xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 50a0decf75b66480aa5b076d4e1bca11bc202efe)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/div64.h>
54 #include "hpsa_cmd.h"
55 #include "hpsa.h"
56 
57 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58 #define HPSA_DRIVER_VERSION "3.4.4-1"
59 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60 #define HPSA "hpsa"
61 
62 /* How long to wait (in milliseconds) for board to go into simple mode */
63 #define MAX_CONFIG_WAIT 30000
64 #define MAX_IOCTL_CONFIG_WAIT 1000
65 
66 /*define how many times we will try a command because of bus resets */
67 #define MAX_CMD_RETRIES 3
68 
69 /* Embedded module documentation macros - see modules.h */
70 MODULE_AUTHOR("Hewlett-Packard Company");
71 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 	HPSA_DRIVER_VERSION);
73 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_VERSION(HPSA_DRIVER_VERSION);
75 MODULE_LICENSE("GPL");
76 
77 static int hpsa_allow_any;
78 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_allow_any,
80 		"Allow hpsa driver to access unknown HP Smart Array hardware");
81 static int hpsa_simple_mode;
82 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_simple_mode,
84 	"Use 'simple mode' rather than 'performant mode'");
85 
86 /* define the PCI info for the cards we can control */
87 static const struct pci_device_id hpsa_pci_device_id[] = {
88 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
89 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
90 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
91 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
92 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
128 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
134 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135 	{0,}
136 };
137 
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
139 
140 /*  board_id = Subsystem Device ID & Vendor ID
141  *  product = Marketing Name for the board
142  *  access = Address of the struct of function pointers
143  */
144 static struct board_type products[] = {
145 	{0x3241103C, "Smart Array P212", &SA5_access},
146 	{0x3243103C, "Smart Array P410", &SA5_access},
147 	{0x3245103C, "Smart Array P410i", &SA5_access},
148 	{0x3247103C, "Smart Array P411", &SA5_access},
149 	{0x3249103C, "Smart Array P812", &SA5_access},
150 	{0x324A103C, "Smart Array P712m", &SA5_access},
151 	{0x324B103C, "Smart Array P711m", &SA5_access},
152 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
153 	{0x3350103C, "Smart Array P222", &SA5_access},
154 	{0x3351103C, "Smart Array P420", &SA5_access},
155 	{0x3352103C, "Smart Array P421", &SA5_access},
156 	{0x3353103C, "Smart Array P822", &SA5_access},
157 	{0x3354103C, "Smart Array P420i", &SA5_access},
158 	{0x3355103C, "Smart Array P220i", &SA5_access},
159 	{0x3356103C, "Smart Array P721m", &SA5_access},
160 	{0x1921103C, "Smart Array P830i", &SA5_access},
161 	{0x1922103C, "Smart Array P430", &SA5_access},
162 	{0x1923103C, "Smart Array P431", &SA5_access},
163 	{0x1924103C, "Smart Array P830", &SA5_access},
164 	{0x1926103C, "Smart Array P731m", &SA5_access},
165 	{0x1928103C, "Smart Array P230i", &SA5_access},
166 	{0x1929103C, "Smart Array P530", &SA5_access},
167 	{0x21BD103C, "Smart Array", &SA5_access},
168 	{0x21BE103C, "Smart Array", &SA5_access},
169 	{0x21BF103C, "Smart Array", &SA5_access},
170 	{0x21C0103C, "Smart Array", &SA5_access},
171 	{0x21C1103C, "Smart Array", &SA5_access},
172 	{0x21C2103C, "Smart Array", &SA5_access},
173 	{0x21C3103C, "Smart Array", &SA5_access},
174 	{0x21C4103C, "Smart Array", &SA5_access},
175 	{0x21C5103C, "Smart Array", &SA5_access},
176 	{0x21C6103C, "Smart Array", &SA5_access},
177 	{0x21C7103C, "Smart Array", &SA5_access},
178 	{0x21C8103C, "Smart Array", &SA5_access},
179 	{0x21C9103C, "Smart Array", &SA5_access},
180 	{0x21CA103C, "Smart Array", &SA5_access},
181 	{0x21CB103C, "Smart Array", &SA5_access},
182 	{0x21CC103C, "Smart Array", &SA5_access},
183 	{0x21CD103C, "Smart Array", &SA5_access},
184 	{0x21CE103C, "Smart Array", &SA5_access},
185 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
186 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
187 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
188 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
189 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
190 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
191 };
192 
193 static int number_of_controllers;
194 
195 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
196 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
197 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
198 static void lock_and_start_io(struct ctlr_info *h);
199 static void start_io(struct ctlr_info *h, unsigned long *flags);
200 
201 #ifdef CONFIG_COMPAT
202 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
203 	void __user *arg);
204 #endif
205 
206 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
207 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
208 static struct CommandList *cmd_alloc(struct ctlr_info *h);
209 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212 	int cmd_type);
213 #define VPD_PAGE (1 << 8)
214 
215 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 static void hpsa_scan_start(struct Scsi_Host *);
217 static int hpsa_scan_finished(struct Scsi_Host *sh,
218 	unsigned long elapsed_time);
219 static int hpsa_change_queue_depth(struct scsi_device *sdev,
220 	int qdepth, int reason);
221 
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226 
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 	struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 	struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 	int nsgs, int min_blocks, int *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 			       u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 				    unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 				     int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 	u8 *scsi3addr);
254 
255 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
256 {
257 	unsigned long *priv = shost_priv(sdev->host);
258 	return (struct ctlr_info *) *priv;
259 }
260 
261 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
262 {
263 	unsigned long *priv = shost_priv(sh);
264 	return (struct ctlr_info *) *priv;
265 }
266 
267 static int check_for_unit_attention(struct ctlr_info *h,
268 	struct CommandList *c)
269 {
270 	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271 		return 0;
272 
273 	switch (c->err_info->SenseInfo[12]) {
274 	case STATE_CHANGED:
275 		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276 			"detected, command retried\n", h->ctlr);
277 		break;
278 	case LUN_FAILED:
279 		dev_warn(&h->pdev->dev,
280 			HPSA "%d: LUN failure detected\n", h->ctlr);
281 		break;
282 	case REPORT_LUNS_CHANGED:
283 		dev_warn(&h->pdev->dev,
284 			HPSA "%d: report LUN data changed\n", h->ctlr);
285 	/*
286 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
287 	 * target (array) devices.
288 	 */
289 		break;
290 	case POWER_OR_RESET:
291 		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292 			"or device reset detected\n", h->ctlr);
293 		break;
294 	case UNIT_ATTENTION_CLEARED:
295 		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296 		    "cleared by another initiator\n", h->ctlr);
297 		break;
298 	default:
299 		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300 			"unit attention detected\n", h->ctlr);
301 		break;
302 	}
303 	return 1;
304 }
305 
306 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
307 {
308 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
309 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
310 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
311 		return 0;
312 	dev_warn(&h->pdev->dev, HPSA "device busy");
313 	return 1;
314 }
315 
316 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
317 					 struct device_attribute *attr,
318 					 const char *buf, size_t count)
319 {
320 	int status, len;
321 	struct ctlr_info *h;
322 	struct Scsi_Host *shost = class_to_shost(dev);
323 	char tmpbuf[10];
324 
325 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
326 		return -EACCES;
327 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
328 	strncpy(tmpbuf, buf, len);
329 	tmpbuf[len] = '\0';
330 	if (sscanf(tmpbuf, "%d", &status) != 1)
331 		return -EINVAL;
332 	h = shost_to_hba(shost);
333 	h->acciopath_status = !!status;
334 	dev_warn(&h->pdev->dev,
335 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
336 		h->acciopath_status ? "enabled" : "disabled");
337 	return count;
338 }
339 
340 static ssize_t host_store_raid_offload_debug(struct device *dev,
341 					 struct device_attribute *attr,
342 					 const char *buf, size_t count)
343 {
344 	int debug_level, len;
345 	struct ctlr_info *h;
346 	struct Scsi_Host *shost = class_to_shost(dev);
347 	char tmpbuf[10];
348 
349 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
350 		return -EACCES;
351 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
352 	strncpy(tmpbuf, buf, len);
353 	tmpbuf[len] = '\0';
354 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
355 		return -EINVAL;
356 	if (debug_level < 0)
357 		debug_level = 0;
358 	h = shost_to_hba(shost);
359 	h->raid_offload_debug = debug_level;
360 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
361 		h->raid_offload_debug);
362 	return count;
363 }
364 
365 static ssize_t host_store_rescan(struct device *dev,
366 				 struct device_attribute *attr,
367 				 const char *buf, size_t count)
368 {
369 	struct ctlr_info *h;
370 	struct Scsi_Host *shost = class_to_shost(dev);
371 	h = shost_to_hba(shost);
372 	hpsa_scan_start(h->scsi_host);
373 	return count;
374 }
375 
376 static ssize_t host_show_firmware_revision(struct device *dev,
377 	     struct device_attribute *attr, char *buf)
378 {
379 	struct ctlr_info *h;
380 	struct Scsi_Host *shost = class_to_shost(dev);
381 	unsigned char *fwrev;
382 
383 	h = shost_to_hba(shost);
384 	if (!h->hba_inquiry_data)
385 		return 0;
386 	fwrev = &h->hba_inquiry_data[32];
387 	return snprintf(buf, 20, "%c%c%c%c\n",
388 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 }
390 
391 static ssize_t host_show_commands_outstanding(struct device *dev,
392 	     struct device_attribute *attr, char *buf)
393 {
394 	struct Scsi_Host *shost = class_to_shost(dev);
395 	struct ctlr_info *h = shost_to_hba(shost);
396 
397 	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
398 }
399 
400 static ssize_t host_show_transport_mode(struct device *dev,
401 	struct device_attribute *attr, char *buf)
402 {
403 	struct ctlr_info *h;
404 	struct Scsi_Host *shost = class_to_shost(dev);
405 
406 	h = shost_to_hba(shost);
407 	return snprintf(buf, 20, "%s\n",
408 		h->transMethod & CFGTBL_Trans_Performant ?
409 			"performant" : "simple");
410 }
411 
412 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
413 	struct device_attribute *attr, char *buf)
414 {
415 	struct ctlr_info *h;
416 	struct Scsi_Host *shost = class_to_shost(dev);
417 
418 	h = shost_to_hba(shost);
419 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
420 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
421 }
422 
423 /* List of controllers which cannot be hard reset on kexec with reset_devices */
424 static u32 unresettable_controller[] = {
425 	0x324a103C, /* Smart Array P712m */
426 	0x324b103C, /* SmartArray P711m */
427 	0x3223103C, /* Smart Array P800 */
428 	0x3234103C, /* Smart Array P400 */
429 	0x3235103C, /* Smart Array P400i */
430 	0x3211103C, /* Smart Array E200i */
431 	0x3212103C, /* Smart Array E200 */
432 	0x3213103C, /* Smart Array E200i */
433 	0x3214103C, /* Smart Array E200i */
434 	0x3215103C, /* Smart Array E200i */
435 	0x3237103C, /* Smart Array E500 */
436 	0x323D103C, /* Smart Array P700m */
437 	0x40800E11, /* Smart Array 5i */
438 	0x409C0E11, /* Smart Array 6400 */
439 	0x409D0E11, /* Smart Array 6400 EM */
440 	0x40700E11, /* Smart Array 5300 */
441 	0x40820E11, /* Smart Array 532 */
442 	0x40830E11, /* Smart Array 5312 */
443 	0x409A0E11, /* Smart Array 641 */
444 	0x409B0E11, /* Smart Array 642 */
445 	0x40910E11, /* Smart Array 6i */
446 };
447 
448 /* List of controllers which cannot even be soft reset */
449 static u32 soft_unresettable_controller[] = {
450 	0x40800E11, /* Smart Array 5i */
451 	0x40700E11, /* Smart Array 5300 */
452 	0x40820E11, /* Smart Array 532 */
453 	0x40830E11, /* Smart Array 5312 */
454 	0x409A0E11, /* Smart Array 641 */
455 	0x409B0E11, /* Smart Array 642 */
456 	0x40910E11, /* Smart Array 6i */
457 	/* Exclude 640x boards.  These are two pci devices in one slot
458 	 * which share a battery backed cache module.  One controls the
459 	 * cache, the other accesses the cache through the one that controls
460 	 * it.  If we reset the one controlling the cache, the other will
461 	 * likely not be happy.  Just forbid resetting this conjoined mess.
462 	 * The 640x isn't really supported by hpsa anyway.
463 	 */
464 	0x409C0E11, /* Smart Array 6400 */
465 	0x409D0E11, /* Smart Array 6400 EM */
466 };
467 
468 static int ctlr_is_hard_resettable(u32 board_id)
469 {
470 	int i;
471 
472 	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
473 		if (unresettable_controller[i] == board_id)
474 			return 0;
475 	return 1;
476 }
477 
478 static int ctlr_is_soft_resettable(u32 board_id)
479 {
480 	int i;
481 
482 	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
483 		if (soft_unresettable_controller[i] == board_id)
484 			return 0;
485 	return 1;
486 }
487 
488 static int ctlr_is_resettable(u32 board_id)
489 {
490 	return ctlr_is_hard_resettable(board_id) ||
491 		ctlr_is_soft_resettable(board_id);
492 }
493 
494 static ssize_t host_show_resettable(struct device *dev,
495 	struct device_attribute *attr, char *buf)
496 {
497 	struct ctlr_info *h;
498 	struct Scsi_Host *shost = class_to_shost(dev);
499 
500 	h = shost_to_hba(shost);
501 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
502 }
503 
504 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
505 {
506 	return (scsi3addr[3] & 0xC0) == 0x40;
507 }
508 
509 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
510 	"1(ADM)", "UNKNOWN"
511 };
512 #define HPSA_RAID_0	0
513 #define HPSA_RAID_4	1
514 #define HPSA_RAID_1	2	/* also used for RAID 10 */
515 #define HPSA_RAID_5	3	/* also used for RAID 50 */
516 #define HPSA_RAID_51	4
517 #define HPSA_RAID_6	5	/* also used for RAID 60 */
518 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
519 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
520 
521 static ssize_t raid_level_show(struct device *dev,
522 	     struct device_attribute *attr, char *buf)
523 {
524 	ssize_t l = 0;
525 	unsigned char rlevel;
526 	struct ctlr_info *h;
527 	struct scsi_device *sdev;
528 	struct hpsa_scsi_dev_t *hdev;
529 	unsigned long flags;
530 
531 	sdev = to_scsi_device(dev);
532 	h = sdev_to_hba(sdev);
533 	spin_lock_irqsave(&h->lock, flags);
534 	hdev = sdev->hostdata;
535 	if (!hdev) {
536 		spin_unlock_irqrestore(&h->lock, flags);
537 		return -ENODEV;
538 	}
539 
540 	/* Is this even a logical drive? */
541 	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
542 		spin_unlock_irqrestore(&h->lock, flags);
543 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
544 		return l;
545 	}
546 
547 	rlevel = hdev->raid_level;
548 	spin_unlock_irqrestore(&h->lock, flags);
549 	if (rlevel > RAID_UNKNOWN)
550 		rlevel = RAID_UNKNOWN;
551 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
552 	return l;
553 }
554 
555 static ssize_t lunid_show(struct device *dev,
556 	     struct device_attribute *attr, char *buf)
557 {
558 	struct ctlr_info *h;
559 	struct scsi_device *sdev;
560 	struct hpsa_scsi_dev_t *hdev;
561 	unsigned long flags;
562 	unsigned char lunid[8];
563 
564 	sdev = to_scsi_device(dev);
565 	h = sdev_to_hba(sdev);
566 	spin_lock_irqsave(&h->lock, flags);
567 	hdev = sdev->hostdata;
568 	if (!hdev) {
569 		spin_unlock_irqrestore(&h->lock, flags);
570 		return -ENODEV;
571 	}
572 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
573 	spin_unlock_irqrestore(&h->lock, flags);
574 	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
575 		lunid[0], lunid[1], lunid[2], lunid[3],
576 		lunid[4], lunid[5], lunid[6], lunid[7]);
577 }
578 
579 static ssize_t unique_id_show(struct device *dev,
580 	     struct device_attribute *attr, char *buf)
581 {
582 	struct ctlr_info *h;
583 	struct scsi_device *sdev;
584 	struct hpsa_scsi_dev_t *hdev;
585 	unsigned long flags;
586 	unsigned char sn[16];
587 
588 	sdev = to_scsi_device(dev);
589 	h = sdev_to_hba(sdev);
590 	spin_lock_irqsave(&h->lock, flags);
591 	hdev = sdev->hostdata;
592 	if (!hdev) {
593 		spin_unlock_irqrestore(&h->lock, flags);
594 		return -ENODEV;
595 	}
596 	memcpy(sn, hdev->device_id, sizeof(sn));
597 	spin_unlock_irqrestore(&h->lock, flags);
598 	return snprintf(buf, 16 * 2 + 2,
599 			"%02X%02X%02X%02X%02X%02X%02X%02X"
600 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
601 			sn[0], sn[1], sn[2], sn[3],
602 			sn[4], sn[5], sn[6], sn[7],
603 			sn[8], sn[9], sn[10], sn[11],
604 			sn[12], sn[13], sn[14], sn[15]);
605 }
606 
607 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
608 	     struct device_attribute *attr, char *buf)
609 {
610 	struct ctlr_info *h;
611 	struct scsi_device *sdev;
612 	struct hpsa_scsi_dev_t *hdev;
613 	unsigned long flags;
614 	int offload_enabled;
615 
616 	sdev = to_scsi_device(dev);
617 	h = sdev_to_hba(sdev);
618 	spin_lock_irqsave(&h->lock, flags);
619 	hdev = sdev->hostdata;
620 	if (!hdev) {
621 		spin_unlock_irqrestore(&h->lock, flags);
622 		return -ENODEV;
623 	}
624 	offload_enabled = hdev->offload_enabled;
625 	spin_unlock_irqrestore(&h->lock, flags);
626 	return snprintf(buf, 20, "%d\n", offload_enabled);
627 }
628 
629 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
630 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
631 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
632 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
633 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
634 			host_show_hp_ssd_smart_path_enabled, NULL);
635 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
636 		host_show_hp_ssd_smart_path_status,
637 		host_store_hp_ssd_smart_path_status);
638 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
639 			host_store_raid_offload_debug);
640 static DEVICE_ATTR(firmware_revision, S_IRUGO,
641 	host_show_firmware_revision, NULL);
642 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
643 	host_show_commands_outstanding, NULL);
644 static DEVICE_ATTR(transport_mode, S_IRUGO,
645 	host_show_transport_mode, NULL);
646 static DEVICE_ATTR(resettable, S_IRUGO,
647 	host_show_resettable, NULL);
648 
649 static struct device_attribute *hpsa_sdev_attrs[] = {
650 	&dev_attr_raid_level,
651 	&dev_attr_lunid,
652 	&dev_attr_unique_id,
653 	&dev_attr_hp_ssd_smart_path_enabled,
654 	NULL,
655 };
656 
657 static struct device_attribute *hpsa_shost_attrs[] = {
658 	&dev_attr_rescan,
659 	&dev_attr_firmware_revision,
660 	&dev_attr_commands_outstanding,
661 	&dev_attr_transport_mode,
662 	&dev_attr_resettable,
663 	&dev_attr_hp_ssd_smart_path_status,
664 	&dev_attr_raid_offload_debug,
665 	NULL,
666 };
667 
668 static struct scsi_host_template hpsa_driver_template = {
669 	.module			= THIS_MODULE,
670 	.name			= HPSA,
671 	.proc_name		= HPSA,
672 	.queuecommand		= hpsa_scsi_queue_command,
673 	.scan_start		= hpsa_scan_start,
674 	.scan_finished		= hpsa_scan_finished,
675 	.change_queue_depth	= hpsa_change_queue_depth,
676 	.this_id		= -1,
677 	.use_clustering		= ENABLE_CLUSTERING,
678 	.eh_abort_handler	= hpsa_eh_abort_handler,
679 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
680 	.ioctl			= hpsa_ioctl,
681 	.slave_alloc		= hpsa_slave_alloc,
682 	.slave_destroy		= hpsa_slave_destroy,
683 #ifdef CONFIG_COMPAT
684 	.compat_ioctl		= hpsa_compat_ioctl,
685 #endif
686 	.sdev_attrs = hpsa_sdev_attrs,
687 	.shost_attrs = hpsa_shost_attrs,
688 	.max_sectors = 8192,
689 	.no_write_same = 1,
690 };
691 
692 
693 /* Enqueuing and dequeuing functions for cmdlists. */
694 static inline void addQ(struct list_head *list, struct CommandList *c)
695 {
696 	list_add_tail(&c->list, list);
697 }
698 
699 static inline u32 next_command(struct ctlr_info *h, u8 q)
700 {
701 	u32 a;
702 	struct reply_queue_buffer *rq = &h->reply_queue[q];
703 	unsigned long flags;
704 
705 	if (h->transMethod & CFGTBL_Trans_io_accel1)
706 		return h->access.command_completed(h, q);
707 
708 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709 		return h->access.command_completed(h, q);
710 
711 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
712 		a = rq->head[rq->current_entry];
713 		rq->current_entry++;
714 		spin_lock_irqsave(&h->lock, flags);
715 		h->commands_outstanding--;
716 		spin_unlock_irqrestore(&h->lock, flags);
717 	} else {
718 		a = FIFO_EMPTY;
719 	}
720 	/* Check for wraparound */
721 	if (rq->current_entry == h->max_commands) {
722 		rq->current_entry = 0;
723 		rq->wraparound ^= 1;
724 	}
725 	return a;
726 }
727 
728 /*
729  * There are some special bits in the bus address of the
730  * command that we have to set for the controller to know
731  * how to process the command:
732  *
733  * Normal performant mode:
734  * bit 0: 1 means performant mode, 0 means simple mode.
735  * bits 1-3 = block fetch table entry
736  * bits 4-6 = command type (== 0)
737  *
738  * ioaccel1 mode:
739  * bit 0 = "performant mode" bit.
740  * bits 1-3 = block fetch table entry
741  * bits 4-6 = command type (== 110)
742  * (command type is needed because ioaccel1 mode
743  * commands are submitted through the same register as normal
744  * mode commands, so this is how the controller knows whether
745  * the command is normal mode or ioaccel1 mode.)
746  *
747  * ioaccel2 mode:
748  * bit 0 = "performant mode" bit.
749  * bits 1-4 = block fetch table entry (note extra bit)
750  * bits 4-6 = not needed, because ioaccel2 mode has
751  * a separate special register for submitting commands.
752  */
753 
754 /* set_performant_mode: Modify the tag for cciss performant
755  * set bit 0 for pull model, bits 3-1 for block fetch
756  * register number
757  */
758 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
759 {
760 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
761 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
762 		if (likely(h->msix_vector > 0))
763 			c->Header.ReplyQueue =
764 				raw_smp_processor_id() % h->nreply_queues;
765 	}
766 }
767 
768 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
769 						struct CommandList *c)
770 {
771 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
772 
773 	/* Tell the controller to post the reply to the queue for this
774 	 * processor.  This seems to give the best I/O throughput.
775 	 */
776 	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
777 	/* Set the bits in the address sent down to include:
778 	 *  - performant mode bit (bit 0)
779 	 *  - pull count (bits 1-3)
780 	 *  - command type (bits 4-6)
781 	 */
782 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
783 					IOACCEL1_BUSADDR_CMDTYPE;
784 }
785 
786 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
787 						struct CommandList *c)
788 {
789 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
790 
791 	/* Tell the controller to post the reply to the queue for this
792 	 * processor.  This seems to give the best I/O throughput.
793 	 */
794 	cp->reply_queue = smp_processor_id() % h->nreply_queues;
795 	/* Set the bits in the address sent down to include:
796 	 *  - performant mode bit not used in ioaccel mode 2
797 	 *  - pull count (bits 0-3)
798 	 *  - command type isn't needed for ioaccel2
799 	 */
800 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
801 }
802 
803 static int is_firmware_flash_cmd(u8 *cdb)
804 {
805 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
806 }
807 
808 /*
809  * During firmware flash, the heartbeat register may not update as frequently
810  * as it should.  So we dial down lockup detection during firmware flash. and
811  * dial it back up when firmware flash completes.
812  */
813 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
814 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
815 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
816 		struct CommandList *c)
817 {
818 	if (!is_firmware_flash_cmd(c->Request.CDB))
819 		return;
820 	atomic_inc(&h->firmware_flash_in_progress);
821 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
822 }
823 
824 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
825 		struct CommandList *c)
826 {
827 	if (is_firmware_flash_cmd(c->Request.CDB) &&
828 		atomic_dec_and_test(&h->firmware_flash_in_progress))
829 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
830 }
831 
832 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
833 	struct CommandList *c)
834 {
835 	unsigned long flags;
836 
837 	switch (c->cmd_type) {
838 	case CMD_IOACCEL1:
839 		set_ioaccel1_performant_mode(h, c);
840 		break;
841 	case CMD_IOACCEL2:
842 		set_ioaccel2_performant_mode(h, c);
843 		break;
844 	default:
845 		set_performant_mode(h, c);
846 	}
847 	dial_down_lockup_detection_during_fw_flash(h, c);
848 	spin_lock_irqsave(&h->lock, flags);
849 	addQ(&h->reqQ, c);
850 	h->Qdepth++;
851 	start_io(h, &flags);
852 	spin_unlock_irqrestore(&h->lock, flags);
853 }
854 
855 static inline void removeQ(struct CommandList *c)
856 {
857 	if (WARN_ON(list_empty(&c->list)))
858 		return;
859 	list_del_init(&c->list);
860 }
861 
862 static inline int is_hba_lunid(unsigned char scsi3addr[])
863 {
864 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
865 }
866 
867 static inline int is_scsi_rev_5(struct ctlr_info *h)
868 {
869 	if (!h->hba_inquiry_data)
870 		return 0;
871 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
872 		return 1;
873 	return 0;
874 }
875 
876 static int hpsa_find_target_lun(struct ctlr_info *h,
877 	unsigned char scsi3addr[], int bus, int *target, int *lun)
878 {
879 	/* finds an unused bus, target, lun for a new physical device
880 	 * assumes h->devlock is held
881 	 */
882 	int i, found = 0;
883 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
884 
885 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
886 
887 	for (i = 0; i < h->ndevices; i++) {
888 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
889 			__set_bit(h->dev[i]->target, lun_taken);
890 	}
891 
892 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
893 	if (i < HPSA_MAX_DEVICES) {
894 		/* *bus = 1; */
895 		*target = i;
896 		*lun = 0;
897 		found = 1;
898 	}
899 	return !found;
900 }
901 
902 /* Add an entry into h->dev[] array. */
903 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
904 		struct hpsa_scsi_dev_t *device,
905 		struct hpsa_scsi_dev_t *added[], int *nadded)
906 {
907 	/* assumes h->devlock is held */
908 	int n = h->ndevices;
909 	int i;
910 	unsigned char addr1[8], addr2[8];
911 	struct hpsa_scsi_dev_t *sd;
912 
913 	if (n >= HPSA_MAX_DEVICES) {
914 		dev_err(&h->pdev->dev, "too many devices, some will be "
915 			"inaccessible.\n");
916 		return -1;
917 	}
918 
919 	/* physical devices do not have lun or target assigned until now. */
920 	if (device->lun != -1)
921 		/* Logical device, lun is already assigned. */
922 		goto lun_assigned;
923 
924 	/* If this device a non-zero lun of a multi-lun device
925 	 * byte 4 of the 8-byte LUN addr will contain the logical
926 	 * unit no, zero otherise.
927 	 */
928 	if (device->scsi3addr[4] == 0) {
929 		/* This is not a non-zero lun of a multi-lun device */
930 		if (hpsa_find_target_lun(h, device->scsi3addr,
931 			device->bus, &device->target, &device->lun) != 0)
932 			return -1;
933 		goto lun_assigned;
934 	}
935 
936 	/* This is a non-zero lun of a multi-lun device.
937 	 * Search through our list and find the device which
938 	 * has the same 8 byte LUN address, excepting byte 4.
939 	 * Assign the same bus and target for this new LUN.
940 	 * Use the logical unit number from the firmware.
941 	 */
942 	memcpy(addr1, device->scsi3addr, 8);
943 	addr1[4] = 0;
944 	for (i = 0; i < n; i++) {
945 		sd = h->dev[i];
946 		memcpy(addr2, sd->scsi3addr, 8);
947 		addr2[4] = 0;
948 		/* differ only in byte 4? */
949 		if (memcmp(addr1, addr2, 8) == 0) {
950 			device->bus = sd->bus;
951 			device->target = sd->target;
952 			device->lun = device->scsi3addr[4];
953 			break;
954 		}
955 	}
956 	if (device->lun == -1) {
957 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
958 			" suspect firmware bug or unsupported hardware "
959 			"configuration.\n");
960 			return -1;
961 	}
962 
963 lun_assigned:
964 
965 	h->dev[n] = device;
966 	h->ndevices++;
967 	added[*nadded] = device;
968 	(*nadded)++;
969 
970 	/* initially, (before registering with scsi layer) we don't
971 	 * know our hostno and we don't want to print anything first
972 	 * time anyway (the scsi layer's inquiries will show that info)
973 	 */
974 	/* if (hostno != -1) */
975 		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
976 			scsi_device_type(device->devtype), hostno,
977 			device->bus, device->target, device->lun);
978 	return 0;
979 }
980 
981 /* Update an entry in h->dev[] array. */
982 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
983 	int entry, struct hpsa_scsi_dev_t *new_entry)
984 {
985 	/* assumes h->devlock is held */
986 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
987 
988 	/* Raid level changed. */
989 	h->dev[entry]->raid_level = new_entry->raid_level;
990 
991 	/* Raid offload parameters changed. */
992 	h->dev[entry]->offload_config = new_entry->offload_config;
993 	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
994 	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
995 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
996 	h->dev[entry]->raid_map = new_entry->raid_map;
997 
998 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
999 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1000 		new_entry->target, new_entry->lun);
1001 }
1002 
1003 /* Replace an entry from h->dev[] array. */
1004 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1005 	int entry, struct hpsa_scsi_dev_t *new_entry,
1006 	struct hpsa_scsi_dev_t *added[], int *nadded,
1007 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1008 {
1009 	/* assumes h->devlock is held */
1010 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1011 	removed[*nremoved] = h->dev[entry];
1012 	(*nremoved)++;
1013 
1014 	/*
1015 	 * New physical devices won't have target/lun assigned yet
1016 	 * so we need to preserve the values in the slot we are replacing.
1017 	 */
1018 	if (new_entry->target == -1) {
1019 		new_entry->target = h->dev[entry]->target;
1020 		new_entry->lun = h->dev[entry]->lun;
1021 	}
1022 
1023 	h->dev[entry] = new_entry;
1024 	added[*nadded] = new_entry;
1025 	(*nadded)++;
1026 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1027 		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1028 			new_entry->target, new_entry->lun);
1029 }
1030 
1031 /* Remove an entry from h->dev[] array. */
1032 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1033 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1034 {
1035 	/* assumes h->devlock is held */
1036 	int i;
1037 	struct hpsa_scsi_dev_t *sd;
1038 
1039 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1040 
1041 	sd = h->dev[entry];
1042 	removed[*nremoved] = h->dev[entry];
1043 	(*nremoved)++;
1044 
1045 	for (i = entry; i < h->ndevices-1; i++)
1046 		h->dev[i] = h->dev[i+1];
1047 	h->ndevices--;
1048 	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1049 		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1050 		sd->lun);
1051 }
1052 
1053 #define SCSI3ADDR_EQ(a, b) ( \
1054 	(a)[7] == (b)[7] && \
1055 	(a)[6] == (b)[6] && \
1056 	(a)[5] == (b)[5] && \
1057 	(a)[4] == (b)[4] && \
1058 	(a)[3] == (b)[3] && \
1059 	(a)[2] == (b)[2] && \
1060 	(a)[1] == (b)[1] && \
1061 	(a)[0] == (b)[0])
1062 
1063 static void fixup_botched_add(struct ctlr_info *h,
1064 	struct hpsa_scsi_dev_t *added)
1065 {
1066 	/* called when scsi_add_device fails in order to re-adjust
1067 	 * h->dev[] to match the mid layer's view.
1068 	 */
1069 	unsigned long flags;
1070 	int i, j;
1071 
1072 	spin_lock_irqsave(&h->lock, flags);
1073 	for (i = 0; i < h->ndevices; i++) {
1074 		if (h->dev[i] == added) {
1075 			for (j = i; j < h->ndevices-1; j++)
1076 				h->dev[j] = h->dev[j+1];
1077 			h->ndevices--;
1078 			break;
1079 		}
1080 	}
1081 	spin_unlock_irqrestore(&h->lock, flags);
1082 	kfree(added);
1083 }
1084 
1085 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1086 	struct hpsa_scsi_dev_t *dev2)
1087 {
1088 	/* we compare everything except lun and target as these
1089 	 * are not yet assigned.  Compare parts likely
1090 	 * to differ first
1091 	 */
1092 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1093 		sizeof(dev1->scsi3addr)) != 0)
1094 		return 0;
1095 	if (memcmp(dev1->device_id, dev2->device_id,
1096 		sizeof(dev1->device_id)) != 0)
1097 		return 0;
1098 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1099 		return 0;
1100 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1101 		return 0;
1102 	if (dev1->devtype != dev2->devtype)
1103 		return 0;
1104 	if (dev1->bus != dev2->bus)
1105 		return 0;
1106 	return 1;
1107 }
1108 
1109 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1110 	struct hpsa_scsi_dev_t *dev2)
1111 {
1112 	/* Device attributes that can change, but don't mean
1113 	 * that the device is a different device, nor that the OS
1114 	 * needs to be told anything about the change.
1115 	 */
1116 	if (dev1->raid_level != dev2->raid_level)
1117 		return 1;
1118 	if (dev1->offload_config != dev2->offload_config)
1119 		return 1;
1120 	if (dev1->offload_enabled != dev2->offload_enabled)
1121 		return 1;
1122 	return 0;
1123 }
1124 
1125 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1126  * and return needle location in *index.  If scsi3addr matches, but not
1127  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1128  * location in *index.
1129  * In the case of a minor device attribute change, such as RAID level, just
1130  * return DEVICE_UPDATED, along with the updated device's location in index.
1131  * If needle not found, return DEVICE_NOT_FOUND.
1132  */
1133 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1134 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1135 	int *index)
1136 {
1137 	int i;
1138 #define DEVICE_NOT_FOUND 0
1139 #define DEVICE_CHANGED 1
1140 #define DEVICE_SAME 2
1141 #define DEVICE_UPDATED 3
1142 	for (i = 0; i < haystack_size; i++) {
1143 		if (haystack[i] == NULL) /* previously removed. */
1144 			continue;
1145 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1146 			*index = i;
1147 			if (device_is_the_same(needle, haystack[i])) {
1148 				if (device_updated(needle, haystack[i]))
1149 					return DEVICE_UPDATED;
1150 				return DEVICE_SAME;
1151 			} else {
1152 				/* Keep offline devices offline */
1153 				if (needle->volume_offline)
1154 					return DEVICE_NOT_FOUND;
1155 				return DEVICE_CHANGED;
1156 			}
1157 		}
1158 	}
1159 	*index = -1;
1160 	return DEVICE_NOT_FOUND;
1161 }
1162 
1163 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1164 					unsigned char scsi3addr[])
1165 {
1166 	struct offline_device_entry *device;
1167 	unsigned long flags;
1168 
1169 	/* Check to see if device is already on the list */
1170 	spin_lock_irqsave(&h->offline_device_lock, flags);
1171 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1172 		if (memcmp(device->scsi3addr, scsi3addr,
1173 			sizeof(device->scsi3addr)) == 0) {
1174 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175 			return;
1176 		}
1177 	}
1178 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1179 
1180 	/* Device is not on the list, add it. */
1181 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1182 	if (!device) {
1183 		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1184 		return;
1185 	}
1186 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1187 	spin_lock_irqsave(&h->offline_device_lock, flags);
1188 	list_add_tail(&device->offline_list, &h->offline_device_list);
1189 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1190 }
1191 
1192 /* Print a message explaining various offline volume states */
1193 static void hpsa_show_volume_status(struct ctlr_info *h,
1194 	struct hpsa_scsi_dev_t *sd)
1195 {
1196 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1197 		dev_info(&h->pdev->dev,
1198 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1199 			h->scsi_host->host_no,
1200 			sd->bus, sd->target, sd->lun);
1201 	switch (sd->volume_offline) {
1202 	case HPSA_LV_OK:
1203 		break;
1204 	case HPSA_LV_UNDERGOING_ERASE:
1205 		dev_info(&h->pdev->dev,
1206 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1207 			h->scsi_host->host_no,
1208 			sd->bus, sd->target, sd->lun);
1209 		break;
1210 	case HPSA_LV_UNDERGOING_RPI:
1211 		dev_info(&h->pdev->dev,
1212 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1213 			h->scsi_host->host_no,
1214 			sd->bus, sd->target, sd->lun);
1215 		break;
1216 	case HPSA_LV_PENDING_RPI:
1217 		dev_info(&h->pdev->dev,
1218 				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1219 				h->scsi_host->host_no,
1220 				sd->bus, sd->target, sd->lun);
1221 		break;
1222 	case HPSA_LV_ENCRYPTED_NO_KEY:
1223 		dev_info(&h->pdev->dev,
1224 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1225 			h->scsi_host->host_no,
1226 			sd->bus, sd->target, sd->lun);
1227 		break;
1228 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1229 		dev_info(&h->pdev->dev,
1230 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1231 			h->scsi_host->host_no,
1232 			sd->bus, sd->target, sd->lun);
1233 		break;
1234 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1235 		dev_info(&h->pdev->dev,
1236 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1237 			h->scsi_host->host_no,
1238 			sd->bus, sd->target, sd->lun);
1239 		break;
1240 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1241 		dev_info(&h->pdev->dev,
1242 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1243 			h->scsi_host->host_no,
1244 			sd->bus, sd->target, sd->lun);
1245 		break;
1246 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1247 		dev_info(&h->pdev->dev,
1248 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1249 			h->scsi_host->host_no,
1250 			sd->bus, sd->target, sd->lun);
1251 		break;
1252 	case HPSA_LV_PENDING_ENCRYPTION:
1253 		dev_info(&h->pdev->dev,
1254 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1255 			h->scsi_host->host_no,
1256 			sd->bus, sd->target, sd->lun);
1257 		break;
1258 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1259 		dev_info(&h->pdev->dev,
1260 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1261 			h->scsi_host->host_no,
1262 			sd->bus, sd->target, sd->lun);
1263 		break;
1264 	}
1265 }
1266 
1267 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1268 	struct hpsa_scsi_dev_t *sd[], int nsds)
1269 {
1270 	/* sd contains scsi3 addresses and devtypes, and inquiry
1271 	 * data.  This function takes what's in sd to be the current
1272 	 * reality and updates h->dev[] to reflect that reality.
1273 	 */
1274 	int i, entry, device_change, changes = 0;
1275 	struct hpsa_scsi_dev_t *csd;
1276 	unsigned long flags;
1277 	struct hpsa_scsi_dev_t **added, **removed;
1278 	int nadded, nremoved;
1279 	struct Scsi_Host *sh = NULL;
1280 
1281 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1282 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1283 
1284 	if (!added || !removed) {
1285 		dev_warn(&h->pdev->dev, "out of memory in "
1286 			"adjust_hpsa_scsi_table\n");
1287 		goto free_and_out;
1288 	}
1289 
1290 	spin_lock_irqsave(&h->devlock, flags);
1291 
1292 	/* find any devices in h->dev[] that are not in
1293 	 * sd[] and remove them from h->dev[], and for any
1294 	 * devices which have changed, remove the old device
1295 	 * info and add the new device info.
1296 	 * If minor device attributes change, just update
1297 	 * the existing device structure.
1298 	 */
1299 	i = 0;
1300 	nremoved = 0;
1301 	nadded = 0;
1302 	while (i < h->ndevices) {
1303 		csd = h->dev[i];
1304 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1305 		if (device_change == DEVICE_NOT_FOUND) {
1306 			changes++;
1307 			hpsa_scsi_remove_entry(h, hostno, i,
1308 				removed, &nremoved);
1309 			continue; /* remove ^^^, hence i not incremented */
1310 		} else if (device_change == DEVICE_CHANGED) {
1311 			changes++;
1312 			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1313 				added, &nadded, removed, &nremoved);
1314 			/* Set it to NULL to prevent it from being freed
1315 			 * at the bottom of hpsa_update_scsi_devices()
1316 			 */
1317 			sd[entry] = NULL;
1318 		} else if (device_change == DEVICE_UPDATED) {
1319 			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1320 		}
1321 		i++;
1322 	}
1323 
1324 	/* Now, make sure every device listed in sd[] is also
1325 	 * listed in h->dev[], adding them if they aren't found
1326 	 */
1327 
1328 	for (i = 0; i < nsds; i++) {
1329 		if (!sd[i]) /* if already added above. */
1330 			continue;
1331 
1332 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1333 		 * as the SCSI mid-layer does not handle such devices well.
1334 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1335 		 * at 160Hz, and prevents the system from coming up.
1336 		 */
1337 		if (sd[i]->volume_offline) {
1338 			hpsa_show_volume_status(h, sd[i]);
1339 			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1340 				h->scsi_host->host_no,
1341 				sd[i]->bus, sd[i]->target, sd[i]->lun);
1342 			continue;
1343 		}
1344 
1345 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1346 					h->ndevices, &entry);
1347 		if (device_change == DEVICE_NOT_FOUND) {
1348 			changes++;
1349 			if (hpsa_scsi_add_entry(h, hostno, sd[i],
1350 				added, &nadded) != 0)
1351 				break;
1352 			sd[i] = NULL; /* prevent from being freed later. */
1353 		} else if (device_change == DEVICE_CHANGED) {
1354 			/* should never happen... */
1355 			changes++;
1356 			dev_warn(&h->pdev->dev,
1357 				"device unexpectedly changed.\n");
1358 			/* but if it does happen, we just ignore that device */
1359 		}
1360 	}
1361 	spin_unlock_irqrestore(&h->devlock, flags);
1362 
1363 	/* Monitor devices which are in one of several NOT READY states to be
1364 	 * brought online later. This must be done without holding h->devlock,
1365 	 * so don't touch h->dev[]
1366 	 */
1367 	for (i = 0; i < nsds; i++) {
1368 		if (!sd[i]) /* if already added above. */
1369 			continue;
1370 		if (sd[i]->volume_offline)
1371 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1372 	}
1373 
1374 	/* Don't notify scsi mid layer of any changes the first time through
1375 	 * (or if there are no changes) scsi_scan_host will do it later the
1376 	 * first time through.
1377 	 */
1378 	if (hostno == -1 || !changes)
1379 		goto free_and_out;
1380 
1381 	sh = h->scsi_host;
1382 	/* Notify scsi mid layer of any removed devices */
1383 	for (i = 0; i < nremoved; i++) {
1384 		struct scsi_device *sdev =
1385 			scsi_device_lookup(sh, removed[i]->bus,
1386 				removed[i]->target, removed[i]->lun);
1387 		if (sdev != NULL) {
1388 			scsi_remove_device(sdev);
1389 			scsi_device_put(sdev);
1390 		} else {
1391 			/* We don't expect to get here.
1392 			 * future cmds to this device will get selection
1393 			 * timeout as if the device was gone.
1394 			 */
1395 			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1396 				" for removal.", hostno, removed[i]->bus,
1397 				removed[i]->target, removed[i]->lun);
1398 		}
1399 		kfree(removed[i]);
1400 		removed[i] = NULL;
1401 	}
1402 
1403 	/* Notify scsi mid layer of any added devices */
1404 	for (i = 0; i < nadded; i++) {
1405 		if (scsi_add_device(sh, added[i]->bus,
1406 			added[i]->target, added[i]->lun) == 0)
1407 			continue;
1408 		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1409 			"device not added.\n", hostno, added[i]->bus,
1410 			added[i]->target, added[i]->lun);
1411 		/* now we have to remove it from h->dev,
1412 		 * since it didn't get added to scsi mid layer
1413 		 */
1414 		fixup_botched_add(h, added[i]);
1415 	}
1416 
1417 free_and_out:
1418 	kfree(added);
1419 	kfree(removed);
1420 }
1421 
1422 /*
1423  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1424  * Assume's h->devlock is held.
1425  */
1426 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1427 	int bus, int target, int lun)
1428 {
1429 	int i;
1430 	struct hpsa_scsi_dev_t *sd;
1431 
1432 	for (i = 0; i < h->ndevices; i++) {
1433 		sd = h->dev[i];
1434 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
1435 			return sd;
1436 	}
1437 	return NULL;
1438 }
1439 
1440 /* link sdev->hostdata to our per-device structure. */
1441 static int hpsa_slave_alloc(struct scsi_device *sdev)
1442 {
1443 	struct hpsa_scsi_dev_t *sd;
1444 	unsigned long flags;
1445 	struct ctlr_info *h;
1446 
1447 	h = sdev_to_hba(sdev);
1448 	spin_lock_irqsave(&h->devlock, flags);
1449 	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1450 		sdev_id(sdev), sdev->lun);
1451 	if (sd != NULL)
1452 		sdev->hostdata = sd;
1453 	spin_unlock_irqrestore(&h->devlock, flags);
1454 	return 0;
1455 }
1456 
1457 static void hpsa_slave_destroy(struct scsi_device *sdev)
1458 {
1459 	/* nothing to do. */
1460 }
1461 
1462 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1463 {
1464 	int i;
1465 
1466 	if (!h->cmd_sg_list)
1467 		return;
1468 	for (i = 0; i < h->nr_cmds; i++) {
1469 		kfree(h->cmd_sg_list[i]);
1470 		h->cmd_sg_list[i] = NULL;
1471 	}
1472 	kfree(h->cmd_sg_list);
1473 	h->cmd_sg_list = NULL;
1474 }
1475 
1476 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1477 {
1478 	int i;
1479 
1480 	if (h->chainsize <= 0)
1481 		return 0;
1482 
1483 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1484 				GFP_KERNEL);
1485 	if (!h->cmd_sg_list)
1486 		return -ENOMEM;
1487 	for (i = 0; i < h->nr_cmds; i++) {
1488 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1489 						h->chainsize, GFP_KERNEL);
1490 		if (!h->cmd_sg_list[i])
1491 			goto clean;
1492 	}
1493 	return 0;
1494 
1495 clean:
1496 	hpsa_free_sg_chain_blocks(h);
1497 	return -ENOMEM;
1498 }
1499 
1500 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1501 	struct CommandList *c)
1502 {
1503 	struct SGDescriptor *chain_sg, *chain_block;
1504 	u64 temp64;
1505 	u32 chain_len;
1506 
1507 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1508 	chain_block = h->cmd_sg_list[c->cmdindex];
1509 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1510 	chain_len = sizeof(*chain_sg) *
1511 		(c->Header.SGTotal - h->max_cmd_sg_entries);
1512 	chain_sg->Len = cpu_to_le32(chain_len);
1513 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1514 				PCI_DMA_TODEVICE);
1515 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
1516 		/* prevent subsequent unmapping */
1517 		chain_sg->Addr = cpu_to_le64(0);
1518 		return -1;
1519 	}
1520 	chain_sg->Addr = cpu_to_le64(temp64);
1521 	return 0;
1522 }
1523 
1524 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1525 	struct CommandList *c)
1526 {
1527 	struct SGDescriptor *chain_sg;
1528 
1529 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1530 		return;
1531 
1532 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1533 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1534 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1535 }
1536 
1537 
1538 /* Decode the various types of errors on ioaccel2 path.
1539  * Return 1 for any error that should generate a RAID path retry.
1540  * Return 0 for errors that don't require a RAID path retry.
1541  */
1542 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1543 					struct CommandList *c,
1544 					struct scsi_cmnd *cmd,
1545 					struct io_accel2_cmd *c2)
1546 {
1547 	int data_len;
1548 	int retry = 0;
1549 
1550 	switch (c2->error_data.serv_response) {
1551 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
1552 		switch (c2->error_data.status) {
1553 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1554 			break;
1555 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1556 			dev_warn(&h->pdev->dev,
1557 				"%s: task complete with check condition.\n",
1558 				"HP SSD Smart Path");
1559 			cmd->result |= SAM_STAT_CHECK_CONDITION;
1560 			if (c2->error_data.data_present !=
1561 					IOACCEL2_SENSE_DATA_PRESENT) {
1562 				memset(cmd->sense_buffer, 0,
1563 					SCSI_SENSE_BUFFERSIZE);
1564 				break;
1565 			}
1566 			/* copy the sense data */
1567 			data_len = c2->error_data.sense_data_len;
1568 			if (data_len > SCSI_SENSE_BUFFERSIZE)
1569 				data_len = SCSI_SENSE_BUFFERSIZE;
1570 			if (data_len > sizeof(c2->error_data.sense_data_buff))
1571 				data_len =
1572 					sizeof(c2->error_data.sense_data_buff);
1573 			memcpy(cmd->sense_buffer,
1574 				c2->error_data.sense_data_buff, data_len);
1575 			retry = 1;
1576 			break;
1577 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1578 			dev_warn(&h->pdev->dev,
1579 				"%s: task complete with BUSY status.\n",
1580 				"HP SSD Smart Path");
1581 			retry = 1;
1582 			break;
1583 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1584 			dev_warn(&h->pdev->dev,
1585 				"%s: task complete with reservation conflict.\n",
1586 				"HP SSD Smart Path");
1587 			retry = 1;
1588 			break;
1589 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1590 			/* Make scsi midlayer do unlimited retries */
1591 			cmd->result = DID_IMM_RETRY << 16;
1592 			break;
1593 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1594 			dev_warn(&h->pdev->dev,
1595 				"%s: task complete with aborted status.\n",
1596 				"HP SSD Smart Path");
1597 			retry = 1;
1598 			break;
1599 		default:
1600 			dev_warn(&h->pdev->dev,
1601 				"%s: task complete with unrecognized status: 0x%02x\n",
1602 				"HP SSD Smart Path", c2->error_data.status);
1603 			retry = 1;
1604 			break;
1605 		}
1606 		break;
1607 	case IOACCEL2_SERV_RESPONSE_FAILURE:
1608 		/* don't expect to get here. */
1609 		dev_warn(&h->pdev->dev,
1610 			"unexpected delivery or target failure, status = 0x%02x\n",
1611 			c2->error_data.status);
1612 		retry = 1;
1613 		break;
1614 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1615 		break;
1616 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1617 		break;
1618 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1619 		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1620 		retry = 1;
1621 		break;
1622 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1623 		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1624 		break;
1625 	default:
1626 		dev_warn(&h->pdev->dev,
1627 			"%s: Unrecognized server response: 0x%02x\n",
1628 			"HP SSD Smart Path",
1629 			c2->error_data.serv_response);
1630 		retry = 1;
1631 		break;
1632 	}
1633 
1634 	return retry;	/* retry on raid path? */
1635 }
1636 
1637 static void process_ioaccel2_completion(struct ctlr_info *h,
1638 		struct CommandList *c, struct scsi_cmnd *cmd,
1639 		struct hpsa_scsi_dev_t *dev)
1640 {
1641 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1642 	int raid_retry = 0;
1643 
1644 	/* check for good status */
1645 	if (likely(c2->error_data.serv_response == 0 &&
1646 			c2->error_data.status == 0)) {
1647 		cmd_free(h, c);
1648 		cmd->scsi_done(cmd);
1649 		return;
1650 	}
1651 
1652 	/* Any RAID offload error results in retry which will use
1653 	 * the normal I/O path so the controller can handle whatever's
1654 	 * wrong.
1655 	 */
1656 	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1657 		c2->error_data.serv_response ==
1658 			IOACCEL2_SERV_RESPONSE_FAILURE) {
1659 		dev->offload_enabled = 0;
1660 		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1661 		cmd->result = DID_SOFT_ERROR << 16;
1662 		cmd_free(h, c);
1663 		cmd->scsi_done(cmd);
1664 		return;
1665 	}
1666 	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1667 	/* If error found, disable Smart Path, schedule a rescan,
1668 	 * and force a retry on the standard path.
1669 	 */
1670 	if (raid_retry) {
1671 		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1672 			"HP SSD Smart Path");
1673 		dev->offload_enabled = 0; /* Disable Smart Path */
1674 		h->drv_req_rescan = 1;	  /* schedule controller rescan */
1675 		cmd->result = DID_SOFT_ERROR << 16;
1676 	}
1677 	cmd_free(h, c);
1678 	cmd->scsi_done(cmd);
1679 }
1680 
1681 static void complete_scsi_command(struct CommandList *cp)
1682 {
1683 	struct scsi_cmnd *cmd;
1684 	struct ctlr_info *h;
1685 	struct ErrorInfo *ei;
1686 	struct hpsa_scsi_dev_t *dev;
1687 
1688 	unsigned char sense_key;
1689 	unsigned char asc;      /* additional sense code */
1690 	unsigned char ascq;     /* additional sense code qualifier */
1691 	unsigned long sense_data_size;
1692 
1693 	ei = cp->err_info;
1694 	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1695 	h = cp->h;
1696 	dev = cmd->device->hostdata;
1697 
1698 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1699 	if ((cp->cmd_type == CMD_SCSI) &&
1700 		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1701 		hpsa_unmap_sg_chain_block(h, cp);
1702 
1703 	cmd->result = (DID_OK << 16); 		/* host byte */
1704 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1705 
1706 	if (cp->cmd_type == CMD_IOACCEL2)
1707 		return process_ioaccel2_completion(h, cp, cmd, dev);
1708 
1709 	cmd->result |= ei->ScsiStatus;
1710 
1711 	scsi_set_resid(cmd, ei->ResidualCnt);
1712 	if (ei->CommandStatus == 0) {
1713 		cmd_free(h, cp);
1714 		cmd->scsi_done(cmd);
1715 		return;
1716 	}
1717 
1718 	/* copy the sense data */
1719 	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1720 		sense_data_size = SCSI_SENSE_BUFFERSIZE;
1721 	else
1722 		sense_data_size = sizeof(ei->SenseInfo);
1723 	if (ei->SenseLen < sense_data_size)
1724 		sense_data_size = ei->SenseLen;
1725 
1726 	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1727 
1728 	/* For I/O accelerator commands, copy over some fields to the normal
1729 	 * CISS header used below for error handling.
1730 	 */
1731 	if (cp->cmd_type == CMD_IOACCEL1) {
1732 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1733 		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1734 		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 		cp->Header.tag = c->tag;
1736 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1737 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1738 
1739 		/* Any RAID offload error results in retry which will use
1740 		 * the normal I/O path so the controller can handle whatever's
1741 		 * wrong.
1742 		 */
1743 		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1744 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1745 				dev->offload_enabled = 0;
1746 			cmd->result = DID_SOFT_ERROR << 16;
1747 			cmd_free(h, cp);
1748 			cmd->scsi_done(cmd);
1749 			return;
1750 		}
1751 	}
1752 
1753 	/* an error has occurred */
1754 	switch (ei->CommandStatus) {
1755 
1756 	case CMD_TARGET_STATUS:
1757 		if (ei->ScsiStatus) {
1758 			/* Get sense key */
1759 			sense_key = 0xf & ei->SenseInfo[2];
1760 			/* Get additional sense code */
1761 			asc = ei->SenseInfo[12];
1762 			/* Get addition sense code qualifier */
1763 			ascq = ei->SenseInfo[13];
1764 		}
1765 
1766 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1767 			if (check_for_unit_attention(h, cp))
1768 				break;
1769 			if (sense_key == ILLEGAL_REQUEST) {
1770 				/*
1771 				 * SCSI REPORT_LUNS is commonly unsupported on
1772 				 * Smart Array.  Suppress noisy complaint.
1773 				 */
1774 				if (cp->Request.CDB[0] == REPORT_LUNS)
1775 					break;
1776 
1777 				/* If ASC/ASCQ indicate Logical Unit
1778 				 * Not Supported condition,
1779 				 */
1780 				if ((asc == 0x25) && (ascq == 0x0)) {
1781 					dev_warn(&h->pdev->dev, "cp %p "
1782 						"has check condition\n", cp);
1783 					break;
1784 				}
1785 			}
1786 
1787 			if (sense_key == NOT_READY) {
1788 				/* If Sense is Not Ready, Logical Unit
1789 				 * Not ready, Manual Intervention
1790 				 * required
1791 				 */
1792 				if ((asc == 0x04) && (ascq == 0x03)) {
1793 					dev_warn(&h->pdev->dev, "cp %p "
1794 						"has check condition: unit "
1795 						"not ready, manual "
1796 						"intervention required\n", cp);
1797 					break;
1798 				}
1799 			}
1800 			if (sense_key == ABORTED_COMMAND) {
1801 				/* Aborted command is retryable */
1802 				dev_warn(&h->pdev->dev, "cp %p "
1803 					"has check condition: aborted command: "
1804 					"ASC: 0x%x, ASCQ: 0x%x\n",
1805 					cp, asc, ascq);
1806 				cmd->result |= DID_SOFT_ERROR << 16;
1807 				break;
1808 			}
1809 			/* Must be some other type of check condition */
1810 			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1811 					"unknown type: "
1812 					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1813 					"Returning result: 0x%x, "
1814 					"cmd=[%02x %02x %02x %02x %02x "
1815 					"%02x %02x %02x %02x %02x %02x "
1816 					"%02x %02x %02x %02x %02x]\n",
1817 					cp, sense_key, asc, ascq,
1818 					cmd->result,
1819 					cmd->cmnd[0], cmd->cmnd[1],
1820 					cmd->cmnd[2], cmd->cmnd[3],
1821 					cmd->cmnd[4], cmd->cmnd[5],
1822 					cmd->cmnd[6], cmd->cmnd[7],
1823 					cmd->cmnd[8], cmd->cmnd[9],
1824 					cmd->cmnd[10], cmd->cmnd[11],
1825 					cmd->cmnd[12], cmd->cmnd[13],
1826 					cmd->cmnd[14], cmd->cmnd[15]);
1827 			break;
1828 		}
1829 
1830 
1831 		/* Problem was not a check condition
1832 		 * Pass it up to the upper layers...
1833 		 */
1834 		if (ei->ScsiStatus) {
1835 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1836 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1837 				"Returning result: 0x%x\n",
1838 				cp, ei->ScsiStatus,
1839 				sense_key, asc, ascq,
1840 				cmd->result);
1841 		} else {  /* scsi status is zero??? How??? */
1842 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1843 				"Returning no connection.\n", cp),
1844 
1845 			/* Ordinarily, this case should never happen,
1846 			 * but there is a bug in some released firmware
1847 			 * revisions that allows it to happen if, for
1848 			 * example, a 4100 backplane loses power and
1849 			 * the tape drive is in it.  We assume that
1850 			 * it's a fatal error of some kind because we
1851 			 * can't show that it wasn't. We will make it
1852 			 * look like selection timeout since that is
1853 			 * the most common reason for this to occur,
1854 			 * and it's severe enough.
1855 			 */
1856 
1857 			cmd->result = DID_NO_CONNECT << 16;
1858 		}
1859 		break;
1860 
1861 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1862 		break;
1863 	case CMD_DATA_OVERRUN:
1864 		dev_warn(&h->pdev->dev, "cp %p has"
1865 			" completed with data overrun "
1866 			"reported\n", cp);
1867 		break;
1868 	case CMD_INVALID: {
1869 		/* print_bytes(cp, sizeof(*cp), 1, 0);
1870 		print_cmd(cp); */
1871 		/* We get CMD_INVALID if you address a non-existent device
1872 		 * instead of a selection timeout (no response).  You will
1873 		 * see this if you yank out a drive, then try to access it.
1874 		 * This is kind of a shame because it means that any other
1875 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1876 		 * missing target. */
1877 		cmd->result = DID_NO_CONNECT << 16;
1878 	}
1879 		break;
1880 	case CMD_PROTOCOL_ERR:
1881 		cmd->result = DID_ERROR << 16;
1882 		dev_warn(&h->pdev->dev, "cp %p has "
1883 			"protocol error\n", cp);
1884 		break;
1885 	case CMD_HARDWARE_ERR:
1886 		cmd->result = DID_ERROR << 16;
1887 		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1888 		break;
1889 	case CMD_CONNECTION_LOST:
1890 		cmd->result = DID_ERROR << 16;
1891 		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1892 		break;
1893 	case CMD_ABORTED:
1894 		cmd->result = DID_ABORT << 16;
1895 		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1896 				cp, ei->ScsiStatus);
1897 		break;
1898 	case CMD_ABORT_FAILED:
1899 		cmd->result = DID_ERROR << 16;
1900 		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1901 		break;
1902 	case CMD_UNSOLICITED_ABORT:
1903 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1904 		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1905 			"abort\n", cp);
1906 		break;
1907 	case CMD_TIMEOUT:
1908 		cmd->result = DID_TIME_OUT << 16;
1909 		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1910 		break;
1911 	case CMD_UNABORTABLE:
1912 		cmd->result = DID_ERROR << 16;
1913 		dev_warn(&h->pdev->dev, "Command unabortable\n");
1914 		break;
1915 	case CMD_IOACCEL_DISABLED:
1916 		/* This only handles the direct pass-through case since RAID
1917 		 * offload is handled above.  Just attempt a retry.
1918 		 */
1919 		cmd->result = DID_SOFT_ERROR << 16;
1920 		dev_warn(&h->pdev->dev,
1921 				"cp %p had HP SSD Smart Path error\n", cp);
1922 		break;
1923 	default:
1924 		cmd->result = DID_ERROR << 16;
1925 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1926 				cp, ei->CommandStatus);
1927 	}
1928 	cmd_free(h, cp);
1929 	cmd->scsi_done(cmd);
1930 }
1931 
1932 static void hpsa_pci_unmap(struct pci_dev *pdev,
1933 	struct CommandList *c, int sg_used, int data_direction)
1934 {
1935 	int i;
1936 
1937 	for (i = 0; i < sg_used; i++)
1938 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1939 				le32_to_cpu(c->SG[i].Len),
1940 				data_direction);
1941 }
1942 
1943 static int hpsa_map_one(struct pci_dev *pdev,
1944 		struct CommandList *cp,
1945 		unsigned char *buf,
1946 		size_t buflen,
1947 		int data_direction)
1948 {
1949 	u64 addr64;
1950 
1951 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1952 		cp->Header.SGList = 0;
1953 		cp->Header.SGTotal = cpu_to_le16(0);
1954 		return 0;
1955 	}
1956 
1957 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1958 	if (dma_mapping_error(&pdev->dev, addr64)) {
1959 		/* Prevent subsequent unmap of something never mapped */
1960 		cp->Header.SGList = 0;
1961 		cp->Header.SGTotal = cpu_to_le16(0);
1962 		return -1;
1963 	}
1964 	cp->SG[0].Addr = cpu_to_le64(addr64);
1965 	cp->SG[0].Len = cpu_to_le32(buflen);
1966 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1967 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
1968 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1969 	return 0;
1970 }
1971 
1972 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1973 	struct CommandList *c)
1974 {
1975 	DECLARE_COMPLETION_ONSTACK(wait);
1976 
1977 	c->waiting = &wait;
1978 	enqueue_cmd_and_start_io(h, c);
1979 	wait_for_completion(&wait);
1980 }
1981 
1982 static u32 lockup_detected(struct ctlr_info *h)
1983 {
1984 	int cpu;
1985 	u32 rc, *lockup_detected;
1986 
1987 	cpu = get_cpu();
1988 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1989 	rc = *lockup_detected;
1990 	put_cpu();
1991 	return rc;
1992 }
1993 
1994 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1995 	struct CommandList *c)
1996 {
1997 	/* If controller lockup detected, fake a hardware error. */
1998 	if (unlikely(lockup_detected(h)))
1999 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2000 	else
2001 		hpsa_scsi_do_simple_cmd_core(h, c);
2002 }
2003 
2004 #define MAX_DRIVER_CMD_RETRIES 25
2005 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2006 	struct CommandList *c, int data_direction)
2007 {
2008 	int backoff_time = 10, retry_count = 0;
2009 
2010 	do {
2011 		memset(c->err_info, 0, sizeof(*c->err_info));
2012 		hpsa_scsi_do_simple_cmd_core(h, c);
2013 		retry_count++;
2014 		if (retry_count > 3) {
2015 			msleep(backoff_time);
2016 			if (backoff_time < 1000)
2017 				backoff_time *= 2;
2018 		}
2019 	} while ((check_for_unit_attention(h, c) ||
2020 			check_for_busy(h, c)) &&
2021 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2022 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2023 }
2024 
2025 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2026 				struct CommandList *c)
2027 {
2028 	const u8 *cdb = c->Request.CDB;
2029 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2030 
2031 	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2032 	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2033 		txt, lun[0], lun[1], lun[2], lun[3],
2034 		lun[4], lun[5], lun[6], lun[7],
2035 		cdb[0], cdb[1], cdb[2], cdb[3],
2036 		cdb[4], cdb[5], cdb[6], cdb[7],
2037 		cdb[8], cdb[9], cdb[10], cdb[11],
2038 		cdb[12], cdb[13], cdb[14], cdb[15]);
2039 }
2040 
2041 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2042 			struct CommandList *cp)
2043 {
2044 	const struct ErrorInfo *ei = cp->err_info;
2045 	struct device *d = &cp->h->pdev->dev;
2046 	const u8 *sd = ei->SenseInfo;
2047 
2048 	switch (ei->CommandStatus) {
2049 	case CMD_TARGET_STATUS:
2050 		hpsa_print_cmd(h, "SCSI status", cp);
2051 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2052 			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2053 				sd[2] & 0x0f, sd[12], sd[13]);
2054 		else
2055 			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2056 		if (ei->ScsiStatus == 0)
2057 			dev_warn(d, "SCSI status is abnormally zero.  "
2058 			"(probably indicates selection timeout "
2059 			"reported incorrectly due to a known "
2060 			"firmware bug, circa July, 2001.)\n");
2061 		break;
2062 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2063 		break;
2064 	case CMD_DATA_OVERRUN:
2065 		hpsa_print_cmd(h, "overrun condition", cp);
2066 		break;
2067 	case CMD_INVALID: {
2068 		/* controller unfortunately reports SCSI passthru's
2069 		 * to non-existent targets as invalid commands.
2070 		 */
2071 		hpsa_print_cmd(h, "invalid command", cp);
2072 		dev_warn(d, "probably means device no longer present\n");
2073 		}
2074 		break;
2075 	case CMD_PROTOCOL_ERR:
2076 		hpsa_print_cmd(h, "protocol error", cp);
2077 		break;
2078 	case CMD_HARDWARE_ERR:
2079 		hpsa_print_cmd(h, "hardware error", cp);
2080 		break;
2081 	case CMD_CONNECTION_LOST:
2082 		hpsa_print_cmd(h, "connection lost", cp);
2083 		break;
2084 	case CMD_ABORTED:
2085 		hpsa_print_cmd(h, "aborted", cp);
2086 		break;
2087 	case CMD_ABORT_FAILED:
2088 		hpsa_print_cmd(h, "abort failed", cp);
2089 		break;
2090 	case CMD_UNSOLICITED_ABORT:
2091 		hpsa_print_cmd(h, "unsolicited abort", cp);
2092 		break;
2093 	case CMD_TIMEOUT:
2094 		hpsa_print_cmd(h, "timed out", cp);
2095 		break;
2096 	case CMD_UNABORTABLE:
2097 		hpsa_print_cmd(h, "unabortable", cp);
2098 		break;
2099 	default:
2100 		hpsa_print_cmd(h, "unknown status", cp);
2101 		dev_warn(d, "Unknown command status %x\n",
2102 				ei->CommandStatus);
2103 	}
2104 }
2105 
2106 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2107 			u16 page, unsigned char *buf,
2108 			unsigned char bufsize)
2109 {
2110 	int rc = IO_OK;
2111 	struct CommandList *c;
2112 	struct ErrorInfo *ei;
2113 
2114 	c = cmd_special_alloc(h);
2115 
2116 	if (c == NULL) {			/* trouble... */
2117 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2118 		return -ENOMEM;
2119 	}
2120 
2121 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2122 			page, scsi3addr, TYPE_CMD)) {
2123 		rc = -1;
2124 		goto out;
2125 	}
2126 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2127 	ei = c->err_info;
2128 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2129 		hpsa_scsi_interpret_error(h, c);
2130 		rc = -1;
2131 	}
2132 out:
2133 	cmd_special_free(h, c);
2134 	return rc;
2135 }
2136 
2137 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2138 		unsigned char *scsi3addr, unsigned char page,
2139 		struct bmic_controller_parameters *buf, size_t bufsize)
2140 {
2141 	int rc = IO_OK;
2142 	struct CommandList *c;
2143 	struct ErrorInfo *ei;
2144 
2145 	c = cmd_special_alloc(h);
2146 
2147 	if (c == NULL) {			/* trouble... */
2148 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2149 		return -ENOMEM;
2150 	}
2151 
2152 	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2153 			page, scsi3addr, TYPE_CMD)) {
2154 		rc = -1;
2155 		goto out;
2156 	}
2157 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2158 	ei = c->err_info;
2159 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2160 		hpsa_scsi_interpret_error(h, c);
2161 		rc = -1;
2162 	}
2163 out:
2164 	cmd_special_free(h, c);
2165 	return rc;
2166 	}
2167 
2168 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2169 	u8 reset_type)
2170 {
2171 	int rc = IO_OK;
2172 	struct CommandList *c;
2173 	struct ErrorInfo *ei;
2174 
2175 	c = cmd_special_alloc(h);
2176 
2177 	if (c == NULL) {			/* trouble... */
2178 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2179 		return -ENOMEM;
2180 	}
2181 
2182 	/* fill_cmd can't fail here, no data buffer to map. */
2183 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2184 			scsi3addr, TYPE_MSG);
2185 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2186 	hpsa_scsi_do_simple_cmd_core(h, c);
2187 	/* no unmap needed here because no data xfer. */
2188 
2189 	ei = c->err_info;
2190 	if (ei->CommandStatus != 0) {
2191 		hpsa_scsi_interpret_error(h, c);
2192 		rc = -1;
2193 	}
2194 	cmd_special_free(h, c);
2195 	return rc;
2196 }
2197 
2198 static void hpsa_get_raid_level(struct ctlr_info *h,
2199 	unsigned char *scsi3addr, unsigned char *raid_level)
2200 {
2201 	int rc;
2202 	unsigned char *buf;
2203 
2204 	*raid_level = RAID_UNKNOWN;
2205 	buf = kzalloc(64, GFP_KERNEL);
2206 	if (!buf)
2207 		return;
2208 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2209 	if (rc == 0)
2210 		*raid_level = buf[8];
2211 	if (*raid_level > RAID_UNKNOWN)
2212 		*raid_level = RAID_UNKNOWN;
2213 	kfree(buf);
2214 	return;
2215 }
2216 
2217 #define HPSA_MAP_DEBUG
2218 #ifdef HPSA_MAP_DEBUG
2219 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2220 				struct raid_map_data *map_buff)
2221 {
2222 	struct raid_map_disk_data *dd = &map_buff->data[0];
2223 	int map, row, col;
2224 	u16 map_cnt, row_cnt, disks_per_row;
2225 
2226 	if (rc != 0)
2227 		return;
2228 
2229 	/* Show details only if debugging has been activated. */
2230 	if (h->raid_offload_debug < 2)
2231 		return;
2232 
2233 	dev_info(&h->pdev->dev, "structure_size = %u\n",
2234 				le32_to_cpu(map_buff->structure_size));
2235 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2236 			le32_to_cpu(map_buff->volume_blk_size));
2237 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2238 			le64_to_cpu(map_buff->volume_blk_cnt));
2239 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2240 			map_buff->phys_blk_shift);
2241 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2242 			map_buff->parity_rotation_shift);
2243 	dev_info(&h->pdev->dev, "strip_size = %u\n",
2244 			le16_to_cpu(map_buff->strip_size));
2245 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2246 			le64_to_cpu(map_buff->disk_starting_blk));
2247 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2248 			le64_to_cpu(map_buff->disk_blk_cnt));
2249 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2250 			le16_to_cpu(map_buff->data_disks_per_row));
2251 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2252 			le16_to_cpu(map_buff->metadata_disks_per_row));
2253 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
2254 			le16_to_cpu(map_buff->row_cnt));
2255 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2256 			le16_to_cpu(map_buff->layout_map_count));
2257 	dev_info(&h->pdev->dev, "flags = %u\n",
2258 			le16_to_cpu(map_buff->flags));
2259 	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2260 		dev_info(&h->pdev->dev, "encrypytion = ON\n");
2261 	else
2262 		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2263 	dev_info(&h->pdev->dev, "dekindex = %u\n",
2264 			le16_to_cpu(map_buff->dekindex));
2265 
2266 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
2267 	for (map = 0; map < map_cnt; map++) {
2268 		dev_info(&h->pdev->dev, "Map%u:\n", map);
2269 		row_cnt = le16_to_cpu(map_buff->row_cnt);
2270 		for (row = 0; row < row_cnt; row++) {
2271 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
2272 			disks_per_row =
2273 				le16_to_cpu(map_buff->data_disks_per_row);
2274 			for (col = 0; col < disks_per_row; col++, dd++)
2275 				dev_info(&h->pdev->dev,
2276 					"    D%02u: h=0x%04x xor=%u,%u\n",
2277 					col, dd->ioaccel_handle,
2278 					dd->xor_mult[0], dd->xor_mult[1]);
2279 			disks_per_row =
2280 				le16_to_cpu(map_buff->metadata_disks_per_row);
2281 			for (col = 0; col < disks_per_row; col++, dd++)
2282 				dev_info(&h->pdev->dev,
2283 					"    M%02u: h=0x%04x xor=%u,%u\n",
2284 					col, dd->ioaccel_handle,
2285 					dd->xor_mult[0], dd->xor_mult[1]);
2286 		}
2287 	}
2288 }
2289 #else
2290 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2291 			__attribute__((unused)) int rc,
2292 			__attribute__((unused)) struct raid_map_data *map_buff)
2293 {
2294 }
2295 #endif
2296 
2297 static int hpsa_get_raid_map(struct ctlr_info *h,
2298 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2299 {
2300 	int rc = 0;
2301 	struct CommandList *c;
2302 	struct ErrorInfo *ei;
2303 
2304 	c = cmd_special_alloc(h);
2305 	if (c == NULL) {
2306 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2307 		return -ENOMEM;
2308 	}
2309 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2310 			sizeof(this_device->raid_map), 0,
2311 			scsi3addr, TYPE_CMD)) {
2312 		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2313 		cmd_special_free(h, c);
2314 		return -ENOMEM;
2315 	}
2316 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2317 	ei = c->err_info;
2318 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2319 		hpsa_scsi_interpret_error(h, c);
2320 		cmd_special_free(h, c);
2321 		return -1;
2322 	}
2323 	cmd_special_free(h, c);
2324 
2325 	/* @todo in the future, dynamically allocate RAID map memory */
2326 	if (le32_to_cpu(this_device->raid_map.structure_size) >
2327 				sizeof(this_device->raid_map)) {
2328 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2329 		rc = -1;
2330 	}
2331 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2332 	return rc;
2333 }
2334 
2335 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2336 	unsigned char scsi3addr[], u8 page)
2337 {
2338 	int rc;
2339 	int i;
2340 	int pages;
2341 	unsigned char *buf, bufsize;
2342 
2343 	buf = kzalloc(256, GFP_KERNEL);
2344 	if (!buf)
2345 		return 0;
2346 
2347 	/* Get the size of the page list first */
2348 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2349 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2350 				buf, HPSA_VPD_HEADER_SZ);
2351 	if (rc != 0)
2352 		goto exit_unsupported;
2353 	pages = buf[3];
2354 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2355 		bufsize = pages + HPSA_VPD_HEADER_SZ;
2356 	else
2357 		bufsize = 255;
2358 
2359 	/* Get the whole VPD page list */
2360 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2361 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2362 				buf, bufsize);
2363 	if (rc != 0)
2364 		goto exit_unsupported;
2365 
2366 	pages = buf[3];
2367 	for (i = 1; i <= pages; i++)
2368 		if (buf[3 + i] == page)
2369 			goto exit_supported;
2370 exit_unsupported:
2371 	kfree(buf);
2372 	return 0;
2373 exit_supported:
2374 	kfree(buf);
2375 	return 1;
2376 }
2377 
2378 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2379 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2380 {
2381 	int rc;
2382 	unsigned char *buf;
2383 	u8 ioaccel_status;
2384 
2385 	this_device->offload_config = 0;
2386 	this_device->offload_enabled = 0;
2387 
2388 	buf = kzalloc(64, GFP_KERNEL);
2389 	if (!buf)
2390 		return;
2391 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2392 		goto out;
2393 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2394 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2395 	if (rc != 0)
2396 		goto out;
2397 
2398 #define IOACCEL_STATUS_BYTE 4
2399 #define OFFLOAD_CONFIGURED_BIT 0x01
2400 #define OFFLOAD_ENABLED_BIT 0x02
2401 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2402 	this_device->offload_config =
2403 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2404 	if (this_device->offload_config) {
2405 		this_device->offload_enabled =
2406 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2407 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
2408 			this_device->offload_enabled = 0;
2409 	}
2410 out:
2411 	kfree(buf);
2412 	return;
2413 }
2414 
2415 /* Get the device id from inquiry page 0x83 */
2416 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2417 	unsigned char *device_id, int buflen)
2418 {
2419 	int rc;
2420 	unsigned char *buf;
2421 
2422 	if (buflen > 16)
2423 		buflen = 16;
2424 	buf = kzalloc(64, GFP_KERNEL);
2425 	if (!buf)
2426 		return -ENOMEM;
2427 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2428 	if (rc == 0)
2429 		memcpy(device_id, &buf[8], buflen);
2430 	kfree(buf);
2431 	return rc != 0;
2432 }
2433 
2434 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2435 		struct ReportLUNdata *buf, int bufsize,
2436 		int extended_response)
2437 {
2438 	int rc = IO_OK;
2439 	struct CommandList *c;
2440 	unsigned char scsi3addr[8];
2441 	struct ErrorInfo *ei;
2442 
2443 	c = cmd_special_alloc(h);
2444 	if (c == NULL) {			/* trouble... */
2445 		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2446 		return -1;
2447 	}
2448 	/* address the controller */
2449 	memset(scsi3addr, 0, sizeof(scsi3addr));
2450 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2451 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2452 		rc = -1;
2453 		goto out;
2454 	}
2455 	if (extended_response)
2456 		c->Request.CDB[1] = extended_response;
2457 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2458 	ei = c->err_info;
2459 	if (ei->CommandStatus != 0 &&
2460 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2461 		hpsa_scsi_interpret_error(h, c);
2462 		rc = -1;
2463 	} else {
2464 		if (buf->extended_response_flag != extended_response) {
2465 			dev_err(&h->pdev->dev,
2466 				"report luns requested format %u, got %u\n",
2467 				extended_response,
2468 				buf->extended_response_flag);
2469 			rc = -1;
2470 		}
2471 	}
2472 out:
2473 	cmd_special_free(h, c);
2474 	return rc;
2475 }
2476 
2477 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2478 		struct ReportLUNdata *buf,
2479 		int bufsize, int extended_response)
2480 {
2481 	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2482 }
2483 
2484 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2485 		struct ReportLUNdata *buf, int bufsize)
2486 {
2487 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2488 }
2489 
2490 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2491 	int bus, int target, int lun)
2492 {
2493 	device->bus = bus;
2494 	device->target = target;
2495 	device->lun = lun;
2496 }
2497 
2498 /* Use VPD inquiry to get details of volume status */
2499 static int hpsa_get_volume_status(struct ctlr_info *h,
2500 					unsigned char scsi3addr[])
2501 {
2502 	int rc;
2503 	int status;
2504 	int size;
2505 	unsigned char *buf;
2506 
2507 	buf = kzalloc(64, GFP_KERNEL);
2508 	if (!buf)
2509 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2510 
2511 	/* Does controller have VPD for logical volume status? */
2512 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2513 		goto exit_failed;
2514 
2515 	/* Get the size of the VPD return buffer */
2516 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2517 					buf, HPSA_VPD_HEADER_SZ);
2518 	if (rc != 0)
2519 		goto exit_failed;
2520 	size = buf[3];
2521 
2522 	/* Now get the whole VPD buffer */
2523 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2524 					buf, size + HPSA_VPD_HEADER_SZ);
2525 	if (rc != 0)
2526 		goto exit_failed;
2527 	status = buf[4]; /* status byte */
2528 
2529 	kfree(buf);
2530 	return status;
2531 exit_failed:
2532 	kfree(buf);
2533 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2534 }
2535 
2536 /* Determine offline status of a volume.
2537  * Return either:
2538  *  0 (not offline)
2539  *  0xff (offline for unknown reasons)
2540  *  # (integer code indicating one of several NOT READY states
2541  *     describing why a volume is to be kept offline)
2542  */
2543 static int hpsa_volume_offline(struct ctlr_info *h,
2544 					unsigned char scsi3addr[])
2545 {
2546 	struct CommandList *c;
2547 	unsigned char *sense, sense_key, asc, ascq;
2548 	int ldstat = 0;
2549 	u16 cmd_status;
2550 	u8 scsi_status;
2551 #define ASC_LUN_NOT_READY 0x04
2552 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2553 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2554 
2555 	c = cmd_alloc(h);
2556 	if (!c)
2557 		return 0;
2558 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2559 	hpsa_scsi_do_simple_cmd_core(h, c);
2560 	sense = c->err_info->SenseInfo;
2561 	sense_key = sense[2];
2562 	asc = sense[12];
2563 	ascq = sense[13];
2564 	cmd_status = c->err_info->CommandStatus;
2565 	scsi_status = c->err_info->ScsiStatus;
2566 	cmd_free(h, c);
2567 	/* Is the volume 'not ready'? */
2568 	if (cmd_status != CMD_TARGET_STATUS ||
2569 		scsi_status != SAM_STAT_CHECK_CONDITION ||
2570 		sense_key != NOT_READY ||
2571 		asc != ASC_LUN_NOT_READY)  {
2572 		return 0;
2573 	}
2574 
2575 	/* Determine the reason for not ready state */
2576 	ldstat = hpsa_get_volume_status(h, scsi3addr);
2577 
2578 	/* Keep volume offline in certain cases: */
2579 	switch (ldstat) {
2580 	case HPSA_LV_UNDERGOING_ERASE:
2581 	case HPSA_LV_UNDERGOING_RPI:
2582 	case HPSA_LV_PENDING_RPI:
2583 	case HPSA_LV_ENCRYPTED_NO_KEY:
2584 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2585 	case HPSA_LV_UNDERGOING_ENCRYPTION:
2586 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2587 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2588 		return ldstat;
2589 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2590 		/* If VPD status page isn't available,
2591 		 * use ASC/ASCQ to determine state
2592 		 */
2593 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2594 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2595 			return ldstat;
2596 		break;
2597 	default:
2598 		break;
2599 	}
2600 	return 0;
2601 }
2602 
2603 static int hpsa_update_device_info(struct ctlr_info *h,
2604 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2605 	unsigned char *is_OBDR_device)
2606 {
2607 
2608 #define OBDR_SIG_OFFSET 43
2609 #define OBDR_TAPE_SIG "$DR-10"
2610 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2611 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2612 
2613 	unsigned char *inq_buff;
2614 	unsigned char *obdr_sig;
2615 
2616 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2617 	if (!inq_buff)
2618 		goto bail_out;
2619 
2620 	/* Do an inquiry to the device to see what it is. */
2621 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2622 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2623 		/* Inquiry failed (msg printed already) */
2624 		dev_err(&h->pdev->dev,
2625 			"hpsa_update_device_info: inquiry failed\n");
2626 		goto bail_out;
2627 	}
2628 
2629 	this_device->devtype = (inq_buff[0] & 0x1f);
2630 	memcpy(this_device->scsi3addr, scsi3addr, 8);
2631 	memcpy(this_device->vendor, &inq_buff[8],
2632 		sizeof(this_device->vendor));
2633 	memcpy(this_device->model, &inq_buff[16],
2634 		sizeof(this_device->model));
2635 	memset(this_device->device_id, 0,
2636 		sizeof(this_device->device_id));
2637 	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2638 		sizeof(this_device->device_id));
2639 
2640 	if (this_device->devtype == TYPE_DISK &&
2641 		is_logical_dev_addr_mode(scsi3addr)) {
2642 		int volume_offline;
2643 
2644 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2645 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2646 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2647 		volume_offline = hpsa_volume_offline(h, scsi3addr);
2648 		if (volume_offline < 0 || volume_offline > 0xff)
2649 			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2650 		this_device->volume_offline = volume_offline & 0xff;
2651 	} else {
2652 		this_device->raid_level = RAID_UNKNOWN;
2653 		this_device->offload_config = 0;
2654 		this_device->offload_enabled = 0;
2655 		this_device->volume_offline = 0;
2656 	}
2657 
2658 	if (is_OBDR_device) {
2659 		/* See if this is a One-Button-Disaster-Recovery device
2660 		 * by looking for "$DR-10" at offset 43 in inquiry data.
2661 		 */
2662 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2663 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2664 					strncmp(obdr_sig, OBDR_TAPE_SIG,
2665 						OBDR_SIG_LEN) == 0);
2666 	}
2667 
2668 	kfree(inq_buff);
2669 	return 0;
2670 
2671 bail_out:
2672 	kfree(inq_buff);
2673 	return 1;
2674 }
2675 
2676 static unsigned char *ext_target_model[] = {
2677 	"MSA2012",
2678 	"MSA2024",
2679 	"MSA2312",
2680 	"MSA2324",
2681 	"P2000 G3 SAS",
2682 	"MSA 2040 SAS",
2683 	NULL,
2684 };
2685 
2686 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2687 {
2688 	int i;
2689 
2690 	for (i = 0; ext_target_model[i]; i++)
2691 		if (strncmp(device->model, ext_target_model[i],
2692 			strlen(ext_target_model[i])) == 0)
2693 			return 1;
2694 	return 0;
2695 }
2696 
2697 /* Helper function to assign bus, target, lun mapping of devices.
2698  * Puts non-external target logical volumes on bus 0, external target logical
2699  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2700  * Logical drive target and lun are assigned at this time, but
2701  * physical device lun and target assignment are deferred (assigned
2702  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2703  */
2704 static void figure_bus_target_lun(struct ctlr_info *h,
2705 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2706 {
2707 	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2708 
2709 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2710 		/* physical device, target and lun filled in later */
2711 		if (is_hba_lunid(lunaddrbytes))
2712 			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2713 		else
2714 			/* defer target, lun assignment for physical devices */
2715 			hpsa_set_bus_target_lun(device, 2, -1, -1);
2716 		return;
2717 	}
2718 	/* It's a logical device */
2719 	if (is_ext_target(h, device)) {
2720 		/* external target way, put logicals on bus 1
2721 		 * and match target/lun numbers box
2722 		 * reports, other smart array, bus 0, target 0, match lunid
2723 		 */
2724 		hpsa_set_bus_target_lun(device,
2725 			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2726 		return;
2727 	}
2728 	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2729 }
2730 
2731 /*
2732  * If there is no lun 0 on a target, linux won't find any devices.
2733  * For the external targets (arrays), we have to manually detect the enclosure
2734  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2735  * it for some reason.  *tmpdevice is the target we're adding,
2736  * this_device is a pointer into the current element of currentsd[]
2737  * that we're building up in update_scsi_devices(), below.
2738  * lunzerobits is a bitmap that tracks which targets already have a
2739  * lun 0 assigned.
2740  * Returns 1 if an enclosure was added, 0 if not.
2741  */
2742 static int add_ext_target_dev(struct ctlr_info *h,
2743 	struct hpsa_scsi_dev_t *tmpdevice,
2744 	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2745 	unsigned long lunzerobits[], int *n_ext_target_devs)
2746 {
2747 	unsigned char scsi3addr[8];
2748 
2749 	if (test_bit(tmpdevice->target, lunzerobits))
2750 		return 0; /* There is already a lun 0 on this target. */
2751 
2752 	if (!is_logical_dev_addr_mode(lunaddrbytes))
2753 		return 0; /* It's the logical targets that may lack lun 0. */
2754 
2755 	if (!is_ext_target(h, tmpdevice))
2756 		return 0; /* Only external target devices have this problem. */
2757 
2758 	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2759 		return 0;
2760 
2761 	memset(scsi3addr, 0, 8);
2762 	scsi3addr[3] = tmpdevice->target;
2763 	if (is_hba_lunid(scsi3addr))
2764 		return 0; /* Don't add the RAID controller here. */
2765 
2766 	if (is_scsi_rev_5(h))
2767 		return 0; /* p1210m doesn't need to do this. */
2768 
2769 	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2770 		dev_warn(&h->pdev->dev, "Maximum number of external "
2771 			"target devices exceeded.  Check your hardware "
2772 			"configuration.");
2773 		return 0;
2774 	}
2775 
2776 	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2777 		return 0;
2778 	(*n_ext_target_devs)++;
2779 	hpsa_set_bus_target_lun(this_device,
2780 				tmpdevice->bus, tmpdevice->target, 0);
2781 	set_bit(tmpdevice->target, lunzerobits);
2782 	return 1;
2783 }
2784 
2785 /*
2786  * Get address of physical disk used for an ioaccel2 mode command:
2787  *	1. Extract ioaccel2 handle from the command.
2788  *	2. Find a matching ioaccel2 handle from list of physical disks.
2789  *	3. Return:
2790  *		1 and set scsi3addr to address of matching physical
2791  *		0 if no matching physical disk was found.
2792  */
2793 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2794 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2795 {
2796 	struct ReportExtendedLUNdata *physicals = NULL;
2797 	int responsesize = 24;	/* size of physical extended response */
2798 	int extended = 2;	/* flag forces reporting 'other dev info'. */
2799 	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2800 	u32 nphysicals = 0;	/* number of reported physical devs */
2801 	int found = 0;		/* found match (1) or not (0) */
2802 	u32 find;		/* handle we need to match */
2803 	int i;
2804 	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
2805 	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2806 	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2807 	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2808 	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
2809 
2810 	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2811 		return 0; /* no match */
2812 
2813 	/* point to the ioaccel2 device handle */
2814 	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2815 	if (c2a == NULL)
2816 		return 0; /* no match */
2817 
2818 	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2819 	if (scmd == NULL)
2820 		return 0; /* no match */
2821 
2822 	d = scmd->device->hostdata;
2823 	if (d == NULL)
2824 		return 0; /* no match */
2825 
2826 	it_nexus = cpu_to_le32(d->ioaccel_handle);
2827 	scsi_nexus = cpu_to_le32(c2a->scsi_nexus);
2828 	find = c2a->scsi_nexus;
2829 
2830 	if (h->raid_offload_debug > 0)
2831 		dev_info(&h->pdev->dev,
2832 			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2833 			__func__, scsi_nexus,
2834 			d->device_id[0], d->device_id[1], d->device_id[2],
2835 			d->device_id[3], d->device_id[4], d->device_id[5],
2836 			d->device_id[6], d->device_id[7], d->device_id[8],
2837 			d->device_id[9], d->device_id[10], d->device_id[11],
2838 			d->device_id[12], d->device_id[13], d->device_id[14],
2839 			d->device_id[15]);
2840 
2841 	/* Get the list of physical devices */
2842 	physicals = kzalloc(reportsize, GFP_KERNEL);
2843 	if (physicals == NULL)
2844 		return 0;
2845 	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2846 		reportsize, extended)) {
2847 		dev_err(&h->pdev->dev,
2848 			"Can't lookup %s device handle: report physical LUNs failed.\n",
2849 			"HP SSD Smart Path");
2850 		kfree(physicals);
2851 		return 0;
2852 	}
2853 	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2854 							responsesize;
2855 
2856 	/* find ioaccel2 handle in list of physicals: */
2857 	for (i = 0; i < nphysicals; i++) {
2858 		struct ext_report_lun_entry *entry = &physicals->LUN[i];
2859 
2860 		/* handle is in bytes 28-31 of each lun */
2861 		if (entry->ioaccel_handle != find)
2862 			continue; /* didn't match */
2863 		found = 1;
2864 		memcpy(scsi3addr, entry->lunid, 8);
2865 		if (h->raid_offload_debug > 0)
2866 			dev_info(&h->pdev->dev,
2867 				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2868 				__func__, find,
2869 				entry->ioaccel_handle, scsi3addr);
2870 		break; /* found it */
2871 	}
2872 
2873 	kfree(physicals);
2874 	if (found)
2875 		return 1;
2876 	else
2877 		return 0;
2878 
2879 }
2880 /*
2881  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2882  * logdev.  The number of luns in physdev and logdev are returned in
2883  * *nphysicals and *nlogicals, respectively.
2884  * Returns 0 on success, -1 otherwise.
2885  */
2886 static int hpsa_gather_lun_info(struct ctlr_info *h,
2887 	int reportphyslunsize, int reportloglunsize,
2888 	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2889 	struct ReportLUNdata *logdev, u32 *nlogicals)
2890 {
2891 	int physical_entry_size = 8;
2892 
2893 	*physical_mode = 0;
2894 
2895 	/* For I/O accelerator mode we need to read physical device handles */
2896 	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2897 		h->transMethod & CFGTBL_Trans_io_accel2) {
2898 		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2899 		physical_entry_size = 24;
2900 	}
2901 	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize,
2902 							*physical_mode)) {
2903 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2904 		return -1;
2905 	}
2906 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2907 							physical_entry_size;
2908 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2909 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2910 			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2911 			*nphysicals - HPSA_MAX_PHYS_LUN);
2912 		*nphysicals = HPSA_MAX_PHYS_LUN;
2913 	}
2914 	if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) {
2915 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2916 		return -1;
2917 	}
2918 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2919 	/* Reject Logicals in excess of our max capability. */
2920 	if (*nlogicals > HPSA_MAX_LUN) {
2921 		dev_warn(&h->pdev->dev,
2922 			"maximum logical LUNs (%d) exceeded.  "
2923 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
2924 			*nlogicals - HPSA_MAX_LUN);
2925 			*nlogicals = HPSA_MAX_LUN;
2926 	}
2927 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2928 		dev_warn(&h->pdev->dev,
2929 			"maximum logical + physical LUNs (%d) exceeded. "
2930 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2931 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2932 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2933 	}
2934 	return 0;
2935 }
2936 
2937 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2938 	int i, int nphysicals, int nlogicals,
2939 	struct ReportExtendedLUNdata *physdev_list,
2940 	struct ReportLUNdata *logdev_list)
2941 {
2942 	/* Helper function, figure out where the LUN ID info is coming from
2943 	 * given index i, lists of physical and logical devices, where in
2944 	 * the list the raid controller is supposed to appear (first or last)
2945 	 */
2946 
2947 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
2948 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2949 
2950 	if (i == raid_ctlr_position)
2951 		return RAID_CTLR_LUNID;
2952 
2953 	if (i < logicals_start)
2954 		return &physdev_list->LUN[i -
2955 				(raid_ctlr_position == 0)].lunid[0];
2956 
2957 	if (i < last_device)
2958 		return &logdev_list->LUN[i - nphysicals -
2959 			(raid_ctlr_position == 0)][0];
2960 	BUG();
2961 	return NULL;
2962 }
2963 
2964 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2965 {
2966 	int rc;
2967 	int hba_mode_enabled;
2968 	struct bmic_controller_parameters *ctlr_params;
2969 	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2970 		GFP_KERNEL);
2971 
2972 	if (!ctlr_params)
2973 		return -ENOMEM;
2974 	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2975 		sizeof(struct bmic_controller_parameters));
2976 	if (rc) {
2977 		kfree(ctlr_params);
2978 		return rc;
2979 	}
2980 
2981 	hba_mode_enabled =
2982 		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2983 	kfree(ctlr_params);
2984 	return hba_mode_enabled;
2985 }
2986 
2987 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2988 {
2989 	/* the idea here is we could get notified
2990 	 * that some devices have changed, so we do a report
2991 	 * physical luns and report logical luns cmd, and adjust
2992 	 * our list of devices accordingly.
2993 	 *
2994 	 * The scsi3addr's of devices won't change so long as the
2995 	 * adapter is not reset.  That means we can rescan and
2996 	 * tell which devices we already know about, vs. new
2997 	 * devices, vs.  disappearing devices.
2998 	 */
2999 	struct ReportExtendedLUNdata *physdev_list = NULL;
3000 	struct ReportLUNdata *logdev_list = NULL;
3001 	u32 nphysicals = 0;
3002 	u32 nlogicals = 0;
3003 	int physical_mode = 0;
3004 	u32 ndev_allocated = 0;
3005 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3006 	int ncurrent = 0;
3007 	int i, n_ext_target_devs, ndevs_to_allocate;
3008 	int raid_ctlr_position;
3009 	int rescan_hba_mode;
3010 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3011 
3012 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3013 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3014 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3015 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3016 
3017 	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3018 		dev_err(&h->pdev->dev, "out of memory\n");
3019 		goto out;
3020 	}
3021 	memset(lunzerobits, 0, sizeof(lunzerobits));
3022 
3023 	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3024 	if (rescan_hba_mode < 0)
3025 		goto out;
3026 
3027 	if (!h->hba_mode_enabled && rescan_hba_mode)
3028 		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3029 	else if (h->hba_mode_enabled && !rescan_hba_mode)
3030 		dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3031 
3032 	h->hba_mode_enabled = rescan_hba_mode;
3033 
3034 	if (hpsa_gather_lun_info(h,
3035 			sizeof(*physdev_list), sizeof(*logdev_list),
3036 			(struct ReportLUNdata *) physdev_list, &nphysicals,
3037 			&physical_mode, logdev_list, &nlogicals))
3038 		goto out;
3039 
3040 	/* We might see up to the maximum number of logical and physical disks
3041 	 * plus external target devices, and a device for the local RAID
3042 	 * controller.
3043 	 */
3044 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3045 
3046 	/* Allocate the per device structures */
3047 	for (i = 0; i < ndevs_to_allocate; i++) {
3048 		if (i >= HPSA_MAX_DEVICES) {
3049 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3050 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
3051 				ndevs_to_allocate - HPSA_MAX_DEVICES);
3052 			break;
3053 		}
3054 
3055 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3056 		if (!currentsd[i]) {
3057 			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3058 				__FILE__, __LINE__);
3059 			goto out;
3060 		}
3061 		ndev_allocated++;
3062 	}
3063 
3064 	if (is_scsi_rev_5(h))
3065 		raid_ctlr_position = 0;
3066 	else
3067 		raid_ctlr_position = nphysicals + nlogicals;
3068 
3069 	/* adjust our table of devices */
3070 	n_ext_target_devs = 0;
3071 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3072 		u8 *lunaddrbytes, is_OBDR = 0;
3073 
3074 		/* Figure out where the LUN ID info is coming from */
3075 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3076 			i, nphysicals, nlogicals, physdev_list, logdev_list);
3077 		/* skip masked physical devices. */
3078 		if (lunaddrbytes[3] & 0xC0 &&
3079 			i < nphysicals + (raid_ctlr_position == 0))
3080 			continue;
3081 
3082 		/* Get device type, vendor, model, device id */
3083 		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3084 							&is_OBDR))
3085 			continue; /* skip it if we can't talk to it. */
3086 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3087 		this_device = currentsd[ncurrent];
3088 
3089 		/*
3090 		 * For external target devices, we have to insert a LUN 0 which
3091 		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3092 		 * is nonetheless an enclosure device there.  We have to
3093 		 * present that otherwise linux won't find anything if
3094 		 * there is no lun 0.
3095 		 */
3096 		if (add_ext_target_dev(h, tmpdevice, this_device,
3097 				lunaddrbytes, lunzerobits,
3098 				&n_ext_target_devs)) {
3099 			ncurrent++;
3100 			this_device = currentsd[ncurrent];
3101 		}
3102 
3103 		*this_device = *tmpdevice;
3104 
3105 		switch (this_device->devtype) {
3106 		case TYPE_ROM:
3107 			/* We don't *really* support actual CD-ROM devices,
3108 			 * just "One Button Disaster Recovery" tape drive
3109 			 * which temporarily pretends to be a CD-ROM drive.
3110 			 * So we check that the device is really an OBDR tape
3111 			 * device by checking for "$DR-10" in bytes 43-48 of
3112 			 * the inquiry data.
3113 			 */
3114 			if (is_OBDR)
3115 				ncurrent++;
3116 			break;
3117 		case TYPE_DISK:
3118 			if (h->hba_mode_enabled) {
3119 				/* never use raid mapper in HBA mode */
3120 				this_device->offload_enabled = 0;
3121 				ncurrent++;
3122 				break;
3123 			} else if (h->acciopath_status) {
3124 				if (i >= nphysicals) {
3125 					ncurrent++;
3126 					break;
3127 				}
3128 			} else {
3129 				if (i < nphysicals)
3130 					break;
3131 				ncurrent++;
3132 				break;
3133 			}
3134 			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3135 				memcpy(&this_device->ioaccel_handle,
3136 					&lunaddrbytes[20],
3137 					sizeof(this_device->ioaccel_handle));
3138 				ncurrent++;
3139 			}
3140 			break;
3141 		case TYPE_TAPE:
3142 		case TYPE_MEDIUM_CHANGER:
3143 			ncurrent++;
3144 			break;
3145 		case TYPE_RAID:
3146 			/* Only present the Smartarray HBA as a RAID controller.
3147 			 * If it's a RAID controller other than the HBA itself
3148 			 * (an external RAID controller, MSA500 or similar)
3149 			 * don't present it.
3150 			 */
3151 			if (!is_hba_lunid(lunaddrbytes))
3152 				break;
3153 			ncurrent++;
3154 			break;
3155 		default:
3156 			break;
3157 		}
3158 		if (ncurrent >= HPSA_MAX_DEVICES)
3159 			break;
3160 	}
3161 	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3162 out:
3163 	kfree(tmpdevice);
3164 	for (i = 0; i < ndev_allocated; i++)
3165 		kfree(currentsd[i]);
3166 	kfree(currentsd);
3167 	kfree(physdev_list);
3168 	kfree(logdev_list);
3169 }
3170 
3171 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3172  * dma mapping  and fills in the scatter gather entries of the
3173  * hpsa command, cp.
3174  */
3175 static int hpsa_scatter_gather(struct ctlr_info *h,
3176 		struct CommandList *cp,
3177 		struct scsi_cmnd *cmd)
3178 {
3179 	unsigned int len;
3180 	struct scatterlist *sg;
3181 	u64 addr64;
3182 	int use_sg, i, sg_index, chained;
3183 	struct SGDescriptor *curr_sg;
3184 
3185 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3186 
3187 	use_sg = scsi_dma_map(cmd);
3188 	if (use_sg < 0)
3189 		return use_sg;
3190 
3191 	if (!use_sg)
3192 		goto sglist_finished;
3193 
3194 	curr_sg = cp->SG;
3195 	chained = 0;
3196 	sg_index = 0;
3197 	scsi_for_each_sg(cmd, sg, use_sg, i) {
3198 		if (i == h->max_cmd_sg_entries - 1 &&
3199 			use_sg > h->max_cmd_sg_entries) {
3200 			chained = 1;
3201 			curr_sg = h->cmd_sg_list[cp->cmdindex];
3202 			sg_index = 0;
3203 		}
3204 		addr64 = (u64) sg_dma_address(sg);
3205 		len  = sg_dma_len(sg);
3206 		curr_sg->Addr = cpu_to_le64(addr64);
3207 		curr_sg->Len = cpu_to_le32(len);
3208 		curr_sg->Ext = cpu_to_le32(0);
3209 		curr_sg++;
3210 	}
3211 	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3212 
3213 	if (use_sg + chained > h->maxSG)
3214 		h->maxSG = use_sg + chained;
3215 
3216 	if (chained) {
3217 		cp->Header.SGList = h->max_cmd_sg_entries;
3218 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3219 		if (hpsa_map_sg_chain_block(h, cp)) {
3220 			scsi_dma_unmap(cmd);
3221 			return -1;
3222 		}
3223 		return 0;
3224 	}
3225 
3226 sglist_finished:
3227 
3228 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3229 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */
3230 	return 0;
3231 }
3232 
3233 #define IO_ACCEL_INELIGIBLE (1)
3234 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3235 {
3236 	int is_write = 0;
3237 	u32 block;
3238 	u32 block_cnt;
3239 
3240 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
3241 	switch (cdb[0]) {
3242 	case WRITE_6:
3243 	case WRITE_12:
3244 		is_write = 1;
3245 	case READ_6:
3246 	case READ_12:
3247 		if (*cdb_len == 6) {
3248 			block = (((u32) cdb[2]) << 8) | cdb[3];
3249 			block_cnt = cdb[4];
3250 		} else {
3251 			BUG_ON(*cdb_len != 12);
3252 			block = (((u32) cdb[2]) << 24) |
3253 				(((u32) cdb[3]) << 16) |
3254 				(((u32) cdb[4]) << 8) |
3255 				cdb[5];
3256 			block_cnt =
3257 				(((u32) cdb[6]) << 24) |
3258 				(((u32) cdb[7]) << 16) |
3259 				(((u32) cdb[8]) << 8) |
3260 				cdb[9];
3261 		}
3262 		if (block_cnt > 0xffff)
3263 			return IO_ACCEL_INELIGIBLE;
3264 
3265 		cdb[0] = is_write ? WRITE_10 : READ_10;
3266 		cdb[1] = 0;
3267 		cdb[2] = (u8) (block >> 24);
3268 		cdb[3] = (u8) (block >> 16);
3269 		cdb[4] = (u8) (block >> 8);
3270 		cdb[5] = (u8) (block);
3271 		cdb[6] = 0;
3272 		cdb[7] = (u8) (block_cnt >> 8);
3273 		cdb[8] = (u8) (block_cnt);
3274 		cdb[9] = 0;
3275 		*cdb_len = 10;
3276 		break;
3277 	}
3278 	return 0;
3279 }
3280 
3281 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3282 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3283 	u8 *scsi3addr)
3284 {
3285 	struct scsi_cmnd *cmd = c->scsi_cmd;
3286 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3287 	unsigned int len;
3288 	unsigned int total_len = 0;
3289 	struct scatterlist *sg;
3290 	u64 addr64;
3291 	int use_sg, i;
3292 	struct SGDescriptor *curr_sg;
3293 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3294 
3295 	/* TODO: implement chaining support */
3296 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3297 		return IO_ACCEL_INELIGIBLE;
3298 
3299 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3300 
3301 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3302 		return IO_ACCEL_INELIGIBLE;
3303 
3304 	c->cmd_type = CMD_IOACCEL1;
3305 
3306 	/* Adjust the DMA address to point to the accelerated command buffer */
3307 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3308 				(c->cmdindex * sizeof(*cp));
3309 	BUG_ON(c->busaddr & 0x0000007F);
3310 
3311 	use_sg = scsi_dma_map(cmd);
3312 	if (use_sg < 0)
3313 		return use_sg;
3314 
3315 	if (use_sg) {
3316 		curr_sg = cp->SG;
3317 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3318 			addr64 = (u64) sg_dma_address(sg);
3319 			len  = sg_dma_len(sg);
3320 			total_len += len;
3321 			curr_sg->Addr = cpu_to_le64(addr64);
3322 			curr_sg->Len = cpu_to_le32(len);
3323 			curr_sg->Ext = cpu_to_le32(0);
3324 			curr_sg++;
3325 		}
3326 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3327 
3328 		switch (cmd->sc_data_direction) {
3329 		case DMA_TO_DEVICE:
3330 			control |= IOACCEL1_CONTROL_DATA_OUT;
3331 			break;
3332 		case DMA_FROM_DEVICE:
3333 			control |= IOACCEL1_CONTROL_DATA_IN;
3334 			break;
3335 		case DMA_NONE:
3336 			control |= IOACCEL1_CONTROL_NODATAXFER;
3337 			break;
3338 		default:
3339 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3340 			cmd->sc_data_direction);
3341 			BUG();
3342 			break;
3343 		}
3344 	} else {
3345 		control |= IOACCEL1_CONTROL_NODATAXFER;
3346 	}
3347 
3348 	c->Header.SGList = use_sg;
3349 	/* Fill out the command structure to submit */
3350 	cp->dev_handle = ioaccel_handle & 0xFFFF;
3351 	cp->transfer_len = total_len;
3352 	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3353 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3354 	cp->control = control;
3355 	memcpy(cp->CDB, cdb, cdb_len);
3356 	memcpy(cp->CISS_LUN, scsi3addr, 8);
3357 	/* Tag was already set at init time. */
3358 	enqueue_cmd_and_start_io(h, c);
3359 	return 0;
3360 }
3361 
3362 /*
3363  * Queue a command directly to a device behind the controller using the
3364  * I/O accelerator path.
3365  */
3366 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3367 	struct CommandList *c)
3368 {
3369 	struct scsi_cmnd *cmd = c->scsi_cmd;
3370 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3371 
3372 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3373 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3374 }
3375 
3376 /*
3377  * Set encryption parameters for the ioaccel2 request
3378  */
3379 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3380 	struct CommandList *c, struct io_accel2_cmd *cp)
3381 {
3382 	struct scsi_cmnd *cmd = c->scsi_cmd;
3383 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3384 	struct raid_map_data *map = &dev->raid_map;
3385 	u64 first_block;
3386 
3387 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3388 
3389 	/* Are we doing encryption on this device */
3390 	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3391 		return;
3392 	/* Set the data encryption key index. */
3393 	cp->dekindex = map->dekindex;
3394 
3395 	/* Set the encryption enable flag, encoded into direction field. */
3396 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3397 
3398 	/* Set encryption tweak values based on logical block address
3399 	 * If block size is 512, tweak value is LBA.
3400 	 * For other block sizes, tweak is (LBA * block size)/ 512)
3401 	 */
3402 	switch (cmd->cmnd[0]) {
3403 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3404 	case WRITE_6:
3405 	case READ_6:
3406 		if (map->volume_blk_size == 512) {
3407 			cp->tweak_lower =
3408 				(((u32) cmd->cmnd[2]) << 8) |
3409 					cmd->cmnd[3];
3410 			cp->tweak_upper = 0;
3411 		} else {
3412 			first_block =
3413 				(((u64) cmd->cmnd[2]) << 8) |
3414 					cmd->cmnd[3];
3415 			first_block = (first_block * map->volume_blk_size)/512;
3416 			cp->tweak_lower = (u32)first_block;
3417 			cp->tweak_upper = (u32)(first_block >> 32);
3418 		}
3419 		break;
3420 	case WRITE_10:
3421 	case READ_10:
3422 		if (map->volume_blk_size == 512) {
3423 			cp->tweak_lower =
3424 				(((u32) cmd->cmnd[2]) << 24) |
3425 				(((u32) cmd->cmnd[3]) << 16) |
3426 				(((u32) cmd->cmnd[4]) << 8) |
3427 					cmd->cmnd[5];
3428 			cp->tweak_upper = 0;
3429 		} else {
3430 			first_block =
3431 				(((u64) cmd->cmnd[2]) << 24) |
3432 				(((u64) cmd->cmnd[3]) << 16) |
3433 				(((u64) cmd->cmnd[4]) << 8) |
3434 					cmd->cmnd[5];
3435 			first_block = (first_block * map->volume_blk_size)/512;
3436 			cp->tweak_lower = (u32)first_block;
3437 			cp->tweak_upper = (u32)(first_block >> 32);
3438 		}
3439 		break;
3440 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3441 	case WRITE_12:
3442 	case READ_12:
3443 		if (map->volume_blk_size == 512) {
3444 			cp->tweak_lower =
3445 				(((u32) cmd->cmnd[2]) << 24) |
3446 				(((u32) cmd->cmnd[3]) << 16) |
3447 				(((u32) cmd->cmnd[4]) << 8) |
3448 					cmd->cmnd[5];
3449 			cp->tweak_upper = 0;
3450 		} else {
3451 			first_block =
3452 				(((u64) cmd->cmnd[2]) << 24) |
3453 				(((u64) cmd->cmnd[3]) << 16) |
3454 				(((u64) cmd->cmnd[4]) << 8) |
3455 					cmd->cmnd[5];
3456 			first_block = (first_block * map->volume_blk_size)/512;
3457 			cp->tweak_lower = (u32)first_block;
3458 			cp->tweak_upper = (u32)(first_block >> 32);
3459 		}
3460 		break;
3461 	case WRITE_16:
3462 	case READ_16:
3463 		if (map->volume_blk_size == 512) {
3464 			cp->tweak_lower =
3465 				(((u32) cmd->cmnd[6]) << 24) |
3466 				(((u32) cmd->cmnd[7]) << 16) |
3467 				(((u32) cmd->cmnd[8]) << 8) |
3468 					cmd->cmnd[9];
3469 			cp->tweak_upper =
3470 				(((u32) cmd->cmnd[2]) << 24) |
3471 				(((u32) cmd->cmnd[3]) << 16) |
3472 				(((u32) cmd->cmnd[4]) << 8) |
3473 					cmd->cmnd[5];
3474 		} else {
3475 			first_block =
3476 				(((u64) cmd->cmnd[2]) << 56) |
3477 				(((u64) cmd->cmnd[3]) << 48) |
3478 				(((u64) cmd->cmnd[4]) << 40) |
3479 				(((u64) cmd->cmnd[5]) << 32) |
3480 				(((u64) cmd->cmnd[6]) << 24) |
3481 				(((u64) cmd->cmnd[7]) << 16) |
3482 				(((u64) cmd->cmnd[8]) << 8) |
3483 					cmd->cmnd[9];
3484 			first_block = (first_block * map->volume_blk_size)/512;
3485 			cp->tweak_lower = (u32)first_block;
3486 			cp->tweak_upper = (u32)(first_block >> 32);
3487 		}
3488 		break;
3489 	default:
3490 		dev_err(&h->pdev->dev,
3491 			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3492 			__func__);
3493 		BUG();
3494 		break;
3495 	}
3496 }
3497 
3498 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3499 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3500 	u8 *scsi3addr)
3501 {
3502 	struct scsi_cmnd *cmd = c->scsi_cmd;
3503 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3504 	struct ioaccel2_sg_element *curr_sg;
3505 	int use_sg, i;
3506 	struct scatterlist *sg;
3507 	u64 addr64;
3508 	u32 len;
3509 	u32 total_len = 0;
3510 
3511 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3512 		return IO_ACCEL_INELIGIBLE;
3513 
3514 	if (fixup_ioaccel_cdb(cdb, &cdb_len))
3515 		return IO_ACCEL_INELIGIBLE;
3516 	c->cmd_type = CMD_IOACCEL2;
3517 	/* Adjust the DMA address to point to the accelerated command buffer */
3518 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3519 				(c->cmdindex * sizeof(*cp));
3520 	BUG_ON(c->busaddr & 0x0000007F);
3521 
3522 	memset(cp, 0, sizeof(*cp));
3523 	cp->IU_type = IOACCEL2_IU_TYPE;
3524 
3525 	use_sg = scsi_dma_map(cmd);
3526 	if (use_sg < 0)
3527 		return use_sg;
3528 
3529 	if (use_sg) {
3530 		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3531 		curr_sg = cp->sg;
3532 		scsi_for_each_sg(cmd, sg, use_sg, i) {
3533 			addr64 = (u64) sg_dma_address(sg);
3534 			len  = sg_dma_len(sg);
3535 			total_len += len;
3536 			curr_sg->address = cpu_to_le64(addr64);
3537 			curr_sg->length = cpu_to_le32(len);
3538 			curr_sg->reserved[0] = 0;
3539 			curr_sg->reserved[1] = 0;
3540 			curr_sg->reserved[2] = 0;
3541 			curr_sg->chain_indicator = 0;
3542 			curr_sg++;
3543 		}
3544 
3545 		switch (cmd->sc_data_direction) {
3546 		case DMA_TO_DEVICE:
3547 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3548 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3549 			break;
3550 		case DMA_FROM_DEVICE:
3551 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3552 			cp->direction |= IOACCEL2_DIR_DATA_IN;
3553 			break;
3554 		case DMA_NONE:
3555 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3556 			cp->direction |= IOACCEL2_DIR_NO_DATA;
3557 			break;
3558 		default:
3559 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3560 				cmd->sc_data_direction);
3561 			BUG();
3562 			break;
3563 		}
3564 	} else {
3565 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3566 		cp->direction |= IOACCEL2_DIR_NO_DATA;
3567 	}
3568 
3569 	/* Set encryption parameters, if necessary */
3570 	set_encrypt_ioaccel2(h, c, cp);
3571 
3572 	cp->scsi_nexus = ioaccel_handle;
3573 	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3574 				DIRECT_LOOKUP_BIT;
3575 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3576 
3577 	/* fill in sg elements */
3578 	cp->sg_count = (u8) use_sg;
3579 
3580 	cp->data_len = cpu_to_le32(total_len);
3581 	cp->err_ptr = cpu_to_le64(c->busaddr +
3582 			offsetof(struct io_accel2_cmd, error_data));
3583 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3584 
3585 	enqueue_cmd_and_start_io(h, c);
3586 	return 0;
3587 }
3588 
3589 /*
3590  * Queue a command to the correct I/O accelerator path.
3591  */
3592 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3593 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3594 	u8 *scsi3addr)
3595 {
3596 	if (h->transMethod & CFGTBL_Trans_io_accel1)
3597 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3598 						cdb, cdb_len, scsi3addr);
3599 	else
3600 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3601 						cdb, cdb_len, scsi3addr);
3602 }
3603 
3604 static void raid_map_helper(struct raid_map_data *map,
3605 		int offload_to_mirror, u32 *map_index, u32 *current_group)
3606 {
3607 	if (offload_to_mirror == 0)  {
3608 		/* use physical disk in the first mirrored group. */
3609 		*map_index %= map->data_disks_per_row;
3610 		return;
3611 	}
3612 	do {
3613 		/* determine mirror group that *map_index indicates */
3614 		*current_group = *map_index / map->data_disks_per_row;
3615 		if (offload_to_mirror == *current_group)
3616 			continue;
3617 		if (*current_group < (map->layout_map_count - 1)) {
3618 			/* select map index from next group */
3619 			*map_index += map->data_disks_per_row;
3620 			(*current_group)++;
3621 		} else {
3622 			/* select map index from first group */
3623 			*map_index %= map->data_disks_per_row;
3624 			*current_group = 0;
3625 		}
3626 	} while (offload_to_mirror != *current_group);
3627 }
3628 
3629 /*
3630  * Attempt to perform offload RAID mapping for a logical volume I/O.
3631  */
3632 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3633 	struct CommandList *c)
3634 {
3635 	struct scsi_cmnd *cmd = c->scsi_cmd;
3636 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3637 	struct raid_map_data *map = &dev->raid_map;
3638 	struct raid_map_disk_data *dd = &map->data[0];
3639 	int is_write = 0;
3640 	u32 map_index;
3641 	u64 first_block, last_block;
3642 	u32 block_cnt;
3643 	u32 blocks_per_row;
3644 	u64 first_row, last_row;
3645 	u32 first_row_offset, last_row_offset;
3646 	u32 first_column, last_column;
3647 	u64 r0_first_row, r0_last_row;
3648 	u32 r5or6_blocks_per_row;
3649 	u64 r5or6_first_row, r5or6_last_row;
3650 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
3651 	u32 r5or6_first_column, r5or6_last_column;
3652 	u32 total_disks_per_row;
3653 	u32 stripesize;
3654 	u32 first_group, last_group, current_group;
3655 	u32 map_row;
3656 	u32 disk_handle;
3657 	u64 disk_block;
3658 	u32 disk_block_cnt;
3659 	u8 cdb[16];
3660 	u8 cdb_len;
3661 #if BITS_PER_LONG == 32
3662 	u64 tmpdiv;
3663 #endif
3664 	int offload_to_mirror;
3665 
3666 	BUG_ON(!(dev->offload_config && dev->offload_enabled));
3667 
3668 	/* check for valid opcode, get LBA and block count */
3669 	switch (cmd->cmnd[0]) {
3670 	case WRITE_6:
3671 		is_write = 1;
3672 	case READ_6:
3673 		first_block =
3674 			(((u64) cmd->cmnd[2]) << 8) |
3675 			cmd->cmnd[3];
3676 		block_cnt = cmd->cmnd[4];
3677 		if (block_cnt == 0)
3678 			block_cnt = 256;
3679 		break;
3680 	case WRITE_10:
3681 		is_write = 1;
3682 	case READ_10:
3683 		first_block =
3684 			(((u64) cmd->cmnd[2]) << 24) |
3685 			(((u64) cmd->cmnd[3]) << 16) |
3686 			(((u64) cmd->cmnd[4]) << 8) |
3687 			cmd->cmnd[5];
3688 		block_cnt =
3689 			(((u32) cmd->cmnd[7]) << 8) |
3690 			cmd->cmnd[8];
3691 		break;
3692 	case WRITE_12:
3693 		is_write = 1;
3694 	case READ_12:
3695 		first_block =
3696 			(((u64) cmd->cmnd[2]) << 24) |
3697 			(((u64) cmd->cmnd[3]) << 16) |
3698 			(((u64) cmd->cmnd[4]) << 8) |
3699 			cmd->cmnd[5];
3700 		block_cnt =
3701 			(((u32) cmd->cmnd[6]) << 24) |
3702 			(((u32) cmd->cmnd[7]) << 16) |
3703 			(((u32) cmd->cmnd[8]) << 8) |
3704 		cmd->cmnd[9];
3705 		break;
3706 	case WRITE_16:
3707 		is_write = 1;
3708 	case READ_16:
3709 		first_block =
3710 			(((u64) cmd->cmnd[2]) << 56) |
3711 			(((u64) cmd->cmnd[3]) << 48) |
3712 			(((u64) cmd->cmnd[4]) << 40) |
3713 			(((u64) cmd->cmnd[5]) << 32) |
3714 			(((u64) cmd->cmnd[6]) << 24) |
3715 			(((u64) cmd->cmnd[7]) << 16) |
3716 			(((u64) cmd->cmnd[8]) << 8) |
3717 			cmd->cmnd[9];
3718 		block_cnt =
3719 			(((u32) cmd->cmnd[10]) << 24) |
3720 			(((u32) cmd->cmnd[11]) << 16) |
3721 			(((u32) cmd->cmnd[12]) << 8) |
3722 			cmd->cmnd[13];
3723 		break;
3724 	default:
3725 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3726 	}
3727 	last_block = first_block + block_cnt - 1;
3728 
3729 	/* check for write to non-RAID-0 */
3730 	if (is_write && dev->raid_level != 0)
3731 		return IO_ACCEL_INELIGIBLE;
3732 
3733 	/* check for invalid block or wraparound */
3734 	if (last_block >= map->volume_blk_cnt || last_block < first_block)
3735 		return IO_ACCEL_INELIGIBLE;
3736 
3737 	/* calculate stripe information for the request */
3738 	blocks_per_row = map->data_disks_per_row * map->strip_size;
3739 #if BITS_PER_LONG == 32
3740 	tmpdiv = first_block;
3741 	(void) do_div(tmpdiv, blocks_per_row);
3742 	first_row = tmpdiv;
3743 	tmpdiv = last_block;
3744 	(void) do_div(tmpdiv, blocks_per_row);
3745 	last_row = tmpdiv;
3746 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3747 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3748 	tmpdiv = first_row_offset;
3749 	(void) do_div(tmpdiv,  map->strip_size);
3750 	first_column = tmpdiv;
3751 	tmpdiv = last_row_offset;
3752 	(void) do_div(tmpdiv, map->strip_size);
3753 	last_column = tmpdiv;
3754 #else
3755 	first_row = first_block / blocks_per_row;
3756 	last_row = last_block / blocks_per_row;
3757 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3758 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3759 	first_column = first_row_offset / map->strip_size;
3760 	last_column = last_row_offset / map->strip_size;
3761 #endif
3762 
3763 	/* if this isn't a single row/column then give to the controller */
3764 	if ((first_row != last_row) || (first_column != last_column))
3765 		return IO_ACCEL_INELIGIBLE;
3766 
3767 	/* proceeding with driver mapping */
3768 	total_disks_per_row = map->data_disks_per_row +
3769 				map->metadata_disks_per_row;
3770 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3771 				map->row_cnt;
3772 	map_index = (map_row * total_disks_per_row) + first_column;
3773 
3774 	switch (dev->raid_level) {
3775 	case HPSA_RAID_0:
3776 		break; /* nothing special to do */
3777 	case HPSA_RAID_1:
3778 		/* Handles load balance across RAID 1 members.
3779 		 * (2-drive R1 and R10 with even # of drives.)
3780 		 * Appropriate for SSDs, not optimal for HDDs
3781 		 */
3782 		BUG_ON(map->layout_map_count != 2);
3783 		if (dev->offload_to_mirror)
3784 			map_index += map->data_disks_per_row;
3785 		dev->offload_to_mirror = !dev->offload_to_mirror;
3786 		break;
3787 	case HPSA_RAID_ADM:
3788 		/* Handles N-way mirrors  (R1-ADM)
3789 		 * and R10 with # of drives divisible by 3.)
3790 		 */
3791 		BUG_ON(map->layout_map_count != 3);
3792 
3793 		offload_to_mirror = dev->offload_to_mirror;
3794 		raid_map_helper(map, offload_to_mirror,
3795 				&map_index, &current_group);
3796 		/* set mirror group to use next time */
3797 		offload_to_mirror =
3798 			(offload_to_mirror >= map->layout_map_count - 1)
3799 			? 0 : offload_to_mirror + 1;
3800 		dev->offload_to_mirror = offload_to_mirror;
3801 		/* Avoid direct use of dev->offload_to_mirror within this
3802 		 * function since multiple threads might simultaneously
3803 		 * increment it beyond the range of dev->layout_map_count -1.
3804 		 */
3805 		break;
3806 	case HPSA_RAID_5:
3807 	case HPSA_RAID_6:
3808 		if (map->layout_map_count <= 1)
3809 			break;
3810 
3811 		/* Verify first and last block are in same RAID group */
3812 		r5or6_blocks_per_row =
3813 			map->strip_size * map->data_disks_per_row;
3814 		BUG_ON(r5or6_blocks_per_row == 0);
3815 		stripesize = r5or6_blocks_per_row * map->layout_map_count;
3816 #if BITS_PER_LONG == 32
3817 		tmpdiv = first_block;
3818 		first_group = do_div(tmpdiv, stripesize);
3819 		tmpdiv = first_group;
3820 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3821 		first_group = tmpdiv;
3822 		tmpdiv = last_block;
3823 		last_group = do_div(tmpdiv, stripesize);
3824 		tmpdiv = last_group;
3825 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
3826 		last_group = tmpdiv;
3827 #else
3828 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3829 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3830 #endif
3831 		if (first_group != last_group)
3832 			return IO_ACCEL_INELIGIBLE;
3833 
3834 		/* Verify request is in a single row of RAID 5/6 */
3835 #if BITS_PER_LONG == 32
3836 		tmpdiv = first_block;
3837 		(void) do_div(tmpdiv, stripesize);
3838 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
3839 		tmpdiv = last_block;
3840 		(void) do_div(tmpdiv, stripesize);
3841 		r5or6_last_row = r0_last_row = tmpdiv;
3842 #else
3843 		first_row = r5or6_first_row = r0_first_row =
3844 						first_block / stripesize;
3845 		r5or6_last_row = r0_last_row = last_block / stripesize;
3846 #endif
3847 		if (r5or6_first_row != r5or6_last_row)
3848 			return IO_ACCEL_INELIGIBLE;
3849 
3850 
3851 		/* Verify request is in a single column */
3852 #if BITS_PER_LONG == 32
3853 		tmpdiv = first_block;
3854 		first_row_offset = do_div(tmpdiv, stripesize);
3855 		tmpdiv = first_row_offset;
3856 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3857 		r5or6_first_row_offset = first_row_offset;
3858 		tmpdiv = last_block;
3859 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3860 		tmpdiv = r5or6_last_row_offset;
3861 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3862 		tmpdiv = r5or6_first_row_offset;
3863 		(void) do_div(tmpdiv, map->strip_size);
3864 		first_column = r5or6_first_column = tmpdiv;
3865 		tmpdiv = r5or6_last_row_offset;
3866 		(void) do_div(tmpdiv, map->strip_size);
3867 		r5or6_last_column = tmpdiv;
3868 #else
3869 		first_row_offset = r5or6_first_row_offset =
3870 			(u32)((first_block % stripesize) %
3871 						r5or6_blocks_per_row);
3872 
3873 		r5or6_last_row_offset =
3874 			(u32)((last_block % stripesize) %
3875 						r5or6_blocks_per_row);
3876 
3877 		first_column = r5or6_first_column =
3878 			r5or6_first_row_offset / map->strip_size;
3879 		r5or6_last_column =
3880 			r5or6_last_row_offset / map->strip_size;
3881 #endif
3882 		if (r5or6_first_column != r5or6_last_column)
3883 			return IO_ACCEL_INELIGIBLE;
3884 
3885 		/* Request is eligible */
3886 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3887 			map->row_cnt;
3888 
3889 		map_index = (first_group *
3890 			(map->row_cnt * total_disks_per_row)) +
3891 			(map_row * total_disks_per_row) + first_column;
3892 		break;
3893 	default:
3894 		return IO_ACCEL_INELIGIBLE;
3895 	}
3896 
3897 	disk_handle = dd[map_index].ioaccel_handle;
3898 	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3899 			(first_row_offset - (first_column * map->strip_size));
3900 	disk_block_cnt = block_cnt;
3901 
3902 	/* handle differing logical/physical block sizes */
3903 	if (map->phys_blk_shift) {
3904 		disk_block <<= map->phys_blk_shift;
3905 		disk_block_cnt <<= map->phys_blk_shift;
3906 	}
3907 	BUG_ON(disk_block_cnt > 0xffff);
3908 
3909 	/* build the new CDB for the physical disk I/O */
3910 	if (disk_block > 0xffffffff) {
3911 		cdb[0] = is_write ? WRITE_16 : READ_16;
3912 		cdb[1] = 0;
3913 		cdb[2] = (u8) (disk_block >> 56);
3914 		cdb[3] = (u8) (disk_block >> 48);
3915 		cdb[4] = (u8) (disk_block >> 40);
3916 		cdb[5] = (u8) (disk_block >> 32);
3917 		cdb[6] = (u8) (disk_block >> 24);
3918 		cdb[7] = (u8) (disk_block >> 16);
3919 		cdb[8] = (u8) (disk_block >> 8);
3920 		cdb[9] = (u8) (disk_block);
3921 		cdb[10] = (u8) (disk_block_cnt >> 24);
3922 		cdb[11] = (u8) (disk_block_cnt >> 16);
3923 		cdb[12] = (u8) (disk_block_cnt >> 8);
3924 		cdb[13] = (u8) (disk_block_cnt);
3925 		cdb[14] = 0;
3926 		cdb[15] = 0;
3927 		cdb_len = 16;
3928 	} else {
3929 		cdb[0] = is_write ? WRITE_10 : READ_10;
3930 		cdb[1] = 0;
3931 		cdb[2] = (u8) (disk_block >> 24);
3932 		cdb[3] = (u8) (disk_block >> 16);
3933 		cdb[4] = (u8) (disk_block >> 8);
3934 		cdb[5] = (u8) (disk_block);
3935 		cdb[6] = 0;
3936 		cdb[7] = (u8) (disk_block_cnt >> 8);
3937 		cdb[8] = (u8) (disk_block_cnt);
3938 		cdb[9] = 0;
3939 		cdb_len = 10;
3940 	}
3941 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3942 						dev->scsi3addr);
3943 }
3944 
3945 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3946 	void (*done)(struct scsi_cmnd *))
3947 {
3948 	struct ctlr_info *h;
3949 	struct hpsa_scsi_dev_t *dev;
3950 	unsigned char scsi3addr[8];
3951 	struct CommandList *c;
3952 	int rc = 0;
3953 
3954 	/* Get the ptr to our adapter structure out of cmd->host. */
3955 	h = sdev_to_hba(cmd->device);
3956 	dev = cmd->device->hostdata;
3957 	if (!dev) {
3958 		cmd->result = DID_NO_CONNECT << 16;
3959 		done(cmd);
3960 		return 0;
3961 	}
3962 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3963 
3964 	if (unlikely(lockup_detected(h))) {
3965 		cmd->result = DID_ERROR << 16;
3966 		done(cmd);
3967 		return 0;
3968 	}
3969 	c = cmd_alloc(h);
3970 	if (c == NULL) {			/* trouble... */
3971 		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3972 		return SCSI_MLQUEUE_HOST_BUSY;
3973 	}
3974 
3975 	/* Fill in the command list header */
3976 
3977 	cmd->scsi_done = done;    /* save this for use by completion code */
3978 
3979 	/* save c in case we have to abort it  */
3980 	cmd->host_scribble = (unsigned char *) c;
3981 
3982 	c->cmd_type = CMD_SCSI;
3983 	c->scsi_cmd = cmd;
3984 
3985 	/* Call alternate submit routine for I/O accelerated commands.
3986 	 * Retries always go down the normal I/O path.
3987 	 */
3988 	if (likely(cmd->retries == 0 &&
3989 		cmd->request->cmd_type == REQ_TYPE_FS &&
3990 		h->acciopath_status)) {
3991 		if (dev->offload_enabled) {
3992 			rc = hpsa_scsi_ioaccel_raid_map(h, c);
3993 			if (rc == 0)
3994 				return 0; /* Sent on ioaccel path */
3995 			if (rc < 0) {   /* scsi_dma_map failed. */
3996 				cmd_free(h, c);
3997 				return SCSI_MLQUEUE_HOST_BUSY;
3998 			}
3999 		} else if (dev->ioaccel_handle) {
4000 			rc = hpsa_scsi_ioaccel_direct_map(h, c);
4001 			if (rc == 0)
4002 				return 0; /* Sent on direct map path */
4003 			if (rc < 0) {   /* scsi_dma_map failed. */
4004 				cmd_free(h, c);
4005 				return SCSI_MLQUEUE_HOST_BUSY;
4006 			}
4007 		}
4008 	}
4009 
4010 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
4011 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4012 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) |
4013 					DIRECT_LOOKUP_BIT);
4014 
4015 	/* Fill in the request block... */
4016 
4017 	c->Request.Timeout = 0;
4018 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4019 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4020 	c->Request.CDBLen = cmd->cmd_len;
4021 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4022 	c->Request.Type.Type = TYPE_CMD;
4023 	c->Request.Type.Attribute = ATTR_SIMPLE;
4024 	switch (cmd->sc_data_direction) {
4025 	case DMA_TO_DEVICE:
4026 		c->Request.Type.Direction = XFER_WRITE;
4027 		break;
4028 	case DMA_FROM_DEVICE:
4029 		c->Request.Type.Direction = XFER_READ;
4030 		break;
4031 	case DMA_NONE:
4032 		c->Request.Type.Direction = XFER_NONE;
4033 		break;
4034 	case DMA_BIDIRECTIONAL:
4035 		/* This can happen if a buggy application does a scsi passthru
4036 		 * and sets both inlen and outlen to non-zero. ( see
4037 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4038 		 */
4039 
4040 		c->Request.Type.Direction = XFER_RSVD;
4041 		/* This is technically wrong, and hpsa controllers should
4042 		 * reject it with CMD_INVALID, which is the most correct
4043 		 * response, but non-fibre backends appear to let it
4044 		 * slide by, and give the same results as if this field
4045 		 * were set correctly.  Either way is acceptable for
4046 		 * our purposes here.
4047 		 */
4048 
4049 		break;
4050 
4051 	default:
4052 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4053 			cmd->sc_data_direction);
4054 		BUG();
4055 		break;
4056 	}
4057 
4058 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4059 		cmd_free(h, c);
4060 		return SCSI_MLQUEUE_HOST_BUSY;
4061 	}
4062 	enqueue_cmd_and_start_io(h, c);
4063 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
4064 	return 0;
4065 }
4066 
4067 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4068 
4069 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4070 {
4071 	unsigned long flags;
4072 
4073 	/*
4074 	 * Don't let rescans be initiated on a controller known
4075 	 * to be locked up.  If the controller locks up *during*
4076 	 * a rescan, that thread is probably hosed, but at least
4077 	 * we can prevent new rescan threads from piling up on a
4078 	 * locked up controller.
4079 	 */
4080 	if (unlikely(lockup_detected(h))) {
4081 		spin_lock_irqsave(&h->scan_lock, flags);
4082 		h->scan_finished = 1;
4083 		wake_up_all(&h->scan_wait_queue);
4084 		spin_unlock_irqrestore(&h->scan_lock, flags);
4085 		return 1;
4086 	}
4087 	return 0;
4088 }
4089 
4090 static void hpsa_scan_start(struct Scsi_Host *sh)
4091 {
4092 	struct ctlr_info *h = shost_to_hba(sh);
4093 	unsigned long flags;
4094 
4095 	if (do_not_scan_if_controller_locked_up(h))
4096 		return;
4097 
4098 	/* wait until any scan already in progress is finished. */
4099 	while (1) {
4100 		spin_lock_irqsave(&h->scan_lock, flags);
4101 		if (h->scan_finished)
4102 			break;
4103 		spin_unlock_irqrestore(&h->scan_lock, flags);
4104 		wait_event(h->scan_wait_queue, h->scan_finished);
4105 		/* Note: We don't need to worry about a race between this
4106 		 * thread and driver unload because the midlayer will
4107 		 * have incremented the reference count, so unload won't
4108 		 * happen if we're in here.
4109 		 */
4110 	}
4111 	h->scan_finished = 0; /* mark scan as in progress */
4112 	spin_unlock_irqrestore(&h->scan_lock, flags);
4113 
4114 	if (do_not_scan_if_controller_locked_up(h))
4115 		return;
4116 
4117 	hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4118 
4119 	spin_lock_irqsave(&h->scan_lock, flags);
4120 	h->scan_finished = 1; /* mark scan as finished. */
4121 	wake_up_all(&h->scan_wait_queue);
4122 	spin_unlock_irqrestore(&h->scan_lock, flags);
4123 }
4124 
4125 static int hpsa_scan_finished(struct Scsi_Host *sh,
4126 	unsigned long elapsed_time)
4127 {
4128 	struct ctlr_info *h = shost_to_hba(sh);
4129 	unsigned long flags;
4130 	int finished;
4131 
4132 	spin_lock_irqsave(&h->scan_lock, flags);
4133 	finished = h->scan_finished;
4134 	spin_unlock_irqrestore(&h->scan_lock, flags);
4135 	return finished;
4136 }
4137 
4138 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4139 	int qdepth, int reason)
4140 {
4141 	struct ctlr_info *h = sdev_to_hba(sdev);
4142 
4143 	if (reason != SCSI_QDEPTH_DEFAULT)
4144 		return -ENOTSUPP;
4145 
4146 	if (qdepth < 1)
4147 		qdepth = 1;
4148 	else
4149 		if (qdepth > h->nr_cmds)
4150 			qdepth = h->nr_cmds;
4151 	scsi_adjust_queue_depth(sdev, qdepth);
4152 	return sdev->queue_depth;
4153 }
4154 
4155 static void hpsa_unregister_scsi(struct ctlr_info *h)
4156 {
4157 	/* we are being forcibly unloaded, and may not refuse. */
4158 	scsi_remove_host(h->scsi_host);
4159 	scsi_host_put(h->scsi_host);
4160 	h->scsi_host = NULL;
4161 }
4162 
4163 static int hpsa_register_scsi(struct ctlr_info *h)
4164 {
4165 	struct Scsi_Host *sh;
4166 	int error;
4167 
4168 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4169 	if (sh == NULL)
4170 		goto fail;
4171 
4172 	sh->io_port = 0;
4173 	sh->n_io_port = 0;
4174 	sh->this_id = -1;
4175 	sh->max_channel = 3;
4176 	sh->max_cmd_len = MAX_COMMAND_SIZE;
4177 	sh->max_lun = HPSA_MAX_LUN;
4178 	sh->max_id = HPSA_MAX_LUN;
4179 	sh->can_queue = h->nr_cmds;
4180 	if (h->hba_mode_enabled)
4181 		sh->cmd_per_lun = 7;
4182 	else
4183 		sh->cmd_per_lun = h->nr_cmds;
4184 	sh->sg_tablesize = h->maxsgentries;
4185 	h->scsi_host = sh;
4186 	sh->hostdata[0] = (unsigned long) h;
4187 	sh->irq = h->intr[h->intr_mode];
4188 	sh->unique_id = sh->irq;
4189 	error = scsi_add_host(sh, &h->pdev->dev);
4190 	if (error)
4191 		goto fail_host_put;
4192 	scsi_scan_host(sh);
4193 	return 0;
4194 
4195  fail_host_put:
4196 	dev_err(&h->pdev->dev, "%s: scsi_add_host"
4197 		" failed for controller %d\n", __func__, h->ctlr);
4198 	scsi_host_put(sh);
4199 	return error;
4200  fail:
4201 	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4202 		" failed for controller %d\n", __func__, h->ctlr);
4203 	return -ENOMEM;
4204 }
4205 
4206 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4207 	unsigned char lunaddr[])
4208 {
4209 	int rc;
4210 	int count = 0;
4211 	int waittime = 1; /* seconds */
4212 	struct CommandList *c;
4213 
4214 	c = cmd_special_alloc(h);
4215 	if (!c) {
4216 		dev_warn(&h->pdev->dev, "out of memory in "
4217 			"wait_for_device_to_become_ready.\n");
4218 		return IO_ERROR;
4219 	}
4220 
4221 	/* Send test unit ready until device ready, or give up. */
4222 	while (count < HPSA_TUR_RETRY_LIMIT) {
4223 
4224 		/* Wait for a bit.  do this first, because if we send
4225 		 * the TUR right away, the reset will just abort it.
4226 		 */
4227 		msleep(1000 * waittime);
4228 		count++;
4229 		rc = 0; /* Device ready. */
4230 
4231 		/* Increase wait time with each try, up to a point. */
4232 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4233 			waittime = waittime * 2;
4234 
4235 		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4236 		(void) fill_cmd(c, TEST_UNIT_READY, h,
4237 				NULL, 0, 0, lunaddr, TYPE_CMD);
4238 		hpsa_scsi_do_simple_cmd_core(h, c);
4239 		/* no unmap needed here because no data xfer. */
4240 
4241 		if (c->err_info->CommandStatus == CMD_SUCCESS)
4242 			break;
4243 
4244 		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4245 			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4246 			(c->err_info->SenseInfo[2] == NO_SENSE ||
4247 			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4248 			break;
4249 
4250 		dev_warn(&h->pdev->dev, "waiting %d secs "
4251 			"for device to become ready.\n", waittime);
4252 		rc = 1; /* device not ready. */
4253 	}
4254 
4255 	if (rc)
4256 		dev_warn(&h->pdev->dev, "giving up on device.\n");
4257 	else
4258 		dev_warn(&h->pdev->dev, "device is ready.\n");
4259 
4260 	cmd_special_free(h, c);
4261 	return rc;
4262 }
4263 
4264 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4265  * complaining.  Doing a host- or bus-reset can't do anything good here.
4266  */
4267 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4268 {
4269 	int rc;
4270 	struct ctlr_info *h;
4271 	struct hpsa_scsi_dev_t *dev;
4272 
4273 	/* find the controller to which the command to be aborted was sent */
4274 	h = sdev_to_hba(scsicmd->device);
4275 	if (h == NULL) /* paranoia */
4276 		return FAILED;
4277 	dev = scsicmd->device->hostdata;
4278 	if (!dev) {
4279 		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4280 			"device lookup failed.\n");
4281 		return FAILED;
4282 	}
4283 	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4284 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4285 	/* send a reset to the SCSI LUN which the command was sent to */
4286 	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4287 	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4288 		return SUCCESS;
4289 
4290 	dev_warn(&h->pdev->dev, "resetting device failed.\n");
4291 	return FAILED;
4292 }
4293 
4294 static void swizzle_abort_tag(u8 *tag)
4295 {
4296 	u8 original_tag[8];
4297 
4298 	memcpy(original_tag, tag, 8);
4299 	tag[0] = original_tag[3];
4300 	tag[1] = original_tag[2];
4301 	tag[2] = original_tag[1];
4302 	tag[3] = original_tag[0];
4303 	tag[4] = original_tag[7];
4304 	tag[5] = original_tag[6];
4305 	tag[6] = original_tag[5];
4306 	tag[7] = original_tag[4];
4307 }
4308 
4309 static void hpsa_get_tag(struct ctlr_info *h,
4310 	struct CommandList *c, u32 *taglower, u32 *tagupper)
4311 {
4312 	if (c->cmd_type == CMD_IOACCEL1) {
4313 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4314 			&h->ioaccel_cmd_pool[c->cmdindex];
4315 		*tagupper = (u32) (cm1->tag >> 32);
4316 		*taglower = (u32) (cm1->tag & 0x0ffffffffULL);
4317 		return;
4318 	}
4319 	if (c->cmd_type == CMD_IOACCEL2) {
4320 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4321 			&h->ioaccel2_cmd_pool[c->cmdindex];
4322 		/* upper tag not used in ioaccel2 mode */
4323 		memset(tagupper, 0, sizeof(*tagupper));
4324 		*taglower = cm2->Tag;
4325 		return;
4326 	}
4327 	*tagupper = (u32) (c->Header.tag >> 32);
4328 	*taglower = (u32) (c->Header.tag & 0x0ffffffffULL);
4329 }
4330 
4331 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4332 	struct CommandList *abort, int swizzle)
4333 {
4334 	int rc = IO_OK;
4335 	struct CommandList *c;
4336 	struct ErrorInfo *ei;
4337 	u32 tagupper, taglower;
4338 
4339 	c = cmd_special_alloc(h);
4340 	if (c == NULL) {	/* trouble... */
4341 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4342 		return -ENOMEM;
4343 	}
4344 
4345 	/* fill_cmd can't fail here, no buffer to map */
4346 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4347 		0, 0, scsi3addr, TYPE_MSG);
4348 	if (swizzle)
4349 		swizzle_abort_tag(&c->Request.CDB[4]);
4350 	hpsa_scsi_do_simple_cmd_core(h, c);
4351 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4352 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4353 		__func__, tagupper, taglower);
4354 	/* no unmap needed here because no data xfer. */
4355 
4356 	ei = c->err_info;
4357 	switch (ei->CommandStatus) {
4358 	case CMD_SUCCESS:
4359 		break;
4360 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
4361 		rc = -1;
4362 		break;
4363 	default:
4364 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4365 			__func__, tagupper, taglower);
4366 		hpsa_scsi_interpret_error(h, c);
4367 		rc = -1;
4368 		break;
4369 	}
4370 	cmd_special_free(h, c);
4371 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4372 		__func__, tagupper, taglower);
4373 	return rc;
4374 }
4375 
4376 /*
4377  * hpsa_find_cmd_in_queue
4378  *
4379  * Used to determine whether a command (find) is still present
4380  * in queue_head.   Optionally excludes the last element of queue_head.
4381  *
4382  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4383  * not yet been submitted, and so can be aborted by the driver without
4384  * sending an abort to the hardware.
4385  *
4386  * Returns pointer to command if found in queue, NULL otherwise.
4387  */
4388 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4389 			struct scsi_cmnd *find, struct list_head *queue_head)
4390 {
4391 	unsigned long flags;
4392 	struct CommandList *c = NULL;	/* ptr into cmpQ */
4393 
4394 	if (!find)
4395 		return NULL;
4396 	spin_lock_irqsave(&h->lock, flags);
4397 	list_for_each_entry(c, queue_head, list) {
4398 		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4399 			continue;
4400 		if (c->scsi_cmd == find) {
4401 			spin_unlock_irqrestore(&h->lock, flags);
4402 			return c;
4403 		}
4404 	}
4405 	spin_unlock_irqrestore(&h->lock, flags);
4406 	return NULL;
4407 }
4408 
4409 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4410 					u8 *tag, struct list_head *queue_head)
4411 {
4412 	unsigned long flags;
4413 	struct CommandList *c;
4414 
4415 	spin_lock_irqsave(&h->lock, flags);
4416 	list_for_each_entry(c, queue_head, list) {
4417 		if (memcmp(&c->Header.tag, tag, 8) != 0)
4418 			continue;
4419 		spin_unlock_irqrestore(&h->lock, flags);
4420 		return c;
4421 	}
4422 	spin_unlock_irqrestore(&h->lock, flags);
4423 	return NULL;
4424 }
4425 
4426 /* ioaccel2 path firmware cannot handle abort task requests.
4427  * Change abort requests to physical target reset, and send to the
4428  * address of the physical disk used for the ioaccel 2 command.
4429  * Return 0 on success (IO_OK)
4430  *	 -1 on failure
4431  */
4432 
4433 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4434 	unsigned char *scsi3addr, struct CommandList *abort)
4435 {
4436 	int rc = IO_OK;
4437 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4438 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4439 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4440 	unsigned char *psa = &phys_scsi3addr[0];
4441 
4442 	/* Get a pointer to the hpsa logical device. */
4443 	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4444 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4445 	if (dev == NULL) {
4446 		dev_warn(&h->pdev->dev,
4447 			"Cannot abort: no device pointer for command.\n");
4448 			return -1; /* not abortable */
4449 	}
4450 
4451 	if (h->raid_offload_debug > 0)
4452 		dev_info(&h->pdev->dev,
4453 			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4454 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4455 			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4456 			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4457 
4458 	if (!dev->offload_enabled) {
4459 		dev_warn(&h->pdev->dev,
4460 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4461 		return -1; /* not abortable */
4462 	}
4463 
4464 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
4465 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4466 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4467 		return -1; /* not abortable */
4468 	}
4469 
4470 	/* send the reset */
4471 	if (h->raid_offload_debug > 0)
4472 		dev_info(&h->pdev->dev,
4473 			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4474 			psa[0], psa[1], psa[2], psa[3],
4475 			psa[4], psa[5], psa[6], psa[7]);
4476 	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4477 	if (rc != 0) {
4478 		dev_warn(&h->pdev->dev,
4479 			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4480 			psa[0], psa[1], psa[2], psa[3],
4481 			psa[4], psa[5], psa[6], psa[7]);
4482 		return rc; /* failed to reset */
4483 	}
4484 
4485 	/* wait for device to recover */
4486 	if (wait_for_device_to_become_ready(h, psa) != 0) {
4487 		dev_warn(&h->pdev->dev,
4488 			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4489 			psa[0], psa[1], psa[2], psa[3],
4490 			psa[4], psa[5], psa[6], psa[7]);
4491 		return -1;  /* failed to recover */
4492 	}
4493 
4494 	/* device recovered */
4495 	dev_info(&h->pdev->dev,
4496 		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4497 		psa[0], psa[1], psa[2], psa[3],
4498 		psa[4], psa[5], psa[6], psa[7]);
4499 
4500 	return rc; /* success */
4501 }
4502 
4503 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4504  * tell which kind we're dealing with, so we send the abort both ways.  There
4505  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4506  * way we construct our tags but we check anyway in case the assumptions which
4507  * make this true someday become false.
4508  */
4509 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4510 	unsigned char *scsi3addr, struct CommandList *abort)
4511 {
4512 	u8 swizzled_tag[8];
4513 	struct CommandList *c;
4514 	int rc = 0, rc2 = 0;
4515 
4516 	/* ioccelerator mode 2 commands should be aborted via the
4517 	 * accelerated path, since RAID path is unaware of these commands,
4518 	 * but underlying firmware can't handle abort TMF.
4519 	 * Change abort to physical device reset.
4520 	 */
4521 	if (abort->cmd_type == CMD_IOACCEL2)
4522 		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4523 
4524 	/* we do not expect to find the swizzled tag in our queue, but
4525 	 * check anyway just to be sure the assumptions which make this
4526 	 * the case haven't become wrong.
4527 	 */
4528 	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4529 	swizzle_abort_tag(swizzled_tag);
4530 	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4531 	if (c != NULL) {
4532 		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4533 		return hpsa_send_abort(h, scsi3addr, abort, 0);
4534 	}
4535 	rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4536 
4537 	/* if the command is still in our queue, we can't conclude that it was
4538 	 * aborted (it might have just completed normally) but in any case
4539 	 * we don't need to try to abort it another way.
4540 	 */
4541 	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4542 	if (c)
4543 		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4544 	return rc && rc2;
4545 }
4546 
4547 /* Send an abort for the specified command.
4548  *	If the device and controller support it,
4549  *		send a task abort request.
4550  */
4551 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4552 {
4553 
4554 	int i, rc;
4555 	struct ctlr_info *h;
4556 	struct hpsa_scsi_dev_t *dev;
4557 	struct CommandList *abort; /* pointer to command to be aborted */
4558 	struct CommandList *found;
4559 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
4560 	char msg[256];		/* For debug messaging. */
4561 	int ml = 0;
4562 	u32 tagupper, taglower;
4563 
4564 	/* Find the controller of the command to be aborted */
4565 	h = sdev_to_hba(sc->device);
4566 	if (WARN(h == NULL,
4567 			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
4568 		return FAILED;
4569 
4570 	/* Check that controller supports some kind of task abort */
4571 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4572 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4573 		return FAILED;
4574 
4575 	memset(msg, 0, sizeof(msg));
4576 	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4577 		h->scsi_host->host_no, sc->device->channel,
4578 		sc->device->id, sc->device->lun);
4579 
4580 	/* Find the device of the command to be aborted */
4581 	dev = sc->device->hostdata;
4582 	if (!dev) {
4583 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4584 				msg);
4585 		return FAILED;
4586 	}
4587 
4588 	/* Get SCSI command to be aborted */
4589 	abort = (struct CommandList *) sc->host_scribble;
4590 	if (abort == NULL) {
4591 		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4592 				msg);
4593 		return FAILED;
4594 	}
4595 	hpsa_get_tag(h, abort, &taglower, &tagupper);
4596 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4597 	as  = (struct scsi_cmnd *) abort->scsi_cmd;
4598 	if (as != NULL)
4599 		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4600 			as->cmnd[0], as->serial_number);
4601 	dev_dbg(&h->pdev->dev, "%s\n", msg);
4602 	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4603 		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4604 
4605 	/* Search reqQ to See if command is queued but not submitted,
4606 	 * if so, complete the command with aborted status and remove
4607 	 * it from the reqQ.
4608 	 */
4609 	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4610 	if (found) {
4611 		found->err_info->CommandStatus = CMD_ABORTED;
4612 		finish_cmd(found);
4613 		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4614 				msg);
4615 		return SUCCESS;
4616 	}
4617 
4618 	/* not in reqQ, if also not in cmpQ, must have already completed */
4619 	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4620 	if (!found)  {
4621 		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4622 				msg);
4623 		return SUCCESS;
4624 	}
4625 
4626 	/*
4627 	 * Command is in flight, or possibly already completed
4628 	 * by the firmware (but not to the scsi mid layer) but we can't
4629 	 * distinguish which.  Send the abort down.
4630 	 */
4631 	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4632 	if (rc != 0) {
4633 		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4634 		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4635 			h->scsi_host->host_no,
4636 			dev->bus, dev->target, dev->lun);
4637 		return FAILED;
4638 	}
4639 	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4640 
4641 	/* If the abort(s) above completed and actually aborted the
4642 	 * command, then the command to be aborted should already be
4643 	 * completed.  If not, wait around a bit more to see if they
4644 	 * manage to complete normally.
4645 	 */
4646 #define ABORT_COMPLETE_WAIT_SECS 30
4647 	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4648 		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4649 		if (!found)
4650 			return SUCCESS;
4651 		msleep(100);
4652 	}
4653 	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4654 		msg, ABORT_COMPLETE_WAIT_SECS);
4655 	return FAILED;
4656 }
4657 
4658 
4659 /*
4660  * For operations that cannot sleep, a command block is allocated at init,
4661  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4662  * which ones are free or in use.  Lock must be held when calling this.
4663  * cmd_free() is the complement.
4664  */
4665 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4666 {
4667 	struct CommandList *c;
4668 	int i;
4669 	union u64bit temp64;
4670 	dma_addr_t cmd_dma_handle, err_dma_handle;
4671 	unsigned long flags;
4672 
4673 	spin_lock_irqsave(&h->lock, flags);
4674 	do {
4675 		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4676 		if (i == h->nr_cmds) {
4677 			spin_unlock_irqrestore(&h->lock, flags);
4678 			return NULL;
4679 		}
4680 	} while (test_and_set_bit
4681 		 (i & (BITS_PER_LONG - 1),
4682 		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4683 	spin_unlock_irqrestore(&h->lock, flags);
4684 
4685 	c = h->cmd_pool + i;
4686 	memset(c, 0, sizeof(*c));
4687 	cmd_dma_handle = h->cmd_pool_dhandle
4688 	    + i * sizeof(*c);
4689 	c->err_info = h->errinfo_pool + i;
4690 	memset(c->err_info, 0, sizeof(*c->err_info));
4691 	err_dma_handle = h->errinfo_pool_dhandle
4692 	    + i * sizeof(*c->err_info);
4693 
4694 	c->cmdindex = i;
4695 
4696 	INIT_LIST_HEAD(&c->list);
4697 	c->busaddr = (u32) cmd_dma_handle;
4698 	temp64.val = (u64) err_dma_handle;
4699 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4700 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4701 
4702 	c->h = h;
4703 	return c;
4704 }
4705 
4706 /* For operations that can wait for kmalloc to possibly sleep,
4707  * this routine can be called. Lock need not be held to call
4708  * cmd_special_alloc. cmd_special_free() is the complement.
4709  */
4710 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4711 {
4712 	struct CommandList *c;
4713 	dma_addr_t cmd_dma_handle, err_dma_handle;
4714 
4715 	c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4716 	if (c == NULL)
4717 		return NULL;
4718 
4719 	c->cmd_type = CMD_SCSI;
4720 	c->cmdindex = -1;
4721 
4722 	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
4723 					    &err_dma_handle);
4724 
4725 	if (c->err_info == NULL) {
4726 		pci_free_consistent(h->pdev,
4727 			sizeof(*c), c, cmd_dma_handle);
4728 		return NULL;
4729 	}
4730 
4731 	INIT_LIST_HEAD(&c->list);
4732 	c->busaddr = (u32) cmd_dma_handle;
4733 	c->ErrDesc.Addr = cpu_to_le64(err_dma_handle);
4734 	c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info));
4735 
4736 	c->h = h;
4737 	return c;
4738 }
4739 
4740 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4741 {
4742 	int i;
4743 	unsigned long flags;
4744 
4745 	i = c - h->cmd_pool;
4746 	spin_lock_irqsave(&h->lock, flags);
4747 	clear_bit(i & (BITS_PER_LONG - 1),
4748 		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4749 	spin_unlock_irqrestore(&h->lock, flags);
4750 }
4751 
4752 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4753 {
4754 	pci_free_consistent(h->pdev, sizeof(*c->err_info),
4755 			    c->err_info,
4756 			    (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr));
4757 	pci_free_consistent(h->pdev, sizeof(*c),
4758 			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4759 }
4760 
4761 #ifdef CONFIG_COMPAT
4762 
4763 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4764 	void __user *arg)
4765 {
4766 	IOCTL32_Command_struct __user *arg32 =
4767 	    (IOCTL32_Command_struct __user *) arg;
4768 	IOCTL_Command_struct arg64;
4769 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4770 	int err;
4771 	u32 cp;
4772 
4773 	memset(&arg64, 0, sizeof(arg64));
4774 	err = 0;
4775 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4776 			   sizeof(arg64.LUN_info));
4777 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4778 			   sizeof(arg64.Request));
4779 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4780 			   sizeof(arg64.error_info));
4781 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4782 	err |= get_user(cp, &arg32->buf);
4783 	arg64.buf = compat_ptr(cp);
4784 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4785 
4786 	if (err)
4787 		return -EFAULT;
4788 
4789 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4790 	if (err)
4791 		return err;
4792 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4793 			 sizeof(arg32->error_info));
4794 	if (err)
4795 		return -EFAULT;
4796 	return err;
4797 }
4798 
4799 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4800 	int cmd, void __user *arg)
4801 {
4802 	BIG_IOCTL32_Command_struct __user *arg32 =
4803 	    (BIG_IOCTL32_Command_struct __user *) arg;
4804 	BIG_IOCTL_Command_struct arg64;
4805 	BIG_IOCTL_Command_struct __user *p =
4806 	    compat_alloc_user_space(sizeof(arg64));
4807 	int err;
4808 	u32 cp;
4809 
4810 	memset(&arg64, 0, sizeof(arg64));
4811 	err = 0;
4812 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4813 			   sizeof(arg64.LUN_info));
4814 	err |= copy_from_user(&arg64.Request, &arg32->Request,
4815 			   sizeof(arg64.Request));
4816 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4817 			   sizeof(arg64.error_info));
4818 	err |= get_user(arg64.buf_size, &arg32->buf_size);
4819 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4820 	err |= get_user(cp, &arg32->buf);
4821 	arg64.buf = compat_ptr(cp);
4822 	err |= copy_to_user(p, &arg64, sizeof(arg64));
4823 
4824 	if (err)
4825 		return -EFAULT;
4826 
4827 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4828 	if (err)
4829 		return err;
4830 	err |= copy_in_user(&arg32->error_info, &p->error_info,
4831 			 sizeof(arg32->error_info));
4832 	if (err)
4833 		return -EFAULT;
4834 	return err;
4835 }
4836 
4837 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4838 {
4839 	switch (cmd) {
4840 	case CCISS_GETPCIINFO:
4841 	case CCISS_GETINTINFO:
4842 	case CCISS_SETINTINFO:
4843 	case CCISS_GETNODENAME:
4844 	case CCISS_SETNODENAME:
4845 	case CCISS_GETHEARTBEAT:
4846 	case CCISS_GETBUSTYPES:
4847 	case CCISS_GETFIRMVER:
4848 	case CCISS_GETDRIVVER:
4849 	case CCISS_REVALIDVOLS:
4850 	case CCISS_DEREGDISK:
4851 	case CCISS_REGNEWDISK:
4852 	case CCISS_REGNEWD:
4853 	case CCISS_RESCANDISK:
4854 	case CCISS_GETLUNINFO:
4855 		return hpsa_ioctl(dev, cmd, arg);
4856 
4857 	case CCISS_PASSTHRU32:
4858 		return hpsa_ioctl32_passthru(dev, cmd, arg);
4859 	case CCISS_BIG_PASSTHRU32:
4860 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4861 
4862 	default:
4863 		return -ENOIOCTLCMD;
4864 	}
4865 }
4866 #endif
4867 
4868 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4869 {
4870 	struct hpsa_pci_info pciinfo;
4871 
4872 	if (!argp)
4873 		return -EINVAL;
4874 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
4875 	pciinfo.bus = h->pdev->bus->number;
4876 	pciinfo.dev_fn = h->pdev->devfn;
4877 	pciinfo.board_id = h->board_id;
4878 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4879 		return -EFAULT;
4880 	return 0;
4881 }
4882 
4883 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4884 {
4885 	DriverVer_type DriverVer;
4886 	unsigned char vmaj, vmin, vsubmin;
4887 	int rc;
4888 
4889 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4890 		&vmaj, &vmin, &vsubmin);
4891 	if (rc != 3) {
4892 		dev_info(&h->pdev->dev, "driver version string '%s' "
4893 			"unrecognized.", HPSA_DRIVER_VERSION);
4894 		vmaj = 0;
4895 		vmin = 0;
4896 		vsubmin = 0;
4897 	}
4898 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4899 	if (!argp)
4900 		return -EINVAL;
4901 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4902 		return -EFAULT;
4903 	return 0;
4904 }
4905 
4906 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4907 {
4908 	IOCTL_Command_struct iocommand;
4909 	struct CommandList *c;
4910 	char *buff = NULL;
4911 	u64 temp64;
4912 	int rc = 0;
4913 
4914 	if (!argp)
4915 		return -EINVAL;
4916 	if (!capable(CAP_SYS_RAWIO))
4917 		return -EPERM;
4918 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4919 		return -EFAULT;
4920 	if ((iocommand.buf_size < 1) &&
4921 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
4922 		return -EINVAL;
4923 	}
4924 	if (iocommand.buf_size > 0) {
4925 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4926 		if (buff == NULL)
4927 			return -EFAULT;
4928 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4929 			/* Copy the data into the buffer we created */
4930 			if (copy_from_user(buff, iocommand.buf,
4931 				iocommand.buf_size)) {
4932 				rc = -EFAULT;
4933 				goto out_kfree;
4934 			}
4935 		} else {
4936 			memset(buff, 0, iocommand.buf_size);
4937 		}
4938 	}
4939 	c = cmd_special_alloc(h);
4940 	if (c == NULL) {
4941 		rc = -ENOMEM;
4942 		goto out_kfree;
4943 	}
4944 	/* Fill in the command type */
4945 	c->cmd_type = CMD_IOCTL_PEND;
4946 	/* Fill in Command Header */
4947 	c->Header.ReplyQueue = 0; /* unused in simple mode */
4948 	if (iocommand.buf_size > 0) {	/* buffer to fill */
4949 		c->Header.SGList = 1;
4950 		c->Header.SGTotal = cpu_to_le16(1);
4951 	} else	{ /* no buffers to fill */
4952 		c->Header.SGList = 0;
4953 		c->Header.SGTotal = cpu_to_le16(0);
4954 	}
4955 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4956 	/* use the kernel address the cmd block for tag */
4957 	c->Header.tag = c->busaddr;
4958 
4959 	/* Fill in Request block */
4960 	memcpy(&c->Request, &iocommand.Request,
4961 		sizeof(c->Request));
4962 
4963 	/* Fill in the scatter gather information */
4964 	if (iocommand.buf_size > 0) {
4965 		temp64 = pci_map_single(h->pdev, buff,
4966 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4967 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4968 			c->SG[0].Addr = cpu_to_le64(0);
4969 			c->SG[0].Len = cpu_to_le32(0);
4970 			rc = -ENOMEM;
4971 			goto out;
4972 		}
4973 		c->SG[0].Addr = cpu_to_le64(temp64);
4974 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4975 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4976 	}
4977 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4978 	if (iocommand.buf_size > 0)
4979 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4980 	check_ioctl_unit_attention(h, c);
4981 
4982 	/* Copy the error information out */
4983 	memcpy(&iocommand.error_info, c->err_info,
4984 		sizeof(iocommand.error_info));
4985 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4986 		rc = -EFAULT;
4987 		goto out;
4988 	}
4989 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
4990 		iocommand.buf_size > 0) {
4991 		/* Copy the data out of the buffer we created */
4992 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4993 			rc = -EFAULT;
4994 			goto out;
4995 		}
4996 	}
4997 out:
4998 	cmd_special_free(h, c);
4999 out_kfree:
5000 	kfree(buff);
5001 	return rc;
5002 }
5003 
5004 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5005 {
5006 	BIG_IOCTL_Command_struct *ioc;
5007 	struct CommandList *c;
5008 	unsigned char **buff = NULL;
5009 	int *buff_size = NULL;
5010 	u64 temp64;
5011 	BYTE sg_used = 0;
5012 	int status = 0;
5013 	int i;
5014 	u32 left;
5015 	u32 sz;
5016 	BYTE __user *data_ptr;
5017 
5018 	if (!argp)
5019 		return -EINVAL;
5020 	if (!capable(CAP_SYS_RAWIO))
5021 		return -EPERM;
5022 	ioc = (BIG_IOCTL_Command_struct *)
5023 	    kmalloc(sizeof(*ioc), GFP_KERNEL);
5024 	if (!ioc) {
5025 		status = -ENOMEM;
5026 		goto cleanup1;
5027 	}
5028 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5029 		status = -EFAULT;
5030 		goto cleanup1;
5031 	}
5032 	if ((ioc->buf_size < 1) &&
5033 	    (ioc->Request.Type.Direction != XFER_NONE)) {
5034 		status = -EINVAL;
5035 		goto cleanup1;
5036 	}
5037 	/* Check kmalloc limits  using all SGs */
5038 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5039 		status = -EINVAL;
5040 		goto cleanup1;
5041 	}
5042 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5043 		status = -EINVAL;
5044 		goto cleanup1;
5045 	}
5046 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5047 	if (!buff) {
5048 		status = -ENOMEM;
5049 		goto cleanup1;
5050 	}
5051 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5052 	if (!buff_size) {
5053 		status = -ENOMEM;
5054 		goto cleanup1;
5055 	}
5056 	left = ioc->buf_size;
5057 	data_ptr = ioc->buf;
5058 	while (left) {
5059 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5060 		buff_size[sg_used] = sz;
5061 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5062 		if (buff[sg_used] == NULL) {
5063 			status = -ENOMEM;
5064 			goto cleanup1;
5065 		}
5066 		if (ioc->Request.Type.Direction & XFER_WRITE) {
5067 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5068 				status = -EFAULT;
5069 				goto cleanup1;
5070 			}
5071 		} else
5072 			memset(buff[sg_used], 0, sz);
5073 		left -= sz;
5074 		data_ptr += sz;
5075 		sg_used++;
5076 	}
5077 	c = cmd_special_alloc(h);
5078 	if (c == NULL) {
5079 		status = -ENOMEM;
5080 		goto cleanup1;
5081 	}
5082 	c->cmd_type = CMD_IOCTL_PEND;
5083 	c->Header.ReplyQueue = 0;
5084 	c->Header.SGList = (u8) sg_used;
5085 	c->Header.SGTotal = cpu_to_le16(sg_used);
5086 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5087 	c->Header.tag = c->busaddr;
5088 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5089 	if (ioc->buf_size > 0) {
5090 		int i;
5091 		for (i = 0; i < sg_used; i++) {
5092 			temp64 = pci_map_single(h->pdev, buff[i],
5093 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5094 			if (dma_mapping_error(&h->pdev->dev,
5095 							(dma_addr_t) temp64)) {
5096 				c->SG[i].Addr = cpu_to_le64(0);
5097 				c->SG[i].Len = cpu_to_le32(0);
5098 				hpsa_pci_unmap(h->pdev, c, i,
5099 					PCI_DMA_BIDIRECTIONAL);
5100 				status = -ENOMEM;
5101 				goto cleanup0;
5102 			}
5103 			c->SG[i].Addr = cpu_to_le64(temp64);
5104 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
5105 			c->SG[i].Ext = cpu_to_le32(0);
5106 		}
5107 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5108 	}
5109 	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5110 	if (sg_used)
5111 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5112 	check_ioctl_unit_attention(h, c);
5113 	/* Copy the error information out */
5114 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5115 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5116 		status = -EFAULT;
5117 		goto cleanup0;
5118 	}
5119 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5120 		/* Copy the data out of the buffer we created */
5121 		BYTE __user *ptr = ioc->buf;
5122 		for (i = 0; i < sg_used; i++) {
5123 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
5124 				status = -EFAULT;
5125 				goto cleanup0;
5126 			}
5127 			ptr += buff_size[i];
5128 		}
5129 	}
5130 	status = 0;
5131 cleanup0:
5132 	cmd_special_free(h, c);
5133 cleanup1:
5134 	if (buff) {
5135 		for (i = 0; i < sg_used; i++)
5136 			kfree(buff[i]);
5137 		kfree(buff);
5138 	}
5139 	kfree(buff_size);
5140 	kfree(ioc);
5141 	return status;
5142 }
5143 
5144 static void check_ioctl_unit_attention(struct ctlr_info *h,
5145 	struct CommandList *c)
5146 {
5147 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5148 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5149 		(void) check_for_unit_attention(h, c);
5150 }
5151 
5152 static int increment_passthru_count(struct ctlr_info *h)
5153 {
5154 	unsigned long flags;
5155 
5156 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5157 	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5158 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5159 		return -1;
5160 	}
5161 	h->passthru_count++;
5162 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5163 	return 0;
5164 }
5165 
5166 static void decrement_passthru_count(struct ctlr_info *h)
5167 {
5168 	unsigned long flags;
5169 
5170 	spin_lock_irqsave(&h->passthru_count_lock, flags);
5171 	if (h->passthru_count <= 0) {
5172 		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5173 		/* not expecting to get here. */
5174 		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5175 		return;
5176 	}
5177 	h->passthru_count--;
5178 	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5179 }
5180 
5181 /*
5182  * ioctl
5183  */
5184 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5185 {
5186 	struct ctlr_info *h;
5187 	void __user *argp = (void __user *)arg;
5188 	int rc;
5189 
5190 	h = sdev_to_hba(dev);
5191 
5192 	switch (cmd) {
5193 	case CCISS_DEREGDISK:
5194 	case CCISS_REGNEWDISK:
5195 	case CCISS_REGNEWD:
5196 		hpsa_scan_start(h->scsi_host);
5197 		return 0;
5198 	case CCISS_GETPCIINFO:
5199 		return hpsa_getpciinfo_ioctl(h, argp);
5200 	case CCISS_GETDRIVVER:
5201 		return hpsa_getdrivver_ioctl(h, argp);
5202 	case CCISS_PASSTHRU:
5203 		if (increment_passthru_count(h))
5204 			return -EAGAIN;
5205 		rc = hpsa_passthru_ioctl(h, argp);
5206 		decrement_passthru_count(h);
5207 		return rc;
5208 	case CCISS_BIG_PASSTHRU:
5209 		if (increment_passthru_count(h))
5210 			return -EAGAIN;
5211 		rc = hpsa_big_passthru_ioctl(h, argp);
5212 		decrement_passthru_count(h);
5213 		return rc;
5214 	default:
5215 		return -ENOTTY;
5216 	}
5217 }
5218 
5219 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5220 				u8 reset_type)
5221 {
5222 	struct CommandList *c;
5223 
5224 	c = cmd_alloc(h);
5225 	if (!c)
5226 		return -ENOMEM;
5227 	/* fill_cmd can't fail here, no data buffer to map */
5228 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5229 		RAID_CTLR_LUNID, TYPE_MSG);
5230 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5231 	c->waiting = NULL;
5232 	enqueue_cmd_and_start_io(h, c);
5233 	/* Don't wait for completion, the reset won't complete.  Don't free
5234 	 * the command either.  This is the last command we will send before
5235 	 * re-initializing everything, so it doesn't matter and won't leak.
5236 	 */
5237 	return 0;
5238 }
5239 
5240 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5241 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5242 	int cmd_type)
5243 {
5244 	int pci_dir = XFER_NONE;
5245 	struct CommandList *a; /* for commands to be aborted */
5246 	u32 tupper, tlower;
5247 
5248 	c->cmd_type = CMD_IOCTL_PEND;
5249 	c->Header.ReplyQueue = 0;
5250 	if (buff != NULL && size > 0) {
5251 		c->Header.SGList = 1;
5252 		c->Header.SGTotal = cpu_to_le16(1);
5253 	} else {
5254 		c->Header.SGList = 0;
5255 		c->Header.SGTotal = cpu_to_le16(0);
5256 	}
5257 	c->Header.tag = c->busaddr;
5258 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5259 
5260 	c->Request.Type.Type = cmd_type;
5261 	if (cmd_type == TYPE_CMD) {
5262 		switch (cmd) {
5263 		case HPSA_INQUIRY:
5264 			/* are we trying to read a vital product page */
5265 			if (page_code & VPD_PAGE) {
5266 				c->Request.CDB[1] = 0x01;
5267 				c->Request.CDB[2] = (page_code & 0xff);
5268 			}
5269 			c->Request.CDBLen = 6;
5270 			c->Request.Type.Attribute = ATTR_SIMPLE;
5271 			c->Request.Type.Direction = XFER_READ;
5272 			c->Request.Timeout = 0;
5273 			c->Request.CDB[0] = HPSA_INQUIRY;
5274 			c->Request.CDB[4] = size & 0xFF;
5275 			break;
5276 		case HPSA_REPORT_LOG:
5277 		case HPSA_REPORT_PHYS:
5278 			/* Talking to controller so It's a physical command
5279 			   mode = 00 target = 0.  Nothing to write.
5280 			 */
5281 			c->Request.CDBLen = 12;
5282 			c->Request.Type.Attribute = ATTR_SIMPLE;
5283 			c->Request.Type.Direction = XFER_READ;
5284 			c->Request.Timeout = 0;
5285 			c->Request.CDB[0] = cmd;
5286 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5287 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5288 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5289 			c->Request.CDB[9] = size & 0xFF;
5290 			break;
5291 		case HPSA_CACHE_FLUSH:
5292 			c->Request.CDBLen = 12;
5293 			c->Request.Type.Attribute = ATTR_SIMPLE;
5294 			c->Request.Type.Direction = XFER_WRITE;
5295 			c->Request.Timeout = 0;
5296 			c->Request.CDB[0] = BMIC_WRITE;
5297 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5298 			c->Request.CDB[7] = (size >> 8) & 0xFF;
5299 			c->Request.CDB[8] = size & 0xFF;
5300 			break;
5301 		case TEST_UNIT_READY:
5302 			c->Request.CDBLen = 6;
5303 			c->Request.Type.Attribute = ATTR_SIMPLE;
5304 			c->Request.Type.Direction = XFER_NONE;
5305 			c->Request.Timeout = 0;
5306 			break;
5307 		case HPSA_GET_RAID_MAP:
5308 			c->Request.CDBLen = 12;
5309 			c->Request.Type.Attribute = ATTR_SIMPLE;
5310 			c->Request.Type.Direction = XFER_READ;
5311 			c->Request.Timeout = 0;
5312 			c->Request.CDB[0] = HPSA_CISS_READ;
5313 			c->Request.CDB[1] = cmd;
5314 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5315 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5316 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5317 			c->Request.CDB[9] = size & 0xFF;
5318 			break;
5319 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
5320 			c->Request.CDBLen = 10;
5321 			c->Request.Type.Attribute = ATTR_SIMPLE;
5322 			c->Request.Type.Direction = XFER_READ;
5323 			c->Request.Timeout = 0;
5324 			c->Request.CDB[0] = BMIC_READ;
5325 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5326 			c->Request.CDB[7] = (size >> 16) & 0xFF;
5327 			c->Request.CDB[8] = (size >> 8) & 0xFF;
5328 			break;
5329 		default:
5330 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5331 			BUG();
5332 			return -1;
5333 		}
5334 	} else if (cmd_type == TYPE_MSG) {
5335 		switch (cmd) {
5336 
5337 		case  HPSA_DEVICE_RESET_MSG:
5338 			c->Request.CDBLen = 16;
5339 			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5340 			c->Request.Type.Attribute = ATTR_SIMPLE;
5341 			c->Request.Type.Direction = XFER_NONE;
5342 			c->Request.Timeout = 0; /* Don't time out */
5343 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5344 			c->Request.CDB[0] =  cmd;
5345 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5346 			/* If bytes 4-7 are zero, it means reset the */
5347 			/* LunID device */
5348 			c->Request.CDB[4] = 0x00;
5349 			c->Request.CDB[5] = 0x00;
5350 			c->Request.CDB[6] = 0x00;
5351 			c->Request.CDB[7] = 0x00;
5352 			break;
5353 		case  HPSA_ABORT_MSG:
5354 			a = buff;       /* point to command to be aborted */
5355 			dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using request Tag:0x%016llx",
5356 				a->Header.tag, c->Header.tag);
5357 			tlower = (u32) (a->Header.tag >> 32);
5358 			tupper = (u32) (a->Header.tag & 0x0ffffffffULL);
5359 			c->Request.CDBLen = 16;
5360 			c->Request.Type.Type = TYPE_MSG;
5361 			c->Request.Type.Attribute = ATTR_SIMPLE;
5362 			c->Request.Type.Direction = XFER_WRITE;
5363 			c->Request.Timeout = 0; /* Don't time out */
5364 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5365 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5366 			c->Request.CDB[2] = 0x00; /* reserved */
5367 			c->Request.CDB[3] = 0x00; /* reserved */
5368 			/* Tag to abort goes in CDB[4]-CDB[11] */
5369 			c->Request.CDB[4] = tlower & 0xFF;
5370 			c->Request.CDB[5] = (tlower >> 8) & 0xFF;
5371 			c->Request.CDB[6] = (tlower >> 16) & 0xFF;
5372 			c->Request.CDB[7] = (tlower >> 24) & 0xFF;
5373 			c->Request.CDB[8] = tupper & 0xFF;
5374 			c->Request.CDB[9] = (tupper >> 8) & 0xFF;
5375 			c->Request.CDB[10] = (tupper >> 16) & 0xFF;
5376 			c->Request.CDB[11] = (tupper >> 24) & 0xFF;
5377 			c->Request.CDB[12] = 0x00; /* reserved */
5378 			c->Request.CDB[13] = 0x00; /* reserved */
5379 			c->Request.CDB[14] = 0x00; /* reserved */
5380 			c->Request.CDB[15] = 0x00; /* reserved */
5381 		break;
5382 		default:
5383 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
5384 				cmd);
5385 			BUG();
5386 		}
5387 	} else {
5388 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5389 		BUG();
5390 	}
5391 
5392 	switch (c->Request.Type.Direction) {
5393 	case XFER_READ:
5394 		pci_dir = PCI_DMA_FROMDEVICE;
5395 		break;
5396 	case XFER_WRITE:
5397 		pci_dir = PCI_DMA_TODEVICE;
5398 		break;
5399 	case XFER_NONE:
5400 		pci_dir = PCI_DMA_NONE;
5401 		break;
5402 	default:
5403 		pci_dir = PCI_DMA_BIDIRECTIONAL;
5404 	}
5405 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5406 		return -1;
5407 	return 0;
5408 }
5409 
5410 /*
5411  * Map (physical) PCI mem into (virtual) kernel space
5412  */
5413 static void __iomem *remap_pci_mem(ulong base, ulong size)
5414 {
5415 	ulong page_base = ((ulong) base) & PAGE_MASK;
5416 	ulong page_offs = ((ulong) base) - page_base;
5417 	void __iomem *page_remapped = ioremap_nocache(page_base,
5418 		page_offs + size);
5419 
5420 	return page_remapped ? (page_remapped + page_offs) : NULL;
5421 }
5422 
5423 /* Takes cmds off the submission queue and sends them to the hardware,
5424  * then puts them on the queue of cmds waiting for completion.
5425  * Assumes h->lock is held
5426  */
5427 static void start_io(struct ctlr_info *h, unsigned long *flags)
5428 {
5429 	struct CommandList *c;
5430 
5431 	while (!list_empty(&h->reqQ)) {
5432 		c = list_entry(h->reqQ.next, struct CommandList, list);
5433 		/* can't do anything if fifo is full */
5434 		if ((h->access.fifo_full(h))) {
5435 			h->fifo_recently_full = 1;
5436 			dev_warn(&h->pdev->dev, "fifo full\n");
5437 			break;
5438 		}
5439 		h->fifo_recently_full = 0;
5440 
5441 		/* Get the first entry from the Request Q */
5442 		removeQ(c);
5443 		h->Qdepth--;
5444 
5445 		/* Put job onto the completed Q */
5446 		addQ(&h->cmpQ, c);
5447 
5448 		/* Must increment commands_outstanding before unlocking
5449 		 * and submitting to avoid race checking for fifo full
5450 		 * condition.
5451 		 */
5452 		h->commands_outstanding++;
5453 
5454 		/* Tell the controller execute command */
5455 		spin_unlock_irqrestore(&h->lock, *flags);
5456 		h->access.submit_command(h, c);
5457 		spin_lock_irqsave(&h->lock, *flags);
5458 	}
5459 }
5460 
5461 static void lock_and_start_io(struct ctlr_info *h)
5462 {
5463 	unsigned long flags;
5464 
5465 	spin_lock_irqsave(&h->lock, flags);
5466 	start_io(h, &flags);
5467 	spin_unlock_irqrestore(&h->lock, flags);
5468 }
5469 
5470 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5471 {
5472 	return h->access.command_completed(h, q);
5473 }
5474 
5475 static inline bool interrupt_pending(struct ctlr_info *h)
5476 {
5477 	return h->access.intr_pending(h);
5478 }
5479 
5480 static inline long interrupt_not_for_us(struct ctlr_info *h)
5481 {
5482 	return (h->access.intr_pending(h) == 0) ||
5483 		(h->interrupts_enabled == 0);
5484 }
5485 
5486 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5487 	u32 raw_tag)
5488 {
5489 	if (unlikely(tag_index >= h->nr_cmds)) {
5490 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5491 		return 1;
5492 	}
5493 	return 0;
5494 }
5495 
5496 static inline void finish_cmd(struct CommandList *c)
5497 {
5498 	unsigned long flags;
5499 	int io_may_be_stalled = 0;
5500 	struct ctlr_info *h = c->h;
5501 
5502 	spin_lock_irqsave(&h->lock, flags);
5503 	removeQ(c);
5504 
5505 	/*
5506 	 * Check for possibly stalled i/o.
5507 	 *
5508 	 * If a fifo_full condition is encountered, requests will back up
5509 	 * in h->reqQ.  This queue is only emptied out by start_io which is
5510 	 * only called when a new i/o request comes in.  If no i/o's are
5511 	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5512 	 * start_io from here if we detect such a danger.
5513 	 *
5514 	 * Normally, we shouldn't hit this case, but pounding on the
5515 	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5516 	 * commands_outstanding is low.  We want to avoid calling
5517 	 * start_io from in here as much as possible, and esp. don't
5518 	 * want to get in a cycle where we call start_io every time
5519 	 * through here.
5520 	 */
5521 	if (unlikely(h->fifo_recently_full) &&
5522 		h->commands_outstanding < 5)
5523 		io_may_be_stalled = 1;
5524 
5525 	spin_unlock_irqrestore(&h->lock, flags);
5526 
5527 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5528 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5529 			|| c->cmd_type == CMD_IOACCEL2))
5530 		complete_scsi_command(c);
5531 	else if (c->cmd_type == CMD_IOCTL_PEND)
5532 		complete(c->waiting);
5533 	if (unlikely(io_may_be_stalled))
5534 		lock_and_start_io(h);
5535 }
5536 
5537 static inline u32 hpsa_tag_contains_index(u32 tag)
5538 {
5539 	return tag & DIRECT_LOOKUP_BIT;
5540 }
5541 
5542 static inline u32 hpsa_tag_to_index(u32 tag)
5543 {
5544 	return tag >> DIRECT_LOOKUP_SHIFT;
5545 }
5546 
5547 
5548 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5549 {
5550 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5551 #define HPSA_SIMPLE_ERROR_BITS 0x03
5552 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5553 		return tag & ~HPSA_SIMPLE_ERROR_BITS;
5554 	return tag & ~HPSA_PERF_ERROR_BITS;
5555 }
5556 
5557 /* process completion of an indexed ("direct lookup") command */
5558 static inline void process_indexed_cmd(struct ctlr_info *h,
5559 	u32 raw_tag)
5560 {
5561 	u32 tag_index;
5562 	struct CommandList *c;
5563 
5564 	tag_index = hpsa_tag_to_index(raw_tag);
5565 	if (!bad_tag(h, tag_index, raw_tag)) {
5566 		c = h->cmd_pool + tag_index;
5567 		finish_cmd(c);
5568 	}
5569 }
5570 
5571 /* process completion of a non-indexed command */
5572 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5573 	u32 raw_tag)
5574 {
5575 	u32 tag;
5576 	struct CommandList *c = NULL;
5577 	unsigned long flags;
5578 
5579 	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5580 	spin_lock_irqsave(&h->lock, flags);
5581 	list_for_each_entry(c, &h->cmpQ, list) {
5582 		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5583 			spin_unlock_irqrestore(&h->lock, flags);
5584 			finish_cmd(c);
5585 			return;
5586 		}
5587 	}
5588 	spin_unlock_irqrestore(&h->lock, flags);
5589 	bad_tag(h, h->nr_cmds + 1, raw_tag);
5590 }
5591 
5592 /* Some controllers, like p400, will give us one interrupt
5593  * after a soft reset, even if we turned interrupts off.
5594  * Only need to check for this in the hpsa_xxx_discard_completions
5595  * functions.
5596  */
5597 static int ignore_bogus_interrupt(struct ctlr_info *h)
5598 {
5599 	if (likely(!reset_devices))
5600 		return 0;
5601 
5602 	if (likely(h->interrupts_enabled))
5603 		return 0;
5604 
5605 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5606 		"(known firmware bug.)  Ignoring.\n");
5607 
5608 	return 1;
5609 }
5610 
5611 /*
5612  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5613  * Relies on (h-q[x] == x) being true for x such that
5614  * 0 <= x < MAX_REPLY_QUEUES.
5615  */
5616 static struct ctlr_info *queue_to_hba(u8 *queue)
5617 {
5618 	return container_of((queue - *queue), struct ctlr_info, q[0]);
5619 }
5620 
5621 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5622 {
5623 	struct ctlr_info *h = queue_to_hba(queue);
5624 	u8 q = *(u8 *) queue;
5625 	u32 raw_tag;
5626 
5627 	if (ignore_bogus_interrupt(h))
5628 		return IRQ_NONE;
5629 
5630 	if (interrupt_not_for_us(h))
5631 		return IRQ_NONE;
5632 	h->last_intr_timestamp = get_jiffies_64();
5633 	while (interrupt_pending(h)) {
5634 		raw_tag = get_next_completion(h, q);
5635 		while (raw_tag != FIFO_EMPTY)
5636 			raw_tag = next_command(h, q);
5637 	}
5638 	return IRQ_HANDLED;
5639 }
5640 
5641 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5642 {
5643 	struct ctlr_info *h = queue_to_hba(queue);
5644 	u32 raw_tag;
5645 	u8 q = *(u8 *) queue;
5646 
5647 	if (ignore_bogus_interrupt(h))
5648 		return IRQ_NONE;
5649 
5650 	h->last_intr_timestamp = get_jiffies_64();
5651 	raw_tag = get_next_completion(h, q);
5652 	while (raw_tag != FIFO_EMPTY)
5653 		raw_tag = next_command(h, q);
5654 	return IRQ_HANDLED;
5655 }
5656 
5657 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5658 {
5659 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5660 	u32 raw_tag;
5661 	u8 q = *(u8 *) queue;
5662 
5663 	if (interrupt_not_for_us(h))
5664 		return IRQ_NONE;
5665 	h->last_intr_timestamp = get_jiffies_64();
5666 	while (interrupt_pending(h)) {
5667 		raw_tag = get_next_completion(h, q);
5668 		while (raw_tag != FIFO_EMPTY) {
5669 			if (likely(hpsa_tag_contains_index(raw_tag)))
5670 				process_indexed_cmd(h, raw_tag);
5671 			else
5672 				process_nonindexed_cmd(h, raw_tag);
5673 			raw_tag = next_command(h, q);
5674 		}
5675 	}
5676 	return IRQ_HANDLED;
5677 }
5678 
5679 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5680 {
5681 	struct ctlr_info *h = queue_to_hba(queue);
5682 	u32 raw_tag;
5683 	u8 q = *(u8 *) queue;
5684 
5685 	h->last_intr_timestamp = get_jiffies_64();
5686 	raw_tag = get_next_completion(h, q);
5687 	while (raw_tag != FIFO_EMPTY) {
5688 		if (likely(hpsa_tag_contains_index(raw_tag)))
5689 			process_indexed_cmd(h, raw_tag);
5690 		else
5691 			process_nonindexed_cmd(h, raw_tag);
5692 		raw_tag = next_command(h, q);
5693 	}
5694 	return IRQ_HANDLED;
5695 }
5696 
5697 /* Send a message CDB to the firmware. Careful, this only works
5698  * in simple mode, not performant mode due to the tag lookup.
5699  * We only ever use this immediately after a controller reset.
5700  */
5701 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5702 			unsigned char type)
5703 {
5704 	struct Command {
5705 		struct CommandListHeader CommandHeader;
5706 		struct RequestBlock Request;
5707 		struct ErrDescriptor ErrorDescriptor;
5708 	};
5709 	struct Command *cmd;
5710 	static const size_t cmd_sz = sizeof(*cmd) +
5711 					sizeof(cmd->ErrorDescriptor);
5712 	dma_addr_t paddr64;
5713 	uint32_t paddr32, tag;
5714 	void __iomem *vaddr;
5715 	int i, err;
5716 
5717 	vaddr = pci_ioremap_bar(pdev, 0);
5718 	if (vaddr == NULL)
5719 		return -ENOMEM;
5720 
5721 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
5722 	 * CCISS commands, so they must be allocated from the lower 4GiB of
5723 	 * memory.
5724 	 */
5725 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5726 	if (err) {
5727 		iounmap(vaddr);
5728 		return -ENOMEM;
5729 	}
5730 
5731 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5732 	if (cmd == NULL) {
5733 		iounmap(vaddr);
5734 		return -ENOMEM;
5735 	}
5736 
5737 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
5738 	 * although there's no guarantee, we assume that the address is at
5739 	 * least 4-byte aligned (most likely, it's page-aligned).
5740 	 */
5741 	paddr32 = paddr64;
5742 
5743 	cmd->CommandHeader.ReplyQueue = 0;
5744 	cmd->CommandHeader.SGList = 0;
5745 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5746 	cmd->CommandHeader.tag = paddr32;
5747 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5748 
5749 	cmd->Request.CDBLen = 16;
5750 	cmd->Request.Type.Type = TYPE_MSG;
5751 	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5752 	cmd->Request.Type.Direction = XFER_NONE;
5753 	cmd->Request.Timeout = 0; /* Don't time out */
5754 	cmd->Request.CDB[0] = opcode;
5755 	cmd->Request.CDB[1] = type;
5756 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5757 	cmd->ErrorDescriptor.Addr =
5758 			cpu_to_le64((paddr32 + sizeof(*cmd)));
5759 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5760 
5761 	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5762 
5763 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5764 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5765 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5766 			break;
5767 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5768 	}
5769 
5770 	iounmap(vaddr);
5771 
5772 	/* we leak the DMA buffer here ... no choice since the controller could
5773 	 *  still complete the command.
5774 	 */
5775 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5776 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5777 			opcode, type);
5778 		return -ETIMEDOUT;
5779 	}
5780 
5781 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5782 
5783 	if (tag & HPSA_ERROR_BIT) {
5784 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5785 			opcode, type);
5786 		return -EIO;
5787 	}
5788 
5789 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5790 		opcode, type);
5791 	return 0;
5792 }
5793 
5794 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5795 
5796 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5797 	void __iomem *vaddr, u32 use_doorbell)
5798 {
5799 	u16 pmcsr;
5800 	int pos;
5801 
5802 	if (use_doorbell) {
5803 		/* For everything after the P600, the PCI power state method
5804 		 * of resetting the controller doesn't work, so we have this
5805 		 * other way using the doorbell register.
5806 		 */
5807 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5808 		writel(use_doorbell, vaddr + SA5_DOORBELL);
5809 
5810 		/* PMC hardware guys tell us we need a 10 second delay after
5811 		 * doorbell reset and before any attempt to talk to the board
5812 		 * at all to ensure that this actually works and doesn't fall
5813 		 * over in some weird corner cases.
5814 		 */
5815 		msleep(10000);
5816 	} else { /* Try to do it the PCI power state way */
5817 
5818 		/* Quoting from the Open CISS Specification: "The Power
5819 		 * Management Control/Status Register (CSR) controls the power
5820 		 * state of the device.  The normal operating state is D0,
5821 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5822 		 * the controller, place the interface device in D3 then to D0,
5823 		 * this causes a secondary PCI reset which will reset the
5824 		 * controller." */
5825 
5826 		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5827 		if (pos == 0) {
5828 			dev_err(&pdev->dev,
5829 				"hpsa_reset_controller: "
5830 				"PCI PM not supported\n");
5831 			return -ENODEV;
5832 		}
5833 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5834 		/* enter the D3hot power management state */
5835 		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5836 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5837 		pmcsr |= PCI_D3hot;
5838 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5839 
5840 		msleep(500);
5841 
5842 		/* enter the D0 power management state */
5843 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5844 		pmcsr |= PCI_D0;
5845 		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5846 
5847 		/*
5848 		 * The P600 requires a small delay when changing states.
5849 		 * Otherwise we may think the board did not reset and we bail.
5850 		 * This for kdump only and is particular to the P600.
5851 		 */
5852 		msleep(500);
5853 	}
5854 	return 0;
5855 }
5856 
5857 static void init_driver_version(char *driver_version, int len)
5858 {
5859 	memset(driver_version, 0, len);
5860 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5861 }
5862 
5863 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5864 {
5865 	char *driver_version;
5866 	int i, size = sizeof(cfgtable->driver_version);
5867 
5868 	driver_version = kmalloc(size, GFP_KERNEL);
5869 	if (!driver_version)
5870 		return -ENOMEM;
5871 
5872 	init_driver_version(driver_version, size);
5873 	for (i = 0; i < size; i++)
5874 		writeb(driver_version[i], &cfgtable->driver_version[i]);
5875 	kfree(driver_version);
5876 	return 0;
5877 }
5878 
5879 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5880 					  unsigned char *driver_ver)
5881 {
5882 	int i;
5883 
5884 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5885 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
5886 }
5887 
5888 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5889 {
5890 
5891 	char *driver_ver, *old_driver_ver;
5892 	int rc, size = sizeof(cfgtable->driver_version);
5893 
5894 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5895 	if (!old_driver_ver)
5896 		return -ENOMEM;
5897 	driver_ver = old_driver_ver + size;
5898 
5899 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
5900 	 * should have been changed, otherwise we know the reset failed.
5901 	 */
5902 	init_driver_version(old_driver_ver, size);
5903 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5904 	rc = !memcmp(driver_ver, old_driver_ver, size);
5905 	kfree(old_driver_ver);
5906 	return rc;
5907 }
5908 /* This does a hard reset of the controller using PCI power management
5909  * states or the using the doorbell register.
5910  */
5911 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5912 {
5913 	u64 cfg_offset;
5914 	u32 cfg_base_addr;
5915 	u64 cfg_base_addr_index;
5916 	void __iomem *vaddr;
5917 	unsigned long paddr;
5918 	u32 misc_fw_support;
5919 	int rc;
5920 	struct CfgTable __iomem *cfgtable;
5921 	u32 use_doorbell;
5922 	u32 board_id;
5923 	u16 command_register;
5924 
5925 	/* For controllers as old as the P600, this is very nearly
5926 	 * the same thing as
5927 	 *
5928 	 * pci_save_state(pci_dev);
5929 	 * pci_set_power_state(pci_dev, PCI_D3hot);
5930 	 * pci_set_power_state(pci_dev, PCI_D0);
5931 	 * pci_restore_state(pci_dev);
5932 	 *
5933 	 * For controllers newer than the P600, the pci power state
5934 	 * method of resetting doesn't work so we have another way
5935 	 * using the doorbell register.
5936 	 */
5937 
5938 	rc = hpsa_lookup_board_id(pdev, &board_id);
5939 	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5940 		dev_warn(&pdev->dev, "Not resetting device.\n");
5941 		return -ENODEV;
5942 	}
5943 
5944 	/* if controller is soft- but not hard resettable... */
5945 	if (!ctlr_is_hard_resettable(board_id))
5946 		return -ENOTSUPP; /* try soft reset later. */
5947 
5948 	/* Save the PCI command register */
5949 	pci_read_config_word(pdev, 4, &command_register);
5950 	pci_save_state(pdev);
5951 
5952 	/* find the first memory BAR, so we can find the cfg table */
5953 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5954 	if (rc)
5955 		return rc;
5956 	vaddr = remap_pci_mem(paddr, 0x250);
5957 	if (!vaddr)
5958 		return -ENOMEM;
5959 
5960 	/* find cfgtable in order to check if reset via doorbell is supported */
5961 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5962 					&cfg_base_addr_index, &cfg_offset);
5963 	if (rc)
5964 		goto unmap_vaddr;
5965 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
5966 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5967 	if (!cfgtable) {
5968 		rc = -ENOMEM;
5969 		goto unmap_vaddr;
5970 	}
5971 	rc = write_driver_ver_to_cfgtable(cfgtable);
5972 	if (rc)
5973 		goto unmap_vaddr;
5974 
5975 	/* If reset via doorbell register is supported, use that.
5976 	 * There are two such methods.  Favor the newest method.
5977 	 */
5978 	misc_fw_support = readl(&cfgtable->misc_fw_support);
5979 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5980 	if (use_doorbell) {
5981 		use_doorbell = DOORBELL_CTLR_RESET2;
5982 	} else {
5983 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5984 		if (use_doorbell) {
5985 			dev_warn(&pdev->dev, "Soft reset not supported. "
5986 				"Firmware update is required.\n");
5987 			rc = -ENOTSUPP; /* try soft reset */
5988 			goto unmap_cfgtable;
5989 		}
5990 	}
5991 
5992 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5993 	if (rc)
5994 		goto unmap_cfgtable;
5995 
5996 	pci_restore_state(pdev);
5997 	pci_write_config_word(pdev, 4, command_register);
5998 
5999 	/* Some devices (notably the HP Smart Array 5i Controller)
6000 	   need a little pause here */
6001 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
6002 
6003 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6004 	if (rc) {
6005 		dev_warn(&pdev->dev,
6006 			"failed waiting for board to become ready "
6007 			"after hard reset\n");
6008 		goto unmap_cfgtable;
6009 	}
6010 
6011 	rc = controller_reset_failed(vaddr);
6012 	if (rc < 0)
6013 		goto unmap_cfgtable;
6014 	if (rc) {
6015 		dev_warn(&pdev->dev, "Unable to successfully reset "
6016 			"controller. Will try soft reset.\n");
6017 		rc = -ENOTSUPP;
6018 	} else {
6019 		dev_info(&pdev->dev, "board ready after hard reset.\n");
6020 	}
6021 
6022 unmap_cfgtable:
6023 	iounmap(cfgtable);
6024 
6025 unmap_vaddr:
6026 	iounmap(vaddr);
6027 	return rc;
6028 }
6029 
6030 /*
6031  *  We cannot read the structure directly, for portability we must use
6032  *   the io functions.
6033  *   This is for debug only.
6034  */
6035 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6036 {
6037 #ifdef HPSA_DEBUG
6038 	int i;
6039 	char temp_name[17];
6040 
6041 	dev_info(dev, "Controller Configuration information\n");
6042 	dev_info(dev, "------------------------------------\n");
6043 	for (i = 0; i < 4; i++)
6044 		temp_name[i] = readb(&(tb->Signature[i]));
6045 	temp_name[4] = '\0';
6046 	dev_info(dev, "   Signature = %s\n", temp_name);
6047 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6048 	dev_info(dev, "   Transport methods supported = 0x%x\n",
6049 	       readl(&(tb->TransportSupport)));
6050 	dev_info(dev, "   Transport methods active = 0x%x\n",
6051 	       readl(&(tb->TransportActive)));
6052 	dev_info(dev, "   Requested transport Method = 0x%x\n",
6053 	       readl(&(tb->HostWrite.TransportRequest)));
6054 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6055 	       readl(&(tb->HostWrite.CoalIntDelay)));
6056 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6057 	       readl(&(tb->HostWrite.CoalIntCount)));
6058 	dev_info(dev, "   Max outstanding commands = 0x%d\n",
6059 	       readl(&(tb->CmdsOutMax)));
6060 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6061 	for (i = 0; i < 16; i++)
6062 		temp_name[i] = readb(&(tb->ServerName[i]));
6063 	temp_name[16] = '\0';
6064 	dev_info(dev, "   Server Name = %s\n", temp_name);
6065 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6066 		readl(&(tb->HeartBeat)));
6067 #endif				/* HPSA_DEBUG */
6068 }
6069 
6070 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6071 {
6072 	int i, offset, mem_type, bar_type;
6073 
6074 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
6075 		return 0;
6076 	offset = 0;
6077 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6078 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6079 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6080 			offset += 4;
6081 		else {
6082 			mem_type = pci_resource_flags(pdev, i) &
6083 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6084 			switch (mem_type) {
6085 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
6086 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6087 				offset += 4;	/* 32 bit */
6088 				break;
6089 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
6090 				offset += 8;
6091 				break;
6092 			default:	/* reserved in PCI 2.2 */
6093 				dev_warn(&pdev->dev,
6094 				       "base address is invalid\n");
6095 				return -1;
6096 				break;
6097 			}
6098 		}
6099 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6100 			return i + 1;
6101 	}
6102 	return -1;
6103 }
6104 
6105 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6106  * controllers that are capable. If not, we use IO-APIC mode.
6107  */
6108 
6109 static void hpsa_interrupt_mode(struct ctlr_info *h)
6110 {
6111 #ifdef CONFIG_PCI_MSI
6112 	int err, i;
6113 	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6114 
6115 	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6116 		hpsa_msix_entries[i].vector = 0;
6117 		hpsa_msix_entries[i].entry = i;
6118 	}
6119 
6120 	/* Some boards advertise MSI but don't really support it */
6121 	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6122 	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6123 		goto default_int_mode;
6124 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6125 		dev_info(&h->pdev->dev, "MSIX\n");
6126 		h->msix_vector = MAX_REPLY_QUEUES;
6127 		if (h->msix_vector > num_online_cpus())
6128 			h->msix_vector = num_online_cpus();
6129 		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6130 					    1, h->msix_vector);
6131 		if (err < 0) {
6132 			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6133 			h->msix_vector = 0;
6134 			goto single_msi_mode;
6135 		} else if (err < h->msix_vector) {
6136 			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6137 			       "available\n", err);
6138 		}
6139 		h->msix_vector = err;
6140 		for (i = 0; i < h->msix_vector; i++)
6141 			h->intr[i] = hpsa_msix_entries[i].vector;
6142 		return;
6143 	}
6144 single_msi_mode:
6145 	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6146 		dev_info(&h->pdev->dev, "MSI\n");
6147 		if (!pci_enable_msi(h->pdev))
6148 			h->msi_vector = 1;
6149 		else
6150 			dev_warn(&h->pdev->dev, "MSI init failed\n");
6151 	}
6152 default_int_mode:
6153 #endif				/* CONFIG_PCI_MSI */
6154 	/* if we get here we're going to use the default interrupt mode */
6155 	h->intr[h->intr_mode] = h->pdev->irq;
6156 }
6157 
6158 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6159 {
6160 	int i;
6161 	u32 subsystem_vendor_id, subsystem_device_id;
6162 
6163 	subsystem_vendor_id = pdev->subsystem_vendor;
6164 	subsystem_device_id = pdev->subsystem_device;
6165 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6166 		    subsystem_vendor_id;
6167 
6168 	for (i = 0; i < ARRAY_SIZE(products); i++)
6169 		if (*board_id == products[i].board_id)
6170 			return i;
6171 
6172 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6173 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6174 		!hpsa_allow_any) {
6175 		dev_warn(&pdev->dev, "unrecognized board ID: "
6176 			"0x%08x, ignoring.\n", *board_id);
6177 			return -ENODEV;
6178 	}
6179 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6180 }
6181 
6182 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6183 				    unsigned long *memory_bar)
6184 {
6185 	int i;
6186 
6187 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6188 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6189 			/* addressing mode bits already removed */
6190 			*memory_bar = pci_resource_start(pdev, i);
6191 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6192 				*memory_bar);
6193 			return 0;
6194 		}
6195 	dev_warn(&pdev->dev, "no memory BAR found\n");
6196 	return -ENODEV;
6197 }
6198 
6199 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6200 				     int wait_for_ready)
6201 {
6202 	int i, iterations;
6203 	u32 scratchpad;
6204 	if (wait_for_ready)
6205 		iterations = HPSA_BOARD_READY_ITERATIONS;
6206 	else
6207 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6208 
6209 	for (i = 0; i < iterations; i++) {
6210 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6211 		if (wait_for_ready) {
6212 			if (scratchpad == HPSA_FIRMWARE_READY)
6213 				return 0;
6214 		} else {
6215 			if (scratchpad != HPSA_FIRMWARE_READY)
6216 				return 0;
6217 		}
6218 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6219 	}
6220 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6221 	return -ENODEV;
6222 }
6223 
6224 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6225 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6226 			       u64 *cfg_offset)
6227 {
6228 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6229 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6230 	*cfg_base_addr &= (u32) 0x0000ffff;
6231 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6232 	if (*cfg_base_addr_index == -1) {
6233 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6234 		return -ENODEV;
6235 	}
6236 	return 0;
6237 }
6238 
6239 static int hpsa_find_cfgtables(struct ctlr_info *h)
6240 {
6241 	u64 cfg_offset;
6242 	u32 cfg_base_addr;
6243 	u64 cfg_base_addr_index;
6244 	u32 trans_offset;
6245 	int rc;
6246 
6247 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6248 		&cfg_base_addr_index, &cfg_offset);
6249 	if (rc)
6250 		return rc;
6251 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6252 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6253 	if (!h->cfgtable)
6254 		return -ENOMEM;
6255 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
6256 	if (rc)
6257 		return rc;
6258 	/* Find performant mode table. */
6259 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6260 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6261 				cfg_base_addr_index)+cfg_offset+trans_offset,
6262 				sizeof(*h->transtable));
6263 	if (!h->transtable)
6264 		return -ENOMEM;
6265 	return 0;
6266 }
6267 
6268 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6269 {
6270 	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6271 
6272 	/* Limit commands in memory limited kdump scenario. */
6273 	if (reset_devices && h->max_commands > 32)
6274 		h->max_commands = 32;
6275 
6276 	if (h->max_commands < 16) {
6277 		dev_warn(&h->pdev->dev, "Controller reports "
6278 			"max supported commands of %d, an obvious lie. "
6279 			"Using 16.  Ensure that firmware is up to date.\n",
6280 			h->max_commands);
6281 		h->max_commands = 16;
6282 	}
6283 }
6284 
6285 /* Interrogate the hardware for some limits:
6286  * max commands, max SG elements without chaining, and with chaining,
6287  * SG chain block size, etc.
6288  */
6289 static void hpsa_find_board_params(struct ctlr_info *h)
6290 {
6291 	hpsa_get_max_perf_mode_cmds(h);
6292 	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6293 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6294 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6295 	/*
6296 	 * Limit in-command s/g elements to 32 save dma'able memory.
6297 	 * Howvever spec says if 0, use 31
6298 	 */
6299 	h->max_cmd_sg_entries = 31;
6300 	if (h->maxsgentries > 512) {
6301 		h->max_cmd_sg_entries = 32;
6302 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6303 		h->maxsgentries--; /* save one for chain pointer */
6304 	} else {
6305 		h->chainsize = 0;
6306 		h->maxsgentries = 31; /* default to traditional values */
6307 	}
6308 
6309 	/* Find out what task management functions are supported and cache */
6310 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6311 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6312 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6313 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6314 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6315 }
6316 
6317 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6318 {
6319 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6320 		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6321 		return false;
6322 	}
6323 	return true;
6324 }
6325 
6326 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6327 {
6328 	u32 driver_support;
6329 
6330 	driver_support = readl(&(h->cfgtable->driver_support));
6331 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
6332 #ifdef CONFIG_X86
6333 	driver_support |= ENABLE_SCSI_PREFETCH;
6334 #endif
6335 	driver_support |= ENABLE_UNIT_ATTN;
6336 	writel(driver_support, &(h->cfgtable->driver_support));
6337 }
6338 
6339 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6340  * in a prefetch beyond physical memory.
6341  */
6342 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6343 {
6344 	u32 dma_prefetch;
6345 
6346 	if (h->board_id != 0x3225103C)
6347 		return;
6348 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6349 	dma_prefetch |= 0x8000;
6350 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6351 }
6352 
6353 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6354 {
6355 	int i;
6356 	u32 doorbell_value;
6357 	unsigned long flags;
6358 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6359 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6360 		spin_lock_irqsave(&h->lock, flags);
6361 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6362 		spin_unlock_irqrestore(&h->lock, flags);
6363 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6364 			break;
6365 		/* delay and try again */
6366 		msleep(20);
6367 	}
6368 }
6369 
6370 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6371 {
6372 	int i;
6373 	u32 doorbell_value;
6374 	unsigned long flags;
6375 
6376 	/* under certain very rare conditions, this can take awhile.
6377 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6378 	 * as we enter this code.)
6379 	 */
6380 	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6381 		spin_lock_irqsave(&h->lock, flags);
6382 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6383 		spin_unlock_irqrestore(&h->lock, flags);
6384 		if (!(doorbell_value & CFGTBL_ChangeReq))
6385 			break;
6386 		/* delay and try again */
6387 		usleep_range(10000, 20000);
6388 	}
6389 }
6390 
6391 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6392 {
6393 	u32 trans_support;
6394 
6395 	trans_support = readl(&(h->cfgtable->TransportSupport));
6396 	if (!(trans_support & SIMPLE_MODE))
6397 		return -ENOTSUPP;
6398 
6399 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6400 
6401 	/* Update the field, and then ring the doorbell */
6402 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6403 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6404 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6405 	hpsa_wait_for_mode_change_ack(h);
6406 	print_cfg_table(&h->pdev->dev, h->cfgtable);
6407 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6408 		goto error;
6409 	h->transMethod = CFGTBL_Trans_Simple;
6410 	return 0;
6411 error:
6412 	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6413 	return -ENODEV;
6414 }
6415 
6416 static int hpsa_pci_init(struct ctlr_info *h)
6417 {
6418 	int prod_index, err;
6419 
6420 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6421 	if (prod_index < 0)
6422 		return -ENODEV;
6423 	h->product_name = products[prod_index].product_name;
6424 	h->access = *(products[prod_index].access);
6425 
6426 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6427 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6428 
6429 	err = pci_enable_device(h->pdev);
6430 	if (err) {
6431 		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6432 		return err;
6433 	}
6434 
6435 	/* Enable bus mastering (pci_disable_device may disable this) */
6436 	pci_set_master(h->pdev);
6437 
6438 	err = pci_request_regions(h->pdev, HPSA);
6439 	if (err) {
6440 		dev_err(&h->pdev->dev,
6441 			"cannot obtain PCI resources, aborting\n");
6442 		return err;
6443 	}
6444 	hpsa_interrupt_mode(h);
6445 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6446 	if (err)
6447 		goto err_out_free_res;
6448 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6449 	if (!h->vaddr) {
6450 		err = -ENOMEM;
6451 		goto err_out_free_res;
6452 	}
6453 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6454 	if (err)
6455 		goto err_out_free_res;
6456 	err = hpsa_find_cfgtables(h);
6457 	if (err)
6458 		goto err_out_free_res;
6459 	hpsa_find_board_params(h);
6460 
6461 	if (!hpsa_CISS_signature_present(h)) {
6462 		err = -ENODEV;
6463 		goto err_out_free_res;
6464 	}
6465 	hpsa_set_driver_support_bits(h);
6466 	hpsa_p600_dma_prefetch_quirk(h);
6467 	err = hpsa_enter_simple_mode(h);
6468 	if (err)
6469 		goto err_out_free_res;
6470 	return 0;
6471 
6472 err_out_free_res:
6473 	if (h->transtable)
6474 		iounmap(h->transtable);
6475 	if (h->cfgtable)
6476 		iounmap(h->cfgtable);
6477 	if (h->vaddr)
6478 		iounmap(h->vaddr);
6479 	pci_disable_device(h->pdev);
6480 	pci_release_regions(h->pdev);
6481 	return err;
6482 }
6483 
6484 static void hpsa_hba_inquiry(struct ctlr_info *h)
6485 {
6486 	int rc;
6487 
6488 #define HBA_INQUIRY_BYTE_COUNT 64
6489 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6490 	if (!h->hba_inquiry_data)
6491 		return;
6492 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6493 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6494 	if (rc != 0) {
6495 		kfree(h->hba_inquiry_data);
6496 		h->hba_inquiry_data = NULL;
6497 	}
6498 }
6499 
6500 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6501 {
6502 	int rc, i;
6503 
6504 	if (!reset_devices)
6505 		return 0;
6506 
6507 	/* kdump kernel is loading, we don't know in which state is
6508 	 * the pci interface. The dev->enable_cnt is equal zero
6509 	 * so we call enable+disable, wait a while and switch it on.
6510 	 */
6511 	rc = pci_enable_device(pdev);
6512 	if (rc) {
6513 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6514 		return -ENODEV;
6515 	}
6516 	pci_disable_device(pdev);
6517 	msleep(260);			/* a randomly chosen number */
6518 	rc = pci_enable_device(pdev);
6519 	if (rc) {
6520 		dev_warn(&pdev->dev, "failed to enable device.\n");
6521 		return -ENODEV;
6522 	}
6523 	pci_set_master(pdev);
6524 	/* Reset the controller with a PCI power-cycle or via doorbell */
6525 	rc = hpsa_kdump_hard_reset_controller(pdev);
6526 
6527 	/* -ENOTSUPP here means we cannot reset the controller
6528 	 * but it's already (and still) up and running in
6529 	 * "performant mode".  Or, it might be 640x, which can't reset
6530 	 * due to concerns about shared bbwc between 6402/6404 pair.
6531 	 */
6532 	if (rc) {
6533 		if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
6534 			rc = -ENODEV;
6535 		goto out_disable;
6536 	}
6537 
6538 	/* Now try to get the controller to respond to a no-op */
6539 	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6540 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6541 		if (hpsa_noop(pdev) == 0)
6542 			break;
6543 		else
6544 			dev_warn(&pdev->dev, "no-op failed%s\n",
6545 					(i < 11 ? "; re-trying" : ""));
6546 	}
6547 
6548 out_disable:
6549 
6550 	pci_disable_device(pdev);
6551 	return rc;
6552 }
6553 
6554 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6555 {
6556 	h->cmd_pool_bits = kzalloc(
6557 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6558 		sizeof(unsigned long), GFP_KERNEL);
6559 	h->cmd_pool = pci_alloc_consistent(h->pdev,
6560 		    h->nr_cmds * sizeof(*h->cmd_pool),
6561 		    &(h->cmd_pool_dhandle));
6562 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
6563 		    h->nr_cmds * sizeof(*h->errinfo_pool),
6564 		    &(h->errinfo_pool_dhandle));
6565 	if ((h->cmd_pool_bits == NULL)
6566 	    || (h->cmd_pool == NULL)
6567 	    || (h->errinfo_pool == NULL)) {
6568 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6569 		return -ENOMEM;
6570 	}
6571 	return 0;
6572 }
6573 
6574 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6575 {
6576 	kfree(h->cmd_pool_bits);
6577 	if (h->cmd_pool)
6578 		pci_free_consistent(h->pdev,
6579 			    h->nr_cmds * sizeof(struct CommandList),
6580 			    h->cmd_pool, h->cmd_pool_dhandle);
6581 	if (h->ioaccel2_cmd_pool)
6582 		pci_free_consistent(h->pdev,
6583 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6584 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6585 	if (h->errinfo_pool)
6586 		pci_free_consistent(h->pdev,
6587 			    h->nr_cmds * sizeof(struct ErrorInfo),
6588 			    h->errinfo_pool,
6589 			    h->errinfo_pool_dhandle);
6590 	if (h->ioaccel_cmd_pool)
6591 		pci_free_consistent(h->pdev,
6592 			h->nr_cmds * sizeof(struct io_accel1_cmd),
6593 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6594 }
6595 
6596 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6597 {
6598 	int i, cpu, rc;
6599 
6600 	cpu = cpumask_first(cpu_online_mask);
6601 	for (i = 0; i < h->msix_vector; i++) {
6602 		rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6603 		cpu = cpumask_next(cpu, cpu_online_mask);
6604 	}
6605 }
6606 
6607 static int hpsa_request_irq(struct ctlr_info *h,
6608 	irqreturn_t (*msixhandler)(int, void *),
6609 	irqreturn_t (*intxhandler)(int, void *))
6610 {
6611 	int rc, i;
6612 
6613 	/*
6614 	 * initialize h->q[x] = x so that interrupt handlers know which
6615 	 * queue to process.
6616 	 */
6617 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
6618 		h->q[i] = (u8) i;
6619 
6620 	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6621 		/* If performant mode and MSI-X, use multiple reply queues */
6622 		for (i = 0; i < h->msix_vector; i++)
6623 			rc = request_irq(h->intr[i], msixhandler,
6624 					0, h->devname,
6625 					&h->q[i]);
6626 		hpsa_irq_affinity_hints(h);
6627 	} else {
6628 		/* Use single reply pool */
6629 		if (h->msix_vector > 0 || h->msi_vector) {
6630 			rc = request_irq(h->intr[h->intr_mode],
6631 				msixhandler, 0, h->devname,
6632 				&h->q[h->intr_mode]);
6633 		} else {
6634 			rc = request_irq(h->intr[h->intr_mode],
6635 				intxhandler, IRQF_SHARED, h->devname,
6636 				&h->q[h->intr_mode]);
6637 		}
6638 	}
6639 	if (rc) {
6640 		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6641 		       h->intr[h->intr_mode], h->devname);
6642 		return -ENODEV;
6643 	}
6644 	return 0;
6645 }
6646 
6647 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6648 {
6649 	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6650 		HPSA_RESET_TYPE_CONTROLLER)) {
6651 		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6652 		return -EIO;
6653 	}
6654 
6655 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6656 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6657 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6658 		return -1;
6659 	}
6660 
6661 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6662 	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6663 		dev_warn(&h->pdev->dev, "Board failed to become ready "
6664 			"after soft reset.\n");
6665 		return -1;
6666 	}
6667 
6668 	return 0;
6669 }
6670 
6671 static void free_irqs(struct ctlr_info *h)
6672 {
6673 	int i;
6674 
6675 	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6676 		/* Single reply queue, only one irq to free */
6677 		i = h->intr_mode;
6678 		irq_set_affinity_hint(h->intr[i], NULL);
6679 		free_irq(h->intr[i], &h->q[i]);
6680 		return;
6681 	}
6682 
6683 	for (i = 0; i < h->msix_vector; i++) {
6684 		irq_set_affinity_hint(h->intr[i], NULL);
6685 		free_irq(h->intr[i], &h->q[i]);
6686 	}
6687 }
6688 
6689 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6690 {
6691 	free_irqs(h);
6692 #ifdef CONFIG_PCI_MSI
6693 	if (h->msix_vector) {
6694 		if (h->pdev->msix_enabled)
6695 			pci_disable_msix(h->pdev);
6696 	} else if (h->msi_vector) {
6697 		if (h->pdev->msi_enabled)
6698 			pci_disable_msi(h->pdev);
6699 	}
6700 #endif /* CONFIG_PCI_MSI */
6701 }
6702 
6703 static void hpsa_free_reply_queues(struct ctlr_info *h)
6704 {
6705 	int i;
6706 
6707 	for (i = 0; i < h->nreply_queues; i++) {
6708 		if (!h->reply_queue[i].head)
6709 			continue;
6710 		pci_free_consistent(h->pdev, h->reply_queue_size,
6711 			h->reply_queue[i].head, h->reply_queue[i].busaddr);
6712 		h->reply_queue[i].head = NULL;
6713 		h->reply_queue[i].busaddr = 0;
6714 	}
6715 }
6716 
6717 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6718 {
6719 	hpsa_free_irqs_and_disable_msix(h);
6720 	hpsa_free_sg_chain_blocks(h);
6721 	hpsa_free_cmd_pool(h);
6722 	kfree(h->ioaccel1_blockFetchTable);
6723 	kfree(h->blockFetchTable);
6724 	hpsa_free_reply_queues(h);
6725 	if (h->vaddr)
6726 		iounmap(h->vaddr);
6727 	if (h->transtable)
6728 		iounmap(h->transtable);
6729 	if (h->cfgtable)
6730 		iounmap(h->cfgtable);
6731 	pci_disable_device(h->pdev);
6732 	pci_release_regions(h->pdev);
6733 	kfree(h);
6734 }
6735 
6736 /* Called when controller lockup detected. */
6737 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6738 {
6739 	struct CommandList *c = NULL;
6740 
6741 	assert_spin_locked(&h->lock);
6742 	/* Mark all outstanding commands as failed and complete them. */
6743 	while (!list_empty(list)) {
6744 		c = list_entry(list->next, struct CommandList, list);
6745 		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6746 		finish_cmd(c);
6747 	}
6748 }
6749 
6750 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6751 {
6752 	int i, cpu;
6753 
6754 	cpu = cpumask_first(cpu_online_mask);
6755 	for (i = 0; i < num_online_cpus(); i++) {
6756 		u32 *lockup_detected;
6757 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6758 		*lockup_detected = value;
6759 		cpu = cpumask_next(cpu, cpu_online_mask);
6760 	}
6761 	wmb(); /* be sure the per-cpu variables are out to memory */
6762 }
6763 
6764 static void controller_lockup_detected(struct ctlr_info *h)
6765 {
6766 	unsigned long flags;
6767 	u32 lockup_detected;
6768 
6769 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
6770 	spin_lock_irqsave(&h->lock, flags);
6771 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6772 	if (!lockup_detected) {
6773 		/* no heartbeat, but controller gave us a zero. */
6774 		dev_warn(&h->pdev->dev,
6775 			"lockup detected but scratchpad register is zero\n");
6776 		lockup_detected = 0xffffffff;
6777 	}
6778 	set_lockup_detected_for_all_cpus(h, lockup_detected);
6779 	spin_unlock_irqrestore(&h->lock, flags);
6780 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6781 			lockup_detected);
6782 	pci_disable_device(h->pdev);
6783 	spin_lock_irqsave(&h->lock, flags);
6784 	fail_all_cmds_on_list(h, &h->cmpQ);
6785 	fail_all_cmds_on_list(h, &h->reqQ);
6786 	spin_unlock_irqrestore(&h->lock, flags);
6787 }
6788 
6789 static void detect_controller_lockup(struct ctlr_info *h)
6790 {
6791 	u64 now;
6792 	u32 heartbeat;
6793 	unsigned long flags;
6794 
6795 	now = get_jiffies_64();
6796 	/* If we've received an interrupt recently, we're ok. */
6797 	if (time_after64(h->last_intr_timestamp +
6798 				(h->heartbeat_sample_interval), now))
6799 		return;
6800 
6801 	/*
6802 	 * If we've already checked the heartbeat recently, we're ok.
6803 	 * This could happen if someone sends us a signal. We
6804 	 * otherwise don't care about signals in this thread.
6805 	 */
6806 	if (time_after64(h->last_heartbeat_timestamp +
6807 				(h->heartbeat_sample_interval), now))
6808 		return;
6809 
6810 	/* If heartbeat has not changed since we last looked, we're not ok. */
6811 	spin_lock_irqsave(&h->lock, flags);
6812 	heartbeat = readl(&h->cfgtable->HeartBeat);
6813 	spin_unlock_irqrestore(&h->lock, flags);
6814 	if (h->last_heartbeat == heartbeat) {
6815 		controller_lockup_detected(h);
6816 		return;
6817 	}
6818 
6819 	/* We're ok. */
6820 	h->last_heartbeat = heartbeat;
6821 	h->last_heartbeat_timestamp = now;
6822 }
6823 
6824 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6825 {
6826 	int i;
6827 	char *event_type;
6828 
6829 	/* Clear the driver-requested rescan flag */
6830 	h->drv_req_rescan = 0;
6831 
6832 	/* Ask the controller to clear the events we're handling. */
6833 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
6834 			| CFGTBL_Trans_io_accel2)) &&
6835 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6836 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6837 
6838 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6839 			event_type = "state change";
6840 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6841 			event_type = "configuration change";
6842 		/* Stop sending new RAID offload reqs via the IO accelerator */
6843 		scsi_block_requests(h->scsi_host);
6844 		for (i = 0; i < h->ndevices; i++)
6845 			h->dev[i]->offload_enabled = 0;
6846 		hpsa_drain_accel_commands(h);
6847 		/* Set 'accelerator path config change' bit */
6848 		dev_warn(&h->pdev->dev,
6849 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6850 			h->events, event_type);
6851 		writel(h->events, &(h->cfgtable->clear_event_notify));
6852 		/* Set the "clear event notify field update" bit 6 */
6853 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6854 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
6855 		hpsa_wait_for_clear_event_notify_ack(h);
6856 		scsi_unblock_requests(h->scsi_host);
6857 	} else {
6858 		/* Acknowledge controller notification events. */
6859 		writel(h->events, &(h->cfgtable->clear_event_notify));
6860 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6861 		hpsa_wait_for_clear_event_notify_ack(h);
6862 #if 0
6863 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6864 		hpsa_wait_for_mode_change_ack(h);
6865 #endif
6866 	}
6867 	return;
6868 }
6869 
6870 /* Check a register on the controller to see if there are configuration
6871  * changes (added/changed/removed logical drives, etc.) which mean that
6872  * we should rescan the controller for devices.
6873  * Also check flag for driver-initiated rescan.
6874  */
6875 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6876 {
6877 	if (h->drv_req_rescan)
6878 		return 1;
6879 
6880 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6881 		return 0;
6882 
6883 	h->events = readl(&(h->cfgtable->event_notify));
6884 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
6885 }
6886 
6887 /*
6888  * Check if any of the offline devices have become ready
6889  */
6890 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6891 {
6892 	unsigned long flags;
6893 	struct offline_device_entry *d;
6894 	struct list_head *this, *tmp;
6895 
6896 	spin_lock_irqsave(&h->offline_device_lock, flags);
6897 	list_for_each_safe(this, tmp, &h->offline_device_list) {
6898 		d = list_entry(this, struct offline_device_entry,
6899 				offline_list);
6900 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6901 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
6902 			spin_lock_irqsave(&h->offline_device_lock, flags);
6903 			list_del(&d->offline_list);
6904 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6905 			return 1;
6906 		}
6907 		spin_lock_irqsave(&h->offline_device_lock, flags);
6908 	}
6909 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
6910 	return 0;
6911 }
6912 
6913 
6914 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6915 {
6916 	unsigned long flags;
6917 	struct ctlr_info *h = container_of(to_delayed_work(work),
6918 					struct ctlr_info, monitor_ctlr_work);
6919 	detect_controller_lockup(h);
6920 	if (lockup_detected(h))
6921 		return;
6922 
6923 	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6924 		scsi_host_get(h->scsi_host);
6925 		h->drv_req_rescan = 0;
6926 		hpsa_ack_ctlr_events(h);
6927 		hpsa_scan_start(h->scsi_host);
6928 		scsi_host_put(h->scsi_host);
6929 	}
6930 
6931 	spin_lock_irqsave(&h->lock, flags);
6932 	if (h->remove_in_progress) {
6933 		spin_unlock_irqrestore(&h->lock, flags);
6934 		return;
6935 	}
6936 	schedule_delayed_work(&h->monitor_ctlr_work,
6937 				h->heartbeat_sample_interval);
6938 	spin_unlock_irqrestore(&h->lock, flags);
6939 }
6940 
6941 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6942 {
6943 	int dac, rc;
6944 	struct ctlr_info *h;
6945 	int try_soft_reset = 0;
6946 	unsigned long flags;
6947 
6948 	if (number_of_controllers == 0)
6949 		printk(KERN_INFO DRIVER_NAME "\n");
6950 
6951 	rc = hpsa_init_reset_devices(pdev);
6952 	if (rc) {
6953 		if (rc != -ENOTSUPP)
6954 			return rc;
6955 		/* If the reset fails in a particular way (it has no way to do
6956 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6957 		 * a soft reset once we get the controller configured up to the
6958 		 * point that it can accept a command.
6959 		 */
6960 		try_soft_reset = 1;
6961 		rc = 0;
6962 	}
6963 
6964 reinit_after_soft_reset:
6965 
6966 	/* Command structures must be aligned on a 32-byte boundary because
6967 	 * the 5 lower bits of the address are used by the hardware. and by
6968 	 * the driver.  See comments in hpsa.h for more info.
6969 	 */
6970 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6971 	h = kzalloc(sizeof(*h), GFP_KERNEL);
6972 	if (!h)
6973 		return -ENOMEM;
6974 
6975 	h->pdev = pdev;
6976 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6977 	INIT_LIST_HEAD(&h->cmpQ);
6978 	INIT_LIST_HEAD(&h->reqQ);
6979 	INIT_LIST_HEAD(&h->offline_device_list);
6980 	spin_lock_init(&h->lock);
6981 	spin_lock_init(&h->offline_device_lock);
6982 	spin_lock_init(&h->scan_lock);
6983 	spin_lock_init(&h->passthru_count_lock);
6984 
6985 	/* Allocate and clear per-cpu variable lockup_detected */
6986 	h->lockup_detected = alloc_percpu(u32);
6987 	if (!h->lockup_detected) {
6988 		rc = -ENOMEM;
6989 		goto clean1;
6990 	}
6991 	set_lockup_detected_for_all_cpus(h, 0);
6992 
6993 	rc = hpsa_pci_init(h);
6994 	if (rc != 0)
6995 		goto clean1;
6996 
6997 	sprintf(h->devname, HPSA "%d", number_of_controllers);
6998 	h->ctlr = number_of_controllers;
6999 	number_of_controllers++;
7000 
7001 	/* configure PCI DMA stuff */
7002 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7003 	if (rc == 0) {
7004 		dac = 1;
7005 	} else {
7006 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7007 		if (rc == 0) {
7008 			dac = 0;
7009 		} else {
7010 			dev_err(&pdev->dev, "no suitable DMA available\n");
7011 			goto clean1;
7012 		}
7013 	}
7014 
7015 	/* make sure the board interrupts are off */
7016 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7017 
7018 	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7019 		goto clean2;
7020 	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7021 	       h->devname, pdev->device,
7022 	       h->intr[h->intr_mode], dac ? "" : " not");
7023 	if (hpsa_allocate_cmd_pool(h))
7024 		goto clean4;
7025 	if (hpsa_allocate_sg_chain_blocks(h))
7026 		goto clean4;
7027 	init_waitqueue_head(&h->scan_wait_queue);
7028 	h->scan_finished = 1; /* no scan currently in progress */
7029 
7030 	pci_set_drvdata(pdev, h);
7031 	h->ndevices = 0;
7032 	h->hba_mode_enabled = 0;
7033 	h->scsi_host = NULL;
7034 	spin_lock_init(&h->devlock);
7035 	hpsa_put_ctlr_into_performant_mode(h);
7036 
7037 	/* At this point, the controller is ready to take commands.
7038 	 * Now, if reset_devices and the hard reset didn't work, try
7039 	 * the soft reset and see if that works.
7040 	 */
7041 	if (try_soft_reset) {
7042 
7043 		/* This is kind of gross.  We may or may not get a completion
7044 		 * from the soft reset command, and if we do, then the value
7045 		 * from the fifo may or may not be valid.  So, we wait 10 secs
7046 		 * after the reset throwing away any completions we get during
7047 		 * that time.  Unregister the interrupt handler and register
7048 		 * fake ones to scoop up any residual completions.
7049 		 */
7050 		spin_lock_irqsave(&h->lock, flags);
7051 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7052 		spin_unlock_irqrestore(&h->lock, flags);
7053 		free_irqs(h);
7054 		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
7055 					hpsa_intx_discard_completions);
7056 		if (rc) {
7057 			dev_warn(&h->pdev->dev, "Failed to request_irq after "
7058 				"soft reset.\n");
7059 			goto clean4;
7060 		}
7061 
7062 		rc = hpsa_kdump_soft_reset(h);
7063 		if (rc)
7064 			/* Neither hard nor soft reset worked, we're hosed. */
7065 			goto clean4;
7066 
7067 		dev_info(&h->pdev->dev, "Board READY.\n");
7068 		dev_info(&h->pdev->dev,
7069 			"Waiting for stale completions to drain.\n");
7070 		h->access.set_intr_mask(h, HPSA_INTR_ON);
7071 		msleep(10000);
7072 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
7073 
7074 		rc = controller_reset_failed(h->cfgtable);
7075 		if (rc)
7076 			dev_info(&h->pdev->dev,
7077 				"Soft reset appears to have failed.\n");
7078 
7079 		/* since the controller's reset, we have to go back and re-init
7080 		 * everything.  Easiest to just forget what we've done and do it
7081 		 * all over again.
7082 		 */
7083 		hpsa_undo_allocations_after_kdump_soft_reset(h);
7084 		try_soft_reset = 0;
7085 		if (rc)
7086 			/* don't go to clean4, we already unallocated */
7087 			return -ENODEV;
7088 
7089 		goto reinit_after_soft_reset;
7090 	}
7091 
7092 		/* Enable Accelerated IO path at driver layer */
7093 		h->acciopath_status = 1;
7094 
7095 	h->drv_req_rescan = 0;
7096 
7097 	/* Turn the interrupts on so we can service requests */
7098 	h->access.set_intr_mask(h, HPSA_INTR_ON);
7099 
7100 	hpsa_hba_inquiry(h);
7101 	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7102 
7103 	/* Monitor the controller for firmware lockups */
7104 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7105 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7106 	schedule_delayed_work(&h->monitor_ctlr_work,
7107 				h->heartbeat_sample_interval);
7108 	return 0;
7109 
7110 clean4:
7111 	hpsa_free_sg_chain_blocks(h);
7112 	hpsa_free_cmd_pool(h);
7113 	free_irqs(h);
7114 clean2:
7115 clean1:
7116 	if (h->lockup_detected)
7117 		free_percpu(h->lockup_detected);
7118 	kfree(h);
7119 	return rc;
7120 }
7121 
7122 static void hpsa_flush_cache(struct ctlr_info *h)
7123 {
7124 	char *flush_buf;
7125 	struct CommandList *c;
7126 
7127 	/* Don't bother trying to flush the cache if locked up */
7128 	if (unlikely(lockup_detected(h)))
7129 		return;
7130 	flush_buf = kzalloc(4, GFP_KERNEL);
7131 	if (!flush_buf)
7132 		return;
7133 
7134 	c = cmd_special_alloc(h);
7135 	if (!c) {
7136 		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7137 		goto out_of_memory;
7138 	}
7139 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7140 		RAID_CTLR_LUNID, TYPE_CMD)) {
7141 		goto out;
7142 	}
7143 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7144 	if (c->err_info->CommandStatus != 0)
7145 out:
7146 		dev_warn(&h->pdev->dev,
7147 			"error flushing cache on controller\n");
7148 	cmd_special_free(h, c);
7149 out_of_memory:
7150 	kfree(flush_buf);
7151 }
7152 
7153 static void hpsa_shutdown(struct pci_dev *pdev)
7154 {
7155 	struct ctlr_info *h;
7156 
7157 	h = pci_get_drvdata(pdev);
7158 	/* Turn board interrupts off  and send the flush cache command
7159 	 * sendcmd will turn off interrupt, and send the flush...
7160 	 * To write all data in the battery backed cache to disks
7161 	 */
7162 	hpsa_flush_cache(h);
7163 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7164 	hpsa_free_irqs_and_disable_msix(h);
7165 }
7166 
7167 static void hpsa_free_device_info(struct ctlr_info *h)
7168 {
7169 	int i;
7170 
7171 	for (i = 0; i < h->ndevices; i++)
7172 		kfree(h->dev[i]);
7173 }
7174 
7175 static void hpsa_remove_one(struct pci_dev *pdev)
7176 {
7177 	struct ctlr_info *h;
7178 	unsigned long flags;
7179 
7180 	if (pci_get_drvdata(pdev) == NULL) {
7181 		dev_err(&pdev->dev, "unable to remove device\n");
7182 		return;
7183 	}
7184 	h = pci_get_drvdata(pdev);
7185 
7186 	/* Get rid of any controller monitoring work items */
7187 	spin_lock_irqsave(&h->lock, flags);
7188 	h->remove_in_progress = 1;
7189 	cancel_delayed_work(&h->monitor_ctlr_work);
7190 	spin_unlock_irqrestore(&h->lock, flags);
7191 
7192 	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
7193 	hpsa_shutdown(pdev);
7194 	iounmap(h->vaddr);
7195 	iounmap(h->transtable);
7196 	iounmap(h->cfgtable);
7197 	hpsa_free_device_info(h);
7198 	hpsa_free_sg_chain_blocks(h);
7199 	pci_free_consistent(h->pdev,
7200 		h->nr_cmds * sizeof(struct CommandList),
7201 		h->cmd_pool, h->cmd_pool_dhandle);
7202 	pci_free_consistent(h->pdev,
7203 		h->nr_cmds * sizeof(struct ErrorInfo),
7204 		h->errinfo_pool, h->errinfo_pool_dhandle);
7205 	hpsa_free_reply_queues(h);
7206 	kfree(h->cmd_pool_bits);
7207 	kfree(h->blockFetchTable);
7208 	kfree(h->ioaccel1_blockFetchTable);
7209 	kfree(h->ioaccel2_blockFetchTable);
7210 	kfree(h->hba_inquiry_data);
7211 	pci_disable_device(pdev);
7212 	pci_release_regions(pdev);
7213 	free_percpu(h->lockup_detected);
7214 	kfree(h);
7215 }
7216 
7217 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7218 	__attribute__((unused)) pm_message_t state)
7219 {
7220 	return -ENOSYS;
7221 }
7222 
7223 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7224 {
7225 	return -ENOSYS;
7226 }
7227 
7228 static struct pci_driver hpsa_pci_driver = {
7229 	.name = HPSA,
7230 	.probe = hpsa_init_one,
7231 	.remove = hpsa_remove_one,
7232 	.id_table = hpsa_pci_device_id,	/* id_table */
7233 	.shutdown = hpsa_shutdown,
7234 	.suspend = hpsa_suspend,
7235 	.resume = hpsa_resume,
7236 };
7237 
7238 /* Fill in bucket_map[], given nsgs (the max number of
7239  * scatter gather elements supported) and bucket[],
7240  * which is an array of 8 integers.  The bucket[] array
7241  * contains 8 different DMA transfer sizes (in 16
7242  * byte increments) which the controller uses to fetch
7243  * commands.  This function fills in bucket_map[], which
7244  * maps a given number of scatter gather elements to one of
7245  * the 8 DMA transfer sizes.  The point of it is to allow the
7246  * controller to only do as much DMA as needed to fetch the
7247  * command, with the DMA transfer size encoded in the lower
7248  * bits of the command address.
7249  */
7250 static void  calc_bucket_map(int bucket[], int num_buckets,
7251 	int nsgs, int min_blocks, int *bucket_map)
7252 {
7253 	int i, j, b, size;
7254 
7255 	/* Note, bucket_map must have nsgs+1 entries. */
7256 	for (i = 0; i <= nsgs; i++) {
7257 		/* Compute size of a command with i SG entries */
7258 		size = i + min_blocks;
7259 		b = num_buckets; /* Assume the biggest bucket */
7260 		/* Find the bucket that is just big enough */
7261 		for (j = 0; j < num_buckets; j++) {
7262 			if (bucket[j] >= size) {
7263 				b = j;
7264 				break;
7265 			}
7266 		}
7267 		/* for a command with i SG entries, use bucket b. */
7268 		bucket_map[i] = b;
7269 	}
7270 }
7271 
7272 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7273 {
7274 	int i;
7275 	unsigned long register_value;
7276 	unsigned long transMethod = CFGTBL_Trans_Performant |
7277 			(trans_support & CFGTBL_Trans_use_short_tags) |
7278 				CFGTBL_Trans_enable_directed_msix |
7279 			(trans_support & (CFGTBL_Trans_io_accel1 |
7280 				CFGTBL_Trans_io_accel2));
7281 	struct access_method access = SA5_performant_access;
7282 
7283 	/* This is a bit complicated.  There are 8 registers on
7284 	 * the controller which we write to to tell it 8 different
7285 	 * sizes of commands which there may be.  It's a way of
7286 	 * reducing the DMA done to fetch each command.  Encoded into
7287 	 * each command's tag are 3 bits which communicate to the controller
7288 	 * which of the eight sizes that command fits within.  The size of
7289 	 * each command depends on how many scatter gather entries there are.
7290 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
7291 	 * with the number of 16-byte blocks a command of that size requires.
7292 	 * The smallest command possible requires 5 such 16 byte blocks.
7293 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7294 	 * blocks.  Note, this only extends to the SG entries contained
7295 	 * within the command block, and does not extend to chained blocks
7296 	 * of SG elements.   bft[] contains the eight values we write to
7297 	 * the registers.  They are not evenly distributed, but have more
7298 	 * sizes for small commands, and fewer sizes for larger commands.
7299 	 */
7300 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7301 #define MIN_IOACCEL2_BFT_ENTRY 5
7302 #define HPSA_IOACCEL2_HEADER_SZ 4
7303 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7304 			13, 14, 15, 16, 17, 18, 19,
7305 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7306 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7307 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7308 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7309 				 16 * MIN_IOACCEL2_BFT_ENTRY);
7310 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7311 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7312 	/*  5 = 1 s/g entry or 4k
7313 	 *  6 = 2 s/g entry or 8k
7314 	 *  8 = 4 s/g entry or 16k
7315 	 * 10 = 6 s/g entry or 24k
7316 	 */
7317 
7318 	/* If the controller supports either ioaccel method then
7319 	 * we can also use the RAID stack submit path that does not
7320 	 * perform the superfluous readl() after each command submission.
7321 	 */
7322 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7323 		access = SA5_performant_access_no_read;
7324 
7325 	/* Controller spec: zero out this buffer. */
7326 	for (i = 0; i < h->nreply_queues; i++)
7327 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7328 
7329 	bft[7] = SG_ENTRIES_IN_CMD + 4;
7330 	calc_bucket_map(bft, ARRAY_SIZE(bft),
7331 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7332 	for (i = 0; i < 8; i++)
7333 		writel(bft[i], &h->transtable->BlockFetch[i]);
7334 
7335 	/* size of controller ring buffer */
7336 	writel(h->max_commands, &h->transtable->RepQSize);
7337 	writel(h->nreply_queues, &h->transtable->RepQCount);
7338 	writel(0, &h->transtable->RepQCtrAddrLow32);
7339 	writel(0, &h->transtable->RepQCtrAddrHigh32);
7340 
7341 	for (i = 0; i < h->nreply_queues; i++) {
7342 		writel(0, &h->transtable->RepQAddr[i].upper);
7343 		writel(h->reply_queue[i].busaddr,
7344 			&h->transtable->RepQAddr[i].lower);
7345 	}
7346 
7347 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7348 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7349 	/*
7350 	 * enable outbound interrupt coalescing in accelerator mode;
7351 	 */
7352 	if (trans_support & CFGTBL_Trans_io_accel1) {
7353 		access = SA5_ioaccel_mode1_access;
7354 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7355 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7356 	} else {
7357 		if (trans_support & CFGTBL_Trans_io_accel2) {
7358 			access = SA5_ioaccel_mode2_access;
7359 			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7360 			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7361 		}
7362 	}
7363 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7364 	hpsa_wait_for_mode_change_ack(h);
7365 	register_value = readl(&(h->cfgtable->TransportActive));
7366 	if (!(register_value & CFGTBL_Trans_Performant)) {
7367 		dev_warn(&h->pdev->dev, "unable to get board into"
7368 					" performant mode\n");
7369 		return;
7370 	}
7371 	/* Change the access methods to the performant access methods */
7372 	h->access = access;
7373 	h->transMethod = transMethod;
7374 
7375 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7376 		(trans_support & CFGTBL_Trans_io_accel2)))
7377 		return;
7378 
7379 	if (trans_support & CFGTBL_Trans_io_accel1) {
7380 		/* Set up I/O accelerator mode */
7381 		for (i = 0; i < h->nreply_queues; i++) {
7382 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7383 			h->reply_queue[i].current_entry =
7384 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7385 		}
7386 		bft[7] = h->ioaccel_maxsg + 8;
7387 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7388 				h->ioaccel1_blockFetchTable);
7389 
7390 		/* initialize all reply queue entries to unused */
7391 		for (i = 0; i < h->nreply_queues; i++)
7392 			memset(h->reply_queue[i].head,
7393 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
7394 				h->reply_queue_size);
7395 
7396 		/* set all the constant fields in the accelerator command
7397 		 * frames once at init time to save CPU cycles later.
7398 		 */
7399 		for (i = 0; i < h->nr_cmds; i++) {
7400 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7401 
7402 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
7403 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
7404 					(i * sizeof(struct ErrorInfo)));
7405 			cp->err_info_len = sizeof(struct ErrorInfo);
7406 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
7407 			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7408 			cp->timeout_sec = 0;
7409 			cp->ReplyQueue = 0;
7410 			cp->tag =
7411 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) |
7412 						DIRECT_LOOKUP_BIT);
7413 			cp->host_addr =
7414 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7415 					(i * sizeof(struct io_accel1_cmd)));
7416 		}
7417 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
7418 		u64 cfg_offset, cfg_base_addr_index;
7419 		u32 bft2_offset, cfg_base_addr;
7420 		int rc;
7421 
7422 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7423 			&cfg_base_addr_index, &cfg_offset);
7424 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7425 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7426 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7427 				4, h->ioaccel2_blockFetchTable);
7428 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7429 		BUILD_BUG_ON(offsetof(struct CfgTable,
7430 				io_accel_request_size_offset) != 0xb8);
7431 		h->ioaccel2_bft2_regs =
7432 			remap_pci_mem(pci_resource_start(h->pdev,
7433 					cfg_base_addr_index) +
7434 					cfg_offset + bft2_offset,
7435 					ARRAY_SIZE(bft2) *
7436 					sizeof(*h->ioaccel2_bft2_regs));
7437 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
7438 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7439 	}
7440 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7441 	hpsa_wait_for_mode_change_ack(h);
7442 }
7443 
7444 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7445 {
7446 	h->ioaccel_maxsg =
7447 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7448 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7449 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7450 
7451 	/* Command structures must be aligned on a 128-byte boundary
7452 	 * because the 7 lower bits of the address are used by the
7453 	 * hardware.
7454 	 */
7455 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7456 			IOACCEL1_COMMANDLIST_ALIGNMENT);
7457 	h->ioaccel_cmd_pool =
7458 		pci_alloc_consistent(h->pdev,
7459 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7460 			&(h->ioaccel_cmd_pool_dhandle));
7461 
7462 	h->ioaccel1_blockFetchTable =
7463 		kmalloc(((h->ioaccel_maxsg + 1) *
7464 				sizeof(u32)), GFP_KERNEL);
7465 
7466 	if ((h->ioaccel_cmd_pool == NULL) ||
7467 		(h->ioaccel1_blockFetchTable == NULL))
7468 		goto clean_up;
7469 
7470 	memset(h->ioaccel_cmd_pool, 0,
7471 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7472 	return 0;
7473 
7474 clean_up:
7475 	if (h->ioaccel_cmd_pool)
7476 		pci_free_consistent(h->pdev,
7477 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7478 			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7479 	kfree(h->ioaccel1_blockFetchTable);
7480 	return 1;
7481 }
7482 
7483 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7484 {
7485 	/* Allocate ioaccel2 mode command blocks and block fetch table */
7486 
7487 	h->ioaccel_maxsg =
7488 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7489 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7490 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7491 
7492 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7493 			IOACCEL2_COMMANDLIST_ALIGNMENT);
7494 	h->ioaccel2_cmd_pool =
7495 		pci_alloc_consistent(h->pdev,
7496 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7497 			&(h->ioaccel2_cmd_pool_dhandle));
7498 
7499 	h->ioaccel2_blockFetchTable =
7500 		kmalloc(((h->ioaccel_maxsg + 1) *
7501 				sizeof(u32)), GFP_KERNEL);
7502 
7503 	if ((h->ioaccel2_cmd_pool == NULL) ||
7504 		(h->ioaccel2_blockFetchTable == NULL))
7505 		goto clean_up;
7506 
7507 	memset(h->ioaccel2_cmd_pool, 0,
7508 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7509 	return 0;
7510 
7511 clean_up:
7512 	if (h->ioaccel2_cmd_pool)
7513 		pci_free_consistent(h->pdev,
7514 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7515 			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7516 	kfree(h->ioaccel2_blockFetchTable);
7517 	return 1;
7518 }
7519 
7520 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7521 {
7522 	u32 trans_support;
7523 	unsigned long transMethod = CFGTBL_Trans_Performant |
7524 					CFGTBL_Trans_use_short_tags;
7525 	int i;
7526 
7527 	if (hpsa_simple_mode)
7528 		return;
7529 
7530 	trans_support = readl(&(h->cfgtable->TransportSupport));
7531 	if (!(trans_support & PERFORMANT_MODE))
7532 		return;
7533 
7534 	/* Check for I/O accelerator mode support */
7535 	if (trans_support & CFGTBL_Trans_io_accel1) {
7536 		transMethod |= CFGTBL_Trans_io_accel1 |
7537 				CFGTBL_Trans_enable_directed_msix;
7538 		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7539 			goto clean_up;
7540 	} else {
7541 		if (trans_support & CFGTBL_Trans_io_accel2) {
7542 				transMethod |= CFGTBL_Trans_io_accel2 |
7543 				CFGTBL_Trans_enable_directed_msix;
7544 		if (ioaccel2_alloc_cmds_and_bft(h))
7545 			goto clean_up;
7546 		}
7547 	}
7548 
7549 	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7550 	hpsa_get_max_perf_mode_cmds(h);
7551 	/* Performant mode ring buffer and supporting data structures */
7552 	h->reply_queue_size = h->max_commands * sizeof(u64);
7553 
7554 	for (i = 0; i < h->nreply_queues; i++) {
7555 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7556 						h->reply_queue_size,
7557 						&(h->reply_queue[i].busaddr));
7558 		if (!h->reply_queue[i].head)
7559 			goto clean_up;
7560 		h->reply_queue[i].size = h->max_commands;
7561 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
7562 		h->reply_queue[i].current_entry = 0;
7563 	}
7564 
7565 	/* Need a block fetch table for performant mode */
7566 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7567 				sizeof(u32)), GFP_KERNEL);
7568 	if (!h->blockFetchTable)
7569 		goto clean_up;
7570 
7571 	hpsa_enter_performant_mode(h, trans_support);
7572 	return;
7573 
7574 clean_up:
7575 	hpsa_free_reply_queues(h);
7576 	kfree(h->blockFetchTable);
7577 }
7578 
7579 static int is_accelerated_cmd(struct CommandList *c)
7580 {
7581 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7582 }
7583 
7584 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7585 {
7586 	struct CommandList *c = NULL;
7587 	unsigned long flags;
7588 	int accel_cmds_out;
7589 
7590 	do { /* wait for all outstanding commands to drain out */
7591 		accel_cmds_out = 0;
7592 		spin_lock_irqsave(&h->lock, flags);
7593 		list_for_each_entry(c, &h->cmpQ, list)
7594 			accel_cmds_out += is_accelerated_cmd(c);
7595 		list_for_each_entry(c, &h->reqQ, list)
7596 			accel_cmds_out += is_accelerated_cmd(c);
7597 		spin_unlock_irqrestore(&h->lock, flags);
7598 		if (accel_cmds_out <= 0)
7599 			break;
7600 		msleep(100);
7601 	} while (1);
7602 }
7603 
7604 /*
7605  *  This is it.  Register the PCI driver information for the cards we control
7606  *  the OS will call our registered routines when it finds one of our cards.
7607  */
7608 static int __init hpsa_init(void)
7609 {
7610 	return pci_register_driver(&hpsa_pci_driver);
7611 }
7612 
7613 static void __exit hpsa_cleanup(void)
7614 {
7615 	pci_unregister_driver(&hpsa_pci_driver);
7616 }
7617 
7618 static void __attribute__((unused)) verify_offsets(void)
7619 {
7620 #define VERIFY_OFFSET(member, offset) \
7621 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7622 
7623 	VERIFY_OFFSET(structure_size, 0);
7624 	VERIFY_OFFSET(volume_blk_size, 4);
7625 	VERIFY_OFFSET(volume_blk_cnt, 8);
7626 	VERIFY_OFFSET(phys_blk_shift, 16);
7627 	VERIFY_OFFSET(parity_rotation_shift, 17);
7628 	VERIFY_OFFSET(strip_size, 18);
7629 	VERIFY_OFFSET(disk_starting_blk, 20);
7630 	VERIFY_OFFSET(disk_blk_cnt, 28);
7631 	VERIFY_OFFSET(data_disks_per_row, 36);
7632 	VERIFY_OFFSET(metadata_disks_per_row, 38);
7633 	VERIFY_OFFSET(row_cnt, 40);
7634 	VERIFY_OFFSET(layout_map_count, 42);
7635 	VERIFY_OFFSET(flags, 44);
7636 	VERIFY_OFFSET(dekindex, 46);
7637 	/* VERIFY_OFFSET(reserved, 48 */
7638 	VERIFY_OFFSET(data, 64);
7639 
7640 #undef VERIFY_OFFSET
7641 
7642 #define VERIFY_OFFSET(member, offset) \
7643 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7644 
7645 	VERIFY_OFFSET(IU_type, 0);
7646 	VERIFY_OFFSET(direction, 1);
7647 	VERIFY_OFFSET(reply_queue, 2);
7648 	/* VERIFY_OFFSET(reserved1, 3);  */
7649 	VERIFY_OFFSET(scsi_nexus, 4);
7650 	VERIFY_OFFSET(Tag, 8);
7651 	VERIFY_OFFSET(cdb, 16);
7652 	VERIFY_OFFSET(cciss_lun, 32);
7653 	VERIFY_OFFSET(data_len, 40);
7654 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
7655 	VERIFY_OFFSET(sg_count, 45);
7656 	/* VERIFY_OFFSET(reserved3 */
7657 	VERIFY_OFFSET(err_ptr, 48);
7658 	VERIFY_OFFSET(err_len, 56);
7659 	/* VERIFY_OFFSET(reserved4  */
7660 	VERIFY_OFFSET(sg, 64);
7661 
7662 #undef VERIFY_OFFSET
7663 
7664 #define VERIFY_OFFSET(member, offset) \
7665 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7666 
7667 	VERIFY_OFFSET(dev_handle, 0x00);
7668 	VERIFY_OFFSET(reserved1, 0x02);
7669 	VERIFY_OFFSET(function, 0x03);
7670 	VERIFY_OFFSET(reserved2, 0x04);
7671 	VERIFY_OFFSET(err_info, 0x0C);
7672 	VERIFY_OFFSET(reserved3, 0x10);
7673 	VERIFY_OFFSET(err_info_len, 0x12);
7674 	VERIFY_OFFSET(reserved4, 0x13);
7675 	VERIFY_OFFSET(sgl_offset, 0x14);
7676 	VERIFY_OFFSET(reserved5, 0x15);
7677 	VERIFY_OFFSET(transfer_len, 0x1C);
7678 	VERIFY_OFFSET(reserved6, 0x20);
7679 	VERIFY_OFFSET(io_flags, 0x24);
7680 	VERIFY_OFFSET(reserved7, 0x26);
7681 	VERIFY_OFFSET(LUN, 0x34);
7682 	VERIFY_OFFSET(control, 0x3C);
7683 	VERIFY_OFFSET(CDB, 0x40);
7684 	VERIFY_OFFSET(reserved8, 0x50);
7685 	VERIFY_OFFSET(host_context_flags, 0x60);
7686 	VERIFY_OFFSET(timeout_sec, 0x62);
7687 	VERIFY_OFFSET(ReplyQueue, 0x64);
7688 	VERIFY_OFFSET(reserved9, 0x65);
7689 	VERIFY_OFFSET(tag, 0x68);
7690 	VERIFY_OFFSET(host_addr, 0x70);
7691 	VERIFY_OFFSET(CISS_LUN, 0x78);
7692 	VERIFY_OFFSET(SG, 0x78 + 8);
7693 #undef VERIFY_OFFSET
7694 }
7695 
7696 module_init(hpsa_init);
7697 module_exit(hpsa_cleanup);
7698