	 * we have to find out if it supports aborts by trying one.
3424 	 */
3425 	spin_lock_irqsave(&h->devlock, flags);
3426 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3427 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3428 		entry >= 0 && entry < h->ndevices) {
3429 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3430 		spin_unlock_irqrestore(&h->devlock, flags);
3431 	} else {
3432 		spin_unlock_irqrestore(&h->devlock, flags);
3433 		dev->supports_aborts =
3434 				hpsa_device_supports_aborts(h, scsi3addr);
3435 		if (dev->supports_aborts < 0)
3436 			dev->supports_aborts = 0;
3437 	}
3438 }
3439 
3440 static unsigned char *ext_target_model[] = {
3441 	"MSA2012",
3442 	"MSA2024",
3443 	"MSA2312",
3444 	"MSA2324",
3445 	"P2000 G3 SAS",
3446 	"MSA 2040 SAS",
3447 	NULL,
3448 };
3449 
3450 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3451 {
3452 	int i;
3453 
3454 	for (i = 0; ext_target_model[i]; i++)
3455 		if (strncmp(device->model, ext_target_model[i],
3456 			strlen(ext_target_model[i])) == 0)
3457 			return 1;
3458 	return 0;
3459 }
3460 
3461 /* Helper function to assign bus, target, lun mapping of devices.
3462  * Puts non-external target logical volumes on bus 0, external target logical
3463  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3464  * Logical drive target and lun are assigned at this time, but
3465  * physical device lun and target assignment are deferred (assigned
3466  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3467  */
3468 static void figure_bus_target_lun(struct ctlr_info *h,
3469 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3470 {
3471 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3472 
3473 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3474 		/* physical device, target and lun filled in later */
3475 		if (is_hba_lunid(lunaddrbytes))
3476 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3477 		else
3478 			/* defer target, lun assignment for physical devices */
3479 			hpsa_set_bus_target_lun(device, 2, -1, -1);
3480 		return;
3481 	}
3482 	/* It's a logical device */
3483 	if (is_ext_target(h, device)) {
3484 		/* external target way, put logicals on bus 1
3485 		 * and match target/lun numbers box
3486 		 * reports, other smart array, bus 0, target 0, match lunid
3487 		 */
3488 		hpsa_set_bus_target_lun(device,
3489 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3490 		return;
3491 	}
3492 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3493 }
3494 
3495 /*
3496  * If there is no lun 0 on a target, linux won't find any devices.
3497  * For the external targets (arrays), we have to manually detect the enclosure
3498  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3499  * it for some reason.  *tmpdevice is the target we're adding,
3500  * this_device is a pointer into the current element of currentsd[]
3501  * that we're building up in update_scsi_devices(), below.
3502  * lunzerobits is a bitmap that tracks which targets already have a
3503  * lun 0 assigned.
3504  * Returns 1 if an enclosure was added, 0 if not.
3505  */
3506 static int add_ext_target_dev(struct ctlr_info *h,
3507 	struct hpsa_scsi_dev_t *tmpdevice,
3508 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3509 	unsigned long lunzerobits[], int *n_ext_target_devs)
3510 {
3511 	unsigned char scsi3addr[8];
3512 
3513 	if (test_bit(tmpdevice->target, lunzerobits))
3514 		return 0; /* There is already a lun 0 on this target. */
3515 
3516 	if (!is_logical_dev_addr_mode(lunaddrbytes))
3517 		return 0; /* It's the logical targets that may lack lun 0. */
3518 
3519 	if (!is_ext_target(h, tmpdevice))
3520 		return 0; /* Only external target devices have this problem. */
3521 
3522 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3523 		return 0;
3524 
3525 	memset(scsi3addr, 0, 8);
3526 	scsi3addr[3] = tmpdevice->target;
3527 	if (is_hba_lunid(scsi3addr))
3528 		return 0; /* Don't add the RAID controller here. */
3529 
3530 	if (is_scsi_rev_5(h))
3531 		return 0; /* p1210m doesn't need to do this. */
3532 
3533 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3534 		dev_warn(&h->pdev->dev, "Maximum number of external "
3535 			"target devices exceeded.  Check your hardware "
3536 			"configuration.");
3537 		return 0;
3538 	}
3539 
3540 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3541 		return 0;
3542 	(*n_ext_target_devs)++;
3543 	hpsa_set_bus_target_lun(this_device,
3544 				tmpdevice->bus, tmpdevice->target, 0);
3545 	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3546 	set_bit(tmpdevice->target, lunzerobits);
3547 	return 1;
3548 }
3549 
3550 /*
3551  * Get address of physical disk used for an ioaccel2 mode command:
3552  *	1. Extract ioaccel2 handle from the command.
3553  *	2. Find a matching ioaccel2 handle from list of physical disks.
3554  *	3. Return:
3555  *		1 and set scsi3addr to address of matching physical
3556  *		0 if no matching physical disk was found.
3557  */
3558 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3559 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3560 {
3561 	struct io_accel2_cmd *c2 =
3562 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3563 	unsigned long flags;
3564 	int i;
3565 
3566 	spin_lock_irqsave(&h->devlock, flags);
3567 	for (i = 0; i < h->ndevices; i++)
3568 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3569 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
3570 				sizeof(h->dev[i]->scsi3addr));
3571 			spin_unlock_irqrestore(&h->devlock, flags);
3572 			return 1;
3573 		}
3574 	spin_unlock_irqrestore(&h->devlock, flags);
3575 	return 0;
3576 }
3577 
3578 /*
3579  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3580  * logdev.  The number of luns in physdev and logdev are returned in
3581  * *nphysicals and *nlogicals, respectively.
3582  * Returns 0 on success, -1 otherwise.
3583  */
3584 static int hpsa_gather_lun_info(struct ctlr_info *h,
3585 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3586 	struct ReportLUNdata *logdev, u32 *nlogicals)
3587 {
3588 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3589 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3590 		return -1;
3591 	}
3592 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3593 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3594 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3595 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3596 		*nphysicals = HPSA_MAX_PHYS_LUN;
3597 	}
3598 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3599 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3600 		return -1;
3601 	}
3602 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3603 	/* Reject Logicals in excess of our max capability. */
3604 	if (*nlogicals > HPSA_MAX_LUN) {
3605 		dev_warn(&h->pdev->dev,
3606 			"maximum logical LUNs (%d) exceeded.  "
3607 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
3608 			*nlogicals - HPSA_MAX_LUN);
3609 			*nlogicals = HPSA_MAX_LUN;
3610 	}
3611 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3612 		dev_warn(&h->pdev->dev,
3613 			"maximum logical + physical LUNs (%d) exceeded. "
3614 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3615 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3616 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3617 	}
3618 	return 0;
3619 }
3620 
3621 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3622 	int i, int nphysicals, int nlogicals,
3623 	struct ReportExtendedLUNdata *physdev_list,
3624 	struct ReportLUNdata *logdev_list)
3625 {
3626 	/* Helper function, figure out where the LUN ID info is coming from
3627 	 * given index i, lists of physical and logical devices, where in
3628 	 * the list the raid controller is supposed to appear (first or last)
3629 	 */
3630 
3631 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3632 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3633 
3634 	if (i == raid_ctlr_position)
3635 		return RAID_CTLR_LUNID;
3636 
3637 	if (i < logicals_start)
3638 		return &physdev_list->LUN[i -
3639 				(raid_ctlr_position == 0)].lunid[0];
3640 
3641 	if (i < last_device)
3642 		return &logdev_list->LUN[i - nphysicals -
3643 			(raid_ctlr_position == 0)][0];
3644 	BUG();
3645 	return NULL;
3646 }
3647 
3648 /* get physical drive ioaccel handle and queue depth */
3649 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3650 		struct hpsa_scsi_dev_t *dev,
3651 		u8 *lunaddrbytes,
3652 		struct bmic_identify_physical_device *id_phys)
3653 {
3654 	int rc;
3655 	struct ext_report_lun_entry *rle =
3656 		(struct ext_report_lun_entry *) lunaddrbytes;
3657 
3658 	dev->ioaccel_handle = rle->ioaccel_handle;
3659 	if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3660 		dev->hba_ioaccel_enabled = 1;
3661 	memset(id_phys, 0, sizeof(*id_phys));
3662 	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3663 			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3664 			sizeof(*id_phys));
3665 	if (!rc)
3666 		/* Reserve space for FW operations */
3667 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3668 #define DRIVE_QUEUE_DEPTH 7
3669 		dev->queue_depth =
3670 			le16_to_cpu(id_phys->current_queue_depth_limit) -
3671 				DRIVE_CMDS_RESERVED_FOR_FW;
3672 	else
3673 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3674 	atomic_set(&dev->ioaccel_cmds_out, 0);
3675 	atomic_set(&dev->reset_cmds_out, 0);
3676 }
3677 
3678 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3679 	u8 *lunaddrbytes,
3680 	struct bmic_identify_physical_device *id_phys)
3681 {
3682 	if (PHYS_IOACCEL(lunaddrbytes)
3683 		&& this_device->ioaccel_handle)
3684 		this_device->hba_ioaccel_enabled = 1;
3685 
3686 	memcpy(&this_device->active_path_index,
3687 		&id_phys->active_path_number,
3688 		sizeof(this_device->active_path_index));
3689 	memcpy(&this_device->path_map,
3690 		&id_phys->redundant_path_present_map,
3691 		sizeof(this_device->path_map));
3692 	memcpy(&this_device->box,
3693 		&id_phys->alternate_paths_phys_box_on_port,
3694 		sizeof(this_device->box));
3695 	memcpy(&this_device->phys_connector,
3696 		&id_phys->alternate_paths_phys_connector,
3697 		sizeof(this_device->phys_connector));
3698 	memcpy(&this_device->bay,
3699 		&id_phys->phys_bay_in_box,
3700 		sizeof(this_device->bay));
3701 }
3702 
3703 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3704 {
3705 	/* the idea here is we could get notified
3706 	 * that some devices have changed, so we do a report
3707 	 * physical luns and report logical luns cmd, and adjust
3708 	 * our list of devices accordingly.
3709 	 *
3710 	 * The scsi3addr's of devices won't change so long as the
3711 	 * adapter is not reset.  That means we can rescan and
3712 	 * tell which devices we already know about, vs. new
3713 	 * devices, vs.  disappearing devices.
3714 	 */
3715 	struct ReportExtendedLUNdata *physdev_list = NULL;
3716 	struct ReportLUNdata *logdev_list = NULL;
3717 	struct bmic_identify_physical_device *id_phys = NULL;
3718 	u32 nphysicals = 0;
3719 	u32 nlogicals = 0;
3720 	u32 ndev_allocated = 0;
3721 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3722 	int ncurrent = 0;
3723 	int i, n_ext_target_devs, ndevs_to_allocate;
3724 	int raid_ctlr_position;
3725 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3726 
3727 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3728 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3729 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3730 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3731 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3732 
3733 	if (!currentsd || !physdev_list || !logdev_list ||
3734 		!tmpdevice || !id_phys) {
3735 		dev_err(&h->pdev->dev, "out of memory\n");
3736 		goto out;
3737 	}
3738 	memset(lunzerobits, 0, sizeof(lunzerobits));
3739 
3740 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3741 			logdev_list, &nlogicals))
3742 		goto out;
3743 
3744 	/* We might see up to the maximum number of logical and physical disks
3745 	 * plus external target devices, and a device for the local RAID
3746 	 * controller.
3747 	 */
3748 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3749 
3750 	/* Allocate the per device structures */
3751 	for (i = 0; i < ndevs_to_allocate; i++) {
3752 		if (i >= HPSA_MAX_DEVICES) {
3753 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3754 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3755 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3756 			break;
3757 		}
3758 
3759 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3760 		if (!currentsd[i]) {
3761 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3762 				__FILE__, __LINE__);
3763 			goto out;
3764 		}
3765 		ndev_allocated++;
3766 	}
3767 
3768 	if (is_scsi_rev_5(h))
3769 		raid_ctlr_position = 0;
3770 	else
3771 		raid_ctlr_position = nphysicals + nlogicals;
3772 
3773 	/* adjust our table of devices */
3774 	n_ext_target_devs = 0;
3775 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3776 		u8 *lunaddrbytes, is_OBDR = 0;
3777 
3778 		/* Figure out where the LUN ID info is coming from */
3779 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3780 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3781 
3782 		/* skip masked non-disk devices */
3783 		if (MASKED_DEVICE(lunaddrbytes))
3784 			if (i < nphysicals + (raid_ctlr_position == 0) &&
3785 				NON_DISK_PHYS_DEV(lunaddrbytes))
3786 				continue;
3787 
3788 		/* Get device type, vendor, model, device id */
3789 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3790 							&is_OBDR))
3791 			continue; /* skip it if we can't talk to it. */
3792 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3793 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3794 		this_device = currentsd[ncurrent];
3795 
3796 		/*
3797 		 * For external target devices, we have to insert a LUN 0 which
3798 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3799 		 * is nonetheless an enclosure device there.  We have to
3800 		 * present that otherwise linux won't find anything if
3801 		 * there is no lun 0.
3802 		 */
3803 		if (add_ext_target_dev(h, tmpdevice, this_device,
3804 				lunaddrbytes, lunzerobits,
3805 				&n_ext_target_devs)) {
3806 			ncurrent++;
3807 			this_device = currentsd[ncurrent];
3808 		}
3809 
3810 		*this_device = *tmpdevice;
3811 
3812 		/* do not expose masked devices */
3813 		if (MASKED_DEVICE(lunaddrbytes) &&
3814 			i < nphysicals + (raid_ctlr_position == 0)) {
3815 			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3816 		} else {
3817 			this_device->expose_state =
3818 					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3819 		}
3820 
3821 		switch (this_device->devtype) {
3822 		case TYPE_ROM:
3823 			/* We don't *really* support actual CD-ROM devices,
3824 			 * just "One Button Disaster Recovery" tape drive
3825 			 * which temporarily pretends to be a CD-ROM drive.
3826 			 * So we check that the device is really an OBDR tape
3827 			 * device by checking for "$DR-10" in bytes 43-48 of
3828 			 * the inquiry data.
3829 			 */
3830 			if (is_OBDR)
3831 				ncurrent++;
3832 			break;
3833 		case TYPE_DISK:
3834 			if (i < nphysicals + (raid_ctlr_position == 0)) {
3835 				/* The disk is in HBA mode. */
3836 				/* Never use RAID mapper in HBA mode. */
3837 				this_device->offload_enabled = 0;
3838 				hpsa_get_ioaccel_drive_info(h, this_device,
3839 					lunaddrbytes, id_phys);
3840 				hpsa_get_path_info(this_device, lunaddrbytes,
3841 							id_phys);
3842 			}
3843 			ncurrent++;
3844 			break;
3845 		case TYPE_TAPE:
3846 		case TYPE_MEDIUM_CHANGER:
3847 		case TYPE_ENCLOSURE:
3848 			ncurrent++;
3849 			break;
3850 		case TYPE_RAID:
3851 			/* Only present the Smartarray HBA as a RAID controller.
3852 			 * If it's a RAID controller other than the HBA itself
3853 			 * (an external RAID controller, MSA500 or similar)
3854 			 * don't present it.
3855 			 */
3856 			if (!is_hba_lunid(lunaddrbytes))
3857 				break;
3858 			ncurrent++;
3859 			break;
3860 		default:
3861 			break;
3862 		}
3863 		if (ncurrent >= HPSA_MAX_DEVICES)
3864 			break;
3865 	}
3866 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3867 out:
3868 	kfree(tmpdevice);
3869 	for (i = 0; i < ndev_allocated; i++)
3870 		kfree(currentsd[i]);
3871 	kfree(currentsd);
3872 	kfree(physdev_list);
3873 	kfree(logdev_list);
3874 	kfree(id_phys);
3875 }
3876 
3877 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3878 				   struct scatterlist *sg)
3879 {
3880 	u64 addr64 = (u64) sg_dma_address(sg);
3881 	unsigned int len = sg_dma_len(sg);
3882 
3883 	desc->Addr = cpu_to_le64(addr64);
3884 	desc->Len = cpu_to_le32(len);
3885 	desc->Ext = 0;
3886 }
3887 
3888 /*
3889  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3890  * dma mapping  and fills in the scatter gather entries of the
3891  * hpsa command, cp.
3892  */
3893 static int hpsa_scatter_gather(struct ctlr_info *h,
3894 		struct CommandList *cp,
3895 		struct scsi_cmnd *cmd)
3896 {
3897 	struct scatterlist *sg;
3898 	int use_sg, i, sg_limit, chained, last_sg;
3899 	struct SGDescriptor *curr_sg;
3900 
3901 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3902 
3903 	use_sg = scsi_dma_map(cmd);
3904 	if (use_sg < 0)
3905 		return use_sg;
3906 
3907 	if (!use_sg)
3908 		goto sglist_finished;
3909 
3910 	/*
3911 	 * If the number of entries is greater than the max for a single list,
3912 	 * then we have a chained list; we will set up all but one entry in the
3913 	 * first list (the last entry is saved for link information);
3914 	 * otherwise, we don't have a chained list and we'll set up at each of
3915 	 * the entries in the one list.
3916 	 */
3917 	curr_sg = cp->SG;
3918 	chained = use_sg > h->max_cmd_sg_entries;
3919 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3920 	last_sg = scsi_sg_count(cmd) - 1;
3921 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
3922 		hpsa_set_sg_descriptor(curr_sg, sg);
3923 		curr_sg++;
3924 	}
3925 
3926 	if (chained) {
3927 		/*
3928 		 * Continue with the chained list.  Set curr_sg to the chained
3929 		 * list.  Modify the limit to the total count less the entries
3930 		 * we've already set up.  Resume the scan at the list entry
3931 		 * where the previous loop left off.
3932 		 */
3933 		curr_sg = h->cmd_sg_list[cp->cmdindex];
3934 		sg_limit = use_sg - sg_limit;
3935 		for_each_sg(sg, sg, sg_limit, i) {
3936 			hpsa_set_sg_descriptor(curr_sg, sg);
3937 			curr_sg++;
3938 		}
3939 	}
3940 
3941 	/* Back the pointer up to the last entry and mark it as "last". */
3942 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3943 
3944 	if (use_sg + chained > h->maxSG)
3945 		h->maxSG = use_sg + chained;
3946 
3947 	if (chained) {
3948 		cp->Header.SGList = h->max_cmd_sg_entries;
3949 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3950 		if (hpsa_map_sg_chain_block(h, cp)) {
3951 			scsi_dma_unmap(cmd);
3952 			return -1;
3953 		}
3954 		return 0;
3955 	}
3956 
3957 sglist_finished:
3958 
3959 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3960 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3961 	return 0;
3962 }
3963 
3964 #define IO_ACCEL_INELIGIBLE (1)
3965 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3966 {
3967 	int is_write = 0;
3968 	u32 block;
3969 	u32 block_cnt;
3970 
3971 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3972 	switch (cdb[0]) {
3973 	case WRITE_6:
3974 	case WRITE_12:
3975 		is_write = 1;
3976 	case READ_6:
3977 	case READ_12:
3978 		if (*cdb_len == 6) {
3979 			block = (((u32) cdb[2]) << 8) | cdb[3];
3980 			block_cnt = cdb[4];
3981 		} else {
3982 			BUG_ON(*cdb_len != 12);
3983 			block = (((u32) cdb[2]) << 24) |
3984 				(((u32) cdb[3]) << 16) |
3985 				(((u32) cdb[4]) << 8) |
3986 				cdb[5];
3987 			block_cnt =
3988 				(((u32) cdb[6]) << 24) |
3989 				(((u32) cdb[7]) << 16) |
3990 				(((u32) cdb[8]) << 8) |
3991 				cdb[9];
3992 		}
3993 		if (block_cnt > 0xffff)
3994 			return IO_ACCEL_INELIGIBLE;
3995 
3996 		cdb[0] = is_write ? WRITE_10 : READ_10;
3997 		cdb[1] = 0;
3998 		cdb[2] = (u8) (block >> 24);
3999 		cdb[3] = (u8) (block >> 16);
4000 		cdb[4] = (u8) (block >> 8);
4001 		cdb[5] = (u8) (block);
4002 		cdb[6] = 0;
4003 		cdb[7] = (u8) (block_cnt >> 8);
4004 		cdb[8] = (u8) (block_cnt);
4005 		cdb[9] = 0;
4006 		*cdb_len = 10;
4007 		break;
4008 	}
4009 	return 0;
4010 }
4011 
4012 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4013 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4014 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4015 {
4016 	struct scsi_cmnd *cmd = c->scsi_cmd;
4017 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4018 	unsigned int len;
4019 	unsigned int total_len = 0;
4020 	struct scatterlist *sg;
4021 	u64 addr64;
4022 	int use_sg, i;
4023 	struct SGDescriptor *curr_sg;
4024 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4025 
4026 	/* TODO: implement chaining support */
4027 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4028 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4029 		return IO_ACCEL_INELIGIBLE;
4030 	}
4031 
4032 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4033 
4034 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4035 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4036 		return IO_ACCEL_INELIGIBLE;
4037 	}
4038 
4039 	c->cmd_type = CMD_IOACCEL1;
4040 
4041 	/* Adjust the DMA address to point to the accelerated command buffer */
4042 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4043 				(c->cmdindex * sizeof(*cp));
4044 	BUG_ON(c->busaddr & 0x0000007F);
4045 
4046 	use_sg = scsi_dma_map(cmd);
4047 	if (use_sg < 0) {
4048 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4049 		return use_sg;
4050 	}
4051 
4052 	if (use_sg) {
4053 		curr_sg = cp->SG;
4054 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4055 			addr64 = (u64) sg_dma_address(sg);
4056 			len  = sg_dma_len(sg);
4057 			total_len += len;
4058 			curr_sg->Addr = cpu_to_le64(addr64);
4059 			curr_sg->Len = cpu_to_le32(len);
4060 			curr_sg->Ext = cpu_to_le32(0);
4061 			curr_sg++;
4062 		}
4063 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4064 
4065 		switch (cmd->sc_data_direction) {
4066 		case DMA_TO_DEVICE:
4067 			control |= IOACCEL1_CONTROL_DATA_OUT;
4068 			break;
4069 		case DMA_FROM_DEVICE:
4070 			control |= IOACCEL1_CONTROL_DATA_IN;
4071 			break;
4072 		case DMA_NONE:
4073 			control |= IOACCEL1_CONTROL_NODATAXFER;
4074 			break;
4075 		default:
4076 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4077 			cmd->sc_data_direction);
4078 			BUG();
4079 			break;
4080 		}
4081 	} else {
4082 		control |= IOACCEL1_CONTROL_NODATAXFER;
4083 	}
4084 
4085 	c->Header.SGList = use_sg;
4086 	/* Fill out the command structure to submit */
4087 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4088 	cp->transfer_len = cpu_to_le32(total_len);
4089 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4090 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4091 	cp->control = cpu_to_le32(control);
4092 	memcpy(cp->CDB, cdb, cdb_len);
4093 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4094 	/* Tag was already set at init time. */
4095 	enqueue_cmd_and_start_io(h, c);
4096 	return 0;
4097 }
4098 
4099 /*
4100  * Queue a command directly to a device behind the controller using the
4101  * I/O accelerator path.
4102  */
4103 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4104 	struct CommandList *c)
4105 {
4106 	struct scsi_cmnd *cmd = c->scsi_cmd;
4107 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4108 
4109 	c->phys_disk = dev;
4110 
4111 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4112 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4113 }
4114 
4115 /*
4116  * Set encryption parameters for the ioaccel2 request
4117  */
4118 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4119 	struct CommandList *c, struct io_accel2_cmd *cp)
4120 {
4121 	struct scsi_cmnd *cmd = c->scsi_cmd;
4122 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4123 	struct raid_map_data *map = &dev->raid_map;
4124 	u64 first_block;
4125 
4126 	/* Are we doing encryption on this device */
4127 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4128 		return;
4129 	/* Set the data encryption key index. */
4130 	cp->dekindex = map->dekindex;
4131 
4132 	/* Set the encryption enable flag, encoded into direction field. */
4133 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4134 
4135 	/* Set encryption tweak values based on logical block address
4136 	 * If block size is 512, tweak value is LBA.
4137 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4138 	 */
4139 	switch (cmd->cmnd[0]) {
4140 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4141 	case WRITE_6:
4142 	case READ_6:
4143 		first_block = get_unaligned_be16(&cmd->cmnd[2]);
4144 		break;
4145 	case WRITE_10:
4146 	case READ_10:
4147 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4148 	case WRITE_12:
4149 	case READ_12:
4150 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4151 		break;
4152 	case WRITE_16:
4153 	case READ_16:
4154 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4155 		break;
4156 	default:
4157 		dev_err(&h->pdev->dev,
4158 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4159 			__func__, cmd->cmnd[0]);
4160 		BUG();
4161 		break;
4162 	}
4163 
4164 	if (le32_to_cpu(map->volume_blk_size) != 512)
4165 		first_block = first_block *
4166 				le32_to_cpu(map->volume_blk_size)/512;
4167 
4168 	cp->tweak_lower = cpu_to_le32(first_block);
4169 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4170 }
4171 
4172 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4173 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4174 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4175 {
4176 	struct scsi_cmnd *cmd = c->scsi_cmd;
4177 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4178 	struct ioaccel2_sg_element *curr_sg;
4179 	int use_sg, i;
4180 	struct scatterlist *sg;
4181 	u64 addr64;
4182 	u32 len;
4183 	u32 total_len = 0;
4184 
4185 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4186 
4187 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4188 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4189 		return IO_ACCEL_INELIGIBLE;
4190 	}
4191 
4192 	c->cmd_type = CMD_IOACCEL2;
4193 	/* Adjust the DMA address to point to the accelerated command buffer */
4194 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4195 				(c->cmdindex * sizeof(*cp));
4196 	BUG_ON(c->busaddr & 0x0000007F);
4197 
4198 	memset(cp, 0, sizeof(*cp));
4199 	cp->IU_type = IOACCEL2_IU_TYPE;
4200 
4201 	use_sg = scsi_dma_map(cmd);
4202 	if (use_sg < 0) {
4203 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4204 		return use_sg;
4205 	}
4206 
4207 	if (use_sg) {
4208 		curr_sg = cp->sg;
4209 		if (use_sg > h->ioaccel_maxsg) {
4210 			addr64 = le64_to_cpu(
4211 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4212 			curr_sg->address = cpu_to_le64(addr64);
4213 			curr_sg->length = 0;
4214 			curr_sg->reserved[0] = 0;
4215 			curr_sg->reserved[1] = 0;
4216 			curr_sg->reserved[2] = 0;
4217 			curr_sg->chain_indicator = 0x80;
4218 
4219 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4220 		}
4221 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4222 			addr64 = (u64) sg_dma_address(sg);
4223 			len  = sg_dma_len(sg);
4224 			total_len += len;
4225 			curr_sg->address = cpu_to_le64(addr64);
4226 			curr_sg->length = cpu_to_le32(len);
4227 			curr_sg->reserved[0] = 0;
4228 			curr_sg->reserved[1] = 0;
4229 			curr_sg->reserved[2] = 0;
4230 			curr_sg->chain_indicator = 0;
4231 			curr_sg++;
4232 		}
4233 
4234 		switch (cmd->sc_data_direction) {
4235 		case DMA_TO_DEVICE:
4236 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4237 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4238 			break;
4239 		case DMA_FROM_DEVICE:
4240 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4241 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4242 			break;
4243 		case DMA_NONE:
4244 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4245 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4246 			break;
4247 		default:
4248 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4249 				cmd->sc_data_direction);
4250 			BUG();
4251 			break;
4252 		}
4253 	} else {
4254 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4255 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4256 	}
4257 
4258 	/* Set encryption parameters, if necessary */
4259 	set_encrypt_ioaccel2(h, c, cp);
4260 
4261 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4262 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4263 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4264 
4265 	cp->data_len = cpu_to_le32(total_len);
4266 	cp->err_ptr = cpu_to_le64(c->busaddr +
4267 			offsetof(struct io_accel2_cmd, error_data));
4268 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4269 
4270 	/* fill in sg elements */
4271 	if (use_sg > h->ioaccel_maxsg) {
4272 		cp->sg_count = 1;
4273 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4274 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4275 			scsi_dma_unmap(cmd);
4276 			return -1;
4277 		}
4278 	} else
4279 		cp->sg_count = (u8) use_sg;
4280 
4281 	enqueue_cmd_and_start_io(h, c);
4282 	return 0;
4283 }
4284 
4285 /*
4286  * Queue a command to the correct I/O accelerator path.
4287  */
4288 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4289 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4290 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4291 {
4292 	/* Try to honor the device's queue depth */
4293 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4294 					phys_disk->queue_depth) {
4295 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4296 		return IO_ACCEL_INELIGIBLE;
4297 	}
4298 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4299 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4300 						cdb, cdb_len, scsi3addr,
4301 						phys_disk);
4302 	else
4303 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4304 						cdb, cdb_len, scsi3addr,
4305 						phys_disk);
4306 }
4307 
4308 static void raid_map_helper(struct raid_map_data *map,
4309 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4310 {
4311 	if (offload_to_mirror == 0)  {
4312 		/* use physical disk in the first mirrored group. */
4313 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4314 		return;
4315 	}
4316 	do {
4317 		/* determine mirror group that *map_index indicates */
4318 		*current_group = *map_index /
4319 			le16_to_cpu(map->data_disks_per_row);
4320 		if (offload_to_mirror == *current_group)
4321 			continue;
4322 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4323 			/* select map index from next group */
4324 			*map_index += le16_to_cpu(map->data_disks_per_row);
4325 			(*current_group)++;
4326 		} else {
4327 			/* select map index from first group */
4328 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4329 			*current_group = 0;
4330 		}
4331 	} while (offload_to_mirror != *current_group);
4332 }
4333 
4334 /*
4335  * Attempt to perform offload RAID mapping for a logical volume I/O.
4336  */
4337 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4338 	struct CommandList *c)
4339 {
4340 	struct scsi_cmnd *cmd = c->scsi_cmd;
4341 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4342 	struct raid_map_data *map = &dev->raid_map;
4343 	struct raid_map_disk_data *dd = &map->data[0];
4344 	int is_write = 0;
4345 	u32 map_index;
4346 	u64 first_block, last_block;
4347 	u32 block_cnt;
4348 	u32 blocks_per_row;
4349 	u64 first_row, last_row;
4350 	u32 first_row_offset, last_row_offset;
4351 	u32 first_column, last_column;
4352 	u64 r0_first_row, r0_last_row;
4353 	u32 r5or6_blocks_per_row;
4354 	u64 r5or6_first_row, r5or6_last_row;
4355 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4356 	u32 r5or6_first_column, r5or6_last_column;
4357 	u32 total_disks_per_row;
4358 	u32 stripesize;
4359 	u32 first_group, last_group, current_group;
4360 	u32 map_row;
4361 	u32 disk_handle;
4362 	u64 disk_block;
4363 	u32 disk_block_cnt;
4364 	u8 cdb[16];
4365 	u8 cdb_len;
4366 	u16 strip_size;
4367 #if BITS_PER_LONG == 32
4368 	u64 tmpdiv;
4369 #endif
4370 	int offload_to_mirror;
4371 
4372 	/* check for valid opcode, get LBA and block count */
4373 	switch (cmd->cmnd[0]) {
4374 	case WRITE_6:
4375 		is_write = 1;
4376 	case READ_6:
4377 		first_block =
4378 			(((u64) cmd->cmnd[2]) << 8) |
4379 			cmd->cmnd[3];
4380 		block_cnt = cmd->cmnd[4];
4381 		if (block_cnt == 0)
4382 			block_cnt = 256;
4383 		break;
4384 	case WRITE_10:
4385 		is_write = 1;
4386 	case READ_10:
4387 		first_block =
4388 			(((u64) cmd->cmnd[2]) << 24) |
4389 			(((u64) cmd->cmnd[3]) << 16) |
4390 			(((u64) cmd->cmnd[4]) << 8) |
4391 			cmd->cmnd[5];
4392 		block_cnt =
4393 			(((u32) cmd->cmnd[7]) << 8) |
4394 			cmd->cmnd[8];
4395 		break;
4396 	case WRITE_12:
4397 		is_write = 1;
4398 	case READ_12:
4399 		first_block =
4400 			(((u64) cmd->cmnd[2]) << 24) |
4401 			(((u64) cmd->cmnd[3]) << 16) |
4402 			(((u64) cmd->cmnd[4]) << 8) |
4403 			cmd->cmnd[5];
4404 		block_cnt =
4405 			(((u32) cmd->cmnd[6]) << 24) |
4406 			(((u32) cmd->cmnd[7]) << 16) |
4407 			(((u32) cmd->cmnd[8]) << 8) |
4408 		cmd->cmnd[9];
4409 		break;
4410 	case WRITE_16:
4411 		is_write = 1;
4412 	case READ_16:
4413 		first_block =
4414 			(((u64) cmd->cmnd[2]) << 56) |
4415 			(((u64) cmd->cmnd[3]) << 48) |
4416 			(((u64) cmd->cmnd[4]) << 40) |
4417 			(((u64) cmd->cmnd[5]) << 32) |
4418 			(((u64) cmd->cmnd[6]) << 24) |
4419 			(((u64) cmd->cmnd[7]) << 16) |
4420 			(((u64) cmd->cmnd[8]) << 8) |
4421 			cmd->cmnd[9];
4422 		block_cnt =
4423 			(((u32) cmd->cmnd[10]) << 24) |
4424 			(((u32) cmd->cmnd[11]) << 16) |
4425 			(((u32) cmd->cmnd[12]) << 8) |
4426 			cmd->cmnd[13];
4427 		break;
4428 	default:
4429 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4430 	}
4431 	last_block = first_block + block_cnt - 1;
4432 
4433 	/* check for write to non-RAID-0 */
4434 	if (is_write && dev->raid_level != 0)
4435 		return IO_ACCEL_INELIGIBLE;
4436 
4437 	/* check for invalid block or wraparound */
4438 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4439 		last_block < first_block)
4440 		return IO_ACCEL_INELIGIBLE;
4441 
4442 	/* calculate stripe information for the request */
4443 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4444 				le16_to_cpu(map->strip_size);
4445 	strip_size = le16_to_cpu(map->strip_size);
4446 #if BITS_PER_LONG == 32
4447 	tmpdiv = first_block;
4448 	(void) do_div(tmpdiv, blocks_per_row);
4449 	first_row = tmpdiv;
4450 	tmpdiv = last_block;
4451 	(void) do_div(tmpdiv, blocks_per_row);
4452 	last_row = tmpdiv;
4453 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4454 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4455 	tmpdiv = first_row_offset;
4456 	(void) do_div(tmpdiv, strip_size);
4457 	first_column = tmpdiv;
4458 	tmpdiv = last_row_offset;
4459 	(void) do_div(tmpdiv, strip_size);
4460 	last_column = tmpdiv;
4461 #else
4462 	first_row = first_block / blocks_per_row;
4463 	last_row = last_block / blocks_per_row;
4464 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4465 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4466 	first_column = first_row_offset / strip_size;
4467 	last_column = last_row_offset / strip_size;
4468 #endif
4469 
4470 	/* if this isn't a single row/column then give to the controller */
4471 	if ((first_row != last_row) || (first_column != last_column))
4472 		return IO_ACCEL_INELIGIBLE;
4473 
4474 	/* proceeding with driver mapping */
4475 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4476 				le16_to_cpu(map->metadata_disks_per_row);
4477 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4478 				le16_to_cpu(map->row_cnt);
4479 	map_index = (map_row * total_disks_per_row) + first_column;
4480 
4481 	switch (dev->raid_level) {
4482 	case HPSA_RAID_0:
4483 		break; /* nothing special to do */
4484 	case HPSA_RAID_1:
4485 		/* Handles load balance across RAID 1 members.
4486 		 * (2-drive R1 and R10 with even # of drives.)
4487 		 * Appropriate for SSDs, not optimal for HDDs
4488 		 */
4489 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4490 		if (dev->offload_to_mirror)
4491 			map_index += le16_to_cpu(map->data_disks_per_row);
4492 		dev->offload_to_mirror = !dev->offload_to_mirror;
4493 		break;
4494 	case HPSA_RAID_ADM:
4495 		/* Handles N-way mirrors  (R1-ADM)
4496 		 * and R10 with # of drives divisible by 3.)
4497 		 */
4498 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4499 
4500 		offload_to_mirror = dev->offload_to_mirror;
4501 		raid_map_helper(map, offload_to_mirror,
4502 				&map_index, &current_group);
4503 		/* set mirror group to use next time */
4504 		offload_to_mirror =
4505 			(offload_to_mirror >=
4506 			le16_to_cpu(map->layout_map_count) - 1)
4507 			? 0 : offload_to_mirror + 1;
4508 		dev->offload_to_mirror = offload_to_mirror;
4509 		/* Avoid direct use of dev->offload_to_mirror within this
4510 		 * function since multiple threads might simultaneously
4511 		 * increment it beyond the range of dev->layout_map_count -1.
4512 		 */
4513 		break;
4514 	case HPSA_RAID_5:
4515 	case HPSA_RAID_6:
4516 		if (le16_to_cpu(map->layout_map_count) <= 1)
4517 			break;
4518 
4519 		/* Verify first and last block are in same RAID group */
4520 		r5or6_blocks_per_row =
4521 			le16_to_cpu(map->strip_size) *
4522 			le16_to_cpu(map->data_disks_per_row);
4523 		BUG_ON(r5or6_blocks_per_row == 0);
4524 		stripesize = r5or6_blocks_per_row *
4525 			le16_to_cpu(map->layout_map_count);
4526 #if BITS_PER_LONG == 32
4527 		tmpdiv = first_block;
4528 		first_group = do_div(tmpdiv, stripesize);
4529 		tmpdiv = first_group;
4530 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4531 		first_group = tmpdiv;
4532 		tmpdiv = last_block;
4533 		last_group = do_div(tmpdiv, stripesize);
4534 		tmpdiv = last_group;
4535 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
4536 		last_group = tmpdiv;
4537 #else
4538 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4539 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4540 #endif
4541 		if (first_group != last_group)
4542 			return IO_ACCEL_INELIGIBLE;
4543 
4544 		/* Verify request is in a single row of RAID 5/6 */
4545 #if BITS_PER_LONG == 32
4546 		tmpdiv = first_block;
4547 		(void) do_div(tmpdiv, stripesize);
4548 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
4549 		tmpdiv = last_block;
4550 		(void) do_div(tmpdiv, stripesize);
4551 		r5or6_last_row = r0_last_row = tmpdiv;
4552 #else
4553 		first_row = r5or6_first_row = r0_first_row =
4554 						first_block / stripesize;
4555 		r5or6_last_row = r0_last_row = last_block / stripesize;
4556 #endif
4557 		if (r5or6_first_row != r5or6_last_row)
4558 			return IO_ACCEL_INELIGIBLE;
4559 
4560 
4561 		/* Verify request is in a single column */
4562 #if BITS_PER_LONG == 32
4563 		tmpdiv = first_block;
4564 		first_row_offset = do_div(tmpdiv, stripesize);
4565 		tmpdiv = first_row_offset;
4566 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4567 		r5or6_first_row_offset = first_row_offset;
4568 		tmpdiv = last_block;
4569 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4570 		tmpdiv = r5or6_last_row_offset;
4571 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4572 		tmpdiv = r5or6_first_row_offset;
4573 		(void) do_div(tmpdiv, map->strip_size);
4574 		first_column = r5or6_first_column = tmpdiv;
4575 		tmpdiv = r5or6_last_row_offset;
4576 		(void) do_div(tmpdiv, map->strip_size);
4577 		r5or6_last_column = tmpdiv;
4578 #else
4579 		first_row_offset = r5or6_first_row_offset =
4580 			(u32)((first_block % stripesize) %
4581 						r5or6_blocks_per_row);
4582 
4583 		r5or6_last_row_offset =
4584 			(u32)((last_block % stripesize) %
4585 						r5or6_blocks_per_row);
4586 
4587 		first_column = r5or6_first_column =
4588 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4589 		r5or6_last_column =
4590 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4591 #endif
4592 		if (r5or6_first_column != r5or6_last_column)
4593 			return IO_ACCEL_INELIGIBLE;
4594 
4595 		/* Request is eligible */
4596 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4597 			le16_to_cpu(map->row_cnt);
4598 
4599 		map_index = (first_group *
4600 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4601 			(map_row * total_disks_per_row) + first_column;
4602 		break;
4603 	default:
4604 		return IO_ACCEL_INELIGIBLE;
4605 	}
4606 
4607 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4608 		return IO_ACCEL_INELIGIBLE;
4609 
4610 	c->phys_disk = dev->phys_disk[map_index];
4611 
4612 	disk_handle = dd[map_index].ioaccel_handle;
4613 	disk_block = le64_to_cpu(map->disk_starting_blk) +
4614 			first_row * le16_to_cpu(map->strip_size) +
4615 			(first_row_offset - first_column *
4616 			le16_to_cpu(map->strip_size));
4617 	disk_block_cnt = block_cnt;
4618 
4619 	/* handle differing logical/physical block sizes */
4620 	if (map->phys_blk_shift) {
4621 		disk_block <<= map->phys_blk_shift;
4622 		disk_block_cnt <<= map->phys_blk_shift;
4623 	}
4624 	BUG_ON(disk_block_cnt > 0xffff);
4625 
4626 	/* build the new CDB for the physical disk I/O */
4627 	if (disk_block > 0xffffffff) {
4628 		cdb[0] = is_write ? WRITE_16 : READ_16;
4629 		cdb[1] = 0;
4630 		cdb[2] = (u8) (disk_block >> 56);
4631 		cdb[3] = (u8) (disk_block >> 48);
4632 		cdb[4] = (u8) (disk_block >> 40);
4633 		cdb[5] = (u8) (disk_block >> 32);
4634 		cdb[6] = (u8) (disk_block >> 24);
4635 		cdb[7] = (u8) (disk_block >> 16);
4636 		cdb[8] = (u8) (disk_block >> 8);
4637 		cdb[9] = (u8) (disk_block);
4638 		cdb[10] = (u8) (disk_block_cnt >> 24);
4639 		cdb[11] = (u8) (disk_block_cnt >> 16);
4640 		cdb[12] = (u8) (disk_block_cnt >> 8);
4641 		cdb[13] = (u8) (disk_block_cnt);
4642 		cdb[14] = 0;
4643 		cdb[15] = 0;
4644 		cdb_len = 16;
4645 	} else {
4646 		cdb[0] = is_write ? WRITE_10 : READ_10;
4647 		cdb[1] = 0;
4648 		cdb[2] = (u8) (disk_block >> 24);
4649 		cdb[3] = (u8) (disk_block >> 16);
4650 		cdb[4] = (u8) (disk_block >> 8);
4651 		cdb[5] = (u8) (disk_block);
4652 		cdb[6] = 0;
4653 		cdb[7] = (u8) (disk_block_cnt >> 8);
4654 		cdb[8] = (u8) (disk_block_cnt);
4655 		cdb[9] = 0;
4656 		cdb_len = 10;
4657 	}
4658 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4659 						dev->scsi3addr,
4660 						dev->phys_disk[map_index]);
4661 }
4662 
4663 /*
4664  * Submit commands down the "normal" RAID stack path
4665  * All callers to hpsa_ciss_submit must check lockup_detected
4666  * beforehand, before (opt.) and after calling cmd_alloc
4667  */
4668 static int hpsa_ciss_submit(struct ctlr_info *h,
4669 	struct CommandList *c, struct scsi_cmnd *cmd,
4670 	unsigned char scsi3addr[])
4671 {
4672 	cmd->host_scribble = (unsigned char *) c;
4673 	c->cmd_type = CMD_SCSI;
4674 	c->scsi_cmd = cmd;
4675 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4676 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4677 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4678 
4679 	/* Fill in the request block... */
4680 
4681 	c->Request.Timeout = 0;
4682 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4683 	c->Request.CDBLen = cmd->cmd_len;
4684 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4685 	switch (cmd->sc_data_direction) {
4686 	case DMA_TO_DEVICE:
4687 		c->Request.type_attr_dir =
4688 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4689 		break;
4690 	case DMA_FROM_DEVICE:
4691 		c->Request.type_attr_dir =
4692 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4693 		break;
4694 	case DMA_NONE:
4695 		c->Request.type_attr_dir =
4696 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4697 		break;
4698 	case DMA_BIDIRECTIONAL:
4699 		/* This can happen if a buggy application does a scsi passthru
4700 		 * and sets both inlen and outlen to non-zero. ( see
4701 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4702 		 */
4703 
4704 		c->Request.type_attr_dir =
4705 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4706 		/* This is technically wrong, and hpsa controllers should
4707 		 * reject it with CMD_INVALID, which is the most correct
4708 		 * response, but non-fibre backends appear to let it
4709 		 * slide by, and give the same results as if this field
4710 		 * were set correctly.  Either way is acceptable for
4711 		 * our purposes here.
4712 		 */
4713 
4714 		break;
4715 
4716 	default:
4717 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4718 			cmd->sc_data_direction);
4719 		BUG();
4720 		break;
4721 	}
4722 
4723 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4724 		hpsa_cmd_resolve_and_free(h, c);
4725 		return SCSI_MLQUEUE_HOST_BUSY;
4726 	}
4727 	enqueue_cmd_and_start_io(h, c);
4728 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4729 	return 0;
4730 }
4731 
4732 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4733 				struct CommandList *c)
4734 {
4735 	dma_addr_t cmd_dma_handle, err_dma_handle;
4736 
4737 	/* Zero out all of commandlist except the last field, refcount */
4738 	memset(c, 0, offsetof(struct CommandList, refcount));
4739 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4740 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4741 	c->err_info = h->errinfo_pool + index;
4742 	memset(c->err_info, 0, sizeof(*c->err_info));
4743 	err_dma_handle = h->errinfo_pool_dhandle
4744 	    + index * sizeof(*c->err_info);
4745 	c->cmdindex = index;
4746 	c->busaddr = (u32) cmd_dma_handle;
4747 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4748 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4749 	c->h = h;
4750 	c->scsi_cmd = SCSI_CMD_IDLE;
4751 }
4752 
4753 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4754 {
4755 	int i;
4756 
4757 	for (i = 0; i < h->nr_cmds; i++) {
4758 		struct CommandList *c = h->cmd_pool + i;
4759 
4760 		hpsa_cmd_init(h, i, c);
4761 		atomic_set(&c->refcount, 0);
4762 	}
4763 }
4764 
4765 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4766 				struct CommandList *c)
4767 {
4768 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4769 
4770 	BUG_ON(c->cmdindex != index);
4771 
4772 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4773 	memset(c->err_info, 0, sizeof(*c->err_info));
4774 	c->busaddr = (u32) cmd_dma_handle;
4775 }
4776 
4777 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4778 		struct CommandList *c, struct scsi_cmnd *cmd,
4779 		unsigned char *scsi3addr)
4780 {
4781 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4782 	int rc = IO_ACCEL_INELIGIBLE;
4783 
4784 	cmd->host_scribble = (unsigned char *) c;
4785 
4786 	if (dev->offload_enabled) {
4787 		hpsa_cmd_init(h, c->cmdindex, c);
4788 		c->cmd_type = CMD_SCSI;
4789 		c->scsi_cmd = cmd;
4790 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
4791 		if (rc < 0)     /* scsi_dma_map failed. */
4792 			rc = SCSI_MLQUEUE_HOST_BUSY;
4793 	} else if (dev->hba_ioaccel_enabled) {
4794 		hpsa_cmd_init(h, c->cmdindex, c);
4795 		c->cmd_type = CMD_SCSI;
4796 		c->scsi_cmd = cmd;
4797 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
4798 		if (rc < 0)     /* scsi_dma_map failed. */
4799 			rc = SCSI_MLQUEUE_HOST_BUSY;
4800 	}
4801 	return rc;
4802 }
4803 
4804 static void hpsa_command_resubmit_worker(struct work_struct *work)
4805 {
4806 	struct scsi_cmnd *cmd;
4807 	struct hpsa_scsi_dev_t *dev;
4808 	struct CommandList *c = container_of(work, struct CommandList, work);
4809 
4810 	cmd = c->scsi_cmd;
4811 	dev = cmd->device->hostdata;
4812 	if (!dev) {
4813 		cmd->result = DID_NO_CONNECT << 16;
4814 		return hpsa_cmd_free_and_done(c->h, c, cmd);
4815 	}
4816 	if (c->reset_pending)
4817 		return hpsa_cmd_resolve_and_free(c->h, c);
4818 	if (c->abort_pending)
4819 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
4820 	if (c->cmd_type == CMD_IOACCEL2) {
4821 		struct ctlr_info *h = c->h;
4822 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4823 		int rc;
4824 
4825 		if (c2->error_data.serv_response ==
4826 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4827 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4828 			if (rc == 0)
4829 				return;
4830 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4831 				/*
4832 				 * If we get here, it means dma mapping failed.
4833 				 * Try again via scsi mid layer, which will
4834 				 * then get SCSI_MLQUEUE_HOST_BUSY.
4835 				 */
4836 				cmd->result = DID_IMM_RETRY << 16;
4837 				return hpsa_cmd_free_and_done(h, c, cmd);
4838 			}
4839 			/* else, fall thru and resubmit down CISS path */
4840 		}
4841 	}
4842 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4843 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4844 		/*
4845 		 * If we get here, it means dma mapping failed. Try
4846 		 * again via scsi mid layer, which will then get
4847 		 * SCSI_MLQUEUE_HOST_BUSY.
4848 		 *
4849 		 * hpsa_ciss_submit will have already freed c
4850 		 * if it encountered a dma mapping failure.
4851 		 */
4852 		cmd->result = DID_IMM_RETRY << 16;
4853 		cmd->scsi_done(cmd);
4854 	}
4855 }
4856 
4857 /* Running in struct Scsi_Host->host_lock less mode */
4858 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4859 {
4860 	struct ctlr_info *h;
4861 	struct hpsa_scsi_dev_t *dev;
4862 	unsigned char scsi3addr[8];
4863 	struct CommandList *c;
4864 	int rc = 0;
4865 
4866 	/* Get the ptr to our adapter structure out of cmd->host. */
4867 	h = sdev_to_hba(cmd->device);
4868 
4869 	BUG_ON(cmd->request->tag < 0);
4870 
4871 	dev = cmd->device->hostdata;
4872 	if (!dev) {
4873 		cmd->result = DID_NO_CONNECT << 16;
4874 		cmd->scsi_done(cmd);
4875 		return 0;
4876 	}
4877 
4878 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4879 
4880 	if (unlikely(lockup_detected(h))) {
4881 		cmd->result = DID_NO_CONNECT << 16;
4882 		cmd->scsi_done(cmd);
4883 		return 0;
4884 	}
4885 	c = cmd_tagged_alloc(h, cmd);
4886 
4887 	/*
4888 	 * Call alternate submit routine for I/O accelerated commands.
4889 	 * Retries always go down the normal I/O path.
4890 	 */
4891 	if (likely(cmd->retries == 0 &&
4892 		cmd->request->cmd_type == REQ_TYPE_FS &&
4893 		h->acciopath_status)) {
4894 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4895 		if (rc == 0)
4896 			return 0;
4897 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4898 			hpsa_cmd_resolve_and_free(h, c);
4899 			return SCSI_MLQUEUE_HOST_BUSY;
4900 		}
4901 	}
4902 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4903 }
4904 
4905 static void hpsa_scan_complete(struct ctlr_info *h)
4906 {
4907 	unsigned long flags;
4908 
4909 	spin_lock_irqsave(&h->scan_lock, flags);
4910 	h->scan_finished = 1;
4911 	wake_up_all(&h->scan_wait_queue);
4912 	spin_unlock_irqrestore(&h->scan_lock, flags);
4913 }
4914 
4915 static void hpsa_scan_start(struct Scsi_Host *sh)
4916 {
4917 	struct ctlr_info *h = shost_to_hba(sh);
4918 	unsigned long flags;
4919 
4920 	/*
4921 	 * Don't let rescans be initiated on a controller known to be locked
4922 	 * up.  If the controller locks up *during* a rescan, that thread is
4923 	 * probably hosed, but at least we can prevent new rescan threads from
4924 	 * piling up on a locked up controller.
4925 	 */
4926 	if (unlikely(lockup_detected(h)))
4927 		return hpsa_scan_complete(h);
4928 
4929 	/* wait until any scan already in progress is finished. */
4930 	while (1) {
4931 		spin_lock_irqsave(&h->scan_lock, flags);
4932 		if (h->scan_finished)
4933 			break;
4934 		spin_unlock_irqrestore(&h->scan_lock, flags);
4935 		wait_event(h->scan_wait_queue, h->scan_finished);
4936 		/* Note: We don't need to worry about a race between this
4937 		 * thread and driver unload because the midlayer will
4938 		 * have incremented the reference count, so unload won't
4939 		 * happen if we're in here.
4940 		 */
4941 	}
4942 	h->scan_finished = 0; /* mark scan as in progress */
4943 	spin_unlock_irqrestore(&h->scan_lock, flags);
4944 
4945 	if (unlikely(lockup_detected(h)))
4946 		return hpsa_scan_complete(h);
4947 
4948 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4949 
4950 	hpsa_scan_complete(h);
4951 }
4952 
4953 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4954 {
4955 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4956 
4957 	if (!logical_drive)
4958 		return -ENODEV;
4959 
4960 	if (qdepth < 1)
4961 		qdepth = 1;
4962 	else if (qdepth > logical_drive->queue_depth)
4963 		qdepth = logical_drive->queue_depth;
4964 
4965 	return scsi_change_queue_depth(sdev, qdepth);
4966 }
4967 
4968 static int hpsa_scan_finished(struct Scsi_Host *sh,
4969 	unsigned long elapsed_time)
4970 {
4971 	struct ctlr_info *h = shost_to_hba(sh);
4972 	unsigned long flags;
4973 	int finished;
4974 
4975 	spin_lock_irqsave(&h->scan_lock, flags);
4976 	finished = h->scan_finished;
4977 	spin_unlock_irqrestore(&h->scan_lock, flags);
4978 	return finished;
4979 }
4980 
4981 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4982 {
4983 	struct Scsi_Host *sh;
4984 	int error;
4985 
4986 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4987 	if (sh == NULL) {
4988 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4989 		return -ENOMEM;
4990 	}
4991 
4992 	sh->io_port = 0;
4993 	sh->n_io_port = 0;
4994 	sh->this_id = -1;
4995 	sh->max_channel = 3;
4996 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4997 	sh->max_lun = HPSA_MAX_LUN;
4998 	sh->max_id = HPSA_MAX_LUN;
4999 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5000 	sh->cmd_per_lun = sh->can_queue;
5001 	sh->sg_tablesize = h->maxsgentries;
5002 	sh->hostdata[0] = (unsigned long) h;
5003 	sh->irq = h->intr[h->intr_mode];
5004 	sh->unique_id = sh->irq;
5005 	error = scsi_init_shared_tag_map(sh, sh->can_queue);
5006 	if (error) {
5007 		dev_err(&h->pdev->dev,
5008 			"%s: scsi_init_shared_tag_map failed for controller %d\n",
5009 			__func__, h->ctlr);
5010 			scsi_host_put(sh);
5011 			return error;
5012 	}
5013 	h->scsi_host = sh;
5014 	return 0;
5015 }
5016 
5017 static int hpsa_scsi_add_host(struct ctlr_info *h)
5018 {
5019 	int rv;
5020 
5021 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5022 	if (rv) {
5023 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5024 		return rv;
5025 	}
5026 	scsi_scan_host(h->scsi_host);
5027 	return 0;
5028 }
5029 
5030 /*
5031  * The block layer has already gone to the trouble of picking out a unique,
5032  * small-integer tag for this request.  We use an offset from that value as
5033  * an index to select our command block.  (The offset allows us to reserve the
5034  * low-numbered entries for our own uses.)
5035  */
5036 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5037 {
5038 	int idx = scmd->request->tag;
5039 
5040 	if (idx < 0)
5041 		return idx;
5042 
5043 	/* Offset to leave space for internal cmds. */
5044 	return idx += HPSA_NRESERVED_CMDS;
5045 }
5046 
5047 /*
5048  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5049  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5050  */
5051 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5052 				struct CommandList *c, unsigned char lunaddr[],
5053 				int reply_queue)
5054 {
5055 	int rc;
5056 
5057 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5058 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5059 			NULL, 0, 0, lunaddr, TYPE_CMD);
5060 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5061 	if (rc)
5062 		return rc;
5063 	/* no unmap needed here because no data xfer. */
5064 
5065 	/* Check if the unit is already ready. */
5066 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5067 		return 0;
5068 
5069 	/*
5070 	 * The first command sent after reset will receive "unit attention" to
5071 	 * indicate that the LUN has been reset...this is actually what we're
5072 	 * looking for (but, success is good too).
5073 	 */
5074 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5075 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5076 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5077 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5078 		return 0;
5079 
5080 	return 1;
5081 }
5082 
5083 /*
5084  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5085  * returns zero when the unit is ready, and non-zero when giving up.
5086  */
5087 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5088 				struct CommandList *c,
5089 				unsigned char lunaddr[], int reply_queue)
5090 {
5091 	int rc;
5092 	int count = 0;
5093 	int waittime = 1; /* seconds */
5094 
5095 	/* Send test unit ready until device ready, or give up. */
5096 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5097 
5098 		/*
5099 		 * Wait for a bit.  do this first, because if we send
5100 		 * the TUR right away, the reset will just abort it.
5101 		 */
5102 		msleep(1000 * waittime);
5103 
5104 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5105 		if (!rc)
5106 			break;
5107 
5108 		/* Increase wait time with each try, up to a point. */
5109 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5110 			waittime *= 2;
5111 
5112 		dev_warn(&h->pdev->dev,
5113 			 "waiting %d secs for device to become ready.\n",
5114 			 waittime);
5115 	}
5116 
5117 	return rc;
5118 }
5119 
5120 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5121 					   unsigned char lunaddr[],
5122 					   int reply_queue)
5123 {
5124 	int first_queue;
5125 	int last_queue;
5126 	int rq;
5127 	int rc = 0;
5128 	struct CommandList *c;
5129 
5130 	c = cmd_alloc(h);
5131 
5132 	/*
5133 	 * If no specific reply queue was requested, then send the TUR
5134 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5135 	 * the loop exactly once using only the specified queue.
5136 	 */
5137 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5138 		first_queue = 0;
5139 		last_queue = h->nreply_queues - 1;
5140 	} else {
5141 		first_queue = reply_queue;
5142 		last_queue = reply_queue;
5143 	}
5144 
5145 	for (rq = first_queue; rq <= last_queue; rq++) {
5146 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5147 		if (rc)
5148 			break;
5149 	}
5150 
5151 	if (rc)
5152 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5153 	else
5154 		dev_warn(&h->pdev->dev, "device is ready.\n");
5155 
5156 	cmd_free(h, c);
5157 	return rc;
5158 }
5159 
5160 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5161  * complaining.  Doing a host- or bus-reset can't do anything good here.
5162  */
5163 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5164 {
5165 	int rc;
5166 	struct ctlr_info *h;
5167 	struct hpsa_scsi_dev_t *dev;
5168 	char msg[48];
5169 
5170 	/* find the controller to which the command to be aborted was sent */
5171 	h = sdev_to_hba(scsicmd->device);
5172 	if (h == NULL) /* paranoia */
5173 		return FAILED;
5174 
5175 	if (lockup_detected(h))
5176 		return FAILED;
5177 
5178 	dev = scsicmd->device->hostdata;
5179 	if (!dev) {
5180 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5181 		return FAILED;
5182 	}
5183 
5184 	/* if controller locked up, we can guarantee command won't complete */
5185 	if (lockup_detected(h)) {
5186 		snprintf(msg, sizeof(msg),
5187 			 "cmd %d RESET FAILED, lockup detected",
5188 			 hpsa_get_cmd_index(scsicmd));
5189 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5190 		return FAILED;
5191 	}
5192 
5193 	/* this reset request might be the result of a lockup; check */
5194 	if (detect_controller_lockup(h)) {
5195 		snprintf(msg, sizeof(msg),
5196 			 "cmd %d RESET FAILED, new lockup detected",
5197 			 hpsa_get_cmd_index(scsicmd));
5198 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5199 		return FAILED;
5200 	}
5201 
5202 	/* Do not attempt on controller */
5203 	if (is_hba_lunid(dev->scsi3addr))
5204 		return SUCCESS;
5205 
5206 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5207 
5208 	/* send a reset to the SCSI LUN which the command was sent to */
5209 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5210 			   DEFAULT_REPLY_QUEUE);
5211 	snprintf(msg, sizeof(msg), "reset %s",
5212 		 rc == 0 ? "completed successfully" : "failed");
5213 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5214 	return rc == 0 ? SUCCESS : FAILED;
5215 }
5216 
5217 static void swizzle_abort_tag(u8 *tag)
5218 {
5219 	u8 original_tag[8];
5220 
5221 	memcpy(original_tag, tag, 8);
5222 	tag[0] = original_tag[3];
5223 	tag[1] = original_tag[2];
5224 	tag[2] = original_tag[1];
5225 	tag[3] = original_tag[0];
5226 	tag[4] = original_tag[7];
5227 	tag[5] = original_tag[6];
5228 	tag[6] = original_tag[5];
5229 	tag[7] = original_tag[4];
5230 }
5231 
5232 static void hpsa_get_tag(struct ctlr_info *h,
5233 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5234 {
5235 	u64 tag;
5236 	if (c->cmd_type == CMD_IOACCEL1) {
5237 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5238 			&h->ioaccel_cmd_pool[c->cmdindex];
5239 		tag = le64_to_cpu(cm1->tag);
5240 		*tagupper = cpu_to_le32(tag >> 32);
5241 		*taglower = cpu_to_le32(tag);
5242 		return;
5243 	}
5244 	if (c->cmd_type == CMD_IOACCEL2) {
5245 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5246 			&h->ioaccel2_cmd_pool[c->cmdindex];
5247 		/* upper tag not used in ioaccel2 mode */
5248 		memset(tagupper, 0, sizeof(*tagupper));
5249 		*taglower = cm2->Tag;
5250 		return;
5251 	}
5252 	tag = le64_to_cpu(c->Header.tag);
5253 	*tagupper = cpu_to_le32(tag >> 32);
5254 	*taglower = cpu_to_le32(tag);
5255 }
5256 
5257 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5258 	struct CommandList *abort, int reply_queue)
5259 {
5260 	int rc = IO_OK;
5261 	struct CommandList *c;
5262 	struct ErrorInfo *ei;
5263 	__le32 tagupper, taglower;
5264 
5265 	c = cmd_alloc(h);
5266 
5267 	/* fill_cmd can't fail here, no buffer to map */
5268 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5269 		0, 0, scsi3addr, TYPE_MSG);
5270 	if (h->needs_abort_tags_swizzled)
5271 		swizzle_abort_tag(&c->Request.CDB[4]);
5272 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5273 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5274 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5275 		__func__, tagupper, taglower);
5276 	/* no unmap needed here because no data xfer. */
5277 
5278 	ei = c->err_info;
5279 	switch (ei->CommandStatus) {
5280 	case CMD_SUCCESS:
5281 		break;
5282 	case CMD_TMF_STATUS:
5283 		rc = hpsa_evaluate_tmf_status(h, c);
5284 		break;
5285 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5286 		rc = -1;
5287 		break;
5288 	default:
5289 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5290 			__func__, tagupper, taglower);
5291 		hpsa_scsi_interpret_error(h, c);
5292 		rc = -1;
5293 		break;
5294 	}
5295 	cmd_free(h, c);
5296 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5297 		__func__, tagupper, taglower);
5298 	return rc;
5299 }
5300 
5301 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5302 	struct CommandList *command_to_abort, int reply_queue)
5303 {
5304 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5305 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5306 	struct io_accel2_cmd *c2a =
5307 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5308 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5309 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5310 
5311 	/*
5312 	 * We're overlaying struct hpsa_tmf_struct on top of something which
5313 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
5314 	 * actually fits, and doesn't overrun the error info space.
5315 	 */
5316 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5317 			sizeof(struct io_accel2_cmd));
5318 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5319 			offsetof(struct hpsa_tmf_struct, error_len) +
5320 				sizeof(ac->error_len));
5321 
5322 	c->cmd_type = IOACCEL2_TMF;
5323 	c->scsi_cmd = SCSI_CMD_BUSY;
5324 
5325 	/* Adjust the DMA address to point to the accelerated command buffer */
5326 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5327 				(c->cmdindex * sizeof(struct io_accel2_cmd));
5328 	BUG_ON(c->busaddr & 0x0000007F);
5329 
5330 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5331 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5332 	ac->reply_queue = reply_queue;
5333 	ac->tmf = IOACCEL2_TMF_ABORT;
5334 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5335 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
5336 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5337 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5338 	ac->error_ptr = cpu_to_le64(c->busaddr +
5339 			offsetof(struct io_accel2_cmd, error_data));
5340 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5341 }
5342 
5343 /* ioaccel2 path firmware cannot handle abort task requests.
5344  * Change abort requests to physical target reset, and send to the
5345  * address of the physical disk used for the ioaccel 2 command.
5346  * Return 0 on success (IO_OK)
5347  *	 -1 on failure
5348  */
5349 
5350 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5351 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5352 {
5353 	int rc = IO_OK;
5354 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5355 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5356 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5357 	unsigned char *psa = &phys_scsi3addr[0];
5358 
5359 	/* Get a pointer to the hpsa logical device. */
5360 	scmd = abort->scsi_cmd;
5361 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5362 	if (dev == NULL) {
5363 		dev_warn(&h->pdev->dev,
5364 			"Cannot abort: no device pointer for command.\n");
5365 			return -1; /* not abortable */
5366 	}
5367 
5368 	if (h->raid_offload_debug > 0)
5369 		dev_info(&h->pdev->dev,
5370 			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5371 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5372 			"Reset as abort",
5373 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5374 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5375 
5376 	if (!dev->offload_enabled) {
5377 		dev_warn(&h->pdev->dev,
5378 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5379 		return -1; /* not abortable */
5380 	}
5381 
5382 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
5383 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5384 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5385 		return -1; /* not abortable */
5386 	}
5387 
5388 	/* send the reset */
5389 	if (h->raid_offload_debug > 0)
5390 		dev_info(&h->pdev->dev,
5391 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5392 			psa[0], psa[1], psa[2], psa[3],
5393 			psa[4], psa[5], psa[6], psa[7]);
5394 	rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5395 	if (rc != 0) {
5396 		dev_warn(&h->pdev->dev,
5397 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5398 			psa[0], psa[1], psa[2], psa[3],
5399 			psa[4], psa[5], psa[6], psa[7]);
5400 		return rc; /* failed to reset */
5401 	}
5402 
5403 	/* wait for device to recover */
5404 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5405 		dev_warn(&h->pdev->dev,
5406 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5407 			psa[0], psa[1], psa[2], psa[3],
5408 			psa[4], psa[5], psa[6], psa[7]);
5409 		return -1;  /* failed to recover */
5410 	}
5411 
5412 	/* device recovered */
5413 	dev_info(&h->pdev->dev,
5414 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5415 		psa[0], psa[1], psa[2], psa[3],
5416 		psa[4], psa[5], psa[6], psa[7]);
5417 
5418 	return rc; /* success */
5419 }
5420 
5421 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5422 	struct CommandList *abort, int reply_queue)
5423 {
5424 	int rc = IO_OK;
5425 	struct CommandList *c;
5426 	__le32 taglower, tagupper;
5427 	struct hpsa_scsi_dev_t *dev;
5428 	struct io_accel2_cmd *c2;
5429 
5430 	dev = abort->scsi_cmd->device->hostdata;
5431 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5432 		return -1;
5433 
5434 	c = cmd_alloc(h);
5435 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5436 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5437 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5438 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5439 	dev_dbg(&h->pdev->dev,
5440 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5441 		__func__, tagupper, taglower);
5442 	/* no unmap needed here because no data xfer. */
5443 
5444 	dev_dbg(&h->pdev->dev,
5445 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5446 		__func__, tagupper, taglower, c2->error_data.serv_response);
5447 	switch (c2->error_data.serv_response) {
5448 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5449 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5450 		rc = 0;
5451 		break;
5452 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5453 	case IOACCEL2_SERV_RESPONSE_FAILURE:
5454 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5455 		rc = -1;
5456 		break;
5457 	default:
5458 		dev_warn(&h->pdev->dev,
5459 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5460 			__func__, tagupper, taglower,
5461 			c2->error_data.serv_response);
5462 		rc = -1;
5463 	}
5464 	cmd_free(h, c);
5465 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5466 		tagupper, taglower);
5467 	return rc;
5468 }
5469 
5470 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5471 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5472 {
5473 	/*
5474 	 * ioccelerator mode 2 commands should be aborted via the
5475 	 * accelerated path, since RAID path is unaware of these commands,
5476 	 * but not all underlying firmware can handle abort TMF.
5477 	 * Change abort to physical device reset when abort TMF is unsupported.
5478 	 */
5479 	if (abort->cmd_type == CMD_IOACCEL2) {
5480 		if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5481 			return hpsa_send_abort_ioaccel2(h, abort,
5482 						reply_queue);
5483 		else
5484 			return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5485 							abort, reply_queue);
5486 	}
5487 	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5488 }
5489 
5490 /* Find out which reply queue a command was meant to return on */
5491 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5492 					struct CommandList *c)
5493 {
5494 	if (c->cmd_type == CMD_IOACCEL2)
5495 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5496 	return c->Header.ReplyQueue;
5497 }
5498 
5499 /*
5500  * Limit concurrency of abort commands to prevent
5501  * over-subscription of commands
5502  */
5503 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5504 {
5505 #define ABORT_CMD_WAIT_MSECS 5000
5506 	return !wait_event_timeout(h->abort_cmd_wait_queue,
5507 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5508 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5509 }
5510 
5511 /* Send an abort for the specified command.
5512  *	If the device and controller support it,
5513  *		send a task abort request.
5514  */
5515 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5516 {
5517 
5518 	int rc;
5519 	struct ctlr_info *h;
5520 	struct hpsa_scsi_dev_t *dev;
5521 	struct CommandList *abort; /* pointer to command to be aborted */
5522 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
5523 	char msg[256];		/* For debug messaging. */
5524 	int ml = 0;
5525 	__le32 tagupper, taglower;
5526 	int refcount, reply_queue;
5527 
5528 	if (sc == NULL)
5529 		return FAILED;
5530 
5531 	if (sc->device == NULL)
5532 		return FAILED;
5533 
5534 	/* Find the controller of the command to be aborted */
5535 	h = sdev_to_hba(sc->device);
5536 	if (h == NULL)
5537 		return FAILED;
5538 
5539 	/* Find the device of the command to be aborted */
5540 	dev = sc->device->hostdata;
5541 	if (!dev) {
5542 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5543 				msg);
5544 		return FAILED;
5545 	}
5546 
5547 	/* If controller locked up, we can guarantee command won't complete */
5548 	if (lockup_detected(h)) {
5549 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5550 					"ABORT FAILED, lockup detected");
5551 		return FAILED;
5552 	}
5553 
5554 	/* This is a good time to check if controller lockup has occurred */
5555 	if (detect_controller_lockup(h)) {
5556 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5557 					"ABORT FAILED, new lockup detected");
5558 		return FAILED;
5559 	}
5560 
5561 	/* Check that controller supports some kind of task abort */
5562 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5563 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5564 		return FAILED;
5565 
5566 	memset(msg, 0, sizeof(msg));
5567 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5568 		h->scsi_host->host_no, sc->device->channel,
5569 		sc->device->id, sc->device->lun,
5570 		"Aborting command", sc);
5571 
5572 	/* Get SCSI command to be aborted */
5573 	abort = (struct CommandList *) sc->host_scribble;
5574 	if (abort == NULL) {
5575 		/* This can happen if the command already completed. */
5576 		return SUCCESS;
5577 	}
5578 	refcount = atomic_inc_return(&abort->refcount);
5579 	if (refcount == 1) { /* Command is done already. */
5580 		cmd_free(h, abort);
5581 		return SUCCESS;
5582 	}
5583 
5584 	/* Don't bother trying the abort if we know it won't work. */
5585 	if (abort->cmd_type != CMD_IOACCEL2 &&
5586 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5587 		cmd_free(h, abort);
5588 		return FAILED;
5589 	}
5590 
5591 	/*
5592 	 * Check that we're aborting the right command.
5593 	 * It's possible the CommandList already completed and got re-used.
5594 	 */
5595 	if (abort->scsi_cmd != sc) {
5596 		cmd_free(h, abort);
5597 		return SUCCESS;
5598 	}
5599 
5600 	abort->abort_pending = true;
5601 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5602 	reply_queue = hpsa_extract_reply_queue(h, abort);
5603 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5604 	as  = abort->scsi_cmd;
5605 	if (as != NULL)
5606 		ml += sprintf(msg+ml,
5607 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5608 			as->cmd_len, as->cmnd[0], as->cmnd[1],
5609 			as->serial_number);
5610 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5611 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5612 
5613 	/*
5614 	 * Command is in flight, or possibly already completed
5615 	 * by the firmware (but not to the scsi mid layer) but we can't
5616 	 * distinguish which.  Send the abort down.
5617 	 */
5618 	if (wait_for_available_abort_cmd(h)) {
5619 		dev_warn(&h->pdev->dev,
5620 			"%s FAILED, timeout waiting for an abort command to become available.\n",
5621 			msg);
5622 		cmd_free(h, abort);
5623 		return FAILED;
5624 	}
5625 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5626 	atomic_inc(&h->abort_cmds_available);
5627 	wake_up_all(&h->abort_cmd_wait_queue);
5628 	if (rc != 0) {
5629 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5630 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
5631 				"FAILED to abort command");
5632 		cmd_free(h, abort);
5633 		return FAILED;
5634 	}
5635 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5636 	wait_event(h->event_sync_wait_queue,
5637 		   abort->scsi_cmd != sc || lockup_detected(h));
5638 	cmd_free(h, abort);
5639 	return !lockup_detected(h) ? SUCCESS : FAILED;
5640 }
5641 
5642 /*
5643  * For operations with an associated SCSI command, a command block is allocated
5644  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5645  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5646  * the complement, although cmd_free() may be called instead.
5647  */
5648 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5649 					    struct scsi_cmnd *scmd)
5650 {
5651 	int idx = hpsa_get_cmd_index(scmd);
5652 	struct CommandList *c = h->cmd_pool + idx;
5653 
5654 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5655 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5656 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5657 		/* The index value comes from the block layer, so if it's out of
5658 		 * bounds, it's probably not our bug.
5659 		 */
5660 		BUG();
5661 	}
5662 
5663 	atomic_inc(&c->refcount);
5664 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5665 		/*
5666 		 * We expect that the SCSI layer will hand us a unique tag
5667 		 * value.  Thus, there should never be a collision here between
5668 		 * two requests...because if the selected command isn't idle
5669 		 * then someone is going to be very disappointed.
5670 		 */
5671 		dev_err(&h->pdev->dev,
5672 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5673 			idx);
5674 		if (c->scsi_cmd != NULL)
5675 			scsi_print_command(c->scsi_cmd);
5676 		scsi_print_command(scmd);
5677 	}
5678 
5679 	hpsa_cmd_partial_init(h, idx, c);
5680 	return c;
5681 }
5682 
5683 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5684 {
5685 	/*
5686 	 * Release our reference to the block.  We don't need to do anything
5687 	 * else to free it, because it is accessed by index.  (There's no point
5688 	 * in checking the result of the decrement, since we cannot guarantee
5689 	 * that there isn't a concurrent abort which is also accessing it.)
5690 	 */
5691 	(void)atomic_dec(&c->refcount);
5692 }
5693 
5694 /*
5695  * For operations that cannot sleep, a command block is allocated at init,
5696  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5697  * which ones are free or in use.  Lock must be held when calling this.
5698  * cmd_free() is the complement.
5699  * This function never gives up and returns NULL.  If it hangs,
5700  * another thread must call cmd_free() to free some tags.
5701  */
5702 
5703 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5704 {
5705 	struct CommandList *c;
5706 	int refcount, i;
5707 	int offset = 0;
5708 
5709 	/*
5710 	 * There is some *extremely* small but non-zero chance that that
5711 	 * multiple threads could get in here, and one thread could
5712 	 * be scanning through the list of bits looking for a free
5713 	 * one, but the free ones are always behind him, and other
5714 	 * threads sneak in behind him and eat them before he can
5715 	 * get to them, so that while there is always a free one, a
5716 	 * very unlucky thread might be starved anyway, never able to
5717 	 * beat the other threads.  In reality, this happens so
5718 	 * infrequently as to be indistinguishable from never.
5719 	 *
5720 	 * Note that we start allocating commands before the SCSI host structure
5721 	 * is initialized.  Since the search starts at bit zero, this
5722 	 * all works, since we have at least one command structure available;
5723 	 * however, it means that the structures with the low indexes have to be
5724 	 * reserved for driver-initiated requests, while requests from the block
5725 	 * layer will use the higher indexes.
5726 	 */
5727 
5728 	for (;;) {
5729 		i = find_next_zero_bit(h->cmd_pool_bits,
5730 					HPSA_NRESERVED_CMDS,
5731 					offset);
5732 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5733 			offset = 0;
5734 			continue;
5735 		}
5736 		c = h->cmd_pool + i;
5737 		refcount = atomic_inc_return(&c->refcount);
5738 		if (unlikely(refcount > 1)) {
5739 			cmd_free(h, c); /* already in use */
5740 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
5741 			continue;
5742 		}
5743 		set_bit(i & (BITS_PER_LONG - 1),
5744 			h->cmd_pool_bits + (i / BITS_PER_LONG));
5745 		break; /* it's ours now. */
5746 	}
5747 	hpsa_cmd_partial_init(h, i, c);
5748 	return c;
5749 }
5750 
5751 /*
5752  * This is the complementary operation to cmd_alloc().  Note, however, in some
5753  * corner cases it may also be used to free blocks allocated by
5754  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5755  * the clear-bit is harmless.
5756  */
5757 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5758 {
5759 	if (atomic_dec_and_test(&c->refcount)) {
5760 		int i;
5761 
5762 		i = c - h->cmd_pool;
5763 		clear_bit(i & (BITS_PER_LONG - 1),
5764 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
5765 	}
5766 }
5767 
5768 #ifdef CONFIG_COMPAT
5769 
5770 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5771 	void __user *arg)
5772 {
5773 	IOCTL32_Command_struct __user *arg32 =
5774 	    (IOCTL32_Command_struct __user *) arg;
5775 	IOCTL_Command_struct arg64;
5776 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5777 	int err;
5778 	u32 cp;
5779 
5780 	memset(&arg64, 0, sizeof(arg64));
5781 	err = 0;
5782 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5783 			   sizeof(arg64.LUN_info));
5784 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5785 			   sizeof(arg64.Request));
5786 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5787 			   sizeof(arg64.error_info));
5788 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5789 	err |= get_user(cp, &arg32->buf);
5790 	arg64.buf = compat_ptr(cp);
5791 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5792 
5793 	if (err)
5794 		return -EFAULT;
5795 
5796 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5797 	if (err)
5798 		return err;
5799 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5800 			 sizeof(arg32->error_info));
5801 	if (err)
5802 		return -EFAULT;
5803 	return err;
5804 }
5805 
5806 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5807 	int cmd, void __user *arg)
5808 {
5809 	BIG_IOCTL32_Command_struct __user *arg32 =
5810 	    (BIG_IOCTL32_Command_struct __user *) arg;
5811 	BIG_IOCTL_Command_struct arg64;
5812 	BIG_IOCTL_Command_struct __user *p =
5813 	    compat_alloc_user_space(sizeof(arg64));
5814 	int err;
5815 	u32 cp;
5816 
5817 	memset(&arg64, 0, sizeof(arg64));
5818 	err = 0;
5819 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5820 			   sizeof(arg64.LUN_info));
5821 	err |= copy_from_user(&arg64.Request, &arg32->Request,
5822 			   sizeof(arg64.Request));
5823 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5824 			   sizeof(arg64.error_info));
5825 	err |= get_user(arg64.buf_size, &arg32->buf_size);
5826 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5827 	err |= get_user(cp, &arg32->buf);
5828 	arg64.buf = compat_ptr(cp);
5829 	err |= copy_to_user(p, &arg64, sizeof(arg64));
5830 
5831 	if (err)
5832 		return -EFAULT;
5833 
5834 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5835 	if (err)
5836 		return err;
5837 	err |= copy_in_user(&arg32->error_info, &p->error_info,
5838 			 sizeof(arg32->error_info));
5839 	if (err)
5840 		return -EFAULT;
5841 	return err;
5842 }
5843 
5844 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5845 {
5846 	switch (cmd) {
5847 	case CCISS_GETPCIINFO:
5848 	case CCISS_GETINTINFO:
5849 	case CCISS_SETINTINFO:
5850 	case CCISS_GETNODENAME:
5851 	case CCISS_SETNODENAME:
5852 	case CCISS_GETHEARTBEAT:
5853 	case CCISS_GETBUSTYPES:
5854 	case CCISS_GETFIRMVER:
5855 	case CCISS_GETDRIVVER:
5856 	case CCISS_REVALIDVOLS:
5857 	case CCISS_DEREGDISK:
5858 	case CCISS_REGNEWDISK:
5859 	case CCISS_REGNEWD:
5860 	case CCISS_RESCANDISK:
5861 	case CCISS_GETLUNINFO:
5862 		return hpsa_ioctl(dev, cmd, arg);
5863 
5864 	case CCISS_PASSTHRU32:
5865 		return hpsa_ioctl32_passthru(dev, cmd, arg);
5866 	case CCISS_BIG_PASSTHRU32:
5867 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5868 
5869 	default:
5870 		return -ENOIOCTLCMD;
5871 	}
5872 }
5873 #endif
5874 
5875 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5876 {
5877 	struct hpsa_pci_info pciinfo;
5878 
5879 	if (!argp)
5880 		return -EINVAL;
5881 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
5882 	pciinfo.bus = h->pdev->bus->number;
5883 	pciinfo.dev_fn = h->pdev->devfn;
5884 	pciinfo.board_id = h->board_id;
5885 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5886 		return -EFAULT;
5887 	return 0;
5888 }
5889 
5890 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5891 {
5892 	DriverVer_type DriverVer;
5893 	unsigned char vmaj, vmin, vsubmin;
5894 	int rc;
5895 
5896 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5897 		&vmaj, &vmin, &vsubmin);
5898 	if (rc != 3) {
5899 		dev_info(&h->pdev->dev, "driver version string '%s' "
5900 			"unrecognized.", HPSA_DRIVER_VERSION);
5901 		vmaj = 0;
5902 		vmin = 0;
5903 		vsubmin = 0;
5904 	}
5905 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5906 	if (!argp)
5907 		return -EINVAL;
5908 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5909 		return -EFAULT;
5910 	return 0;
5911 }
5912 
5913 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5914 {
5915 	IOCTL_Command_struct iocommand;
5916 	struct CommandList *c;
5917 	char *buff = NULL;
5918 	u64 temp64;
5919 	int rc = 0;
5920 
5921 	if (!argp)
5922 		return -EINVAL;
5923 	if (!capable(CAP_SYS_RAWIO))
5924 		return -EPERM;
5925 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5926 		return -EFAULT;
5927 	if ((iocommand.buf_size < 1) &&
5928 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
5929 		return -EINVAL;
5930 	}
5931 	if (iocommand.buf_size > 0) {
5932 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5933 		if (buff == NULL)
5934 			return -ENOMEM;
5935 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5936 			/* Copy the data into the buffer we created */
5937 			if (copy_from_user(buff, iocommand.buf,
5938 				iocommand.buf_size)) {
5939 				rc = -EFAULT;
5940 				goto out_kfree;
5941 			}
5942 		} else {
5943 			memset(buff, 0, iocommand.buf_size);
5944 		}
5945 	}
5946 	c = cmd_alloc(h);
5947 
5948 	/* Fill in the command type */
5949 	c->cmd_type = CMD_IOCTL_PEND;
5950 	c->scsi_cmd = SCSI_CMD_BUSY;
5951 	/* Fill in Command Header */
5952 	c->Header.ReplyQueue = 0; /* unused in simple mode */
5953 	if (iocommand.buf_size > 0) {	/* buffer to fill */
5954 		c->Header.SGList = 1;
5955 		c->Header.SGTotal = cpu_to_le16(1);
5956 	} else	{ /* no buffers to fill */
5957 		c->Header.SGList = 0;
5958 		c->Header.SGTotal = cpu_to_le16(0);
5959 	}
5960 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5961 
5962 	/* Fill in Request block */
5963 	memcpy(&c->Request, &iocommand.Request,
5964 		sizeof(c->Request));
5965 
5966 	/* Fill in the scatter gather information */
5967 	if (iocommand.buf_size > 0) {
5968 		temp64 = pci_map_single(h->pdev, buff,
5969 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5970 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5971 			c->SG[0].Addr = cpu_to_le64(0);
5972 			c->SG[0].Len = cpu_to_le32(0);
5973 			rc = -ENOMEM;
5974 			goto out;
5975 		}
5976 		c->SG[0].Addr = cpu_to_le64(temp64);
5977 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5978 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5979 	}
5980 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5981 	if (iocommand.buf_size > 0)
5982 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5983 	check_ioctl_unit_attention(h, c);
5984 	if (rc) {
5985 		rc = -EIO;
5986 		goto out;
5987 	}
5988 
5989 	/* Copy the error information out */
5990 	memcpy(&iocommand.error_info, c->err_info,
5991 		sizeof(iocommand.error_info));
5992 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5993 		rc = -EFAULT;
5994 		goto out;
5995 	}
5996 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5997 		iocommand.buf_size > 0) {
5998 		/* Copy the data out of the buffer we created */
5999 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6000 			rc = -EFAULT;
6001 			goto out;
6002 		}
6003 	}
6004 out:
6005 	cmd_free(h, c);
6006 out_kfree:
6007 	kfree(buff);
6008 	return rc;
6009 }
6010 
6011 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6012 {
6013 	BIG_IOCTL_Command_struct *ioc;
6014 	struct CommandList *c;
6015 	unsigned char **buff = NULL;
6016 	int *buff_size = NULL;
6017 	u64 temp64;
6018 	BYTE sg_used = 0;
6019 	int status = 0;
6020 	u32 left;
6021 	u32 sz;
6022 	BYTE __user *data_ptr;
6023 
6024 	if (!argp)
6025 		return -EINVAL;
6026 	if (!capable(CAP_SYS_RAWIO))
6027 		return -EPERM;
6028 	ioc = (BIG_IOCTL_Command_struct *)
6029 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
6030 	if (!ioc) {
6031 		status = -ENOMEM;
6032 		goto cleanup1;
6033 	}
6034 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6035 		status = -EFAULT;
6036 		goto cleanup1;
6037 	}
6038 	if ((ioc->buf_size < 1) &&
6039 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6040 		status = -EINVAL;
6041 		goto cleanup1;
6042 	}
6043 	/* Check kmalloc limits  using all SGs */
6044 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6045 		status = -EINVAL;
6046 		goto cleanup1;
6047 	}
6048 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6049 		status = -EINVAL;
6050 		goto cleanup1;
6051 	}
6052 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6053 	if (!buff) {
6054 		status = -ENOMEM;
6055 		goto cleanup1;
6056 	}
6057 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6058 	if (!buff_size) {
6059 		status = -ENOMEM;
6060 		goto cleanup1;
6061 	}
6062 	left = ioc->buf_size;
6063 	data_ptr = ioc->buf;
6064 	while (left) {
6065 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6066 		buff_size[sg_used] = sz;
6067 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6068 		if (buff[sg_used] == NULL) {
6069 			status = -ENOMEM;
6070 			goto cleanup1;
6071 		}
6072 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6073 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6074 				status = -EFAULT;
6075 				goto cleanup1;
6076 			}
6077 		} else
6078 			memset(buff[sg_used], 0, sz);
6079 		left -= sz;
6080 		data_ptr += sz;
6081 		sg_used++;
6082 	}
6083 	c = cmd_alloc(h);
6084 
6085 	c->cmd_type = CMD_IOCTL_PEND;
6086 	c->scsi_cmd = SCSI_CMD_BUSY;
6087 	c->Header.ReplyQueue = 0;
6088 	c->Header.SGList = (u8) sg_used;
6089 	c->Header.SGTotal = cpu_to_le16(sg_used);
6090 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6091 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6092 	if (ioc->buf_size > 0) {
6093 		int i;
6094 		for (i = 0; i < sg_used; i++) {
6095 			temp64 = pci_map_single(h->pdev, buff[i],
6096 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6097 			if (dma_mapping_error(&h->pdev->dev,
6098 							(dma_addr_t) temp64)) {
6099 				c->SG[i].Addr = cpu_to_le64(0);
6100 				c->SG[i].Len = cpu_to_le32(0);
6101 				hpsa_pci_unmap(h->pdev, c, i,
6102 					PCI_DMA_BIDIRECTIONAL);
6103 				status = -ENOMEM;
6104 				goto cleanup0;
6105 			}
6106 			c->SG[i].Addr = cpu_to_le64(temp64);
6107 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6108 			c->SG[i].Ext = cpu_to_le32(0);
6109 		}
6110 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6111 	}
6112 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6113 	if (sg_used)
6114 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6115 	check_ioctl_unit_attention(h, c);
6116 	if (status) {
6117 		status = -EIO;
6118 		goto cleanup0;
6119 	}
6120 
6121 	/* Copy the error information out */
6122 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6123 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6124 		status = -EFAULT;
6125 		goto cleanup0;
6126 	}
6127 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6128 		int i;
6129 
6130 		/* Copy the data out of the buffer we created */
6131 		BYTE __user *ptr = ioc->buf;
6132 		for (i = 0; i < sg_used; i++) {
6133 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6134 				status = -EFAULT;
6135 				goto cleanup0;
6136 			}
6137 			ptr += buff_size[i];
6138 		}
6139 	}
6140 	status = 0;
6141 cleanup0:
6142 	cmd_free(h, c);
6143 cleanup1:
6144 	if (buff) {
6145 		int i;
6146 
6147 		for (i = 0; i < sg_used; i++)
6148 			kfree(buff[i]);
6149 		kfree(buff);
6150 	}
6151 	kfree(buff_size);
6152 	kfree(ioc);
6153 	return status;
6154 }
6155 
6156 static void check_ioctl_unit_attention(struct ctlr_info *h,
6157 	struct CommandList *c)
6158 {
6159 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6160 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6161 		(void) check_for_unit_attention(h, c);
6162 }
6163 
6164 /*
6165  * ioctl
6166  */
6167 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6168 {
6169 	struct ctlr_info *h;
6170 	void __user *argp = (void __user *)arg;
6171 	int rc;
6172 
6173 	h = sdev_to_hba(dev);
6174 
6175 	switch (cmd) {
6176 	case CCISS_DEREGDISK:
6177 	case CCISS_REGNEWDISK:
6178 	case CCISS_REGNEWD:
6179 		hpsa_scan_start(h->scsi_host);
6180 		return 0;
6181 	case CCISS_GETPCIINFO:
6182 		return hpsa_getpciinfo_ioctl(h, argp);
6183 	case CCISS_GETDRIVVER:
6184 		return hpsa_getdrivver_ioctl(h, argp);
6185 	case CCISS_PASSTHRU:
6186 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6187 			return -EAGAIN;
6188 		rc = hpsa_passthru_ioctl(h, argp);
6189 		atomic_inc(&h->passthru_cmds_avail);
6190 		return rc;
6191 	case CCISS_BIG_PASSTHRU:
6192 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6193 			return -EAGAIN;
6194 		rc = hpsa_big_passthru_ioctl(h, argp);
6195 		atomic_inc(&h->passthru_cmds_avail);
6196 		return rc;
6197 	default:
6198 		return -ENOTTY;
6199 	}
6200 }
6201 
6202 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6203 				u8 reset_type)
6204 {
6205 	struct CommandList *c;
6206 
6207 	c = cmd_alloc(h);
6208 
6209 	/* fill_cmd can't fail here, no data buffer to map */
6210 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6211 		RAID_CTLR_LUNID, TYPE_MSG);
6212 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6213 	c->waiting = NULL;
6214 	enqueue_cmd_and_start_io(h, c);
6215 	/* Don't wait for completion, the reset won't complete.  Don't free
6216 	 * the command either.  This is the last command we will send before
6217 	 * re-initializing everything, so it doesn't matter and won't leak.
6218 	 */
6219 	return;
6220 }
6221 
6222 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6223 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6224 	int cmd_type)
6225 {
6226 	int pci_dir = XFER_NONE;
6227 	u64 tag; /* for commands to be aborted */
6228 
6229 	c->cmd_type = CMD_IOCTL_PEND;
6230 	c->scsi_cmd = SCSI_CMD_BUSY;
6231 	c->Header.ReplyQueue = 0;
6232 	if (buff != NULL && size > 0) {
6233 		c->Header.SGList = 1;
6234 		c->Header.SGTotal = cpu_to_le16(1);
6235 	} else {
6236 		c->Header.SGList = 0;
6237 		c->Header.SGTotal = cpu_to_le16(0);
6238 	}
6239 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6240 
6241 	if (cmd_type == TYPE_CMD) {
6242 		switch (cmd) {
6243 		case HPSA_INQUIRY:
6244 			/* are we trying to read a vital product page */
6245 			if (page_code & VPD_PAGE) {
6246 				c->Request.CDB[1] = 0x01;
6247 				c->Request.CDB[2] = (page_code & 0xff);
6248 			}
6249 			c->Request.CDBLen = 6;
6250 			c->Request.type_attr_dir =
6251 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6252 			c->Request.Timeout = 0;
6253 			c->Request.CDB[0] = HPSA_INQUIRY;
6254 			c->Request.CDB[4] = size & 0xFF;
6255 			break;
6256 		case HPSA_REPORT_LOG:
6257 		case HPSA_REPORT_PHYS:
6258 			/* Talking to controller so It's a physical command
6259 			   mode = 00 target = 0.  Nothing to write.
6260 			 */
6261 			c->Request.CDBLen = 12;
6262 			c->Request.type_attr_dir =
6263 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6264 			c->Request.Timeout = 0;
6265 			c->Request.CDB[0] = cmd;
6266 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6267 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6268 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6269 			c->Request.CDB[9] = size & 0xFF;
6270 			break;
6271 		case HPSA_CACHE_FLUSH:
6272 			c->Request.CDBLen = 12;
6273 			c->Request.type_attr_dir =
6274 					TYPE_ATTR_DIR(cmd_type,
6275 						ATTR_SIMPLE, XFER_WRITE);
6276 			c->Request.Timeout = 0;
6277 			c->Request.CDB[0] = BMIC_WRITE;
6278 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6279 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6280 			c->Request.CDB[8] = size & 0xFF;
6281 			break;
6282 		case TEST_UNIT_READY:
6283 			c->Request.CDBLen = 6;
6284 			c->Request.type_attr_dir =
6285 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6286 			c->Request.Timeout = 0;
6287 			break;
6288 		case HPSA_GET_RAID_MAP:
6289 			c->Request.CDBLen = 12;
6290 			c->Request.type_attr_dir =
6291 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6292 			c->Request.Timeout = 0;
6293 			c->Request.CDB[0] = HPSA_CISS_READ;
6294 			c->Request.CDB[1] = cmd;
6295 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6296 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6297 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6298 			c->Request.CDB[9] = size & 0xFF;
6299 			break;
6300 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6301 			c->Request.CDBLen = 10;
6302 			c->Request.type_attr_dir =
6303 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6304 			c->Request.Timeout = 0;
6305 			c->Request.CDB[0] = BMIC_READ;
6306 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6307 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6308 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6309 			break;
6310 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6311 			c->Request.CDBLen = 10;
6312 			c->Request.type_attr_dir =
6313 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6314 			c->Request.Timeout = 0;
6315 			c->Request.CDB[0] = BMIC_READ;
6316 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6317 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6318 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6319 			break;
6320 		default:
6321 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6322 			BUG();
6323 			return -1;
6324 		}
6325 	} else if (cmd_type == TYPE_MSG) {
6326 		switch (cmd) {
6327 
6328 		case  HPSA_DEVICE_RESET_MSG:
6329 			c->Request.CDBLen = 16;
6330 			c->Request.type_attr_dir =
6331 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6332 			c->Request.Timeout = 0; /* Don't time out */
6333 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6334 			c->Request.CDB[0] =  cmd;
6335 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6336 			/* If bytes 4-7 are zero, it means reset the */
6337 			/* LunID device */
6338 			c->Request.CDB[4] = 0x00;
6339 			c->Request.CDB[5] = 0x00;
6340 			c->Request.CDB[6] = 0x00;
6341 			c->Request.CDB[7] = 0x00;
6342 			break;
6343 		case  HPSA_ABORT_MSG:
6344 			memcpy(&tag, buff, sizeof(tag));
6345 			dev_dbg(&h->pdev->dev,
6346 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6347 				tag, c->Header.tag);
6348 			c->Request.CDBLen = 16;
6349 			c->Request.type_attr_dir =
6350 					TYPE_ATTR_DIR(cmd_type,
6351 						ATTR_SIMPLE, XFER_WRITE);
6352 			c->Request.Timeout = 0; /* Don't time out */
6353 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6354 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6355 			c->Request.CDB[2] = 0x00; /* reserved */
6356 			c->Request.CDB[3] = 0x00; /* reserved */
6357 			/* Tag to abort goes in CDB[4]-CDB[11] */
6358 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6359 			c->Request.CDB[12] = 0x00; /* reserved */
6360 			c->Request.CDB[13] = 0x00; /* reserved */
6361 			c->Request.CDB[14] = 0x00; /* reserved */
6362 			c->Request.CDB[15] = 0x00; /* reserved */
6363 		break;
6364 		default:
6365 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6366 				cmd);
6367 			BUG();
6368 		}
6369 	} else {
6370 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6371 		BUG();
6372 	}
6373 
6374 	switch (GET_DIR(c->Request.type_attr_dir)) {
6375 	case XFER_READ:
6376 		pci_dir = PCI_DMA_FROMDEVICE;
6377 		break;
6378 	case XFER_WRITE:
6379 		pci_dir = PCI_DMA_TODEVICE;
6380 		break;
6381 	case XFER_NONE:
6382 		pci_dir = PCI_DMA_NONE;
6383 		break;
6384 	default:
6385 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6386 	}
6387 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6388 		return -1;
6389 	return 0;
6390 }
6391 
6392 /*
6393  * Map (physical) PCI mem into (virtual) kernel space
6394  */
6395 static void __iomem *remap_pci_mem(ulong base, ulong size)
6396 {
6397 	ulong page_base = ((ulong) base) & PAGE_MASK;
6398 	ulong page_offs = ((ulong) base) - page_base;
6399 	void __iomem *page_remapped = ioremap_nocache(page_base,
6400 		page_offs + size);
6401 
6402 	return page_remapped ? (page_remapped + page_offs) : NULL;
6403 }
6404 
6405 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6406 {
6407 	return h->access.command_completed(h, q);
6408 }
6409 
6410 static inline bool interrupt_pending(struct ctlr_info *h)
6411 {
6412 	return h->access.intr_pending(h);
6413 }
6414 
6415 static inline long interrupt_not_for_us(struct ctlr_info *h)
6416 {
6417 	return (h->access.intr_pending(h) == 0) ||
6418 		(h->interrupts_enabled == 0);
6419 }
6420 
6421 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6422 	u32 raw_tag)
6423 {
6424 	if (unlikely(tag_index >= h->nr_cmds)) {
6425 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6426 		return 1;
6427 	}
6428 	return 0;
6429 }
6430 
6431 static inline void finish_cmd(struct CommandList *c)
6432 {
6433 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6434 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6435 			|| c->cmd_type == CMD_IOACCEL2))
6436 		complete_scsi_command(c);
6437 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6438 		complete(c->waiting);
6439 }
6440 
6441 
6442 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6443 {
6444 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6445 #define HPSA_SIMPLE_ERROR_BITS 0x03
6446 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6447 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
6448 	return tag & ~HPSA_PERF_ERROR_BITS;
6449 }
6450 
6451 /* process completion of an indexed ("direct lookup") command */
6452 static inline void process_indexed_cmd(struct ctlr_info *h,
6453 	u32 raw_tag)
6454 {
6455 	u32 tag_index;
6456 	struct CommandList *c;
6457 
6458 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6459 	if (!bad_tag(h, tag_index, raw_tag)) {
6460 		c = h->cmd_pool + tag_index;
6461 		finish_cmd(c);
6462 	}
6463 }
6464 
6465 /* Some controllers, like p400, will give us one interrupt
6466  * after a soft reset, even if we turned interrupts off.
6467  * Only need to check for this in the hpsa_xxx_discard_completions
6468  * functions.
6469  */
6470 static int ignore_bogus_interrupt(struct ctlr_info *h)
6471 {
6472 	if (likely(!reset_devices))
6473 		return 0;
6474 
6475 	if (likely(h->interrupts_enabled))
6476 		return 0;
6477 
6478 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6479 		"(known firmware bug.)  Ignoring.\n");
6480 
6481 	return 1;
6482 }
6483 
6484 /*
6485  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6486  * Relies on (h-q[x] == x) being true for x such that
6487  * 0 <= x < MAX_REPLY_QUEUES.
6488  */
6489 static struct ctlr_info *queue_to_hba(u8 *queue)
6490 {
6491 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6492 }
6493 
6494 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6495 {
6496 	struct ctlr_info *h = queue_to_hba(queue);
6497 	u8 q = *(u8 *) queue;
6498 	u32 raw_tag;
6499 
6500 	if (ignore_bogus_interrupt(h))
6501 		return IRQ_NONE;
6502 
6503 	if (interrupt_not_for_us(h))
6504 		return IRQ_NONE;
6505 	h->last_intr_timestamp = get_jiffies_64();
6506 	while (interrupt_pending(h)) {
6507 		raw_tag = get_next_completion(h, q);
6508 		while (raw_tag != FIFO_EMPTY)
6509 			raw_tag = next_command(h, q);
6510 	}
6511 	return IRQ_HANDLED;
6512 }
6513 
6514 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6515 {
6516 	struct ctlr_info *h = queue_to_hba(queue);
6517 	u32 raw_tag;
6518 	u8 q = *(u8 *) queue;
6519 
6520 	if (ignore_bogus_interrupt(h))
6521 		return IRQ_NONE;
6522 
6523 	h->last_intr_timestamp = get_jiffies_64();
6524 	raw_tag = get_next_completion(h, q);
6525 	while (raw_tag != FIFO_EMPTY)
6526 		raw_tag = next_command(h, q);
6527 	return IRQ_HANDLED;
6528 }
6529 
6530 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6531 {
6532 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6533 	u32 raw_tag;
6534 	u8 q = *(u8 *) queue;
6535 
6536 	if (interrupt_not_for_us(h))
6537 		return IRQ_NONE;
6538 	h->last_intr_timestamp = get_jiffies_64();
6539 	while (interrupt_pending(h)) {
6540 		raw_tag = get_next_completion(h, q);
6541 		while (raw_tag != FIFO_EMPTY) {
6542 			process_indexed_cmd(h, raw_tag);
6543 			raw_tag = next_command(h, q);
6544 		}
6545 	}
6546 	return IRQ_HANDLED;
6547 }
6548 
6549 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6550 {
6551 	struct ctlr_info *h = queue_to_hba(queue);
6552 	u32 raw_tag;
6553 	u8 q = *(u8 *) queue;
6554 
6555 	h->last_intr_timestamp = get_jiffies_64();
6556 	raw_tag = get_next_completion(h, q);
6557 	while (raw_tag != FIFO_EMPTY) {
6558 		process_indexed_cmd(h, raw_tag);
6559 		raw_tag = next_command(h, q);
6560 	}
6561 	return IRQ_HANDLED;
6562 }
6563 
6564 /* Send a message CDB to the firmware. Careful, this only works
6565  * in simple mode, not performant mode due to the tag lookup.
6566  * We only ever use this immediately after a controller reset.
6567  */
6568 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6569 			unsigned char type)
6570 {
6571 	struct Command {
6572 		struct CommandListHeader CommandHeader;
6573 		struct RequestBlock Request;
6574 		struct ErrDescriptor ErrorDescriptor;
6575 	};
6576 	struct Command *cmd;
6577 	static const size_t cmd_sz = sizeof(*cmd) +
6578 					sizeof(cmd->ErrorDescriptor);
6579 	dma_addr_t paddr64;
6580 	__le32 paddr32;
6581 	u32 tag;
6582 	void __iomem *vaddr;
6583 	int i, err;
6584 
6585 	vaddr = pci_ioremap_bar(pdev, 0);
6586 	if (vaddr == NULL)
6587 		return -ENOMEM;
6588 
6589 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6590 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6591 	 * memory.
6592 	 */
6593 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6594 	if (err) {
6595 		iounmap(vaddr);
6596 		return err;
6597 	}
6598 
6599 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6600 	if (cmd == NULL) {
6601 		iounmap(vaddr);
6602 		return -ENOMEM;
6603 	}
6604 
6605 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6606 	 * although there's no guarantee, we assume that the address is at
6607 	 * least 4-byte aligned (most likely, it's page-aligned).
6608 	 */
6609 	paddr32 = cpu_to_le32(paddr64);
6610 
6611 	cmd->CommandHeader.ReplyQueue = 0;
6612 	cmd->CommandHeader.SGList = 0;
6613 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6614 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6615 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6616 
6617 	cmd->Request.CDBLen = 16;
6618 	cmd->Request.type_attr_dir =
6619 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6620 	cmd->Request.Timeout = 0; /* Don't time out */
6621 	cmd->Request.CDB[0] = opcode;
6622 	cmd->Request.CDB[1] = type;
6623 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6624 	cmd->ErrorDescriptor.Addr =
6625 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6626 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6627 
6628 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6629 
6630 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6631 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6632 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6633 			break;
6634 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6635 	}
6636 
6637 	iounmap(vaddr);
6638 
6639 	/* we leak the DMA buffer here ... no choice since the controller could
6640 	 *  still complete the command.
6641 	 */
6642 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6643 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6644 			opcode, type);
6645 		return -ETIMEDOUT;
6646 	}
6647 
6648 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6649 
6650 	if (tag & HPSA_ERROR_BIT) {
6651 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6652 			opcode, type);
6653 		return -EIO;
6654 	}
6655 
6656 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6657 		opcode, type);
6658 	return 0;
6659 }
6660 
6661 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6662 
6663 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6664 	void __iomem *vaddr, u32 use_doorbell)
6665 {
6666 
6667 	if (use_doorbell) {
6668 		/* For everything after the P600, the PCI power state method
6669 		 * of resetting the controller doesn't work, so we have this
6670 		 * other way using the doorbell register.
6671 		 */
6672 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6673 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6674 
6675 		/* PMC hardware guys tell us we need a 10 second delay after
6676 		 * doorbell reset and before any attempt to talk to the board
6677 		 * at all to ensure that this actually works and doesn't fall
6678 		 * over in some weird corner cases.
6679 		 */
6680 		msleep(10000);
6681 	} else { /* Try to do it the PCI power state way */
6682 
6683 		/* Quoting from the Open CISS Specification: "The Power
6684 		 * Management Control/Status Register (CSR) controls the power
6685 		 * state of the device.  The normal operating state is D0,
6686 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6687 		 * the controller, place the interface device in D3 then to D0,
6688 		 * this causes a secondary PCI reset which will reset the
6689 		 * controller." */
6690 
6691 		int rc = 0;
6692 
6693 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6694 
6695 		/* enter the D3hot power management state */
6696 		rc = pci_set_power_state(pdev, PCI_D3hot);
6697 		if (rc)
6698 			return rc;
6699 
6700 		msleep(500);
6701 
6702 		/* enter the D0 power management state */
6703 		rc = pci_set_power_state(pdev, PCI_D0);
6704 		if (rc)
6705 			return rc;
6706 
6707 		/*
6708 		 * The P600 requires a small delay when changing states.
6709 		 * Otherwise we may think the board did not reset and we bail.
6710 		 * This for kdump only and is particular to the P600.
6711 		 */
6712 		msleep(500);
6713 	}
6714 	return 0;
6715 }
6716 
6717 static void init_driver_version(char *driver_version, int len)
6718 {
6719 	memset(driver_version, 0, len);
6720 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6721 }
6722 
6723 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6724 {
6725 	char *driver_version;
6726 	int i, size = sizeof(cfgtable->driver_version);
6727 
6728 	driver_version = kmalloc(size, GFP_KERNEL);
6729 	if (!driver_version)
6730 		return -ENOMEM;
6731 
6732 	init_driver_version(driver_version, size);
6733 	for (i = 0; i < size; i++)
6734 		writeb(driver_version[i], &cfgtable->driver_version[i]);
6735 	kfree(driver_version);
6736 	return 0;
6737 }
6738 
6739 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6740 					  unsigned char *driver_ver)
6741 {
6742 	int i;
6743 
6744 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6745 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
6746 }
6747 
6748 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6749 {
6750 
6751 	char *driver_ver, *old_driver_ver;
6752 	int rc, size = sizeof(cfgtable->driver_version);
6753 
6754 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6755 	if (!old_driver_ver)
6756 		return -ENOMEM;
6757 	driver_ver = old_driver_ver + size;
6758 
6759 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
6760 	 * should have been changed, otherwise we know the reset failed.
6761 	 */
6762 	init_driver_version(old_driver_ver, size);
6763 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6764 	rc = !memcmp(driver_ver, old_driver_ver, size);
6765 	kfree(old_driver_ver);
6766 	return rc;
6767 }
6768 /* This does a hard reset of the controller using PCI power management
6769  * states or the using the doorbell register.
6770  */
6771 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6772 {
6773 	u64 cfg_offset;
6774 	u32 cfg_base_addr;
6775 	u64 cfg_base_addr_index;
6776 	void __iomem *vaddr;
6777 	unsigned long paddr;
6778 	u32 misc_fw_support;
6779 	int rc;
6780 	struct CfgTable __iomem *cfgtable;
6781 	u32 use_doorbell;
6782 	u16 command_register;
6783 
6784 	/* For controllers as old as the P600, this is very nearly
6785 	 * the same thing as
6786 	 *
6787 	 * pci_save_state(pci_dev);
6788 	 * pci_set_power_state(pci_dev, PCI_D3hot);
6789 	 * pci_set_power_state(pci_dev, PCI_D0);
6790 	 * pci_restore_state(pci_dev);
6791 	 *
6792 	 * For controllers newer than the P600, the pci power state
6793 	 * method of resetting doesn't work so we have another way
6794 	 * using the doorbell register.
6795 	 */
6796 
6797 	if (!ctlr_is_resettable(board_id)) {
6798 		dev_warn(&pdev->dev, "Controller not resettable\n");
6799 		return -ENODEV;
6800 	}
6801 
6802 	/* if controller is soft- but not hard resettable... */
6803 	if (!ctlr_is_hard_resettable(board_id))
6804 		return -ENOTSUPP; /* try soft reset later. */
6805 
6806 	/* Save the PCI command register */
6807 	pci_read_config_word(pdev, 4, &command_register);
6808 	pci_save_state(pdev);
6809 
6810 	/* find the first memory BAR, so we can find the cfg table */
6811 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6812 	if (rc)
6813 		return rc;
6814 	vaddr = remap_pci_mem(paddr, 0x250);
6815 	if (!vaddr)
6816 		return -ENOMEM;
6817 
6818 	/* find cfgtable in order to check if reset via doorbell is supported */
6819 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6820 					&cfg_base_addr_index, &cfg_offset);
6821 	if (rc)
6822 		goto unmap_vaddr;
6823 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
6824 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6825 	if (!cfgtable) {
6826 		rc = -ENOMEM;
6827 		goto unmap_vaddr;
6828 	}
6829 	rc = write_driver_ver_to_cfgtable(cfgtable);
6830 	if (rc)
6831 		goto unmap_cfgtable;
6832 
6833 	/* If reset via doorbell register is supported, use that.
6834 	 * There are two such methods.  Favor the newest method.
6835 	 */
6836 	misc_fw_support = readl(&cfgtable->misc_fw_support);
6837 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6838 	if (use_doorbell) {
6839 		use_doorbell = DOORBELL_CTLR_RESET2;
6840 	} else {
6841 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6842 		if (use_doorbell) {
6843 			dev_warn(&pdev->dev,
6844 				"Soft reset not supported. Firmware update is required.\n");
6845 			rc = -ENOTSUPP; /* try soft reset */
6846 			goto unmap_cfgtable;
6847 		}
6848 	}
6849 
6850 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6851 	if (rc)
6852 		goto unmap_cfgtable;
6853 
6854 	pci_restore_state(pdev);
6855 	pci_write_config_word(pdev, 4, command_register);
6856 
6857 	/* Some devices (notably the HP Smart Array 5i Controller)
6858 	   need a little pause here */
6859 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6860 
6861 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6862 	if (rc) {
6863 		dev_warn(&pdev->dev,
6864 			"Failed waiting for board to become ready after hard reset\n");
6865 		goto unmap_cfgtable;
6866 	}
6867 
6868 	rc = controller_reset_failed(vaddr);
6869 	if (rc < 0)
6870 		goto unmap_cfgtable;
6871 	if (rc) {
6872 		dev_warn(&pdev->dev, "Unable to successfully reset "
6873 			"controller. Will try soft reset.\n");
6874 		rc = -ENOTSUPP;
6875 	} else {
6876 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6877 	}
6878 
6879 unmap_cfgtable:
6880 	iounmap(cfgtable);
6881 
6882 unmap_vaddr:
6883 	iounmap(vaddr);
6884 	return rc;
6885 }
6886 
6887 /*
6888  *  We cannot read the structure directly, for portability we must use
6889  *   the io functions.
6890  *   This is for debug only.
6891  */
6892 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6893 {
6894 #ifdef HPSA_DEBUG
6895 	int i;
6896 	char temp_name[17];
6897 
6898 	dev_info(dev, "Controller Configuration information\n");
6899 	dev_info(dev, "------------------------------------\n");
6900 	for (i = 0; i < 4; i++)
6901 		temp_name[i] = readb(&(tb->Signature[i]));
6902 	temp_name[4] = '\0';
6903 	dev_info(dev, "   Signature = %s\n", temp_name);
6904 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6905 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6906 	       readl(&(tb->TransportSupport)));
6907 	dev_info(dev, "   Transport methods active = 0x%x\n",
6908 	       readl(&(tb->TransportActive)));
6909 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6910 	       readl(&(tb->HostWrite.TransportRequest)));
6911 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6912 	       readl(&(tb->HostWrite.CoalIntDelay)));
6913 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6914 	       readl(&(tb->HostWrite.CoalIntCount)));
6915 	dev_info(dev, "   Max outstanding commands = %d\n",
6916 	       readl(&(tb->CmdsOutMax)));
6917 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6918 	for (i = 0; i < 16; i++)
6919 		temp_name[i] = readb(&(tb->ServerName[i]));
6920 	temp_name[16] = '\0';
6921 	dev_info(dev, "   Server Name = %s\n", temp_name);
6922 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6923 		readl(&(tb->HeartBeat)));
6924 #endif				/* HPSA_DEBUG */
6925 }
6926 
6927 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6928 {
6929 	int i, offset, mem_type, bar_type;
6930 
6931 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6932 		return 0;
6933 	offset = 0;
6934 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6935 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6936 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6937 			offset += 4;
6938 		else {
6939 			mem_type = pci_resource_flags(pdev, i) &
6940 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6941 			switch (mem_type) {
6942 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6943 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6944 				offset += 4;	/* 32 bit */
6945 				break;
6946 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6947 				offset += 8;
6948 				break;
6949 			default:	/* reserved in PCI 2.2 */
6950 				dev_warn(&pdev->dev,
6951 				       "base address is invalid\n");
6952 				return -1;
6953 				break;
6954 			}
6955 		}
6956 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6957 			return i + 1;
6958 	}
6959 	return -1;
6960 }
6961 
6962 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6963 {
6964 	if (h->msix_vector) {
6965 		if (h->pdev->msix_enabled)
6966 			pci_disable_msix(h->pdev);
6967 		h->msix_vector = 0;
6968 	} else if (h->msi_vector) {
6969 		if (h->pdev->msi_enabled)
6970 			pci_disable_msi(h->pdev);
6971 		h->msi_vector = 0;
6972 	}
6973 }
6974 
6975 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6976  * controllers that are capable. If not, we use legacy INTx mode.
6977  */
6978 static void hpsa_interrupt_mode(struct ctlr_info *h)
6979 {
6980 #ifdef CONFIG_PCI_MSI
6981 	int err, i;
6982 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6983 
6984 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6985 		hpsa_msix_entries[i].vector = 0;
6986 		hpsa_msix_entries[i].entry = i;
6987 	}
6988 
6989 	/* Some boards advertise MSI but don't really support it */
6990 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6991 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6992 		goto default_int_mode;
6993 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6994 		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6995 		h->msix_vector = MAX_REPLY_QUEUES;
6996 		if (h->msix_vector > num_online_cpus())
6997 			h->msix_vector = num_online_cpus();
6998 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6999 					    1, h->msix_vector);
7000 		if (err < 0) {
7001 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7002 			h->msix_vector = 0;
7003 			goto single_msi_mode;
7004 		} else if (err < h->msix_vector) {
7005 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7006 			       "available\n", err);
7007 		}
7008 		h->msix_vector = err;
7009 		for (i = 0; i < h->msix_vector; i++)
7010 			h->intr[i] = hpsa_msix_entries[i].vector;
7011 		return;
7012 	}
7013 single_msi_mode:
7014 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7015 		dev_info(&h->pdev->dev, "MSI capable controller\n");
7016 		if (!pci_enable_msi(h->pdev))
7017 			h->msi_vector = 1;
7018 		else
7019 			dev_warn(&h->pdev->dev, "MSI init failed\n");
7020 	}
7021 default_int_mode:
7022 #endif				/* CONFIG_PCI_MSI */
7023 	/* if we get here we're going to use the default interrupt mode */
7024 	h->intr[h->intr_mode] = h->pdev->irq;
7025 }
7026 
7027 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7028 {
7029 	int i;
7030 	u32 subsystem_vendor_id, subsystem_device_id;
7031 
7032 	subsystem_vendor_id = pdev->subsystem_vendor;
7033 	subsystem_device_id = pdev->subsystem_device;
7034 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7035 		    subsystem_vendor_id;
7036 
7037 	for (i = 0; i < ARRAY_SIZE(products); i++)
7038 		if (*board_id == products[i].board_id)
7039 			return i;
7040 
7041 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7042 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7043 		!hpsa_allow_any) {
7044 		dev_warn(&pdev->dev, "unrecognized board ID: "
7045 			"0x%08x, ignoring.\n", *board_id);
7046 			return -ENODEV;
7047 	}
7048 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7049 }
7050 
7051 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7052 				    unsigned long *memory_bar)
7053 {
7054 	int i;
7055 
7056 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7057 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7058 			/* addressing mode bits already removed */
7059 			*memory_bar = pci_resource_start(pdev, i);
7060 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7061 				*memory_bar);
7062 			return 0;
7063 		}
7064 	dev_warn(&pdev->dev, "no memory BAR found\n");
7065 	return -ENODEV;
7066 }
7067 
7068 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7069 				     int wait_for_ready)
7070 {
7071 	int i, iterations;
7072 	u32 scratchpad;
7073 	if (wait_for_ready)
7074 		iterations = HPSA_BOARD_READY_ITERATIONS;
7075 	else
7076 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7077 
7078 	for (i = 0; i < iterations; i++) {
7079 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7080 		if (wait_for_ready) {
7081 			if (scratchpad == HPSA_FIRMWARE_READY)
7082 				return 0;
7083 		} else {
7084 			if (scratchpad != HPSA_FIRMWARE_READY)
7085 				return 0;
7086 		}
7087 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7088 	}
7089 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7090 	return -ENODEV;
7091 }
7092 
7093 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7094 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7095 			       u64 *cfg_offset)
7096 {
7097 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7098 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7099 	*cfg_base_addr &= (u32) 0x0000ffff;
7100 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7101 	if (*cfg_base_addr_index == -1) {
7102 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7103 		return -ENODEV;
7104 	}
7105 	return 0;
7106 }
7107 
7108 static void hpsa_free_cfgtables(struct ctlr_info *h)
7109 {
7110 	if (h->transtable) {
7111 		iounmap(h->transtable);
7112 		h->transtable = NULL;
7113 	}
7114 	if (h->cfgtable) {
7115 		iounmap(h->cfgtable);
7116 		h->cfgtable = NULL;
7117 	}
7118 }
7119 
7120 /* Find and map CISS config table and transfer table
7121 + * several items must be unmapped (freed) later
7122 + * */
7123 static int hpsa_find_cfgtables(struct ctlr_info *h)
7124 {
7125 	u64 cfg_offset;
7126 	u32 cfg_base_addr;
7127 	u64 cfg_base_addr_index;
7128 	u32 trans_offset;
7129 	int rc;
7130 
7131 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7132 		&cfg_base_addr_index, &cfg_offset);
7133 	if (rc)
7134 		return rc;
7135 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7136 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7137 	if (!h->cfgtable) {
7138 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7139 		return -ENOMEM;
7140 	}
7141 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7142 	if (rc)
7143 		return rc;
7144 	/* Find performant mode table. */
7145 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7146 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7147 				cfg_base_addr_index)+cfg_offset+trans_offset,
7148 				sizeof(*h->transtable));
7149 	if (!h->transtable) {
7150 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7151 		hpsa_free_cfgtables(h);
7152 		return -ENOMEM;
7153 	}
7154 	return 0;
7155 }
7156 
7157 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7158 {
7159 #define MIN_MAX_COMMANDS 16
7160 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7161 
7162 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7163 
7164 	/* Limit commands in memory limited kdump scenario. */
7165 	if (reset_devices && h->max_commands > 32)
7166 		h->max_commands = 32;
7167 
7168 	if (h->max_commands < MIN_MAX_COMMANDS) {
7169 		dev_warn(&h->pdev->dev,
7170 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7171 			h->max_commands,
7172 			MIN_MAX_COMMANDS);
7173 		h->max_commands = MIN_MAX_COMMANDS;
7174 	}
7175 }
7176 
7177 /* If the controller reports that the total max sg entries is greater than 512,
7178  * then we know that chained SG blocks work.  (Original smart arrays did not
7179  * support chained SG blocks and would return zero for max sg entries.)
7180  */
7181 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7182 {
7183 	return h->maxsgentries > 512;
7184 }
7185 
7186 /* Interrogate the hardware for some limits:
7187  * max commands, max SG elements without chaining, and with chaining,
7188  * SG chain block size, etc.
7189  */
7190 static void hpsa_find_board_params(struct ctlr_info *h)
7191 {
7192 	hpsa_get_max_perf_mode_cmds(h);
7193 	h->nr_cmds = h->max_commands;
7194 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7195 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7196 	if (hpsa_supports_chained_sg_blocks(h)) {
7197 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7198 		h->max_cmd_sg_entries = 32;
7199 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7200 		h->maxsgentries--; /* save one for chain pointer */
7201 	} else {
7202 		/*
7203 		 * Original smart arrays supported at most 31 s/g entries
7204 		 * embedded inline in the command (trying to use more
7205 		 * would lock up the controller)
7206 		 */
7207 		h->max_cmd_sg_entries = 31;
7208 		h->maxsgentries = 31; /* default to traditional values */
7209 		h->chainsize = 0;
7210 	}
7211 
7212 	/* Find out what task management functions are supported and cache */
7213 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7214 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7215 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7216 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7217 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7218 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7219 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7220 }
7221 
7222 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7223 {
7224 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7225 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7226 		return false;
7227 	}
7228 	return true;
7229 }
7230 
7231 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7232 {
7233 	u32 driver_support;
7234 
7235 	driver_support = readl(&(h->cfgtable->driver_support));
7236 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7237 #ifdef CONFIG_X86
7238 	driver_support |= ENABLE_SCSI_PREFETCH;
7239 #endif
7240 	driver_support |= ENABLE_UNIT_ATTN;
7241 	writel(driver_support, &(h->cfgtable->driver_support));
7242 }
7243 
7244 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7245  * in a prefetch beyond physical memory.
7246  */
7247 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7248 {
7249 	u32 dma_prefetch;
7250 
7251 	if (h->board_id != 0x3225103C)
7252 		return;
7253 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7254 	dma_prefetch |= 0x8000;
7255 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7256 }
7257 
7258 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7259 {
7260 	int i;
7261 	u32 doorbell_value;
7262 	unsigned long flags;
7263 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7264 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7265 		spin_lock_irqsave(&h->lock, flags);
7266 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7267 		spin_unlock_irqrestore(&h->lock, flags);
7268 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7269 			goto done;
7270 		/* delay and try again */
7271 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7272 	}
7273 	return -ENODEV;
7274 done:
7275 	return 0;
7276 }
7277 
7278 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7279 {
7280 	int i;
7281 	u32 doorbell_value;
7282 	unsigned long flags;
7283 
7284 	/* under certain very rare conditions, this can take awhile.
7285 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7286 	 * as we enter this code.)
7287 	 */
7288 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7289 		if (h->remove_in_progress)
7290 			goto done;
7291 		spin_lock_irqsave(&h->lock, flags);
7292 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7293 		spin_unlock_irqrestore(&h->lock, flags);
7294 		if (!(doorbell_value & CFGTBL_ChangeReq))
7295 			goto done;
7296 		/* delay and try again */
7297 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7298 	}
7299 	return -ENODEV;
7300 done:
7301 	return 0;
7302 }
7303 
7304 /* return -ENODEV or other reason on error, 0 on success */
7305 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7306 {
7307 	u32 trans_support;
7308 
7309 	trans_support = readl(&(h->cfgtable->TransportSupport));
7310 	if (!(trans_support & SIMPLE_MODE))
7311 		return -ENOTSUPP;
7312 
7313 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7314 
7315 	/* Update the field, and then ring the doorbell */
7316 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7317 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7318 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7319 	if (hpsa_wait_for_mode_change_ack(h))
7320 		goto error;
7321 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7322 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7323 		goto error;
7324 	h->transMethod = CFGTBL_Trans_Simple;
7325 	return 0;
7326 error:
7327 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7328 	return -ENODEV;
7329 }
7330 
7331 /* free items allocated or mapped by hpsa_pci_init */
7332 static void hpsa_free_pci_init(struct ctlr_info *h)
7333 {
7334 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7335 	iounmap(h->vaddr);			/* pci_init 3 */
7336 	h->vaddr = NULL;
7337 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7338 	/*
7339 	 * call pci_disable_device before pci_release_regions per
7340 	 * Documentation/PCI/pci.txt
7341 	 */
7342 	pci_disable_device(h->pdev);		/* pci_init 1 */
7343 	pci_release_regions(h->pdev);		/* pci_init 2 */
7344 }
7345 
7346 /* several items must be freed later */
7347 static int hpsa_pci_init(struct ctlr_info *h)
7348 {
7349 	int prod_index, err;
7350 
7351 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7352 	if (prod_index < 0)
7353 		return prod_index;
7354 	h->product_name = products[prod_index].product_name;
7355 	h->access = *(products[prod_index].access);
7356 
7357 	h->needs_abort_tags_swizzled =
7358 		ctlr_needs_abort_tags_swizzled(h->board_id);
7359 
7360 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7361 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7362 
7363 	err = pci_enable_device(h->pdev);
7364 	if (err) {
7365 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7366 		pci_disable_device(h->pdev);
7367 		return err;
7368 	}
7369 
7370 	err = pci_request_regions(h->pdev, HPSA);
7371 	if (err) {
7372 		dev_err(&h->pdev->dev,
7373 			"failed to obtain PCI resources\n");
7374 		pci_disable_device(h->pdev);
7375 		return err;
7376 	}
7377 
7378 	pci_set_master(h->pdev);
7379 
7380 	hpsa_interrupt_mode(h);
7381 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7382 	if (err)
7383 		goto clean2;	/* intmode+region, pci */
7384 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7385 	if (!h->vaddr) {
7386 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7387 		err = -ENOMEM;
7388 		goto clean2;	/* intmode+region, pci */
7389 	}
7390 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7391 	if (err)
7392 		goto clean3;	/* vaddr, intmode+region, pci */
7393 	err = hpsa_find_cfgtables(h);
7394 	if (err)
7395 		goto clean3;	/* vaddr, intmode+region, pci */
7396 	hpsa_find_board_params(h);
7397 
7398 	if (!hpsa_CISS_signature_present(h)) {
7399 		err = -ENODEV;
7400 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7401 	}
7402 	hpsa_set_driver_support_bits(h);
7403 	hpsa_p600_dma_prefetch_quirk(h);
7404 	err = hpsa_enter_simple_mode(h);
7405 	if (err)
7406 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7407 	return 0;
7408 
7409 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7410 	hpsa_free_cfgtables(h);
7411 clean3:	/* vaddr, intmode+region, pci */
7412 	iounmap(h->vaddr);
7413 	h->vaddr = NULL;
7414 clean2:	/* intmode+region, pci */
7415 	hpsa_disable_interrupt_mode(h);
7416 	/*
7417 	 * call pci_disable_device before pci_release_regions per
7418 	 * Documentation/PCI/pci.txt
7419 	 */
7420 	pci_disable_device(h->pdev);
7421 	pci_release_regions(h->pdev);
7422 	return err;
7423 }
7424 
7425 static void hpsa_hba_inquiry(struct ctlr_info *h)
7426 {
7427 	int rc;
7428 
7429 #define HBA_INQUIRY_BYTE_COUNT 64
7430 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7431 	if (!h->hba_inquiry_data)
7432 		return;
7433 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7434 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7435 	if (rc != 0) {
7436 		kfree(h->hba_inquiry_data);
7437 		h->hba_inquiry_data = NULL;
7438 	}
7439 }
7440 
7441 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7442 {
7443 	int rc, i;
7444 	void __iomem *vaddr;
7445 
7446 	if (!reset_devices)
7447 		return 0;
7448 
7449 	/* kdump kernel is loading, we don't know in which state is
7450 	 * the pci interface. The dev->enable_cnt is equal zero
7451 	 * so we call enable+disable, wait a while and switch it on.
7452 	 */
7453 	rc = pci_enable_device(pdev);
7454 	if (rc) {
7455 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7456 		return -ENODEV;
7457 	}
7458 	pci_disable_device(pdev);
7459 	msleep(260);			/* a randomly chosen number */
7460 	rc = pci_enable_device(pdev);
7461 	if (rc) {
7462 		dev_warn(&pdev->dev, "failed to enable device.\n");
7463 		return -ENODEV;
7464 	}
7465 
7466 	pci_set_master(pdev);
7467 
7468 	vaddr = pci_ioremap_bar(pdev, 0);
7469 	if (vaddr == NULL) {
7470 		rc = -ENOMEM;
7471 		goto out_disable;
7472 	}
7473 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7474 	iounmap(vaddr);
7475 
7476 	/* Reset the controller with a PCI power-cycle or via doorbell */
7477 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7478 
7479 	/* -ENOTSUPP here means we cannot reset the controller
7480 	 * but it's already (and still) up and running in
7481 	 * "performant mode".  Or, it might be 640x, which can't reset
7482 	 * due to concerns about shared bbwc between 6402/6404 pair.
7483 	 */
7484 	if (rc)
7485 		goto out_disable;
7486 
7487 	/* Now try to get the controller to respond to a no-op */
7488 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7489 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7490 		if (hpsa_noop(pdev) == 0)
7491 			break;
7492 		else
7493 			dev_warn(&pdev->dev, "no-op failed%s\n",
7494 					(i < 11 ? "; re-trying" : ""));
7495 	}
7496 
7497 out_disable:
7498 
7499 	pci_disable_device(pdev);
7500 	return rc;
7501 }
7502 
7503 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7504 {
7505 	kfree(h->cmd_pool_bits);
7506 	h->cmd_pool_bits = NULL;
7507 	if (h->cmd_pool) {
7508 		pci_free_consistent(h->pdev,
7509 				h->nr_cmds * sizeof(struct CommandList),
7510 				h->cmd_pool,
7511 				h->cmd_pool_dhandle);
7512 		h->cmd_pool = NULL;
7513 		h->cmd_pool_dhandle = 0;
7514 	}
7515 	if (h->errinfo_pool) {
7516 		pci_free_consistent(h->pdev,
7517 				h->nr_cmds * sizeof(struct ErrorInfo),
7518 				h->errinfo_pool,
7519 				h->errinfo_pool_dhandle);
7520 		h->errinfo_pool = NULL;
7521 		h->errinfo_pool_dhandle = 0;
7522 	}
7523 }
7524 
7525 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7526 {
7527 	h->cmd_pool_bits = kzalloc(
7528 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7529 		sizeof(unsigned long), GFP_KERNEL);
7530 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7531 		    h->nr_cmds * sizeof(*h->cmd_pool),
7532 		    &(h->cmd_pool_dhandle));
7533 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7534 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7535 		    &(h->errinfo_pool_dhandle));
7536 	if ((h->cmd_pool_bits == NULL)
7537 	    || (h->cmd_pool == NULL)
7538 	    || (h->errinfo_pool == NULL)) {
7539 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7540 		goto clean_up;
7541 	}
7542 	hpsa_preinitialize_commands(h);
7543 	return 0;
7544 clean_up:
7545 	hpsa_free_cmd_pool(h);
7546 	return -ENOMEM;
7547 }
7548 
7549 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7550 {
7551 	int i, cpu;
7552 
7553 	cpu = cpumask_first(cpu_online_mask);
7554 	for (i = 0; i < h->msix_vector; i++) {
7555 		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7556 		cpu = cpumask_next(cpu, cpu_online_mask);
7557 	}
7558 }
7559 
7560 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7561 static void hpsa_free_irqs(struct ctlr_info *h)
7562 {
7563 	int i;
7564 
7565 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7566 		/* Single reply queue, only one irq to free */
7567 		i = h->intr_mode;
7568 		irq_set_affinity_hint(h->intr[i], NULL);
7569 		free_irq(h->intr[i], &h->q[i]);
7570 		h->q[i] = 0;
7571 		return;
7572 	}
7573 
7574 	for (i = 0; i < h->msix_vector; i++) {
7575 		irq_set_affinity_hint(h->intr[i], NULL);
7576 		free_irq(h->intr[i], &h->q[i]);
7577 		h->q[i] = 0;
7578 	}
7579 	for (; i < MAX_REPLY_QUEUES; i++)
7580 		h->q[i] = 0;
7581 }
7582 
7583 /* returns 0 on success; cleans up and returns -Enn on error */
7584 static int hpsa_request_irqs(struct ctlr_info *h,
7585 	irqreturn_t (*msixhandler)(int, void *),
7586 	irqreturn_t (*intxhandler)(int, void *))
7587 {
7588 	int rc, i;
7589 
7590 	/*
7591 	 * initialize h->q[x] = x so that interrupt handlers know which
7592 	 * queue to process.
7593 	 */
7594 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7595 		h->q[i] = (u8) i;
7596 
7597 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
7598 		/* If performant mode and MSI-X, use multiple reply queues */
7599 		for (i = 0; i < h->msix_vector; i++) {
7600 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7601 			rc = request_irq(h->intr[i], msixhandler,
7602 					0, h->intrname[i],
7603 					&h->q[i]);
7604 			if (rc) {
7605 				int j;
7606 
7607 				dev_err(&h->pdev->dev,
7608 					"failed to get irq %d for %s\n",
7609 				       h->intr[i], h->devname);
7610 				for (j = 0; j < i; j++) {
7611 					free_irq(h->intr[j], &h->q[j]);
7612 					h->q[j] = 0;
7613 				}
7614 				for (; j < MAX_REPLY_QUEUES; j++)
7615 					h->q[j] = 0;
7616 				return rc;
7617 			}
7618 		}
7619 		hpsa_irq_affinity_hints(h);
7620 	} else {
7621 		/* Use single reply pool */
7622 		if (h->msix_vector > 0 || h->msi_vector) {
7623 			if (h->msix_vector)
7624 				sprintf(h->intrname[h->intr_mode],
7625 					"%s-msix", h->devname);
7626 			else
7627 				sprintf(h->intrname[h->intr_mode],
7628 					"%s-msi", h->devname);
7629 			rc = request_irq(h->intr[h->intr_mode],
7630 				msixhandler, 0,
7631 				h->intrname[h->intr_mode],
7632 				&h->q[h->intr_mode]);
7633 		} else {
7634 			sprintf(h->intrname[h->intr_mode],
7635 				"%s-intx", h->devname);
7636 			rc = request_irq(h->intr[h->intr_mode],
7637 				intxhandler, IRQF_SHARED,
7638 				h->intrname[h->intr_mode],
7639 				&h->q[h->intr_mode]);
7640 		}
7641 		irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
7642 	}
7643 	if (rc) {
7644 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7645 		       h->intr[h->intr_mode], h->devname);
7646 		hpsa_free_irqs(h);
7647 		return -ENODEV;
7648 	}
7649 	return 0;
7650 }
7651 
7652 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7653 {
7654 	int rc;
7655 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7656 
7657 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7658 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7659 	if (rc) {
7660 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7661 		return rc;
7662 	}
7663 
7664 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7665 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7666 	if (rc) {
7667 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7668 			"after soft reset.\n");
7669 		return rc;
7670 	}
7671 
7672 	return 0;
7673 }
7674 
7675 static void hpsa_free_reply_queues(struct ctlr_info *h)
7676 {
7677 	int i;
7678 
7679 	for (i = 0; i < h->nreply_queues; i++) {
7680 		if (!h->reply_queue[i].head)
7681 			continue;
7682 		pci_free_consistent(h->pdev,
7683 					h->reply_queue_size,
7684 					h->reply_queue[i].head,
7685 					h->reply_queue[i].busaddr);
7686 		h->reply_queue[i].head = NULL;
7687 		h->reply_queue[i].busaddr = 0;
7688 	}
7689 	h->reply_queue_size = 0;
7690 }
7691 
7692 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7693 {
7694 	hpsa_free_performant_mode(h);		/* init_one 7 */
7695 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7696 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7697 	hpsa_free_irqs(h);			/* init_one 4 */
7698 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7699 	h->scsi_host = NULL;			/* init_one 3 */
7700 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7701 	free_percpu(h->lockup_detected);	/* init_one 2 */
7702 	h->lockup_detected = NULL;		/* init_one 2 */
7703 	if (h->resubmit_wq) {
7704 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7705 		h->resubmit_wq = NULL;
7706 	}
7707 	if (h->rescan_ctlr_wq) {
7708 		destroy_workqueue(h->rescan_ctlr_wq);
7709 		h->rescan_ctlr_wq = NULL;
7710 	}
7711 	kfree(h);				/* init_one 1 */
7712 }
7713 
7714 /* Called when controller lockup detected. */
7715 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7716 {
7717 	int i, refcount;
7718 	struct CommandList *c;
7719 	int failcount = 0;
7720 
7721 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7722 	for (i = 0; i < h->nr_cmds; i++) {
7723 		c = h->cmd_pool + i;
7724 		refcount = atomic_inc_return(&c->refcount);
7725 		if (refcount > 1) {
7726 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7727 			finish_cmd(c);
7728 			atomic_dec(&h->commands_outstanding);
7729 			failcount++;
7730 		}
7731 		cmd_free(h, c);
7732 	}
7733 	dev_warn(&h->pdev->dev,
7734 		"failed %d commands in fail_all\n", failcount);
7735 }
7736 
7737 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7738 {
7739 	int cpu;
7740 
7741 	for_each_online_cpu(cpu) {
7742 		u32 *lockup_detected;
7743 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
7744 		*lockup_detected = value;
7745 	}
7746 	wmb(); /* be sure the per-cpu variables are out to memory */
7747 }
7748 
7749 static void controller_lockup_detected(struct ctlr_info *h)
7750 {
7751 	unsigned long flags;
7752 	u32 lockup_detected;
7753 
7754 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7755 	spin_lock_irqsave(&h->lock, flags);
7756 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
7757 	if (!lockup_detected) {
7758 		/* no heartbeat, but controller gave us a zero. */
7759 		dev_warn(&h->pdev->dev,
7760 			"lockup detected after %d but scratchpad register is zero\n",
7761 			h->heartbeat_sample_interval / HZ);
7762 		lockup_detected = 0xffffffff;
7763 	}
7764 	set_lockup_detected_for_all_cpus(h, lockup_detected);
7765 	spin_unlock_irqrestore(&h->lock, flags);
7766 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
7767 			lockup_detected, h->heartbeat_sample_interval / HZ);
7768 	pci_disable_device(h->pdev);
7769 	fail_all_outstanding_cmds(h);
7770 }
7771 
7772 static int detect_controller_lockup(struct ctlr_info *h)
7773 {
7774 	u64 now;
7775 	u32 heartbeat;
7776 	unsigned long flags;
7777 
7778 	now = get_jiffies_64();
7779 	/* If we've received an interrupt recently, we're ok. */
7780 	if (time_after64(h->last_intr_timestamp +
7781 				(h->heartbeat_sample_interval), now))
7782 		return false;
7783 
7784 	/*
7785 	 * If we've already checked the heartbeat recently, we're ok.
7786 	 * This could happen if someone sends us a signal. We
7787 	 * otherwise don't care about signals in this thread.
7788 	 */
7789 	if (time_after64(h->last_heartbeat_timestamp +
7790 				(h->heartbeat_sample_interval), now))
7791 		return false;
7792 
7793 	/* If heartbeat has not changed since we last looked, we're not ok. */
7794 	spin_lock_irqsave(&h->lock, flags);
7795 	heartbeat = readl(&h->cfgtable->HeartBeat);
7796 	spin_unlock_irqrestore(&h->lock, flags);
7797 	if (h->last_heartbeat == heartbeat) {
7798 		controller_lockup_detected(h);
7799 		return true;
7800 	}
7801 
7802 	/* We're ok. */
7803 	h->last_heartbeat = heartbeat;
7804 	h->last_heartbeat_timestamp = now;
7805 	return false;
7806 }
7807 
7808 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
7809 {
7810 	int i;
7811 	char *event_type;
7812 
7813 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7814 		return;
7815 
7816 	/* Ask the controller to clear the events we're handling. */
7817 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
7818 			| CFGTBL_Trans_io_accel2)) &&
7819 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
7820 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
7821 
7822 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
7823 			event_type = "state change";
7824 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
7825 			event_type = "configuration change";
7826 		/* Stop sending new RAID offload reqs via the IO accelerator */
7827 		scsi_block_requests(h->scsi_host);
7828 		for (i = 0; i < h->ndevices; i++)
7829 			h->dev[i]->offload_enabled = 0;
7830 		hpsa_drain_accel_commands(h);
7831 		/* Set 'accelerator path config change' bit */
7832 		dev_warn(&h->pdev->dev,
7833 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
7834 			h->events, event_type);
7835 		writel(h->events, &(h->cfgtable->clear_event_notify));
7836 		/* Set the "clear event notify field update" bit 6 */
7837 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7838 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
7839 		hpsa_wait_for_clear_event_notify_ack(h);
7840 		scsi_unblock_requests(h->scsi_host);
7841 	} else {
7842 		/* Acknowledge controller notification events. */
7843 		writel(h->events, &(h->cfgtable->clear_event_notify));
7844 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
7845 		hpsa_wait_for_clear_event_notify_ack(h);
7846 #if 0
7847 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7848 		hpsa_wait_for_mode_change_ack(h);
7849 #endif
7850 	}
7851 	return;
7852 }
7853 
7854 /* Check a register on the controller to see if there are configuration
7855  * changes (added/changed/removed logical drives, etc.) which mean that
7856  * we should rescan the controller for devices.
7857  * Also check flag for driver-initiated rescan.
7858  */
7859 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7860 {
7861 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7862 		return 0;
7863 
7864 	h->events = readl(&(h->cfgtable->event_notify));
7865 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
7866 }
7867 
7868 /*
7869  * Check if any of the offline devices have become ready
7870  */
7871 static int hpsa_offline_devices_ready(struct ctlr_info *h)
7872 {
7873 	unsigned long flags;
7874 	struct offline_device_entry *d;
7875 	struct list_head *this, *tmp;
7876 
7877 	spin_lock_irqsave(&h->offline_device_lock, flags);
7878 	list_for_each_safe(this, tmp, &h->offline_device_list) {
7879 		d = list_entry(this, struct offline_device_entry,
7880 				offline_list);
7881 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7882 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
7883 			spin_lock_irqsave(&h->offline_device_lock, flags);
7884 			list_del(&d->offline_list);
7885 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7886 			return 1;
7887 		}
7888 		spin_lock_irqsave(&h->offline_device_lock, flags);
7889 	}
7890 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
7891 	return 0;
7892 }
7893 
7894 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7895 {
7896 	unsigned long flags;
7897 	struct ctlr_info *h = container_of(to_delayed_work(work),
7898 					struct ctlr_info, rescan_ctlr_work);
7899 
7900 
7901 	if (h->remove_in_progress)
7902 		return;
7903 
7904 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
7905 		scsi_host_get(h->scsi_host);
7906 		hpsa_ack_ctlr_events(h);
7907 		hpsa_scan_start(h->scsi_host);
7908 		scsi_host_put(h->scsi_host);
7909 	}
7910 	spin_lock_irqsave(&h->lock, flags);
7911 	if (!h->remove_in_progress)
7912 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7913 				h->heartbeat_sample_interval);
7914 	spin_unlock_irqrestore(&h->lock, flags);
7915 }
7916 
7917 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
7918 {
7919 	unsigned long flags;
7920 	struct ctlr_info *h = container_of(to_delayed_work(work),
7921 					struct ctlr_info, monitor_ctlr_work);
7922 
7923 	detect_controller_lockup(h);
7924 	if (lockup_detected(h))
7925 		return;
7926 
7927 	spin_lock_irqsave(&h->lock, flags);
7928 	if (!h->remove_in_progress)
7929 		schedule_delayed_work(&h->monitor_ctlr_work,
7930 				h->heartbeat_sample_interval);
7931 	spin_unlock_irqrestore(&h->lock, flags);
7932 }
7933 
7934 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
7935 						char *name)
7936 {
7937 	struct workqueue_struct *wq = NULL;
7938 
7939 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7940 	if (!wq)
7941 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
7942 
7943 	return wq;
7944 }
7945 
7946 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7947 {
7948 	int dac, rc;
7949 	struct ctlr_info *h;
7950 	int try_soft_reset = 0;
7951 	unsigned long flags;
7952 	u32 board_id;
7953 
7954 	if (number_of_controllers == 0)
7955 		printk(KERN_INFO DRIVER_NAME "\n");
7956 
7957 	rc = hpsa_lookup_board_id(pdev, &board_id);
7958 	if (rc < 0) {
7959 		dev_warn(&pdev->dev, "Board ID not found\n");
7960 		return rc;
7961 	}
7962 
7963 	rc = hpsa_init_reset_devices(pdev, board_id);
7964 	if (rc) {
7965 		if (rc != -ENOTSUPP)
7966 			return rc;
7967 		/* If the reset fails in a particular way (it has no way to do
7968 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
7969 		 * a soft reset once we get the controller configured up to the
7970 		 * point that it can accept a command.
7971 		 */
7972 		try_soft_reset = 1;
7973 		rc = 0;
7974 	}
7975 
7976 reinit_after_soft_reset:
7977 
7978 	/* Command structures must be aligned on a 32-byte boundary because
7979 	 * the 5 lower bits of the address are used by the hardware. and by
7980 	 * the driver.  See comments in hpsa.h for more info.
7981 	 */
7982 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7983 	h = kzalloc(sizeof(*h), GFP_KERNEL);
7984 	if (!h) {
7985 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
7986 		return -ENOMEM;
7987 	}
7988 
7989 	h->pdev = pdev;
7990 
7991 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7992 	INIT_LIST_HEAD(&h->offline_device_list);
7993 	spin_lock_init(&h->lock);
7994 	spin_lock_init(&h->offline_device_lock);
7995 	spin_lock_init(&h->scan_lock);
7996 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
7997 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7998 
7999 	/* Allocate and clear per-cpu variable lockup_detected */
8000 	h->lockup_detected = alloc_percpu(u32);
8001 	if (!h->lockup_detected) {
8002 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8003 		rc = -ENOMEM;
8004 		goto clean1;	/* aer/h */
8005 	}
8006 	set_lockup_detected_for_all_cpus(h, 0);
8007 
8008 	rc = hpsa_pci_init(h);
8009 	if (rc)
8010 		goto clean2;	/* lu, aer/h */
8011 
8012 	/* relies on h-> settings made by hpsa_pci_init, including
8013 	 * interrupt_mode h->intr */
8014 	rc = hpsa_scsi_host_alloc(h);
8015 	if (rc)
8016 		goto clean2_5;	/* pci, lu, aer/h */
8017 
8018 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8019 	h->ctlr = number_of_controllers;
8020 	number_of_controllers++;
8021 
8022 	/* configure PCI DMA stuff */
8023 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8024 	if (rc == 0) {
8025 		dac = 1;
8026 	} else {
8027 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8028 		if (rc == 0) {
8029 			dac = 0;
8030 		} else {
8031 			dev_err(&pdev->dev, "no suitable DMA available\n");
8032 			goto clean3;	/* shost, pci, lu, aer/h */
8033 		}
8034 	}
8035 
8036 	/* make sure the board interrupts are off */
8037 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8038 
8039 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8040 	if (rc)
8041 		goto clean3;	/* shost, pci, lu, aer/h */
8042 	rc = hpsa_alloc_cmd_pool(h);
8043 	if (rc)
8044 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8045 	rc = hpsa_alloc_sg_chain_blocks(h);
8046 	if (rc)
8047 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8048 	init_waitqueue_head(&h->scan_wait_queue);
8049 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8050 	init_waitqueue_head(&h->event_sync_wait_queue);
8051 	mutex_init(&h->reset_mutex);
8052 	h->scan_finished = 1; /* no scan currently in progress */
8053 
8054 	pci_set_drvdata(pdev, h);
8055 	h->ndevices = 0;
8056 
8057 	spin_lock_init(&h->devlock);
8058 	rc = hpsa_put_ctlr_into_performant_mode(h);
8059 	if (rc)
8060 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8061 
8062 	/* hook into SCSI subsystem */
8063 	rc = hpsa_scsi_add_host(h);
8064 	if (rc)
8065 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8066 
8067 	/* create the resubmit workqueue */
8068 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8069 	if (!h->rescan_ctlr_wq) {
8070 		rc = -ENOMEM;
8071 		goto clean7;
8072 	}
8073 
8074 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8075 	if (!h->resubmit_wq) {
8076 		rc = -ENOMEM;
8077 		goto clean7;	/* aer/h */
8078 	}
8079 
8080 	/*
8081 	 * At this point, the controller is ready to take commands.
8082 	 * Now, if reset_devices and the hard reset didn't work, try
8083 	 * the soft reset and see if that works.
8084 	 */
8085 	if (try_soft_reset) {
8086 
8087 		/* This is kind of gross.  We may or may not get a completion
8088 		 * from the soft reset command, and if we do, then the value
8089 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8090 		 * after the reset throwing away any completions we get during
8091 		 * that time.  Unregister the interrupt handler and register
8092 		 * fake ones to scoop up any residual completions.
8093 		 */
8094 		spin_lock_irqsave(&h->lock, flags);
8095 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8096 		spin_unlock_irqrestore(&h->lock, flags);
8097 		hpsa_free_irqs(h);
8098 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8099 					hpsa_intx_discard_completions);
8100 		if (rc) {
8101 			dev_warn(&h->pdev->dev,
8102 				"Failed to request_irq after soft reset.\n");
8103 			/*
8104 			 * cannot goto clean7 or free_irqs will be called
8105 			 * again. Instead, do its work
8106 			 */
8107 			hpsa_free_performant_mode(h);	/* clean7 */
8108 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8109 			hpsa_free_cmd_pool(h);		/* clean5 */
8110 			/*
8111 			 * skip hpsa_free_irqs(h) clean4 since that
8112 			 * was just called before request_irqs failed
8113 			 */
8114 			goto clean3;
8115 		}
8116 
8117 		rc = hpsa_kdump_soft_reset(h);
8118 		if (rc)
8119 			/* Neither hard nor soft reset worked, we're hosed. */
8120 			goto clean7;
8121 
8122 		dev_info(&h->pdev->dev, "Board READY.\n");
8123 		dev_info(&h->pdev->dev,
8124 			"Waiting for stale completions to drain.\n");
8125 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8126 		msleep(10000);
8127 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8128 
8129 		rc = controller_reset_failed(h->cfgtable);
8130 		if (rc)
8131 			dev_info(&h->pdev->dev,
8132 				"Soft reset appears to have failed.\n");
8133 
8134 		/* since the controller's reset, we have to go back and re-init
8135 		 * everything.  Easiest to just forget what we've done and do it
8136 		 * all over again.
8137 		 */
8138 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8139 		try_soft_reset = 0;
8140 		if (rc)
8141 			/* don't goto clean, we already unallocated */
8142 			return -ENODEV;
8143 
8144 		goto reinit_after_soft_reset;
8145 	}
8146 
8147 	/* Enable Accelerated IO path at driver layer */
8148 	h->acciopath_status = 1;
8149 
8150 
8151 	/* Turn the interrupts on so we can service requests */
8152 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8153 
8154 	hpsa_hba_inquiry(h);
8155 
8156 	/* Monitor the controller for firmware lockups */
8157 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8158 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8159 	schedule_delayed_work(&h->monitor_ctlr_work,
8160 				h->heartbeat_sample_interval);
8161 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8162 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8163 				h->heartbeat_sample_interval);
8164 	return 0;
8165 
8166 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8167 	hpsa_free_performant_mode(h);
8168 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8169 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8170 	hpsa_free_sg_chain_blocks(h);
8171 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8172 	hpsa_free_cmd_pool(h);
8173 clean4: /* irq, shost, pci, lu, aer/h */
8174 	hpsa_free_irqs(h);
8175 clean3: /* shost, pci, lu, aer/h */
8176 	scsi_host_put(h->scsi_host);
8177 	h->scsi_host = NULL;
8178 clean2_5: /* pci, lu, aer/h */
8179 	hpsa_free_pci_init(h);
8180 clean2: /* lu, aer/h */
8181 	if (h->lockup_detected) {
8182 		free_percpu(h->lockup_detected);
8183 		h->lockup_detected = NULL;
8184 	}
8185 clean1:	/* wq/aer/h */
8186 	if (h->resubmit_wq) {
8187 		destroy_workqueue(h->resubmit_wq);
8188 		h->resubmit_wq = NULL;
8189 	}
8190 	if (h->rescan_ctlr_wq) {
8191 		destroy_workqueue(h->rescan_ctlr_wq);
8192 		h->rescan_ctlr_wq = NULL;
8193 	}
8194 	kfree(h);
8195 	return rc;
8196 }
8197 
8198 static void hpsa_flush_cache(struct ctlr_info *h)
8199 {
8200 	char *flush_buf;
8201 	struct CommandList *c;
8202 	int rc;
8203 
8204 	if (unlikely(lockup_detected(h)))
8205 		return;
8206 	flush_buf = kzalloc(4, GFP_KERNEL);
8207 	if (!flush_buf)
8208 		return;
8209 
8210 	c = cmd_alloc(h);
8211 
8212 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8213 		RAID_CTLR_LUNID, TYPE_CMD)) {
8214 		goto out;
8215 	}
8216 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8217 					PCI_DMA_TODEVICE, NO_TIMEOUT);
8218 	if (rc)
8219 		goto out;
8220 	if (c->err_info->CommandStatus != 0)
8221 out:
8222 		dev_warn(&h->pdev->dev,
8223 			"error flushing cache on controller\n");
8224 	cmd_free(h, c);
8225 	kfree(flush_buf);
8226 }
8227 
8228 static void hpsa_shutdown(struct pci_dev *pdev)
8229 {
8230 	struct ctlr_info *h;
8231 
8232 	h = pci_get_drvdata(pdev);
8233 	/* Turn board interrupts off  and send the flush cache command
8234 	 * sendcmd will turn off interrupt, and send the flush...
8235 	 * To write all data in the battery backed cache to disks
8236 	 */
8237 	hpsa_flush_cache(h);
8238 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8239 	hpsa_free_irqs(h);			/* init_one 4 */
8240 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8241 }
8242 
8243 static void hpsa_free_device_info(struct ctlr_info *h)
8244 {
8245 	int i;
8246 
8247 	for (i = 0; i < h->ndevices; i++) {
8248 		kfree(h->dev[i]);
8249 		h->dev[i] = NULL;
8250 	}
8251 }
8252 
8253 static void hpsa_remove_one(struct pci_dev *pdev)
8254 {
8255 	struct ctlr_info *h;
8256 	unsigned long flags;
8257 
8258 	if (pci_get_drvdata(pdev) == NULL) {
8259 		dev_err(&pdev->dev, "unable to remove device\n");
8260 		return;
8261 	}
8262 	h = pci_get_drvdata(pdev);
8263 
8264 	/* Get rid of any controller monitoring work items */
8265 	spin_lock_irqsave(&h->lock, flags);
8266 	h->remove_in_progress = 1;
8267 	spin_unlock_irqrestore(&h->lock, flags);
8268 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8269 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8270 	destroy_workqueue(h->rescan_ctlr_wq);
8271 	destroy_workqueue(h->resubmit_wq);
8272 
8273 	/* includes hpsa_free_irqs - init_one 4 */
8274 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8275 	hpsa_shutdown(pdev);
8276 
8277 	hpsa_free_device_info(h);		/* scan */
8278 
8279 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8280 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8281 	if (h->scsi_host)
8282 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8283 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8284 	hpsa_free_performant_mode(h);			/* init_one 7 */
8285 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8286 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8287 
8288 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8289 
8290 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8291 	h->scsi_host = NULL;				/* init_one 3 */
8292 
8293 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8294 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8295 
8296 	free_percpu(h->lockup_detected);		/* init_one 2 */
8297 	h->lockup_detected = NULL;			/* init_one 2 */
8298 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8299 	kfree(h);					/* init_one 1 */
8300 }
8301 
8302 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8303 	__attribute__((unused)) pm_message_t state)
8304 {
8305 	return -ENOSYS;
8306 }
8307 
8308 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8309 {
8310 	return -ENOSYS;
8311 }
8312 
8313 static struct pci_driver hpsa_pci_driver = {
8314 	.name = HPSA,
8315 	.probe = hpsa_init_one,
8316 	.remove = hpsa_remove_one,
8317 	.id_table = hpsa_pci_device_id,	/* id_table */
8318 	.shutdown = hpsa_shutdown,
8319 	.suspend = hpsa_suspend,
8320 	.resume = hpsa_resume,
8321 };
8322 
8323 /* Fill in bucket_map[], given nsgs (the max number of
8324  * scatter gather elements supported) and bucket[],
8325  * which is an array of 8 integers.  The bucket[] array
8326  * contains 8 different DMA transfer sizes (in 16
8327  * byte increments) which the controller uses to fetch
8328  * commands.  This function fills in bucket_map[], which
8329  * maps a given number of scatter gather elements to one of
8330  * the 8 DMA transfer sizes.  The point of it is to allow the
8331  * controller to only do as much DMA as needed to fetch the
8332  * command, with the DMA transfer size encoded in the lower
8333  * bits of the command address.
8334  */
8335 static void  calc_bucket_map(int bucket[], int num_buckets,
8336 	int nsgs, int min_blocks, u32 *bucket_map)
8337 {
8338 	int i, j, b, size;
8339 
8340 	/* Note, bucket_map must have nsgs+1 entries. */
8341 	for (i = 0; i <= nsgs; i++) {
8342 		/* Compute size of a command with i SG entries */
8343 		size = i + min_blocks;
8344 		b = num_buckets; /* Assume the biggest bucket */
8345 		/* Find the bucket that is just big enough */
8346 		for (j = 0; j < num_buckets; j++) {
8347 			if (bucket[j] >= size) {
8348 				b = j;
8349 				break;
8350 			}
8351 		}
8352 		/* for a command with i SG entries, use bucket b. */
8353 		bucket_map[i] = b;
8354 	}
8355 }
8356 
8357 /*
8358  * return -ENODEV on err, 0 on success (or no action)
8359  * allocates numerous items that must be freed later
8360  */
8361 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8362 {
8363 	int i;
8364 	unsigned long register_value;
8365 	unsigned long transMethod = CFGTBL_Trans_Performant |
8366 			(trans_support & CFGTBL_Trans_use_short_tags) |
8367 				CFGTBL_Trans_enable_directed_msix |
8368 			(trans_support & (CFGTBL_Trans_io_accel1 |
8369 				CFGTBL_Trans_io_accel2));
8370 	struct access_method access = SA5_performant_access;
8371 
8372 	/* This is a bit complicated.  There are 8 registers on
8373 	 * the controller which we write to to tell it 8 different
8374 	 * sizes of commands which there may be.  It's a way of
8375 	 * reducing the DMA done to fetch each command.  Encoded into
8376 	 * each command's tag are 3 bits which communicate to the controller
8377 	 * which of the eight sizes that command fits within.  The size of
8378 	 * each command depends on how many scatter gather entries there are.
8379 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8380 	 * with the number of 16-byte blocks a command of that size requires.
8381 	 * The smallest command possible requires 5 such 16 byte blocks.
8382 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8383 	 * blocks.  Note, this only extends to the SG entries contained
8384 	 * within the command block, and does not extend to chained blocks
8385 	 * of SG elements.   bft[] contains the eight values we write to
8386 	 * the registers.  They are not evenly distributed, but have more
8387 	 * sizes for small commands, and fewer sizes for larger commands.
8388 	 */
8389 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8390 #define MIN_IOACCEL2_BFT_ENTRY 5
8391 #define HPSA_IOACCEL2_HEADER_SZ 4
8392 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8393 			13, 14, 15, 16, 17, 18, 19,
8394 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8395 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8396 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8397 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8398 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8399 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8400 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8401 	/*  5 = 1 s/g entry or 4k
8402 	 *  6 = 2 s/g entry or 8k
8403 	 *  8 = 4 s/g entry or 16k
8404 	 * 10 = 6 s/g entry or 24k
8405 	 */
8406 
8407 	/* If the controller supports either ioaccel method then
8408 	 * we can also use the RAID stack submit path that does not
8409 	 * perform the superfluous readl() after each command submission.
8410 	 */
8411 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8412 		access = SA5_performant_access_no_read;
8413 
8414 	/* Controller spec: zero out this buffer. */
8415 	for (i = 0; i < h->nreply_queues; i++)
8416 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8417 
8418 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8419 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8420 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8421 	for (i = 0; i < 8; i++)
8422 		writel(bft[i], &h->transtable->BlockFetch[i]);
8423 
8424 	/* size of controller ring buffer */
8425 	writel(h->max_commands, &h->transtable->RepQSize);
8426 	writel(h->nreply_queues, &h->transtable->RepQCount);
8427 	writel(0, &h->transtable->RepQCtrAddrLow32);
8428 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8429 
8430 	for (i = 0; i < h->nreply_queues; i++) {
8431 		writel(0, &h->transtable->RepQAddr[i].upper);
8432 		writel(h->reply_queue[i].busaddr,
8433 			&h->transtable->RepQAddr[i].lower);
8434 	}
8435 
8436 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8437 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8438 	/*
8439 	 * enable outbound interrupt coalescing in accelerator mode;
8440 	 */
8441 	if (trans_support & CFGTBL_Trans_io_accel1) {
8442 		access = SA5_ioaccel_mode1_access;
8443 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8444 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8445 	} else {
8446 		if (trans_support & CFGTBL_Trans_io_accel2) {
8447 			access = SA5_ioaccel_mode2_access;
8448 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8449 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8450 		}
8451 	}
8452 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8453 	if (hpsa_wait_for_mode_change_ack(h)) {
8454 		dev_err(&h->pdev->dev,
8455 			"performant mode problem - doorbell timeout\n");
8456 		return -ENODEV;
8457 	}
8458 	register_value = readl(&(h->cfgtable->TransportActive));
8459 	if (!(register_value & CFGTBL_Trans_Performant)) {
8460 		dev_err(&h->pdev->dev,
8461 			"performant mode problem - transport not active\n");
8462 		return -ENODEV;
8463 	}
8464 	/* Change the access methods to the performant access methods */
8465 	h->access = access;
8466 	h->transMethod = transMethod;
8467 
8468 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8469 		(trans_support & CFGTBL_Trans_io_accel2)))
8470 		return 0;
8471 
8472 	if (trans_support & CFGTBL_Trans_io_accel1) {
8473 		/* Set up I/O accelerator mode */
8474 		for (i = 0; i < h->nreply_queues; i++) {
8475 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8476 			h->reply_queue[i].current_entry =
8477 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8478 		}
8479 		bft[7] = h->ioaccel_maxsg + 8;
8480 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8481 				h->ioaccel1_blockFetchTable);
8482 
8483 		/* initialize all reply queue entries to unused */
8484 		for (i = 0; i < h->nreply_queues; i++)
8485 			memset(h->reply_queue[i].head,
8486 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8487 				h->reply_queue_size);
8488 
8489 		/* set all the constant fields in the accelerator command
8490 		 * frames once at init time to save CPU cycles later.
8491 		 */
8492 		for (i = 0; i < h->nr_cmds; i++) {
8493 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8494 
8495 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8496 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8497 					(i * sizeof(struct ErrorInfo)));
8498 			cp->err_info_len = sizeof(struct ErrorInfo);
8499 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8500 			cp->host_context_flags =
8501 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8502 			cp->timeout_sec = 0;
8503 			cp->ReplyQueue = 0;
8504 			cp->tag =
8505 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8506 			cp->host_addr =
8507 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8508 					(i * sizeof(struct io_accel1_cmd)));
8509 		}
8510 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8511 		u64 cfg_offset, cfg_base_addr_index;
8512 		u32 bft2_offset, cfg_base_addr;
8513 		int rc;
8514 
8515 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8516 			&cfg_base_addr_index, &cfg_offset);
8517 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8518 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8519 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8520 				4, h->ioaccel2_blockFetchTable);
8521 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8522 		BUILD_BUG_ON(offsetof(struct CfgTable,
8523 				io_accel_request_size_offset) != 0xb8);
8524 		h->ioaccel2_bft2_regs =
8525 			remap_pci_mem(pci_resource_start(h->pdev,
8526 					cfg_base_addr_index) +
8527 					cfg_offset + bft2_offset,
8528 					ARRAY_SIZE(bft2) *
8529 					sizeof(*h->ioaccel2_bft2_regs));
8530 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8531 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8532 	}
8533 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8534 	if (hpsa_wait_for_mode_change_ack(h)) {
8535 		dev_err(&h->pdev->dev,
8536 			"performant mode problem - enabling ioaccel mode\n");
8537 		return -ENODEV;
8538 	}
8539 	return 0;
8540 }
8541 
8542 /* Free ioaccel1 mode command blocks and block fetch table */
8543 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8544 {
8545 	if (h->ioaccel_cmd_pool) {
8546 		pci_free_consistent(h->pdev,
8547 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8548 			h->ioaccel_cmd_pool,
8549 			h->ioaccel_cmd_pool_dhandle);
8550 		h->ioaccel_cmd_pool = NULL;
8551 		h->ioaccel_cmd_pool_dhandle = 0;
8552 	}
8553 	kfree(h->ioaccel1_blockFetchTable);
8554 	h->ioaccel1_blockFetchTable = NULL;
8555 }
8556 
8557 /* Allocate ioaccel1 mode command blocks and block fetch table */
8558 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8559 {
8560 	h->ioaccel_maxsg =
8561 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8562 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
8563 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
8564 
8565 	/* Command structures must be aligned on a 128-byte boundary
8566 	 * because the 7 lower bits of the address are used by the
8567 	 * hardware.
8568 	 */
8569 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
8570 			IOACCEL1_COMMANDLIST_ALIGNMENT);
8571 	h->ioaccel_cmd_pool =
8572 		pci_alloc_consistent(h->pdev,
8573 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8574 			&(h->ioaccel_cmd_pool_dhandle));
8575 
8576 	h->ioaccel1_blockFetchTable =
8577 		kmalloc(((h->ioaccel_maxsg + 1) *
8578 				sizeof(u32)), GFP_KERNEL);
8579 
8580 	if ((h->ioaccel_cmd_pool == NULL) ||
8581 		(h->ioaccel1_blockFetchTable == NULL))
8582 		goto clean_up;
8583 
8584 	memset(h->ioaccel_cmd_pool, 0,
8585 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
8586 	return 0;
8587 
8588 clean_up:
8589 	hpsa_free_ioaccel1_cmd_and_bft(h);
8590 	return -ENOMEM;
8591 }
8592 
8593 /* Free ioaccel2 mode command blocks and block fetch table */
8594 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8595 {
8596 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8597 
8598 	if (h->ioaccel2_cmd_pool) {
8599 		pci_free_consistent(h->pdev,
8600 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8601 			h->ioaccel2_cmd_pool,
8602 			h->ioaccel2_cmd_pool_dhandle);
8603 		h->ioaccel2_cmd_pool = NULL;
8604 		h->ioaccel2_cmd_pool_dhandle = 0;
8605 	}
8606 	kfree(h->ioaccel2_blockFetchTable);
8607 	h->ioaccel2_blockFetchTable = NULL;
8608 }
8609 
8610 /* Allocate ioaccel2 mode command blocks and block fetch table */
8611 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
8612 {
8613 	int rc;
8614 
8615 	/* Allocate ioaccel2 mode command blocks and block fetch table */
8616 
8617 	h->ioaccel_maxsg =
8618 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
8619 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
8620 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
8621 
8622 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
8623 			IOACCEL2_COMMANDLIST_ALIGNMENT);
8624 	h->ioaccel2_cmd_pool =
8625 		pci_alloc_consistent(h->pdev,
8626 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
8627 			&(h->ioaccel2_cmd_pool_dhandle));
8628 
8629 	h->ioaccel2_blockFetchTable =
8630 		kmalloc(((h->ioaccel_maxsg + 1) *
8631 				sizeof(u32)), GFP_KERNEL);
8632 
8633 	if ((h->ioaccel2_cmd_pool == NULL) ||
8634 		(h->ioaccel2_blockFetchTable == NULL)) {
8635 		rc = -ENOMEM;
8636 		goto clean_up;
8637 	}
8638 
8639 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
8640 	if (rc)
8641 		goto clean_up;
8642 
8643 	memset(h->ioaccel2_cmd_pool, 0,
8644 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
8645 	return 0;
8646 
8647 clean_up:
8648 	hpsa_free_ioaccel2_cmd_and_bft(h);
8649 	return rc;
8650 }
8651 
8652 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
8653 static void hpsa_free_performant_mode(struct ctlr_info *h)
8654 {
8655 	kfree(h->blockFetchTable);
8656 	h->blockFetchTable = NULL;
8657 	hpsa_free_reply_queues(h);
8658 	hpsa_free_ioaccel1_cmd_and_bft(h);
8659 	hpsa_free_ioaccel2_cmd_and_bft(h);
8660 }
8661 
8662 /* return -ENODEV on error, 0 on success (or no action)
8663  * allocates numerous items that must be freed later
8664  */
8665 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
8666 {
8667 	u32 trans_support;
8668 	unsigned long transMethod = CFGTBL_Trans_Performant |
8669 					CFGTBL_Trans_use_short_tags;
8670 	int i, rc;
8671 
8672 	if (hpsa_simple_mode)
8673 		return 0;
8674 
8675 	trans_support = readl(&(h->cfgtable->TransportSupport));
8676 	if (!(trans_support & PERFORMANT_MODE))
8677 		return 0;
8678 
8679 	/* Check for I/O accelerator mode support */
8680 	if (trans_support & CFGTBL_Trans_io_accel1) {
8681 		transMethod |= CFGTBL_Trans_io_accel1 |
8682 				CFGTBL_Trans_enable_directed_msix;
8683 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
8684 		if (rc)
8685 			return rc;
8686 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8687 		transMethod |= CFGTBL_Trans_io_accel2 |
8688 				CFGTBL_Trans_enable_directed_msix;
8689 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
8690 		if (rc)
8691 			return rc;
8692 	}
8693 
8694 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
8695 	hpsa_get_max_perf_mode_cmds(h);
8696 	/* Performant mode ring buffer and supporting data structures */
8697 	h->reply_queue_size = h->max_commands * sizeof(u64);
8698 
8699 	for (i = 0; i < h->nreply_queues; i++) {
8700 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
8701 						h->reply_queue_size,
8702 						&(h->reply_queue[i].busaddr));
8703 		if (!h->reply_queue[i].head) {
8704 			rc = -ENOMEM;
8705 			goto clean1;	/* rq, ioaccel */
8706 		}
8707 		h->reply_queue[i].size = h->max_commands;
8708 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
8709 		h->reply_queue[i].current_entry = 0;
8710 	}
8711 
8712 	/* Need a block fetch table for performant mode */
8713 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
8714 				sizeof(u32)), GFP_KERNEL);
8715 	if (!h->blockFetchTable) {
8716 		rc = -ENOMEM;
8717 		goto clean1;	/* rq, ioaccel */
8718 	}
8719 
8720 	rc = hpsa_enter_performant_mode(h, trans_support);
8721 	if (rc)
8722 		goto clean2;	/* bft, rq, ioaccel */
8723 	return 0;
8724 
8725 clean2:	/* bft, rq, ioaccel */
8726 	kfree(h->blockFetchTable);
8727 	h->blockFetchTable = NULL;
8728 clean1:	/* rq, ioaccel */
8729 	hpsa_free_reply_queues(h);
8730 	hpsa_free_ioaccel1_cmd_and_bft(h);
8731 	hpsa_free_ioaccel2_cmd_and_bft(h);
8732 	return rc;
8733 }
8734 
8735 static int is_accelerated_cmd(struct CommandList *c)
8736 {
8737 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
8738 }
8739 
8740 static void hpsa_drain_accel_commands(struct ctlr_info *h)
8741 {
8742 	struct CommandList *c = NULL;
8743 	int i, accel_cmds_out;
8744 	int refcount;
8745 
8746 	do { /* wait for all outstanding ioaccel commands to drain out */
8747 		accel_cmds_out = 0;
8748 		for (i = 0; i < h->nr_cmds; i++) {
8749 			c = h->cmd_pool + i;
8750 			refcount = atomic_inc_return(&c->refcount);
8751 			if (refcount > 1) /* Command is allocated */
8752 				accel_cmds_out += is_accelerated_cmd(c);
8753 			cmd_free(h, c);
8754 		}
8755 		if (accel_cmds_out <= 0)
8756 			break;
8757 		msleep(100);
8758 	} while (1);
8759 }
8760 
8761 /*
8762  *  This is it.  Register the PCI driver information for the cards we control
8763  *  the OS will call our registered routines when it finds one of our cards.
8764  */
8765 static int __init hpsa_init(void)
8766 {
8767 	return pci_register_driver(&hpsa_pci_driver);
8768 }
8769 
8770 static void __exit hpsa_cleanup(void)
8771 {
8772 	pci_unregister_driver(&hpsa_pci_driver);
8773 }
8774 
8775 static void __attribute__((unused)) verify_offsets(void)
8776 {
8777 #define VERIFY_OFFSET(member, offset) \
8778 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
8779 
8780 	VERIFY_OFFSET(structure_size, 0);
8781 	VERIFY_OFFSET(volume_blk_size, 4);
8782 	VERIFY_OFFSET(volume_blk_cnt, 8);
8783 	VERIFY_OFFSET(phys_blk_shift, 16);
8784 	VERIFY_OFFSET(parity_rotation_shift, 17);
8785 	VERIFY_OFFSET(strip_size, 18);
8786 	VERIFY_OFFSET(disk_starting_blk, 20);
8787 	VERIFY_OFFSET(disk_blk_cnt, 28);
8788 	VERIFY_OFFSET(data_disks_per_row, 36);
8789 	VERIFY_OFFSET(metadata_disks_per_row, 38);
8790 	VERIFY_OFFSET(row_cnt, 40);
8791 	VERIFY_OFFSET(layout_map_count, 42);
8792 	VERIFY_OFFSET(flags, 44);
8793 	VERIFY_OFFSET(dekindex, 46);
8794 	/* VERIFY_OFFSET(reserved, 48 */
8795 	VERIFY_OFFSET(data, 64);
8796 
8797 #undef VERIFY_OFFSET
8798 
8799 #define VERIFY_OFFSET(member, offset) \
8800 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
8801 
8802 	VERIFY_OFFSET(IU_type, 0);
8803 	VERIFY_OFFSET(direction, 1);
8804 	VERIFY_OFFSET(reply_queue, 2);
8805 	/* VERIFY_OFFSET(reserved1, 3);  */
8806 	VERIFY_OFFSET(scsi_nexus, 4);
8807 	VERIFY_OFFSET(Tag, 8);
8808 	VERIFY_OFFSET(cdb, 16);
8809 	VERIFY_OFFSET(cciss_lun, 32);
8810 	VERIFY_OFFSET(data_len, 40);
8811 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
8812 	VERIFY_OFFSET(sg_count, 45);
8813 	/* VERIFY_OFFSET(reserved3 */
8814 	VERIFY_OFFSET(err_ptr, 48);
8815 	VERIFY_OFFSET(err_len, 56);
8816 	/* VERIFY_OFFSET(reserved4  */
8817 	VERIFY_OFFSET(sg, 64);
8818 
8819 #undef VERIFY_OFFSET
8820 
8821 #define VERIFY_OFFSET(member, offset) \
8822 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
8823 
8824 	VERIFY_OFFSET(dev_handle, 0x00);
8825 	VERIFY_OFFSET(reserved1, 0x02);
8826 	VERIFY_OFFSET(function, 0x03);
8827 	VERIFY_OFFSET(reserved2, 0x04);
8828 	VERIFY_OFFSET(err_info, 0x0C);
8829 	VERIFY_OFFSET(reserved3, 0x10);
8830 	VERIFY_OFFSET(err_info_len, 0x12);
8831 	VERIFY_OFFSET(reserved4, 0x13);
8832 	VERIFY_OFFSET(sgl_offset, 0x14);
8833 	VERIFY_OFFSET(reserved5, 0x15);
8834 	VERIFY_OFFSET(transfer_len, 0x1C);
8835 	VERIFY_OFFSET(reserved6, 0x20);
8836 	VERIFY_OFFSET(io_flags, 0x24);
8837 	VERIFY_OFFSET(reserved7, 0x26);
8838 	VERIFY_OFFSET(LUN, 0x34);
8839 	VERIFY_OFFSET(control, 0x3C);
8840 	VERIFY_OFFSET(CDB, 0x40);
8841 	VERIFY_OFFSET(reserved8, 0x50);
8842 	VERIFY_OFFSET(host_context_flags, 0x60);
8843 	VERIFY_OFFSET(timeout_sec, 0x62);
8844 	VERIFY_OFFSET(ReplyQueue, 0x64);
8845 	VERIFY_OFFSET(reserved9, 0x65);
8846 	VERIFY_OFFSET(tag, 0x68);
8847 	VERIFY_OFFSET(host_addr, 0x70);
8848 	VERIFY_OFFSET(CISS_LUN, 0x78);
8849 	VERIFY_OFFSET(SG, 0x78 + 8);
8850 #undef VERIFY_OFFSET
8851 }
8852 
8853 module_init(hpsa_init);
8854 module_exit(hpsa_cleanup);
8855