xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 3d38f00c4107cc007056db9f4ab14ecb17ed193f)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.18-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88 		"Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92 	"Use 'simple mode' rather than 'performant mode'");
93 
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
135 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
136 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
137 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
141 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
142 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
143 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
145 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
146 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
147 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
148 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
149 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
150 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
151 	{0,}
152 };
153 
154 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
155 
156 /*  board_id = Subsystem Device ID & Vendor ID
157  *  product = Marketing Name for the board
158  *  access = Address of the struct of function pointers
159  */
160 static struct board_type products[] = {
161 	{0x3241103C, "Smart Array P212", &SA5_access},
162 	{0x3243103C, "Smart Array P410", &SA5_access},
163 	{0x3245103C, "Smart Array P410i", &SA5_access},
164 	{0x3247103C, "Smart Array P411", &SA5_access},
165 	{0x3249103C, "Smart Array P812", &SA5_access},
166 	{0x324A103C, "Smart Array P712m", &SA5_access},
167 	{0x324B103C, "Smart Array P711m", &SA5_access},
168 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
169 	{0x3350103C, "Smart Array P222", &SA5_access},
170 	{0x3351103C, "Smart Array P420", &SA5_access},
171 	{0x3352103C, "Smart Array P421", &SA5_access},
172 	{0x3353103C, "Smart Array P822", &SA5_access},
173 	{0x3354103C, "Smart Array P420i", &SA5_access},
174 	{0x3355103C, "Smart Array P220i", &SA5_access},
175 	{0x3356103C, "Smart Array P721m", &SA5_access},
176 	{0x1920103C, "Smart Array P430i", &SA5_access},
177 	{0x1921103C, "Smart Array P830i", &SA5_access},
178 	{0x1922103C, "Smart Array P430", &SA5_access},
179 	{0x1923103C, "Smart Array P431", &SA5_access},
180 	{0x1924103C, "Smart Array P830", &SA5_access},
181 	{0x1925103C, "Smart Array P831", &SA5_access},
182 	{0x1926103C, "Smart Array P731m", &SA5_access},
183 	{0x1928103C, "Smart Array P230i", &SA5_access},
184 	{0x1929103C, "Smart Array P530", &SA5_access},
185 	{0x21BD103C, "Smart Array P244br", &SA5_access},
186 	{0x21BE103C, "Smart Array P741m", &SA5_access},
187 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
188 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
189 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
190 	{0x21C2103C, "Smart Array P440", &SA5_access},
191 	{0x21C3103C, "Smart Array P441", &SA5_access},
192 	{0x21C4103C, "Smart Array", &SA5_access},
193 	{0x21C5103C, "Smart Array P841", &SA5_access},
194 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
195 	{0x21C7103C, "Smart HBA H240", &SA5_access},
196 	{0x21C8103C, "Smart HBA H241", &SA5_access},
197 	{0x21C9103C, "Smart Array", &SA5_access},
198 	{0x21CA103C, "Smart Array P246br", &SA5_access},
199 	{0x21CB103C, "Smart Array P840", &SA5_access},
200 	{0x21CC103C, "Smart Array", &SA5_access},
201 	{0x21CD103C, "Smart Array", &SA5_access},
202 	{0x21CE103C, "Smart HBA", &SA5_access},
203 	{0x05809005, "SmartHBA-SA", &SA5_access},
204 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
205 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
206 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
207 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
208 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
209 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
210 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
211 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
212 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
213 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
214 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
215 };
216 
217 static struct scsi_transport_template *hpsa_sas_transport_template;
218 static int hpsa_add_sas_host(struct ctlr_info *h);
219 static void hpsa_delete_sas_host(struct ctlr_info *h);
220 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
221 			struct hpsa_scsi_dev_t *device);
222 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
223 static struct hpsa_scsi_dev_t
224 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
225 		struct sas_rphy *rphy);
226 
227 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
228 static const struct scsi_cmnd hpsa_cmd_busy;
229 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
230 static const struct scsi_cmnd hpsa_cmd_idle;
231 static int number_of_controllers;
232 
233 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
234 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
235 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
236 
237 #ifdef CONFIG_COMPAT
238 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
239 	void __user *arg);
240 #endif
241 
242 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
243 static struct CommandList *cmd_alloc(struct ctlr_info *h);
244 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
245 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
246 					    struct scsi_cmnd *scmd);
247 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
248 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
249 	int cmd_type);
250 static void hpsa_free_cmd_pool(struct ctlr_info *h);
251 #define VPD_PAGE (1 << 8)
252 #define HPSA_SIMPLE_ERROR_BITS 0x03
253 
254 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
255 static void hpsa_scan_start(struct Scsi_Host *);
256 static int hpsa_scan_finished(struct Scsi_Host *sh,
257 	unsigned long elapsed_time);
258 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
259 
260 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
261 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
262 static int hpsa_slave_alloc(struct scsi_device *sdev);
263 static int hpsa_slave_configure(struct scsi_device *sdev);
264 static void hpsa_slave_destroy(struct scsi_device *sdev);
265 
266 static void hpsa_update_scsi_devices(struct ctlr_info *h);
267 static int check_for_unit_attention(struct ctlr_info *h,
268 	struct CommandList *c);
269 static void check_ioctl_unit_attention(struct ctlr_info *h,
270 	struct CommandList *c);
271 /* performant mode helper functions */
272 static void calc_bucket_map(int *bucket, int num_buckets,
273 	int nsgs, int min_blocks, u32 *bucket_map);
274 static void hpsa_free_performant_mode(struct ctlr_info *h);
275 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
276 static inline u32 next_command(struct ctlr_info *h, u8 q);
277 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
278 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
279 			       u64 *cfg_offset);
280 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
281 				    unsigned long *memory_bar);
282 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
283 static int wait_for_device_to_become_ready(struct ctlr_info *h,
284 					   unsigned char lunaddr[],
285 					   int reply_queue);
286 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
287 				     int wait_for_ready);
288 static inline void finish_cmd(struct CommandList *c);
289 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
290 #define BOARD_NOT_READY 0
291 #define BOARD_READY 1
292 static void hpsa_drain_accel_commands(struct ctlr_info *h);
293 static void hpsa_flush_cache(struct ctlr_info *h);
294 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
295 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
296 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
297 static void hpsa_command_resubmit_worker(struct work_struct *work);
298 static u32 lockup_detected(struct ctlr_info *h);
299 static int detect_controller_lockup(struct ctlr_info *h);
300 static void hpsa_disable_rld_caching(struct ctlr_info *h);
301 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
302 	struct ReportExtendedLUNdata *buf, int bufsize);
303 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
304 	unsigned char scsi3addr[], u8 page);
305 static int hpsa_luns_changed(struct ctlr_info *h);
306 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
307 			       struct hpsa_scsi_dev_t *dev,
308 			       unsigned char *scsi3addr);
309 
310 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
311 {
312 	unsigned long *priv = shost_priv(sdev->host);
313 	return (struct ctlr_info *) *priv;
314 }
315 
316 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
317 {
318 	unsigned long *priv = shost_priv(sh);
319 	return (struct ctlr_info *) *priv;
320 }
321 
322 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
323 {
324 	return c->scsi_cmd == SCSI_CMD_IDLE;
325 }
326 
327 static inline bool hpsa_is_pending_event(struct CommandList *c)
328 {
329 	return c->abort_pending || c->reset_pending;
330 }
331 
332 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
333 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
334 			u8 *sense_key, u8 *asc, u8 *ascq)
335 {
336 	struct scsi_sense_hdr sshdr;
337 	bool rc;
338 
339 	*sense_key = -1;
340 	*asc = -1;
341 	*ascq = -1;
342 
343 	if (sense_data_len < 1)
344 		return;
345 
346 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
347 	if (rc) {
348 		*sense_key = sshdr.sense_key;
349 		*asc = sshdr.asc;
350 		*ascq = sshdr.ascq;
351 	}
352 }
353 
354 static int check_for_unit_attention(struct ctlr_info *h,
355 	struct CommandList *c)
356 {
357 	u8 sense_key, asc, ascq;
358 	int sense_len;
359 
360 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
361 		sense_len = sizeof(c->err_info->SenseInfo);
362 	else
363 		sense_len = c->err_info->SenseLen;
364 
365 	decode_sense_data(c->err_info->SenseInfo, sense_len,
366 				&sense_key, &asc, &ascq);
367 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
368 		return 0;
369 
370 	switch (asc) {
371 	case STATE_CHANGED:
372 		dev_warn(&h->pdev->dev,
373 			"%s: a state change detected, command retried\n",
374 			h->devname);
375 		break;
376 	case LUN_FAILED:
377 		dev_warn(&h->pdev->dev,
378 			"%s: LUN failure detected\n", h->devname);
379 		break;
380 	case REPORT_LUNS_CHANGED:
381 		dev_warn(&h->pdev->dev,
382 			"%s: report LUN data changed\n", h->devname);
383 	/*
384 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
385 	 * target (array) devices.
386 	 */
387 		break;
388 	case POWER_OR_RESET:
389 		dev_warn(&h->pdev->dev,
390 			"%s: a power on or device reset detected\n",
391 			h->devname);
392 		break;
393 	case UNIT_ATTENTION_CLEARED:
394 		dev_warn(&h->pdev->dev,
395 			"%s: unit attention cleared by another initiator\n",
396 			h->devname);
397 		break;
398 	default:
399 		dev_warn(&h->pdev->dev,
400 			"%s: unknown unit attention detected\n",
401 			h->devname);
402 		break;
403 	}
404 	return 1;
405 }
406 
407 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
408 {
409 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
410 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
411 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
412 		return 0;
413 	dev_warn(&h->pdev->dev, HPSA "device busy");
414 	return 1;
415 }
416 
417 static u32 lockup_detected(struct ctlr_info *h);
418 static ssize_t host_show_lockup_detected(struct device *dev,
419 		struct device_attribute *attr, char *buf)
420 {
421 	int ld;
422 	struct ctlr_info *h;
423 	struct Scsi_Host *shost = class_to_shost(dev);
424 
425 	h = shost_to_hba(shost);
426 	ld = lockup_detected(h);
427 
428 	return sprintf(buf, "ld=%d\n", ld);
429 }
430 
431 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
432 					 struct device_attribute *attr,
433 					 const char *buf, size_t count)
434 {
435 	int status, len;
436 	struct ctlr_info *h;
437 	struct Scsi_Host *shost = class_to_shost(dev);
438 	char tmpbuf[10];
439 
440 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
441 		return -EACCES;
442 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
443 	strncpy(tmpbuf, buf, len);
444 	tmpbuf[len] = '\0';
445 	if (sscanf(tmpbuf, "%d", &status) != 1)
446 		return -EINVAL;
447 	h = shost_to_hba(shost);
448 	h->acciopath_status = !!status;
449 	dev_warn(&h->pdev->dev,
450 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
451 		h->acciopath_status ? "enabled" : "disabled");
452 	return count;
453 }
454 
455 static ssize_t host_store_raid_offload_debug(struct device *dev,
456 					 struct device_attribute *attr,
457 					 const char *buf, size_t count)
458 {
459 	int debug_level, len;
460 	struct ctlr_info *h;
461 	struct Scsi_Host *shost = class_to_shost(dev);
462 	char tmpbuf[10];
463 
464 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
465 		return -EACCES;
466 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
467 	strncpy(tmpbuf, buf, len);
468 	tmpbuf[len] = '\0';
469 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
470 		return -EINVAL;
471 	if (debug_level < 0)
472 		debug_level = 0;
473 	h = shost_to_hba(shost);
474 	h->raid_offload_debug = debug_level;
475 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
476 		h->raid_offload_debug);
477 	return count;
478 }
479 
480 static ssize_t host_store_rescan(struct device *dev,
481 				 struct device_attribute *attr,
482 				 const char *buf, size_t count)
483 {
484 	struct ctlr_info *h;
485 	struct Scsi_Host *shost = class_to_shost(dev);
486 	h = shost_to_hba(shost);
487 	hpsa_scan_start(h->scsi_host);
488 	return count;
489 }
490 
491 static ssize_t host_show_firmware_revision(struct device *dev,
492 	     struct device_attribute *attr, char *buf)
493 {
494 	struct ctlr_info *h;
495 	struct Scsi_Host *shost = class_to_shost(dev);
496 	unsigned char *fwrev;
497 
498 	h = shost_to_hba(shost);
499 	if (!h->hba_inquiry_data)
500 		return 0;
501 	fwrev = &h->hba_inquiry_data[32];
502 	return snprintf(buf, 20, "%c%c%c%c\n",
503 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
504 }
505 
506 static ssize_t host_show_commands_outstanding(struct device *dev,
507 	     struct device_attribute *attr, char *buf)
508 {
509 	struct Scsi_Host *shost = class_to_shost(dev);
510 	struct ctlr_info *h = shost_to_hba(shost);
511 
512 	return snprintf(buf, 20, "%d\n",
513 			atomic_read(&h->commands_outstanding));
514 }
515 
516 static ssize_t host_show_transport_mode(struct device *dev,
517 	struct device_attribute *attr, char *buf)
518 {
519 	struct ctlr_info *h;
520 	struct Scsi_Host *shost = class_to_shost(dev);
521 
522 	h = shost_to_hba(shost);
523 	return snprintf(buf, 20, "%s\n",
524 		h->transMethod & CFGTBL_Trans_Performant ?
525 			"performant" : "simple");
526 }
527 
528 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
529 	struct device_attribute *attr, char *buf)
530 {
531 	struct ctlr_info *h;
532 	struct Scsi_Host *shost = class_to_shost(dev);
533 
534 	h = shost_to_hba(shost);
535 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
536 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
537 }
538 
539 /* List of controllers which cannot be hard reset on kexec with reset_devices */
540 static u32 unresettable_controller[] = {
541 	0x324a103C, /* Smart Array P712m */
542 	0x324b103C, /* Smart Array P711m */
543 	0x3223103C, /* Smart Array P800 */
544 	0x3234103C, /* Smart Array P400 */
545 	0x3235103C, /* Smart Array P400i */
546 	0x3211103C, /* Smart Array E200i */
547 	0x3212103C, /* Smart Array E200 */
548 	0x3213103C, /* Smart Array E200i */
549 	0x3214103C, /* Smart Array E200i */
550 	0x3215103C, /* Smart Array E200i */
551 	0x3237103C, /* Smart Array E500 */
552 	0x323D103C, /* Smart Array P700m */
553 	0x40800E11, /* Smart Array 5i */
554 	0x409C0E11, /* Smart Array 6400 */
555 	0x409D0E11, /* Smart Array 6400 EM */
556 	0x40700E11, /* Smart Array 5300 */
557 	0x40820E11, /* Smart Array 532 */
558 	0x40830E11, /* Smart Array 5312 */
559 	0x409A0E11, /* Smart Array 641 */
560 	0x409B0E11, /* Smart Array 642 */
561 	0x40910E11, /* Smart Array 6i */
562 };
563 
564 /* List of controllers which cannot even be soft reset */
565 static u32 soft_unresettable_controller[] = {
566 	0x40800E11, /* Smart Array 5i */
567 	0x40700E11, /* Smart Array 5300 */
568 	0x40820E11, /* Smart Array 532 */
569 	0x40830E11, /* Smart Array 5312 */
570 	0x409A0E11, /* Smart Array 641 */
571 	0x409B0E11, /* Smart Array 642 */
572 	0x40910E11, /* Smart Array 6i */
573 	/* Exclude 640x boards.  These are two pci devices in one slot
574 	 * which share a battery backed cache module.  One controls the
575 	 * cache, the other accesses the cache through the one that controls
576 	 * it.  If we reset the one controlling the cache, the other will
577 	 * likely not be happy.  Just forbid resetting this conjoined mess.
578 	 * The 640x isn't really supported by hpsa anyway.
579 	 */
580 	0x409C0E11, /* Smart Array 6400 */
581 	0x409D0E11, /* Smart Array 6400 EM */
582 };
583 
584 static u32 needs_abort_tags_swizzled[] = {
585 	0x323D103C, /* Smart Array P700m */
586 	0x324a103C, /* Smart Array P712m */
587 	0x324b103C, /* SmartArray P711m */
588 };
589 
590 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
591 {
592 	int i;
593 
594 	for (i = 0; i < nelems; i++)
595 		if (a[i] == board_id)
596 			return 1;
597 	return 0;
598 }
599 
600 static int ctlr_is_hard_resettable(u32 board_id)
601 {
602 	return !board_id_in_array(unresettable_controller,
603 			ARRAY_SIZE(unresettable_controller), board_id);
604 }
605 
606 static int ctlr_is_soft_resettable(u32 board_id)
607 {
608 	return !board_id_in_array(soft_unresettable_controller,
609 			ARRAY_SIZE(soft_unresettable_controller), board_id);
610 }
611 
612 static int ctlr_is_resettable(u32 board_id)
613 {
614 	return ctlr_is_hard_resettable(board_id) ||
615 		ctlr_is_soft_resettable(board_id);
616 }
617 
618 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
619 {
620 	return board_id_in_array(needs_abort_tags_swizzled,
621 			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
622 }
623 
624 static ssize_t host_show_resettable(struct device *dev,
625 	struct device_attribute *attr, char *buf)
626 {
627 	struct ctlr_info *h;
628 	struct Scsi_Host *shost = class_to_shost(dev);
629 
630 	h = shost_to_hba(shost);
631 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
632 }
633 
634 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
635 {
636 	return (scsi3addr[3] & 0xC0) == 0x40;
637 }
638 
639 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
640 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
641 };
642 #define HPSA_RAID_0	0
643 #define HPSA_RAID_4	1
644 #define HPSA_RAID_1	2	/* also used for RAID 10 */
645 #define HPSA_RAID_5	3	/* also used for RAID 50 */
646 #define HPSA_RAID_51	4
647 #define HPSA_RAID_6	5	/* also used for RAID 60 */
648 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
649 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
650 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
651 
652 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
653 {
654 	return !device->physical_device;
655 }
656 
657 static ssize_t raid_level_show(struct device *dev,
658 	     struct device_attribute *attr, char *buf)
659 {
660 	ssize_t l = 0;
661 	unsigned char rlevel;
662 	struct ctlr_info *h;
663 	struct scsi_device *sdev;
664 	struct hpsa_scsi_dev_t *hdev;
665 	unsigned long flags;
666 
667 	sdev = to_scsi_device(dev);
668 	h = sdev_to_hba(sdev);
669 	spin_lock_irqsave(&h->lock, flags);
670 	hdev = sdev->hostdata;
671 	if (!hdev) {
672 		spin_unlock_irqrestore(&h->lock, flags);
673 		return -ENODEV;
674 	}
675 
676 	/* Is this even a logical drive? */
677 	if (!is_logical_device(hdev)) {
678 		spin_unlock_irqrestore(&h->lock, flags);
679 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
680 		return l;
681 	}
682 
683 	rlevel = hdev->raid_level;
684 	spin_unlock_irqrestore(&h->lock, flags);
685 	if (rlevel > RAID_UNKNOWN)
686 		rlevel = RAID_UNKNOWN;
687 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
688 	return l;
689 }
690 
691 static ssize_t lunid_show(struct device *dev,
692 	     struct device_attribute *attr, char *buf)
693 {
694 	struct ctlr_info *h;
695 	struct scsi_device *sdev;
696 	struct hpsa_scsi_dev_t *hdev;
697 	unsigned long flags;
698 	unsigned char lunid[8];
699 
700 	sdev = to_scsi_device(dev);
701 	h = sdev_to_hba(sdev);
702 	spin_lock_irqsave(&h->lock, flags);
703 	hdev = sdev->hostdata;
704 	if (!hdev) {
705 		spin_unlock_irqrestore(&h->lock, flags);
706 		return -ENODEV;
707 	}
708 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
709 	spin_unlock_irqrestore(&h->lock, flags);
710 	return snprintf(buf, 20, "0x%8phN\n", lunid);
711 }
712 
713 static ssize_t unique_id_show(struct device *dev,
714 	     struct device_attribute *attr, char *buf)
715 {
716 	struct ctlr_info *h;
717 	struct scsi_device *sdev;
718 	struct hpsa_scsi_dev_t *hdev;
719 	unsigned long flags;
720 	unsigned char sn[16];
721 
722 	sdev = to_scsi_device(dev);
723 	h = sdev_to_hba(sdev);
724 	spin_lock_irqsave(&h->lock, flags);
725 	hdev = sdev->hostdata;
726 	if (!hdev) {
727 		spin_unlock_irqrestore(&h->lock, flags);
728 		return -ENODEV;
729 	}
730 	memcpy(sn, hdev->device_id, sizeof(sn));
731 	spin_unlock_irqrestore(&h->lock, flags);
732 	return snprintf(buf, 16 * 2 + 2,
733 			"%02X%02X%02X%02X%02X%02X%02X%02X"
734 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
735 			sn[0], sn[1], sn[2], sn[3],
736 			sn[4], sn[5], sn[6], sn[7],
737 			sn[8], sn[9], sn[10], sn[11],
738 			sn[12], sn[13], sn[14], sn[15]);
739 }
740 
741 static ssize_t sas_address_show(struct device *dev,
742 	      struct device_attribute *attr, char *buf)
743 {
744 	struct ctlr_info *h;
745 	struct scsi_device *sdev;
746 	struct hpsa_scsi_dev_t *hdev;
747 	unsigned long flags;
748 	u64 sas_address;
749 
750 	sdev = to_scsi_device(dev);
751 	h = sdev_to_hba(sdev);
752 	spin_lock_irqsave(&h->lock, flags);
753 	hdev = sdev->hostdata;
754 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
755 		spin_unlock_irqrestore(&h->lock, flags);
756 		return -ENODEV;
757 	}
758 	sas_address = hdev->sas_address;
759 	spin_unlock_irqrestore(&h->lock, flags);
760 
761 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
762 }
763 
764 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
765 	     struct device_attribute *attr, char *buf)
766 {
767 	struct ctlr_info *h;
768 	struct scsi_device *sdev;
769 	struct hpsa_scsi_dev_t *hdev;
770 	unsigned long flags;
771 	int offload_enabled;
772 
773 	sdev = to_scsi_device(dev);
774 	h = sdev_to_hba(sdev);
775 	spin_lock_irqsave(&h->lock, flags);
776 	hdev = sdev->hostdata;
777 	if (!hdev) {
778 		spin_unlock_irqrestore(&h->lock, flags);
779 		return -ENODEV;
780 	}
781 	offload_enabled = hdev->offload_enabled;
782 	spin_unlock_irqrestore(&h->lock, flags);
783 	return snprintf(buf, 20, "%d\n", offload_enabled);
784 }
785 
786 #define MAX_PATHS 8
787 static ssize_t path_info_show(struct device *dev,
788 	     struct device_attribute *attr, char *buf)
789 {
790 	struct ctlr_info *h;
791 	struct scsi_device *sdev;
792 	struct hpsa_scsi_dev_t *hdev;
793 	unsigned long flags;
794 	int i;
795 	int output_len = 0;
796 	u8 box;
797 	u8 bay;
798 	u8 path_map_index = 0;
799 	char *active;
800 	unsigned char phys_connector[2];
801 
802 	sdev = to_scsi_device(dev);
803 	h = sdev_to_hba(sdev);
804 	spin_lock_irqsave(&h->devlock, flags);
805 	hdev = sdev->hostdata;
806 	if (!hdev) {
807 		spin_unlock_irqrestore(&h->devlock, flags);
808 		return -ENODEV;
809 	}
810 
811 	bay = hdev->bay;
812 	for (i = 0; i < MAX_PATHS; i++) {
813 		path_map_index = 1<<i;
814 		if (i == hdev->active_path_index)
815 			active = "Active";
816 		else if (hdev->path_map & path_map_index)
817 			active = "Inactive";
818 		else
819 			continue;
820 
821 		output_len += scnprintf(buf + output_len,
822 				PAGE_SIZE - output_len,
823 				"[%d:%d:%d:%d] %20.20s ",
824 				h->scsi_host->host_no,
825 				hdev->bus, hdev->target, hdev->lun,
826 				scsi_device_type(hdev->devtype));
827 
828 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
829 			output_len += scnprintf(buf + output_len,
830 						PAGE_SIZE - output_len,
831 						"%s\n", active);
832 			continue;
833 		}
834 
835 		box = hdev->box[i];
836 		memcpy(&phys_connector, &hdev->phys_connector[i],
837 			sizeof(phys_connector));
838 		if (phys_connector[0] < '0')
839 			phys_connector[0] = '0';
840 		if (phys_connector[1] < '0')
841 			phys_connector[1] = '0';
842 		output_len += scnprintf(buf + output_len,
843 				PAGE_SIZE - output_len,
844 				"PORT: %.2s ",
845 				phys_connector);
846 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
847 			hdev->expose_device) {
848 			if (box == 0 || box == 0xFF) {
849 				output_len += scnprintf(buf + output_len,
850 					PAGE_SIZE - output_len,
851 					"BAY: %hhu %s\n",
852 					bay, active);
853 			} else {
854 				output_len += scnprintf(buf + output_len,
855 					PAGE_SIZE - output_len,
856 					"BOX: %hhu BAY: %hhu %s\n",
857 					box, bay, active);
858 			}
859 		} else if (box != 0 && box != 0xFF) {
860 			output_len += scnprintf(buf + output_len,
861 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
862 				box, active);
863 		} else
864 			output_len += scnprintf(buf + output_len,
865 				PAGE_SIZE - output_len, "%s\n", active);
866 	}
867 
868 	spin_unlock_irqrestore(&h->devlock, flags);
869 	return output_len;
870 }
871 
872 static ssize_t host_show_ctlr_num(struct device *dev,
873 	struct device_attribute *attr, char *buf)
874 {
875 	struct ctlr_info *h;
876 	struct Scsi_Host *shost = class_to_shost(dev);
877 
878 	h = shost_to_hba(shost);
879 	return snprintf(buf, 20, "%d\n", h->ctlr);
880 }
881 
882 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
883 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
884 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
885 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
886 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
887 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
888 			host_show_hp_ssd_smart_path_enabled, NULL);
889 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
890 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
891 		host_show_hp_ssd_smart_path_status,
892 		host_store_hp_ssd_smart_path_status);
893 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
894 			host_store_raid_offload_debug);
895 static DEVICE_ATTR(firmware_revision, S_IRUGO,
896 	host_show_firmware_revision, NULL);
897 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
898 	host_show_commands_outstanding, NULL);
899 static DEVICE_ATTR(transport_mode, S_IRUGO,
900 	host_show_transport_mode, NULL);
901 static DEVICE_ATTR(resettable, S_IRUGO,
902 	host_show_resettable, NULL);
903 static DEVICE_ATTR(lockup_detected, S_IRUGO,
904 	host_show_lockup_detected, NULL);
905 static DEVICE_ATTR(ctlr_num, S_IRUGO,
906 	host_show_ctlr_num, NULL);
907 
908 static struct device_attribute *hpsa_sdev_attrs[] = {
909 	&dev_attr_raid_level,
910 	&dev_attr_lunid,
911 	&dev_attr_unique_id,
912 	&dev_attr_hp_ssd_smart_path_enabled,
913 	&dev_attr_path_info,
914 	&dev_attr_sas_address,
915 	NULL,
916 };
917 
918 static struct device_attribute *hpsa_shost_attrs[] = {
919 	&dev_attr_rescan,
920 	&dev_attr_firmware_revision,
921 	&dev_attr_commands_outstanding,
922 	&dev_attr_transport_mode,
923 	&dev_attr_resettable,
924 	&dev_attr_hp_ssd_smart_path_status,
925 	&dev_attr_raid_offload_debug,
926 	&dev_attr_lockup_detected,
927 	&dev_attr_ctlr_num,
928 	NULL,
929 };
930 
931 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
932 		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
933 
934 static struct scsi_host_template hpsa_driver_template = {
935 	.module			= THIS_MODULE,
936 	.name			= HPSA,
937 	.proc_name		= HPSA,
938 	.queuecommand		= hpsa_scsi_queue_command,
939 	.scan_start		= hpsa_scan_start,
940 	.scan_finished		= hpsa_scan_finished,
941 	.change_queue_depth	= hpsa_change_queue_depth,
942 	.this_id		= -1,
943 	.use_clustering		= ENABLE_CLUSTERING,
944 	.eh_abort_handler	= hpsa_eh_abort_handler,
945 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
946 	.ioctl			= hpsa_ioctl,
947 	.slave_alloc		= hpsa_slave_alloc,
948 	.slave_configure	= hpsa_slave_configure,
949 	.slave_destroy		= hpsa_slave_destroy,
950 #ifdef CONFIG_COMPAT
951 	.compat_ioctl		= hpsa_compat_ioctl,
952 #endif
953 	.sdev_attrs = hpsa_sdev_attrs,
954 	.shost_attrs = hpsa_shost_attrs,
955 	.max_sectors = 8192,
956 	.no_write_same = 1,
957 };
958 
959 static inline u32 next_command(struct ctlr_info *h, u8 q)
960 {
961 	u32 a;
962 	struct reply_queue_buffer *rq = &h->reply_queue[q];
963 
964 	if (h->transMethod & CFGTBL_Trans_io_accel1)
965 		return h->access.command_completed(h, q);
966 
967 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
968 		return h->access.command_completed(h, q);
969 
970 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
971 		a = rq->head[rq->current_entry];
972 		rq->current_entry++;
973 		atomic_dec(&h->commands_outstanding);
974 	} else {
975 		a = FIFO_EMPTY;
976 	}
977 	/* Check for wraparound */
978 	if (rq->current_entry == h->max_commands) {
979 		rq->current_entry = 0;
980 		rq->wraparound ^= 1;
981 	}
982 	return a;
983 }
984 
985 /*
986  * There are some special bits in the bus address of the
987  * command that we have to set for the controller to know
988  * how to process the command:
989  *
990  * Normal performant mode:
991  * bit 0: 1 means performant mode, 0 means simple mode.
992  * bits 1-3 = block fetch table entry
993  * bits 4-6 = command type (== 0)
994  *
995  * ioaccel1 mode:
996  * bit 0 = "performant mode" bit.
997  * bits 1-3 = block fetch table entry
998  * bits 4-6 = command type (== 110)
999  * (command type is needed because ioaccel1 mode
1000  * commands are submitted through the same register as normal
1001  * mode commands, so this is how the controller knows whether
1002  * the command is normal mode or ioaccel1 mode.)
1003  *
1004  * ioaccel2 mode:
1005  * bit 0 = "performant mode" bit.
1006  * bits 1-4 = block fetch table entry (note extra bit)
1007  * bits 4-6 = not needed, because ioaccel2 mode has
1008  * a separate special register for submitting commands.
1009  */
1010 
1011 /*
1012  * set_performant_mode: Modify the tag for cciss performant
1013  * set bit 0 for pull model, bits 3-1 for block fetch
1014  * register number
1015  */
1016 #define DEFAULT_REPLY_QUEUE (-1)
1017 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1018 					int reply_queue)
1019 {
1020 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1021 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1022 		if (unlikely(!h->msix_vectors))
1023 			return;
1024 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025 			c->Header.ReplyQueue =
1026 				raw_smp_processor_id() % h->nreply_queues;
1027 		else
1028 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1029 	}
1030 }
1031 
1032 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1033 						struct CommandList *c,
1034 						int reply_queue)
1035 {
1036 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1037 
1038 	/*
1039 	 * Tell the controller to post the reply to the queue for this
1040 	 * processor.  This seems to give the best I/O throughput.
1041 	 */
1042 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1044 	else
1045 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1046 	/*
1047 	 * Set the bits in the address sent down to include:
1048 	 *  - performant mode bit (bit 0)
1049 	 *  - pull count (bits 1-3)
1050 	 *  - command type (bits 4-6)
1051 	 */
1052 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1053 					IOACCEL1_BUSADDR_CMDTYPE;
1054 }
1055 
1056 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1057 						struct CommandList *c,
1058 						int reply_queue)
1059 {
1060 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1061 		&h->ioaccel2_cmd_pool[c->cmdindex];
1062 
1063 	/* Tell the controller to post the reply to the queue for this
1064 	 * processor.  This seems to give the best I/O throughput.
1065 	 */
1066 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1067 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1068 	else
1069 		cp->reply_queue = reply_queue % h->nreply_queues;
1070 	/* Set the bits in the address sent down to include:
1071 	 *  - performant mode bit not used in ioaccel mode 2
1072 	 *  - pull count (bits 0-3)
1073 	 *  - command type isn't needed for ioaccel2
1074 	 */
1075 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1076 }
1077 
1078 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1079 						struct CommandList *c,
1080 						int reply_queue)
1081 {
1082 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1083 
1084 	/*
1085 	 * Tell the controller to post the reply to the queue for this
1086 	 * processor.  This seems to give the best I/O throughput.
1087 	 */
1088 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1089 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1090 	else
1091 		cp->reply_queue = reply_queue % h->nreply_queues;
1092 	/*
1093 	 * Set the bits in the address sent down to include:
1094 	 *  - performant mode bit not used in ioaccel mode 2
1095 	 *  - pull count (bits 0-3)
1096 	 *  - command type isn't needed for ioaccel2
1097 	 */
1098 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1099 }
1100 
1101 static int is_firmware_flash_cmd(u8 *cdb)
1102 {
1103 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1104 }
1105 
1106 /*
1107  * During firmware flash, the heartbeat register may not update as frequently
1108  * as it should.  So we dial down lockup detection during firmware flash. and
1109  * dial it back up when firmware flash completes.
1110  */
1111 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1112 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1113 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1114 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1115 		struct CommandList *c)
1116 {
1117 	if (!is_firmware_flash_cmd(c->Request.CDB))
1118 		return;
1119 	atomic_inc(&h->firmware_flash_in_progress);
1120 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1121 }
1122 
1123 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1124 		struct CommandList *c)
1125 {
1126 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1127 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1128 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1129 }
1130 
1131 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1132 	struct CommandList *c, int reply_queue)
1133 {
1134 	dial_down_lockup_detection_during_fw_flash(h, c);
1135 	atomic_inc(&h->commands_outstanding);
1136 	switch (c->cmd_type) {
1137 	case CMD_IOACCEL1:
1138 		set_ioaccel1_performant_mode(h, c, reply_queue);
1139 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1140 		break;
1141 	case CMD_IOACCEL2:
1142 		set_ioaccel2_performant_mode(h, c, reply_queue);
1143 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1144 		break;
1145 	case IOACCEL2_TMF:
1146 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1147 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1148 		break;
1149 	default:
1150 		set_performant_mode(h, c, reply_queue);
1151 		h->access.submit_command(h, c);
1152 	}
1153 }
1154 
1155 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1156 {
1157 	if (unlikely(hpsa_is_pending_event(c)))
1158 		return finish_cmd(c);
1159 
1160 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1161 }
1162 
1163 static inline int is_hba_lunid(unsigned char scsi3addr[])
1164 {
1165 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1166 }
1167 
1168 static inline int is_scsi_rev_5(struct ctlr_info *h)
1169 {
1170 	if (!h->hba_inquiry_data)
1171 		return 0;
1172 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1173 		return 1;
1174 	return 0;
1175 }
1176 
1177 static int hpsa_find_target_lun(struct ctlr_info *h,
1178 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1179 {
1180 	/* finds an unused bus, target, lun for a new physical device
1181 	 * assumes h->devlock is held
1182 	 */
1183 	int i, found = 0;
1184 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1185 
1186 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1187 
1188 	for (i = 0; i < h->ndevices; i++) {
1189 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1190 			__set_bit(h->dev[i]->target, lun_taken);
1191 	}
1192 
1193 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1194 	if (i < HPSA_MAX_DEVICES) {
1195 		/* *bus = 1; */
1196 		*target = i;
1197 		*lun = 0;
1198 		found = 1;
1199 	}
1200 	return !found;
1201 }
1202 
1203 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1204 	struct hpsa_scsi_dev_t *dev, char *description)
1205 {
1206 #define LABEL_SIZE 25
1207 	char label[LABEL_SIZE];
1208 
1209 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1210 		return;
1211 
1212 	switch (dev->devtype) {
1213 	case TYPE_RAID:
1214 		snprintf(label, LABEL_SIZE, "controller");
1215 		break;
1216 	case TYPE_ENCLOSURE:
1217 		snprintf(label, LABEL_SIZE, "enclosure");
1218 		break;
1219 	case TYPE_DISK:
1220 	case TYPE_ZBC:
1221 		if (dev->external)
1222 			snprintf(label, LABEL_SIZE, "external");
1223 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1224 			snprintf(label, LABEL_SIZE, "%s",
1225 				raid_label[PHYSICAL_DRIVE]);
1226 		else
1227 			snprintf(label, LABEL_SIZE, "RAID-%s",
1228 				dev->raid_level > RAID_UNKNOWN ? "?" :
1229 				raid_label[dev->raid_level]);
1230 		break;
1231 	case TYPE_ROM:
1232 		snprintf(label, LABEL_SIZE, "rom");
1233 		break;
1234 	case TYPE_TAPE:
1235 		snprintf(label, LABEL_SIZE, "tape");
1236 		break;
1237 	case TYPE_MEDIUM_CHANGER:
1238 		snprintf(label, LABEL_SIZE, "changer");
1239 		break;
1240 	default:
1241 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1242 		break;
1243 	}
1244 
1245 	dev_printk(level, &h->pdev->dev,
1246 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1247 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1248 			description,
1249 			scsi_device_type(dev->devtype),
1250 			dev->vendor,
1251 			dev->model,
1252 			label,
1253 			dev->offload_config ? '+' : '-',
1254 			dev->offload_enabled ? '+' : '-',
1255 			dev->expose_device);
1256 }
1257 
1258 /* Add an entry into h->dev[] array. */
1259 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1260 		struct hpsa_scsi_dev_t *device,
1261 		struct hpsa_scsi_dev_t *added[], int *nadded)
1262 {
1263 	/* assumes h->devlock is held */
1264 	int n = h->ndevices;
1265 	int i;
1266 	unsigned char addr1[8], addr2[8];
1267 	struct hpsa_scsi_dev_t *sd;
1268 
1269 	if (n >= HPSA_MAX_DEVICES) {
1270 		dev_err(&h->pdev->dev, "too many devices, some will be "
1271 			"inaccessible.\n");
1272 		return -1;
1273 	}
1274 
1275 	/* physical devices do not have lun or target assigned until now. */
1276 	if (device->lun != -1)
1277 		/* Logical device, lun is already assigned. */
1278 		goto lun_assigned;
1279 
1280 	/* If this device a non-zero lun of a multi-lun device
1281 	 * byte 4 of the 8-byte LUN addr will contain the logical
1282 	 * unit no, zero otherwise.
1283 	 */
1284 	if (device->scsi3addr[4] == 0) {
1285 		/* This is not a non-zero lun of a multi-lun device */
1286 		if (hpsa_find_target_lun(h, device->scsi3addr,
1287 			device->bus, &device->target, &device->lun) != 0)
1288 			return -1;
1289 		goto lun_assigned;
1290 	}
1291 
1292 	/* This is a non-zero lun of a multi-lun device.
1293 	 * Search through our list and find the device which
1294 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1295 	 * Assign the same bus and target for this new LUN.
1296 	 * Use the logical unit number from the firmware.
1297 	 */
1298 	memcpy(addr1, device->scsi3addr, 8);
1299 	addr1[4] = 0;
1300 	addr1[5] = 0;
1301 	for (i = 0; i < n; i++) {
1302 		sd = h->dev[i];
1303 		memcpy(addr2, sd->scsi3addr, 8);
1304 		addr2[4] = 0;
1305 		addr2[5] = 0;
1306 		/* differ only in byte 4 and 5? */
1307 		if (memcmp(addr1, addr2, 8) == 0) {
1308 			device->bus = sd->bus;
1309 			device->target = sd->target;
1310 			device->lun = device->scsi3addr[4];
1311 			break;
1312 		}
1313 	}
1314 	if (device->lun == -1) {
1315 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1316 			" suspect firmware bug or unsupported hardware "
1317 			"configuration.\n");
1318 			return -1;
1319 	}
1320 
1321 lun_assigned:
1322 
1323 	h->dev[n] = device;
1324 	h->ndevices++;
1325 	added[*nadded] = device;
1326 	(*nadded)++;
1327 	hpsa_show_dev_msg(KERN_INFO, h, device,
1328 		device->expose_device ? "added" : "masked");
1329 	device->offload_to_be_enabled = device->offload_enabled;
1330 	device->offload_enabled = 0;
1331 	return 0;
1332 }
1333 
1334 /* Update an entry in h->dev[] array. */
1335 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1336 	int entry, struct hpsa_scsi_dev_t *new_entry)
1337 {
1338 	int offload_enabled;
1339 	/* assumes h->devlock is held */
1340 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1341 
1342 	/* Raid level changed. */
1343 	h->dev[entry]->raid_level = new_entry->raid_level;
1344 
1345 	/* Raid offload parameters changed.  Careful about the ordering. */
1346 	if (new_entry->offload_config && new_entry->offload_enabled) {
1347 		/*
1348 		 * if drive is newly offload_enabled, we want to copy the
1349 		 * raid map data first.  If previously offload_enabled and
1350 		 * offload_config were set, raid map data had better be
1351 		 * the same as it was before.  if raid map data is changed
1352 		 * then it had better be the case that
1353 		 * h->dev[entry]->offload_enabled is currently 0.
1354 		 */
1355 		h->dev[entry]->raid_map = new_entry->raid_map;
1356 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1357 	}
1358 	if (new_entry->hba_ioaccel_enabled) {
1359 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1360 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1361 	}
1362 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1363 	h->dev[entry]->offload_config = new_entry->offload_config;
1364 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1365 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1366 
1367 	/*
1368 	 * We can turn off ioaccel offload now, but need to delay turning
1369 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1370 	 * can't do that until all the devices are updated.
1371 	 */
1372 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1373 	if (!new_entry->offload_enabled)
1374 		h->dev[entry]->offload_enabled = 0;
1375 
1376 	offload_enabled = h->dev[entry]->offload_enabled;
1377 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1378 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1379 	h->dev[entry]->offload_enabled = offload_enabled;
1380 }
1381 
1382 /* Replace an entry from h->dev[] array. */
1383 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1384 	int entry, struct hpsa_scsi_dev_t *new_entry,
1385 	struct hpsa_scsi_dev_t *added[], int *nadded,
1386 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1387 {
1388 	/* assumes h->devlock is held */
1389 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1390 	removed[*nremoved] = h->dev[entry];
1391 	(*nremoved)++;
1392 
1393 	/*
1394 	 * New physical devices won't have target/lun assigned yet
1395 	 * so we need to preserve the values in the slot we are replacing.
1396 	 */
1397 	if (new_entry->target == -1) {
1398 		new_entry->target = h->dev[entry]->target;
1399 		new_entry->lun = h->dev[entry]->lun;
1400 	}
1401 
1402 	h->dev[entry] = new_entry;
1403 	added[*nadded] = new_entry;
1404 	(*nadded)++;
1405 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1406 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1407 	new_entry->offload_enabled = 0;
1408 }
1409 
1410 /* Remove an entry from h->dev[] array. */
1411 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1412 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414 	/* assumes h->devlock is held */
1415 	int i;
1416 	struct hpsa_scsi_dev_t *sd;
1417 
1418 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1419 
1420 	sd = h->dev[entry];
1421 	removed[*nremoved] = h->dev[entry];
1422 	(*nremoved)++;
1423 
1424 	for (i = entry; i < h->ndevices-1; i++)
1425 		h->dev[i] = h->dev[i+1];
1426 	h->ndevices--;
1427 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1428 }
1429 
1430 #define SCSI3ADDR_EQ(a, b) ( \
1431 	(a)[7] == (b)[7] && \
1432 	(a)[6] == (b)[6] && \
1433 	(a)[5] == (b)[5] && \
1434 	(a)[4] == (b)[4] && \
1435 	(a)[3] == (b)[3] && \
1436 	(a)[2] == (b)[2] && \
1437 	(a)[1] == (b)[1] && \
1438 	(a)[0] == (b)[0])
1439 
1440 static void fixup_botched_add(struct ctlr_info *h,
1441 	struct hpsa_scsi_dev_t *added)
1442 {
1443 	/* called when scsi_add_device fails in order to re-adjust
1444 	 * h->dev[] to match the mid layer's view.
1445 	 */
1446 	unsigned long flags;
1447 	int i, j;
1448 
1449 	spin_lock_irqsave(&h->lock, flags);
1450 	for (i = 0; i < h->ndevices; i++) {
1451 		if (h->dev[i] == added) {
1452 			for (j = i; j < h->ndevices-1; j++)
1453 				h->dev[j] = h->dev[j+1];
1454 			h->ndevices--;
1455 			break;
1456 		}
1457 	}
1458 	spin_unlock_irqrestore(&h->lock, flags);
1459 	kfree(added);
1460 }
1461 
1462 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1463 	struct hpsa_scsi_dev_t *dev2)
1464 {
1465 	/* we compare everything except lun and target as these
1466 	 * are not yet assigned.  Compare parts likely
1467 	 * to differ first
1468 	 */
1469 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1470 		sizeof(dev1->scsi3addr)) != 0)
1471 		return 0;
1472 	if (memcmp(dev1->device_id, dev2->device_id,
1473 		sizeof(dev1->device_id)) != 0)
1474 		return 0;
1475 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1476 		return 0;
1477 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1478 		return 0;
1479 	if (dev1->devtype != dev2->devtype)
1480 		return 0;
1481 	if (dev1->bus != dev2->bus)
1482 		return 0;
1483 	return 1;
1484 }
1485 
1486 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1487 	struct hpsa_scsi_dev_t *dev2)
1488 {
1489 	/* Device attributes that can change, but don't mean
1490 	 * that the device is a different device, nor that the OS
1491 	 * needs to be told anything about the change.
1492 	 */
1493 	if (dev1->raid_level != dev2->raid_level)
1494 		return 1;
1495 	if (dev1->offload_config != dev2->offload_config)
1496 		return 1;
1497 	if (dev1->offload_enabled != dev2->offload_enabled)
1498 		return 1;
1499 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1500 		if (dev1->queue_depth != dev2->queue_depth)
1501 			return 1;
1502 	return 0;
1503 }
1504 
1505 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1506  * and return needle location in *index.  If scsi3addr matches, but not
1507  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1508  * location in *index.
1509  * In the case of a minor device attribute change, such as RAID level, just
1510  * return DEVICE_UPDATED, along with the updated device's location in index.
1511  * If needle not found, return DEVICE_NOT_FOUND.
1512  */
1513 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1514 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1515 	int *index)
1516 {
1517 	int i;
1518 #define DEVICE_NOT_FOUND 0
1519 #define DEVICE_CHANGED 1
1520 #define DEVICE_SAME 2
1521 #define DEVICE_UPDATED 3
1522 	if (needle == NULL)
1523 		return DEVICE_NOT_FOUND;
1524 
1525 	for (i = 0; i < haystack_size; i++) {
1526 		if (haystack[i] == NULL) /* previously removed. */
1527 			continue;
1528 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1529 			*index = i;
1530 			if (device_is_the_same(needle, haystack[i])) {
1531 				if (device_updated(needle, haystack[i]))
1532 					return DEVICE_UPDATED;
1533 				return DEVICE_SAME;
1534 			} else {
1535 				/* Keep offline devices offline */
1536 				if (needle->volume_offline)
1537 					return DEVICE_NOT_FOUND;
1538 				return DEVICE_CHANGED;
1539 			}
1540 		}
1541 	}
1542 	*index = -1;
1543 	return DEVICE_NOT_FOUND;
1544 }
1545 
1546 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1547 					unsigned char scsi3addr[])
1548 {
1549 	struct offline_device_entry *device;
1550 	unsigned long flags;
1551 
1552 	/* Check to see if device is already on the list */
1553 	spin_lock_irqsave(&h->offline_device_lock, flags);
1554 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1555 		if (memcmp(device->scsi3addr, scsi3addr,
1556 			sizeof(device->scsi3addr)) == 0) {
1557 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1558 			return;
1559 		}
1560 	}
1561 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1562 
1563 	/* Device is not on the list, add it. */
1564 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1565 	if (!device)
1566 		return;
1567 
1568 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1569 	spin_lock_irqsave(&h->offline_device_lock, flags);
1570 	list_add_tail(&device->offline_list, &h->offline_device_list);
1571 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1572 }
1573 
1574 /* Print a message explaining various offline volume states */
1575 static void hpsa_show_volume_status(struct ctlr_info *h,
1576 	struct hpsa_scsi_dev_t *sd)
1577 {
1578 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1579 		dev_info(&h->pdev->dev,
1580 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1581 			h->scsi_host->host_no,
1582 			sd->bus, sd->target, sd->lun);
1583 	switch (sd->volume_offline) {
1584 	case HPSA_LV_OK:
1585 		break;
1586 	case HPSA_LV_UNDERGOING_ERASE:
1587 		dev_info(&h->pdev->dev,
1588 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1589 			h->scsi_host->host_no,
1590 			sd->bus, sd->target, sd->lun);
1591 		break;
1592 	case HPSA_LV_NOT_AVAILABLE:
1593 		dev_info(&h->pdev->dev,
1594 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1595 			h->scsi_host->host_no,
1596 			sd->bus, sd->target, sd->lun);
1597 		break;
1598 	case HPSA_LV_UNDERGOING_RPI:
1599 		dev_info(&h->pdev->dev,
1600 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1601 			h->scsi_host->host_no,
1602 			sd->bus, sd->target, sd->lun);
1603 		break;
1604 	case HPSA_LV_PENDING_RPI:
1605 		dev_info(&h->pdev->dev,
1606 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1607 			h->scsi_host->host_no,
1608 			sd->bus, sd->target, sd->lun);
1609 		break;
1610 	case HPSA_LV_ENCRYPTED_NO_KEY:
1611 		dev_info(&h->pdev->dev,
1612 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1613 			h->scsi_host->host_no,
1614 			sd->bus, sd->target, sd->lun);
1615 		break;
1616 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1617 		dev_info(&h->pdev->dev,
1618 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1619 			h->scsi_host->host_no,
1620 			sd->bus, sd->target, sd->lun);
1621 		break;
1622 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1623 		dev_info(&h->pdev->dev,
1624 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1625 			h->scsi_host->host_no,
1626 			sd->bus, sd->target, sd->lun);
1627 		break;
1628 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1629 		dev_info(&h->pdev->dev,
1630 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1631 			h->scsi_host->host_no,
1632 			sd->bus, sd->target, sd->lun);
1633 		break;
1634 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1635 		dev_info(&h->pdev->dev,
1636 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1637 			h->scsi_host->host_no,
1638 			sd->bus, sd->target, sd->lun);
1639 		break;
1640 	case HPSA_LV_PENDING_ENCRYPTION:
1641 		dev_info(&h->pdev->dev,
1642 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1643 			h->scsi_host->host_no,
1644 			sd->bus, sd->target, sd->lun);
1645 		break;
1646 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1647 		dev_info(&h->pdev->dev,
1648 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1649 			h->scsi_host->host_no,
1650 			sd->bus, sd->target, sd->lun);
1651 		break;
1652 	}
1653 }
1654 
1655 /*
1656  * Figure the list of physical drive pointers for a logical drive with
1657  * raid offload configured.
1658  */
1659 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1660 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1661 				struct hpsa_scsi_dev_t *logical_drive)
1662 {
1663 	struct raid_map_data *map = &logical_drive->raid_map;
1664 	struct raid_map_disk_data *dd = &map->data[0];
1665 	int i, j;
1666 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1667 				le16_to_cpu(map->metadata_disks_per_row);
1668 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1669 				le16_to_cpu(map->layout_map_count) *
1670 				total_disks_per_row;
1671 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1672 				total_disks_per_row;
1673 	int qdepth;
1674 
1675 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1676 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1677 
1678 	logical_drive->nphysical_disks = nraid_map_entries;
1679 
1680 	qdepth = 0;
1681 	for (i = 0; i < nraid_map_entries; i++) {
1682 		logical_drive->phys_disk[i] = NULL;
1683 		if (!logical_drive->offload_config)
1684 			continue;
1685 		for (j = 0; j < ndevices; j++) {
1686 			if (dev[j] == NULL)
1687 				continue;
1688 			if (dev[j]->devtype != TYPE_DISK &&
1689 			    dev[j]->devtype != TYPE_ZBC)
1690 				continue;
1691 			if (is_logical_device(dev[j]))
1692 				continue;
1693 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1694 				continue;
1695 
1696 			logical_drive->phys_disk[i] = dev[j];
1697 			if (i < nphys_disk)
1698 				qdepth = min(h->nr_cmds, qdepth +
1699 				    logical_drive->phys_disk[i]->queue_depth);
1700 			break;
1701 		}
1702 
1703 		/*
1704 		 * This can happen if a physical drive is removed and
1705 		 * the logical drive is degraded.  In that case, the RAID
1706 		 * map data will refer to a physical disk which isn't actually
1707 		 * present.  And in that case offload_enabled should already
1708 		 * be 0, but we'll turn it off here just in case
1709 		 */
1710 		if (!logical_drive->phys_disk[i]) {
1711 			logical_drive->offload_enabled = 0;
1712 			logical_drive->offload_to_be_enabled = 0;
1713 			logical_drive->queue_depth = 8;
1714 		}
1715 	}
1716 	if (nraid_map_entries)
1717 		/*
1718 		 * This is correct for reads, too high for full stripe writes,
1719 		 * way too high for partial stripe writes
1720 		 */
1721 		logical_drive->queue_depth = qdepth;
1722 	else
1723 		logical_drive->queue_depth = h->nr_cmds;
1724 }
1725 
1726 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1727 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1728 {
1729 	int i;
1730 
1731 	for (i = 0; i < ndevices; i++) {
1732 		if (dev[i] == NULL)
1733 			continue;
1734 		if (dev[i]->devtype != TYPE_DISK &&
1735 		    dev[i]->devtype != TYPE_ZBC)
1736 			continue;
1737 		if (!is_logical_device(dev[i]))
1738 			continue;
1739 
1740 		/*
1741 		 * If offload is currently enabled, the RAID map and
1742 		 * phys_disk[] assignment *better* not be changing
1743 		 * and since it isn't changing, we do not need to
1744 		 * update it.
1745 		 */
1746 		if (dev[i]->offload_enabled)
1747 			continue;
1748 
1749 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1750 	}
1751 }
1752 
1753 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1754 {
1755 	int rc = 0;
1756 
1757 	if (!h->scsi_host)
1758 		return 1;
1759 
1760 	if (is_logical_device(device)) /* RAID */
1761 		rc = scsi_add_device(h->scsi_host, device->bus,
1762 					device->target, device->lun);
1763 	else /* HBA */
1764 		rc = hpsa_add_sas_device(h->sas_host, device);
1765 
1766 	return rc;
1767 }
1768 
1769 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1770 						struct hpsa_scsi_dev_t *dev)
1771 {
1772 	int i;
1773 	int count = 0;
1774 
1775 	for (i = 0; i < h->nr_cmds; i++) {
1776 		struct CommandList *c = h->cmd_pool + i;
1777 		int refcount = atomic_inc_return(&c->refcount);
1778 
1779 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1780 				dev->scsi3addr)) {
1781 			unsigned long flags;
1782 
1783 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1784 			if (!hpsa_is_cmd_idle(c))
1785 				++count;
1786 			spin_unlock_irqrestore(&h->lock, flags);
1787 		}
1788 
1789 		cmd_free(h, c);
1790 	}
1791 
1792 	return count;
1793 }
1794 
1795 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1796 						struct hpsa_scsi_dev_t *device)
1797 {
1798 	int cmds = 0;
1799 	int waits = 0;
1800 
1801 	while (1) {
1802 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1803 		if (cmds == 0)
1804 			break;
1805 		if (++waits > 20)
1806 			break;
1807 		dev_warn(&h->pdev->dev,
1808 			"%s: removing device with %d outstanding commands!\n",
1809 			__func__, cmds);
1810 		msleep(1000);
1811 	}
1812 }
1813 
1814 static void hpsa_remove_device(struct ctlr_info *h,
1815 			struct hpsa_scsi_dev_t *device)
1816 {
1817 	struct scsi_device *sdev = NULL;
1818 
1819 	if (!h->scsi_host)
1820 		return;
1821 
1822 	if (is_logical_device(device)) { /* RAID */
1823 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1824 						device->target, device->lun);
1825 		if (sdev) {
1826 			scsi_remove_device(sdev);
1827 			scsi_device_put(sdev);
1828 		} else {
1829 			/*
1830 			 * We don't expect to get here.  Future commands
1831 			 * to this device will get a selection timeout as
1832 			 * if the device were gone.
1833 			 */
1834 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1835 					"didn't find device for removal.");
1836 		}
1837 	} else { /* HBA */
1838 
1839 		device->removed = 1;
1840 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1841 
1842 		hpsa_remove_sas_device(device);
1843 	}
1844 }
1845 
1846 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1847 	struct hpsa_scsi_dev_t *sd[], int nsds)
1848 {
1849 	/* sd contains scsi3 addresses and devtypes, and inquiry
1850 	 * data.  This function takes what's in sd to be the current
1851 	 * reality and updates h->dev[] to reflect that reality.
1852 	 */
1853 	int i, entry, device_change, changes = 0;
1854 	struct hpsa_scsi_dev_t *csd;
1855 	unsigned long flags;
1856 	struct hpsa_scsi_dev_t **added, **removed;
1857 	int nadded, nremoved;
1858 
1859 	/*
1860 	 * A reset can cause a device status to change
1861 	 * re-schedule the scan to see what happened.
1862 	 */
1863 	spin_lock_irqsave(&h->reset_lock, flags);
1864 	if (h->reset_in_progress) {
1865 		h->drv_req_rescan = 1;
1866 		spin_unlock_irqrestore(&h->reset_lock, flags);
1867 		return;
1868 	}
1869 	spin_unlock_irqrestore(&h->reset_lock, flags);
1870 
1871 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1872 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1873 
1874 	if (!added || !removed) {
1875 		dev_warn(&h->pdev->dev, "out of memory in "
1876 			"adjust_hpsa_scsi_table\n");
1877 		goto free_and_out;
1878 	}
1879 
1880 	spin_lock_irqsave(&h->devlock, flags);
1881 
1882 	/* find any devices in h->dev[] that are not in
1883 	 * sd[] and remove them from h->dev[], and for any
1884 	 * devices which have changed, remove the old device
1885 	 * info and add the new device info.
1886 	 * If minor device attributes change, just update
1887 	 * the existing device structure.
1888 	 */
1889 	i = 0;
1890 	nremoved = 0;
1891 	nadded = 0;
1892 	while (i < h->ndevices) {
1893 		csd = h->dev[i];
1894 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1895 		if (device_change == DEVICE_NOT_FOUND) {
1896 			changes++;
1897 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1898 			continue; /* remove ^^^, hence i not incremented */
1899 		} else if (device_change == DEVICE_CHANGED) {
1900 			changes++;
1901 			hpsa_scsi_replace_entry(h, i, sd[entry],
1902 				added, &nadded, removed, &nremoved);
1903 			/* Set it to NULL to prevent it from being freed
1904 			 * at the bottom of hpsa_update_scsi_devices()
1905 			 */
1906 			sd[entry] = NULL;
1907 		} else if (device_change == DEVICE_UPDATED) {
1908 			hpsa_scsi_update_entry(h, i, sd[entry]);
1909 		}
1910 		i++;
1911 	}
1912 
1913 	/* Now, make sure every device listed in sd[] is also
1914 	 * listed in h->dev[], adding them if they aren't found
1915 	 */
1916 
1917 	for (i = 0; i < nsds; i++) {
1918 		if (!sd[i]) /* if already added above. */
1919 			continue;
1920 
1921 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1922 		 * as the SCSI mid-layer does not handle such devices well.
1923 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1924 		 * at 160Hz, and prevents the system from coming up.
1925 		 */
1926 		if (sd[i]->volume_offline) {
1927 			hpsa_show_volume_status(h, sd[i]);
1928 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1929 			continue;
1930 		}
1931 
1932 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1933 					h->ndevices, &entry);
1934 		if (device_change == DEVICE_NOT_FOUND) {
1935 			changes++;
1936 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1937 				break;
1938 			sd[i] = NULL; /* prevent from being freed later. */
1939 		} else if (device_change == DEVICE_CHANGED) {
1940 			/* should never happen... */
1941 			changes++;
1942 			dev_warn(&h->pdev->dev,
1943 				"device unexpectedly changed.\n");
1944 			/* but if it does happen, we just ignore that device */
1945 		}
1946 	}
1947 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1948 
1949 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1950 	 * any logical drives that need it enabled.
1951 	 */
1952 	for (i = 0; i < h->ndevices; i++) {
1953 		if (h->dev[i] == NULL)
1954 			continue;
1955 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1956 	}
1957 
1958 	spin_unlock_irqrestore(&h->devlock, flags);
1959 
1960 	/* Monitor devices which are in one of several NOT READY states to be
1961 	 * brought online later. This must be done without holding h->devlock,
1962 	 * so don't touch h->dev[]
1963 	 */
1964 	for (i = 0; i < nsds; i++) {
1965 		if (!sd[i]) /* if already added above. */
1966 			continue;
1967 		if (sd[i]->volume_offline)
1968 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1969 	}
1970 
1971 	/* Don't notify scsi mid layer of any changes the first time through
1972 	 * (or if there are no changes) scsi_scan_host will do it later the
1973 	 * first time through.
1974 	 */
1975 	if (!changes)
1976 		goto free_and_out;
1977 
1978 	/* Notify scsi mid layer of any removed devices */
1979 	for (i = 0; i < nremoved; i++) {
1980 		if (removed[i] == NULL)
1981 			continue;
1982 		if (removed[i]->expose_device)
1983 			hpsa_remove_device(h, removed[i]);
1984 		kfree(removed[i]);
1985 		removed[i] = NULL;
1986 	}
1987 
1988 	/* Notify scsi mid layer of any added devices */
1989 	for (i = 0; i < nadded; i++) {
1990 		int rc = 0;
1991 
1992 		if (added[i] == NULL)
1993 			continue;
1994 		if (!(added[i]->expose_device))
1995 			continue;
1996 		rc = hpsa_add_device(h, added[i]);
1997 		if (!rc)
1998 			continue;
1999 		dev_warn(&h->pdev->dev,
2000 			"addition failed %d, device not added.", rc);
2001 		/* now we have to remove it from h->dev,
2002 		 * since it didn't get added to scsi mid layer
2003 		 */
2004 		fixup_botched_add(h, added[i]);
2005 		h->drv_req_rescan = 1;
2006 	}
2007 
2008 free_and_out:
2009 	kfree(added);
2010 	kfree(removed);
2011 }
2012 
2013 /*
2014  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2015  * Assume's h->devlock is held.
2016  */
2017 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2018 	int bus, int target, int lun)
2019 {
2020 	int i;
2021 	struct hpsa_scsi_dev_t *sd;
2022 
2023 	for (i = 0; i < h->ndevices; i++) {
2024 		sd = h->dev[i];
2025 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2026 			return sd;
2027 	}
2028 	return NULL;
2029 }
2030 
2031 static int hpsa_slave_alloc(struct scsi_device *sdev)
2032 {
2033 	struct hpsa_scsi_dev_t *sd = NULL;
2034 	unsigned long flags;
2035 	struct ctlr_info *h;
2036 
2037 	h = sdev_to_hba(sdev);
2038 	spin_lock_irqsave(&h->devlock, flags);
2039 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2040 		struct scsi_target *starget;
2041 		struct sas_rphy *rphy;
2042 
2043 		starget = scsi_target(sdev);
2044 		rphy = target_to_rphy(starget);
2045 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2046 		if (sd) {
2047 			sd->target = sdev_id(sdev);
2048 			sd->lun = sdev->lun;
2049 		}
2050 	}
2051 	if (!sd)
2052 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2053 					sdev_id(sdev), sdev->lun);
2054 
2055 	if (sd && sd->expose_device) {
2056 		atomic_set(&sd->ioaccel_cmds_out, 0);
2057 		sdev->hostdata = sd;
2058 	} else
2059 		sdev->hostdata = NULL;
2060 	spin_unlock_irqrestore(&h->devlock, flags);
2061 	return 0;
2062 }
2063 
2064 /* configure scsi device based on internal per-device structure */
2065 static int hpsa_slave_configure(struct scsi_device *sdev)
2066 {
2067 	struct hpsa_scsi_dev_t *sd;
2068 	int queue_depth;
2069 
2070 	sd = sdev->hostdata;
2071 	sdev->no_uld_attach = !sd || !sd->expose_device;
2072 
2073 	if (sd) {
2074 		if (sd->external)
2075 			queue_depth = EXTERNAL_QD;
2076 		else
2077 			queue_depth = sd->queue_depth != 0 ?
2078 					sd->queue_depth : sdev->host->can_queue;
2079 	} else
2080 		queue_depth = sdev->host->can_queue;
2081 
2082 	scsi_change_queue_depth(sdev, queue_depth);
2083 
2084 	return 0;
2085 }
2086 
2087 static void hpsa_slave_destroy(struct scsi_device *sdev)
2088 {
2089 	/* nothing to do. */
2090 }
2091 
2092 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2093 {
2094 	int i;
2095 
2096 	if (!h->ioaccel2_cmd_sg_list)
2097 		return;
2098 	for (i = 0; i < h->nr_cmds; i++) {
2099 		kfree(h->ioaccel2_cmd_sg_list[i]);
2100 		h->ioaccel2_cmd_sg_list[i] = NULL;
2101 	}
2102 	kfree(h->ioaccel2_cmd_sg_list);
2103 	h->ioaccel2_cmd_sg_list = NULL;
2104 }
2105 
2106 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2107 {
2108 	int i;
2109 
2110 	if (h->chainsize <= 0)
2111 		return 0;
2112 
2113 	h->ioaccel2_cmd_sg_list =
2114 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2115 					GFP_KERNEL);
2116 	if (!h->ioaccel2_cmd_sg_list)
2117 		return -ENOMEM;
2118 	for (i = 0; i < h->nr_cmds; i++) {
2119 		h->ioaccel2_cmd_sg_list[i] =
2120 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2121 					h->maxsgentries, GFP_KERNEL);
2122 		if (!h->ioaccel2_cmd_sg_list[i])
2123 			goto clean;
2124 	}
2125 	return 0;
2126 
2127 clean:
2128 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2129 	return -ENOMEM;
2130 }
2131 
2132 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2133 {
2134 	int i;
2135 
2136 	if (!h->cmd_sg_list)
2137 		return;
2138 	for (i = 0; i < h->nr_cmds; i++) {
2139 		kfree(h->cmd_sg_list[i]);
2140 		h->cmd_sg_list[i] = NULL;
2141 	}
2142 	kfree(h->cmd_sg_list);
2143 	h->cmd_sg_list = NULL;
2144 }
2145 
2146 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2147 {
2148 	int i;
2149 
2150 	if (h->chainsize <= 0)
2151 		return 0;
2152 
2153 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2154 				GFP_KERNEL);
2155 	if (!h->cmd_sg_list)
2156 		return -ENOMEM;
2157 
2158 	for (i = 0; i < h->nr_cmds; i++) {
2159 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2160 						h->chainsize, GFP_KERNEL);
2161 		if (!h->cmd_sg_list[i])
2162 			goto clean;
2163 
2164 	}
2165 	return 0;
2166 
2167 clean:
2168 	hpsa_free_sg_chain_blocks(h);
2169 	return -ENOMEM;
2170 }
2171 
2172 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2173 	struct io_accel2_cmd *cp, struct CommandList *c)
2174 {
2175 	struct ioaccel2_sg_element *chain_block;
2176 	u64 temp64;
2177 	u32 chain_size;
2178 
2179 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2180 	chain_size = le32_to_cpu(cp->sg[0].length);
2181 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2182 				PCI_DMA_TODEVICE);
2183 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2184 		/* prevent subsequent unmapping */
2185 		cp->sg->address = 0;
2186 		return -1;
2187 	}
2188 	cp->sg->address = cpu_to_le64(temp64);
2189 	return 0;
2190 }
2191 
2192 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2193 	struct io_accel2_cmd *cp)
2194 {
2195 	struct ioaccel2_sg_element *chain_sg;
2196 	u64 temp64;
2197 	u32 chain_size;
2198 
2199 	chain_sg = cp->sg;
2200 	temp64 = le64_to_cpu(chain_sg->address);
2201 	chain_size = le32_to_cpu(cp->sg[0].length);
2202 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2203 }
2204 
2205 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2206 	struct CommandList *c)
2207 {
2208 	struct SGDescriptor *chain_sg, *chain_block;
2209 	u64 temp64;
2210 	u32 chain_len;
2211 
2212 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213 	chain_block = h->cmd_sg_list[c->cmdindex];
2214 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2215 	chain_len = sizeof(*chain_sg) *
2216 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2217 	chain_sg->Len = cpu_to_le32(chain_len);
2218 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2219 				PCI_DMA_TODEVICE);
2220 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2221 		/* prevent subsequent unmapping */
2222 		chain_sg->Addr = cpu_to_le64(0);
2223 		return -1;
2224 	}
2225 	chain_sg->Addr = cpu_to_le64(temp64);
2226 	return 0;
2227 }
2228 
2229 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2230 	struct CommandList *c)
2231 {
2232 	struct SGDescriptor *chain_sg;
2233 
2234 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2235 		return;
2236 
2237 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2238 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2239 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2240 }
2241 
2242 
2243 /* Decode the various types of errors on ioaccel2 path.
2244  * Return 1 for any error that should generate a RAID path retry.
2245  * Return 0 for errors that don't require a RAID path retry.
2246  */
2247 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2248 					struct CommandList *c,
2249 					struct scsi_cmnd *cmd,
2250 					struct io_accel2_cmd *c2,
2251 					struct hpsa_scsi_dev_t *dev)
2252 {
2253 	int data_len;
2254 	int retry = 0;
2255 	u32 ioaccel2_resid = 0;
2256 
2257 	switch (c2->error_data.serv_response) {
2258 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2259 		switch (c2->error_data.status) {
2260 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2261 			break;
2262 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2263 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2264 			if (c2->error_data.data_present !=
2265 					IOACCEL2_SENSE_DATA_PRESENT) {
2266 				memset(cmd->sense_buffer, 0,
2267 					SCSI_SENSE_BUFFERSIZE);
2268 				break;
2269 			}
2270 			/* copy the sense data */
2271 			data_len = c2->error_data.sense_data_len;
2272 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2273 				data_len = SCSI_SENSE_BUFFERSIZE;
2274 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2275 				data_len =
2276 					sizeof(c2->error_data.sense_data_buff);
2277 			memcpy(cmd->sense_buffer,
2278 				c2->error_data.sense_data_buff, data_len);
2279 			retry = 1;
2280 			break;
2281 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2282 			retry = 1;
2283 			break;
2284 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2285 			retry = 1;
2286 			break;
2287 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2288 			retry = 1;
2289 			break;
2290 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2291 			retry = 1;
2292 			break;
2293 		default:
2294 			retry = 1;
2295 			break;
2296 		}
2297 		break;
2298 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2299 		switch (c2->error_data.status) {
2300 		case IOACCEL2_STATUS_SR_IO_ERROR:
2301 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2302 		case IOACCEL2_STATUS_SR_OVERRUN:
2303 			retry = 1;
2304 			break;
2305 		case IOACCEL2_STATUS_SR_UNDERRUN:
2306 			cmd->result = (DID_OK << 16);		/* host byte */
2307 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2308 			ioaccel2_resid = get_unaligned_le32(
2309 						&c2->error_data.resid_cnt[0]);
2310 			scsi_set_resid(cmd, ioaccel2_resid);
2311 			break;
2312 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2313 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2314 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2315 			/*
2316 			 * Did an HBA disk disappear? We will eventually
2317 			 * get a state change event from the controller but
2318 			 * in the meantime, we need to tell the OS that the
2319 			 * HBA disk is no longer there and stop I/O
2320 			 * from going down. This allows the potential re-insert
2321 			 * of the disk to get the same device node.
2322 			 */
2323 			if (dev->physical_device && dev->expose_device) {
2324 				cmd->result = DID_NO_CONNECT << 16;
2325 				dev->removed = 1;
2326 				h->drv_req_rescan = 1;
2327 				dev_warn(&h->pdev->dev,
2328 					"%s: device is gone!\n", __func__);
2329 			} else
2330 				/*
2331 				 * Retry by sending down the RAID path.
2332 				 * We will get an event from ctlr to
2333 				 * trigger rescan regardless.
2334 				 */
2335 				retry = 1;
2336 			break;
2337 		default:
2338 			retry = 1;
2339 		}
2340 		break;
2341 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2342 		break;
2343 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2344 		break;
2345 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2346 		retry = 1;
2347 		break;
2348 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2349 		break;
2350 	default:
2351 		retry = 1;
2352 		break;
2353 	}
2354 
2355 	return retry;	/* retry on raid path? */
2356 }
2357 
2358 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2359 		struct CommandList *c)
2360 {
2361 	bool do_wake = false;
2362 
2363 	/*
2364 	 * Prevent the following race in the abort handler:
2365 	 *
2366 	 * 1. LLD is requested to abort a SCSI command
2367 	 * 2. The SCSI command completes
2368 	 * 3. The struct CommandList associated with step 2 is made available
2369 	 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2370 	 * 5. Abort handler follows scsi_cmnd->host_scribble and
2371 	 *    finds struct CommandList and tries to aborts it
2372 	 * Now we have aborted the wrong command.
2373 	 *
2374 	 * Reset c->scsi_cmd here so that the abort or reset handler will know
2375 	 * this command has completed.  Then, check to see if the handler is
2376 	 * waiting for this command, and, if so, wake it.
2377 	 */
2378 	c->scsi_cmd = SCSI_CMD_IDLE;
2379 	mb();	/* Declare command idle before checking for pending events. */
2380 	if (c->abort_pending) {
2381 		do_wake = true;
2382 		c->abort_pending = false;
2383 	}
2384 	if (c->reset_pending) {
2385 		unsigned long flags;
2386 		struct hpsa_scsi_dev_t *dev;
2387 
2388 		/*
2389 		 * There appears to be a reset pending; lock the lock and
2390 		 * reconfirm.  If so, then decrement the count of outstanding
2391 		 * commands and wake the reset command if this is the last one.
2392 		 */
2393 		spin_lock_irqsave(&h->lock, flags);
2394 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2395 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2396 			do_wake = true;
2397 		c->reset_pending = NULL;
2398 		spin_unlock_irqrestore(&h->lock, flags);
2399 	}
2400 
2401 	if (do_wake)
2402 		wake_up_all(&h->event_sync_wait_queue);
2403 }
2404 
2405 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2406 				      struct CommandList *c)
2407 {
2408 	hpsa_cmd_resolve_events(h, c);
2409 	cmd_tagged_free(h, c);
2410 }
2411 
2412 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2413 		struct CommandList *c, struct scsi_cmnd *cmd)
2414 {
2415 	hpsa_cmd_resolve_and_free(h, c);
2416 	if (cmd && cmd->scsi_done)
2417 		cmd->scsi_done(cmd);
2418 }
2419 
2420 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2421 {
2422 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2423 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2424 }
2425 
2426 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2427 {
2428 	cmd->result = DID_ABORT << 16;
2429 }
2430 
2431 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2432 				    struct scsi_cmnd *cmd)
2433 {
2434 	hpsa_set_scsi_cmd_aborted(cmd);
2435 	dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2436 			 c->Request.CDB, c->err_info->ScsiStatus);
2437 	hpsa_cmd_resolve_and_free(h, c);
2438 }
2439 
2440 static void process_ioaccel2_completion(struct ctlr_info *h,
2441 		struct CommandList *c, struct scsi_cmnd *cmd,
2442 		struct hpsa_scsi_dev_t *dev)
2443 {
2444 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2445 
2446 	/* check for good status */
2447 	if (likely(c2->error_data.serv_response == 0 &&
2448 			c2->error_data.status == 0))
2449 		return hpsa_cmd_free_and_done(h, c, cmd);
2450 
2451 	/*
2452 	 * Any RAID offload error results in retry which will use
2453 	 * the normal I/O path so the controller can handle whatever's
2454 	 * wrong.
2455 	 */
2456 	if (is_logical_device(dev) &&
2457 		c2->error_data.serv_response ==
2458 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2459 		if (c2->error_data.status ==
2460 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2461 			dev->offload_enabled = 0;
2462 			dev->offload_to_be_enabled = 0;
2463 		}
2464 
2465 		return hpsa_retry_cmd(h, c);
2466 	}
2467 
2468 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2469 		return hpsa_retry_cmd(h, c);
2470 
2471 	return hpsa_cmd_free_and_done(h, c, cmd);
2472 }
2473 
2474 /* Returns 0 on success, < 0 otherwise. */
2475 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2476 					struct CommandList *cp)
2477 {
2478 	u8 tmf_status = cp->err_info->ScsiStatus;
2479 
2480 	switch (tmf_status) {
2481 	case CISS_TMF_COMPLETE:
2482 		/*
2483 		 * CISS_TMF_COMPLETE never happens, instead,
2484 		 * ei->CommandStatus == 0 for this case.
2485 		 */
2486 	case CISS_TMF_SUCCESS:
2487 		return 0;
2488 	case CISS_TMF_INVALID_FRAME:
2489 	case CISS_TMF_NOT_SUPPORTED:
2490 	case CISS_TMF_FAILED:
2491 	case CISS_TMF_WRONG_LUN:
2492 	case CISS_TMF_OVERLAPPED_TAG:
2493 		break;
2494 	default:
2495 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2496 				tmf_status);
2497 		break;
2498 	}
2499 	return -tmf_status;
2500 }
2501 
2502 static void complete_scsi_command(struct CommandList *cp)
2503 {
2504 	struct scsi_cmnd *cmd;
2505 	struct ctlr_info *h;
2506 	struct ErrorInfo *ei;
2507 	struct hpsa_scsi_dev_t *dev;
2508 	struct io_accel2_cmd *c2;
2509 
2510 	u8 sense_key;
2511 	u8 asc;      /* additional sense code */
2512 	u8 ascq;     /* additional sense code qualifier */
2513 	unsigned long sense_data_size;
2514 
2515 	ei = cp->err_info;
2516 	cmd = cp->scsi_cmd;
2517 	h = cp->h;
2518 
2519 	if (!cmd->device) {
2520 		cmd->result = DID_NO_CONNECT << 16;
2521 		return hpsa_cmd_free_and_done(h, cp, cmd);
2522 	}
2523 
2524 	dev = cmd->device->hostdata;
2525 	if (!dev) {
2526 		cmd->result = DID_NO_CONNECT << 16;
2527 		return hpsa_cmd_free_and_done(h, cp, cmd);
2528 	}
2529 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2530 
2531 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2532 	if ((cp->cmd_type == CMD_SCSI) &&
2533 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2534 		hpsa_unmap_sg_chain_block(h, cp);
2535 
2536 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2537 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2538 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2539 
2540 	cmd->result = (DID_OK << 16); 		/* host byte */
2541 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2542 
2543 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2544 		if (dev->physical_device && dev->expose_device &&
2545 			dev->removed) {
2546 			cmd->result = DID_NO_CONNECT << 16;
2547 			return hpsa_cmd_free_and_done(h, cp, cmd);
2548 		}
2549 		if (likely(cp->phys_disk != NULL))
2550 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2551 	}
2552 
2553 	/*
2554 	 * We check for lockup status here as it may be set for
2555 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2556 	 * fail_all_oustanding_cmds()
2557 	 */
2558 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2559 		/* DID_NO_CONNECT will prevent a retry */
2560 		cmd->result = DID_NO_CONNECT << 16;
2561 		return hpsa_cmd_free_and_done(h, cp, cmd);
2562 	}
2563 
2564 	if ((unlikely(hpsa_is_pending_event(cp)))) {
2565 		if (cp->reset_pending)
2566 			return hpsa_cmd_free_and_done(h, cp, cmd);
2567 		if (cp->abort_pending)
2568 			return hpsa_cmd_abort_and_free(h, cp, cmd);
2569 	}
2570 
2571 	if (cp->cmd_type == CMD_IOACCEL2)
2572 		return process_ioaccel2_completion(h, cp, cmd, dev);
2573 
2574 	scsi_set_resid(cmd, ei->ResidualCnt);
2575 	if (ei->CommandStatus == 0)
2576 		return hpsa_cmd_free_and_done(h, cp, cmd);
2577 
2578 	/* For I/O accelerator commands, copy over some fields to the normal
2579 	 * CISS header used below for error handling.
2580 	 */
2581 	if (cp->cmd_type == CMD_IOACCEL1) {
2582 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2583 		cp->Header.SGList = scsi_sg_count(cmd);
2584 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2585 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2586 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2587 		cp->Header.tag = c->tag;
2588 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2589 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2590 
2591 		/* Any RAID offload error results in retry which will use
2592 		 * the normal I/O path so the controller can handle whatever's
2593 		 * wrong.
2594 		 */
2595 		if (is_logical_device(dev)) {
2596 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2597 				dev->offload_enabled = 0;
2598 			return hpsa_retry_cmd(h, cp);
2599 		}
2600 	}
2601 
2602 	/* an error has occurred */
2603 	switch (ei->CommandStatus) {
2604 
2605 	case CMD_TARGET_STATUS:
2606 		cmd->result |= ei->ScsiStatus;
2607 		/* copy the sense data */
2608 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2609 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2610 		else
2611 			sense_data_size = sizeof(ei->SenseInfo);
2612 		if (ei->SenseLen < sense_data_size)
2613 			sense_data_size = ei->SenseLen;
2614 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2615 		if (ei->ScsiStatus)
2616 			decode_sense_data(ei->SenseInfo, sense_data_size,
2617 				&sense_key, &asc, &ascq);
2618 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2619 			if (sense_key == ABORTED_COMMAND) {
2620 				cmd->result |= DID_SOFT_ERROR << 16;
2621 				break;
2622 			}
2623 			break;
2624 		}
2625 		/* Problem was not a check condition
2626 		 * Pass it up to the upper layers...
2627 		 */
2628 		if (ei->ScsiStatus) {
2629 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2630 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2631 				"Returning result: 0x%x\n",
2632 				cp, ei->ScsiStatus,
2633 				sense_key, asc, ascq,
2634 				cmd->result);
2635 		} else {  /* scsi status is zero??? How??? */
2636 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2637 				"Returning no connection.\n", cp),
2638 
2639 			/* Ordinarily, this case should never happen,
2640 			 * but there is a bug in some released firmware
2641 			 * revisions that allows it to happen if, for
2642 			 * example, a 4100 backplane loses power and
2643 			 * the tape drive is in it.  We assume that
2644 			 * it's a fatal error of some kind because we
2645 			 * can't show that it wasn't. We will make it
2646 			 * look like selection timeout since that is
2647 			 * the most common reason for this to occur,
2648 			 * and it's severe enough.
2649 			 */
2650 
2651 			cmd->result = DID_NO_CONNECT << 16;
2652 		}
2653 		break;
2654 
2655 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2656 		break;
2657 	case CMD_DATA_OVERRUN:
2658 		dev_warn(&h->pdev->dev,
2659 			"CDB %16phN data overrun\n", cp->Request.CDB);
2660 		break;
2661 	case CMD_INVALID: {
2662 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2663 		print_cmd(cp); */
2664 		/* We get CMD_INVALID if you address a non-existent device
2665 		 * instead of a selection timeout (no response).  You will
2666 		 * see this if you yank out a drive, then try to access it.
2667 		 * This is kind of a shame because it means that any other
2668 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2669 		 * missing target. */
2670 		cmd->result = DID_NO_CONNECT << 16;
2671 	}
2672 		break;
2673 	case CMD_PROTOCOL_ERR:
2674 		cmd->result = DID_ERROR << 16;
2675 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2676 				cp->Request.CDB);
2677 		break;
2678 	case CMD_HARDWARE_ERR:
2679 		cmd->result = DID_ERROR << 16;
2680 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2681 			cp->Request.CDB);
2682 		break;
2683 	case CMD_CONNECTION_LOST:
2684 		cmd->result = DID_ERROR << 16;
2685 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2686 			cp->Request.CDB);
2687 		break;
2688 	case CMD_ABORTED:
2689 		/* Return now to avoid calling scsi_done(). */
2690 		return hpsa_cmd_abort_and_free(h, cp, cmd);
2691 	case CMD_ABORT_FAILED:
2692 		cmd->result = DID_ERROR << 16;
2693 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2694 			cp->Request.CDB);
2695 		break;
2696 	case CMD_UNSOLICITED_ABORT:
2697 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2698 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2699 			cp->Request.CDB);
2700 		break;
2701 	case CMD_TIMEOUT:
2702 		cmd->result = DID_TIME_OUT << 16;
2703 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2704 			cp->Request.CDB);
2705 		break;
2706 	case CMD_UNABORTABLE:
2707 		cmd->result = DID_ERROR << 16;
2708 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2709 		break;
2710 	case CMD_TMF_STATUS:
2711 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2712 			cmd->result = DID_ERROR << 16;
2713 		break;
2714 	case CMD_IOACCEL_DISABLED:
2715 		/* This only handles the direct pass-through case since RAID
2716 		 * offload is handled above.  Just attempt a retry.
2717 		 */
2718 		cmd->result = DID_SOFT_ERROR << 16;
2719 		dev_warn(&h->pdev->dev,
2720 				"cp %p had HP SSD Smart Path error\n", cp);
2721 		break;
2722 	default:
2723 		cmd->result = DID_ERROR << 16;
2724 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2725 				cp, ei->CommandStatus);
2726 	}
2727 
2728 	return hpsa_cmd_free_and_done(h, cp, cmd);
2729 }
2730 
2731 static void hpsa_pci_unmap(struct pci_dev *pdev,
2732 	struct CommandList *c, int sg_used, int data_direction)
2733 {
2734 	int i;
2735 
2736 	for (i = 0; i < sg_used; i++)
2737 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2738 				le32_to_cpu(c->SG[i].Len),
2739 				data_direction);
2740 }
2741 
2742 static int hpsa_map_one(struct pci_dev *pdev,
2743 		struct CommandList *cp,
2744 		unsigned char *buf,
2745 		size_t buflen,
2746 		int data_direction)
2747 {
2748 	u64 addr64;
2749 
2750 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2751 		cp->Header.SGList = 0;
2752 		cp->Header.SGTotal = cpu_to_le16(0);
2753 		return 0;
2754 	}
2755 
2756 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2757 	if (dma_mapping_error(&pdev->dev, addr64)) {
2758 		/* Prevent subsequent unmap of something never mapped */
2759 		cp->Header.SGList = 0;
2760 		cp->Header.SGTotal = cpu_to_le16(0);
2761 		return -1;
2762 	}
2763 	cp->SG[0].Addr = cpu_to_le64(addr64);
2764 	cp->SG[0].Len = cpu_to_le32(buflen);
2765 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2766 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2767 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2768 	return 0;
2769 }
2770 
2771 #define NO_TIMEOUT ((unsigned long) -1)
2772 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2773 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2774 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2775 {
2776 	DECLARE_COMPLETION_ONSTACK(wait);
2777 
2778 	c->waiting = &wait;
2779 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2780 	if (timeout_msecs == NO_TIMEOUT) {
2781 		/* TODO: get rid of this no-timeout thing */
2782 		wait_for_completion_io(&wait);
2783 		return IO_OK;
2784 	}
2785 	if (!wait_for_completion_io_timeout(&wait,
2786 					msecs_to_jiffies(timeout_msecs))) {
2787 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2788 		return -ETIMEDOUT;
2789 	}
2790 	return IO_OK;
2791 }
2792 
2793 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2794 				   int reply_queue, unsigned long timeout_msecs)
2795 {
2796 	if (unlikely(lockup_detected(h))) {
2797 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2798 		return IO_OK;
2799 	}
2800 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2801 }
2802 
2803 static u32 lockup_detected(struct ctlr_info *h)
2804 {
2805 	int cpu;
2806 	u32 rc, *lockup_detected;
2807 
2808 	cpu = get_cpu();
2809 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2810 	rc = *lockup_detected;
2811 	put_cpu();
2812 	return rc;
2813 }
2814 
2815 #define MAX_DRIVER_CMD_RETRIES 25
2816 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2817 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2818 {
2819 	int backoff_time = 10, retry_count = 0;
2820 	int rc;
2821 
2822 	do {
2823 		memset(c->err_info, 0, sizeof(*c->err_info));
2824 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2825 						  timeout_msecs);
2826 		if (rc)
2827 			break;
2828 		retry_count++;
2829 		if (retry_count > 3) {
2830 			msleep(backoff_time);
2831 			if (backoff_time < 1000)
2832 				backoff_time *= 2;
2833 		}
2834 	} while ((check_for_unit_attention(h, c) ||
2835 			check_for_busy(h, c)) &&
2836 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2837 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2838 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2839 		rc = -EIO;
2840 	return rc;
2841 }
2842 
2843 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2844 				struct CommandList *c)
2845 {
2846 	const u8 *cdb = c->Request.CDB;
2847 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2848 
2849 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2850 		 txt, lun, cdb);
2851 }
2852 
2853 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2854 			struct CommandList *cp)
2855 {
2856 	const struct ErrorInfo *ei = cp->err_info;
2857 	struct device *d = &cp->h->pdev->dev;
2858 	u8 sense_key, asc, ascq;
2859 	int sense_len;
2860 
2861 	switch (ei->CommandStatus) {
2862 	case CMD_TARGET_STATUS:
2863 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2864 			sense_len = sizeof(ei->SenseInfo);
2865 		else
2866 			sense_len = ei->SenseLen;
2867 		decode_sense_data(ei->SenseInfo, sense_len,
2868 					&sense_key, &asc, &ascq);
2869 		hpsa_print_cmd(h, "SCSI status", cp);
2870 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2871 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2872 				sense_key, asc, ascq);
2873 		else
2874 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2875 		if (ei->ScsiStatus == 0)
2876 			dev_warn(d, "SCSI status is abnormally zero.  "
2877 			"(probably indicates selection timeout "
2878 			"reported incorrectly due to a known "
2879 			"firmware bug, circa July, 2001.)\n");
2880 		break;
2881 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2882 		break;
2883 	case CMD_DATA_OVERRUN:
2884 		hpsa_print_cmd(h, "overrun condition", cp);
2885 		break;
2886 	case CMD_INVALID: {
2887 		/* controller unfortunately reports SCSI passthru's
2888 		 * to non-existent targets as invalid commands.
2889 		 */
2890 		hpsa_print_cmd(h, "invalid command", cp);
2891 		dev_warn(d, "probably means device no longer present\n");
2892 		}
2893 		break;
2894 	case CMD_PROTOCOL_ERR:
2895 		hpsa_print_cmd(h, "protocol error", cp);
2896 		break;
2897 	case CMD_HARDWARE_ERR:
2898 		hpsa_print_cmd(h, "hardware error", cp);
2899 		break;
2900 	case CMD_CONNECTION_LOST:
2901 		hpsa_print_cmd(h, "connection lost", cp);
2902 		break;
2903 	case CMD_ABORTED:
2904 		hpsa_print_cmd(h, "aborted", cp);
2905 		break;
2906 	case CMD_ABORT_FAILED:
2907 		hpsa_print_cmd(h, "abort failed", cp);
2908 		break;
2909 	case CMD_UNSOLICITED_ABORT:
2910 		hpsa_print_cmd(h, "unsolicited abort", cp);
2911 		break;
2912 	case CMD_TIMEOUT:
2913 		hpsa_print_cmd(h, "timed out", cp);
2914 		break;
2915 	case CMD_UNABORTABLE:
2916 		hpsa_print_cmd(h, "unabortable", cp);
2917 		break;
2918 	case CMD_CTLR_LOCKUP:
2919 		hpsa_print_cmd(h, "controller lockup detected", cp);
2920 		break;
2921 	default:
2922 		hpsa_print_cmd(h, "unknown status", cp);
2923 		dev_warn(d, "Unknown command status %x\n",
2924 				ei->CommandStatus);
2925 	}
2926 }
2927 
2928 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2929 			u16 page, unsigned char *buf,
2930 			unsigned char bufsize)
2931 {
2932 	int rc = IO_OK;
2933 	struct CommandList *c;
2934 	struct ErrorInfo *ei;
2935 
2936 	c = cmd_alloc(h);
2937 
2938 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2939 			page, scsi3addr, TYPE_CMD)) {
2940 		rc = -1;
2941 		goto out;
2942 	}
2943 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2944 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2945 	if (rc)
2946 		goto out;
2947 	ei = c->err_info;
2948 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2949 		hpsa_scsi_interpret_error(h, c);
2950 		rc = -1;
2951 	}
2952 out:
2953 	cmd_free(h, c);
2954 	return rc;
2955 }
2956 
2957 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2958 	u8 reset_type, int reply_queue)
2959 {
2960 	int rc = IO_OK;
2961 	struct CommandList *c;
2962 	struct ErrorInfo *ei;
2963 
2964 	c = cmd_alloc(h);
2965 
2966 
2967 	/* fill_cmd can't fail here, no data buffer to map. */
2968 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2969 			scsi3addr, TYPE_MSG);
2970 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2971 	if (rc) {
2972 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2973 		goto out;
2974 	}
2975 	/* no unmap needed here because no data xfer. */
2976 
2977 	ei = c->err_info;
2978 	if (ei->CommandStatus != 0) {
2979 		hpsa_scsi_interpret_error(h, c);
2980 		rc = -1;
2981 	}
2982 out:
2983 	cmd_free(h, c);
2984 	return rc;
2985 }
2986 
2987 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2988 			       struct hpsa_scsi_dev_t *dev,
2989 			       unsigned char *scsi3addr)
2990 {
2991 	int i;
2992 	bool match = false;
2993 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2994 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2995 
2996 	if (hpsa_is_cmd_idle(c))
2997 		return false;
2998 
2999 	switch (c->cmd_type) {
3000 	case CMD_SCSI:
3001 	case CMD_IOCTL_PEND:
3002 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3003 				sizeof(c->Header.LUN.LunAddrBytes));
3004 		break;
3005 
3006 	case CMD_IOACCEL1:
3007 	case CMD_IOACCEL2:
3008 		if (c->phys_disk == dev) {
3009 			/* HBA mode match */
3010 			match = true;
3011 		} else {
3012 			/* Possible RAID mode -- check each phys dev. */
3013 			/* FIXME:  Do we need to take out a lock here?  If
3014 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3015 			 * instead. */
3016 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3017 				/* FIXME: an alternate test might be
3018 				 *
3019 				 * match = dev->phys_disk[i]->ioaccel_handle
3020 				 *              == c2->scsi_nexus;      */
3021 				match = dev->phys_disk[i] == c->phys_disk;
3022 			}
3023 		}
3024 		break;
3025 
3026 	case IOACCEL2_TMF:
3027 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3028 			match = dev->phys_disk[i]->ioaccel_handle ==
3029 					le32_to_cpu(ac->it_nexus);
3030 		}
3031 		break;
3032 
3033 	case 0:		/* The command is in the middle of being initialized. */
3034 		match = false;
3035 		break;
3036 
3037 	default:
3038 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3039 			c->cmd_type);
3040 		BUG();
3041 	}
3042 
3043 	return match;
3044 }
3045 
3046 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3047 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3048 {
3049 	int i;
3050 	int rc = 0;
3051 
3052 	/* We can really only handle one reset at a time */
3053 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3054 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3055 		return -EINTR;
3056 	}
3057 
3058 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3059 
3060 	for (i = 0; i < h->nr_cmds; i++) {
3061 		struct CommandList *c = h->cmd_pool + i;
3062 		int refcount = atomic_inc_return(&c->refcount);
3063 
3064 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3065 			unsigned long flags;
3066 
3067 			/*
3068 			 * Mark the target command as having a reset pending,
3069 			 * then lock a lock so that the command cannot complete
3070 			 * while we're considering it.  If the command is not
3071 			 * idle then count it; otherwise revoke the event.
3072 			 */
3073 			c->reset_pending = dev;
3074 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3075 			if (!hpsa_is_cmd_idle(c))
3076 				atomic_inc(&dev->reset_cmds_out);
3077 			else
3078 				c->reset_pending = NULL;
3079 			spin_unlock_irqrestore(&h->lock, flags);
3080 		}
3081 
3082 		cmd_free(h, c);
3083 	}
3084 
3085 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3086 	if (!rc)
3087 		wait_event(h->event_sync_wait_queue,
3088 			atomic_read(&dev->reset_cmds_out) == 0 ||
3089 			lockup_detected(h));
3090 
3091 	if (unlikely(lockup_detected(h))) {
3092 		dev_warn(&h->pdev->dev,
3093 			 "Controller lockup detected during reset wait\n");
3094 		rc = -ENODEV;
3095 	}
3096 
3097 	if (unlikely(rc))
3098 		atomic_set(&dev->reset_cmds_out, 0);
3099 	else
3100 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3101 
3102 	mutex_unlock(&h->reset_mutex);
3103 	return rc;
3104 }
3105 
3106 static void hpsa_get_raid_level(struct ctlr_info *h,
3107 	unsigned char *scsi3addr, unsigned char *raid_level)
3108 {
3109 	int rc;
3110 	unsigned char *buf;
3111 
3112 	*raid_level = RAID_UNKNOWN;
3113 	buf = kzalloc(64, GFP_KERNEL);
3114 	if (!buf)
3115 		return;
3116 
3117 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3118 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3119 		goto exit;
3120 
3121 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3122 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3123 
3124 	if (rc == 0)
3125 		*raid_level = buf[8];
3126 	if (*raid_level > RAID_UNKNOWN)
3127 		*raid_level = RAID_UNKNOWN;
3128 exit:
3129 	kfree(buf);
3130 	return;
3131 }
3132 
3133 #define HPSA_MAP_DEBUG
3134 #ifdef HPSA_MAP_DEBUG
3135 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3136 				struct raid_map_data *map_buff)
3137 {
3138 	struct raid_map_disk_data *dd = &map_buff->data[0];
3139 	int map, row, col;
3140 	u16 map_cnt, row_cnt, disks_per_row;
3141 
3142 	if (rc != 0)
3143 		return;
3144 
3145 	/* Show details only if debugging has been activated. */
3146 	if (h->raid_offload_debug < 2)
3147 		return;
3148 
3149 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3150 				le32_to_cpu(map_buff->structure_size));
3151 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3152 			le32_to_cpu(map_buff->volume_blk_size));
3153 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3154 			le64_to_cpu(map_buff->volume_blk_cnt));
3155 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3156 			map_buff->phys_blk_shift);
3157 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3158 			map_buff->parity_rotation_shift);
3159 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3160 			le16_to_cpu(map_buff->strip_size));
3161 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3162 			le64_to_cpu(map_buff->disk_starting_blk));
3163 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3164 			le64_to_cpu(map_buff->disk_blk_cnt));
3165 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3166 			le16_to_cpu(map_buff->data_disks_per_row));
3167 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3168 			le16_to_cpu(map_buff->metadata_disks_per_row));
3169 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3170 			le16_to_cpu(map_buff->row_cnt));
3171 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3172 			le16_to_cpu(map_buff->layout_map_count));
3173 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3174 			le16_to_cpu(map_buff->flags));
3175 	dev_info(&h->pdev->dev, "encrypytion = %s\n",
3176 			le16_to_cpu(map_buff->flags) &
3177 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3178 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3179 			le16_to_cpu(map_buff->dekindex));
3180 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3181 	for (map = 0; map < map_cnt; map++) {
3182 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3183 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3184 		for (row = 0; row < row_cnt; row++) {
3185 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3186 			disks_per_row =
3187 				le16_to_cpu(map_buff->data_disks_per_row);
3188 			for (col = 0; col < disks_per_row; col++, dd++)
3189 				dev_info(&h->pdev->dev,
3190 					"    D%02u: h=0x%04x xor=%u,%u\n",
3191 					col, dd->ioaccel_handle,
3192 					dd->xor_mult[0], dd->xor_mult[1]);
3193 			disks_per_row =
3194 				le16_to_cpu(map_buff->metadata_disks_per_row);
3195 			for (col = 0; col < disks_per_row; col++, dd++)
3196 				dev_info(&h->pdev->dev,
3197 					"    M%02u: h=0x%04x xor=%u,%u\n",
3198 					col, dd->ioaccel_handle,
3199 					dd->xor_mult[0], dd->xor_mult[1]);
3200 		}
3201 	}
3202 }
3203 #else
3204 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3205 			__attribute__((unused)) int rc,
3206 			__attribute__((unused)) struct raid_map_data *map_buff)
3207 {
3208 }
3209 #endif
3210 
3211 static int hpsa_get_raid_map(struct ctlr_info *h,
3212 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3213 {
3214 	int rc = 0;
3215 	struct CommandList *c;
3216 	struct ErrorInfo *ei;
3217 
3218 	c = cmd_alloc(h);
3219 
3220 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3221 			sizeof(this_device->raid_map), 0,
3222 			scsi3addr, TYPE_CMD)) {
3223 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3224 		cmd_free(h, c);
3225 		return -1;
3226 	}
3227 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3228 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3229 	if (rc)
3230 		goto out;
3231 	ei = c->err_info;
3232 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3233 		hpsa_scsi_interpret_error(h, c);
3234 		rc = -1;
3235 		goto out;
3236 	}
3237 	cmd_free(h, c);
3238 
3239 	/* @todo in the future, dynamically allocate RAID map memory */
3240 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3241 				sizeof(this_device->raid_map)) {
3242 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3243 		rc = -1;
3244 	}
3245 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3246 	return rc;
3247 out:
3248 	cmd_free(h, c);
3249 	return rc;
3250 }
3251 
3252 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3253 		unsigned char scsi3addr[], u16 bmic_device_index,
3254 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3255 {
3256 	int rc = IO_OK;
3257 	struct CommandList *c;
3258 	struct ErrorInfo *ei;
3259 
3260 	c = cmd_alloc(h);
3261 
3262 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3263 		0, RAID_CTLR_LUNID, TYPE_CMD);
3264 	if (rc)
3265 		goto out;
3266 
3267 	c->Request.CDB[2] = bmic_device_index & 0xff;
3268 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3269 
3270 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3271 				PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3272 	if (rc)
3273 		goto out;
3274 	ei = c->err_info;
3275 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3276 		hpsa_scsi_interpret_error(h, c);
3277 		rc = -1;
3278 	}
3279 out:
3280 	cmd_free(h, c);
3281 	return rc;
3282 }
3283 
3284 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3285 	struct bmic_identify_controller *buf, size_t bufsize)
3286 {
3287 	int rc = IO_OK;
3288 	struct CommandList *c;
3289 	struct ErrorInfo *ei;
3290 
3291 	c = cmd_alloc(h);
3292 
3293 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3294 		0, RAID_CTLR_LUNID, TYPE_CMD);
3295 	if (rc)
3296 		goto out;
3297 
3298 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3299 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3300 	if (rc)
3301 		goto out;
3302 	ei = c->err_info;
3303 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3304 		hpsa_scsi_interpret_error(h, c);
3305 		rc = -1;
3306 	}
3307 out:
3308 	cmd_free(h, c);
3309 	return rc;
3310 }
3311 
3312 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3313 		unsigned char scsi3addr[], u16 bmic_device_index,
3314 		struct bmic_identify_physical_device *buf, size_t bufsize)
3315 {
3316 	int rc = IO_OK;
3317 	struct CommandList *c;
3318 	struct ErrorInfo *ei;
3319 
3320 	c = cmd_alloc(h);
3321 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3322 		0, RAID_CTLR_LUNID, TYPE_CMD);
3323 	if (rc)
3324 		goto out;
3325 
3326 	c->Request.CDB[2] = bmic_device_index & 0xff;
3327 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3328 
3329 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3330 						DEFAULT_TIMEOUT);
3331 	ei = c->err_info;
3332 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3333 		hpsa_scsi_interpret_error(h, c);
3334 		rc = -1;
3335 	}
3336 out:
3337 	cmd_free(h, c);
3338 
3339 	return rc;
3340 }
3341 
3342 /*
3343  * get enclosure information
3344  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3345  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3346  * Uses id_physical_device to determine the box_index.
3347  */
3348 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3349 			unsigned char *scsi3addr,
3350 			struct ReportExtendedLUNdata *rlep, int rle_index,
3351 			struct hpsa_scsi_dev_t *encl_dev)
3352 {
3353 	int rc = -1;
3354 	struct CommandList *c = NULL;
3355 	struct ErrorInfo *ei = NULL;
3356 	struct bmic_sense_storage_box_params *bssbp = NULL;
3357 	struct bmic_identify_physical_device *id_phys = NULL;
3358 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3359 	u16 bmic_device_index = 0;
3360 
3361 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3362 
3363 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3364 		rc = IO_OK;
3365 		goto out;
3366 	}
3367 
3368 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3369 		rc = IO_OK;
3370 		goto out;
3371 	}
3372 
3373 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3374 	if (!bssbp)
3375 		goto out;
3376 
3377 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3378 	if (!id_phys)
3379 		goto out;
3380 
3381 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3382 						id_phys, sizeof(*id_phys));
3383 	if (rc) {
3384 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3385 			__func__, encl_dev->external, bmic_device_index);
3386 		goto out;
3387 	}
3388 
3389 	c = cmd_alloc(h);
3390 
3391 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3392 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3393 
3394 	if (rc)
3395 		goto out;
3396 
3397 	if (id_phys->phys_connector[1] == 'E')
3398 		c->Request.CDB[5] = id_phys->box_index;
3399 	else
3400 		c->Request.CDB[5] = 0;
3401 
3402 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3403 						DEFAULT_TIMEOUT);
3404 	if (rc)
3405 		goto out;
3406 
3407 	ei = c->err_info;
3408 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3409 		rc = -1;
3410 		goto out;
3411 	}
3412 
3413 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3414 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3415 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3416 
3417 	rc = IO_OK;
3418 out:
3419 	kfree(bssbp);
3420 	kfree(id_phys);
3421 
3422 	if (c)
3423 		cmd_free(h, c);
3424 
3425 	if (rc != IO_OK)
3426 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3427 			"Error, could not get enclosure information\n");
3428 }
3429 
3430 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3431 						unsigned char *scsi3addr)
3432 {
3433 	struct ReportExtendedLUNdata *physdev;
3434 	u32 nphysicals;
3435 	u64 sa = 0;
3436 	int i;
3437 
3438 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3439 	if (!physdev)
3440 		return 0;
3441 
3442 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3443 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3444 		kfree(physdev);
3445 		return 0;
3446 	}
3447 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3448 
3449 	for (i = 0; i < nphysicals; i++)
3450 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3451 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3452 			break;
3453 		}
3454 
3455 	kfree(physdev);
3456 
3457 	return sa;
3458 }
3459 
3460 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3461 					struct hpsa_scsi_dev_t *dev)
3462 {
3463 	int rc;
3464 	u64 sa = 0;
3465 
3466 	if (is_hba_lunid(scsi3addr)) {
3467 		struct bmic_sense_subsystem_info *ssi;
3468 
3469 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3470 		if (!ssi)
3471 			return;
3472 
3473 		rc = hpsa_bmic_sense_subsystem_information(h,
3474 					scsi3addr, 0, ssi, sizeof(*ssi));
3475 		if (rc == 0) {
3476 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3477 			h->sas_address = sa;
3478 		}
3479 
3480 		kfree(ssi);
3481 	} else
3482 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3483 
3484 	dev->sas_address = sa;
3485 }
3486 
3487 /* Get a device id from inquiry page 0x83 */
3488 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3489 	unsigned char scsi3addr[], u8 page)
3490 {
3491 	int rc;
3492 	int i;
3493 	int pages;
3494 	unsigned char *buf, bufsize;
3495 
3496 	buf = kzalloc(256, GFP_KERNEL);
3497 	if (!buf)
3498 		return false;
3499 
3500 	/* Get the size of the page list first */
3501 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3502 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3503 				buf, HPSA_VPD_HEADER_SZ);
3504 	if (rc != 0)
3505 		goto exit_unsupported;
3506 	pages = buf[3];
3507 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3508 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3509 	else
3510 		bufsize = 255;
3511 
3512 	/* Get the whole VPD page list */
3513 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3514 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3515 				buf, bufsize);
3516 	if (rc != 0)
3517 		goto exit_unsupported;
3518 
3519 	pages = buf[3];
3520 	for (i = 1; i <= pages; i++)
3521 		if (buf[3 + i] == page)
3522 			goto exit_supported;
3523 exit_unsupported:
3524 	kfree(buf);
3525 	return false;
3526 exit_supported:
3527 	kfree(buf);
3528 	return true;
3529 }
3530 
3531 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3532 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3533 {
3534 	int rc;
3535 	unsigned char *buf;
3536 	u8 ioaccel_status;
3537 
3538 	this_device->offload_config = 0;
3539 	this_device->offload_enabled = 0;
3540 	this_device->offload_to_be_enabled = 0;
3541 
3542 	buf = kzalloc(64, GFP_KERNEL);
3543 	if (!buf)
3544 		return;
3545 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3546 		goto out;
3547 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3548 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3549 	if (rc != 0)
3550 		goto out;
3551 
3552 #define IOACCEL_STATUS_BYTE 4
3553 #define OFFLOAD_CONFIGURED_BIT 0x01
3554 #define OFFLOAD_ENABLED_BIT 0x02
3555 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3556 	this_device->offload_config =
3557 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3558 	if (this_device->offload_config) {
3559 		this_device->offload_enabled =
3560 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3561 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3562 			this_device->offload_enabled = 0;
3563 	}
3564 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3565 out:
3566 	kfree(buf);
3567 	return;
3568 }
3569 
3570 /* Get the device id from inquiry page 0x83 */
3571 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3572 	unsigned char *device_id, int index, int buflen)
3573 {
3574 	int rc;
3575 	unsigned char *buf;
3576 
3577 	/* Does controller have VPD for device id? */
3578 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3579 		return 1; /* not supported */
3580 
3581 	buf = kzalloc(64, GFP_KERNEL);
3582 	if (!buf)
3583 		return -ENOMEM;
3584 
3585 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3586 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3587 	if (rc == 0) {
3588 		if (buflen > 16)
3589 			buflen = 16;
3590 		memcpy(device_id, &buf[8], buflen);
3591 	}
3592 
3593 	kfree(buf);
3594 
3595 	return rc; /*0 - got id,  otherwise, didn't */
3596 }
3597 
3598 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3599 		void *buf, int bufsize,
3600 		int extended_response)
3601 {
3602 	int rc = IO_OK;
3603 	struct CommandList *c;
3604 	unsigned char scsi3addr[8];
3605 	struct ErrorInfo *ei;
3606 
3607 	c = cmd_alloc(h);
3608 
3609 	/* address the controller */
3610 	memset(scsi3addr, 0, sizeof(scsi3addr));
3611 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3612 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3613 		rc = -1;
3614 		goto out;
3615 	}
3616 	if (extended_response)
3617 		c->Request.CDB[1] = extended_response;
3618 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3619 					PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3620 	if (rc)
3621 		goto out;
3622 	ei = c->err_info;
3623 	if (ei->CommandStatus != 0 &&
3624 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3625 		hpsa_scsi_interpret_error(h, c);
3626 		rc = -1;
3627 	} else {
3628 		struct ReportLUNdata *rld = buf;
3629 
3630 		if (rld->extended_response_flag != extended_response) {
3631 			dev_err(&h->pdev->dev,
3632 				"report luns requested format %u, got %u\n",
3633 				extended_response,
3634 				rld->extended_response_flag);
3635 			rc = -1;
3636 		}
3637 	}
3638 out:
3639 	cmd_free(h, c);
3640 	return rc;
3641 }
3642 
3643 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3644 		struct ReportExtendedLUNdata *buf, int bufsize)
3645 {
3646 	int rc;
3647 	struct ReportLUNdata *lbuf;
3648 
3649 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3650 				      HPSA_REPORT_PHYS_EXTENDED);
3651 	if (!rc || !hpsa_allow_any)
3652 		return rc;
3653 
3654 	/* REPORT PHYS EXTENDED is not supported */
3655 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3656 	if (!lbuf)
3657 		return -ENOMEM;
3658 
3659 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3660 	if (!rc) {
3661 		int i;
3662 		u32 nphys;
3663 
3664 		/* Copy ReportLUNdata header */
3665 		memcpy(buf, lbuf, 8);
3666 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3667 		for (i = 0; i < nphys; i++)
3668 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3669 	}
3670 	kfree(lbuf);
3671 	return rc;
3672 }
3673 
3674 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3675 		struct ReportLUNdata *buf, int bufsize)
3676 {
3677 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3678 }
3679 
3680 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3681 	int bus, int target, int lun)
3682 {
3683 	device->bus = bus;
3684 	device->target = target;
3685 	device->lun = lun;
3686 }
3687 
3688 /* Use VPD inquiry to get details of volume status */
3689 static int hpsa_get_volume_status(struct ctlr_info *h,
3690 					unsigned char scsi3addr[])
3691 {
3692 	int rc;
3693 	int status;
3694 	int size;
3695 	unsigned char *buf;
3696 
3697 	buf = kzalloc(64, GFP_KERNEL);
3698 	if (!buf)
3699 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3700 
3701 	/* Does controller have VPD for logical volume status? */
3702 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3703 		goto exit_failed;
3704 
3705 	/* Get the size of the VPD return buffer */
3706 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3707 					buf, HPSA_VPD_HEADER_SZ);
3708 	if (rc != 0)
3709 		goto exit_failed;
3710 	size = buf[3];
3711 
3712 	/* Now get the whole VPD buffer */
3713 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3714 					buf, size + HPSA_VPD_HEADER_SZ);
3715 	if (rc != 0)
3716 		goto exit_failed;
3717 	status = buf[4]; /* status byte */
3718 
3719 	kfree(buf);
3720 	return status;
3721 exit_failed:
3722 	kfree(buf);
3723 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3724 }
3725 
3726 /* Determine offline status of a volume.
3727  * Return either:
3728  *  0 (not offline)
3729  *  0xff (offline for unknown reasons)
3730  *  # (integer code indicating one of several NOT READY states
3731  *     describing why a volume is to be kept offline)
3732  */
3733 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3734 					unsigned char scsi3addr[])
3735 {
3736 	struct CommandList *c;
3737 	unsigned char *sense;
3738 	u8 sense_key, asc, ascq;
3739 	int sense_len;
3740 	int rc, ldstat = 0;
3741 	u16 cmd_status;
3742 	u8 scsi_status;
3743 #define ASC_LUN_NOT_READY 0x04
3744 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3745 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3746 
3747 	c = cmd_alloc(h);
3748 
3749 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3750 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3751 					DEFAULT_TIMEOUT);
3752 	if (rc) {
3753 		cmd_free(h, c);
3754 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3755 	}
3756 	sense = c->err_info->SenseInfo;
3757 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3758 		sense_len = sizeof(c->err_info->SenseInfo);
3759 	else
3760 		sense_len = c->err_info->SenseLen;
3761 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3762 	cmd_status = c->err_info->CommandStatus;
3763 	scsi_status = c->err_info->ScsiStatus;
3764 	cmd_free(h, c);
3765 
3766 	/* Determine the reason for not ready state */
3767 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3768 
3769 	/* Keep volume offline in certain cases: */
3770 	switch (ldstat) {
3771 	case HPSA_LV_FAILED:
3772 	case HPSA_LV_UNDERGOING_ERASE:
3773 	case HPSA_LV_NOT_AVAILABLE:
3774 	case HPSA_LV_UNDERGOING_RPI:
3775 	case HPSA_LV_PENDING_RPI:
3776 	case HPSA_LV_ENCRYPTED_NO_KEY:
3777 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3778 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3779 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3780 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3781 		return ldstat;
3782 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3783 		/* If VPD status page isn't available,
3784 		 * use ASC/ASCQ to determine state
3785 		 */
3786 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3787 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3788 			return ldstat;
3789 		break;
3790 	default:
3791 		break;
3792 	}
3793 	return HPSA_LV_OK;
3794 }
3795 
3796 /*
3797  * Find out if a logical device supports aborts by simply trying one.
3798  * Smart Array may claim not to support aborts on logical drives, but
3799  * if a MSA2000 * is connected, the drives on that will be presented
3800  * by the Smart Array as logical drives, and aborts may be sent to
3801  * those devices successfully.  So the simplest way to find out is
3802  * to simply try an abort and see how the device responds.
3803  */
3804 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3805 					unsigned char *scsi3addr)
3806 {
3807 	struct CommandList *c;
3808 	struct ErrorInfo *ei;
3809 	int rc = 0;
3810 
3811 	u64 tag = (u64) -1; /* bogus tag */
3812 
3813 	/* Assume that physical devices support aborts */
3814 	if (!is_logical_dev_addr_mode(scsi3addr))
3815 		return 1;
3816 
3817 	c = cmd_alloc(h);
3818 
3819 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3820 	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3821 					DEFAULT_TIMEOUT);
3822 	/* no unmap needed here because no data xfer. */
3823 	ei = c->err_info;
3824 	switch (ei->CommandStatus) {
3825 	case CMD_INVALID:
3826 		rc = 0;
3827 		break;
3828 	case CMD_UNABORTABLE:
3829 	case CMD_ABORT_FAILED:
3830 		rc = 1;
3831 		break;
3832 	case CMD_TMF_STATUS:
3833 		rc = hpsa_evaluate_tmf_status(h, c);
3834 		break;
3835 	default:
3836 		rc = 0;
3837 		break;
3838 	}
3839 	cmd_free(h, c);
3840 	return rc;
3841 }
3842 
3843 static int hpsa_update_device_info(struct ctlr_info *h,
3844 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3845 	unsigned char *is_OBDR_device)
3846 {
3847 
3848 #define OBDR_SIG_OFFSET 43
3849 #define OBDR_TAPE_SIG "$DR-10"
3850 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3851 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3852 
3853 	unsigned char *inq_buff;
3854 	unsigned char *obdr_sig;
3855 	int rc = 0;
3856 
3857 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3858 	if (!inq_buff) {
3859 		rc = -ENOMEM;
3860 		goto bail_out;
3861 	}
3862 
3863 	/* Do an inquiry to the device to see what it is. */
3864 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3865 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3866 		dev_err(&h->pdev->dev,
3867 			"%s: inquiry failed, device will be skipped.\n",
3868 			__func__);
3869 		rc = HPSA_INQUIRY_FAILED;
3870 		goto bail_out;
3871 	}
3872 
3873 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3874 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3875 
3876 	this_device->devtype = (inq_buff[0] & 0x1f);
3877 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3878 	memcpy(this_device->vendor, &inq_buff[8],
3879 		sizeof(this_device->vendor));
3880 	memcpy(this_device->model, &inq_buff[16],
3881 		sizeof(this_device->model));
3882 	this_device->rev = inq_buff[2];
3883 	memset(this_device->device_id, 0,
3884 		sizeof(this_device->device_id));
3885 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3886 		sizeof(this_device->device_id)))
3887 		dev_err(&h->pdev->dev,
3888 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3889 			h->ctlr, __func__,
3890 			h->scsi_host->host_no,
3891 			this_device->target, this_device->lun,
3892 			scsi_device_type(this_device->devtype),
3893 			this_device->model);
3894 
3895 	if ((this_device->devtype == TYPE_DISK ||
3896 		this_device->devtype == TYPE_ZBC) &&
3897 		is_logical_dev_addr_mode(scsi3addr)) {
3898 		unsigned char volume_offline;
3899 
3900 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3901 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3902 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3903 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3904 		this_device->volume_offline = volume_offline;
3905 		if (volume_offline == HPSA_LV_FAILED) {
3906 			rc = HPSA_LV_FAILED;
3907 			dev_err(&h->pdev->dev,
3908 				"%s: LV failed, device will be skipped.\n",
3909 				__func__);
3910 			goto bail_out;
3911 		}
3912 	} else {
3913 		this_device->raid_level = RAID_UNKNOWN;
3914 		this_device->offload_config = 0;
3915 		this_device->offload_enabled = 0;
3916 		this_device->offload_to_be_enabled = 0;
3917 		this_device->hba_ioaccel_enabled = 0;
3918 		this_device->volume_offline = 0;
3919 		this_device->queue_depth = h->nr_cmds;
3920 	}
3921 
3922 	if (this_device->external)
3923 		this_device->queue_depth = EXTERNAL_QD;
3924 
3925 	if (is_OBDR_device) {
3926 		/* See if this is a One-Button-Disaster-Recovery device
3927 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3928 		 */
3929 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3930 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3931 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3932 						OBDR_SIG_LEN) == 0);
3933 	}
3934 	kfree(inq_buff);
3935 	return 0;
3936 
3937 bail_out:
3938 	kfree(inq_buff);
3939 	return rc;
3940 }
3941 
3942 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3943 			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3944 {
3945 	unsigned long flags;
3946 	int rc, entry;
3947 	/*
3948 	 * See if this device supports aborts.  If we already know
3949 	 * the device, we already know if it supports aborts, otherwise
3950 	 * we have to find out if it supports aborts by trying one.
3951 	 */
3952 	spin_lock_irqsave(&h->devlock, flags);
3953 	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3954 	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3955 		entry >= 0 && entry < h->ndevices) {
3956 		dev->supports_aborts = h->dev[entry]->supports_aborts;
3957 		spin_unlock_irqrestore(&h->devlock, flags);
3958 	} else {
3959 		spin_unlock_irqrestore(&h->devlock, flags);
3960 		dev->supports_aborts =
3961 				hpsa_device_supports_aborts(h, scsi3addr);
3962 		if (dev->supports_aborts < 0)
3963 			dev->supports_aborts = 0;
3964 	}
3965 }
3966 
3967 /*
3968  * Helper function to assign bus, target, lun mapping of devices.
3969  * Logical drive target and lun are assigned at this time, but
3970  * physical device lun and target assignment are deferred (assigned
3971  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3972 */
3973 static void figure_bus_target_lun(struct ctlr_info *h,
3974 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3975 {
3976 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3977 
3978 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3979 		/* physical device, target and lun filled in later */
3980 		if (is_hba_lunid(lunaddrbytes)) {
3981 			int bus = HPSA_HBA_BUS;
3982 
3983 			if (!device->rev)
3984 				bus = HPSA_LEGACY_HBA_BUS;
3985 			hpsa_set_bus_target_lun(device,
3986 					bus, 0, lunid & 0x3fff);
3987 		} else
3988 			/* defer target, lun assignment for physical devices */
3989 			hpsa_set_bus_target_lun(device,
3990 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3991 		return;
3992 	}
3993 	/* It's a logical device */
3994 	if (device->external) {
3995 		hpsa_set_bus_target_lun(device,
3996 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3997 			lunid & 0x00ff);
3998 		return;
3999 	}
4000 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4001 				0, lunid & 0x3fff);
4002 }
4003 
4004 
4005 /*
4006  * Get address of physical disk used for an ioaccel2 mode command:
4007  *	1. Extract ioaccel2 handle from the command.
4008  *	2. Find a matching ioaccel2 handle from list of physical disks.
4009  *	3. Return:
4010  *		1 and set scsi3addr to address of matching physical
4011  *		0 if no matching physical disk was found.
4012  */
4013 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
4014 	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
4015 {
4016 	struct io_accel2_cmd *c2 =
4017 			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
4018 	unsigned long flags;
4019 	int i;
4020 
4021 	spin_lock_irqsave(&h->devlock, flags);
4022 	for (i = 0; i < h->ndevices; i++)
4023 		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
4024 			memcpy(scsi3addr, h->dev[i]->scsi3addr,
4025 				sizeof(h->dev[i]->scsi3addr));
4026 			spin_unlock_irqrestore(&h->devlock, flags);
4027 			return 1;
4028 		}
4029 	spin_unlock_irqrestore(&h->devlock, flags);
4030 	return 0;
4031 }
4032 
4033 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4034 	int i, int nphysicals, int nlocal_logicals)
4035 {
4036 	/* In report logicals, local logicals are listed first,
4037 	* then any externals.
4038 	*/
4039 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4040 
4041 	if (i == raid_ctlr_position)
4042 		return 0;
4043 
4044 	if (i < logicals_start)
4045 		return 0;
4046 
4047 	/* i is in logicals range, but still within local logicals */
4048 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4049 		return 0;
4050 
4051 	return 1; /* it's an external lun */
4052 }
4053 
4054 /*
4055  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4056  * logdev.  The number of luns in physdev and logdev are returned in
4057  * *nphysicals and *nlogicals, respectively.
4058  * Returns 0 on success, -1 otherwise.
4059  */
4060 static int hpsa_gather_lun_info(struct ctlr_info *h,
4061 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4062 	struct ReportLUNdata *logdev, u32 *nlogicals)
4063 {
4064 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4065 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4066 		return -1;
4067 	}
4068 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4069 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4070 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4071 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4072 		*nphysicals = HPSA_MAX_PHYS_LUN;
4073 	}
4074 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4075 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4076 		return -1;
4077 	}
4078 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4079 	/* Reject Logicals in excess of our max capability. */
4080 	if (*nlogicals > HPSA_MAX_LUN) {
4081 		dev_warn(&h->pdev->dev,
4082 			"maximum logical LUNs (%d) exceeded.  "
4083 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4084 			*nlogicals - HPSA_MAX_LUN);
4085 			*nlogicals = HPSA_MAX_LUN;
4086 	}
4087 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4088 		dev_warn(&h->pdev->dev,
4089 			"maximum logical + physical LUNs (%d) exceeded. "
4090 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4091 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4092 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4093 	}
4094 	return 0;
4095 }
4096 
4097 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4098 	int i, int nphysicals, int nlogicals,
4099 	struct ReportExtendedLUNdata *physdev_list,
4100 	struct ReportLUNdata *logdev_list)
4101 {
4102 	/* Helper function, figure out where the LUN ID info is coming from
4103 	 * given index i, lists of physical and logical devices, where in
4104 	 * the list the raid controller is supposed to appear (first or last)
4105 	 */
4106 
4107 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4108 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4109 
4110 	if (i == raid_ctlr_position)
4111 		return RAID_CTLR_LUNID;
4112 
4113 	if (i < logicals_start)
4114 		return &physdev_list->LUN[i -
4115 				(raid_ctlr_position == 0)].lunid[0];
4116 
4117 	if (i < last_device)
4118 		return &logdev_list->LUN[i - nphysicals -
4119 			(raid_ctlr_position == 0)][0];
4120 	BUG();
4121 	return NULL;
4122 }
4123 
4124 /* get physical drive ioaccel handle and queue depth */
4125 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4126 		struct hpsa_scsi_dev_t *dev,
4127 		struct ReportExtendedLUNdata *rlep, int rle_index,
4128 		struct bmic_identify_physical_device *id_phys)
4129 {
4130 	int rc;
4131 	struct ext_report_lun_entry *rle;
4132 
4133 	rle = &rlep->LUN[rle_index];
4134 
4135 	dev->ioaccel_handle = rle->ioaccel_handle;
4136 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4137 		dev->hba_ioaccel_enabled = 1;
4138 	memset(id_phys, 0, sizeof(*id_phys));
4139 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4140 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4141 			sizeof(*id_phys));
4142 	if (!rc)
4143 		/* Reserve space for FW operations */
4144 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4145 #define DRIVE_QUEUE_DEPTH 7
4146 		dev->queue_depth =
4147 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4148 				DRIVE_CMDS_RESERVED_FOR_FW;
4149 	else
4150 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4151 }
4152 
4153 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4154 	struct ReportExtendedLUNdata *rlep, int rle_index,
4155 	struct bmic_identify_physical_device *id_phys)
4156 {
4157 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4158 
4159 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4160 		this_device->hba_ioaccel_enabled = 1;
4161 
4162 	memcpy(&this_device->active_path_index,
4163 		&id_phys->active_path_number,
4164 		sizeof(this_device->active_path_index));
4165 	memcpy(&this_device->path_map,
4166 		&id_phys->redundant_path_present_map,
4167 		sizeof(this_device->path_map));
4168 	memcpy(&this_device->box,
4169 		&id_phys->alternate_paths_phys_box_on_port,
4170 		sizeof(this_device->box));
4171 	memcpy(&this_device->phys_connector,
4172 		&id_phys->alternate_paths_phys_connector,
4173 		sizeof(this_device->phys_connector));
4174 	memcpy(&this_device->bay,
4175 		&id_phys->phys_bay_in_box,
4176 		sizeof(this_device->bay));
4177 }
4178 
4179 /* get number of local logical disks. */
4180 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4181 	struct bmic_identify_controller *id_ctlr,
4182 	u32 *nlocals)
4183 {
4184 	int rc;
4185 
4186 	if (!id_ctlr) {
4187 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4188 			__func__);
4189 		return -ENOMEM;
4190 	}
4191 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4192 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4193 	if (!rc)
4194 		if (id_ctlr->configured_logical_drive_count < 256)
4195 			*nlocals = id_ctlr->configured_logical_drive_count;
4196 		else
4197 			*nlocals = le16_to_cpu(
4198 					id_ctlr->extended_logical_unit_count);
4199 	else
4200 		*nlocals = -1;
4201 	return rc;
4202 }
4203 
4204 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4205 {
4206 	struct bmic_identify_physical_device *id_phys;
4207 	bool is_spare = false;
4208 	int rc;
4209 
4210 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4211 	if (!id_phys)
4212 		return false;
4213 
4214 	rc = hpsa_bmic_id_physical_device(h,
4215 					lunaddrbytes,
4216 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4217 					id_phys, sizeof(*id_phys));
4218 	if (rc == 0)
4219 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4220 
4221 	kfree(id_phys);
4222 	return is_spare;
4223 }
4224 
4225 #define RPL_DEV_FLAG_NON_DISK                           0x1
4226 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4227 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4228 
4229 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4230 
4231 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4232 				struct ext_report_lun_entry *rle)
4233 {
4234 	u8 device_flags;
4235 	u8 device_type;
4236 
4237 	if (!MASKED_DEVICE(lunaddrbytes))
4238 		return false;
4239 
4240 	device_flags = rle->device_flags;
4241 	device_type = rle->device_type;
4242 
4243 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4244 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4245 			return false;
4246 		return true;
4247 	}
4248 
4249 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4250 		return false;
4251 
4252 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4253 		return false;
4254 
4255 	/*
4256 	 * Spares may be spun down, we do not want to
4257 	 * do an Inquiry to a RAID set spare drive as
4258 	 * that would have them spun up, that is a
4259 	 * performance hit because I/O to the RAID device
4260 	 * stops while the spin up occurs which can take
4261 	 * over 50 seconds.
4262 	 */
4263 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4264 		return true;
4265 
4266 	return false;
4267 }
4268 
4269 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4270 {
4271 	/* the idea here is we could get notified
4272 	 * that some devices have changed, so we do a report
4273 	 * physical luns and report logical luns cmd, and adjust
4274 	 * our list of devices accordingly.
4275 	 *
4276 	 * The scsi3addr's of devices won't change so long as the
4277 	 * adapter is not reset.  That means we can rescan and
4278 	 * tell which devices we already know about, vs. new
4279 	 * devices, vs.  disappearing devices.
4280 	 */
4281 	struct ReportExtendedLUNdata *physdev_list = NULL;
4282 	struct ReportLUNdata *logdev_list = NULL;
4283 	struct bmic_identify_physical_device *id_phys = NULL;
4284 	struct bmic_identify_controller *id_ctlr = NULL;
4285 	u32 nphysicals = 0;
4286 	u32 nlogicals = 0;
4287 	u32 nlocal_logicals = 0;
4288 	u32 ndev_allocated = 0;
4289 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4290 	int ncurrent = 0;
4291 	int i, n_ext_target_devs, ndevs_to_allocate;
4292 	int raid_ctlr_position;
4293 	bool physical_device;
4294 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4295 
4296 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4297 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4298 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4299 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4300 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4301 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4302 
4303 	if (!currentsd || !physdev_list || !logdev_list ||
4304 		!tmpdevice || !id_phys || !id_ctlr) {
4305 		dev_err(&h->pdev->dev, "out of memory\n");
4306 		goto out;
4307 	}
4308 	memset(lunzerobits, 0, sizeof(lunzerobits));
4309 
4310 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4311 
4312 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4313 			logdev_list, &nlogicals)) {
4314 		h->drv_req_rescan = 1;
4315 		goto out;
4316 	}
4317 
4318 	/* Set number of local logicals (non PTRAID) */
4319 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4320 		dev_warn(&h->pdev->dev,
4321 			"%s: Can't determine number of local logical devices.\n",
4322 			__func__);
4323 	}
4324 
4325 	/* We might see up to the maximum number of logical and physical disks
4326 	 * plus external target devices, and a device for the local RAID
4327 	 * controller.
4328 	 */
4329 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4330 
4331 	/* Allocate the per device structures */
4332 	for (i = 0; i < ndevs_to_allocate; i++) {
4333 		if (i >= HPSA_MAX_DEVICES) {
4334 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4335 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4336 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4337 			break;
4338 		}
4339 
4340 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4341 		if (!currentsd[i]) {
4342 			h->drv_req_rescan = 1;
4343 			goto out;
4344 		}
4345 		ndev_allocated++;
4346 	}
4347 
4348 	if (is_scsi_rev_5(h))
4349 		raid_ctlr_position = 0;
4350 	else
4351 		raid_ctlr_position = nphysicals + nlogicals;
4352 
4353 	/* adjust our table of devices */
4354 	n_ext_target_devs = 0;
4355 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4356 		u8 *lunaddrbytes, is_OBDR = 0;
4357 		int rc = 0;
4358 		int phys_dev_index = i - (raid_ctlr_position == 0);
4359 		bool skip_device = false;
4360 
4361 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4362 
4363 		/* Figure out where the LUN ID info is coming from */
4364 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4365 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4366 
4367 		/* Determine if this is a lun from an external target array */
4368 		tmpdevice->external =
4369 			figure_external_status(h, raid_ctlr_position, i,
4370 						nphysicals, nlocal_logicals);
4371 
4372 		/*
4373 		 * Skip over some devices such as a spare.
4374 		 */
4375 		if (!tmpdevice->external && physical_device) {
4376 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4377 					&physdev_list->LUN[phys_dev_index]);
4378 			if (skip_device)
4379 				continue;
4380 		}
4381 
4382 		/* Get device type, vendor, model, device id */
4383 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4384 							&is_OBDR);
4385 		if (rc == -ENOMEM) {
4386 			dev_warn(&h->pdev->dev,
4387 				"Out of memory, rescan deferred.\n");
4388 			h->drv_req_rescan = 1;
4389 			goto out;
4390 		}
4391 		if (rc) {
4392 			h->drv_req_rescan = 1;
4393 			continue;
4394 		}
4395 
4396 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4397 		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4398 		this_device = currentsd[ncurrent];
4399 
4400 		/* Turn on discovery_polling if there are ext target devices.
4401 		 * Event-based change notification is unreliable for those.
4402 		 */
4403 		if (!h->discovery_polling) {
4404 			if (tmpdevice->external) {
4405 				h->discovery_polling = 1;
4406 				dev_info(&h->pdev->dev,
4407 					"External target, activate discovery polling.\n");
4408 			}
4409 		}
4410 
4411 
4412 		*this_device = *tmpdevice;
4413 		this_device->physical_device = physical_device;
4414 
4415 		/*
4416 		 * Expose all devices except for physical devices that
4417 		 * are masked.
4418 		 */
4419 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4420 			this_device->expose_device = 0;
4421 		else
4422 			this_device->expose_device = 1;
4423 
4424 
4425 		/*
4426 		 * Get the SAS address for physical devices that are exposed.
4427 		 */
4428 		if (this_device->physical_device && this_device->expose_device)
4429 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4430 
4431 		switch (this_device->devtype) {
4432 		case TYPE_ROM:
4433 			/* We don't *really* support actual CD-ROM devices,
4434 			 * just "One Button Disaster Recovery" tape drive
4435 			 * which temporarily pretends to be a CD-ROM drive.
4436 			 * So we check that the device is really an OBDR tape
4437 			 * device by checking for "$DR-10" in bytes 43-48 of
4438 			 * the inquiry data.
4439 			 */
4440 			if (is_OBDR)
4441 				ncurrent++;
4442 			break;
4443 		case TYPE_DISK:
4444 		case TYPE_ZBC:
4445 			if (this_device->physical_device) {
4446 				/* The disk is in HBA mode. */
4447 				/* Never use RAID mapper in HBA mode. */
4448 				this_device->offload_enabled = 0;
4449 				hpsa_get_ioaccel_drive_info(h, this_device,
4450 					physdev_list, phys_dev_index, id_phys);
4451 				hpsa_get_path_info(this_device,
4452 					physdev_list, phys_dev_index, id_phys);
4453 			}
4454 			ncurrent++;
4455 			break;
4456 		case TYPE_TAPE:
4457 		case TYPE_MEDIUM_CHANGER:
4458 			ncurrent++;
4459 			break;
4460 		case TYPE_ENCLOSURE:
4461 			if (!this_device->external)
4462 				hpsa_get_enclosure_info(h, lunaddrbytes,
4463 						physdev_list, phys_dev_index,
4464 						this_device);
4465 			ncurrent++;
4466 			break;
4467 		case TYPE_RAID:
4468 			/* Only present the Smartarray HBA as a RAID controller.
4469 			 * If it's a RAID controller other than the HBA itself
4470 			 * (an external RAID controller, MSA500 or similar)
4471 			 * don't present it.
4472 			 */
4473 			if (!is_hba_lunid(lunaddrbytes))
4474 				break;
4475 			ncurrent++;
4476 			break;
4477 		default:
4478 			break;
4479 		}
4480 		if (ncurrent >= HPSA_MAX_DEVICES)
4481 			break;
4482 	}
4483 
4484 	if (h->sas_host == NULL) {
4485 		int rc = 0;
4486 
4487 		rc = hpsa_add_sas_host(h);
4488 		if (rc) {
4489 			dev_warn(&h->pdev->dev,
4490 				"Could not add sas host %d\n", rc);
4491 			goto out;
4492 		}
4493 	}
4494 
4495 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4496 out:
4497 	kfree(tmpdevice);
4498 	for (i = 0; i < ndev_allocated; i++)
4499 		kfree(currentsd[i]);
4500 	kfree(currentsd);
4501 	kfree(physdev_list);
4502 	kfree(logdev_list);
4503 	kfree(id_ctlr);
4504 	kfree(id_phys);
4505 }
4506 
4507 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4508 				   struct scatterlist *sg)
4509 {
4510 	u64 addr64 = (u64) sg_dma_address(sg);
4511 	unsigned int len = sg_dma_len(sg);
4512 
4513 	desc->Addr = cpu_to_le64(addr64);
4514 	desc->Len = cpu_to_le32(len);
4515 	desc->Ext = 0;
4516 }
4517 
4518 /*
4519  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4520  * dma mapping  and fills in the scatter gather entries of the
4521  * hpsa command, cp.
4522  */
4523 static int hpsa_scatter_gather(struct ctlr_info *h,
4524 		struct CommandList *cp,
4525 		struct scsi_cmnd *cmd)
4526 {
4527 	struct scatterlist *sg;
4528 	int use_sg, i, sg_limit, chained, last_sg;
4529 	struct SGDescriptor *curr_sg;
4530 
4531 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4532 
4533 	use_sg = scsi_dma_map(cmd);
4534 	if (use_sg < 0)
4535 		return use_sg;
4536 
4537 	if (!use_sg)
4538 		goto sglist_finished;
4539 
4540 	/*
4541 	 * If the number of entries is greater than the max for a single list,
4542 	 * then we have a chained list; we will set up all but one entry in the
4543 	 * first list (the last entry is saved for link information);
4544 	 * otherwise, we don't have a chained list and we'll set up at each of
4545 	 * the entries in the one list.
4546 	 */
4547 	curr_sg = cp->SG;
4548 	chained = use_sg > h->max_cmd_sg_entries;
4549 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4550 	last_sg = scsi_sg_count(cmd) - 1;
4551 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4552 		hpsa_set_sg_descriptor(curr_sg, sg);
4553 		curr_sg++;
4554 	}
4555 
4556 	if (chained) {
4557 		/*
4558 		 * Continue with the chained list.  Set curr_sg to the chained
4559 		 * list.  Modify the limit to the total count less the entries
4560 		 * we've already set up.  Resume the scan at the list entry
4561 		 * where the previous loop left off.
4562 		 */
4563 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4564 		sg_limit = use_sg - sg_limit;
4565 		for_each_sg(sg, sg, sg_limit, i) {
4566 			hpsa_set_sg_descriptor(curr_sg, sg);
4567 			curr_sg++;
4568 		}
4569 	}
4570 
4571 	/* Back the pointer up to the last entry and mark it as "last". */
4572 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4573 
4574 	if (use_sg + chained > h->maxSG)
4575 		h->maxSG = use_sg + chained;
4576 
4577 	if (chained) {
4578 		cp->Header.SGList = h->max_cmd_sg_entries;
4579 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4580 		if (hpsa_map_sg_chain_block(h, cp)) {
4581 			scsi_dma_unmap(cmd);
4582 			return -1;
4583 		}
4584 		return 0;
4585 	}
4586 
4587 sglist_finished:
4588 
4589 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4590 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4591 	return 0;
4592 }
4593 
4594 #define IO_ACCEL_INELIGIBLE (1)
4595 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4596 {
4597 	int is_write = 0;
4598 	u32 block;
4599 	u32 block_cnt;
4600 
4601 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4602 	switch (cdb[0]) {
4603 	case WRITE_6:
4604 	case WRITE_12:
4605 		is_write = 1;
4606 	case READ_6:
4607 	case READ_12:
4608 		if (*cdb_len == 6) {
4609 			block = (((cdb[1] & 0x1F) << 16) |
4610 				(cdb[2] << 8) |
4611 				cdb[3]);
4612 			block_cnt = cdb[4];
4613 			if (block_cnt == 0)
4614 				block_cnt = 256;
4615 		} else {
4616 			BUG_ON(*cdb_len != 12);
4617 			block = get_unaligned_be32(&cdb[2]);
4618 			block_cnt = get_unaligned_be32(&cdb[6]);
4619 		}
4620 		if (block_cnt > 0xffff)
4621 			return IO_ACCEL_INELIGIBLE;
4622 
4623 		cdb[0] = is_write ? WRITE_10 : READ_10;
4624 		cdb[1] = 0;
4625 		cdb[2] = (u8) (block >> 24);
4626 		cdb[3] = (u8) (block >> 16);
4627 		cdb[4] = (u8) (block >> 8);
4628 		cdb[5] = (u8) (block);
4629 		cdb[6] = 0;
4630 		cdb[7] = (u8) (block_cnt >> 8);
4631 		cdb[8] = (u8) (block_cnt);
4632 		cdb[9] = 0;
4633 		*cdb_len = 10;
4634 		break;
4635 	}
4636 	return 0;
4637 }
4638 
4639 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4640 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4641 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4642 {
4643 	struct scsi_cmnd *cmd = c->scsi_cmd;
4644 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4645 	unsigned int len;
4646 	unsigned int total_len = 0;
4647 	struct scatterlist *sg;
4648 	u64 addr64;
4649 	int use_sg, i;
4650 	struct SGDescriptor *curr_sg;
4651 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4652 
4653 	/* TODO: implement chaining support */
4654 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4655 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4656 		return IO_ACCEL_INELIGIBLE;
4657 	}
4658 
4659 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4660 
4661 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4662 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4663 		return IO_ACCEL_INELIGIBLE;
4664 	}
4665 
4666 	c->cmd_type = CMD_IOACCEL1;
4667 
4668 	/* Adjust the DMA address to point to the accelerated command buffer */
4669 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4670 				(c->cmdindex * sizeof(*cp));
4671 	BUG_ON(c->busaddr & 0x0000007F);
4672 
4673 	use_sg = scsi_dma_map(cmd);
4674 	if (use_sg < 0) {
4675 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4676 		return use_sg;
4677 	}
4678 
4679 	if (use_sg) {
4680 		curr_sg = cp->SG;
4681 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4682 			addr64 = (u64) sg_dma_address(sg);
4683 			len  = sg_dma_len(sg);
4684 			total_len += len;
4685 			curr_sg->Addr = cpu_to_le64(addr64);
4686 			curr_sg->Len = cpu_to_le32(len);
4687 			curr_sg->Ext = cpu_to_le32(0);
4688 			curr_sg++;
4689 		}
4690 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4691 
4692 		switch (cmd->sc_data_direction) {
4693 		case DMA_TO_DEVICE:
4694 			control |= IOACCEL1_CONTROL_DATA_OUT;
4695 			break;
4696 		case DMA_FROM_DEVICE:
4697 			control |= IOACCEL1_CONTROL_DATA_IN;
4698 			break;
4699 		case DMA_NONE:
4700 			control |= IOACCEL1_CONTROL_NODATAXFER;
4701 			break;
4702 		default:
4703 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4704 			cmd->sc_data_direction);
4705 			BUG();
4706 			break;
4707 		}
4708 	} else {
4709 		control |= IOACCEL1_CONTROL_NODATAXFER;
4710 	}
4711 
4712 	c->Header.SGList = use_sg;
4713 	/* Fill out the command structure to submit */
4714 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4715 	cp->transfer_len = cpu_to_le32(total_len);
4716 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4717 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4718 	cp->control = cpu_to_le32(control);
4719 	memcpy(cp->CDB, cdb, cdb_len);
4720 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4721 	/* Tag was already set at init time. */
4722 	enqueue_cmd_and_start_io(h, c);
4723 	return 0;
4724 }
4725 
4726 /*
4727  * Queue a command directly to a device behind the controller using the
4728  * I/O accelerator path.
4729  */
4730 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4731 	struct CommandList *c)
4732 {
4733 	struct scsi_cmnd *cmd = c->scsi_cmd;
4734 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4735 
4736 	if (!dev)
4737 		return -1;
4738 
4739 	c->phys_disk = dev;
4740 
4741 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4742 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4743 }
4744 
4745 /*
4746  * Set encryption parameters for the ioaccel2 request
4747  */
4748 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4749 	struct CommandList *c, struct io_accel2_cmd *cp)
4750 {
4751 	struct scsi_cmnd *cmd = c->scsi_cmd;
4752 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4753 	struct raid_map_data *map = &dev->raid_map;
4754 	u64 first_block;
4755 
4756 	/* Are we doing encryption on this device */
4757 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4758 		return;
4759 	/* Set the data encryption key index. */
4760 	cp->dekindex = map->dekindex;
4761 
4762 	/* Set the encryption enable flag, encoded into direction field. */
4763 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4764 
4765 	/* Set encryption tweak values based on logical block address
4766 	 * If block size is 512, tweak value is LBA.
4767 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4768 	 */
4769 	switch (cmd->cmnd[0]) {
4770 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4771 	case READ_6:
4772 	case WRITE_6:
4773 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4774 				(cmd->cmnd[2] << 8) |
4775 				cmd->cmnd[3]);
4776 		break;
4777 	case WRITE_10:
4778 	case READ_10:
4779 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4780 	case WRITE_12:
4781 	case READ_12:
4782 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4783 		break;
4784 	case WRITE_16:
4785 	case READ_16:
4786 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4787 		break;
4788 	default:
4789 		dev_err(&h->pdev->dev,
4790 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4791 			__func__, cmd->cmnd[0]);
4792 		BUG();
4793 		break;
4794 	}
4795 
4796 	if (le32_to_cpu(map->volume_blk_size) != 512)
4797 		first_block = first_block *
4798 				le32_to_cpu(map->volume_blk_size)/512;
4799 
4800 	cp->tweak_lower = cpu_to_le32(first_block);
4801 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4802 }
4803 
4804 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4805 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4806 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4807 {
4808 	struct scsi_cmnd *cmd = c->scsi_cmd;
4809 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4810 	struct ioaccel2_sg_element *curr_sg;
4811 	int use_sg, i;
4812 	struct scatterlist *sg;
4813 	u64 addr64;
4814 	u32 len;
4815 	u32 total_len = 0;
4816 
4817 	if (!cmd->device)
4818 		return -1;
4819 
4820 	if (!cmd->device->hostdata)
4821 		return -1;
4822 
4823 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4824 
4825 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4826 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4827 		return IO_ACCEL_INELIGIBLE;
4828 	}
4829 
4830 	c->cmd_type = CMD_IOACCEL2;
4831 	/* Adjust the DMA address to point to the accelerated command buffer */
4832 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4833 				(c->cmdindex * sizeof(*cp));
4834 	BUG_ON(c->busaddr & 0x0000007F);
4835 
4836 	memset(cp, 0, sizeof(*cp));
4837 	cp->IU_type = IOACCEL2_IU_TYPE;
4838 
4839 	use_sg = scsi_dma_map(cmd);
4840 	if (use_sg < 0) {
4841 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4842 		return use_sg;
4843 	}
4844 
4845 	if (use_sg) {
4846 		curr_sg = cp->sg;
4847 		if (use_sg > h->ioaccel_maxsg) {
4848 			addr64 = le64_to_cpu(
4849 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4850 			curr_sg->address = cpu_to_le64(addr64);
4851 			curr_sg->length = 0;
4852 			curr_sg->reserved[0] = 0;
4853 			curr_sg->reserved[1] = 0;
4854 			curr_sg->reserved[2] = 0;
4855 			curr_sg->chain_indicator = 0x80;
4856 
4857 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4858 		}
4859 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4860 			addr64 = (u64) sg_dma_address(sg);
4861 			len  = sg_dma_len(sg);
4862 			total_len += len;
4863 			curr_sg->address = cpu_to_le64(addr64);
4864 			curr_sg->length = cpu_to_le32(len);
4865 			curr_sg->reserved[0] = 0;
4866 			curr_sg->reserved[1] = 0;
4867 			curr_sg->reserved[2] = 0;
4868 			curr_sg->chain_indicator = 0;
4869 			curr_sg++;
4870 		}
4871 
4872 		switch (cmd->sc_data_direction) {
4873 		case DMA_TO_DEVICE:
4874 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4875 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4876 			break;
4877 		case DMA_FROM_DEVICE:
4878 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4879 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4880 			break;
4881 		case DMA_NONE:
4882 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4883 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4884 			break;
4885 		default:
4886 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4887 				cmd->sc_data_direction);
4888 			BUG();
4889 			break;
4890 		}
4891 	} else {
4892 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4893 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4894 	}
4895 
4896 	/* Set encryption parameters, if necessary */
4897 	set_encrypt_ioaccel2(h, c, cp);
4898 
4899 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4900 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4901 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4902 
4903 	cp->data_len = cpu_to_le32(total_len);
4904 	cp->err_ptr = cpu_to_le64(c->busaddr +
4905 			offsetof(struct io_accel2_cmd, error_data));
4906 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4907 
4908 	/* fill in sg elements */
4909 	if (use_sg > h->ioaccel_maxsg) {
4910 		cp->sg_count = 1;
4911 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4912 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4913 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4914 			scsi_dma_unmap(cmd);
4915 			return -1;
4916 		}
4917 	} else
4918 		cp->sg_count = (u8) use_sg;
4919 
4920 	enqueue_cmd_and_start_io(h, c);
4921 	return 0;
4922 }
4923 
4924 /*
4925  * Queue a command to the correct I/O accelerator path.
4926  */
4927 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4928 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4929 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4930 {
4931 	if (!c->scsi_cmd->device)
4932 		return -1;
4933 
4934 	if (!c->scsi_cmd->device->hostdata)
4935 		return -1;
4936 
4937 	/* Try to honor the device's queue depth */
4938 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4939 					phys_disk->queue_depth) {
4940 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4941 		return IO_ACCEL_INELIGIBLE;
4942 	}
4943 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4944 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4945 						cdb, cdb_len, scsi3addr,
4946 						phys_disk);
4947 	else
4948 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4949 						cdb, cdb_len, scsi3addr,
4950 						phys_disk);
4951 }
4952 
4953 static void raid_map_helper(struct raid_map_data *map,
4954 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4955 {
4956 	if (offload_to_mirror == 0)  {
4957 		/* use physical disk in the first mirrored group. */
4958 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4959 		return;
4960 	}
4961 	do {
4962 		/* determine mirror group that *map_index indicates */
4963 		*current_group = *map_index /
4964 			le16_to_cpu(map->data_disks_per_row);
4965 		if (offload_to_mirror == *current_group)
4966 			continue;
4967 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4968 			/* select map index from next group */
4969 			*map_index += le16_to_cpu(map->data_disks_per_row);
4970 			(*current_group)++;
4971 		} else {
4972 			/* select map index from first group */
4973 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4974 			*current_group = 0;
4975 		}
4976 	} while (offload_to_mirror != *current_group);
4977 }
4978 
4979 /*
4980  * Attempt to perform offload RAID mapping for a logical volume I/O.
4981  */
4982 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4983 	struct CommandList *c)
4984 {
4985 	struct scsi_cmnd *cmd = c->scsi_cmd;
4986 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4987 	struct raid_map_data *map = &dev->raid_map;
4988 	struct raid_map_disk_data *dd = &map->data[0];
4989 	int is_write = 0;
4990 	u32 map_index;
4991 	u64 first_block, last_block;
4992 	u32 block_cnt;
4993 	u32 blocks_per_row;
4994 	u64 first_row, last_row;
4995 	u32 first_row_offset, last_row_offset;
4996 	u32 first_column, last_column;
4997 	u64 r0_first_row, r0_last_row;
4998 	u32 r5or6_blocks_per_row;
4999 	u64 r5or6_first_row, r5or6_last_row;
5000 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5001 	u32 r5or6_first_column, r5or6_last_column;
5002 	u32 total_disks_per_row;
5003 	u32 stripesize;
5004 	u32 first_group, last_group, current_group;
5005 	u32 map_row;
5006 	u32 disk_handle;
5007 	u64 disk_block;
5008 	u32 disk_block_cnt;
5009 	u8 cdb[16];
5010 	u8 cdb_len;
5011 	u16 strip_size;
5012 #if BITS_PER_LONG == 32
5013 	u64 tmpdiv;
5014 #endif
5015 	int offload_to_mirror;
5016 
5017 	if (!dev)
5018 		return -1;
5019 
5020 	/* check for valid opcode, get LBA and block count */
5021 	switch (cmd->cmnd[0]) {
5022 	case WRITE_6:
5023 		is_write = 1;
5024 	case READ_6:
5025 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5026 				(cmd->cmnd[2] << 8) |
5027 				cmd->cmnd[3]);
5028 		block_cnt = cmd->cmnd[4];
5029 		if (block_cnt == 0)
5030 			block_cnt = 256;
5031 		break;
5032 	case WRITE_10:
5033 		is_write = 1;
5034 	case READ_10:
5035 		first_block =
5036 			(((u64) cmd->cmnd[2]) << 24) |
5037 			(((u64) cmd->cmnd[3]) << 16) |
5038 			(((u64) cmd->cmnd[4]) << 8) |
5039 			cmd->cmnd[5];
5040 		block_cnt =
5041 			(((u32) cmd->cmnd[7]) << 8) |
5042 			cmd->cmnd[8];
5043 		break;
5044 	case WRITE_12:
5045 		is_write = 1;
5046 	case READ_12:
5047 		first_block =
5048 			(((u64) cmd->cmnd[2]) << 24) |
5049 			(((u64) cmd->cmnd[3]) << 16) |
5050 			(((u64) cmd->cmnd[4]) << 8) |
5051 			cmd->cmnd[5];
5052 		block_cnt =
5053 			(((u32) cmd->cmnd[6]) << 24) |
5054 			(((u32) cmd->cmnd[7]) << 16) |
5055 			(((u32) cmd->cmnd[8]) << 8) |
5056 		cmd->cmnd[9];
5057 		break;
5058 	case WRITE_16:
5059 		is_write = 1;
5060 	case READ_16:
5061 		first_block =
5062 			(((u64) cmd->cmnd[2]) << 56) |
5063 			(((u64) cmd->cmnd[3]) << 48) |
5064 			(((u64) cmd->cmnd[4]) << 40) |
5065 			(((u64) cmd->cmnd[5]) << 32) |
5066 			(((u64) cmd->cmnd[6]) << 24) |
5067 			(((u64) cmd->cmnd[7]) << 16) |
5068 			(((u64) cmd->cmnd[8]) << 8) |
5069 			cmd->cmnd[9];
5070 		block_cnt =
5071 			(((u32) cmd->cmnd[10]) << 24) |
5072 			(((u32) cmd->cmnd[11]) << 16) |
5073 			(((u32) cmd->cmnd[12]) << 8) |
5074 			cmd->cmnd[13];
5075 		break;
5076 	default:
5077 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5078 	}
5079 	last_block = first_block + block_cnt - 1;
5080 
5081 	/* check for write to non-RAID-0 */
5082 	if (is_write && dev->raid_level != 0)
5083 		return IO_ACCEL_INELIGIBLE;
5084 
5085 	/* check for invalid block or wraparound */
5086 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5087 		last_block < first_block)
5088 		return IO_ACCEL_INELIGIBLE;
5089 
5090 	/* calculate stripe information for the request */
5091 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5092 				le16_to_cpu(map->strip_size);
5093 	strip_size = le16_to_cpu(map->strip_size);
5094 #if BITS_PER_LONG == 32
5095 	tmpdiv = first_block;
5096 	(void) do_div(tmpdiv, blocks_per_row);
5097 	first_row = tmpdiv;
5098 	tmpdiv = last_block;
5099 	(void) do_div(tmpdiv, blocks_per_row);
5100 	last_row = tmpdiv;
5101 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5102 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5103 	tmpdiv = first_row_offset;
5104 	(void) do_div(tmpdiv, strip_size);
5105 	first_column = tmpdiv;
5106 	tmpdiv = last_row_offset;
5107 	(void) do_div(tmpdiv, strip_size);
5108 	last_column = tmpdiv;
5109 #else
5110 	first_row = first_block / blocks_per_row;
5111 	last_row = last_block / blocks_per_row;
5112 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5113 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5114 	first_column = first_row_offset / strip_size;
5115 	last_column = last_row_offset / strip_size;
5116 #endif
5117 
5118 	/* if this isn't a single row/column then give to the controller */
5119 	if ((first_row != last_row) || (first_column != last_column))
5120 		return IO_ACCEL_INELIGIBLE;
5121 
5122 	/* proceeding with driver mapping */
5123 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5124 				le16_to_cpu(map->metadata_disks_per_row);
5125 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5126 				le16_to_cpu(map->row_cnt);
5127 	map_index = (map_row * total_disks_per_row) + first_column;
5128 
5129 	switch (dev->raid_level) {
5130 	case HPSA_RAID_0:
5131 		break; /* nothing special to do */
5132 	case HPSA_RAID_1:
5133 		/* Handles load balance across RAID 1 members.
5134 		 * (2-drive R1 and R10 with even # of drives.)
5135 		 * Appropriate for SSDs, not optimal for HDDs
5136 		 */
5137 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5138 		if (dev->offload_to_mirror)
5139 			map_index += le16_to_cpu(map->data_disks_per_row);
5140 		dev->offload_to_mirror = !dev->offload_to_mirror;
5141 		break;
5142 	case HPSA_RAID_ADM:
5143 		/* Handles N-way mirrors  (R1-ADM)
5144 		 * and R10 with # of drives divisible by 3.)
5145 		 */
5146 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5147 
5148 		offload_to_mirror = dev->offload_to_mirror;
5149 		raid_map_helper(map, offload_to_mirror,
5150 				&map_index, &current_group);
5151 		/* set mirror group to use next time */
5152 		offload_to_mirror =
5153 			(offload_to_mirror >=
5154 			le16_to_cpu(map->layout_map_count) - 1)
5155 			? 0 : offload_to_mirror + 1;
5156 		dev->offload_to_mirror = offload_to_mirror;
5157 		/* Avoid direct use of dev->offload_to_mirror within this
5158 		 * function since multiple threads might simultaneously
5159 		 * increment it beyond the range of dev->layout_map_count -1.
5160 		 */
5161 		break;
5162 	case HPSA_RAID_5:
5163 	case HPSA_RAID_6:
5164 		if (le16_to_cpu(map->layout_map_count) <= 1)
5165 			break;
5166 
5167 		/* Verify first and last block are in same RAID group */
5168 		r5or6_blocks_per_row =
5169 			le16_to_cpu(map->strip_size) *
5170 			le16_to_cpu(map->data_disks_per_row);
5171 		BUG_ON(r5or6_blocks_per_row == 0);
5172 		stripesize = r5or6_blocks_per_row *
5173 			le16_to_cpu(map->layout_map_count);
5174 #if BITS_PER_LONG == 32
5175 		tmpdiv = first_block;
5176 		first_group = do_div(tmpdiv, stripesize);
5177 		tmpdiv = first_group;
5178 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5179 		first_group = tmpdiv;
5180 		tmpdiv = last_block;
5181 		last_group = do_div(tmpdiv, stripesize);
5182 		tmpdiv = last_group;
5183 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5184 		last_group = tmpdiv;
5185 #else
5186 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5187 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5188 #endif
5189 		if (first_group != last_group)
5190 			return IO_ACCEL_INELIGIBLE;
5191 
5192 		/* Verify request is in a single row of RAID 5/6 */
5193 #if BITS_PER_LONG == 32
5194 		tmpdiv = first_block;
5195 		(void) do_div(tmpdiv, stripesize);
5196 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5197 		tmpdiv = last_block;
5198 		(void) do_div(tmpdiv, stripesize);
5199 		r5or6_last_row = r0_last_row = tmpdiv;
5200 #else
5201 		first_row = r5or6_first_row = r0_first_row =
5202 						first_block / stripesize;
5203 		r5or6_last_row = r0_last_row = last_block / stripesize;
5204 #endif
5205 		if (r5or6_first_row != r5or6_last_row)
5206 			return IO_ACCEL_INELIGIBLE;
5207 
5208 
5209 		/* Verify request is in a single column */
5210 #if BITS_PER_LONG == 32
5211 		tmpdiv = first_block;
5212 		first_row_offset = do_div(tmpdiv, stripesize);
5213 		tmpdiv = first_row_offset;
5214 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5215 		r5or6_first_row_offset = first_row_offset;
5216 		tmpdiv = last_block;
5217 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5218 		tmpdiv = r5or6_last_row_offset;
5219 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5220 		tmpdiv = r5or6_first_row_offset;
5221 		(void) do_div(tmpdiv, map->strip_size);
5222 		first_column = r5or6_first_column = tmpdiv;
5223 		tmpdiv = r5or6_last_row_offset;
5224 		(void) do_div(tmpdiv, map->strip_size);
5225 		r5or6_last_column = tmpdiv;
5226 #else
5227 		first_row_offset = r5or6_first_row_offset =
5228 			(u32)((first_block % stripesize) %
5229 						r5or6_blocks_per_row);
5230 
5231 		r5or6_last_row_offset =
5232 			(u32)((last_block % stripesize) %
5233 						r5or6_blocks_per_row);
5234 
5235 		first_column = r5or6_first_column =
5236 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5237 		r5or6_last_column =
5238 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5239 #endif
5240 		if (r5or6_first_column != r5or6_last_column)
5241 			return IO_ACCEL_INELIGIBLE;
5242 
5243 		/* Request is eligible */
5244 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5245 			le16_to_cpu(map->row_cnt);
5246 
5247 		map_index = (first_group *
5248 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5249 			(map_row * total_disks_per_row) + first_column;
5250 		break;
5251 	default:
5252 		return IO_ACCEL_INELIGIBLE;
5253 	}
5254 
5255 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5256 		return IO_ACCEL_INELIGIBLE;
5257 
5258 	c->phys_disk = dev->phys_disk[map_index];
5259 	if (!c->phys_disk)
5260 		return IO_ACCEL_INELIGIBLE;
5261 
5262 	disk_handle = dd[map_index].ioaccel_handle;
5263 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5264 			first_row * le16_to_cpu(map->strip_size) +
5265 			(first_row_offset - first_column *
5266 			le16_to_cpu(map->strip_size));
5267 	disk_block_cnt = block_cnt;
5268 
5269 	/* handle differing logical/physical block sizes */
5270 	if (map->phys_blk_shift) {
5271 		disk_block <<= map->phys_blk_shift;
5272 		disk_block_cnt <<= map->phys_blk_shift;
5273 	}
5274 	BUG_ON(disk_block_cnt > 0xffff);
5275 
5276 	/* build the new CDB for the physical disk I/O */
5277 	if (disk_block > 0xffffffff) {
5278 		cdb[0] = is_write ? WRITE_16 : READ_16;
5279 		cdb[1] = 0;
5280 		cdb[2] = (u8) (disk_block >> 56);
5281 		cdb[3] = (u8) (disk_block >> 48);
5282 		cdb[4] = (u8) (disk_block >> 40);
5283 		cdb[5] = (u8) (disk_block >> 32);
5284 		cdb[6] = (u8) (disk_block >> 24);
5285 		cdb[7] = (u8) (disk_block >> 16);
5286 		cdb[8] = (u8) (disk_block >> 8);
5287 		cdb[9] = (u8) (disk_block);
5288 		cdb[10] = (u8) (disk_block_cnt >> 24);
5289 		cdb[11] = (u8) (disk_block_cnt >> 16);
5290 		cdb[12] = (u8) (disk_block_cnt >> 8);
5291 		cdb[13] = (u8) (disk_block_cnt);
5292 		cdb[14] = 0;
5293 		cdb[15] = 0;
5294 		cdb_len = 16;
5295 	} else {
5296 		cdb[0] = is_write ? WRITE_10 : READ_10;
5297 		cdb[1] = 0;
5298 		cdb[2] = (u8) (disk_block >> 24);
5299 		cdb[3] = (u8) (disk_block >> 16);
5300 		cdb[4] = (u8) (disk_block >> 8);
5301 		cdb[5] = (u8) (disk_block);
5302 		cdb[6] = 0;
5303 		cdb[7] = (u8) (disk_block_cnt >> 8);
5304 		cdb[8] = (u8) (disk_block_cnt);
5305 		cdb[9] = 0;
5306 		cdb_len = 10;
5307 	}
5308 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5309 						dev->scsi3addr,
5310 						dev->phys_disk[map_index]);
5311 }
5312 
5313 /*
5314  * Submit commands down the "normal" RAID stack path
5315  * All callers to hpsa_ciss_submit must check lockup_detected
5316  * beforehand, before (opt.) and after calling cmd_alloc
5317  */
5318 static int hpsa_ciss_submit(struct ctlr_info *h,
5319 	struct CommandList *c, struct scsi_cmnd *cmd,
5320 	unsigned char scsi3addr[])
5321 {
5322 	cmd->host_scribble = (unsigned char *) c;
5323 	c->cmd_type = CMD_SCSI;
5324 	c->scsi_cmd = cmd;
5325 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5326 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5327 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5328 
5329 	/* Fill in the request block... */
5330 
5331 	c->Request.Timeout = 0;
5332 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5333 	c->Request.CDBLen = cmd->cmd_len;
5334 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5335 	switch (cmd->sc_data_direction) {
5336 	case DMA_TO_DEVICE:
5337 		c->Request.type_attr_dir =
5338 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5339 		break;
5340 	case DMA_FROM_DEVICE:
5341 		c->Request.type_attr_dir =
5342 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5343 		break;
5344 	case DMA_NONE:
5345 		c->Request.type_attr_dir =
5346 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5347 		break;
5348 	case DMA_BIDIRECTIONAL:
5349 		/* This can happen if a buggy application does a scsi passthru
5350 		 * and sets both inlen and outlen to non-zero. ( see
5351 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5352 		 */
5353 
5354 		c->Request.type_attr_dir =
5355 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5356 		/* This is technically wrong, and hpsa controllers should
5357 		 * reject it with CMD_INVALID, which is the most correct
5358 		 * response, but non-fibre backends appear to let it
5359 		 * slide by, and give the same results as if this field
5360 		 * were set correctly.  Either way is acceptable for
5361 		 * our purposes here.
5362 		 */
5363 
5364 		break;
5365 
5366 	default:
5367 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5368 			cmd->sc_data_direction);
5369 		BUG();
5370 		break;
5371 	}
5372 
5373 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5374 		hpsa_cmd_resolve_and_free(h, c);
5375 		return SCSI_MLQUEUE_HOST_BUSY;
5376 	}
5377 	enqueue_cmd_and_start_io(h, c);
5378 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5379 	return 0;
5380 }
5381 
5382 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5383 				struct CommandList *c)
5384 {
5385 	dma_addr_t cmd_dma_handle, err_dma_handle;
5386 
5387 	/* Zero out all of commandlist except the last field, refcount */
5388 	memset(c, 0, offsetof(struct CommandList, refcount));
5389 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5390 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5391 	c->err_info = h->errinfo_pool + index;
5392 	memset(c->err_info, 0, sizeof(*c->err_info));
5393 	err_dma_handle = h->errinfo_pool_dhandle
5394 	    + index * sizeof(*c->err_info);
5395 	c->cmdindex = index;
5396 	c->busaddr = (u32) cmd_dma_handle;
5397 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5398 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5399 	c->h = h;
5400 	c->scsi_cmd = SCSI_CMD_IDLE;
5401 }
5402 
5403 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5404 {
5405 	int i;
5406 
5407 	for (i = 0; i < h->nr_cmds; i++) {
5408 		struct CommandList *c = h->cmd_pool + i;
5409 
5410 		hpsa_cmd_init(h, i, c);
5411 		atomic_set(&c->refcount, 0);
5412 	}
5413 }
5414 
5415 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5416 				struct CommandList *c)
5417 {
5418 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5419 
5420 	BUG_ON(c->cmdindex != index);
5421 
5422 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5423 	memset(c->err_info, 0, sizeof(*c->err_info));
5424 	c->busaddr = (u32) cmd_dma_handle;
5425 }
5426 
5427 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5428 		struct CommandList *c, struct scsi_cmnd *cmd,
5429 		unsigned char *scsi3addr)
5430 {
5431 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5432 	int rc = IO_ACCEL_INELIGIBLE;
5433 
5434 	if (!dev)
5435 		return SCSI_MLQUEUE_HOST_BUSY;
5436 
5437 	cmd->host_scribble = (unsigned char *) c;
5438 
5439 	if (dev->offload_enabled) {
5440 		hpsa_cmd_init(h, c->cmdindex, c);
5441 		c->cmd_type = CMD_SCSI;
5442 		c->scsi_cmd = cmd;
5443 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5444 		if (rc < 0)     /* scsi_dma_map failed. */
5445 			rc = SCSI_MLQUEUE_HOST_BUSY;
5446 	} else if (dev->hba_ioaccel_enabled) {
5447 		hpsa_cmd_init(h, c->cmdindex, c);
5448 		c->cmd_type = CMD_SCSI;
5449 		c->scsi_cmd = cmd;
5450 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5451 		if (rc < 0)     /* scsi_dma_map failed. */
5452 			rc = SCSI_MLQUEUE_HOST_BUSY;
5453 	}
5454 	return rc;
5455 }
5456 
5457 static void hpsa_command_resubmit_worker(struct work_struct *work)
5458 {
5459 	struct scsi_cmnd *cmd;
5460 	struct hpsa_scsi_dev_t *dev;
5461 	struct CommandList *c = container_of(work, struct CommandList, work);
5462 
5463 	cmd = c->scsi_cmd;
5464 	dev = cmd->device->hostdata;
5465 	if (!dev) {
5466 		cmd->result = DID_NO_CONNECT << 16;
5467 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5468 	}
5469 	if (c->reset_pending)
5470 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5471 	if (c->abort_pending)
5472 		return hpsa_cmd_abort_and_free(c->h, c, cmd);
5473 	if (c->cmd_type == CMD_IOACCEL2) {
5474 		struct ctlr_info *h = c->h;
5475 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5476 		int rc;
5477 
5478 		if (c2->error_data.serv_response ==
5479 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5480 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5481 			if (rc == 0)
5482 				return;
5483 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5484 				/*
5485 				 * If we get here, it means dma mapping failed.
5486 				 * Try again via scsi mid layer, which will
5487 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5488 				 */
5489 				cmd->result = DID_IMM_RETRY << 16;
5490 				return hpsa_cmd_free_and_done(h, c, cmd);
5491 			}
5492 			/* else, fall thru and resubmit down CISS path */
5493 		}
5494 	}
5495 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5496 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5497 		/*
5498 		 * If we get here, it means dma mapping failed. Try
5499 		 * again via scsi mid layer, which will then get
5500 		 * SCSI_MLQUEUE_HOST_BUSY.
5501 		 *
5502 		 * hpsa_ciss_submit will have already freed c
5503 		 * if it encountered a dma mapping failure.
5504 		 */
5505 		cmd->result = DID_IMM_RETRY << 16;
5506 		cmd->scsi_done(cmd);
5507 	}
5508 }
5509 
5510 /* Running in struct Scsi_Host->host_lock less mode */
5511 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5512 {
5513 	struct ctlr_info *h;
5514 	struct hpsa_scsi_dev_t *dev;
5515 	unsigned char scsi3addr[8];
5516 	struct CommandList *c;
5517 	int rc = 0;
5518 
5519 	/* Get the ptr to our adapter structure out of cmd->host. */
5520 	h = sdev_to_hba(cmd->device);
5521 
5522 	BUG_ON(cmd->request->tag < 0);
5523 
5524 	dev = cmd->device->hostdata;
5525 	if (!dev) {
5526 		cmd->result = DID_NO_CONNECT << 16;
5527 		cmd->scsi_done(cmd);
5528 		return 0;
5529 	}
5530 
5531 	if (dev->removed) {
5532 		cmd->result = DID_NO_CONNECT << 16;
5533 		cmd->scsi_done(cmd);
5534 		return 0;
5535 	}
5536 
5537 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5538 
5539 	if (unlikely(lockup_detected(h))) {
5540 		cmd->result = DID_NO_CONNECT << 16;
5541 		cmd->scsi_done(cmd);
5542 		return 0;
5543 	}
5544 	c = cmd_tagged_alloc(h, cmd);
5545 
5546 	/*
5547 	 * Call alternate submit routine for I/O accelerated commands.
5548 	 * Retries always go down the normal I/O path.
5549 	 */
5550 	if (likely(cmd->retries == 0 &&
5551 			!blk_rq_is_passthrough(cmd->request) &&
5552 			h->acciopath_status)) {
5553 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5554 		if (rc == 0)
5555 			return 0;
5556 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5557 			hpsa_cmd_resolve_and_free(h, c);
5558 			return SCSI_MLQUEUE_HOST_BUSY;
5559 		}
5560 	}
5561 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5562 }
5563 
5564 static void hpsa_scan_complete(struct ctlr_info *h)
5565 {
5566 	unsigned long flags;
5567 
5568 	spin_lock_irqsave(&h->scan_lock, flags);
5569 	h->scan_finished = 1;
5570 	wake_up(&h->scan_wait_queue);
5571 	spin_unlock_irqrestore(&h->scan_lock, flags);
5572 }
5573 
5574 static void hpsa_scan_start(struct Scsi_Host *sh)
5575 {
5576 	struct ctlr_info *h = shost_to_hba(sh);
5577 	unsigned long flags;
5578 
5579 	/*
5580 	 * Don't let rescans be initiated on a controller known to be locked
5581 	 * up.  If the controller locks up *during* a rescan, that thread is
5582 	 * probably hosed, but at least we can prevent new rescan threads from
5583 	 * piling up on a locked up controller.
5584 	 */
5585 	if (unlikely(lockup_detected(h)))
5586 		return hpsa_scan_complete(h);
5587 
5588 	/*
5589 	 * If a scan is already waiting to run, no need to add another
5590 	 */
5591 	spin_lock_irqsave(&h->scan_lock, flags);
5592 	if (h->scan_waiting) {
5593 		spin_unlock_irqrestore(&h->scan_lock, flags);
5594 		return;
5595 	}
5596 
5597 	spin_unlock_irqrestore(&h->scan_lock, flags);
5598 
5599 	/* wait until any scan already in progress is finished. */
5600 	while (1) {
5601 		spin_lock_irqsave(&h->scan_lock, flags);
5602 		if (h->scan_finished)
5603 			break;
5604 		h->scan_waiting = 1;
5605 		spin_unlock_irqrestore(&h->scan_lock, flags);
5606 		wait_event(h->scan_wait_queue, h->scan_finished);
5607 		/* Note: We don't need to worry about a race between this
5608 		 * thread and driver unload because the midlayer will
5609 		 * have incremented the reference count, so unload won't
5610 		 * happen if we're in here.
5611 		 */
5612 	}
5613 	h->scan_finished = 0; /* mark scan as in progress */
5614 	h->scan_waiting = 0;
5615 	spin_unlock_irqrestore(&h->scan_lock, flags);
5616 
5617 	if (unlikely(lockup_detected(h)))
5618 		return hpsa_scan_complete(h);
5619 
5620 	/*
5621 	 * Do the scan after a reset completion
5622 	 */
5623 	spin_lock_irqsave(&h->reset_lock, flags);
5624 	if (h->reset_in_progress) {
5625 		h->drv_req_rescan = 1;
5626 		spin_unlock_irqrestore(&h->reset_lock, flags);
5627 		hpsa_scan_complete(h);
5628 		return;
5629 	}
5630 	spin_unlock_irqrestore(&h->reset_lock, flags);
5631 
5632 	hpsa_update_scsi_devices(h);
5633 
5634 	hpsa_scan_complete(h);
5635 }
5636 
5637 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5638 {
5639 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5640 
5641 	if (!logical_drive)
5642 		return -ENODEV;
5643 
5644 	if (qdepth < 1)
5645 		qdepth = 1;
5646 	else if (qdepth > logical_drive->queue_depth)
5647 		qdepth = logical_drive->queue_depth;
5648 
5649 	return scsi_change_queue_depth(sdev, qdepth);
5650 }
5651 
5652 static int hpsa_scan_finished(struct Scsi_Host *sh,
5653 	unsigned long elapsed_time)
5654 {
5655 	struct ctlr_info *h = shost_to_hba(sh);
5656 	unsigned long flags;
5657 	int finished;
5658 
5659 	spin_lock_irqsave(&h->scan_lock, flags);
5660 	finished = h->scan_finished;
5661 	spin_unlock_irqrestore(&h->scan_lock, flags);
5662 	return finished;
5663 }
5664 
5665 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5666 {
5667 	struct Scsi_Host *sh;
5668 
5669 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5670 	if (sh == NULL) {
5671 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5672 		return -ENOMEM;
5673 	}
5674 
5675 	sh->io_port = 0;
5676 	sh->n_io_port = 0;
5677 	sh->this_id = -1;
5678 	sh->max_channel = 3;
5679 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5680 	sh->max_lun = HPSA_MAX_LUN;
5681 	sh->max_id = HPSA_MAX_LUN;
5682 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5683 	sh->cmd_per_lun = sh->can_queue;
5684 	sh->sg_tablesize = h->maxsgentries;
5685 	sh->transportt = hpsa_sas_transport_template;
5686 	sh->hostdata[0] = (unsigned long) h;
5687 	sh->irq = pci_irq_vector(h->pdev, 0);
5688 	sh->unique_id = sh->irq;
5689 
5690 	h->scsi_host = sh;
5691 	return 0;
5692 }
5693 
5694 static int hpsa_scsi_add_host(struct ctlr_info *h)
5695 {
5696 	int rv;
5697 
5698 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5699 	if (rv) {
5700 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5701 		return rv;
5702 	}
5703 	scsi_scan_host(h->scsi_host);
5704 	return 0;
5705 }
5706 
5707 /*
5708  * The block layer has already gone to the trouble of picking out a unique,
5709  * small-integer tag for this request.  We use an offset from that value as
5710  * an index to select our command block.  (The offset allows us to reserve the
5711  * low-numbered entries for our own uses.)
5712  */
5713 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5714 {
5715 	int idx = scmd->request->tag;
5716 
5717 	if (idx < 0)
5718 		return idx;
5719 
5720 	/* Offset to leave space for internal cmds. */
5721 	return idx += HPSA_NRESERVED_CMDS;
5722 }
5723 
5724 /*
5725  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5726  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5727  */
5728 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5729 				struct CommandList *c, unsigned char lunaddr[],
5730 				int reply_queue)
5731 {
5732 	int rc;
5733 
5734 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5735 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5736 			NULL, 0, 0, lunaddr, TYPE_CMD);
5737 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5738 	if (rc)
5739 		return rc;
5740 	/* no unmap needed here because no data xfer. */
5741 
5742 	/* Check if the unit is already ready. */
5743 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5744 		return 0;
5745 
5746 	/*
5747 	 * The first command sent after reset will receive "unit attention" to
5748 	 * indicate that the LUN has been reset...this is actually what we're
5749 	 * looking for (but, success is good too).
5750 	 */
5751 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5752 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5753 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5754 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5755 		return 0;
5756 
5757 	return 1;
5758 }
5759 
5760 /*
5761  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5762  * returns zero when the unit is ready, and non-zero when giving up.
5763  */
5764 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5765 				struct CommandList *c,
5766 				unsigned char lunaddr[], int reply_queue)
5767 {
5768 	int rc;
5769 	int count = 0;
5770 	int waittime = 1; /* seconds */
5771 
5772 	/* Send test unit ready until device ready, or give up. */
5773 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5774 
5775 		/*
5776 		 * Wait for a bit.  do this first, because if we send
5777 		 * the TUR right away, the reset will just abort it.
5778 		 */
5779 		msleep(1000 * waittime);
5780 
5781 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5782 		if (!rc)
5783 			break;
5784 
5785 		/* Increase wait time with each try, up to a point. */
5786 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5787 			waittime *= 2;
5788 
5789 		dev_warn(&h->pdev->dev,
5790 			 "waiting %d secs for device to become ready.\n",
5791 			 waittime);
5792 	}
5793 
5794 	return rc;
5795 }
5796 
5797 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5798 					   unsigned char lunaddr[],
5799 					   int reply_queue)
5800 {
5801 	int first_queue;
5802 	int last_queue;
5803 	int rq;
5804 	int rc = 0;
5805 	struct CommandList *c;
5806 
5807 	c = cmd_alloc(h);
5808 
5809 	/*
5810 	 * If no specific reply queue was requested, then send the TUR
5811 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5812 	 * the loop exactly once using only the specified queue.
5813 	 */
5814 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5815 		first_queue = 0;
5816 		last_queue = h->nreply_queues - 1;
5817 	} else {
5818 		first_queue = reply_queue;
5819 		last_queue = reply_queue;
5820 	}
5821 
5822 	for (rq = first_queue; rq <= last_queue; rq++) {
5823 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5824 		if (rc)
5825 			break;
5826 	}
5827 
5828 	if (rc)
5829 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5830 	else
5831 		dev_warn(&h->pdev->dev, "device is ready.\n");
5832 
5833 	cmd_free(h, c);
5834 	return rc;
5835 }
5836 
5837 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5838  * complaining.  Doing a host- or bus-reset can't do anything good here.
5839  */
5840 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5841 {
5842 	int rc = SUCCESS;
5843 	struct ctlr_info *h;
5844 	struct hpsa_scsi_dev_t *dev;
5845 	u8 reset_type;
5846 	char msg[48];
5847 	unsigned long flags;
5848 
5849 	/* find the controller to which the command to be aborted was sent */
5850 	h = sdev_to_hba(scsicmd->device);
5851 	if (h == NULL) /* paranoia */
5852 		return FAILED;
5853 
5854 	spin_lock_irqsave(&h->reset_lock, flags);
5855 	h->reset_in_progress = 1;
5856 	spin_unlock_irqrestore(&h->reset_lock, flags);
5857 
5858 	if (lockup_detected(h)) {
5859 		rc = FAILED;
5860 		goto return_reset_status;
5861 	}
5862 
5863 	dev = scsicmd->device->hostdata;
5864 	if (!dev) {
5865 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5866 		rc = FAILED;
5867 		goto return_reset_status;
5868 	}
5869 
5870 	if (dev->devtype == TYPE_ENCLOSURE) {
5871 		rc = SUCCESS;
5872 		goto return_reset_status;
5873 	}
5874 
5875 	/* if controller locked up, we can guarantee command won't complete */
5876 	if (lockup_detected(h)) {
5877 		snprintf(msg, sizeof(msg),
5878 			 "cmd %d RESET FAILED, lockup detected",
5879 			 hpsa_get_cmd_index(scsicmd));
5880 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5881 		rc = FAILED;
5882 		goto return_reset_status;
5883 	}
5884 
5885 	/* this reset request might be the result of a lockup; check */
5886 	if (detect_controller_lockup(h)) {
5887 		snprintf(msg, sizeof(msg),
5888 			 "cmd %d RESET FAILED, new lockup detected",
5889 			 hpsa_get_cmd_index(scsicmd));
5890 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5891 		rc = FAILED;
5892 		goto return_reset_status;
5893 	}
5894 
5895 	/* Do not attempt on controller */
5896 	if (is_hba_lunid(dev->scsi3addr)) {
5897 		rc = SUCCESS;
5898 		goto return_reset_status;
5899 	}
5900 
5901 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5902 		reset_type = HPSA_DEVICE_RESET_MSG;
5903 	else
5904 		reset_type = HPSA_PHYS_TARGET_RESET;
5905 
5906 	sprintf(msg, "resetting %s",
5907 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5908 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5909 
5910 	/* send a reset to the SCSI LUN which the command was sent to */
5911 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5912 			   DEFAULT_REPLY_QUEUE);
5913 	if (rc == 0)
5914 		rc = SUCCESS;
5915 	else
5916 		rc = FAILED;
5917 
5918 	sprintf(msg, "reset %s %s",
5919 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5920 		rc == SUCCESS ? "completed successfully" : "failed");
5921 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5922 
5923 return_reset_status:
5924 	spin_lock_irqsave(&h->reset_lock, flags);
5925 	h->reset_in_progress = 0;
5926 	spin_unlock_irqrestore(&h->reset_lock, flags);
5927 	return rc;
5928 }
5929 
5930 static void swizzle_abort_tag(u8 *tag)
5931 {
5932 	u8 original_tag[8];
5933 
5934 	memcpy(original_tag, tag, 8);
5935 	tag[0] = original_tag[3];
5936 	tag[1] = original_tag[2];
5937 	tag[2] = original_tag[1];
5938 	tag[3] = original_tag[0];
5939 	tag[4] = original_tag[7];
5940 	tag[5] = original_tag[6];
5941 	tag[6] = original_tag[5];
5942 	tag[7] = original_tag[4];
5943 }
5944 
5945 static void hpsa_get_tag(struct ctlr_info *h,
5946 	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5947 {
5948 	u64 tag;
5949 	if (c->cmd_type == CMD_IOACCEL1) {
5950 		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5951 			&h->ioaccel_cmd_pool[c->cmdindex];
5952 		tag = le64_to_cpu(cm1->tag);
5953 		*tagupper = cpu_to_le32(tag >> 32);
5954 		*taglower = cpu_to_le32(tag);
5955 		return;
5956 	}
5957 	if (c->cmd_type == CMD_IOACCEL2) {
5958 		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5959 			&h->ioaccel2_cmd_pool[c->cmdindex];
5960 		/* upper tag not used in ioaccel2 mode */
5961 		memset(tagupper, 0, sizeof(*tagupper));
5962 		*taglower = cm2->Tag;
5963 		return;
5964 	}
5965 	tag = le64_to_cpu(c->Header.tag);
5966 	*tagupper = cpu_to_le32(tag >> 32);
5967 	*taglower = cpu_to_le32(tag);
5968 }
5969 
5970 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5971 	struct CommandList *abort, int reply_queue)
5972 {
5973 	int rc = IO_OK;
5974 	struct CommandList *c;
5975 	struct ErrorInfo *ei;
5976 	__le32 tagupper, taglower;
5977 
5978 	c = cmd_alloc(h);
5979 
5980 	/* fill_cmd can't fail here, no buffer to map */
5981 	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5982 		0, 0, scsi3addr, TYPE_MSG);
5983 	if (h->needs_abort_tags_swizzled)
5984 		swizzle_abort_tag(&c->Request.CDB[4]);
5985 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5986 	hpsa_get_tag(h, abort, &taglower, &tagupper);
5987 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5988 		__func__, tagupper, taglower);
5989 	/* no unmap needed here because no data xfer. */
5990 
5991 	ei = c->err_info;
5992 	switch (ei->CommandStatus) {
5993 	case CMD_SUCCESS:
5994 		break;
5995 	case CMD_TMF_STATUS:
5996 		rc = hpsa_evaluate_tmf_status(h, c);
5997 		break;
5998 	case CMD_UNABORTABLE: /* Very common, don't make noise. */
5999 		rc = -1;
6000 		break;
6001 	default:
6002 		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
6003 			__func__, tagupper, taglower);
6004 		hpsa_scsi_interpret_error(h, c);
6005 		rc = -1;
6006 		break;
6007 	}
6008 	cmd_free(h, c);
6009 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
6010 		__func__, tagupper, taglower);
6011 	return rc;
6012 }
6013 
6014 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
6015 	struct CommandList *command_to_abort, int reply_queue)
6016 {
6017 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6018 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
6019 	struct io_accel2_cmd *c2a =
6020 		&h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
6021 	struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
6022 	struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
6023 
6024 	if (!dev)
6025 		return;
6026 
6027 	/*
6028 	 * We're overlaying struct hpsa_tmf_struct on top of something which
6029 	 * was allocated as a struct io_accel2_cmd, so we better be sure it
6030 	 * actually fits, and doesn't overrun the error info space.
6031 	 */
6032 	BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
6033 			sizeof(struct io_accel2_cmd));
6034 	BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
6035 			offsetof(struct hpsa_tmf_struct, error_len) +
6036 				sizeof(ac->error_len));
6037 
6038 	c->cmd_type = IOACCEL2_TMF;
6039 	c->scsi_cmd = SCSI_CMD_BUSY;
6040 
6041 	/* Adjust the DMA address to point to the accelerated command buffer */
6042 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
6043 				(c->cmdindex * sizeof(struct io_accel2_cmd));
6044 	BUG_ON(c->busaddr & 0x0000007F);
6045 
6046 	memset(ac, 0, sizeof(*c2)); /* yes this is correct */
6047 	ac->iu_type = IOACCEL2_IU_TMF_TYPE;
6048 	ac->reply_queue = reply_queue;
6049 	ac->tmf = IOACCEL2_TMF_ABORT;
6050 	ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
6051 	memset(ac->lun_id, 0, sizeof(ac->lun_id));
6052 	ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
6053 	ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
6054 	ac->error_ptr = cpu_to_le64(c->busaddr +
6055 			offsetof(struct io_accel2_cmd, error_data));
6056 	ac->error_len = cpu_to_le32(sizeof(c2->error_data));
6057 }
6058 
6059 /* ioaccel2 path firmware cannot handle abort task requests.
6060  * Change abort requests to physical target reset, and send to the
6061  * address of the physical disk used for the ioaccel 2 command.
6062  * Return 0 on success (IO_OK)
6063  *	 -1 on failure
6064  */
6065 
6066 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6067 	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6068 {
6069 	int rc = IO_OK;
6070 	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6071 	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6072 	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6073 	unsigned char *psa = &phys_scsi3addr[0];
6074 
6075 	/* Get a pointer to the hpsa logical device. */
6076 	scmd = abort->scsi_cmd;
6077 	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6078 	if (dev == NULL) {
6079 		dev_warn(&h->pdev->dev,
6080 			"Cannot abort: no device pointer for command.\n");
6081 			return -1; /* not abortable */
6082 	}
6083 
6084 	if (h->raid_offload_debug > 0)
6085 		dev_info(&h->pdev->dev,
6086 			"scsi %d:%d:%d:%d %s scsi3addr 0x%8phN\n",
6087 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6088 			"Reset as abort", scsi3addr);
6089 
6090 	if (!dev->offload_enabled) {
6091 		dev_warn(&h->pdev->dev,
6092 			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6093 		return -1; /* not abortable */
6094 	}
6095 
6096 	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
6097 	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6098 		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6099 		return -1; /* not abortable */
6100 	}
6101 
6102 	/* send the reset */
6103 	if (h->raid_offload_debug > 0)
6104 		dev_info(&h->pdev->dev,
6105 			"Reset as abort: Resetting physical device at scsi3addr 0x%8phN\n",
6106 			psa);
6107 	rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6108 	if (rc != 0) {
6109 		dev_warn(&h->pdev->dev,
6110 			"Reset as abort: Failed on physical device at scsi3addr 0x%8phN\n",
6111 			psa);
6112 		return rc; /* failed to reset */
6113 	}
6114 
6115 	/* wait for device to recover */
6116 	if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6117 		dev_warn(&h->pdev->dev,
6118 			"Reset as abort: Failed: Device never recovered from reset: 0x%8phN\n",
6119 			psa);
6120 		return -1;  /* failed to recover */
6121 	}
6122 
6123 	/* device recovered */
6124 	dev_info(&h->pdev->dev,
6125 		"Reset as abort: Device recovered from reset: scsi3addr 0x%8phN\n",
6126 		psa);
6127 
6128 	return rc; /* success */
6129 }
6130 
6131 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6132 	struct CommandList *abort, int reply_queue)
6133 {
6134 	int rc = IO_OK;
6135 	struct CommandList *c;
6136 	__le32 taglower, tagupper;
6137 	struct hpsa_scsi_dev_t *dev;
6138 	struct io_accel2_cmd *c2;
6139 
6140 	dev = abort->scsi_cmd->device->hostdata;
6141 	if (!dev)
6142 		return -1;
6143 
6144 	if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6145 		return -1;
6146 
6147 	c = cmd_alloc(h);
6148 	setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6149 	c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6150 	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6151 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6152 	dev_dbg(&h->pdev->dev,
6153 		"%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6154 		__func__, tagupper, taglower);
6155 	/* no unmap needed here because no data xfer. */
6156 
6157 	dev_dbg(&h->pdev->dev,
6158 		"%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6159 		__func__, tagupper, taglower, c2->error_data.serv_response);
6160 	switch (c2->error_data.serv_response) {
6161 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6162 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6163 		rc = 0;
6164 		break;
6165 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6166 	case IOACCEL2_SERV_RESPONSE_FAILURE:
6167 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6168 		rc = -1;
6169 		break;
6170 	default:
6171 		dev_warn(&h->pdev->dev,
6172 			"%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6173 			__func__, tagupper, taglower,
6174 			c2->error_data.serv_response);
6175 		rc = -1;
6176 	}
6177 	cmd_free(h, c);
6178 	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6179 		tagupper, taglower);
6180 	return rc;
6181 }
6182 
6183 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6184 	struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6185 {
6186 	/*
6187 	 * ioccelerator mode 2 commands should be aborted via the
6188 	 * accelerated path, since RAID path is unaware of these commands,
6189 	 * but not all underlying firmware can handle abort TMF.
6190 	 * Change abort to physical device reset when abort TMF is unsupported.
6191 	 */
6192 	if (abort->cmd_type == CMD_IOACCEL2) {
6193 		if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6194 			dev->physical_device)
6195 			return hpsa_send_abort_ioaccel2(h, abort,
6196 						reply_queue);
6197 		else
6198 			return hpsa_send_reset_as_abort_ioaccel2(h,
6199 							dev->scsi3addr,
6200 							abort, reply_queue);
6201 	}
6202 	return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6203 }
6204 
6205 /* Find out which reply queue a command was meant to return on */
6206 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6207 					struct CommandList *c)
6208 {
6209 	if (c->cmd_type == CMD_IOACCEL2)
6210 		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6211 	return c->Header.ReplyQueue;
6212 }
6213 
6214 /*
6215  * Limit concurrency of abort commands to prevent
6216  * over-subscription of commands
6217  */
6218 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6219 {
6220 #define ABORT_CMD_WAIT_MSECS 5000
6221 	return !wait_event_timeout(h->abort_cmd_wait_queue,
6222 			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6223 			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6224 }
6225 
6226 /* Send an abort for the specified command.
6227  *	If the device and controller support it,
6228  *		send a task abort request.
6229  */
6230 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6231 {
6232 
6233 	int rc;
6234 	struct ctlr_info *h;
6235 	struct hpsa_scsi_dev_t *dev;
6236 	struct CommandList *abort; /* pointer to command to be aborted */
6237 	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
6238 	char msg[256];		/* For debug messaging. */
6239 	int ml = 0;
6240 	__le32 tagupper, taglower;
6241 	int refcount, reply_queue;
6242 
6243 	if (sc == NULL)
6244 		return FAILED;
6245 
6246 	if (sc->device == NULL)
6247 		return FAILED;
6248 
6249 	/* Find the controller of the command to be aborted */
6250 	h = sdev_to_hba(sc->device);
6251 	if (h == NULL)
6252 		return FAILED;
6253 
6254 	/* Find the device of the command to be aborted */
6255 	dev = sc->device->hostdata;
6256 	if (!dev) {
6257 		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6258 				msg);
6259 		return FAILED;
6260 	}
6261 
6262 	/* If controller locked up, we can guarantee command won't complete */
6263 	if (lockup_detected(h)) {
6264 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6265 					"ABORT FAILED, lockup detected");
6266 		return FAILED;
6267 	}
6268 
6269 	/* This is a good time to check if controller lockup has occurred */
6270 	if (detect_controller_lockup(h)) {
6271 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6272 					"ABORT FAILED, new lockup detected");
6273 		return FAILED;
6274 	}
6275 
6276 	/* Check that controller supports some kind of task abort */
6277 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6278 		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6279 		return FAILED;
6280 
6281 	memset(msg, 0, sizeof(msg));
6282 	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6283 		h->scsi_host->host_no, sc->device->channel,
6284 		sc->device->id, sc->device->lun,
6285 		"Aborting command", sc);
6286 
6287 	/* Get SCSI command to be aborted */
6288 	abort = (struct CommandList *) sc->host_scribble;
6289 	if (abort == NULL) {
6290 		/* This can happen if the command already completed. */
6291 		return SUCCESS;
6292 	}
6293 	refcount = atomic_inc_return(&abort->refcount);
6294 	if (refcount == 1) { /* Command is done already. */
6295 		cmd_free(h, abort);
6296 		return SUCCESS;
6297 	}
6298 
6299 	/* Don't bother trying the abort if we know it won't work. */
6300 	if (abort->cmd_type != CMD_IOACCEL2 &&
6301 		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6302 		cmd_free(h, abort);
6303 		return FAILED;
6304 	}
6305 
6306 	/*
6307 	 * Check that we're aborting the right command.
6308 	 * It's possible the CommandList already completed and got re-used.
6309 	 */
6310 	if (abort->scsi_cmd != sc) {
6311 		cmd_free(h, abort);
6312 		return SUCCESS;
6313 	}
6314 
6315 	abort->abort_pending = true;
6316 	hpsa_get_tag(h, abort, &taglower, &tagupper);
6317 	reply_queue = hpsa_extract_reply_queue(h, abort);
6318 	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6319 	as  = abort->scsi_cmd;
6320 	if (as != NULL)
6321 		ml += sprintf(msg+ml,
6322 			"CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6323 			as->cmd_len, as->cmnd[0], as->cmnd[1],
6324 			as->serial_number);
6325 	dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6326 	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6327 
6328 	/*
6329 	 * Command is in flight, or possibly already completed
6330 	 * by the firmware (but not to the scsi mid layer) but we can't
6331 	 * distinguish which.  Send the abort down.
6332 	 */
6333 	if (wait_for_available_abort_cmd(h)) {
6334 		dev_warn(&h->pdev->dev,
6335 			"%s FAILED, timeout waiting for an abort command to become available.\n",
6336 			msg);
6337 		cmd_free(h, abort);
6338 		return FAILED;
6339 	}
6340 	rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6341 	atomic_inc(&h->abort_cmds_available);
6342 	wake_up_all(&h->abort_cmd_wait_queue);
6343 	if (rc != 0) {
6344 		dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6345 		hpsa_show_dev_msg(KERN_WARNING, h, dev,
6346 				"FAILED to abort command");
6347 		cmd_free(h, abort);
6348 		return FAILED;
6349 	}
6350 	dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6351 	wait_event(h->event_sync_wait_queue,
6352 		   abort->scsi_cmd != sc || lockup_detected(h));
6353 	cmd_free(h, abort);
6354 	return !lockup_detected(h) ? SUCCESS : FAILED;
6355 }
6356 
6357 /*
6358  * For operations with an associated SCSI command, a command block is allocated
6359  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6360  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6361  * the complement, although cmd_free() may be called instead.
6362  */
6363 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6364 					    struct scsi_cmnd *scmd)
6365 {
6366 	int idx = hpsa_get_cmd_index(scmd);
6367 	struct CommandList *c = h->cmd_pool + idx;
6368 
6369 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6370 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6371 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6372 		/* The index value comes from the block layer, so if it's out of
6373 		 * bounds, it's probably not our bug.
6374 		 */
6375 		BUG();
6376 	}
6377 
6378 	atomic_inc(&c->refcount);
6379 	if (unlikely(!hpsa_is_cmd_idle(c))) {
6380 		/*
6381 		 * We expect that the SCSI layer will hand us a unique tag
6382 		 * value.  Thus, there should never be a collision here between
6383 		 * two requests...because if the selected command isn't idle
6384 		 * then someone is going to be very disappointed.
6385 		 */
6386 		dev_err(&h->pdev->dev,
6387 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6388 			idx);
6389 		if (c->scsi_cmd != NULL)
6390 			scsi_print_command(c->scsi_cmd);
6391 		scsi_print_command(scmd);
6392 	}
6393 
6394 	hpsa_cmd_partial_init(h, idx, c);
6395 	return c;
6396 }
6397 
6398 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6399 {
6400 	/*
6401 	 * Release our reference to the block.  We don't need to do anything
6402 	 * else to free it, because it is accessed by index.  (There's no point
6403 	 * in checking the result of the decrement, since we cannot guarantee
6404 	 * that there isn't a concurrent abort which is also accessing it.)
6405 	 */
6406 	(void)atomic_dec(&c->refcount);
6407 }
6408 
6409 /*
6410  * For operations that cannot sleep, a command block is allocated at init,
6411  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6412  * which ones are free or in use.  Lock must be held when calling this.
6413  * cmd_free() is the complement.
6414  * This function never gives up and returns NULL.  If it hangs,
6415  * another thread must call cmd_free() to free some tags.
6416  */
6417 
6418 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6419 {
6420 	struct CommandList *c;
6421 	int refcount, i;
6422 	int offset = 0;
6423 
6424 	/*
6425 	 * There is some *extremely* small but non-zero chance that that
6426 	 * multiple threads could get in here, and one thread could
6427 	 * be scanning through the list of bits looking for a free
6428 	 * one, but the free ones are always behind him, and other
6429 	 * threads sneak in behind him and eat them before he can
6430 	 * get to them, so that while there is always a free one, a
6431 	 * very unlucky thread might be starved anyway, never able to
6432 	 * beat the other threads.  In reality, this happens so
6433 	 * infrequently as to be indistinguishable from never.
6434 	 *
6435 	 * Note that we start allocating commands before the SCSI host structure
6436 	 * is initialized.  Since the search starts at bit zero, this
6437 	 * all works, since we have at least one command structure available;
6438 	 * however, it means that the structures with the low indexes have to be
6439 	 * reserved for driver-initiated requests, while requests from the block
6440 	 * layer will use the higher indexes.
6441 	 */
6442 
6443 	for (;;) {
6444 		i = find_next_zero_bit(h->cmd_pool_bits,
6445 					HPSA_NRESERVED_CMDS,
6446 					offset);
6447 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6448 			offset = 0;
6449 			continue;
6450 		}
6451 		c = h->cmd_pool + i;
6452 		refcount = atomic_inc_return(&c->refcount);
6453 		if (unlikely(refcount > 1)) {
6454 			cmd_free(h, c); /* already in use */
6455 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6456 			continue;
6457 		}
6458 		set_bit(i & (BITS_PER_LONG - 1),
6459 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6460 		break; /* it's ours now. */
6461 	}
6462 	hpsa_cmd_partial_init(h, i, c);
6463 	return c;
6464 }
6465 
6466 /*
6467  * This is the complementary operation to cmd_alloc().  Note, however, in some
6468  * corner cases it may also be used to free blocks allocated by
6469  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6470  * the clear-bit is harmless.
6471  */
6472 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6473 {
6474 	if (atomic_dec_and_test(&c->refcount)) {
6475 		int i;
6476 
6477 		i = c - h->cmd_pool;
6478 		clear_bit(i & (BITS_PER_LONG - 1),
6479 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6480 	}
6481 }
6482 
6483 #ifdef CONFIG_COMPAT
6484 
6485 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6486 	void __user *arg)
6487 {
6488 	IOCTL32_Command_struct __user *arg32 =
6489 	    (IOCTL32_Command_struct __user *) arg;
6490 	IOCTL_Command_struct arg64;
6491 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6492 	int err;
6493 	u32 cp;
6494 
6495 	memset(&arg64, 0, sizeof(arg64));
6496 	err = 0;
6497 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6498 			   sizeof(arg64.LUN_info));
6499 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6500 			   sizeof(arg64.Request));
6501 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6502 			   sizeof(arg64.error_info));
6503 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6504 	err |= get_user(cp, &arg32->buf);
6505 	arg64.buf = compat_ptr(cp);
6506 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6507 
6508 	if (err)
6509 		return -EFAULT;
6510 
6511 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6512 	if (err)
6513 		return err;
6514 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6515 			 sizeof(arg32->error_info));
6516 	if (err)
6517 		return -EFAULT;
6518 	return err;
6519 }
6520 
6521 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6522 	int cmd, void __user *arg)
6523 {
6524 	BIG_IOCTL32_Command_struct __user *arg32 =
6525 	    (BIG_IOCTL32_Command_struct __user *) arg;
6526 	BIG_IOCTL_Command_struct arg64;
6527 	BIG_IOCTL_Command_struct __user *p =
6528 	    compat_alloc_user_space(sizeof(arg64));
6529 	int err;
6530 	u32 cp;
6531 
6532 	memset(&arg64, 0, sizeof(arg64));
6533 	err = 0;
6534 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6535 			   sizeof(arg64.LUN_info));
6536 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6537 			   sizeof(arg64.Request));
6538 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6539 			   sizeof(arg64.error_info));
6540 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6541 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6542 	err |= get_user(cp, &arg32->buf);
6543 	arg64.buf = compat_ptr(cp);
6544 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6545 
6546 	if (err)
6547 		return -EFAULT;
6548 
6549 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6550 	if (err)
6551 		return err;
6552 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6553 			 sizeof(arg32->error_info));
6554 	if (err)
6555 		return -EFAULT;
6556 	return err;
6557 }
6558 
6559 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6560 {
6561 	switch (cmd) {
6562 	case CCISS_GETPCIINFO:
6563 	case CCISS_GETINTINFO:
6564 	case CCISS_SETINTINFO:
6565 	case CCISS_GETNODENAME:
6566 	case CCISS_SETNODENAME:
6567 	case CCISS_GETHEARTBEAT:
6568 	case CCISS_GETBUSTYPES:
6569 	case CCISS_GETFIRMVER:
6570 	case CCISS_GETDRIVVER:
6571 	case CCISS_REVALIDVOLS:
6572 	case CCISS_DEREGDISK:
6573 	case CCISS_REGNEWDISK:
6574 	case CCISS_REGNEWD:
6575 	case CCISS_RESCANDISK:
6576 	case CCISS_GETLUNINFO:
6577 		return hpsa_ioctl(dev, cmd, arg);
6578 
6579 	case CCISS_PASSTHRU32:
6580 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6581 	case CCISS_BIG_PASSTHRU32:
6582 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6583 
6584 	default:
6585 		return -ENOIOCTLCMD;
6586 	}
6587 }
6588 #endif
6589 
6590 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6591 {
6592 	struct hpsa_pci_info pciinfo;
6593 
6594 	if (!argp)
6595 		return -EINVAL;
6596 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6597 	pciinfo.bus = h->pdev->bus->number;
6598 	pciinfo.dev_fn = h->pdev->devfn;
6599 	pciinfo.board_id = h->board_id;
6600 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6601 		return -EFAULT;
6602 	return 0;
6603 }
6604 
6605 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6606 {
6607 	DriverVer_type DriverVer;
6608 	unsigned char vmaj, vmin, vsubmin;
6609 	int rc;
6610 
6611 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6612 		&vmaj, &vmin, &vsubmin);
6613 	if (rc != 3) {
6614 		dev_info(&h->pdev->dev, "driver version string '%s' "
6615 			"unrecognized.", HPSA_DRIVER_VERSION);
6616 		vmaj = 0;
6617 		vmin = 0;
6618 		vsubmin = 0;
6619 	}
6620 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6621 	if (!argp)
6622 		return -EINVAL;
6623 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6624 		return -EFAULT;
6625 	return 0;
6626 }
6627 
6628 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6629 {
6630 	IOCTL_Command_struct iocommand;
6631 	struct CommandList *c;
6632 	char *buff = NULL;
6633 	u64 temp64;
6634 	int rc = 0;
6635 
6636 	if (!argp)
6637 		return -EINVAL;
6638 	if (!capable(CAP_SYS_RAWIO))
6639 		return -EPERM;
6640 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6641 		return -EFAULT;
6642 	if ((iocommand.buf_size < 1) &&
6643 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6644 		return -EINVAL;
6645 	}
6646 	if (iocommand.buf_size > 0) {
6647 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6648 		if (buff == NULL)
6649 			return -ENOMEM;
6650 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6651 			/* Copy the data into the buffer we created */
6652 			if (copy_from_user(buff, iocommand.buf,
6653 				iocommand.buf_size)) {
6654 				rc = -EFAULT;
6655 				goto out_kfree;
6656 			}
6657 		} else {
6658 			memset(buff, 0, iocommand.buf_size);
6659 		}
6660 	}
6661 	c = cmd_alloc(h);
6662 
6663 	/* Fill in the command type */
6664 	c->cmd_type = CMD_IOCTL_PEND;
6665 	c->scsi_cmd = SCSI_CMD_BUSY;
6666 	/* Fill in Command Header */
6667 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6668 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6669 		c->Header.SGList = 1;
6670 		c->Header.SGTotal = cpu_to_le16(1);
6671 	} else	{ /* no buffers to fill */
6672 		c->Header.SGList = 0;
6673 		c->Header.SGTotal = cpu_to_le16(0);
6674 	}
6675 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6676 
6677 	/* Fill in Request block */
6678 	memcpy(&c->Request, &iocommand.Request,
6679 		sizeof(c->Request));
6680 
6681 	/* Fill in the scatter gather information */
6682 	if (iocommand.buf_size > 0) {
6683 		temp64 = pci_map_single(h->pdev, buff,
6684 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6685 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6686 			c->SG[0].Addr = cpu_to_le64(0);
6687 			c->SG[0].Len = cpu_to_le32(0);
6688 			rc = -ENOMEM;
6689 			goto out;
6690 		}
6691 		c->SG[0].Addr = cpu_to_le64(temp64);
6692 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6693 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6694 	}
6695 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6696 					NO_TIMEOUT);
6697 	if (iocommand.buf_size > 0)
6698 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6699 	check_ioctl_unit_attention(h, c);
6700 	if (rc) {
6701 		rc = -EIO;
6702 		goto out;
6703 	}
6704 
6705 	/* Copy the error information out */
6706 	memcpy(&iocommand.error_info, c->err_info,
6707 		sizeof(iocommand.error_info));
6708 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6709 		rc = -EFAULT;
6710 		goto out;
6711 	}
6712 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6713 		iocommand.buf_size > 0) {
6714 		/* Copy the data out of the buffer we created */
6715 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6716 			rc = -EFAULT;
6717 			goto out;
6718 		}
6719 	}
6720 out:
6721 	cmd_free(h, c);
6722 out_kfree:
6723 	kfree(buff);
6724 	return rc;
6725 }
6726 
6727 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6728 {
6729 	BIG_IOCTL_Command_struct *ioc;
6730 	struct CommandList *c;
6731 	unsigned char **buff = NULL;
6732 	int *buff_size = NULL;
6733 	u64 temp64;
6734 	BYTE sg_used = 0;
6735 	int status = 0;
6736 	u32 left;
6737 	u32 sz;
6738 	BYTE __user *data_ptr;
6739 
6740 	if (!argp)
6741 		return -EINVAL;
6742 	if (!capable(CAP_SYS_RAWIO))
6743 		return -EPERM;
6744 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6745 	if (!ioc) {
6746 		status = -ENOMEM;
6747 		goto cleanup1;
6748 	}
6749 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6750 		status = -EFAULT;
6751 		goto cleanup1;
6752 	}
6753 	if ((ioc->buf_size < 1) &&
6754 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6755 		status = -EINVAL;
6756 		goto cleanup1;
6757 	}
6758 	/* Check kmalloc limits  using all SGs */
6759 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6760 		status = -EINVAL;
6761 		goto cleanup1;
6762 	}
6763 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6764 		status = -EINVAL;
6765 		goto cleanup1;
6766 	}
6767 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6768 	if (!buff) {
6769 		status = -ENOMEM;
6770 		goto cleanup1;
6771 	}
6772 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6773 	if (!buff_size) {
6774 		status = -ENOMEM;
6775 		goto cleanup1;
6776 	}
6777 	left = ioc->buf_size;
6778 	data_ptr = ioc->buf;
6779 	while (left) {
6780 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6781 		buff_size[sg_used] = sz;
6782 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6783 		if (buff[sg_used] == NULL) {
6784 			status = -ENOMEM;
6785 			goto cleanup1;
6786 		}
6787 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6788 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6789 				status = -EFAULT;
6790 				goto cleanup1;
6791 			}
6792 		} else
6793 			memset(buff[sg_used], 0, sz);
6794 		left -= sz;
6795 		data_ptr += sz;
6796 		sg_used++;
6797 	}
6798 	c = cmd_alloc(h);
6799 
6800 	c->cmd_type = CMD_IOCTL_PEND;
6801 	c->scsi_cmd = SCSI_CMD_BUSY;
6802 	c->Header.ReplyQueue = 0;
6803 	c->Header.SGList = (u8) sg_used;
6804 	c->Header.SGTotal = cpu_to_le16(sg_used);
6805 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6806 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6807 	if (ioc->buf_size > 0) {
6808 		int i;
6809 		for (i = 0; i < sg_used; i++) {
6810 			temp64 = pci_map_single(h->pdev, buff[i],
6811 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6812 			if (dma_mapping_error(&h->pdev->dev,
6813 							(dma_addr_t) temp64)) {
6814 				c->SG[i].Addr = cpu_to_le64(0);
6815 				c->SG[i].Len = cpu_to_le32(0);
6816 				hpsa_pci_unmap(h->pdev, c, i,
6817 					PCI_DMA_BIDIRECTIONAL);
6818 				status = -ENOMEM;
6819 				goto cleanup0;
6820 			}
6821 			c->SG[i].Addr = cpu_to_le64(temp64);
6822 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6823 			c->SG[i].Ext = cpu_to_le32(0);
6824 		}
6825 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6826 	}
6827 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6828 						NO_TIMEOUT);
6829 	if (sg_used)
6830 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6831 	check_ioctl_unit_attention(h, c);
6832 	if (status) {
6833 		status = -EIO;
6834 		goto cleanup0;
6835 	}
6836 
6837 	/* Copy the error information out */
6838 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6839 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6840 		status = -EFAULT;
6841 		goto cleanup0;
6842 	}
6843 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6844 		int i;
6845 
6846 		/* Copy the data out of the buffer we created */
6847 		BYTE __user *ptr = ioc->buf;
6848 		for (i = 0; i < sg_used; i++) {
6849 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6850 				status = -EFAULT;
6851 				goto cleanup0;
6852 			}
6853 			ptr += buff_size[i];
6854 		}
6855 	}
6856 	status = 0;
6857 cleanup0:
6858 	cmd_free(h, c);
6859 cleanup1:
6860 	if (buff) {
6861 		int i;
6862 
6863 		for (i = 0; i < sg_used; i++)
6864 			kfree(buff[i]);
6865 		kfree(buff);
6866 	}
6867 	kfree(buff_size);
6868 	kfree(ioc);
6869 	return status;
6870 }
6871 
6872 static void check_ioctl_unit_attention(struct ctlr_info *h,
6873 	struct CommandList *c)
6874 {
6875 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6876 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6877 		(void) check_for_unit_attention(h, c);
6878 }
6879 
6880 /*
6881  * ioctl
6882  */
6883 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6884 {
6885 	struct ctlr_info *h;
6886 	void __user *argp = (void __user *)arg;
6887 	int rc;
6888 
6889 	h = sdev_to_hba(dev);
6890 
6891 	switch (cmd) {
6892 	case CCISS_DEREGDISK:
6893 	case CCISS_REGNEWDISK:
6894 	case CCISS_REGNEWD:
6895 		hpsa_scan_start(h->scsi_host);
6896 		return 0;
6897 	case CCISS_GETPCIINFO:
6898 		return hpsa_getpciinfo_ioctl(h, argp);
6899 	case CCISS_GETDRIVVER:
6900 		return hpsa_getdrivver_ioctl(h, argp);
6901 	case CCISS_PASSTHRU:
6902 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6903 			return -EAGAIN;
6904 		rc = hpsa_passthru_ioctl(h, argp);
6905 		atomic_inc(&h->passthru_cmds_avail);
6906 		return rc;
6907 	case CCISS_BIG_PASSTHRU:
6908 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6909 			return -EAGAIN;
6910 		rc = hpsa_big_passthru_ioctl(h, argp);
6911 		atomic_inc(&h->passthru_cmds_avail);
6912 		return rc;
6913 	default:
6914 		return -ENOTTY;
6915 	}
6916 }
6917 
6918 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6919 				u8 reset_type)
6920 {
6921 	struct CommandList *c;
6922 
6923 	c = cmd_alloc(h);
6924 
6925 	/* fill_cmd can't fail here, no data buffer to map */
6926 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6927 		RAID_CTLR_LUNID, TYPE_MSG);
6928 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6929 	c->waiting = NULL;
6930 	enqueue_cmd_and_start_io(h, c);
6931 	/* Don't wait for completion, the reset won't complete.  Don't free
6932 	 * the command either.  This is the last command we will send before
6933 	 * re-initializing everything, so it doesn't matter and won't leak.
6934 	 */
6935 	return;
6936 }
6937 
6938 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6939 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6940 	int cmd_type)
6941 {
6942 	int pci_dir = XFER_NONE;
6943 	u64 tag; /* for commands to be aborted */
6944 
6945 	c->cmd_type = CMD_IOCTL_PEND;
6946 	c->scsi_cmd = SCSI_CMD_BUSY;
6947 	c->Header.ReplyQueue = 0;
6948 	if (buff != NULL && size > 0) {
6949 		c->Header.SGList = 1;
6950 		c->Header.SGTotal = cpu_to_le16(1);
6951 	} else {
6952 		c->Header.SGList = 0;
6953 		c->Header.SGTotal = cpu_to_le16(0);
6954 	}
6955 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6956 
6957 	if (cmd_type == TYPE_CMD) {
6958 		switch (cmd) {
6959 		case HPSA_INQUIRY:
6960 			/* are we trying to read a vital product page */
6961 			if (page_code & VPD_PAGE) {
6962 				c->Request.CDB[1] = 0x01;
6963 				c->Request.CDB[2] = (page_code & 0xff);
6964 			}
6965 			c->Request.CDBLen = 6;
6966 			c->Request.type_attr_dir =
6967 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6968 			c->Request.Timeout = 0;
6969 			c->Request.CDB[0] = HPSA_INQUIRY;
6970 			c->Request.CDB[4] = size & 0xFF;
6971 			break;
6972 		case HPSA_REPORT_LOG:
6973 		case HPSA_REPORT_PHYS:
6974 			/* Talking to controller so It's a physical command
6975 			   mode = 00 target = 0.  Nothing to write.
6976 			 */
6977 			c->Request.CDBLen = 12;
6978 			c->Request.type_attr_dir =
6979 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6980 			c->Request.Timeout = 0;
6981 			c->Request.CDB[0] = cmd;
6982 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6983 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6984 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6985 			c->Request.CDB[9] = size & 0xFF;
6986 			break;
6987 		case BMIC_SENSE_DIAG_OPTIONS:
6988 			c->Request.CDBLen = 16;
6989 			c->Request.type_attr_dir =
6990 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6991 			c->Request.Timeout = 0;
6992 			/* Spec says this should be BMIC_WRITE */
6993 			c->Request.CDB[0] = BMIC_READ;
6994 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6995 			break;
6996 		case BMIC_SET_DIAG_OPTIONS:
6997 			c->Request.CDBLen = 16;
6998 			c->Request.type_attr_dir =
6999 					TYPE_ATTR_DIR(cmd_type,
7000 						ATTR_SIMPLE, XFER_WRITE);
7001 			c->Request.Timeout = 0;
7002 			c->Request.CDB[0] = BMIC_WRITE;
7003 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
7004 			break;
7005 		case HPSA_CACHE_FLUSH:
7006 			c->Request.CDBLen = 12;
7007 			c->Request.type_attr_dir =
7008 					TYPE_ATTR_DIR(cmd_type,
7009 						ATTR_SIMPLE, XFER_WRITE);
7010 			c->Request.Timeout = 0;
7011 			c->Request.CDB[0] = BMIC_WRITE;
7012 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
7013 			c->Request.CDB[7] = (size >> 8) & 0xFF;
7014 			c->Request.CDB[8] = size & 0xFF;
7015 			break;
7016 		case TEST_UNIT_READY:
7017 			c->Request.CDBLen = 6;
7018 			c->Request.type_attr_dir =
7019 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7020 			c->Request.Timeout = 0;
7021 			break;
7022 		case HPSA_GET_RAID_MAP:
7023 			c->Request.CDBLen = 12;
7024 			c->Request.type_attr_dir =
7025 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7026 			c->Request.Timeout = 0;
7027 			c->Request.CDB[0] = HPSA_CISS_READ;
7028 			c->Request.CDB[1] = cmd;
7029 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
7030 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7031 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7032 			c->Request.CDB[9] = size & 0xFF;
7033 			break;
7034 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
7035 			c->Request.CDBLen = 10;
7036 			c->Request.type_attr_dir =
7037 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7038 			c->Request.Timeout = 0;
7039 			c->Request.CDB[0] = BMIC_READ;
7040 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
7041 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7042 			c->Request.CDB[8] = (size >> 8) & 0xFF;
7043 			break;
7044 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
7045 			c->Request.CDBLen = 10;
7046 			c->Request.type_attr_dir =
7047 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7048 			c->Request.Timeout = 0;
7049 			c->Request.CDB[0] = BMIC_READ;
7050 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7051 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7052 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7053 			break;
7054 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7055 			c->Request.CDBLen = 10;
7056 			c->Request.type_attr_dir =
7057 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7058 			c->Request.Timeout = 0;
7059 			c->Request.CDB[0] = BMIC_READ;
7060 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7061 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7062 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7063 			break;
7064 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
7065 			c->Request.CDBLen = 10;
7066 			c->Request.type_attr_dir =
7067 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7068 			c->Request.Timeout = 0;
7069 			c->Request.CDB[0] = BMIC_READ;
7070 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7071 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7072 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7073 			break;
7074 		case BMIC_IDENTIFY_CONTROLLER:
7075 			c->Request.CDBLen = 10;
7076 			c->Request.type_attr_dir =
7077 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7078 			c->Request.Timeout = 0;
7079 			c->Request.CDB[0] = BMIC_READ;
7080 			c->Request.CDB[1] = 0;
7081 			c->Request.CDB[2] = 0;
7082 			c->Request.CDB[3] = 0;
7083 			c->Request.CDB[4] = 0;
7084 			c->Request.CDB[5] = 0;
7085 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7086 			c->Request.CDB[7] = (size >> 16) & 0xFF;
7087 			c->Request.CDB[8] = (size >> 8) & 0XFF;
7088 			c->Request.CDB[9] = 0;
7089 			break;
7090 		default:
7091 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7092 			BUG();
7093 			return -1;
7094 		}
7095 	} else if (cmd_type == TYPE_MSG) {
7096 		switch (cmd) {
7097 
7098 		case  HPSA_PHYS_TARGET_RESET:
7099 			c->Request.CDBLen = 16;
7100 			c->Request.type_attr_dir =
7101 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7102 			c->Request.Timeout = 0; /* Don't time out */
7103 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7104 			c->Request.CDB[0] = HPSA_RESET;
7105 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7106 			/* Physical target reset needs no control bytes 4-7*/
7107 			c->Request.CDB[4] = 0x00;
7108 			c->Request.CDB[5] = 0x00;
7109 			c->Request.CDB[6] = 0x00;
7110 			c->Request.CDB[7] = 0x00;
7111 			break;
7112 		case  HPSA_DEVICE_RESET_MSG:
7113 			c->Request.CDBLen = 16;
7114 			c->Request.type_attr_dir =
7115 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7116 			c->Request.Timeout = 0; /* Don't time out */
7117 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7118 			c->Request.CDB[0] =  cmd;
7119 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7120 			/* If bytes 4-7 are zero, it means reset the */
7121 			/* LunID device */
7122 			c->Request.CDB[4] = 0x00;
7123 			c->Request.CDB[5] = 0x00;
7124 			c->Request.CDB[6] = 0x00;
7125 			c->Request.CDB[7] = 0x00;
7126 			break;
7127 		case  HPSA_ABORT_MSG:
7128 			memcpy(&tag, buff, sizeof(tag));
7129 			dev_dbg(&h->pdev->dev,
7130 				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7131 				tag, c->Header.tag);
7132 			c->Request.CDBLen = 16;
7133 			c->Request.type_attr_dir =
7134 					TYPE_ATTR_DIR(cmd_type,
7135 						ATTR_SIMPLE, XFER_WRITE);
7136 			c->Request.Timeout = 0; /* Don't time out */
7137 			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7138 			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7139 			c->Request.CDB[2] = 0x00; /* reserved */
7140 			c->Request.CDB[3] = 0x00; /* reserved */
7141 			/* Tag to abort goes in CDB[4]-CDB[11] */
7142 			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7143 			c->Request.CDB[12] = 0x00; /* reserved */
7144 			c->Request.CDB[13] = 0x00; /* reserved */
7145 			c->Request.CDB[14] = 0x00; /* reserved */
7146 			c->Request.CDB[15] = 0x00; /* reserved */
7147 		break;
7148 		default:
7149 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
7150 				cmd);
7151 			BUG();
7152 		}
7153 	} else {
7154 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7155 		BUG();
7156 	}
7157 
7158 	switch (GET_DIR(c->Request.type_attr_dir)) {
7159 	case XFER_READ:
7160 		pci_dir = PCI_DMA_FROMDEVICE;
7161 		break;
7162 	case XFER_WRITE:
7163 		pci_dir = PCI_DMA_TODEVICE;
7164 		break;
7165 	case XFER_NONE:
7166 		pci_dir = PCI_DMA_NONE;
7167 		break;
7168 	default:
7169 		pci_dir = PCI_DMA_BIDIRECTIONAL;
7170 	}
7171 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7172 		return -1;
7173 	return 0;
7174 }
7175 
7176 /*
7177  * Map (physical) PCI mem into (virtual) kernel space
7178  */
7179 static void __iomem *remap_pci_mem(ulong base, ulong size)
7180 {
7181 	ulong page_base = ((ulong) base) & PAGE_MASK;
7182 	ulong page_offs = ((ulong) base) - page_base;
7183 	void __iomem *page_remapped = ioremap_nocache(page_base,
7184 		page_offs + size);
7185 
7186 	return page_remapped ? (page_remapped + page_offs) : NULL;
7187 }
7188 
7189 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7190 {
7191 	return h->access.command_completed(h, q);
7192 }
7193 
7194 static inline bool interrupt_pending(struct ctlr_info *h)
7195 {
7196 	return h->access.intr_pending(h);
7197 }
7198 
7199 static inline long interrupt_not_for_us(struct ctlr_info *h)
7200 {
7201 	return (h->access.intr_pending(h) == 0) ||
7202 		(h->interrupts_enabled == 0);
7203 }
7204 
7205 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7206 	u32 raw_tag)
7207 {
7208 	if (unlikely(tag_index >= h->nr_cmds)) {
7209 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7210 		return 1;
7211 	}
7212 	return 0;
7213 }
7214 
7215 static inline void finish_cmd(struct CommandList *c)
7216 {
7217 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7218 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7219 			|| c->cmd_type == CMD_IOACCEL2))
7220 		complete_scsi_command(c);
7221 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7222 		complete(c->waiting);
7223 }
7224 
7225 /* process completion of an indexed ("direct lookup") command */
7226 static inline void process_indexed_cmd(struct ctlr_info *h,
7227 	u32 raw_tag)
7228 {
7229 	u32 tag_index;
7230 	struct CommandList *c;
7231 
7232 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7233 	if (!bad_tag(h, tag_index, raw_tag)) {
7234 		c = h->cmd_pool + tag_index;
7235 		finish_cmd(c);
7236 	}
7237 }
7238 
7239 /* Some controllers, like p400, will give us one interrupt
7240  * after a soft reset, even if we turned interrupts off.
7241  * Only need to check for this in the hpsa_xxx_discard_completions
7242  * functions.
7243  */
7244 static int ignore_bogus_interrupt(struct ctlr_info *h)
7245 {
7246 	if (likely(!reset_devices))
7247 		return 0;
7248 
7249 	if (likely(h->interrupts_enabled))
7250 		return 0;
7251 
7252 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7253 		"(known firmware bug.)  Ignoring.\n");
7254 
7255 	return 1;
7256 }
7257 
7258 /*
7259  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7260  * Relies on (h-q[x] == x) being true for x such that
7261  * 0 <= x < MAX_REPLY_QUEUES.
7262  */
7263 static struct ctlr_info *queue_to_hba(u8 *queue)
7264 {
7265 	return container_of((queue - *queue), struct ctlr_info, q[0]);
7266 }
7267 
7268 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7269 {
7270 	struct ctlr_info *h = queue_to_hba(queue);
7271 	u8 q = *(u8 *) queue;
7272 	u32 raw_tag;
7273 
7274 	if (ignore_bogus_interrupt(h))
7275 		return IRQ_NONE;
7276 
7277 	if (interrupt_not_for_us(h))
7278 		return IRQ_NONE;
7279 	h->last_intr_timestamp = get_jiffies_64();
7280 	while (interrupt_pending(h)) {
7281 		raw_tag = get_next_completion(h, q);
7282 		while (raw_tag != FIFO_EMPTY)
7283 			raw_tag = next_command(h, q);
7284 	}
7285 	return IRQ_HANDLED;
7286 }
7287 
7288 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7289 {
7290 	struct ctlr_info *h = queue_to_hba(queue);
7291 	u32 raw_tag;
7292 	u8 q = *(u8 *) queue;
7293 
7294 	if (ignore_bogus_interrupt(h))
7295 		return IRQ_NONE;
7296 
7297 	h->last_intr_timestamp = get_jiffies_64();
7298 	raw_tag = get_next_completion(h, q);
7299 	while (raw_tag != FIFO_EMPTY)
7300 		raw_tag = next_command(h, q);
7301 	return IRQ_HANDLED;
7302 }
7303 
7304 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7305 {
7306 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
7307 	u32 raw_tag;
7308 	u8 q = *(u8 *) queue;
7309 
7310 	if (interrupt_not_for_us(h))
7311 		return IRQ_NONE;
7312 	h->last_intr_timestamp = get_jiffies_64();
7313 	while (interrupt_pending(h)) {
7314 		raw_tag = get_next_completion(h, q);
7315 		while (raw_tag != FIFO_EMPTY) {
7316 			process_indexed_cmd(h, raw_tag);
7317 			raw_tag = next_command(h, q);
7318 		}
7319 	}
7320 	return IRQ_HANDLED;
7321 }
7322 
7323 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7324 {
7325 	struct ctlr_info *h = queue_to_hba(queue);
7326 	u32 raw_tag;
7327 	u8 q = *(u8 *) queue;
7328 
7329 	h->last_intr_timestamp = get_jiffies_64();
7330 	raw_tag = get_next_completion(h, q);
7331 	while (raw_tag != FIFO_EMPTY) {
7332 		process_indexed_cmd(h, raw_tag);
7333 		raw_tag = next_command(h, q);
7334 	}
7335 	return IRQ_HANDLED;
7336 }
7337 
7338 /* Send a message CDB to the firmware. Careful, this only works
7339  * in simple mode, not performant mode due to the tag lookup.
7340  * We only ever use this immediately after a controller reset.
7341  */
7342 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7343 			unsigned char type)
7344 {
7345 	struct Command {
7346 		struct CommandListHeader CommandHeader;
7347 		struct RequestBlock Request;
7348 		struct ErrDescriptor ErrorDescriptor;
7349 	};
7350 	struct Command *cmd;
7351 	static const size_t cmd_sz = sizeof(*cmd) +
7352 					sizeof(cmd->ErrorDescriptor);
7353 	dma_addr_t paddr64;
7354 	__le32 paddr32;
7355 	u32 tag;
7356 	void __iomem *vaddr;
7357 	int i, err;
7358 
7359 	vaddr = pci_ioremap_bar(pdev, 0);
7360 	if (vaddr == NULL)
7361 		return -ENOMEM;
7362 
7363 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
7364 	 * CCISS commands, so they must be allocated from the lower 4GiB of
7365 	 * memory.
7366 	 */
7367 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7368 	if (err) {
7369 		iounmap(vaddr);
7370 		return err;
7371 	}
7372 
7373 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7374 	if (cmd == NULL) {
7375 		iounmap(vaddr);
7376 		return -ENOMEM;
7377 	}
7378 
7379 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7380 	 * although there's no guarantee, we assume that the address is at
7381 	 * least 4-byte aligned (most likely, it's page-aligned).
7382 	 */
7383 	paddr32 = cpu_to_le32(paddr64);
7384 
7385 	cmd->CommandHeader.ReplyQueue = 0;
7386 	cmd->CommandHeader.SGList = 0;
7387 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7388 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7389 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7390 
7391 	cmd->Request.CDBLen = 16;
7392 	cmd->Request.type_attr_dir =
7393 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7394 	cmd->Request.Timeout = 0; /* Don't time out */
7395 	cmd->Request.CDB[0] = opcode;
7396 	cmd->Request.CDB[1] = type;
7397 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7398 	cmd->ErrorDescriptor.Addr =
7399 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7400 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7401 
7402 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7403 
7404 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7405 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7406 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7407 			break;
7408 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7409 	}
7410 
7411 	iounmap(vaddr);
7412 
7413 	/* we leak the DMA buffer here ... no choice since the controller could
7414 	 *  still complete the command.
7415 	 */
7416 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7417 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7418 			opcode, type);
7419 		return -ETIMEDOUT;
7420 	}
7421 
7422 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7423 
7424 	if (tag & HPSA_ERROR_BIT) {
7425 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7426 			opcode, type);
7427 		return -EIO;
7428 	}
7429 
7430 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7431 		opcode, type);
7432 	return 0;
7433 }
7434 
7435 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7436 
7437 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7438 	void __iomem *vaddr, u32 use_doorbell)
7439 {
7440 
7441 	if (use_doorbell) {
7442 		/* For everything after the P600, the PCI power state method
7443 		 * of resetting the controller doesn't work, so we have this
7444 		 * other way using the doorbell register.
7445 		 */
7446 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7447 		writel(use_doorbell, vaddr + SA5_DOORBELL);
7448 
7449 		/* PMC hardware guys tell us we need a 10 second delay after
7450 		 * doorbell reset and before any attempt to talk to the board
7451 		 * at all to ensure that this actually works and doesn't fall
7452 		 * over in some weird corner cases.
7453 		 */
7454 		msleep(10000);
7455 	} else { /* Try to do it the PCI power state way */
7456 
7457 		/* Quoting from the Open CISS Specification: "The Power
7458 		 * Management Control/Status Register (CSR) controls the power
7459 		 * state of the device.  The normal operating state is D0,
7460 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7461 		 * the controller, place the interface device in D3 then to D0,
7462 		 * this causes a secondary PCI reset which will reset the
7463 		 * controller." */
7464 
7465 		int rc = 0;
7466 
7467 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7468 
7469 		/* enter the D3hot power management state */
7470 		rc = pci_set_power_state(pdev, PCI_D3hot);
7471 		if (rc)
7472 			return rc;
7473 
7474 		msleep(500);
7475 
7476 		/* enter the D0 power management state */
7477 		rc = pci_set_power_state(pdev, PCI_D0);
7478 		if (rc)
7479 			return rc;
7480 
7481 		/*
7482 		 * The P600 requires a small delay when changing states.
7483 		 * Otherwise we may think the board did not reset and we bail.
7484 		 * This for kdump only and is particular to the P600.
7485 		 */
7486 		msleep(500);
7487 	}
7488 	return 0;
7489 }
7490 
7491 static void init_driver_version(char *driver_version, int len)
7492 {
7493 	memset(driver_version, 0, len);
7494 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7495 }
7496 
7497 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7498 {
7499 	char *driver_version;
7500 	int i, size = sizeof(cfgtable->driver_version);
7501 
7502 	driver_version = kmalloc(size, GFP_KERNEL);
7503 	if (!driver_version)
7504 		return -ENOMEM;
7505 
7506 	init_driver_version(driver_version, size);
7507 	for (i = 0; i < size; i++)
7508 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7509 	kfree(driver_version);
7510 	return 0;
7511 }
7512 
7513 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7514 					  unsigned char *driver_ver)
7515 {
7516 	int i;
7517 
7518 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7519 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7520 }
7521 
7522 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7523 {
7524 
7525 	char *driver_ver, *old_driver_ver;
7526 	int rc, size = sizeof(cfgtable->driver_version);
7527 
7528 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7529 	if (!old_driver_ver)
7530 		return -ENOMEM;
7531 	driver_ver = old_driver_ver + size;
7532 
7533 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7534 	 * should have been changed, otherwise we know the reset failed.
7535 	 */
7536 	init_driver_version(old_driver_ver, size);
7537 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7538 	rc = !memcmp(driver_ver, old_driver_ver, size);
7539 	kfree(old_driver_ver);
7540 	return rc;
7541 }
7542 /* This does a hard reset of the controller using PCI power management
7543  * states or the using the doorbell register.
7544  */
7545 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7546 {
7547 	u64 cfg_offset;
7548 	u32 cfg_base_addr;
7549 	u64 cfg_base_addr_index;
7550 	void __iomem *vaddr;
7551 	unsigned long paddr;
7552 	u32 misc_fw_support;
7553 	int rc;
7554 	struct CfgTable __iomem *cfgtable;
7555 	u32 use_doorbell;
7556 	u16 command_register;
7557 
7558 	/* For controllers as old as the P600, this is very nearly
7559 	 * the same thing as
7560 	 *
7561 	 * pci_save_state(pci_dev);
7562 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7563 	 * pci_set_power_state(pci_dev, PCI_D0);
7564 	 * pci_restore_state(pci_dev);
7565 	 *
7566 	 * For controllers newer than the P600, the pci power state
7567 	 * method of resetting doesn't work so we have another way
7568 	 * using the doorbell register.
7569 	 */
7570 
7571 	if (!ctlr_is_resettable(board_id)) {
7572 		dev_warn(&pdev->dev, "Controller not resettable\n");
7573 		return -ENODEV;
7574 	}
7575 
7576 	/* if controller is soft- but not hard resettable... */
7577 	if (!ctlr_is_hard_resettable(board_id))
7578 		return -ENOTSUPP; /* try soft reset later. */
7579 
7580 	/* Save the PCI command register */
7581 	pci_read_config_word(pdev, 4, &command_register);
7582 	pci_save_state(pdev);
7583 
7584 	/* find the first memory BAR, so we can find the cfg table */
7585 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7586 	if (rc)
7587 		return rc;
7588 	vaddr = remap_pci_mem(paddr, 0x250);
7589 	if (!vaddr)
7590 		return -ENOMEM;
7591 
7592 	/* find cfgtable in order to check if reset via doorbell is supported */
7593 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7594 					&cfg_base_addr_index, &cfg_offset);
7595 	if (rc)
7596 		goto unmap_vaddr;
7597 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7598 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7599 	if (!cfgtable) {
7600 		rc = -ENOMEM;
7601 		goto unmap_vaddr;
7602 	}
7603 	rc = write_driver_ver_to_cfgtable(cfgtable);
7604 	if (rc)
7605 		goto unmap_cfgtable;
7606 
7607 	/* If reset via doorbell register is supported, use that.
7608 	 * There are two such methods.  Favor the newest method.
7609 	 */
7610 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7611 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7612 	if (use_doorbell) {
7613 		use_doorbell = DOORBELL_CTLR_RESET2;
7614 	} else {
7615 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7616 		if (use_doorbell) {
7617 			dev_warn(&pdev->dev,
7618 				"Soft reset not supported. Firmware update is required.\n");
7619 			rc = -ENOTSUPP; /* try soft reset */
7620 			goto unmap_cfgtable;
7621 		}
7622 	}
7623 
7624 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7625 	if (rc)
7626 		goto unmap_cfgtable;
7627 
7628 	pci_restore_state(pdev);
7629 	pci_write_config_word(pdev, 4, command_register);
7630 
7631 	/* Some devices (notably the HP Smart Array 5i Controller)
7632 	   need a little pause here */
7633 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7634 
7635 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7636 	if (rc) {
7637 		dev_warn(&pdev->dev,
7638 			"Failed waiting for board to become ready after hard reset\n");
7639 		goto unmap_cfgtable;
7640 	}
7641 
7642 	rc = controller_reset_failed(vaddr);
7643 	if (rc < 0)
7644 		goto unmap_cfgtable;
7645 	if (rc) {
7646 		dev_warn(&pdev->dev, "Unable to successfully reset "
7647 			"controller. Will try soft reset.\n");
7648 		rc = -ENOTSUPP;
7649 	} else {
7650 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7651 	}
7652 
7653 unmap_cfgtable:
7654 	iounmap(cfgtable);
7655 
7656 unmap_vaddr:
7657 	iounmap(vaddr);
7658 	return rc;
7659 }
7660 
7661 /*
7662  *  We cannot read the structure directly, for portability we must use
7663  *   the io functions.
7664  *   This is for debug only.
7665  */
7666 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7667 {
7668 #ifdef HPSA_DEBUG
7669 	int i;
7670 	char temp_name[17];
7671 
7672 	dev_info(dev, "Controller Configuration information\n");
7673 	dev_info(dev, "------------------------------------\n");
7674 	for (i = 0; i < 4; i++)
7675 		temp_name[i] = readb(&(tb->Signature[i]));
7676 	temp_name[4] = '\0';
7677 	dev_info(dev, "   Signature = %s\n", temp_name);
7678 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7679 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7680 	       readl(&(tb->TransportSupport)));
7681 	dev_info(dev, "   Transport methods active = 0x%x\n",
7682 	       readl(&(tb->TransportActive)));
7683 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7684 	       readl(&(tb->HostWrite.TransportRequest)));
7685 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7686 	       readl(&(tb->HostWrite.CoalIntDelay)));
7687 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7688 	       readl(&(tb->HostWrite.CoalIntCount)));
7689 	dev_info(dev, "   Max outstanding commands = %d\n",
7690 	       readl(&(tb->CmdsOutMax)));
7691 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7692 	for (i = 0; i < 16; i++)
7693 		temp_name[i] = readb(&(tb->ServerName[i]));
7694 	temp_name[16] = '\0';
7695 	dev_info(dev, "   Server Name = %s\n", temp_name);
7696 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7697 		readl(&(tb->HeartBeat)));
7698 #endif				/* HPSA_DEBUG */
7699 }
7700 
7701 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7702 {
7703 	int i, offset, mem_type, bar_type;
7704 
7705 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7706 		return 0;
7707 	offset = 0;
7708 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7709 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7710 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7711 			offset += 4;
7712 		else {
7713 			mem_type = pci_resource_flags(pdev, i) &
7714 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7715 			switch (mem_type) {
7716 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7717 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7718 				offset += 4;	/* 32 bit */
7719 				break;
7720 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7721 				offset += 8;
7722 				break;
7723 			default:	/* reserved in PCI 2.2 */
7724 				dev_warn(&pdev->dev,
7725 				       "base address is invalid\n");
7726 				return -1;
7727 				break;
7728 			}
7729 		}
7730 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7731 			return i + 1;
7732 	}
7733 	return -1;
7734 }
7735 
7736 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7737 {
7738 	pci_free_irq_vectors(h->pdev);
7739 	h->msix_vectors = 0;
7740 }
7741 
7742 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7743  * controllers that are capable. If not, we use legacy INTx mode.
7744  */
7745 static int hpsa_interrupt_mode(struct ctlr_info *h)
7746 {
7747 	unsigned int flags = PCI_IRQ_LEGACY;
7748 	int ret;
7749 
7750 	/* Some boards advertise MSI but don't really support it */
7751 	switch (h->board_id) {
7752 	case 0x40700E11:
7753 	case 0x40800E11:
7754 	case 0x40820E11:
7755 	case 0x40830E11:
7756 		break;
7757 	default:
7758 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7759 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7760 		if (ret > 0) {
7761 			h->msix_vectors = ret;
7762 			return 0;
7763 		}
7764 
7765 		flags |= PCI_IRQ_MSI;
7766 		break;
7767 	}
7768 
7769 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7770 	if (ret < 0)
7771 		return ret;
7772 	return 0;
7773 }
7774 
7775 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7776 {
7777 	int i;
7778 	u32 subsystem_vendor_id, subsystem_device_id;
7779 
7780 	subsystem_vendor_id = pdev->subsystem_vendor;
7781 	subsystem_device_id = pdev->subsystem_device;
7782 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7783 		    subsystem_vendor_id;
7784 
7785 	for (i = 0; i < ARRAY_SIZE(products); i++)
7786 		if (*board_id == products[i].board_id)
7787 			return i;
7788 
7789 	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7790 		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7791 		!hpsa_allow_any) {
7792 		dev_warn(&pdev->dev, "unrecognized board ID: "
7793 			"0x%08x, ignoring.\n", *board_id);
7794 			return -ENODEV;
7795 	}
7796 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7797 }
7798 
7799 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7800 				    unsigned long *memory_bar)
7801 {
7802 	int i;
7803 
7804 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7805 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7806 			/* addressing mode bits already removed */
7807 			*memory_bar = pci_resource_start(pdev, i);
7808 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7809 				*memory_bar);
7810 			return 0;
7811 		}
7812 	dev_warn(&pdev->dev, "no memory BAR found\n");
7813 	return -ENODEV;
7814 }
7815 
7816 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7817 				     int wait_for_ready)
7818 {
7819 	int i, iterations;
7820 	u32 scratchpad;
7821 	if (wait_for_ready)
7822 		iterations = HPSA_BOARD_READY_ITERATIONS;
7823 	else
7824 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7825 
7826 	for (i = 0; i < iterations; i++) {
7827 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7828 		if (wait_for_ready) {
7829 			if (scratchpad == HPSA_FIRMWARE_READY)
7830 				return 0;
7831 		} else {
7832 			if (scratchpad != HPSA_FIRMWARE_READY)
7833 				return 0;
7834 		}
7835 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7836 	}
7837 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7838 	return -ENODEV;
7839 }
7840 
7841 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7842 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7843 			       u64 *cfg_offset)
7844 {
7845 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7846 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7847 	*cfg_base_addr &= (u32) 0x0000ffff;
7848 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7849 	if (*cfg_base_addr_index == -1) {
7850 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7851 		return -ENODEV;
7852 	}
7853 	return 0;
7854 }
7855 
7856 static void hpsa_free_cfgtables(struct ctlr_info *h)
7857 {
7858 	if (h->transtable) {
7859 		iounmap(h->transtable);
7860 		h->transtable = NULL;
7861 	}
7862 	if (h->cfgtable) {
7863 		iounmap(h->cfgtable);
7864 		h->cfgtable = NULL;
7865 	}
7866 }
7867 
7868 /* Find and map CISS config table and transfer table
7869 + * several items must be unmapped (freed) later
7870 + * */
7871 static int hpsa_find_cfgtables(struct ctlr_info *h)
7872 {
7873 	u64 cfg_offset;
7874 	u32 cfg_base_addr;
7875 	u64 cfg_base_addr_index;
7876 	u32 trans_offset;
7877 	int rc;
7878 
7879 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7880 		&cfg_base_addr_index, &cfg_offset);
7881 	if (rc)
7882 		return rc;
7883 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7884 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7885 	if (!h->cfgtable) {
7886 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7887 		return -ENOMEM;
7888 	}
7889 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7890 	if (rc)
7891 		return rc;
7892 	/* Find performant mode table. */
7893 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7894 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7895 				cfg_base_addr_index)+cfg_offset+trans_offset,
7896 				sizeof(*h->transtable));
7897 	if (!h->transtable) {
7898 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7899 		hpsa_free_cfgtables(h);
7900 		return -ENOMEM;
7901 	}
7902 	return 0;
7903 }
7904 
7905 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7906 {
7907 #define MIN_MAX_COMMANDS 16
7908 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7909 
7910 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7911 
7912 	/* Limit commands in memory limited kdump scenario. */
7913 	if (reset_devices && h->max_commands > 32)
7914 		h->max_commands = 32;
7915 
7916 	if (h->max_commands < MIN_MAX_COMMANDS) {
7917 		dev_warn(&h->pdev->dev,
7918 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7919 			h->max_commands,
7920 			MIN_MAX_COMMANDS);
7921 		h->max_commands = MIN_MAX_COMMANDS;
7922 	}
7923 }
7924 
7925 /* If the controller reports that the total max sg entries is greater than 512,
7926  * then we know that chained SG blocks work.  (Original smart arrays did not
7927  * support chained SG blocks and would return zero for max sg entries.)
7928  */
7929 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7930 {
7931 	return h->maxsgentries > 512;
7932 }
7933 
7934 /* Interrogate the hardware for some limits:
7935  * max commands, max SG elements without chaining, and with chaining,
7936  * SG chain block size, etc.
7937  */
7938 static void hpsa_find_board_params(struct ctlr_info *h)
7939 {
7940 	hpsa_get_max_perf_mode_cmds(h);
7941 	h->nr_cmds = h->max_commands;
7942 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7943 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7944 	if (hpsa_supports_chained_sg_blocks(h)) {
7945 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7946 		h->max_cmd_sg_entries = 32;
7947 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7948 		h->maxsgentries--; /* save one for chain pointer */
7949 	} else {
7950 		/*
7951 		 * Original smart arrays supported at most 31 s/g entries
7952 		 * embedded inline in the command (trying to use more
7953 		 * would lock up the controller)
7954 		 */
7955 		h->max_cmd_sg_entries = 31;
7956 		h->maxsgentries = 31; /* default to traditional values */
7957 		h->chainsize = 0;
7958 	}
7959 
7960 	/* Find out what task management functions are supported and cache */
7961 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7962 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7963 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7964 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7965 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7966 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7967 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7968 }
7969 
7970 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7971 {
7972 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7973 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7974 		return false;
7975 	}
7976 	return true;
7977 }
7978 
7979 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7980 {
7981 	u32 driver_support;
7982 
7983 	driver_support = readl(&(h->cfgtable->driver_support));
7984 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7985 #ifdef CONFIG_X86
7986 	driver_support |= ENABLE_SCSI_PREFETCH;
7987 #endif
7988 	driver_support |= ENABLE_UNIT_ATTN;
7989 	writel(driver_support, &(h->cfgtable->driver_support));
7990 }
7991 
7992 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7993  * in a prefetch beyond physical memory.
7994  */
7995 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7996 {
7997 	u32 dma_prefetch;
7998 
7999 	if (h->board_id != 0x3225103C)
8000 		return;
8001 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
8002 	dma_prefetch |= 0x8000;
8003 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
8004 }
8005 
8006 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
8007 {
8008 	int i;
8009 	u32 doorbell_value;
8010 	unsigned long flags;
8011 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
8012 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
8013 		spin_lock_irqsave(&h->lock, flags);
8014 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8015 		spin_unlock_irqrestore(&h->lock, flags);
8016 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
8017 			goto done;
8018 		/* delay and try again */
8019 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
8020 	}
8021 	return -ENODEV;
8022 done:
8023 	return 0;
8024 }
8025 
8026 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
8027 {
8028 	int i;
8029 	u32 doorbell_value;
8030 	unsigned long flags;
8031 
8032 	/* under certain very rare conditions, this can take awhile.
8033 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
8034 	 * as we enter this code.)
8035 	 */
8036 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8037 		if (h->remove_in_progress)
8038 			goto done;
8039 		spin_lock_irqsave(&h->lock, flags);
8040 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8041 		spin_unlock_irqrestore(&h->lock, flags);
8042 		if (!(doorbell_value & CFGTBL_ChangeReq))
8043 			goto done;
8044 		/* delay and try again */
8045 		msleep(MODE_CHANGE_WAIT_INTERVAL);
8046 	}
8047 	return -ENODEV;
8048 done:
8049 	return 0;
8050 }
8051 
8052 /* return -ENODEV or other reason on error, 0 on success */
8053 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8054 {
8055 	u32 trans_support;
8056 
8057 	trans_support = readl(&(h->cfgtable->TransportSupport));
8058 	if (!(trans_support & SIMPLE_MODE))
8059 		return -ENOTSUPP;
8060 
8061 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8062 
8063 	/* Update the field, and then ring the doorbell */
8064 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8065 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8066 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8067 	if (hpsa_wait_for_mode_change_ack(h))
8068 		goto error;
8069 	print_cfg_table(&h->pdev->dev, h->cfgtable);
8070 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8071 		goto error;
8072 	h->transMethod = CFGTBL_Trans_Simple;
8073 	return 0;
8074 error:
8075 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8076 	return -ENODEV;
8077 }
8078 
8079 /* free items allocated or mapped by hpsa_pci_init */
8080 static void hpsa_free_pci_init(struct ctlr_info *h)
8081 {
8082 	hpsa_free_cfgtables(h);			/* pci_init 4 */
8083 	iounmap(h->vaddr);			/* pci_init 3 */
8084 	h->vaddr = NULL;
8085 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8086 	/*
8087 	 * call pci_disable_device before pci_release_regions per
8088 	 * Documentation/PCI/pci.txt
8089 	 */
8090 	pci_disable_device(h->pdev);		/* pci_init 1 */
8091 	pci_release_regions(h->pdev);		/* pci_init 2 */
8092 }
8093 
8094 /* several items must be freed later */
8095 static int hpsa_pci_init(struct ctlr_info *h)
8096 {
8097 	int prod_index, err;
8098 
8099 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8100 	if (prod_index < 0)
8101 		return prod_index;
8102 	h->product_name = products[prod_index].product_name;
8103 	h->access = *(products[prod_index].access);
8104 
8105 	h->needs_abort_tags_swizzled =
8106 		ctlr_needs_abort_tags_swizzled(h->board_id);
8107 
8108 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8109 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8110 
8111 	err = pci_enable_device(h->pdev);
8112 	if (err) {
8113 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8114 		pci_disable_device(h->pdev);
8115 		return err;
8116 	}
8117 
8118 	err = pci_request_regions(h->pdev, HPSA);
8119 	if (err) {
8120 		dev_err(&h->pdev->dev,
8121 			"failed to obtain PCI resources\n");
8122 		pci_disable_device(h->pdev);
8123 		return err;
8124 	}
8125 
8126 	pci_set_master(h->pdev);
8127 
8128 	err = hpsa_interrupt_mode(h);
8129 	if (err)
8130 		goto clean1;
8131 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8132 	if (err)
8133 		goto clean2;	/* intmode+region, pci */
8134 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
8135 	if (!h->vaddr) {
8136 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8137 		err = -ENOMEM;
8138 		goto clean2;	/* intmode+region, pci */
8139 	}
8140 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8141 	if (err)
8142 		goto clean3;	/* vaddr, intmode+region, pci */
8143 	err = hpsa_find_cfgtables(h);
8144 	if (err)
8145 		goto clean3;	/* vaddr, intmode+region, pci */
8146 	hpsa_find_board_params(h);
8147 
8148 	if (!hpsa_CISS_signature_present(h)) {
8149 		err = -ENODEV;
8150 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8151 	}
8152 	hpsa_set_driver_support_bits(h);
8153 	hpsa_p600_dma_prefetch_quirk(h);
8154 	err = hpsa_enter_simple_mode(h);
8155 	if (err)
8156 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
8157 	return 0;
8158 
8159 clean4:	/* cfgtables, vaddr, intmode+region, pci */
8160 	hpsa_free_cfgtables(h);
8161 clean3:	/* vaddr, intmode+region, pci */
8162 	iounmap(h->vaddr);
8163 	h->vaddr = NULL;
8164 clean2:	/* intmode+region, pci */
8165 	hpsa_disable_interrupt_mode(h);
8166 clean1:
8167 	/*
8168 	 * call pci_disable_device before pci_release_regions per
8169 	 * Documentation/PCI/pci.txt
8170 	 */
8171 	pci_disable_device(h->pdev);
8172 	pci_release_regions(h->pdev);
8173 	return err;
8174 }
8175 
8176 static void hpsa_hba_inquiry(struct ctlr_info *h)
8177 {
8178 	int rc;
8179 
8180 #define HBA_INQUIRY_BYTE_COUNT 64
8181 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8182 	if (!h->hba_inquiry_data)
8183 		return;
8184 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8185 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8186 	if (rc != 0) {
8187 		kfree(h->hba_inquiry_data);
8188 		h->hba_inquiry_data = NULL;
8189 	}
8190 }
8191 
8192 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8193 {
8194 	int rc, i;
8195 	void __iomem *vaddr;
8196 
8197 	if (!reset_devices)
8198 		return 0;
8199 
8200 	/* kdump kernel is loading, we don't know in which state is
8201 	 * the pci interface. The dev->enable_cnt is equal zero
8202 	 * so we call enable+disable, wait a while and switch it on.
8203 	 */
8204 	rc = pci_enable_device(pdev);
8205 	if (rc) {
8206 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8207 		return -ENODEV;
8208 	}
8209 	pci_disable_device(pdev);
8210 	msleep(260);			/* a randomly chosen number */
8211 	rc = pci_enable_device(pdev);
8212 	if (rc) {
8213 		dev_warn(&pdev->dev, "failed to enable device.\n");
8214 		return -ENODEV;
8215 	}
8216 
8217 	pci_set_master(pdev);
8218 
8219 	vaddr = pci_ioremap_bar(pdev, 0);
8220 	if (vaddr == NULL) {
8221 		rc = -ENOMEM;
8222 		goto out_disable;
8223 	}
8224 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8225 	iounmap(vaddr);
8226 
8227 	/* Reset the controller with a PCI power-cycle or via doorbell */
8228 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8229 
8230 	/* -ENOTSUPP here means we cannot reset the controller
8231 	 * but it's already (and still) up and running in
8232 	 * "performant mode".  Or, it might be 640x, which can't reset
8233 	 * due to concerns about shared bbwc between 6402/6404 pair.
8234 	 */
8235 	if (rc)
8236 		goto out_disable;
8237 
8238 	/* Now try to get the controller to respond to a no-op */
8239 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8240 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8241 		if (hpsa_noop(pdev) == 0)
8242 			break;
8243 		else
8244 			dev_warn(&pdev->dev, "no-op failed%s\n",
8245 					(i < 11 ? "; re-trying" : ""));
8246 	}
8247 
8248 out_disable:
8249 
8250 	pci_disable_device(pdev);
8251 	return rc;
8252 }
8253 
8254 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8255 {
8256 	kfree(h->cmd_pool_bits);
8257 	h->cmd_pool_bits = NULL;
8258 	if (h->cmd_pool) {
8259 		pci_free_consistent(h->pdev,
8260 				h->nr_cmds * sizeof(struct CommandList),
8261 				h->cmd_pool,
8262 				h->cmd_pool_dhandle);
8263 		h->cmd_pool = NULL;
8264 		h->cmd_pool_dhandle = 0;
8265 	}
8266 	if (h->errinfo_pool) {
8267 		pci_free_consistent(h->pdev,
8268 				h->nr_cmds * sizeof(struct ErrorInfo),
8269 				h->errinfo_pool,
8270 				h->errinfo_pool_dhandle);
8271 		h->errinfo_pool = NULL;
8272 		h->errinfo_pool_dhandle = 0;
8273 	}
8274 }
8275 
8276 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8277 {
8278 	h->cmd_pool_bits = kzalloc(
8279 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8280 		sizeof(unsigned long), GFP_KERNEL);
8281 	h->cmd_pool = pci_alloc_consistent(h->pdev,
8282 		    h->nr_cmds * sizeof(*h->cmd_pool),
8283 		    &(h->cmd_pool_dhandle));
8284 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
8285 		    h->nr_cmds * sizeof(*h->errinfo_pool),
8286 		    &(h->errinfo_pool_dhandle));
8287 	if ((h->cmd_pool_bits == NULL)
8288 	    || (h->cmd_pool == NULL)
8289 	    || (h->errinfo_pool == NULL)) {
8290 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8291 		goto clean_up;
8292 	}
8293 	hpsa_preinitialize_commands(h);
8294 	return 0;
8295 clean_up:
8296 	hpsa_free_cmd_pool(h);
8297 	return -ENOMEM;
8298 }
8299 
8300 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8301 static void hpsa_free_irqs(struct ctlr_info *h)
8302 {
8303 	int i;
8304 
8305 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8306 		/* Single reply queue, only one irq to free */
8307 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
8308 		h->q[h->intr_mode] = 0;
8309 		return;
8310 	}
8311 
8312 	for (i = 0; i < h->msix_vectors; i++) {
8313 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8314 		h->q[i] = 0;
8315 	}
8316 	for (; i < MAX_REPLY_QUEUES; i++)
8317 		h->q[i] = 0;
8318 }
8319 
8320 /* returns 0 on success; cleans up and returns -Enn on error */
8321 static int hpsa_request_irqs(struct ctlr_info *h,
8322 	irqreturn_t (*msixhandler)(int, void *),
8323 	irqreturn_t (*intxhandler)(int, void *))
8324 {
8325 	int rc, i;
8326 
8327 	/*
8328 	 * initialize h->q[x] = x so that interrupt handlers know which
8329 	 * queue to process.
8330 	 */
8331 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
8332 		h->q[i] = (u8) i;
8333 
8334 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8335 		/* If performant mode and MSI-X, use multiple reply queues */
8336 		for (i = 0; i < h->msix_vectors; i++) {
8337 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8338 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8339 					0, h->intrname[i],
8340 					&h->q[i]);
8341 			if (rc) {
8342 				int j;
8343 
8344 				dev_err(&h->pdev->dev,
8345 					"failed to get irq %d for %s\n",
8346 				       pci_irq_vector(h->pdev, i), h->devname);
8347 				for (j = 0; j < i; j++) {
8348 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8349 					h->q[j] = 0;
8350 				}
8351 				for (; j < MAX_REPLY_QUEUES; j++)
8352 					h->q[j] = 0;
8353 				return rc;
8354 			}
8355 		}
8356 	} else {
8357 		/* Use single reply pool */
8358 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8359 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8360 				h->msix_vectors ? "x" : "");
8361 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8362 				msixhandler, 0,
8363 				h->intrname[0],
8364 				&h->q[h->intr_mode]);
8365 		} else {
8366 			sprintf(h->intrname[h->intr_mode],
8367 				"%s-intx", h->devname);
8368 			rc = request_irq(pci_irq_vector(h->pdev, 0),
8369 				intxhandler, IRQF_SHARED,
8370 				h->intrname[0],
8371 				&h->q[h->intr_mode]);
8372 		}
8373 	}
8374 	if (rc) {
8375 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8376 		       pci_irq_vector(h->pdev, 0), h->devname);
8377 		hpsa_free_irqs(h);
8378 		return -ENODEV;
8379 	}
8380 	return 0;
8381 }
8382 
8383 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8384 {
8385 	int rc;
8386 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8387 
8388 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8389 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8390 	if (rc) {
8391 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8392 		return rc;
8393 	}
8394 
8395 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8396 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8397 	if (rc) {
8398 		dev_warn(&h->pdev->dev, "Board failed to become ready "
8399 			"after soft reset.\n");
8400 		return rc;
8401 	}
8402 
8403 	return 0;
8404 }
8405 
8406 static void hpsa_free_reply_queues(struct ctlr_info *h)
8407 {
8408 	int i;
8409 
8410 	for (i = 0; i < h->nreply_queues; i++) {
8411 		if (!h->reply_queue[i].head)
8412 			continue;
8413 		pci_free_consistent(h->pdev,
8414 					h->reply_queue_size,
8415 					h->reply_queue[i].head,
8416 					h->reply_queue[i].busaddr);
8417 		h->reply_queue[i].head = NULL;
8418 		h->reply_queue[i].busaddr = 0;
8419 	}
8420 	h->reply_queue_size = 0;
8421 }
8422 
8423 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8424 {
8425 	hpsa_free_performant_mode(h);		/* init_one 7 */
8426 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8427 	hpsa_free_cmd_pool(h);			/* init_one 5 */
8428 	hpsa_free_irqs(h);			/* init_one 4 */
8429 	scsi_host_put(h->scsi_host);		/* init_one 3 */
8430 	h->scsi_host = NULL;			/* init_one 3 */
8431 	hpsa_free_pci_init(h);			/* init_one 2_5 */
8432 	free_percpu(h->lockup_detected);	/* init_one 2 */
8433 	h->lockup_detected = NULL;		/* init_one 2 */
8434 	if (h->resubmit_wq) {
8435 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8436 		h->resubmit_wq = NULL;
8437 	}
8438 	if (h->rescan_ctlr_wq) {
8439 		destroy_workqueue(h->rescan_ctlr_wq);
8440 		h->rescan_ctlr_wq = NULL;
8441 	}
8442 	kfree(h);				/* init_one 1 */
8443 }
8444 
8445 /* Called when controller lockup detected. */
8446 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8447 {
8448 	int i, refcount;
8449 	struct CommandList *c;
8450 	int failcount = 0;
8451 
8452 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8453 	for (i = 0; i < h->nr_cmds; i++) {
8454 		c = h->cmd_pool + i;
8455 		refcount = atomic_inc_return(&c->refcount);
8456 		if (refcount > 1) {
8457 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8458 			finish_cmd(c);
8459 			atomic_dec(&h->commands_outstanding);
8460 			failcount++;
8461 		}
8462 		cmd_free(h, c);
8463 	}
8464 	dev_warn(&h->pdev->dev,
8465 		"failed %d commands in fail_all\n", failcount);
8466 }
8467 
8468 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8469 {
8470 	int cpu;
8471 
8472 	for_each_online_cpu(cpu) {
8473 		u32 *lockup_detected;
8474 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8475 		*lockup_detected = value;
8476 	}
8477 	wmb(); /* be sure the per-cpu variables are out to memory */
8478 }
8479 
8480 static void controller_lockup_detected(struct ctlr_info *h)
8481 {
8482 	unsigned long flags;
8483 	u32 lockup_detected;
8484 
8485 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8486 	spin_lock_irqsave(&h->lock, flags);
8487 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8488 	if (!lockup_detected) {
8489 		/* no heartbeat, but controller gave us a zero. */
8490 		dev_warn(&h->pdev->dev,
8491 			"lockup detected after %d but scratchpad register is zero\n",
8492 			h->heartbeat_sample_interval / HZ);
8493 		lockup_detected = 0xffffffff;
8494 	}
8495 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8496 	spin_unlock_irqrestore(&h->lock, flags);
8497 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8498 			lockup_detected, h->heartbeat_sample_interval / HZ);
8499 	pci_disable_device(h->pdev);
8500 	fail_all_outstanding_cmds(h);
8501 }
8502 
8503 static int detect_controller_lockup(struct ctlr_info *h)
8504 {
8505 	u64 now;
8506 	u32 heartbeat;
8507 	unsigned long flags;
8508 
8509 	now = get_jiffies_64();
8510 	/* If we've received an interrupt recently, we're ok. */
8511 	if (time_after64(h->last_intr_timestamp +
8512 				(h->heartbeat_sample_interval), now))
8513 		return false;
8514 
8515 	/*
8516 	 * If we've already checked the heartbeat recently, we're ok.
8517 	 * This could happen if someone sends us a signal. We
8518 	 * otherwise don't care about signals in this thread.
8519 	 */
8520 	if (time_after64(h->last_heartbeat_timestamp +
8521 				(h->heartbeat_sample_interval), now))
8522 		return false;
8523 
8524 	/* If heartbeat has not changed since we last looked, we're not ok. */
8525 	spin_lock_irqsave(&h->lock, flags);
8526 	heartbeat = readl(&h->cfgtable->HeartBeat);
8527 	spin_unlock_irqrestore(&h->lock, flags);
8528 	if (h->last_heartbeat == heartbeat) {
8529 		controller_lockup_detected(h);
8530 		return true;
8531 	}
8532 
8533 	/* We're ok. */
8534 	h->last_heartbeat = heartbeat;
8535 	h->last_heartbeat_timestamp = now;
8536 	return false;
8537 }
8538 
8539 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8540 {
8541 	int i;
8542 	char *event_type;
8543 
8544 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8545 		return;
8546 
8547 	/* Ask the controller to clear the events we're handling. */
8548 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8549 			| CFGTBL_Trans_io_accel2)) &&
8550 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8551 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8552 
8553 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8554 			event_type = "state change";
8555 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8556 			event_type = "configuration change";
8557 		/* Stop sending new RAID offload reqs via the IO accelerator */
8558 		scsi_block_requests(h->scsi_host);
8559 		for (i = 0; i < h->ndevices; i++) {
8560 			h->dev[i]->offload_enabled = 0;
8561 			h->dev[i]->offload_to_be_enabled = 0;
8562 		}
8563 		hpsa_drain_accel_commands(h);
8564 		/* Set 'accelerator path config change' bit */
8565 		dev_warn(&h->pdev->dev,
8566 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8567 			h->events, event_type);
8568 		writel(h->events, &(h->cfgtable->clear_event_notify));
8569 		/* Set the "clear event notify field update" bit 6 */
8570 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8571 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8572 		hpsa_wait_for_clear_event_notify_ack(h);
8573 		scsi_unblock_requests(h->scsi_host);
8574 	} else {
8575 		/* Acknowledge controller notification events. */
8576 		writel(h->events, &(h->cfgtable->clear_event_notify));
8577 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8578 		hpsa_wait_for_clear_event_notify_ack(h);
8579 #if 0
8580 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8581 		hpsa_wait_for_mode_change_ack(h);
8582 #endif
8583 	}
8584 	return;
8585 }
8586 
8587 /* Check a register on the controller to see if there are configuration
8588  * changes (added/changed/removed logical drives, etc.) which mean that
8589  * we should rescan the controller for devices.
8590  * Also check flag for driver-initiated rescan.
8591  */
8592 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8593 {
8594 	if (h->drv_req_rescan) {
8595 		h->drv_req_rescan = 0;
8596 		return 1;
8597 	}
8598 
8599 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8600 		return 0;
8601 
8602 	h->events = readl(&(h->cfgtable->event_notify));
8603 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8604 }
8605 
8606 /*
8607  * Check if any of the offline devices have become ready
8608  */
8609 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8610 {
8611 	unsigned long flags;
8612 	struct offline_device_entry *d;
8613 	struct list_head *this, *tmp;
8614 
8615 	spin_lock_irqsave(&h->offline_device_lock, flags);
8616 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8617 		d = list_entry(this, struct offline_device_entry,
8618 				offline_list);
8619 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8620 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8621 			spin_lock_irqsave(&h->offline_device_lock, flags);
8622 			list_del(&d->offline_list);
8623 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8624 			return 1;
8625 		}
8626 		spin_lock_irqsave(&h->offline_device_lock, flags);
8627 	}
8628 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8629 	return 0;
8630 }
8631 
8632 static int hpsa_luns_changed(struct ctlr_info *h)
8633 {
8634 	int rc = 1; /* assume there are changes */
8635 	struct ReportLUNdata *logdev = NULL;
8636 
8637 	/* if we can't find out if lun data has changed,
8638 	 * assume that it has.
8639 	 */
8640 
8641 	if (!h->lastlogicals)
8642 		return rc;
8643 
8644 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8645 	if (!logdev)
8646 		return rc;
8647 
8648 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8649 		dev_warn(&h->pdev->dev,
8650 			"report luns failed, can't track lun changes.\n");
8651 		goto out;
8652 	}
8653 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8654 		dev_info(&h->pdev->dev,
8655 			"Lun changes detected.\n");
8656 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8657 		goto out;
8658 	} else
8659 		rc = 0; /* no changes detected. */
8660 out:
8661 	kfree(logdev);
8662 	return rc;
8663 }
8664 
8665 static void hpsa_perform_rescan(struct ctlr_info *h)
8666 {
8667 	struct Scsi_Host *sh = NULL;
8668 	unsigned long flags;
8669 
8670 	/*
8671 	 * Do the scan after the reset
8672 	 */
8673 	spin_lock_irqsave(&h->reset_lock, flags);
8674 	if (h->reset_in_progress) {
8675 		h->drv_req_rescan = 1;
8676 		spin_unlock_irqrestore(&h->reset_lock, flags);
8677 		return;
8678 	}
8679 	spin_unlock_irqrestore(&h->reset_lock, flags);
8680 
8681 	sh = scsi_host_get(h->scsi_host);
8682 	if (sh != NULL) {
8683 		hpsa_scan_start(sh);
8684 		scsi_host_put(sh);
8685 		h->drv_req_rescan = 0;
8686 	}
8687 }
8688 
8689 /*
8690  * watch for controller events
8691  */
8692 static void hpsa_event_monitor_worker(struct work_struct *work)
8693 {
8694 	struct ctlr_info *h = container_of(to_delayed_work(work),
8695 					struct ctlr_info, event_monitor_work);
8696 	unsigned long flags;
8697 
8698 	spin_lock_irqsave(&h->lock, flags);
8699 	if (h->remove_in_progress) {
8700 		spin_unlock_irqrestore(&h->lock, flags);
8701 		return;
8702 	}
8703 	spin_unlock_irqrestore(&h->lock, flags);
8704 
8705 	if (hpsa_ctlr_needs_rescan(h)) {
8706 		hpsa_ack_ctlr_events(h);
8707 		hpsa_perform_rescan(h);
8708 	}
8709 
8710 	spin_lock_irqsave(&h->lock, flags);
8711 	if (!h->remove_in_progress)
8712 		schedule_delayed_work(&h->event_monitor_work,
8713 					HPSA_EVENT_MONITOR_INTERVAL);
8714 	spin_unlock_irqrestore(&h->lock, flags);
8715 }
8716 
8717 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8718 {
8719 	unsigned long flags;
8720 	struct ctlr_info *h = container_of(to_delayed_work(work),
8721 					struct ctlr_info, rescan_ctlr_work);
8722 
8723 	spin_lock_irqsave(&h->lock, flags);
8724 	if (h->remove_in_progress) {
8725 		spin_unlock_irqrestore(&h->lock, flags);
8726 		return;
8727 	}
8728 	spin_unlock_irqrestore(&h->lock, flags);
8729 
8730 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8731 		hpsa_perform_rescan(h);
8732 	} else if (h->discovery_polling) {
8733 		hpsa_disable_rld_caching(h);
8734 		if (hpsa_luns_changed(h)) {
8735 			dev_info(&h->pdev->dev,
8736 				"driver discovery polling rescan.\n");
8737 			hpsa_perform_rescan(h);
8738 		}
8739 	}
8740 	spin_lock_irqsave(&h->lock, flags);
8741 	if (!h->remove_in_progress)
8742 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8743 				h->heartbeat_sample_interval);
8744 	spin_unlock_irqrestore(&h->lock, flags);
8745 }
8746 
8747 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8748 {
8749 	unsigned long flags;
8750 	struct ctlr_info *h = container_of(to_delayed_work(work),
8751 					struct ctlr_info, monitor_ctlr_work);
8752 
8753 	detect_controller_lockup(h);
8754 	if (lockup_detected(h))
8755 		return;
8756 
8757 	spin_lock_irqsave(&h->lock, flags);
8758 	if (!h->remove_in_progress)
8759 		schedule_delayed_work(&h->monitor_ctlr_work,
8760 				h->heartbeat_sample_interval);
8761 	spin_unlock_irqrestore(&h->lock, flags);
8762 }
8763 
8764 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8765 						char *name)
8766 {
8767 	struct workqueue_struct *wq = NULL;
8768 
8769 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8770 	if (!wq)
8771 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8772 
8773 	return wq;
8774 }
8775 
8776 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8777 {
8778 	int dac, rc;
8779 	struct ctlr_info *h;
8780 	int try_soft_reset = 0;
8781 	unsigned long flags;
8782 	u32 board_id;
8783 
8784 	if (number_of_controllers == 0)
8785 		printk(KERN_INFO DRIVER_NAME "\n");
8786 
8787 	rc = hpsa_lookup_board_id(pdev, &board_id);
8788 	if (rc < 0) {
8789 		dev_warn(&pdev->dev, "Board ID not found\n");
8790 		return rc;
8791 	}
8792 
8793 	rc = hpsa_init_reset_devices(pdev, board_id);
8794 	if (rc) {
8795 		if (rc != -ENOTSUPP)
8796 			return rc;
8797 		/* If the reset fails in a particular way (it has no way to do
8798 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8799 		 * a soft reset once we get the controller configured up to the
8800 		 * point that it can accept a command.
8801 		 */
8802 		try_soft_reset = 1;
8803 		rc = 0;
8804 	}
8805 
8806 reinit_after_soft_reset:
8807 
8808 	/* Command structures must be aligned on a 32-byte boundary because
8809 	 * the 5 lower bits of the address are used by the hardware. and by
8810 	 * the driver.  See comments in hpsa.h for more info.
8811 	 */
8812 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8813 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8814 	if (!h) {
8815 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8816 		return -ENOMEM;
8817 	}
8818 
8819 	h->pdev = pdev;
8820 
8821 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8822 	INIT_LIST_HEAD(&h->offline_device_list);
8823 	spin_lock_init(&h->lock);
8824 	spin_lock_init(&h->offline_device_lock);
8825 	spin_lock_init(&h->scan_lock);
8826 	spin_lock_init(&h->reset_lock);
8827 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8828 	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8829 
8830 	/* Allocate and clear per-cpu variable lockup_detected */
8831 	h->lockup_detected = alloc_percpu(u32);
8832 	if (!h->lockup_detected) {
8833 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8834 		rc = -ENOMEM;
8835 		goto clean1;	/* aer/h */
8836 	}
8837 	set_lockup_detected_for_all_cpus(h, 0);
8838 
8839 	rc = hpsa_pci_init(h);
8840 	if (rc)
8841 		goto clean2;	/* lu, aer/h */
8842 
8843 	/* relies on h-> settings made by hpsa_pci_init, including
8844 	 * interrupt_mode h->intr */
8845 	rc = hpsa_scsi_host_alloc(h);
8846 	if (rc)
8847 		goto clean2_5;	/* pci, lu, aer/h */
8848 
8849 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8850 	h->ctlr = number_of_controllers;
8851 	number_of_controllers++;
8852 
8853 	/* configure PCI DMA stuff */
8854 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8855 	if (rc == 0) {
8856 		dac = 1;
8857 	} else {
8858 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8859 		if (rc == 0) {
8860 			dac = 0;
8861 		} else {
8862 			dev_err(&pdev->dev, "no suitable DMA available\n");
8863 			goto clean3;	/* shost, pci, lu, aer/h */
8864 		}
8865 	}
8866 
8867 	/* make sure the board interrupts are off */
8868 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8869 
8870 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8871 	if (rc)
8872 		goto clean3;	/* shost, pci, lu, aer/h */
8873 	rc = hpsa_alloc_cmd_pool(h);
8874 	if (rc)
8875 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8876 	rc = hpsa_alloc_sg_chain_blocks(h);
8877 	if (rc)
8878 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8879 	init_waitqueue_head(&h->scan_wait_queue);
8880 	init_waitqueue_head(&h->abort_cmd_wait_queue);
8881 	init_waitqueue_head(&h->event_sync_wait_queue);
8882 	mutex_init(&h->reset_mutex);
8883 	h->scan_finished = 1; /* no scan currently in progress */
8884 	h->scan_waiting = 0;
8885 
8886 	pci_set_drvdata(pdev, h);
8887 	h->ndevices = 0;
8888 
8889 	spin_lock_init(&h->devlock);
8890 	rc = hpsa_put_ctlr_into_performant_mode(h);
8891 	if (rc)
8892 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8893 
8894 	/* create the resubmit workqueue */
8895 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8896 	if (!h->rescan_ctlr_wq) {
8897 		rc = -ENOMEM;
8898 		goto clean7;
8899 	}
8900 
8901 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8902 	if (!h->resubmit_wq) {
8903 		rc = -ENOMEM;
8904 		goto clean7;	/* aer/h */
8905 	}
8906 
8907 	/*
8908 	 * At this point, the controller is ready to take commands.
8909 	 * Now, if reset_devices and the hard reset didn't work, try
8910 	 * the soft reset and see if that works.
8911 	 */
8912 	if (try_soft_reset) {
8913 
8914 		/* This is kind of gross.  We may or may not get a completion
8915 		 * from the soft reset command, and if we do, then the value
8916 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8917 		 * after the reset throwing away any completions we get during
8918 		 * that time.  Unregister the interrupt handler and register
8919 		 * fake ones to scoop up any residual completions.
8920 		 */
8921 		spin_lock_irqsave(&h->lock, flags);
8922 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8923 		spin_unlock_irqrestore(&h->lock, flags);
8924 		hpsa_free_irqs(h);
8925 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8926 					hpsa_intx_discard_completions);
8927 		if (rc) {
8928 			dev_warn(&h->pdev->dev,
8929 				"Failed to request_irq after soft reset.\n");
8930 			/*
8931 			 * cannot goto clean7 or free_irqs will be called
8932 			 * again. Instead, do its work
8933 			 */
8934 			hpsa_free_performant_mode(h);	/* clean7 */
8935 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8936 			hpsa_free_cmd_pool(h);		/* clean5 */
8937 			/*
8938 			 * skip hpsa_free_irqs(h) clean4 since that
8939 			 * was just called before request_irqs failed
8940 			 */
8941 			goto clean3;
8942 		}
8943 
8944 		rc = hpsa_kdump_soft_reset(h);
8945 		if (rc)
8946 			/* Neither hard nor soft reset worked, we're hosed. */
8947 			goto clean7;
8948 
8949 		dev_info(&h->pdev->dev, "Board READY.\n");
8950 		dev_info(&h->pdev->dev,
8951 			"Waiting for stale completions to drain.\n");
8952 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8953 		msleep(10000);
8954 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8955 
8956 		rc = controller_reset_failed(h->cfgtable);
8957 		if (rc)
8958 			dev_info(&h->pdev->dev,
8959 				"Soft reset appears to have failed.\n");
8960 
8961 		/* since the controller's reset, we have to go back and re-init
8962 		 * everything.  Easiest to just forget what we've done and do it
8963 		 * all over again.
8964 		 */
8965 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8966 		try_soft_reset = 0;
8967 		if (rc)
8968 			/* don't goto clean, we already unallocated */
8969 			return -ENODEV;
8970 
8971 		goto reinit_after_soft_reset;
8972 	}
8973 
8974 	/* Enable Accelerated IO path at driver layer */
8975 	h->acciopath_status = 1;
8976 	/* Disable discovery polling.*/
8977 	h->discovery_polling = 0;
8978 
8979 
8980 	/* Turn the interrupts on so we can service requests */
8981 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8982 
8983 	hpsa_hba_inquiry(h);
8984 
8985 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8986 	if (!h->lastlogicals)
8987 		dev_info(&h->pdev->dev,
8988 			"Can't track change to report lun data\n");
8989 
8990 	/* hook into SCSI subsystem */
8991 	rc = hpsa_scsi_add_host(h);
8992 	if (rc)
8993 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8994 
8995 	/* Monitor the controller for firmware lockups */
8996 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8997 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8998 	schedule_delayed_work(&h->monitor_ctlr_work,
8999 				h->heartbeat_sample_interval);
9000 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
9001 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
9002 				h->heartbeat_sample_interval);
9003 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
9004 	schedule_delayed_work(&h->event_monitor_work,
9005 				HPSA_EVENT_MONITOR_INTERVAL);
9006 	return 0;
9007 
9008 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
9009 	hpsa_free_performant_mode(h);
9010 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9011 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
9012 	hpsa_free_sg_chain_blocks(h);
9013 clean5: /* cmd, irq, shost, pci, lu, aer/h */
9014 	hpsa_free_cmd_pool(h);
9015 clean4: /* irq, shost, pci, lu, aer/h */
9016 	hpsa_free_irqs(h);
9017 clean3: /* shost, pci, lu, aer/h */
9018 	scsi_host_put(h->scsi_host);
9019 	h->scsi_host = NULL;
9020 clean2_5: /* pci, lu, aer/h */
9021 	hpsa_free_pci_init(h);
9022 clean2: /* lu, aer/h */
9023 	if (h->lockup_detected) {
9024 		free_percpu(h->lockup_detected);
9025 		h->lockup_detected = NULL;
9026 	}
9027 clean1:	/* wq/aer/h */
9028 	if (h->resubmit_wq) {
9029 		destroy_workqueue(h->resubmit_wq);
9030 		h->resubmit_wq = NULL;
9031 	}
9032 	if (h->rescan_ctlr_wq) {
9033 		destroy_workqueue(h->rescan_ctlr_wq);
9034 		h->rescan_ctlr_wq = NULL;
9035 	}
9036 	kfree(h);
9037 	return rc;
9038 }
9039 
9040 static void hpsa_flush_cache(struct ctlr_info *h)
9041 {
9042 	char *flush_buf;
9043 	struct CommandList *c;
9044 	int rc;
9045 
9046 	if (unlikely(lockup_detected(h)))
9047 		return;
9048 	flush_buf = kzalloc(4, GFP_KERNEL);
9049 	if (!flush_buf)
9050 		return;
9051 
9052 	c = cmd_alloc(h);
9053 
9054 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
9055 		RAID_CTLR_LUNID, TYPE_CMD)) {
9056 		goto out;
9057 	}
9058 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9059 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9060 	if (rc)
9061 		goto out;
9062 	if (c->err_info->CommandStatus != 0)
9063 out:
9064 		dev_warn(&h->pdev->dev,
9065 			"error flushing cache on controller\n");
9066 	cmd_free(h, c);
9067 	kfree(flush_buf);
9068 }
9069 
9070 /* Make controller gather fresh report lun data each time we
9071  * send down a report luns request
9072  */
9073 static void hpsa_disable_rld_caching(struct ctlr_info *h)
9074 {
9075 	u32 *options;
9076 	struct CommandList *c;
9077 	int rc;
9078 
9079 	/* Don't bother trying to set diag options if locked up */
9080 	if (unlikely(h->lockup_detected))
9081 		return;
9082 
9083 	options = kzalloc(sizeof(*options), GFP_KERNEL);
9084 	if (!options)
9085 		return;
9086 
9087 	c = cmd_alloc(h);
9088 
9089 	/* first, get the current diag options settings */
9090 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9091 		RAID_CTLR_LUNID, TYPE_CMD))
9092 		goto errout;
9093 
9094 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9095 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9096 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
9097 		goto errout;
9098 
9099 	/* Now, set the bit for disabling the RLD caching */
9100 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9101 
9102 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9103 		RAID_CTLR_LUNID, TYPE_CMD))
9104 		goto errout;
9105 
9106 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9107 		PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9108 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9109 		goto errout;
9110 
9111 	/* Now verify that it got set: */
9112 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9113 		RAID_CTLR_LUNID, TYPE_CMD))
9114 		goto errout;
9115 
9116 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9117 		PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9118 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9119 		goto errout;
9120 
9121 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9122 		goto out;
9123 
9124 errout:
9125 	dev_err(&h->pdev->dev,
9126 			"Error: failed to disable report lun data caching.\n");
9127 out:
9128 	cmd_free(h, c);
9129 	kfree(options);
9130 }
9131 
9132 static void hpsa_shutdown(struct pci_dev *pdev)
9133 {
9134 	struct ctlr_info *h;
9135 
9136 	h = pci_get_drvdata(pdev);
9137 	/* Turn board interrupts off  and send the flush cache command
9138 	 * sendcmd will turn off interrupt, and send the flush...
9139 	 * To write all data in the battery backed cache to disks
9140 	 */
9141 	hpsa_flush_cache(h);
9142 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
9143 	hpsa_free_irqs(h);			/* init_one 4 */
9144 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
9145 }
9146 
9147 static void hpsa_free_device_info(struct ctlr_info *h)
9148 {
9149 	int i;
9150 
9151 	for (i = 0; i < h->ndevices; i++) {
9152 		kfree(h->dev[i]);
9153 		h->dev[i] = NULL;
9154 	}
9155 }
9156 
9157 static void hpsa_remove_one(struct pci_dev *pdev)
9158 {
9159 	struct ctlr_info *h;
9160 	unsigned long flags;
9161 
9162 	if (pci_get_drvdata(pdev) == NULL) {
9163 		dev_err(&pdev->dev, "unable to remove device\n");
9164 		return;
9165 	}
9166 	h = pci_get_drvdata(pdev);
9167 
9168 	/* Get rid of any controller monitoring work items */
9169 	spin_lock_irqsave(&h->lock, flags);
9170 	h->remove_in_progress = 1;
9171 	spin_unlock_irqrestore(&h->lock, flags);
9172 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
9173 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
9174 	cancel_delayed_work_sync(&h->event_monitor_work);
9175 	destroy_workqueue(h->rescan_ctlr_wq);
9176 	destroy_workqueue(h->resubmit_wq);
9177 
9178 	/*
9179 	 * Call before disabling interrupts.
9180 	 * scsi_remove_host can trigger I/O operations especially
9181 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9182 	 * operations which cannot complete and will hang the system.
9183 	 */
9184 	if (h->scsi_host)
9185 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
9186 	/* includes hpsa_free_irqs - init_one 4 */
9187 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9188 	hpsa_shutdown(pdev);
9189 
9190 	hpsa_free_device_info(h);		/* scan */
9191 
9192 	kfree(h->hba_inquiry_data);			/* init_one 10 */
9193 	h->hba_inquiry_data = NULL;			/* init_one 10 */
9194 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9195 	hpsa_free_performant_mode(h);			/* init_one 7 */
9196 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
9197 	hpsa_free_cmd_pool(h);				/* init_one 5 */
9198 	kfree(h->lastlogicals);
9199 
9200 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9201 
9202 	scsi_host_put(h->scsi_host);			/* init_one 3 */
9203 	h->scsi_host = NULL;				/* init_one 3 */
9204 
9205 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
9206 	hpsa_free_pci_init(h);				/* init_one 2.5 */
9207 
9208 	free_percpu(h->lockup_detected);		/* init_one 2 */
9209 	h->lockup_detected = NULL;			/* init_one 2 */
9210 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
9211 
9212 	hpsa_delete_sas_host(h);
9213 
9214 	kfree(h);					/* init_one 1 */
9215 }
9216 
9217 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9218 	__attribute__((unused)) pm_message_t state)
9219 {
9220 	return -ENOSYS;
9221 }
9222 
9223 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9224 {
9225 	return -ENOSYS;
9226 }
9227 
9228 static struct pci_driver hpsa_pci_driver = {
9229 	.name = HPSA,
9230 	.probe = hpsa_init_one,
9231 	.remove = hpsa_remove_one,
9232 	.id_table = hpsa_pci_device_id,	/* id_table */
9233 	.shutdown = hpsa_shutdown,
9234 	.suspend = hpsa_suspend,
9235 	.resume = hpsa_resume,
9236 };
9237 
9238 /* Fill in bucket_map[], given nsgs (the max number of
9239  * scatter gather elements supported) and bucket[],
9240  * which is an array of 8 integers.  The bucket[] array
9241  * contains 8 different DMA transfer sizes (in 16
9242  * byte increments) which the controller uses to fetch
9243  * commands.  This function fills in bucket_map[], which
9244  * maps a given number of scatter gather elements to one of
9245  * the 8 DMA transfer sizes.  The point of it is to allow the
9246  * controller to only do as much DMA as needed to fetch the
9247  * command, with the DMA transfer size encoded in the lower
9248  * bits of the command address.
9249  */
9250 static void  calc_bucket_map(int bucket[], int num_buckets,
9251 	int nsgs, int min_blocks, u32 *bucket_map)
9252 {
9253 	int i, j, b, size;
9254 
9255 	/* Note, bucket_map must have nsgs+1 entries. */
9256 	for (i = 0; i <= nsgs; i++) {
9257 		/* Compute size of a command with i SG entries */
9258 		size = i + min_blocks;
9259 		b = num_buckets; /* Assume the biggest bucket */
9260 		/* Find the bucket that is just big enough */
9261 		for (j = 0; j < num_buckets; j++) {
9262 			if (bucket[j] >= size) {
9263 				b = j;
9264 				break;
9265 			}
9266 		}
9267 		/* for a command with i SG entries, use bucket b. */
9268 		bucket_map[i] = b;
9269 	}
9270 }
9271 
9272 /*
9273  * return -ENODEV on err, 0 on success (or no action)
9274  * allocates numerous items that must be freed later
9275  */
9276 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9277 {
9278 	int i;
9279 	unsigned long register_value;
9280 	unsigned long transMethod = CFGTBL_Trans_Performant |
9281 			(trans_support & CFGTBL_Trans_use_short_tags) |
9282 				CFGTBL_Trans_enable_directed_msix |
9283 			(trans_support & (CFGTBL_Trans_io_accel1 |
9284 				CFGTBL_Trans_io_accel2));
9285 	struct access_method access = SA5_performant_access;
9286 
9287 	/* This is a bit complicated.  There are 8 registers on
9288 	 * the controller which we write to to tell it 8 different
9289 	 * sizes of commands which there may be.  It's a way of
9290 	 * reducing the DMA done to fetch each command.  Encoded into
9291 	 * each command's tag are 3 bits which communicate to the controller
9292 	 * which of the eight sizes that command fits within.  The size of
9293 	 * each command depends on how many scatter gather entries there are.
9294 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9295 	 * with the number of 16-byte blocks a command of that size requires.
9296 	 * The smallest command possible requires 5 such 16 byte blocks.
9297 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9298 	 * blocks.  Note, this only extends to the SG entries contained
9299 	 * within the command block, and does not extend to chained blocks
9300 	 * of SG elements.   bft[] contains the eight values we write to
9301 	 * the registers.  They are not evenly distributed, but have more
9302 	 * sizes for small commands, and fewer sizes for larger commands.
9303 	 */
9304 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9305 #define MIN_IOACCEL2_BFT_ENTRY 5
9306 #define HPSA_IOACCEL2_HEADER_SZ 4
9307 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9308 			13, 14, 15, 16, 17, 18, 19,
9309 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9310 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9311 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9312 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9313 				 16 * MIN_IOACCEL2_BFT_ENTRY);
9314 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9315 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9316 	/*  5 = 1 s/g entry or 4k
9317 	 *  6 = 2 s/g entry or 8k
9318 	 *  8 = 4 s/g entry or 16k
9319 	 * 10 = 6 s/g entry or 24k
9320 	 */
9321 
9322 	/* If the controller supports either ioaccel method then
9323 	 * we can also use the RAID stack submit path that does not
9324 	 * perform the superfluous readl() after each command submission.
9325 	 */
9326 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9327 		access = SA5_performant_access_no_read;
9328 
9329 	/* Controller spec: zero out this buffer. */
9330 	for (i = 0; i < h->nreply_queues; i++)
9331 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9332 
9333 	bft[7] = SG_ENTRIES_IN_CMD + 4;
9334 	calc_bucket_map(bft, ARRAY_SIZE(bft),
9335 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9336 	for (i = 0; i < 8; i++)
9337 		writel(bft[i], &h->transtable->BlockFetch[i]);
9338 
9339 	/* size of controller ring buffer */
9340 	writel(h->max_commands, &h->transtable->RepQSize);
9341 	writel(h->nreply_queues, &h->transtable->RepQCount);
9342 	writel(0, &h->transtable->RepQCtrAddrLow32);
9343 	writel(0, &h->transtable->RepQCtrAddrHigh32);
9344 
9345 	for (i = 0; i < h->nreply_queues; i++) {
9346 		writel(0, &h->transtable->RepQAddr[i].upper);
9347 		writel(h->reply_queue[i].busaddr,
9348 			&h->transtable->RepQAddr[i].lower);
9349 	}
9350 
9351 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9352 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9353 	/*
9354 	 * enable outbound interrupt coalescing in accelerator mode;
9355 	 */
9356 	if (trans_support & CFGTBL_Trans_io_accel1) {
9357 		access = SA5_ioaccel_mode1_access;
9358 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9359 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9360 	} else
9361 		if (trans_support & CFGTBL_Trans_io_accel2)
9362 			access = SA5_ioaccel_mode2_access;
9363 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9364 	if (hpsa_wait_for_mode_change_ack(h)) {
9365 		dev_err(&h->pdev->dev,
9366 			"performant mode problem - doorbell timeout\n");
9367 		return -ENODEV;
9368 	}
9369 	register_value = readl(&(h->cfgtable->TransportActive));
9370 	if (!(register_value & CFGTBL_Trans_Performant)) {
9371 		dev_err(&h->pdev->dev,
9372 			"performant mode problem - transport not active\n");
9373 		return -ENODEV;
9374 	}
9375 	/* Change the access methods to the performant access methods */
9376 	h->access = access;
9377 	h->transMethod = transMethod;
9378 
9379 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9380 		(trans_support & CFGTBL_Trans_io_accel2)))
9381 		return 0;
9382 
9383 	if (trans_support & CFGTBL_Trans_io_accel1) {
9384 		/* Set up I/O accelerator mode */
9385 		for (i = 0; i < h->nreply_queues; i++) {
9386 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9387 			h->reply_queue[i].current_entry =
9388 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9389 		}
9390 		bft[7] = h->ioaccel_maxsg + 8;
9391 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9392 				h->ioaccel1_blockFetchTable);
9393 
9394 		/* initialize all reply queue entries to unused */
9395 		for (i = 0; i < h->nreply_queues; i++)
9396 			memset(h->reply_queue[i].head,
9397 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9398 				h->reply_queue_size);
9399 
9400 		/* set all the constant fields in the accelerator command
9401 		 * frames once at init time to save CPU cycles later.
9402 		 */
9403 		for (i = 0; i < h->nr_cmds; i++) {
9404 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9405 
9406 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9407 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9408 					(i * sizeof(struct ErrorInfo)));
9409 			cp->err_info_len = sizeof(struct ErrorInfo);
9410 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9411 			cp->host_context_flags =
9412 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9413 			cp->timeout_sec = 0;
9414 			cp->ReplyQueue = 0;
9415 			cp->tag =
9416 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9417 			cp->host_addr =
9418 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9419 					(i * sizeof(struct io_accel1_cmd)));
9420 		}
9421 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9422 		u64 cfg_offset, cfg_base_addr_index;
9423 		u32 bft2_offset, cfg_base_addr;
9424 		int rc;
9425 
9426 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9427 			&cfg_base_addr_index, &cfg_offset);
9428 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9429 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9430 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9431 				4, h->ioaccel2_blockFetchTable);
9432 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9433 		BUILD_BUG_ON(offsetof(struct CfgTable,
9434 				io_accel_request_size_offset) != 0xb8);
9435 		h->ioaccel2_bft2_regs =
9436 			remap_pci_mem(pci_resource_start(h->pdev,
9437 					cfg_base_addr_index) +
9438 					cfg_offset + bft2_offset,
9439 					ARRAY_SIZE(bft2) *
9440 					sizeof(*h->ioaccel2_bft2_regs));
9441 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9442 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9443 	}
9444 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9445 	if (hpsa_wait_for_mode_change_ack(h)) {
9446 		dev_err(&h->pdev->dev,
9447 			"performant mode problem - enabling ioaccel mode\n");
9448 		return -ENODEV;
9449 	}
9450 	return 0;
9451 }
9452 
9453 /* Free ioaccel1 mode command blocks and block fetch table */
9454 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9455 {
9456 	if (h->ioaccel_cmd_pool) {
9457 		pci_free_consistent(h->pdev,
9458 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9459 			h->ioaccel_cmd_pool,
9460 			h->ioaccel_cmd_pool_dhandle);
9461 		h->ioaccel_cmd_pool = NULL;
9462 		h->ioaccel_cmd_pool_dhandle = 0;
9463 	}
9464 	kfree(h->ioaccel1_blockFetchTable);
9465 	h->ioaccel1_blockFetchTable = NULL;
9466 }
9467 
9468 /* Allocate ioaccel1 mode command blocks and block fetch table */
9469 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9470 {
9471 	h->ioaccel_maxsg =
9472 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9473 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9474 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9475 
9476 	/* Command structures must be aligned on a 128-byte boundary
9477 	 * because the 7 lower bits of the address are used by the
9478 	 * hardware.
9479 	 */
9480 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9481 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9482 	h->ioaccel_cmd_pool =
9483 		pci_alloc_consistent(h->pdev,
9484 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9485 			&(h->ioaccel_cmd_pool_dhandle));
9486 
9487 	h->ioaccel1_blockFetchTable =
9488 		kmalloc(((h->ioaccel_maxsg + 1) *
9489 				sizeof(u32)), GFP_KERNEL);
9490 
9491 	if ((h->ioaccel_cmd_pool == NULL) ||
9492 		(h->ioaccel1_blockFetchTable == NULL))
9493 		goto clean_up;
9494 
9495 	memset(h->ioaccel_cmd_pool, 0,
9496 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9497 	return 0;
9498 
9499 clean_up:
9500 	hpsa_free_ioaccel1_cmd_and_bft(h);
9501 	return -ENOMEM;
9502 }
9503 
9504 /* Free ioaccel2 mode command blocks and block fetch table */
9505 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9506 {
9507 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9508 
9509 	if (h->ioaccel2_cmd_pool) {
9510 		pci_free_consistent(h->pdev,
9511 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9512 			h->ioaccel2_cmd_pool,
9513 			h->ioaccel2_cmd_pool_dhandle);
9514 		h->ioaccel2_cmd_pool = NULL;
9515 		h->ioaccel2_cmd_pool_dhandle = 0;
9516 	}
9517 	kfree(h->ioaccel2_blockFetchTable);
9518 	h->ioaccel2_blockFetchTable = NULL;
9519 }
9520 
9521 /* Allocate ioaccel2 mode command blocks and block fetch table */
9522 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9523 {
9524 	int rc;
9525 
9526 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9527 
9528 	h->ioaccel_maxsg =
9529 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9530 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9531 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9532 
9533 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9534 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9535 	h->ioaccel2_cmd_pool =
9536 		pci_alloc_consistent(h->pdev,
9537 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9538 			&(h->ioaccel2_cmd_pool_dhandle));
9539 
9540 	h->ioaccel2_blockFetchTable =
9541 		kmalloc(((h->ioaccel_maxsg + 1) *
9542 				sizeof(u32)), GFP_KERNEL);
9543 
9544 	if ((h->ioaccel2_cmd_pool == NULL) ||
9545 		(h->ioaccel2_blockFetchTable == NULL)) {
9546 		rc = -ENOMEM;
9547 		goto clean_up;
9548 	}
9549 
9550 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9551 	if (rc)
9552 		goto clean_up;
9553 
9554 	memset(h->ioaccel2_cmd_pool, 0,
9555 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9556 	return 0;
9557 
9558 clean_up:
9559 	hpsa_free_ioaccel2_cmd_and_bft(h);
9560 	return rc;
9561 }
9562 
9563 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9564 static void hpsa_free_performant_mode(struct ctlr_info *h)
9565 {
9566 	kfree(h->blockFetchTable);
9567 	h->blockFetchTable = NULL;
9568 	hpsa_free_reply_queues(h);
9569 	hpsa_free_ioaccel1_cmd_and_bft(h);
9570 	hpsa_free_ioaccel2_cmd_and_bft(h);
9571 }
9572 
9573 /* return -ENODEV on error, 0 on success (or no action)
9574  * allocates numerous items that must be freed later
9575  */
9576 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9577 {
9578 	u32 trans_support;
9579 	unsigned long transMethod = CFGTBL_Trans_Performant |
9580 					CFGTBL_Trans_use_short_tags;
9581 	int i, rc;
9582 
9583 	if (hpsa_simple_mode)
9584 		return 0;
9585 
9586 	trans_support = readl(&(h->cfgtable->TransportSupport));
9587 	if (!(trans_support & PERFORMANT_MODE))
9588 		return 0;
9589 
9590 	/* Check for I/O accelerator mode support */
9591 	if (trans_support & CFGTBL_Trans_io_accel1) {
9592 		transMethod |= CFGTBL_Trans_io_accel1 |
9593 				CFGTBL_Trans_enable_directed_msix;
9594 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9595 		if (rc)
9596 			return rc;
9597 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9598 		transMethod |= CFGTBL_Trans_io_accel2 |
9599 				CFGTBL_Trans_enable_directed_msix;
9600 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9601 		if (rc)
9602 			return rc;
9603 	}
9604 
9605 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9606 	hpsa_get_max_perf_mode_cmds(h);
9607 	/* Performant mode ring buffer and supporting data structures */
9608 	h->reply_queue_size = h->max_commands * sizeof(u64);
9609 
9610 	for (i = 0; i < h->nreply_queues; i++) {
9611 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9612 						h->reply_queue_size,
9613 						&(h->reply_queue[i].busaddr));
9614 		if (!h->reply_queue[i].head) {
9615 			rc = -ENOMEM;
9616 			goto clean1;	/* rq, ioaccel */
9617 		}
9618 		h->reply_queue[i].size = h->max_commands;
9619 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9620 		h->reply_queue[i].current_entry = 0;
9621 	}
9622 
9623 	/* Need a block fetch table for performant mode */
9624 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9625 				sizeof(u32)), GFP_KERNEL);
9626 	if (!h->blockFetchTable) {
9627 		rc = -ENOMEM;
9628 		goto clean1;	/* rq, ioaccel */
9629 	}
9630 
9631 	rc = hpsa_enter_performant_mode(h, trans_support);
9632 	if (rc)
9633 		goto clean2;	/* bft, rq, ioaccel */
9634 	return 0;
9635 
9636 clean2:	/* bft, rq, ioaccel */
9637 	kfree(h->blockFetchTable);
9638 	h->blockFetchTable = NULL;
9639 clean1:	/* rq, ioaccel */
9640 	hpsa_free_reply_queues(h);
9641 	hpsa_free_ioaccel1_cmd_and_bft(h);
9642 	hpsa_free_ioaccel2_cmd_and_bft(h);
9643 	return rc;
9644 }
9645 
9646 static int is_accelerated_cmd(struct CommandList *c)
9647 {
9648 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9649 }
9650 
9651 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9652 {
9653 	struct CommandList *c = NULL;
9654 	int i, accel_cmds_out;
9655 	int refcount;
9656 
9657 	do { /* wait for all outstanding ioaccel commands to drain out */
9658 		accel_cmds_out = 0;
9659 		for (i = 0; i < h->nr_cmds; i++) {
9660 			c = h->cmd_pool + i;
9661 			refcount = atomic_inc_return(&c->refcount);
9662 			if (refcount > 1) /* Command is allocated */
9663 				accel_cmds_out += is_accelerated_cmd(c);
9664 			cmd_free(h, c);
9665 		}
9666 		if (accel_cmds_out <= 0)
9667 			break;
9668 		msleep(100);
9669 	} while (1);
9670 }
9671 
9672 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9673 				struct hpsa_sas_port *hpsa_sas_port)
9674 {
9675 	struct hpsa_sas_phy *hpsa_sas_phy;
9676 	struct sas_phy *phy;
9677 
9678 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9679 	if (!hpsa_sas_phy)
9680 		return NULL;
9681 
9682 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9683 		hpsa_sas_port->next_phy_index);
9684 	if (!phy) {
9685 		kfree(hpsa_sas_phy);
9686 		return NULL;
9687 	}
9688 
9689 	hpsa_sas_port->next_phy_index++;
9690 	hpsa_sas_phy->phy = phy;
9691 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9692 
9693 	return hpsa_sas_phy;
9694 }
9695 
9696 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9697 {
9698 	struct sas_phy *phy = hpsa_sas_phy->phy;
9699 
9700 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9701 	sas_phy_free(phy);
9702 	if (hpsa_sas_phy->added_to_port)
9703 		list_del(&hpsa_sas_phy->phy_list_entry);
9704 	kfree(hpsa_sas_phy);
9705 }
9706 
9707 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9708 {
9709 	int rc;
9710 	struct hpsa_sas_port *hpsa_sas_port;
9711 	struct sas_phy *phy;
9712 	struct sas_identify *identify;
9713 
9714 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9715 	phy = hpsa_sas_phy->phy;
9716 
9717 	identify = &phy->identify;
9718 	memset(identify, 0, sizeof(*identify));
9719 	identify->sas_address = hpsa_sas_port->sas_address;
9720 	identify->device_type = SAS_END_DEVICE;
9721 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9722 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9723 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9724 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9725 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9726 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9727 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9728 
9729 	rc = sas_phy_add(hpsa_sas_phy->phy);
9730 	if (rc)
9731 		return rc;
9732 
9733 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9734 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9735 			&hpsa_sas_port->phy_list_head);
9736 	hpsa_sas_phy->added_to_port = true;
9737 
9738 	return 0;
9739 }
9740 
9741 static int
9742 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9743 				struct sas_rphy *rphy)
9744 {
9745 	struct sas_identify *identify;
9746 
9747 	identify = &rphy->identify;
9748 	identify->sas_address = hpsa_sas_port->sas_address;
9749 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9750 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9751 
9752 	return sas_rphy_add(rphy);
9753 }
9754 
9755 static struct hpsa_sas_port
9756 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9757 				u64 sas_address)
9758 {
9759 	int rc;
9760 	struct hpsa_sas_port *hpsa_sas_port;
9761 	struct sas_port *port;
9762 
9763 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9764 	if (!hpsa_sas_port)
9765 		return NULL;
9766 
9767 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9768 	hpsa_sas_port->parent_node = hpsa_sas_node;
9769 
9770 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9771 	if (!port)
9772 		goto free_hpsa_port;
9773 
9774 	rc = sas_port_add(port);
9775 	if (rc)
9776 		goto free_sas_port;
9777 
9778 	hpsa_sas_port->port = port;
9779 	hpsa_sas_port->sas_address = sas_address;
9780 	list_add_tail(&hpsa_sas_port->port_list_entry,
9781 			&hpsa_sas_node->port_list_head);
9782 
9783 	return hpsa_sas_port;
9784 
9785 free_sas_port:
9786 	sas_port_free(port);
9787 free_hpsa_port:
9788 	kfree(hpsa_sas_port);
9789 
9790 	return NULL;
9791 }
9792 
9793 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9794 {
9795 	struct hpsa_sas_phy *hpsa_sas_phy;
9796 	struct hpsa_sas_phy *next;
9797 
9798 	list_for_each_entry_safe(hpsa_sas_phy, next,
9799 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9800 		hpsa_free_sas_phy(hpsa_sas_phy);
9801 
9802 	sas_port_delete(hpsa_sas_port->port);
9803 	list_del(&hpsa_sas_port->port_list_entry);
9804 	kfree(hpsa_sas_port);
9805 }
9806 
9807 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9808 {
9809 	struct hpsa_sas_node *hpsa_sas_node;
9810 
9811 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9812 	if (hpsa_sas_node) {
9813 		hpsa_sas_node->parent_dev = parent_dev;
9814 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9815 	}
9816 
9817 	return hpsa_sas_node;
9818 }
9819 
9820 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9821 {
9822 	struct hpsa_sas_port *hpsa_sas_port;
9823 	struct hpsa_sas_port *next;
9824 
9825 	if (!hpsa_sas_node)
9826 		return;
9827 
9828 	list_for_each_entry_safe(hpsa_sas_port, next,
9829 			&hpsa_sas_node->port_list_head, port_list_entry)
9830 		hpsa_free_sas_port(hpsa_sas_port);
9831 
9832 	kfree(hpsa_sas_node);
9833 }
9834 
9835 static struct hpsa_scsi_dev_t
9836 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9837 					struct sas_rphy *rphy)
9838 {
9839 	int i;
9840 	struct hpsa_scsi_dev_t *device;
9841 
9842 	for (i = 0; i < h->ndevices; i++) {
9843 		device = h->dev[i];
9844 		if (!device->sas_port)
9845 			continue;
9846 		if (device->sas_port->rphy == rphy)
9847 			return device;
9848 	}
9849 
9850 	return NULL;
9851 }
9852 
9853 static int hpsa_add_sas_host(struct ctlr_info *h)
9854 {
9855 	int rc;
9856 	struct device *parent_dev;
9857 	struct hpsa_sas_node *hpsa_sas_node;
9858 	struct hpsa_sas_port *hpsa_sas_port;
9859 	struct hpsa_sas_phy *hpsa_sas_phy;
9860 
9861 	parent_dev = &h->scsi_host->shost_gendev;
9862 
9863 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9864 	if (!hpsa_sas_node)
9865 		return -ENOMEM;
9866 
9867 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9868 	if (!hpsa_sas_port) {
9869 		rc = -ENODEV;
9870 		goto free_sas_node;
9871 	}
9872 
9873 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9874 	if (!hpsa_sas_phy) {
9875 		rc = -ENODEV;
9876 		goto free_sas_port;
9877 	}
9878 
9879 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9880 	if (rc)
9881 		goto free_sas_phy;
9882 
9883 	h->sas_host = hpsa_sas_node;
9884 
9885 	return 0;
9886 
9887 free_sas_phy:
9888 	hpsa_free_sas_phy(hpsa_sas_phy);
9889 free_sas_port:
9890 	hpsa_free_sas_port(hpsa_sas_port);
9891 free_sas_node:
9892 	hpsa_free_sas_node(hpsa_sas_node);
9893 
9894 	return rc;
9895 }
9896 
9897 static void hpsa_delete_sas_host(struct ctlr_info *h)
9898 {
9899 	hpsa_free_sas_node(h->sas_host);
9900 }
9901 
9902 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9903 				struct hpsa_scsi_dev_t *device)
9904 {
9905 	int rc;
9906 	struct hpsa_sas_port *hpsa_sas_port;
9907 	struct sas_rphy *rphy;
9908 
9909 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9910 	if (!hpsa_sas_port)
9911 		return -ENOMEM;
9912 
9913 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9914 	if (!rphy) {
9915 		rc = -ENODEV;
9916 		goto free_sas_port;
9917 	}
9918 
9919 	hpsa_sas_port->rphy = rphy;
9920 	device->sas_port = hpsa_sas_port;
9921 
9922 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9923 	if (rc)
9924 		goto free_sas_port;
9925 
9926 	return 0;
9927 
9928 free_sas_port:
9929 	hpsa_free_sas_port(hpsa_sas_port);
9930 	device->sas_port = NULL;
9931 
9932 	return rc;
9933 }
9934 
9935 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9936 {
9937 	if (device->sas_port) {
9938 		hpsa_free_sas_port(device->sas_port);
9939 		device->sas_port = NULL;
9940 	}
9941 }
9942 
9943 static int
9944 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9945 {
9946 	return 0;
9947 }
9948 
9949 static int
9950 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9951 {
9952 	*identifier = 0;
9953 	return 0;
9954 }
9955 
9956 static int
9957 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9958 {
9959 	return -ENXIO;
9960 }
9961 
9962 static int
9963 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9964 {
9965 	return 0;
9966 }
9967 
9968 static int
9969 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9970 {
9971 	return 0;
9972 }
9973 
9974 static int
9975 hpsa_sas_phy_setup(struct sas_phy *phy)
9976 {
9977 	return 0;
9978 }
9979 
9980 static void
9981 hpsa_sas_phy_release(struct sas_phy *phy)
9982 {
9983 }
9984 
9985 static int
9986 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9987 {
9988 	return -EINVAL;
9989 }
9990 
9991 /* SMP = Serial Management Protocol */
9992 static int
9993 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9994 struct request *req)
9995 {
9996 	return -EINVAL;
9997 }
9998 
9999 static struct sas_function_template hpsa_sas_transport_functions = {
10000 	.get_linkerrors = hpsa_sas_get_linkerrors,
10001 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
10002 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
10003 	.phy_reset = hpsa_sas_phy_reset,
10004 	.phy_enable = hpsa_sas_phy_enable,
10005 	.phy_setup = hpsa_sas_phy_setup,
10006 	.phy_release = hpsa_sas_phy_release,
10007 	.set_phy_speed = hpsa_sas_phy_speed,
10008 	.smp_handler = hpsa_sas_smp_handler,
10009 };
10010 
10011 /*
10012  *  This is it.  Register the PCI driver information for the cards we control
10013  *  the OS will call our registered routines when it finds one of our cards.
10014  */
10015 static int __init hpsa_init(void)
10016 {
10017 	int rc;
10018 
10019 	hpsa_sas_transport_template =
10020 		sas_attach_transport(&hpsa_sas_transport_functions);
10021 	if (!hpsa_sas_transport_template)
10022 		return -ENODEV;
10023 
10024 	rc = pci_register_driver(&hpsa_pci_driver);
10025 
10026 	if (rc)
10027 		sas_release_transport(hpsa_sas_transport_template);
10028 
10029 	return rc;
10030 }
10031 
10032 static void __exit hpsa_cleanup(void)
10033 {
10034 	pci_unregister_driver(&hpsa_pci_driver);
10035 	sas_release_transport(hpsa_sas_transport_template);
10036 }
10037 
10038 static void __attribute__((unused)) verify_offsets(void)
10039 {
10040 #define VERIFY_OFFSET(member, offset) \
10041 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
10042 
10043 	VERIFY_OFFSET(structure_size, 0);
10044 	VERIFY_OFFSET(volume_blk_size, 4);
10045 	VERIFY_OFFSET(volume_blk_cnt, 8);
10046 	VERIFY_OFFSET(phys_blk_shift, 16);
10047 	VERIFY_OFFSET(parity_rotation_shift, 17);
10048 	VERIFY_OFFSET(strip_size, 18);
10049 	VERIFY_OFFSET(disk_starting_blk, 20);
10050 	VERIFY_OFFSET(disk_blk_cnt, 28);
10051 	VERIFY_OFFSET(data_disks_per_row, 36);
10052 	VERIFY_OFFSET(metadata_disks_per_row, 38);
10053 	VERIFY_OFFSET(row_cnt, 40);
10054 	VERIFY_OFFSET(layout_map_count, 42);
10055 	VERIFY_OFFSET(flags, 44);
10056 	VERIFY_OFFSET(dekindex, 46);
10057 	/* VERIFY_OFFSET(reserved, 48 */
10058 	VERIFY_OFFSET(data, 64);
10059 
10060 #undef VERIFY_OFFSET
10061 
10062 #define VERIFY_OFFSET(member, offset) \
10063 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
10064 
10065 	VERIFY_OFFSET(IU_type, 0);
10066 	VERIFY_OFFSET(direction, 1);
10067 	VERIFY_OFFSET(reply_queue, 2);
10068 	/* VERIFY_OFFSET(reserved1, 3);  */
10069 	VERIFY_OFFSET(scsi_nexus, 4);
10070 	VERIFY_OFFSET(Tag, 8);
10071 	VERIFY_OFFSET(cdb, 16);
10072 	VERIFY_OFFSET(cciss_lun, 32);
10073 	VERIFY_OFFSET(data_len, 40);
10074 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
10075 	VERIFY_OFFSET(sg_count, 45);
10076 	/* VERIFY_OFFSET(reserved3 */
10077 	VERIFY_OFFSET(err_ptr, 48);
10078 	VERIFY_OFFSET(err_len, 56);
10079 	/* VERIFY_OFFSET(reserved4  */
10080 	VERIFY_OFFSET(sg, 64);
10081 
10082 #undef VERIFY_OFFSET
10083 
10084 #define VERIFY_OFFSET(member, offset) \
10085 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10086 
10087 	VERIFY_OFFSET(dev_handle, 0x00);
10088 	VERIFY_OFFSET(reserved1, 0x02);
10089 	VERIFY_OFFSET(function, 0x03);
10090 	VERIFY_OFFSET(reserved2, 0x04);
10091 	VERIFY_OFFSET(err_info, 0x0C);
10092 	VERIFY_OFFSET(reserved3, 0x10);
10093 	VERIFY_OFFSET(err_info_len, 0x12);
10094 	VERIFY_OFFSET(reserved4, 0x13);
10095 	VERIFY_OFFSET(sgl_offset, 0x14);
10096 	VERIFY_OFFSET(reserved5, 0x15);
10097 	VERIFY_OFFSET(transfer_len, 0x1C);
10098 	VERIFY_OFFSET(reserved6, 0x20);
10099 	VERIFY_OFFSET(io_flags, 0x24);
10100 	VERIFY_OFFSET(reserved7, 0x26);
10101 	VERIFY_OFFSET(LUN, 0x34);
10102 	VERIFY_OFFSET(control, 0x3C);
10103 	VERIFY_OFFSET(CDB, 0x40);
10104 	VERIFY_OFFSET(reserved8, 0x50);
10105 	VERIFY_OFFSET(host_context_flags, 0x60);
10106 	VERIFY_OFFSET(timeout_sec, 0x62);
10107 	VERIFY_OFFSET(ReplyQueue, 0x64);
10108 	VERIFY_OFFSET(reserved9, 0x65);
10109 	VERIFY_OFFSET(tag, 0x68);
10110 	VERIFY_OFFSET(host_addr, 0x70);
10111 	VERIFY_OFFSET(CISS_LUN, 0x78);
10112 	VERIFY_OFFSET(SG, 0x78 + 8);
10113 #undef VERIFY_OFFSET
10114 }
10115 
10116 module_init(hpsa_init);
10117 module_exit(hpsa_cleanup);
10118