xref: /openbmc/linux/drivers/scsi/hpsa.c (revision 3026ff9b0339a64d6bdef8858636174d453dce54)
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58 
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66 
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73 
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80 	HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85 
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89 	"Use 'simple mode' rather than 'performant mode'");
90 
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134 	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
147 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
149 		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 	{0,}
151 };
152 
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154 
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160 	{0x40700E11, "Smart Array 5300", &SA5A_access},
161 	{0x40800E11, "Smart Array 5i", &SA5B_access},
162 	{0x40820E11, "Smart Array 532", &SA5B_access},
163 	{0x40830E11, "Smart Array 5312", &SA5B_access},
164 	{0x409A0E11, "Smart Array 641", &SA5A_access},
165 	{0x409B0E11, "Smart Array 642", &SA5A_access},
166 	{0x409C0E11, "Smart Array 6400", &SA5A_access},
167 	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168 	{0x40910E11, "Smart Array 6i", &SA5A_access},
169 	{0x3225103C, "Smart Array P600", &SA5A_access},
170 	{0x3223103C, "Smart Array P800", &SA5A_access},
171 	{0x3234103C, "Smart Array P400", &SA5A_access},
172 	{0x3235103C, "Smart Array P400i", &SA5A_access},
173 	{0x3211103C, "Smart Array E200i", &SA5A_access},
174 	{0x3212103C, "Smart Array E200", &SA5A_access},
175 	{0x3213103C, "Smart Array E200i", &SA5A_access},
176 	{0x3214103C, "Smart Array E200i", &SA5A_access},
177 	{0x3215103C, "Smart Array E200i", &SA5A_access},
178 	{0x3237103C, "Smart Array E500", &SA5A_access},
179 	{0x323D103C, "Smart Array P700m", &SA5A_access},
180 	{0x3241103C, "Smart Array P212", &SA5_access},
181 	{0x3243103C, "Smart Array P410", &SA5_access},
182 	{0x3245103C, "Smart Array P410i", &SA5_access},
183 	{0x3247103C, "Smart Array P411", &SA5_access},
184 	{0x3249103C, "Smart Array P812", &SA5_access},
185 	{0x324A103C, "Smart Array P712m", &SA5_access},
186 	{0x324B103C, "Smart Array P711m", &SA5_access},
187 	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188 	{0x3350103C, "Smart Array P222", &SA5_access},
189 	{0x3351103C, "Smart Array P420", &SA5_access},
190 	{0x3352103C, "Smart Array P421", &SA5_access},
191 	{0x3353103C, "Smart Array P822", &SA5_access},
192 	{0x3354103C, "Smart Array P420i", &SA5_access},
193 	{0x3355103C, "Smart Array P220i", &SA5_access},
194 	{0x3356103C, "Smart Array P721m", &SA5_access},
195 	{0x1920103C, "Smart Array P430i", &SA5_access},
196 	{0x1921103C, "Smart Array P830i", &SA5_access},
197 	{0x1922103C, "Smart Array P430", &SA5_access},
198 	{0x1923103C, "Smart Array P431", &SA5_access},
199 	{0x1924103C, "Smart Array P830", &SA5_access},
200 	{0x1925103C, "Smart Array P831", &SA5_access},
201 	{0x1926103C, "Smart Array P731m", &SA5_access},
202 	{0x1928103C, "Smart Array P230i", &SA5_access},
203 	{0x1929103C, "Smart Array P530", &SA5_access},
204 	{0x21BD103C, "Smart Array P244br", &SA5_access},
205 	{0x21BE103C, "Smart Array P741m", &SA5_access},
206 	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
207 	{0x21C0103C, "Smart Array P440ar", &SA5_access},
208 	{0x21C1103C, "Smart Array P840ar", &SA5_access},
209 	{0x21C2103C, "Smart Array P440", &SA5_access},
210 	{0x21C3103C, "Smart Array P441", &SA5_access},
211 	{0x21C4103C, "Smart Array", &SA5_access},
212 	{0x21C5103C, "Smart Array P841", &SA5_access},
213 	{0x21C6103C, "Smart HBA H244br", &SA5_access},
214 	{0x21C7103C, "Smart HBA H240", &SA5_access},
215 	{0x21C8103C, "Smart HBA H241", &SA5_access},
216 	{0x21C9103C, "Smart Array", &SA5_access},
217 	{0x21CA103C, "Smart Array P246br", &SA5_access},
218 	{0x21CB103C, "Smart Array P840", &SA5_access},
219 	{0x21CC103C, "Smart Array", &SA5_access},
220 	{0x21CD103C, "Smart Array", &SA5_access},
221 	{0x21CE103C, "Smart HBA", &SA5_access},
222 	{0x05809005, "SmartHBA-SA", &SA5_access},
223 	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
224 	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225 	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
226 	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
227 	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228 	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229 	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230 	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231 	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232 	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233 	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235 
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240 			struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244 		struct sas_rphy *rphy);
245 
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251 
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255 
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258 	void __user *arg);
259 #endif
260 
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265 					    struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268 	int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272 
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276 	unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278 
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283 
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286 	struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288 	struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291 	int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297 			       u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299 				    unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301 				bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303 					   unsigned char lunaddr[],
304 					   int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306 				     int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321 	struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323 	unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326 			       struct hpsa_scsi_dev_t *dev,
327 			       unsigned char *scsi3addr);
328 
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331 	unsigned long *priv = shost_priv(sdev->host);
332 	return (struct ctlr_info *) *priv;
333 }
334 
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337 	unsigned long *priv = shost_priv(sh);
338 	return (struct ctlr_info *) *priv;
339 }
340 
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343 	return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345 
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348 	return c->reset_pending;
349 }
350 
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353 			u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355 	struct scsi_sense_hdr sshdr;
356 	bool rc;
357 
358 	*sense_key = -1;
359 	*asc = -1;
360 	*ascq = -1;
361 
362 	if (sense_data_len < 1)
363 		return;
364 
365 	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366 	if (rc) {
367 		*sense_key = sshdr.sense_key;
368 		*asc = sshdr.asc;
369 		*ascq = sshdr.ascq;
370 	}
371 }
372 
373 static int check_for_unit_attention(struct ctlr_info *h,
374 	struct CommandList *c)
375 {
376 	u8 sense_key, asc, ascq;
377 	int sense_len;
378 
379 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380 		sense_len = sizeof(c->err_info->SenseInfo);
381 	else
382 		sense_len = c->err_info->SenseLen;
383 
384 	decode_sense_data(c->err_info->SenseInfo, sense_len,
385 				&sense_key, &asc, &ascq);
386 	if (sense_key != UNIT_ATTENTION || asc == 0xff)
387 		return 0;
388 
389 	switch (asc) {
390 	case STATE_CHANGED:
391 		dev_warn(&h->pdev->dev,
392 			"%s: a state change detected, command retried\n",
393 			h->devname);
394 		break;
395 	case LUN_FAILED:
396 		dev_warn(&h->pdev->dev,
397 			"%s: LUN failure detected\n", h->devname);
398 		break;
399 	case REPORT_LUNS_CHANGED:
400 		dev_warn(&h->pdev->dev,
401 			"%s: report LUN data changed\n", h->devname);
402 	/*
403 	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404 	 * target (array) devices.
405 	 */
406 		break;
407 	case POWER_OR_RESET:
408 		dev_warn(&h->pdev->dev,
409 			"%s: a power on or device reset detected\n",
410 			h->devname);
411 		break;
412 	case UNIT_ATTENTION_CLEARED:
413 		dev_warn(&h->pdev->dev,
414 			"%s: unit attention cleared by another initiator\n",
415 			h->devname);
416 		break;
417 	default:
418 		dev_warn(&h->pdev->dev,
419 			"%s: unknown unit attention detected\n",
420 			h->devname);
421 		break;
422 	}
423 	return 1;
424 }
425 
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428 	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429 		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430 		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431 		return 0;
432 	dev_warn(&h->pdev->dev, HPSA "device busy");
433 	return 1;
434 }
435 
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438 		struct device_attribute *attr, char *buf)
439 {
440 	int ld;
441 	struct ctlr_info *h;
442 	struct Scsi_Host *shost = class_to_shost(dev);
443 
444 	h = shost_to_hba(shost);
445 	ld = lockup_detected(h);
446 
447 	return sprintf(buf, "ld=%d\n", ld);
448 }
449 
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451 					 struct device_attribute *attr,
452 					 const char *buf, size_t count)
453 {
454 	int status, len;
455 	struct ctlr_info *h;
456 	struct Scsi_Host *shost = class_to_shost(dev);
457 	char tmpbuf[10];
458 
459 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460 		return -EACCES;
461 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462 	strncpy(tmpbuf, buf, len);
463 	tmpbuf[len] = '\0';
464 	if (sscanf(tmpbuf, "%d", &status) != 1)
465 		return -EINVAL;
466 	h = shost_to_hba(shost);
467 	h->acciopath_status = !!status;
468 	dev_warn(&h->pdev->dev,
469 		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
470 		h->acciopath_status ? "enabled" : "disabled");
471 	return count;
472 }
473 
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475 					 struct device_attribute *attr,
476 					 const char *buf, size_t count)
477 {
478 	int debug_level, len;
479 	struct ctlr_info *h;
480 	struct Scsi_Host *shost = class_to_shost(dev);
481 	char tmpbuf[10];
482 
483 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484 		return -EACCES;
485 	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486 	strncpy(tmpbuf, buf, len);
487 	tmpbuf[len] = '\0';
488 	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489 		return -EINVAL;
490 	if (debug_level < 0)
491 		debug_level = 0;
492 	h = shost_to_hba(shost);
493 	h->raid_offload_debug = debug_level;
494 	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495 		h->raid_offload_debug);
496 	return count;
497 }
498 
499 static ssize_t host_store_rescan(struct device *dev,
500 				 struct device_attribute *attr,
501 				 const char *buf, size_t count)
502 {
503 	struct ctlr_info *h;
504 	struct Scsi_Host *shost = class_to_shost(dev);
505 	h = shost_to_hba(shost);
506 	hpsa_scan_start(h->scsi_host);
507 	return count;
508 }
509 
510 static ssize_t host_show_firmware_revision(struct device *dev,
511 	     struct device_attribute *attr, char *buf)
512 {
513 	struct ctlr_info *h;
514 	struct Scsi_Host *shost = class_to_shost(dev);
515 	unsigned char *fwrev;
516 
517 	h = shost_to_hba(shost);
518 	if (!h->hba_inquiry_data)
519 		return 0;
520 	fwrev = &h->hba_inquiry_data[32];
521 	return snprintf(buf, 20, "%c%c%c%c\n",
522 		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524 
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526 	     struct device_attribute *attr, char *buf)
527 {
528 	struct Scsi_Host *shost = class_to_shost(dev);
529 	struct ctlr_info *h = shost_to_hba(shost);
530 
531 	return snprintf(buf, 20, "%d\n",
532 			atomic_read(&h->commands_outstanding));
533 }
534 
535 static ssize_t host_show_transport_mode(struct device *dev,
536 	struct device_attribute *attr, char *buf)
537 {
538 	struct ctlr_info *h;
539 	struct Scsi_Host *shost = class_to_shost(dev);
540 
541 	h = shost_to_hba(shost);
542 	return snprintf(buf, 20, "%s\n",
543 		h->transMethod & CFGTBL_Trans_Performant ?
544 			"performant" : "simple");
545 }
546 
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548 	struct device_attribute *attr, char *buf)
549 {
550 	struct ctlr_info *h;
551 	struct Scsi_Host *shost = class_to_shost(dev);
552 
553 	h = shost_to_hba(shost);
554 	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555 		(h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557 
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560 	0x324a103C, /* Smart Array P712m */
561 	0x324b103C, /* Smart Array P711m */
562 	0x3223103C, /* Smart Array P800 */
563 	0x3234103C, /* Smart Array P400 */
564 	0x3235103C, /* Smart Array P400i */
565 	0x3211103C, /* Smart Array E200i */
566 	0x3212103C, /* Smart Array E200 */
567 	0x3213103C, /* Smart Array E200i */
568 	0x3214103C, /* Smart Array E200i */
569 	0x3215103C, /* Smart Array E200i */
570 	0x3237103C, /* Smart Array E500 */
571 	0x323D103C, /* Smart Array P700m */
572 	0x40800E11, /* Smart Array 5i */
573 	0x409C0E11, /* Smart Array 6400 */
574 	0x409D0E11, /* Smart Array 6400 EM */
575 	0x40700E11, /* Smart Array 5300 */
576 	0x40820E11, /* Smart Array 532 */
577 	0x40830E11, /* Smart Array 5312 */
578 	0x409A0E11, /* Smart Array 641 */
579 	0x409B0E11, /* Smart Array 642 */
580 	0x40910E11, /* Smart Array 6i */
581 };
582 
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585 	0x40800E11, /* Smart Array 5i */
586 	0x40700E11, /* Smart Array 5300 */
587 	0x40820E11, /* Smart Array 532 */
588 	0x40830E11, /* Smart Array 5312 */
589 	0x409A0E11, /* Smart Array 641 */
590 	0x409B0E11, /* Smart Array 642 */
591 	0x40910E11, /* Smart Array 6i */
592 	/* Exclude 640x boards.  These are two pci devices in one slot
593 	 * which share a battery backed cache module.  One controls the
594 	 * cache, the other accesses the cache through the one that controls
595 	 * it.  If we reset the one controlling the cache, the other will
596 	 * likely not be happy.  Just forbid resetting this conjoined mess.
597 	 * The 640x isn't really supported by hpsa anyway.
598 	 */
599 	0x409C0E11, /* Smart Array 6400 */
600 	0x409D0E11, /* Smart Array 6400 EM */
601 };
602 
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605 	int i;
606 
607 	for (i = 0; i < nelems; i++)
608 		if (a[i] == board_id)
609 			return 1;
610 	return 0;
611 }
612 
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615 	return !board_id_in_array(unresettable_controller,
616 			ARRAY_SIZE(unresettable_controller), board_id);
617 }
618 
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621 	return !board_id_in_array(soft_unresettable_controller,
622 			ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624 
625 static int ctlr_is_resettable(u32 board_id)
626 {
627 	return ctlr_is_hard_resettable(board_id) ||
628 		ctlr_is_soft_resettable(board_id);
629 }
630 
631 static ssize_t host_show_resettable(struct device *dev,
632 	struct device_attribute *attr, char *buf)
633 {
634 	struct ctlr_info *h;
635 	struct Scsi_Host *shost = class_to_shost(dev);
636 
637 	h = shost_to_hba(shost);
638 	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640 
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643 	return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645 
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647 	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0	0
650 #define HPSA_RAID_4	1
651 #define HPSA_RAID_1	2	/* also used for RAID 10 */
652 #define HPSA_RAID_5	3	/* also used for RAID 50 */
653 #define HPSA_RAID_51	4
654 #define HPSA_RAID_6	5	/* also used for RAID 60 */
655 #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658 
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661 	return !device->physical_device;
662 }
663 
664 static ssize_t raid_level_show(struct device *dev,
665 	     struct device_attribute *attr, char *buf)
666 {
667 	ssize_t l = 0;
668 	unsigned char rlevel;
669 	struct ctlr_info *h;
670 	struct scsi_device *sdev;
671 	struct hpsa_scsi_dev_t *hdev;
672 	unsigned long flags;
673 
674 	sdev = to_scsi_device(dev);
675 	h = sdev_to_hba(sdev);
676 	spin_lock_irqsave(&h->lock, flags);
677 	hdev = sdev->hostdata;
678 	if (!hdev) {
679 		spin_unlock_irqrestore(&h->lock, flags);
680 		return -ENODEV;
681 	}
682 
683 	/* Is this even a logical drive? */
684 	if (!is_logical_device(hdev)) {
685 		spin_unlock_irqrestore(&h->lock, flags);
686 		l = snprintf(buf, PAGE_SIZE, "N/A\n");
687 		return l;
688 	}
689 
690 	rlevel = hdev->raid_level;
691 	spin_unlock_irqrestore(&h->lock, flags);
692 	if (rlevel > RAID_UNKNOWN)
693 		rlevel = RAID_UNKNOWN;
694 	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695 	return l;
696 }
697 
698 static ssize_t lunid_show(struct device *dev,
699 	     struct device_attribute *attr, char *buf)
700 {
701 	struct ctlr_info *h;
702 	struct scsi_device *sdev;
703 	struct hpsa_scsi_dev_t *hdev;
704 	unsigned long flags;
705 	unsigned char lunid[8];
706 
707 	sdev = to_scsi_device(dev);
708 	h = sdev_to_hba(sdev);
709 	spin_lock_irqsave(&h->lock, flags);
710 	hdev = sdev->hostdata;
711 	if (!hdev) {
712 		spin_unlock_irqrestore(&h->lock, flags);
713 		return -ENODEV;
714 	}
715 	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716 	spin_unlock_irqrestore(&h->lock, flags);
717 	return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719 
720 static ssize_t unique_id_show(struct device *dev,
721 	     struct device_attribute *attr, char *buf)
722 {
723 	struct ctlr_info *h;
724 	struct scsi_device *sdev;
725 	struct hpsa_scsi_dev_t *hdev;
726 	unsigned long flags;
727 	unsigned char sn[16];
728 
729 	sdev = to_scsi_device(dev);
730 	h = sdev_to_hba(sdev);
731 	spin_lock_irqsave(&h->lock, flags);
732 	hdev = sdev->hostdata;
733 	if (!hdev) {
734 		spin_unlock_irqrestore(&h->lock, flags);
735 		return -ENODEV;
736 	}
737 	memcpy(sn, hdev->device_id, sizeof(sn));
738 	spin_unlock_irqrestore(&h->lock, flags);
739 	return snprintf(buf, 16 * 2 + 2,
740 			"%02X%02X%02X%02X%02X%02X%02X%02X"
741 			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
742 			sn[0], sn[1], sn[2], sn[3],
743 			sn[4], sn[5], sn[6], sn[7],
744 			sn[8], sn[9], sn[10], sn[11],
745 			sn[12], sn[13], sn[14], sn[15]);
746 }
747 
748 static ssize_t sas_address_show(struct device *dev,
749 	      struct device_attribute *attr, char *buf)
750 {
751 	struct ctlr_info *h;
752 	struct scsi_device *sdev;
753 	struct hpsa_scsi_dev_t *hdev;
754 	unsigned long flags;
755 	u64 sas_address;
756 
757 	sdev = to_scsi_device(dev);
758 	h = sdev_to_hba(sdev);
759 	spin_lock_irqsave(&h->lock, flags);
760 	hdev = sdev->hostdata;
761 	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762 		spin_unlock_irqrestore(&h->lock, flags);
763 		return -ENODEV;
764 	}
765 	sas_address = hdev->sas_address;
766 	spin_unlock_irqrestore(&h->lock, flags);
767 
768 	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770 
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772 	     struct device_attribute *attr, char *buf)
773 {
774 	struct ctlr_info *h;
775 	struct scsi_device *sdev;
776 	struct hpsa_scsi_dev_t *hdev;
777 	unsigned long flags;
778 	int offload_enabled;
779 
780 	sdev = to_scsi_device(dev);
781 	h = sdev_to_hba(sdev);
782 	spin_lock_irqsave(&h->lock, flags);
783 	hdev = sdev->hostdata;
784 	if (!hdev) {
785 		spin_unlock_irqrestore(&h->lock, flags);
786 		return -ENODEV;
787 	}
788 	offload_enabled = hdev->offload_enabled;
789 	spin_unlock_irqrestore(&h->lock, flags);
790 	return snprintf(buf, 20, "%d\n", offload_enabled);
791 }
792 
793 #define MAX_PATHS 8
794 static ssize_t path_info_show(struct device *dev,
795 	     struct device_attribute *attr, char *buf)
796 {
797 	struct ctlr_info *h;
798 	struct scsi_device *sdev;
799 	struct hpsa_scsi_dev_t *hdev;
800 	unsigned long flags;
801 	int i;
802 	int output_len = 0;
803 	u8 box;
804 	u8 bay;
805 	u8 path_map_index = 0;
806 	char *active;
807 	unsigned char phys_connector[2];
808 
809 	sdev = to_scsi_device(dev);
810 	h = sdev_to_hba(sdev);
811 	spin_lock_irqsave(&h->devlock, flags);
812 	hdev = sdev->hostdata;
813 	if (!hdev) {
814 		spin_unlock_irqrestore(&h->devlock, flags);
815 		return -ENODEV;
816 	}
817 
818 	bay = hdev->bay;
819 	for (i = 0; i < MAX_PATHS; i++) {
820 		path_map_index = 1<<i;
821 		if (i == hdev->active_path_index)
822 			active = "Active";
823 		else if (hdev->path_map & path_map_index)
824 			active = "Inactive";
825 		else
826 			continue;
827 
828 		output_len += scnprintf(buf + output_len,
829 				PAGE_SIZE - output_len,
830 				"[%d:%d:%d:%d] %20.20s ",
831 				h->scsi_host->host_no,
832 				hdev->bus, hdev->target, hdev->lun,
833 				scsi_device_type(hdev->devtype));
834 
835 		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
836 			output_len += scnprintf(buf + output_len,
837 						PAGE_SIZE - output_len,
838 						"%s\n", active);
839 			continue;
840 		}
841 
842 		box = hdev->box[i];
843 		memcpy(&phys_connector, &hdev->phys_connector[i],
844 			sizeof(phys_connector));
845 		if (phys_connector[0] < '0')
846 			phys_connector[0] = '0';
847 		if (phys_connector[1] < '0')
848 			phys_connector[1] = '0';
849 		output_len += scnprintf(buf + output_len,
850 				PAGE_SIZE - output_len,
851 				"PORT: %.2s ",
852 				phys_connector);
853 		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
854 			hdev->expose_device) {
855 			if (box == 0 || box == 0xFF) {
856 				output_len += scnprintf(buf + output_len,
857 					PAGE_SIZE - output_len,
858 					"BAY: %hhu %s\n",
859 					bay, active);
860 			} else {
861 				output_len += scnprintf(buf + output_len,
862 					PAGE_SIZE - output_len,
863 					"BOX: %hhu BAY: %hhu %s\n",
864 					box, bay, active);
865 			}
866 		} else if (box != 0 && box != 0xFF) {
867 			output_len += scnprintf(buf + output_len,
868 				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
869 				box, active);
870 		} else
871 			output_len += scnprintf(buf + output_len,
872 				PAGE_SIZE - output_len, "%s\n", active);
873 	}
874 
875 	spin_unlock_irqrestore(&h->devlock, flags);
876 	return output_len;
877 }
878 
879 static ssize_t host_show_ctlr_num(struct device *dev,
880 	struct device_attribute *attr, char *buf)
881 {
882 	struct ctlr_info *h;
883 	struct Scsi_Host *shost = class_to_shost(dev);
884 
885 	h = shost_to_hba(shost);
886 	return snprintf(buf, 20, "%d\n", h->ctlr);
887 }
888 
889 static ssize_t host_show_legacy_board(struct device *dev,
890 	struct device_attribute *attr, char *buf)
891 {
892 	struct ctlr_info *h;
893 	struct Scsi_Host *shost = class_to_shost(dev);
894 
895 	h = shost_to_hba(shost);
896 	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
897 }
898 
899 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
900 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
901 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
902 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
903 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
904 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
905 			host_show_hp_ssd_smart_path_enabled, NULL);
906 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
907 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
908 		host_show_hp_ssd_smart_path_status,
909 		host_store_hp_ssd_smart_path_status);
910 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
911 			host_store_raid_offload_debug);
912 static DEVICE_ATTR(firmware_revision, S_IRUGO,
913 	host_show_firmware_revision, NULL);
914 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
915 	host_show_commands_outstanding, NULL);
916 static DEVICE_ATTR(transport_mode, S_IRUGO,
917 	host_show_transport_mode, NULL);
918 static DEVICE_ATTR(resettable, S_IRUGO,
919 	host_show_resettable, NULL);
920 static DEVICE_ATTR(lockup_detected, S_IRUGO,
921 	host_show_lockup_detected, NULL);
922 static DEVICE_ATTR(ctlr_num, S_IRUGO,
923 	host_show_ctlr_num, NULL);
924 static DEVICE_ATTR(legacy_board, S_IRUGO,
925 	host_show_legacy_board, NULL);
926 
927 static struct device_attribute *hpsa_sdev_attrs[] = {
928 	&dev_attr_raid_level,
929 	&dev_attr_lunid,
930 	&dev_attr_unique_id,
931 	&dev_attr_hp_ssd_smart_path_enabled,
932 	&dev_attr_path_info,
933 	&dev_attr_sas_address,
934 	NULL,
935 };
936 
937 static struct device_attribute *hpsa_shost_attrs[] = {
938 	&dev_attr_rescan,
939 	&dev_attr_firmware_revision,
940 	&dev_attr_commands_outstanding,
941 	&dev_attr_transport_mode,
942 	&dev_attr_resettable,
943 	&dev_attr_hp_ssd_smart_path_status,
944 	&dev_attr_raid_offload_debug,
945 	&dev_attr_lockup_detected,
946 	&dev_attr_ctlr_num,
947 	&dev_attr_legacy_board,
948 	NULL,
949 };
950 
951 #define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
952 				 HPSA_MAX_CONCURRENT_PASSTHRUS)
953 
954 static struct scsi_host_template hpsa_driver_template = {
955 	.module			= THIS_MODULE,
956 	.name			= HPSA,
957 	.proc_name		= HPSA,
958 	.queuecommand		= hpsa_scsi_queue_command,
959 	.scan_start		= hpsa_scan_start,
960 	.scan_finished		= hpsa_scan_finished,
961 	.change_queue_depth	= hpsa_change_queue_depth,
962 	.this_id		= -1,
963 	.use_clustering		= ENABLE_CLUSTERING,
964 	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
965 	.ioctl			= hpsa_ioctl,
966 	.slave_alloc		= hpsa_slave_alloc,
967 	.slave_configure	= hpsa_slave_configure,
968 	.slave_destroy		= hpsa_slave_destroy,
969 #ifdef CONFIG_COMPAT
970 	.compat_ioctl		= hpsa_compat_ioctl,
971 #endif
972 	.sdev_attrs = hpsa_sdev_attrs,
973 	.shost_attrs = hpsa_shost_attrs,
974 	.max_sectors = 1024,
975 	.no_write_same = 1,
976 };
977 
978 static inline u32 next_command(struct ctlr_info *h, u8 q)
979 {
980 	u32 a;
981 	struct reply_queue_buffer *rq = &h->reply_queue[q];
982 
983 	if (h->transMethod & CFGTBL_Trans_io_accel1)
984 		return h->access.command_completed(h, q);
985 
986 	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
987 		return h->access.command_completed(h, q);
988 
989 	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
990 		a = rq->head[rq->current_entry];
991 		rq->current_entry++;
992 		atomic_dec(&h->commands_outstanding);
993 	} else {
994 		a = FIFO_EMPTY;
995 	}
996 	/* Check for wraparound */
997 	if (rq->current_entry == h->max_commands) {
998 		rq->current_entry = 0;
999 		rq->wraparound ^= 1;
1000 	}
1001 	return a;
1002 }
1003 
1004 /*
1005  * There are some special bits in the bus address of the
1006  * command that we have to set for the controller to know
1007  * how to process the command:
1008  *
1009  * Normal performant mode:
1010  * bit 0: 1 means performant mode, 0 means simple mode.
1011  * bits 1-3 = block fetch table entry
1012  * bits 4-6 = command type (== 0)
1013  *
1014  * ioaccel1 mode:
1015  * bit 0 = "performant mode" bit.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 110)
1018  * (command type is needed because ioaccel1 mode
1019  * commands are submitted through the same register as normal
1020  * mode commands, so this is how the controller knows whether
1021  * the command is normal mode or ioaccel1 mode.)
1022  *
1023  * ioaccel2 mode:
1024  * bit 0 = "performant mode" bit.
1025  * bits 1-4 = block fetch table entry (note extra bit)
1026  * bits 4-6 = not needed, because ioaccel2 mode has
1027  * a separate special register for submitting commands.
1028  */
1029 
1030 /*
1031  * set_performant_mode: Modify the tag for cciss performant
1032  * set bit 0 for pull model, bits 3-1 for block fetch
1033  * register number
1034  */
1035 #define DEFAULT_REPLY_QUEUE (-1)
1036 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1037 					int reply_queue)
1038 {
1039 	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1040 		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1041 		if (unlikely(!h->msix_vectors))
1042 			return;
1043 		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1044 			c->Header.ReplyQueue =
1045 				raw_smp_processor_id() % h->nreply_queues;
1046 		else
1047 			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1048 	}
1049 }
1050 
1051 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1052 						struct CommandList *c,
1053 						int reply_queue)
1054 {
1055 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056 
1057 	/*
1058 	 * Tell the controller to post the reply to the queue for this
1059 	 * processor.  This seems to give the best I/O throughput.
1060 	 */
1061 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1062 		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1063 	else
1064 		cp->ReplyQueue = reply_queue % h->nreply_queues;
1065 	/*
1066 	 * Set the bits in the address sent down to include:
1067 	 *  - performant mode bit (bit 0)
1068 	 *  - pull count (bits 1-3)
1069 	 *  - command type (bits 4-6)
1070 	 */
1071 	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1072 					IOACCEL1_BUSADDR_CMDTYPE;
1073 }
1074 
1075 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1076 						struct CommandList *c,
1077 						int reply_queue)
1078 {
1079 	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1080 		&h->ioaccel2_cmd_pool[c->cmdindex];
1081 
1082 	/* Tell the controller to post the reply to the queue for this
1083 	 * processor.  This seems to give the best I/O throughput.
1084 	 */
1085 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1086 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1087 	else
1088 		cp->reply_queue = reply_queue % h->nreply_queues;
1089 	/* Set the bits in the address sent down to include:
1090 	 *  - performant mode bit not used in ioaccel mode 2
1091 	 *  - pull count (bits 0-3)
1092 	 *  - command type isn't needed for ioaccel2
1093 	 */
1094 	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1095 }
1096 
1097 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1098 						struct CommandList *c,
1099 						int reply_queue)
1100 {
1101 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1102 
1103 	/*
1104 	 * Tell the controller to post the reply to the queue for this
1105 	 * processor.  This seems to give the best I/O throughput.
1106 	 */
1107 	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1108 		cp->reply_queue = smp_processor_id() % h->nreply_queues;
1109 	else
1110 		cp->reply_queue = reply_queue % h->nreply_queues;
1111 	/*
1112 	 * Set the bits in the address sent down to include:
1113 	 *  - performant mode bit not used in ioaccel mode 2
1114 	 *  - pull count (bits 0-3)
1115 	 *  - command type isn't needed for ioaccel2
1116 	 */
1117 	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1118 }
1119 
1120 static int is_firmware_flash_cmd(u8 *cdb)
1121 {
1122 	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1123 }
1124 
1125 /*
1126  * During firmware flash, the heartbeat register may not update as frequently
1127  * as it should.  So we dial down lockup detection during firmware flash. and
1128  * dial it back up when firmware flash completes.
1129  */
1130 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1131 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1132 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1133 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1134 		struct CommandList *c)
1135 {
1136 	if (!is_firmware_flash_cmd(c->Request.CDB))
1137 		return;
1138 	atomic_inc(&h->firmware_flash_in_progress);
1139 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1140 }
1141 
1142 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1143 		struct CommandList *c)
1144 {
1145 	if (is_firmware_flash_cmd(c->Request.CDB) &&
1146 		atomic_dec_and_test(&h->firmware_flash_in_progress))
1147 		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1148 }
1149 
1150 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1151 	struct CommandList *c, int reply_queue)
1152 {
1153 	dial_down_lockup_detection_during_fw_flash(h, c);
1154 	atomic_inc(&h->commands_outstanding);
1155 	switch (c->cmd_type) {
1156 	case CMD_IOACCEL1:
1157 		set_ioaccel1_performant_mode(h, c, reply_queue);
1158 		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1159 		break;
1160 	case CMD_IOACCEL2:
1161 		set_ioaccel2_performant_mode(h, c, reply_queue);
1162 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1163 		break;
1164 	case IOACCEL2_TMF:
1165 		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1166 		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1167 		break;
1168 	default:
1169 		set_performant_mode(h, c, reply_queue);
1170 		h->access.submit_command(h, c);
1171 	}
1172 }
1173 
1174 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1175 {
1176 	if (unlikely(hpsa_is_pending_event(c)))
1177 		return finish_cmd(c);
1178 
1179 	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181 
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184 	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186 
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189 	if (!h->hba_inquiry_data)
1190 		return 0;
1191 	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197 	unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199 	/* finds an unused bus, target, lun for a new physical device
1200 	 * assumes h->devlock is held
1201 	 */
1202 	int i, found = 0;
1203 	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204 
1205 	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206 
1207 	for (i = 0; i < h->ndevices; i++) {
1208 		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209 			__set_bit(h->dev[i]->target, lun_taken);
1210 	}
1211 
1212 	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213 	if (i < HPSA_MAX_DEVICES) {
1214 		/* *bus = 1; */
1215 		*target = i;
1216 		*lun = 0;
1217 		found = 1;
1218 	}
1219 	return !found;
1220 }
1221 
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223 	struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226 	char label[LABEL_SIZE];
1227 
1228 	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229 		return;
1230 
1231 	switch (dev->devtype) {
1232 	case TYPE_RAID:
1233 		snprintf(label, LABEL_SIZE, "controller");
1234 		break;
1235 	case TYPE_ENCLOSURE:
1236 		snprintf(label, LABEL_SIZE, "enclosure");
1237 		break;
1238 	case TYPE_DISK:
1239 	case TYPE_ZBC:
1240 		if (dev->external)
1241 			snprintf(label, LABEL_SIZE, "external");
1242 		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243 			snprintf(label, LABEL_SIZE, "%s",
1244 				raid_label[PHYSICAL_DRIVE]);
1245 		else
1246 			snprintf(label, LABEL_SIZE, "RAID-%s",
1247 				dev->raid_level > RAID_UNKNOWN ? "?" :
1248 				raid_label[dev->raid_level]);
1249 		break;
1250 	case TYPE_ROM:
1251 		snprintf(label, LABEL_SIZE, "rom");
1252 		break;
1253 	case TYPE_TAPE:
1254 		snprintf(label, LABEL_SIZE, "tape");
1255 		break;
1256 	case TYPE_MEDIUM_CHANGER:
1257 		snprintf(label, LABEL_SIZE, "changer");
1258 		break;
1259 	default:
1260 		snprintf(label, LABEL_SIZE, "UNKNOWN");
1261 		break;
1262 	}
1263 
1264 	dev_printk(level, &h->pdev->dev,
1265 			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266 			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267 			description,
1268 			scsi_device_type(dev->devtype),
1269 			dev->vendor,
1270 			dev->model,
1271 			label,
1272 			dev->offload_config ? '+' : '-',
1273 			dev->offload_enabled ? '+' : '-',
1274 			dev->expose_device);
1275 }
1276 
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279 		struct hpsa_scsi_dev_t *device,
1280 		struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282 	/* assumes h->devlock is held */
1283 	int n = h->ndevices;
1284 	int i;
1285 	unsigned char addr1[8], addr2[8];
1286 	struct hpsa_scsi_dev_t *sd;
1287 
1288 	if (n >= HPSA_MAX_DEVICES) {
1289 		dev_err(&h->pdev->dev, "too many devices, some will be "
1290 			"inaccessible.\n");
1291 		return -1;
1292 	}
1293 
1294 	/* physical devices do not have lun or target assigned until now. */
1295 	if (device->lun != -1)
1296 		/* Logical device, lun is already assigned. */
1297 		goto lun_assigned;
1298 
1299 	/* If this device a non-zero lun of a multi-lun device
1300 	 * byte 4 of the 8-byte LUN addr will contain the logical
1301 	 * unit no, zero otherwise.
1302 	 */
1303 	if (device->scsi3addr[4] == 0) {
1304 		/* This is not a non-zero lun of a multi-lun device */
1305 		if (hpsa_find_target_lun(h, device->scsi3addr,
1306 			device->bus, &device->target, &device->lun) != 0)
1307 			return -1;
1308 		goto lun_assigned;
1309 	}
1310 
1311 	/* This is a non-zero lun of a multi-lun device.
1312 	 * Search through our list and find the device which
1313 	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1314 	 * Assign the same bus and target for this new LUN.
1315 	 * Use the logical unit number from the firmware.
1316 	 */
1317 	memcpy(addr1, device->scsi3addr, 8);
1318 	addr1[4] = 0;
1319 	addr1[5] = 0;
1320 	for (i = 0; i < n; i++) {
1321 		sd = h->dev[i];
1322 		memcpy(addr2, sd->scsi3addr, 8);
1323 		addr2[4] = 0;
1324 		addr2[5] = 0;
1325 		/* differ only in byte 4 and 5? */
1326 		if (memcmp(addr1, addr2, 8) == 0) {
1327 			device->bus = sd->bus;
1328 			device->target = sd->target;
1329 			device->lun = device->scsi3addr[4];
1330 			break;
1331 		}
1332 	}
1333 	if (device->lun == -1) {
1334 		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335 			" suspect firmware bug or unsupported hardware "
1336 			"configuration.\n");
1337 			return -1;
1338 	}
1339 
1340 lun_assigned:
1341 
1342 	h->dev[n] = device;
1343 	h->ndevices++;
1344 	added[*nadded] = device;
1345 	(*nadded)++;
1346 	hpsa_show_dev_msg(KERN_INFO, h, device,
1347 		device->expose_device ? "added" : "masked");
1348 	device->offload_to_be_enabled = device->offload_enabled;
1349 	device->offload_enabled = 0;
1350 	return 0;
1351 }
1352 
1353 /* Update an entry in h->dev[] array. */
1354 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1355 	int entry, struct hpsa_scsi_dev_t *new_entry)
1356 {
1357 	int offload_enabled;
1358 	/* assumes h->devlock is held */
1359 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1360 
1361 	/* Raid level changed. */
1362 	h->dev[entry]->raid_level = new_entry->raid_level;
1363 
1364 	/* Raid offload parameters changed.  Careful about the ordering. */
1365 	if (new_entry->offload_config && new_entry->offload_enabled) {
1366 		/*
1367 		 * if drive is newly offload_enabled, we want to copy the
1368 		 * raid map data first.  If previously offload_enabled and
1369 		 * offload_config were set, raid map data had better be
1370 		 * the same as it was before.  if raid map data is changed
1371 		 * then it had better be the case that
1372 		 * h->dev[entry]->offload_enabled is currently 0.
1373 		 */
1374 		h->dev[entry]->raid_map = new_entry->raid_map;
1375 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376 	}
1377 	if (new_entry->hba_ioaccel_enabled) {
1378 		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379 		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380 	}
1381 	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382 	h->dev[entry]->offload_config = new_entry->offload_config;
1383 	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384 	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385 
1386 	/*
1387 	 * We can turn off ioaccel offload now, but need to delay turning
1388 	 * it on until we can update h->dev[entry]->phys_disk[], but we
1389 	 * can't do that until all the devices are updated.
1390 	 */
1391 	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1392 	if (!new_entry->offload_enabled)
1393 		h->dev[entry]->offload_enabled = 0;
1394 
1395 	offload_enabled = h->dev[entry]->offload_enabled;
1396 	h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1397 	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1398 	h->dev[entry]->offload_enabled = offload_enabled;
1399 }
1400 
1401 /* Replace an entry from h->dev[] array. */
1402 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1403 	int entry, struct hpsa_scsi_dev_t *new_entry,
1404 	struct hpsa_scsi_dev_t *added[], int *nadded,
1405 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1406 {
1407 	/* assumes h->devlock is held */
1408 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1409 	removed[*nremoved] = h->dev[entry];
1410 	(*nremoved)++;
1411 
1412 	/*
1413 	 * New physical devices won't have target/lun assigned yet
1414 	 * so we need to preserve the values in the slot we are replacing.
1415 	 */
1416 	if (new_entry->target == -1) {
1417 		new_entry->target = h->dev[entry]->target;
1418 		new_entry->lun = h->dev[entry]->lun;
1419 	}
1420 
1421 	h->dev[entry] = new_entry;
1422 	added[*nadded] = new_entry;
1423 	(*nadded)++;
1424 	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1425 	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1426 	new_entry->offload_enabled = 0;
1427 }
1428 
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431 	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433 	/* assumes h->devlock is held */
1434 	int i;
1435 	struct hpsa_scsi_dev_t *sd;
1436 
1437 	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438 
1439 	sd = h->dev[entry];
1440 	removed[*nremoved] = h->dev[entry];
1441 	(*nremoved)++;
1442 
1443 	for (i = entry; i < h->ndevices-1; i++)
1444 		h->dev[i] = h->dev[i+1];
1445 	h->ndevices--;
1446 	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448 
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450 	(a)[7] == (b)[7] && \
1451 	(a)[6] == (b)[6] && \
1452 	(a)[5] == (b)[5] && \
1453 	(a)[4] == (b)[4] && \
1454 	(a)[3] == (b)[3] && \
1455 	(a)[2] == (b)[2] && \
1456 	(a)[1] == (b)[1] && \
1457 	(a)[0] == (b)[0])
1458 
1459 static void fixup_botched_add(struct ctlr_info *h,
1460 	struct hpsa_scsi_dev_t *added)
1461 {
1462 	/* called when scsi_add_device fails in order to re-adjust
1463 	 * h->dev[] to match the mid layer's view.
1464 	 */
1465 	unsigned long flags;
1466 	int i, j;
1467 
1468 	spin_lock_irqsave(&h->lock, flags);
1469 	for (i = 0; i < h->ndevices; i++) {
1470 		if (h->dev[i] == added) {
1471 			for (j = i; j < h->ndevices-1; j++)
1472 				h->dev[j] = h->dev[j+1];
1473 			h->ndevices--;
1474 			break;
1475 		}
1476 	}
1477 	spin_unlock_irqrestore(&h->lock, flags);
1478 	kfree(added);
1479 }
1480 
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482 	struct hpsa_scsi_dev_t *dev2)
1483 {
1484 	/* we compare everything except lun and target as these
1485 	 * are not yet assigned.  Compare parts likely
1486 	 * to differ first
1487 	 */
1488 	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489 		sizeof(dev1->scsi3addr)) != 0)
1490 		return 0;
1491 	if (memcmp(dev1->device_id, dev2->device_id,
1492 		sizeof(dev1->device_id)) != 0)
1493 		return 0;
1494 	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495 		return 0;
1496 	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497 		return 0;
1498 	if (dev1->devtype != dev2->devtype)
1499 		return 0;
1500 	if (dev1->bus != dev2->bus)
1501 		return 0;
1502 	return 1;
1503 }
1504 
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506 	struct hpsa_scsi_dev_t *dev2)
1507 {
1508 	/* Device attributes that can change, but don't mean
1509 	 * that the device is a different device, nor that the OS
1510 	 * needs to be told anything about the change.
1511 	 */
1512 	if (dev1->raid_level != dev2->raid_level)
1513 		return 1;
1514 	if (dev1->offload_config != dev2->offload_config)
1515 		return 1;
1516 	if (dev1->offload_enabled != dev2->offload_enabled)
1517 		return 1;
1518 	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519 		if (dev1->queue_depth != dev2->queue_depth)
1520 			return 1;
1521 	return 0;
1522 }
1523 
1524 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1525  * and return needle location in *index.  If scsi3addr matches, but not
1526  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1527  * location in *index.
1528  * In the case of a minor device attribute change, such as RAID level, just
1529  * return DEVICE_UPDATED, along with the updated device's location in index.
1530  * If needle not found, return DEVICE_NOT_FOUND.
1531  */
1532 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1533 	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1534 	int *index)
1535 {
1536 	int i;
1537 #define DEVICE_NOT_FOUND 0
1538 #define DEVICE_CHANGED 1
1539 #define DEVICE_SAME 2
1540 #define DEVICE_UPDATED 3
1541 	if (needle == NULL)
1542 		return DEVICE_NOT_FOUND;
1543 
1544 	for (i = 0; i < haystack_size; i++) {
1545 		if (haystack[i] == NULL) /* previously removed. */
1546 			continue;
1547 		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1548 			*index = i;
1549 			if (device_is_the_same(needle, haystack[i])) {
1550 				if (device_updated(needle, haystack[i]))
1551 					return DEVICE_UPDATED;
1552 				return DEVICE_SAME;
1553 			} else {
1554 				/* Keep offline devices offline */
1555 				if (needle->volume_offline)
1556 					return DEVICE_NOT_FOUND;
1557 				return DEVICE_CHANGED;
1558 			}
1559 		}
1560 	}
1561 	*index = -1;
1562 	return DEVICE_NOT_FOUND;
1563 }
1564 
1565 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1566 					unsigned char scsi3addr[])
1567 {
1568 	struct offline_device_entry *device;
1569 	unsigned long flags;
1570 
1571 	/* Check to see if device is already on the list */
1572 	spin_lock_irqsave(&h->offline_device_lock, flags);
1573 	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1574 		if (memcmp(device->scsi3addr, scsi3addr,
1575 			sizeof(device->scsi3addr)) == 0) {
1576 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1577 			return;
1578 		}
1579 	}
1580 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1581 
1582 	/* Device is not on the list, add it. */
1583 	device = kmalloc(sizeof(*device), GFP_KERNEL);
1584 	if (!device)
1585 		return;
1586 
1587 	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1588 	spin_lock_irqsave(&h->offline_device_lock, flags);
1589 	list_add_tail(&device->offline_list, &h->offline_device_list);
1590 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1591 }
1592 
1593 /* Print a message explaining various offline volume states */
1594 static void hpsa_show_volume_status(struct ctlr_info *h,
1595 	struct hpsa_scsi_dev_t *sd)
1596 {
1597 	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1598 		dev_info(&h->pdev->dev,
1599 			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1600 			h->scsi_host->host_no,
1601 			sd->bus, sd->target, sd->lun);
1602 	switch (sd->volume_offline) {
1603 	case HPSA_LV_OK:
1604 		break;
1605 	case HPSA_LV_UNDERGOING_ERASE:
1606 		dev_info(&h->pdev->dev,
1607 			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1608 			h->scsi_host->host_no,
1609 			sd->bus, sd->target, sd->lun);
1610 		break;
1611 	case HPSA_LV_NOT_AVAILABLE:
1612 		dev_info(&h->pdev->dev,
1613 			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1614 			h->scsi_host->host_no,
1615 			sd->bus, sd->target, sd->lun);
1616 		break;
1617 	case HPSA_LV_UNDERGOING_RPI:
1618 		dev_info(&h->pdev->dev,
1619 			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1620 			h->scsi_host->host_no,
1621 			sd->bus, sd->target, sd->lun);
1622 		break;
1623 	case HPSA_LV_PENDING_RPI:
1624 		dev_info(&h->pdev->dev,
1625 			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1626 			h->scsi_host->host_no,
1627 			sd->bus, sd->target, sd->lun);
1628 		break;
1629 	case HPSA_LV_ENCRYPTED_NO_KEY:
1630 		dev_info(&h->pdev->dev,
1631 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1632 			h->scsi_host->host_no,
1633 			sd->bus, sd->target, sd->lun);
1634 		break;
1635 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1636 		dev_info(&h->pdev->dev,
1637 			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1638 			h->scsi_host->host_no,
1639 			sd->bus, sd->target, sd->lun);
1640 		break;
1641 	case HPSA_LV_UNDERGOING_ENCRYPTION:
1642 		dev_info(&h->pdev->dev,
1643 			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1644 			h->scsi_host->host_no,
1645 			sd->bus, sd->target, sd->lun);
1646 		break;
1647 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1648 		dev_info(&h->pdev->dev,
1649 			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1650 			h->scsi_host->host_no,
1651 			sd->bus, sd->target, sd->lun);
1652 		break;
1653 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1654 		dev_info(&h->pdev->dev,
1655 			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1656 			h->scsi_host->host_no,
1657 			sd->bus, sd->target, sd->lun);
1658 		break;
1659 	case HPSA_LV_PENDING_ENCRYPTION:
1660 		dev_info(&h->pdev->dev,
1661 			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1662 			h->scsi_host->host_no,
1663 			sd->bus, sd->target, sd->lun);
1664 		break;
1665 	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1666 		dev_info(&h->pdev->dev,
1667 			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1668 			h->scsi_host->host_no,
1669 			sd->bus, sd->target, sd->lun);
1670 		break;
1671 	}
1672 }
1673 
1674 /*
1675  * Figure the list of physical drive pointers for a logical drive with
1676  * raid offload configured.
1677  */
1678 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1679 				struct hpsa_scsi_dev_t *dev[], int ndevices,
1680 				struct hpsa_scsi_dev_t *logical_drive)
1681 {
1682 	struct raid_map_data *map = &logical_drive->raid_map;
1683 	struct raid_map_disk_data *dd = &map->data[0];
1684 	int i, j;
1685 	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1686 				le16_to_cpu(map->metadata_disks_per_row);
1687 	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1688 				le16_to_cpu(map->layout_map_count) *
1689 				total_disks_per_row;
1690 	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1691 				total_disks_per_row;
1692 	int qdepth;
1693 
1694 	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1695 		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1696 
1697 	logical_drive->nphysical_disks = nraid_map_entries;
1698 
1699 	qdepth = 0;
1700 	for (i = 0; i < nraid_map_entries; i++) {
1701 		logical_drive->phys_disk[i] = NULL;
1702 		if (!logical_drive->offload_config)
1703 			continue;
1704 		for (j = 0; j < ndevices; j++) {
1705 			if (dev[j] == NULL)
1706 				continue;
1707 			if (dev[j]->devtype != TYPE_DISK &&
1708 			    dev[j]->devtype != TYPE_ZBC)
1709 				continue;
1710 			if (is_logical_device(dev[j]))
1711 				continue;
1712 			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1713 				continue;
1714 
1715 			logical_drive->phys_disk[i] = dev[j];
1716 			if (i < nphys_disk)
1717 				qdepth = min(h->nr_cmds, qdepth +
1718 				    logical_drive->phys_disk[i]->queue_depth);
1719 			break;
1720 		}
1721 
1722 		/*
1723 		 * This can happen if a physical drive is removed and
1724 		 * the logical drive is degraded.  In that case, the RAID
1725 		 * map data will refer to a physical disk which isn't actually
1726 		 * present.  And in that case offload_enabled should already
1727 		 * be 0, but we'll turn it off here just in case
1728 		 */
1729 		if (!logical_drive->phys_disk[i]) {
1730 			logical_drive->offload_enabled = 0;
1731 			logical_drive->offload_to_be_enabled = 0;
1732 			logical_drive->queue_depth = 8;
1733 		}
1734 	}
1735 	if (nraid_map_entries)
1736 		/*
1737 		 * This is correct for reads, too high for full stripe writes,
1738 		 * way too high for partial stripe writes
1739 		 */
1740 		logical_drive->queue_depth = qdepth;
1741 	else
1742 		logical_drive->queue_depth = h->nr_cmds;
1743 }
1744 
1745 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1746 				struct hpsa_scsi_dev_t *dev[], int ndevices)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < ndevices; i++) {
1751 		if (dev[i] == NULL)
1752 			continue;
1753 		if (dev[i]->devtype != TYPE_DISK &&
1754 		    dev[i]->devtype != TYPE_ZBC)
1755 			continue;
1756 		if (!is_logical_device(dev[i]))
1757 			continue;
1758 
1759 		/*
1760 		 * If offload is currently enabled, the RAID map and
1761 		 * phys_disk[] assignment *better* not be changing
1762 		 * and since it isn't changing, we do not need to
1763 		 * update it.
1764 		 */
1765 		if (dev[i]->offload_enabled)
1766 			continue;
1767 
1768 		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1769 	}
1770 }
1771 
1772 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1773 {
1774 	int rc = 0;
1775 
1776 	if (!h->scsi_host)
1777 		return 1;
1778 
1779 	if (is_logical_device(device)) /* RAID */
1780 		rc = scsi_add_device(h->scsi_host, device->bus,
1781 					device->target, device->lun);
1782 	else /* HBA */
1783 		rc = hpsa_add_sas_device(h->sas_host, device);
1784 
1785 	return rc;
1786 }
1787 
1788 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1789 						struct hpsa_scsi_dev_t *dev)
1790 {
1791 	int i;
1792 	int count = 0;
1793 
1794 	for (i = 0; i < h->nr_cmds; i++) {
1795 		struct CommandList *c = h->cmd_pool + i;
1796 		int refcount = atomic_inc_return(&c->refcount);
1797 
1798 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1799 				dev->scsi3addr)) {
1800 			unsigned long flags;
1801 
1802 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1803 			if (!hpsa_is_cmd_idle(c))
1804 				++count;
1805 			spin_unlock_irqrestore(&h->lock, flags);
1806 		}
1807 
1808 		cmd_free(h, c);
1809 	}
1810 
1811 	return count;
1812 }
1813 
1814 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1815 						struct hpsa_scsi_dev_t *device)
1816 {
1817 	int cmds = 0;
1818 	int waits = 0;
1819 
1820 	while (1) {
1821 		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1822 		if (cmds == 0)
1823 			break;
1824 		if (++waits > 20)
1825 			break;
1826 		dev_warn(&h->pdev->dev,
1827 			"%s: removing device with %d outstanding commands!\n",
1828 			__func__, cmds);
1829 		msleep(1000);
1830 	}
1831 }
1832 
1833 static void hpsa_remove_device(struct ctlr_info *h,
1834 			struct hpsa_scsi_dev_t *device)
1835 {
1836 	struct scsi_device *sdev = NULL;
1837 
1838 	if (!h->scsi_host)
1839 		return;
1840 
1841 	if (is_logical_device(device)) { /* RAID */
1842 		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1843 						device->target, device->lun);
1844 		if (sdev) {
1845 			scsi_remove_device(sdev);
1846 			scsi_device_put(sdev);
1847 		} else {
1848 			/*
1849 			 * We don't expect to get here.  Future commands
1850 			 * to this device will get a selection timeout as
1851 			 * if the device were gone.
1852 			 */
1853 			hpsa_show_dev_msg(KERN_WARNING, h, device,
1854 					"didn't find device for removal.");
1855 		}
1856 	} else { /* HBA */
1857 
1858 		device->removed = 1;
1859 		hpsa_wait_for_outstanding_commands_for_dev(h, device);
1860 
1861 		hpsa_remove_sas_device(device);
1862 	}
1863 }
1864 
1865 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1866 	struct hpsa_scsi_dev_t *sd[], int nsds)
1867 {
1868 	/* sd contains scsi3 addresses and devtypes, and inquiry
1869 	 * data.  This function takes what's in sd to be the current
1870 	 * reality and updates h->dev[] to reflect that reality.
1871 	 */
1872 	int i, entry, device_change, changes = 0;
1873 	struct hpsa_scsi_dev_t *csd;
1874 	unsigned long flags;
1875 	struct hpsa_scsi_dev_t **added, **removed;
1876 	int nadded, nremoved;
1877 
1878 	/*
1879 	 * A reset can cause a device status to change
1880 	 * re-schedule the scan to see what happened.
1881 	 */
1882 	spin_lock_irqsave(&h->reset_lock, flags);
1883 	if (h->reset_in_progress) {
1884 		h->drv_req_rescan = 1;
1885 		spin_unlock_irqrestore(&h->reset_lock, flags);
1886 		return;
1887 	}
1888 	spin_unlock_irqrestore(&h->reset_lock, flags);
1889 
1890 	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1891 	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1892 
1893 	if (!added || !removed) {
1894 		dev_warn(&h->pdev->dev, "out of memory in "
1895 			"adjust_hpsa_scsi_table\n");
1896 		goto free_and_out;
1897 	}
1898 
1899 	spin_lock_irqsave(&h->devlock, flags);
1900 
1901 	/* find any devices in h->dev[] that are not in
1902 	 * sd[] and remove them from h->dev[], and for any
1903 	 * devices which have changed, remove the old device
1904 	 * info and add the new device info.
1905 	 * If minor device attributes change, just update
1906 	 * the existing device structure.
1907 	 */
1908 	i = 0;
1909 	nremoved = 0;
1910 	nadded = 0;
1911 	while (i < h->ndevices) {
1912 		csd = h->dev[i];
1913 		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1914 		if (device_change == DEVICE_NOT_FOUND) {
1915 			changes++;
1916 			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1917 			continue; /* remove ^^^, hence i not incremented */
1918 		} else if (device_change == DEVICE_CHANGED) {
1919 			changes++;
1920 			hpsa_scsi_replace_entry(h, i, sd[entry],
1921 				added, &nadded, removed, &nremoved);
1922 			/* Set it to NULL to prevent it from being freed
1923 			 * at the bottom of hpsa_update_scsi_devices()
1924 			 */
1925 			sd[entry] = NULL;
1926 		} else if (device_change == DEVICE_UPDATED) {
1927 			hpsa_scsi_update_entry(h, i, sd[entry]);
1928 		}
1929 		i++;
1930 	}
1931 
1932 	/* Now, make sure every device listed in sd[] is also
1933 	 * listed in h->dev[], adding them if they aren't found
1934 	 */
1935 
1936 	for (i = 0; i < nsds; i++) {
1937 		if (!sd[i]) /* if already added above. */
1938 			continue;
1939 
1940 		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1941 		 * as the SCSI mid-layer does not handle such devices well.
1942 		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1943 		 * at 160Hz, and prevents the system from coming up.
1944 		 */
1945 		if (sd[i]->volume_offline) {
1946 			hpsa_show_volume_status(h, sd[i]);
1947 			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1948 			continue;
1949 		}
1950 
1951 		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1952 					h->ndevices, &entry);
1953 		if (device_change == DEVICE_NOT_FOUND) {
1954 			changes++;
1955 			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1956 				break;
1957 			sd[i] = NULL; /* prevent from being freed later. */
1958 		} else if (device_change == DEVICE_CHANGED) {
1959 			/* should never happen... */
1960 			changes++;
1961 			dev_warn(&h->pdev->dev,
1962 				"device unexpectedly changed.\n");
1963 			/* but if it does happen, we just ignore that device */
1964 		}
1965 	}
1966 	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1967 
1968 	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
1969 	 * any logical drives that need it enabled.
1970 	 */
1971 	for (i = 0; i < h->ndevices; i++) {
1972 		if (h->dev[i] == NULL)
1973 			continue;
1974 		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1975 	}
1976 
1977 	spin_unlock_irqrestore(&h->devlock, flags);
1978 
1979 	/* Monitor devices which are in one of several NOT READY states to be
1980 	 * brought online later. This must be done without holding h->devlock,
1981 	 * so don't touch h->dev[]
1982 	 */
1983 	for (i = 0; i < nsds; i++) {
1984 		if (!sd[i]) /* if already added above. */
1985 			continue;
1986 		if (sd[i]->volume_offline)
1987 			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1988 	}
1989 
1990 	/* Don't notify scsi mid layer of any changes the first time through
1991 	 * (or if there are no changes) scsi_scan_host will do it later the
1992 	 * first time through.
1993 	 */
1994 	if (!changes)
1995 		goto free_and_out;
1996 
1997 	/* Notify scsi mid layer of any removed devices */
1998 	for (i = 0; i < nremoved; i++) {
1999 		if (removed[i] == NULL)
2000 			continue;
2001 		if (removed[i]->expose_device)
2002 			hpsa_remove_device(h, removed[i]);
2003 		kfree(removed[i]);
2004 		removed[i] = NULL;
2005 	}
2006 
2007 	/* Notify scsi mid layer of any added devices */
2008 	for (i = 0; i < nadded; i++) {
2009 		int rc = 0;
2010 
2011 		if (added[i] == NULL)
2012 			continue;
2013 		if (!(added[i]->expose_device))
2014 			continue;
2015 		rc = hpsa_add_device(h, added[i]);
2016 		if (!rc)
2017 			continue;
2018 		dev_warn(&h->pdev->dev,
2019 			"addition failed %d, device not added.", rc);
2020 		/* now we have to remove it from h->dev,
2021 		 * since it didn't get added to scsi mid layer
2022 		 */
2023 		fixup_botched_add(h, added[i]);
2024 		h->drv_req_rescan = 1;
2025 	}
2026 
2027 free_and_out:
2028 	kfree(added);
2029 	kfree(removed);
2030 }
2031 
2032 /*
2033  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2034  * Assume's h->devlock is held.
2035  */
2036 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2037 	int bus, int target, int lun)
2038 {
2039 	int i;
2040 	struct hpsa_scsi_dev_t *sd;
2041 
2042 	for (i = 0; i < h->ndevices; i++) {
2043 		sd = h->dev[i];
2044 		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2045 			return sd;
2046 	}
2047 	return NULL;
2048 }
2049 
2050 static int hpsa_slave_alloc(struct scsi_device *sdev)
2051 {
2052 	struct hpsa_scsi_dev_t *sd = NULL;
2053 	unsigned long flags;
2054 	struct ctlr_info *h;
2055 
2056 	h = sdev_to_hba(sdev);
2057 	spin_lock_irqsave(&h->devlock, flags);
2058 	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2059 		struct scsi_target *starget;
2060 		struct sas_rphy *rphy;
2061 
2062 		starget = scsi_target(sdev);
2063 		rphy = target_to_rphy(starget);
2064 		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2065 		if (sd) {
2066 			sd->target = sdev_id(sdev);
2067 			sd->lun = sdev->lun;
2068 		}
2069 	}
2070 	if (!sd)
2071 		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2072 					sdev_id(sdev), sdev->lun);
2073 
2074 	if (sd && sd->expose_device) {
2075 		atomic_set(&sd->ioaccel_cmds_out, 0);
2076 		sdev->hostdata = sd;
2077 	} else
2078 		sdev->hostdata = NULL;
2079 	spin_unlock_irqrestore(&h->devlock, flags);
2080 	return 0;
2081 }
2082 
2083 /* configure scsi device based on internal per-device structure */
2084 static int hpsa_slave_configure(struct scsi_device *sdev)
2085 {
2086 	struct hpsa_scsi_dev_t *sd;
2087 	int queue_depth;
2088 
2089 	sd = sdev->hostdata;
2090 	sdev->no_uld_attach = !sd || !sd->expose_device;
2091 
2092 	if (sd) {
2093 		if (sd->external)
2094 			queue_depth = EXTERNAL_QD;
2095 		else
2096 			queue_depth = sd->queue_depth != 0 ?
2097 					sd->queue_depth : sdev->host->can_queue;
2098 	} else
2099 		queue_depth = sdev->host->can_queue;
2100 
2101 	scsi_change_queue_depth(sdev, queue_depth);
2102 
2103 	return 0;
2104 }
2105 
2106 static void hpsa_slave_destroy(struct scsi_device *sdev)
2107 {
2108 	/* nothing to do. */
2109 }
2110 
2111 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2112 {
2113 	int i;
2114 
2115 	if (!h->ioaccel2_cmd_sg_list)
2116 		return;
2117 	for (i = 0; i < h->nr_cmds; i++) {
2118 		kfree(h->ioaccel2_cmd_sg_list[i]);
2119 		h->ioaccel2_cmd_sg_list[i] = NULL;
2120 	}
2121 	kfree(h->ioaccel2_cmd_sg_list);
2122 	h->ioaccel2_cmd_sg_list = NULL;
2123 }
2124 
2125 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2126 {
2127 	int i;
2128 
2129 	if (h->chainsize <= 0)
2130 		return 0;
2131 
2132 	h->ioaccel2_cmd_sg_list =
2133 		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2134 					GFP_KERNEL);
2135 	if (!h->ioaccel2_cmd_sg_list)
2136 		return -ENOMEM;
2137 	for (i = 0; i < h->nr_cmds; i++) {
2138 		h->ioaccel2_cmd_sg_list[i] =
2139 			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2140 					h->maxsgentries, GFP_KERNEL);
2141 		if (!h->ioaccel2_cmd_sg_list[i])
2142 			goto clean;
2143 	}
2144 	return 0;
2145 
2146 clean:
2147 	hpsa_free_ioaccel2_sg_chain_blocks(h);
2148 	return -ENOMEM;
2149 }
2150 
2151 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2152 {
2153 	int i;
2154 
2155 	if (!h->cmd_sg_list)
2156 		return;
2157 	for (i = 0; i < h->nr_cmds; i++) {
2158 		kfree(h->cmd_sg_list[i]);
2159 		h->cmd_sg_list[i] = NULL;
2160 	}
2161 	kfree(h->cmd_sg_list);
2162 	h->cmd_sg_list = NULL;
2163 }
2164 
2165 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2166 {
2167 	int i;
2168 
2169 	if (h->chainsize <= 0)
2170 		return 0;
2171 
2172 	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2173 				GFP_KERNEL);
2174 	if (!h->cmd_sg_list)
2175 		return -ENOMEM;
2176 
2177 	for (i = 0; i < h->nr_cmds; i++) {
2178 		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2179 						h->chainsize, GFP_KERNEL);
2180 		if (!h->cmd_sg_list[i])
2181 			goto clean;
2182 
2183 	}
2184 	return 0;
2185 
2186 clean:
2187 	hpsa_free_sg_chain_blocks(h);
2188 	return -ENOMEM;
2189 }
2190 
2191 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2192 	struct io_accel2_cmd *cp, struct CommandList *c)
2193 {
2194 	struct ioaccel2_sg_element *chain_block;
2195 	u64 temp64;
2196 	u32 chain_size;
2197 
2198 	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2199 	chain_size = le32_to_cpu(cp->sg[0].length);
2200 	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2201 				PCI_DMA_TODEVICE);
2202 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2203 		/* prevent subsequent unmapping */
2204 		cp->sg->address = 0;
2205 		return -1;
2206 	}
2207 	cp->sg->address = cpu_to_le64(temp64);
2208 	return 0;
2209 }
2210 
2211 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2212 	struct io_accel2_cmd *cp)
2213 {
2214 	struct ioaccel2_sg_element *chain_sg;
2215 	u64 temp64;
2216 	u32 chain_size;
2217 
2218 	chain_sg = cp->sg;
2219 	temp64 = le64_to_cpu(chain_sg->address);
2220 	chain_size = le32_to_cpu(cp->sg[0].length);
2221 	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2222 }
2223 
2224 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2225 	struct CommandList *c)
2226 {
2227 	struct SGDescriptor *chain_sg, *chain_block;
2228 	u64 temp64;
2229 	u32 chain_len;
2230 
2231 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2232 	chain_block = h->cmd_sg_list[c->cmdindex];
2233 	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2234 	chain_len = sizeof(*chain_sg) *
2235 		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2236 	chain_sg->Len = cpu_to_le32(chain_len);
2237 	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2238 				PCI_DMA_TODEVICE);
2239 	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2240 		/* prevent subsequent unmapping */
2241 		chain_sg->Addr = cpu_to_le64(0);
2242 		return -1;
2243 	}
2244 	chain_sg->Addr = cpu_to_le64(temp64);
2245 	return 0;
2246 }
2247 
2248 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2249 	struct CommandList *c)
2250 {
2251 	struct SGDescriptor *chain_sg;
2252 
2253 	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2254 		return;
2255 
2256 	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2257 	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2258 			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2259 }
2260 
2261 
2262 /* Decode the various types of errors on ioaccel2 path.
2263  * Return 1 for any error that should generate a RAID path retry.
2264  * Return 0 for errors that don't require a RAID path retry.
2265  */
2266 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2267 					struct CommandList *c,
2268 					struct scsi_cmnd *cmd,
2269 					struct io_accel2_cmd *c2,
2270 					struct hpsa_scsi_dev_t *dev)
2271 {
2272 	int data_len;
2273 	int retry = 0;
2274 	u32 ioaccel2_resid = 0;
2275 
2276 	switch (c2->error_data.serv_response) {
2277 	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2278 		switch (c2->error_data.status) {
2279 		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2280 			break;
2281 		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2282 			cmd->result |= SAM_STAT_CHECK_CONDITION;
2283 			if (c2->error_data.data_present !=
2284 					IOACCEL2_SENSE_DATA_PRESENT) {
2285 				memset(cmd->sense_buffer, 0,
2286 					SCSI_SENSE_BUFFERSIZE);
2287 				break;
2288 			}
2289 			/* copy the sense data */
2290 			data_len = c2->error_data.sense_data_len;
2291 			if (data_len > SCSI_SENSE_BUFFERSIZE)
2292 				data_len = SCSI_SENSE_BUFFERSIZE;
2293 			if (data_len > sizeof(c2->error_data.sense_data_buff))
2294 				data_len =
2295 					sizeof(c2->error_data.sense_data_buff);
2296 			memcpy(cmd->sense_buffer,
2297 				c2->error_data.sense_data_buff, data_len);
2298 			retry = 1;
2299 			break;
2300 		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2301 			retry = 1;
2302 			break;
2303 		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2304 			retry = 1;
2305 			break;
2306 		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2307 			retry = 1;
2308 			break;
2309 		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2310 			retry = 1;
2311 			break;
2312 		default:
2313 			retry = 1;
2314 			break;
2315 		}
2316 		break;
2317 	case IOACCEL2_SERV_RESPONSE_FAILURE:
2318 		switch (c2->error_data.status) {
2319 		case IOACCEL2_STATUS_SR_IO_ERROR:
2320 		case IOACCEL2_STATUS_SR_IO_ABORTED:
2321 		case IOACCEL2_STATUS_SR_OVERRUN:
2322 			retry = 1;
2323 			break;
2324 		case IOACCEL2_STATUS_SR_UNDERRUN:
2325 			cmd->result = (DID_OK << 16);		/* host byte */
2326 			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2327 			ioaccel2_resid = get_unaligned_le32(
2328 						&c2->error_data.resid_cnt[0]);
2329 			scsi_set_resid(cmd, ioaccel2_resid);
2330 			break;
2331 		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2332 		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2333 		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2334 			/*
2335 			 * Did an HBA disk disappear? We will eventually
2336 			 * get a state change event from the controller but
2337 			 * in the meantime, we need to tell the OS that the
2338 			 * HBA disk is no longer there and stop I/O
2339 			 * from going down. This allows the potential re-insert
2340 			 * of the disk to get the same device node.
2341 			 */
2342 			if (dev->physical_device && dev->expose_device) {
2343 				cmd->result = DID_NO_CONNECT << 16;
2344 				dev->removed = 1;
2345 				h->drv_req_rescan = 1;
2346 				dev_warn(&h->pdev->dev,
2347 					"%s: device is gone!\n", __func__);
2348 			} else
2349 				/*
2350 				 * Retry by sending down the RAID path.
2351 				 * We will get an event from ctlr to
2352 				 * trigger rescan regardless.
2353 				 */
2354 				retry = 1;
2355 			break;
2356 		default:
2357 			retry = 1;
2358 		}
2359 		break;
2360 	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2361 		break;
2362 	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2363 		break;
2364 	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2365 		retry = 1;
2366 		break;
2367 	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2368 		break;
2369 	default:
2370 		retry = 1;
2371 		break;
2372 	}
2373 
2374 	return retry;	/* retry on raid path? */
2375 }
2376 
2377 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2378 		struct CommandList *c)
2379 {
2380 	bool do_wake = false;
2381 
2382 	/*
2383 	 * Reset c->scsi_cmd here so that the reset handler will know
2384 	 * this command has completed.  Then, check to see if the handler is
2385 	 * waiting for this command, and, if so, wake it.
2386 	 */
2387 	c->scsi_cmd = SCSI_CMD_IDLE;
2388 	mb();	/* Declare command idle before checking for pending events. */
2389 	if (c->reset_pending) {
2390 		unsigned long flags;
2391 		struct hpsa_scsi_dev_t *dev;
2392 
2393 		/*
2394 		 * There appears to be a reset pending; lock the lock and
2395 		 * reconfirm.  If so, then decrement the count of outstanding
2396 		 * commands and wake the reset command if this is the last one.
2397 		 */
2398 		spin_lock_irqsave(&h->lock, flags);
2399 		dev = c->reset_pending;		/* Re-fetch under the lock. */
2400 		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2401 			do_wake = true;
2402 		c->reset_pending = NULL;
2403 		spin_unlock_irqrestore(&h->lock, flags);
2404 	}
2405 
2406 	if (do_wake)
2407 		wake_up_all(&h->event_sync_wait_queue);
2408 }
2409 
2410 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2411 				      struct CommandList *c)
2412 {
2413 	hpsa_cmd_resolve_events(h, c);
2414 	cmd_tagged_free(h, c);
2415 }
2416 
2417 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2418 		struct CommandList *c, struct scsi_cmnd *cmd)
2419 {
2420 	hpsa_cmd_resolve_and_free(h, c);
2421 	if (cmd && cmd->scsi_done)
2422 		cmd->scsi_done(cmd);
2423 }
2424 
2425 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2426 {
2427 	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2428 	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2429 }
2430 
2431 static void process_ioaccel2_completion(struct ctlr_info *h,
2432 		struct CommandList *c, struct scsi_cmnd *cmd,
2433 		struct hpsa_scsi_dev_t *dev)
2434 {
2435 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2436 
2437 	/* check for good status */
2438 	if (likely(c2->error_data.serv_response == 0 &&
2439 			c2->error_data.status == 0))
2440 		return hpsa_cmd_free_and_done(h, c, cmd);
2441 
2442 	/*
2443 	 * Any RAID offload error results in retry which will use
2444 	 * the normal I/O path so the controller can handle whatever's
2445 	 * wrong.
2446 	 */
2447 	if (is_logical_device(dev) &&
2448 		c2->error_data.serv_response ==
2449 			IOACCEL2_SERV_RESPONSE_FAILURE) {
2450 		if (c2->error_data.status ==
2451 			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2452 			dev->offload_enabled = 0;
2453 			dev->offload_to_be_enabled = 0;
2454 		}
2455 
2456 		return hpsa_retry_cmd(h, c);
2457 	}
2458 
2459 	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2460 		return hpsa_retry_cmd(h, c);
2461 
2462 	return hpsa_cmd_free_and_done(h, c, cmd);
2463 }
2464 
2465 /* Returns 0 on success, < 0 otherwise. */
2466 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2467 					struct CommandList *cp)
2468 {
2469 	u8 tmf_status = cp->err_info->ScsiStatus;
2470 
2471 	switch (tmf_status) {
2472 	case CISS_TMF_COMPLETE:
2473 		/*
2474 		 * CISS_TMF_COMPLETE never happens, instead,
2475 		 * ei->CommandStatus == 0 for this case.
2476 		 */
2477 	case CISS_TMF_SUCCESS:
2478 		return 0;
2479 	case CISS_TMF_INVALID_FRAME:
2480 	case CISS_TMF_NOT_SUPPORTED:
2481 	case CISS_TMF_FAILED:
2482 	case CISS_TMF_WRONG_LUN:
2483 	case CISS_TMF_OVERLAPPED_TAG:
2484 		break;
2485 	default:
2486 		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2487 				tmf_status);
2488 		break;
2489 	}
2490 	return -tmf_status;
2491 }
2492 
2493 static void complete_scsi_command(struct CommandList *cp)
2494 {
2495 	struct scsi_cmnd *cmd;
2496 	struct ctlr_info *h;
2497 	struct ErrorInfo *ei;
2498 	struct hpsa_scsi_dev_t *dev;
2499 	struct io_accel2_cmd *c2;
2500 
2501 	u8 sense_key;
2502 	u8 asc;      /* additional sense code */
2503 	u8 ascq;     /* additional sense code qualifier */
2504 	unsigned long sense_data_size;
2505 
2506 	ei = cp->err_info;
2507 	cmd = cp->scsi_cmd;
2508 	h = cp->h;
2509 
2510 	if (!cmd->device) {
2511 		cmd->result = DID_NO_CONNECT << 16;
2512 		return hpsa_cmd_free_and_done(h, cp, cmd);
2513 	}
2514 
2515 	dev = cmd->device->hostdata;
2516 	if (!dev) {
2517 		cmd->result = DID_NO_CONNECT << 16;
2518 		return hpsa_cmd_free_and_done(h, cp, cmd);
2519 	}
2520 	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2521 
2522 	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2523 	if ((cp->cmd_type == CMD_SCSI) &&
2524 		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2525 		hpsa_unmap_sg_chain_block(h, cp);
2526 
2527 	if ((cp->cmd_type == CMD_IOACCEL2) &&
2528 		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2529 		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2530 
2531 	cmd->result = (DID_OK << 16); 		/* host byte */
2532 	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2533 
2534 	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2535 		if (dev->physical_device && dev->expose_device &&
2536 			dev->removed) {
2537 			cmd->result = DID_NO_CONNECT << 16;
2538 			return hpsa_cmd_free_and_done(h, cp, cmd);
2539 		}
2540 		if (likely(cp->phys_disk != NULL))
2541 			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2542 	}
2543 
2544 	/*
2545 	 * We check for lockup status here as it may be set for
2546 	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2547 	 * fail_all_oustanding_cmds()
2548 	 */
2549 	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2550 		/* DID_NO_CONNECT will prevent a retry */
2551 		cmd->result = DID_NO_CONNECT << 16;
2552 		return hpsa_cmd_free_and_done(h, cp, cmd);
2553 	}
2554 
2555 	if ((unlikely(hpsa_is_pending_event(cp))))
2556 		if (cp->reset_pending)
2557 			return hpsa_cmd_free_and_done(h, cp, cmd);
2558 
2559 	if (cp->cmd_type == CMD_IOACCEL2)
2560 		return process_ioaccel2_completion(h, cp, cmd, dev);
2561 
2562 	scsi_set_resid(cmd, ei->ResidualCnt);
2563 	if (ei->CommandStatus == 0)
2564 		return hpsa_cmd_free_and_done(h, cp, cmd);
2565 
2566 	/* For I/O accelerator commands, copy over some fields to the normal
2567 	 * CISS header used below for error handling.
2568 	 */
2569 	if (cp->cmd_type == CMD_IOACCEL1) {
2570 		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2571 		cp->Header.SGList = scsi_sg_count(cmd);
2572 		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2573 		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2574 			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2575 		cp->Header.tag = c->tag;
2576 		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2577 		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2578 
2579 		/* Any RAID offload error results in retry which will use
2580 		 * the normal I/O path so the controller can handle whatever's
2581 		 * wrong.
2582 		 */
2583 		if (is_logical_device(dev)) {
2584 			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2585 				dev->offload_enabled = 0;
2586 			return hpsa_retry_cmd(h, cp);
2587 		}
2588 	}
2589 
2590 	/* an error has occurred */
2591 	switch (ei->CommandStatus) {
2592 
2593 	case CMD_TARGET_STATUS:
2594 		cmd->result |= ei->ScsiStatus;
2595 		/* copy the sense data */
2596 		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2597 			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2598 		else
2599 			sense_data_size = sizeof(ei->SenseInfo);
2600 		if (ei->SenseLen < sense_data_size)
2601 			sense_data_size = ei->SenseLen;
2602 		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2603 		if (ei->ScsiStatus)
2604 			decode_sense_data(ei->SenseInfo, sense_data_size,
2605 				&sense_key, &asc, &ascq);
2606 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2607 			if (sense_key == ABORTED_COMMAND) {
2608 				cmd->result |= DID_SOFT_ERROR << 16;
2609 				break;
2610 			}
2611 			break;
2612 		}
2613 		/* Problem was not a check condition
2614 		 * Pass it up to the upper layers...
2615 		 */
2616 		if (ei->ScsiStatus) {
2617 			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2618 				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2619 				"Returning result: 0x%x\n",
2620 				cp, ei->ScsiStatus,
2621 				sense_key, asc, ascq,
2622 				cmd->result);
2623 		} else {  /* scsi status is zero??? How??? */
2624 			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2625 				"Returning no connection.\n", cp),
2626 
2627 			/* Ordinarily, this case should never happen,
2628 			 * but there is a bug in some released firmware
2629 			 * revisions that allows it to happen if, for
2630 			 * example, a 4100 backplane loses power and
2631 			 * the tape drive is in it.  We assume that
2632 			 * it's a fatal error of some kind because we
2633 			 * can't show that it wasn't. We will make it
2634 			 * look like selection timeout since that is
2635 			 * the most common reason for this to occur,
2636 			 * and it's severe enough.
2637 			 */
2638 
2639 			cmd->result = DID_NO_CONNECT << 16;
2640 		}
2641 		break;
2642 
2643 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2644 		break;
2645 	case CMD_DATA_OVERRUN:
2646 		dev_warn(&h->pdev->dev,
2647 			"CDB %16phN data overrun\n", cp->Request.CDB);
2648 		break;
2649 	case CMD_INVALID: {
2650 		/* print_bytes(cp, sizeof(*cp), 1, 0);
2651 		print_cmd(cp); */
2652 		/* We get CMD_INVALID if you address a non-existent device
2653 		 * instead of a selection timeout (no response).  You will
2654 		 * see this if you yank out a drive, then try to access it.
2655 		 * This is kind of a shame because it means that any other
2656 		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2657 		 * missing target. */
2658 		cmd->result = DID_NO_CONNECT << 16;
2659 	}
2660 		break;
2661 	case CMD_PROTOCOL_ERR:
2662 		cmd->result = DID_ERROR << 16;
2663 		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2664 				cp->Request.CDB);
2665 		break;
2666 	case CMD_HARDWARE_ERR:
2667 		cmd->result = DID_ERROR << 16;
2668 		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2669 			cp->Request.CDB);
2670 		break;
2671 	case CMD_CONNECTION_LOST:
2672 		cmd->result = DID_ERROR << 16;
2673 		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2674 			cp->Request.CDB);
2675 		break;
2676 	case CMD_ABORTED:
2677 		cmd->result = DID_ABORT << 16;
2678 		break;
2679 	case CMD_ABORT_FAILED:
2680 		cmd->result = DID_ERROR << 16;
2681 		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2682 			cp->Request.CDB);
2683 		break;
2684 	case CMD_UNSOLICITED_ABORT:
2685 		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2686 		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2687 			cp->Request.CDB);
2688 		break;
2689 	case CMD_TIMEOUT:
2690 		cmd->result = DID_TIME_OUT << 16;
2691 		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2692 			cp->Request.CDB);
2693 		break;
2694 	case CMD_UNABORTABLE:
2695 		cmd->result = DID_ERROR << 16;
2696 		dev_warn(&h->pdev->dev, "Command unabortable\n");
2697 		break;
2698 	case CMD_TMF_STATUS:
2699 		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2700 			cmd->result = DID_ERROR << 16;
2701 		break;
2702 	case CMD_IOACCEL_DISABLED:
2703 		/* This only handles the direct pass-through case since RAID
2704 		 * offload is handled above.  Just attempt a retry.
2705 		 */
2706 		cmd->result = DID_SOFT_ERROR << 16;
2707 		dev_warn(&h->pdev->dev,
2708 				"cp %p had HP SSD Smart Path error\n", cp);
2709 		break;
2710 	default:
2711 		cmd->result = DID_ERROR << 16;
2712 		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2713 				cp, ei->CommandStatus);
2714 	}
2715 
2716 	return hpsa_cmd_free_and_done(h, cp, cmd);
2717 }
2718 
2719 static void hpsa_pci_unmap(struct pci_dev *pdev,
2720 	struct CommandList *c, int sg_used, int data_direction)
2721 {
2722 	int i;
2723 
2724 	for (i = 0; i < sg_used; i++)
2725 		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2726 				le32_to_cpu(c->SG[i].Len),
2727 				data_direction);
2728 }
2729 
2730 static int hpsa_map_one(struct pci_dev *pdev,
2731 		struct CommandList *cp,
2732 		unsigned char *buf,
2733 		size_t buflen,
2734 		int data_direction)
2735 {
2736 	u64 addr64;
2737 
2738 	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2739 		cp->Header.SGList = 0;
2740 		cp->Header.SGTotal = cpu_to_le16(0);
2741 		return 0;
2742 	}
2743 
2744 	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2745 	if (dma_mapping_error(&pdev->dev, addr64)) {
2746 		/* Prevent subsequent unmap of something never mapped */
2747 		cp->Header.SGList = 0;
2748 		cp->Header.SGTotal = cpu_to_le16(0);
2749 		return -1;
2750 	}
2751 	cp->SG[0].Addr = cpu_to_le64(addr64);
2752 	cp->SG[0].Len = cpu_to_le32(buflen);
2753 	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2754 	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2755 	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2756 	return 0;
2757 }
2758 
2759 #define NO_TIMEOUT ((unsigned long) -1)
2760 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2761 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2762 	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2763 {
2764 	DECLARE_COMPLETION_ONSTACK(wait);
2765 
2766 	c->waiting = &wait;
2767 	__enqueue_cmd_and_start_io(h, c, reply_queue);
2768 	if (timeout_msecs == NO_TIMEOUT) {
2769 		/* TODO: get rid of this no-timeout thing */
2770 		wait_for_completion_io(&wait);
2771 		return IO_OK;
2772 	}
2773 	if (!wait_for_completion_io_timeout(&wait,
2774 					msecs_to_jiffies(timeout_msecs))) {
2775 		dev_warn(&h->pdev->dev, "Command timed out.\n");
2776 		return -ETIMEDOUT;
2777 	}
2778 	return IO_OK;
2779 }
2780 
2781 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2782 				   int reply_queue, unsigned long timeout_msecs)
2783 {
2784 	if (unlikely(lockup_detected(h))) {
2785 		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2786 		return IO_OK;
2787 	}
2788 	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2789 }
2790 
2791 static u32 lockup_detected(struct ctlr_info *h)
2792 {
2793 	int cpu;
2794 	u32 rc, *lockup_detected;
2795 
2796 	cpu = get_cpu();
2797 	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2798 	rc = *lockup_detected;
2799 	put_cpu();
2800 	return rc;
2801 }
2802 
2803 #define MAX_DRIVER_CMD_RETRIES 25
2804 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2805 	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2806 {
2807 	int backoff_time = 10, retry_count = 0;
2808 	int rc;
2809 
2810 	do {
2811 		memset(c->err_info, 0, sizeof(*c->err_info));
2812 		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2813 						  timeout_msecs);
2814 		if (rc)
2815 			break;
2816 		retry_count++;
2817 		if (retry_count > 3) {
2818 			msleep(backoff_time);
2819 			if (backoff_time < 1000)
2820 				backoff_time *= 2;
2821 		}
2822 	} while ((check_for_unit_attention(h, c) ||
2823 			check_for_busy(h, c)) &&
2824 			retry_count <= MAX_DRIVER_CMD_RETRIES);
2825 	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2826 	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2827 		rc = -EIO;
2828 	return rc;
2829 }
2830 
2831 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2832 				struct CommandList *c)
2833 {
2834 	const u8 *cdb = c->Request.CDB;
2835 	const u8 *lun = c->Header.LUN.LunAddrBytes;
2836 
2837 	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2838 		 txt, lun, cdb);
2839 }
2840 
2841 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2842 			struct CommandList *cp)
2843 {
2844 	const struct ErrorInfo *ei = cp->err_info;
2845 	struct device *d = &cp->h->pdev->dev;
2846 	u8 sense_key, asc, ascq;
2847 	int sense_len;
2848 
2849 	switch (ei->CommandStatus) {
2850 	case CMD_TARGET_STATUS:
2851 		if (ei->SenseLen > sizeof(ei->SenseInfo))
2852 			sense_len = sizeof(ei->SenseInfo);
2853 		else
2854 			sense_len = ei->SenseLen;
2855 		decode_sense_data(ei->SenseInfo, sense_len,
2856 					&sense_key, &asc, &ascq);
2857 		hpsa_print_cmd(h, "SCSI status", cp);
2858 		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2859 			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860 				sense_key, asc, ascq);
2861 		else
2862 			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2863 		if (ei->ScsiStatus == 0)
2864 			dev_warn(d, "SCSI status is abnormally zero.  "
2865 			"(probably indicates selection timeout "
2866 			"reported incorrectly due to a known "
2867 			"firmware bug, circa July, 2001.)\n");
2868 		break;
2869 	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2870 		break;
2871 	case CMD_DATA_OVERRUN:
2872 		hpsa_print_cmd(h, "overrun condition", cp);
2873 		break;
2874 	case CMD_INVALID: {
2875 		/* controller unfortunately reports SCSI passthru's
2876 		 * to non-existent targets as invalid commands.
2877 		 */
2878 		hpsa_print_cmd(h, "invalid command", cp);
2879 		dev_warn(d, "probably means device no longer present\n");
2880 		}
2881 		break;
2882 	case CMD_PROTOCOL_ERR:
2883 		hpsa_print_cmd(h, "protocol error", cp);
2884 		break;
2885 	case CMD_HARDWARE_ERR:
2886 		hpsa_print_cmd(h, "hardware error", cp);
2887 		break;
2888 	case CMD_CONNECTION_LOST:
2889 		hpsa_print_cmd(h, "connection lost", cp);
2890 		break;
2891 	case CMD_ABORTED:
2892 		hpsa_print_cmd(h, "aborted", cp);
2893 		break;
2894 	case CMD_ABORT_FAILED:
2895 		hpsa_print_cmd(h, "abort failed", cp);
2896 		break;
2897 	case CMD_UNSOLICITED_ABORT:
2898 		hpsa_print_cmd(h, "unsolicited abort", cp);
2899 		break;
2900 	case CMD_TIMEOUT:
2901 		hpsa_print_cmd(h, "timed out", cp);
2902 		break;
2903 	case CMD_UNABORTABLE:
2904 		hpsa_print_cmd(h, "unabortable", cp);
2905 		break;
2906 	case CMD_CTLR_LOCKUP:
2907 		hpsa_print_cmd(h, "controller lockup detected", cp);
2908 		break;
2909 	default:
2910 		hpsa_print_cmd(h, "unknown status", cp);
2911 		dev_warn(d, "Unknown command status %x\n",
2912 				ei->CommandStatus);
2913 	}
2914 }
2915 
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2917 			u16 page, unsigned char *buf,
2918 			unsigned char bufsize)
2919 {
2920 	int rc = IO_OK;
2921 	struct CommandList *c;
2922 	struct ErrorInfo *ei;
2923 
2924 	c = cmd_alloc(h);
2925 
2926 	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2927 			page, scsi3addr, TYPE_CMD)) {
2928 		rc = -1;
2929 		goto out;
2930 	}
2931 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2932 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2933 	if (rc)
2934 		goto out;
2935 	ei = c->err_info;
2936 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2937 		hpsa_scsi_interpret_error(h, c);
2938 		rc = -1;
2939 	}
2940 out:
2941 	cmd_free(h, c);
2942 	return rc;
2943 }
2944 
2945 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2946 	u8 reset_type, int reply_queue)
2947 {
2948 	int rc = IO_OK;
2949 	struct CommandList *c;
2950 	struct ErrorInfo *ei;
2951 
2952 	c = cmd_alloc(h);
2953 
2954 
2955 	/* fill_cmd can't fail here, no data buffer to map. */
2956 	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2957 			scsi3addr, TYPE_MSG);
2958 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2959 	if (rc) {
2960 		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2961 		goto out;
2962 	}
2963 	/* no unmap needed here because no data xfer. */
2964 
2965 	ei = c->err_info;
2966 	if (ei->CommandStatus != 0) {
2967 		hpsa_scsi_interpret_error(h, c);
2968 		rc = -1;
2969 	}
2970 out:
2971 	cmd_free(h, c);
2972 	return rc;
2973 }
2974 
2975 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2976 			       struct hpsa_scsi_dev_t *dev,
2977 			       unsigned char *scsi3addr)
2978 {
2979 	int i;
2980 	bool match = false;
2981 	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2982 	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2983 
2984 	if (hpsa_is_cmd_idle(c))
2985 		return false;
2986 
2987 	switch (c->cmd_type) {
2988 	case CMD_SCSI:
2989 	case CMD_IOCTL_PEND:
2990 		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2991 				sizeof(c->Header.LUN.LunAddrBytes));
2992 		break;
2993 
2994 	case CMD_IOACCEL1:
2995 	case CMD_IOACCEL2:
2996 		if (c->phys_disk == dev) {
2997 			/* HBA mode match */
2998 			match = true;
2999 		} else {
3000 			/* Possible RAID mode -- check each phys dev. */
3001 			/* FIXME:  Do we need to take out a lock here?  If
3002 			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3003 			 * instead. */
3004 			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005 				/* FIXME: an alternate test might be
3006 				 *
3007 				 * match = dev->phys_disk[i]->ioaccel_handle
3008 				 *              == c2->scsi_nexus;      */
3009 				match = dev->phys_disk[i] == c->phys_disk;
3010 			}
3011 		}
3012 		break;
3013 
3014 	case IOACCEL2_TMF:
3015 		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3016 			match = dev->phys_disk[i]->ioaccel_handle ==
3017 					le32_to_cpu(ac->it_nexus);
3018 		}
3019 		break;
3020 
3021 	case 0:		/* The command is in the middle of being initialized. */
3022 		match = false;
3023 		break;
3024 
3025 	default:
3026 		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3027 			c->cmd_type);
3028 		BUG();
3029 	}
3030 
3031 	return match;
3032 }
3033 
3034 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3035 	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3036 {
3037 	int i;
3038 	int rc = 0;
3039 
3040 	/* We can really only handle one reset at a time */
3041 	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3042 		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3043 		return -EINTR;
3044 	}
3045 
3046 	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3047 
3048 	for (i = 0; i < h->nr_cmds; i++) {
3049 		struct CommandList *c = h->cmd_pool + i;
3050 		int refcount = atomic_inc_return(&c->refcount);
3051 
3052 		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3053 			unsigned long flags;
3054 
3055 			/*
3056 			 * Mark the target command as having a reset pending,
3057 			 * then lock a lock so that the command cannot complete
3058 			 * while we're considering it.  If the command is not
3059 			 * idle then count it; otherwise revoke the event.
3060 			 */
3061 			c->reset_pending = dev;
3062 			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3063 			if (!hpsa_is_cmd_idle(c))
3064 				atomic_inc(&dev->reset_cmds_out);
3065 			else
3066 				c->reset_pending = NULL;
3067 			spin_unlock_irqrestore(&h->lock, flags);
3068 		}
3069 
3070 		cmd_free(h, c);
3071 	}
3072 
3073 	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3074 	if (!rc)
3075 		wait_event(h->event_sync_wait_queue,
3076 			atomic_read(&dev->reset_cmds_out) == 0 ||
3077 			lockup_detected(h));
3078 
3079 	if (unlikely(lockup_detected(h))) {
3080 		dev_warn(&h->pdev->dev,
3081 			 "Controller lockup detected during reset wait\n");
3082 		rc = -ENODEV;
3083 	}
3084 
3085 	if (unlikely(rc))
3086 		atomic_set(&dev->reset_cmds_out, 0);
3087 	else
3088 		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3089 
3090 	mutex_unlock(&h->reset_mutex);
3091 	return rc;
3092 }
3093 
3094 static void hpsa_get_raid_level(struct ctlr_info *h,
3095 	unsigned char *scsi3addr, unsigned char *raid_level)
3096 {
3097 	int rc;
3098 	unsigned char *buf;
3099 
3100 	*raid_level = RAID_UNKNOWN;
3101 	buf = kzalloc(64, GFP_KERNEL);
3102 	if (!buf)
3103 		return;
3104 
3105 	if (!hpsa_vpd_page_supported(h, scsi3addr,
3106 		HPSA_VPD_LV_DEVICE_GEOMETRY))
3107 		goto exit;
3108 
3109 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3110 		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3111 
3112 	if (rc == 0)
3113 		*raid_level = buf[8];
3114 	if (*raid_level > RAID_UNKNOWN)
3115 		*raid_level = RAID_UNKNOWN;
3116 exit:
3117 	kfree(buf);
3118 	return;
3119 }
3120 
3121 #define HPSA_MAP_DEBUG
3122 #ifdef HPSA_MAP_DEBUG
3123 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3124 				struct raid_map_data *map_buff)
3125 {
3126 	struct raid_map_disk_data *dd = &map_buff->data[0];
3127 	int map, row, col;
3128 	u16 map_cnt, row_cnt, disks_per_row;
3129 
3130 	if (rc != 0)
3131 		return;
3132 
3133 	/* Show details only if debugging has been activated. */
3134 	if (h->raid_offload_debug < 2)
3135 		return;
3136 
3137 	dev_info(&h->pdev->dev, "structure_size = %u\n",
3138 				le32_to_cpu(map_buff->structure_size));
3139 	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3140 			le32_to_cpu(map_buff->volume_blk_size));
3141 	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3142 			le64_to_cpu(map_buff->volume_blk_cnt));
3143 	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3144 			map_buff->phys_blk_shift);
3145 	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3146 			map_buff->parity_rotation_shift);
3147 	dev_info(&h->pdev->dev, "strip_size = %u\n",
3148 			le16_to_cpu(map_buff->strip_size));
3149 	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3150 			le64_to_cpu(map_buff->disk_starting_blk));
3151 	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3152 			le64_to_cpu(map_buff->disk_blk_cnt));
3153 	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3154 			le16_to_cpu(map_buff->data_disks_per_row));
3155 	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3156 			le16_to_cpu(map_buff->metadata_disks_per_row));
3157 	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3158 			le16_to_cpu(map_buff->row_cnt));
3159 	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3160 			le16_to_cpu(map_buff->layout_map_count));
3161 	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3162 			le16_to_cpu(map_buff->flags));
3163 	dev_info(&h->pdev->dev, "encryption = %s\n",
3164 			le16_to_cpu(map_buff->flags) &
3165 			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3166 	dev_info(&h->pdev->dev, "dekindex = %u\n",
3167 			le16_to_cpu(map_buff->dekindex));
3168 	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3169 	for (map = 0; map < map_cnt; map++) {
3170 		dev_info(&h->pdev->dev, "Map%u:\n", map);
3171 		row_cnt = le16_to_cpu(map_buff->row_cnt);
3172 		for (row = 0; row < row_cnt; row++) {
3173 			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3174 			disks_per_row =
3175 				le16_to_cpu(map_buff->data_disks_per_row);
3176 			for (col = 0; col < disks_per_row; col++, dd++)
3177 				dev_info(&h->pdev->dev,
3178 					"    D%02u: h=0x%04x xor=%u,%u\n",
3179 					col, dd->ioaccel_handle,
3180 					dd->xor_mult[0], dd->xor_mult[1]);
3181 			disks_per_row =
3182 				le16_to_cpu(map_buff->metadata_disks_per_row);
3183 			for (col = 0; col < disks_per_row; col++, dd++)
3184 				dev_info(&h->pdev->dev,
3185 					"    M%02u: h=0x%04x xor=%u,%u\n",
3186 					col, dd->ioaccel_handle,
3187 					dd->xor_mult[0], dd->xor_mult[1]);
3188 		}
3189 	}
3190 }
3191 #else
3192 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3193 			__attribute__((unused)) int rc,
3194 			__attribute__((unused)) struct raid_map_data *map_buff)
3195 {
3196 }
3197 #endif
3198 
3199 static int hpsa_get_raid_map(struct ctlr_info *h,
3200 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3201 {
3202 	int rc = 0;
3203 	struct CommandList *c;
3204 	struct ErrorInfo *ei;
3205 
3206 	c = cmd_alloc(h);
3207 
3208 	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3209 			sizeof(this_device->raid_map), 0,
3210 			scsi3addr, TYPE_CMD)) {
3211 		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3212 		cmd_free(h, c);
3213 		return -1;
3214 	}
3215 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3216 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3217 	if (rc)
3218 		goto out;
3219 	ei = c->err_info;
3220 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3221 		hpsa_scsi_interpret_error(h, c);
3222 		rc = -1;
3223 		goto out;
3224 	}
3225 	cmd_free(h, c);
3226 
3227 	/* @todo in the future, dynamically allocate RAID map memory */
3228 	if (le32_to_cpu(this_device->raid_map.structure_size) >
3229 				sizeof(this_device->raid_map)) {
3230 		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3231 		rc = -1;
3232 	}
3233 	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3234 	return rc;
3235 out:
3236 	cmd_free(h, c);
3237 	return rc;
3238 }
3239 
3240 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3241 		unsigned char scsi3addr[], u16 bmic_device_index,
3242 		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3243 {
3244 	int rc = IO_OK;
3245 	struct CommandList *c;
3246 	struct ErrorInfo *ei;
3247 
3248 	c = cmd_alloc(h);
3249 
3250 	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3251 		0, RAID_CTLR_LUNID, TYPE_CMD);
3252 	if (rc)
3253 		goto out;
3254 
3255 	c->Request.CDB[2] = bmic_device_index & 0xff;
3256 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3257 
3258 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3259 				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3260 	if (rc)
3261 		goto out;
3262 	ei = c->err_info;
3263 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3264 		hpsa_scsi_interpret_error(h, c);
3265 		rc = -1;
3266 	}
3267 out:
3268 	cmd_free(h, c);
3269 	return rc;
3270 }
3271 
3272 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3273 	struct bmic_identify_controller *buf, size_t bufsize)
3274 {
3275 	int rc = IO_OK;
3276 	struct CommandList *c;
3277 	struct ErrorInfo *ei;
3278 
3279 	c = cmd_alloc(h);
3280 
3281 	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3282 		0, RAID_CTLR_LUNID, TYPE_CMD);
3283 	if (rc)
3284 		goto out;
3285 
3286 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3287 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3288 	if (rc)
3289 		goto out;
3290 	ei = c->err_info;
3291 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3292 		hpsa_scsi_interpret_error(h, c);
3293 		rc = -1;
3294 	}
3295 out:
3296 	cmd_free(h, c);
3297 	return rc;
3298 }
3299 
3300 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3301 		unsigned char scsi3addr[], u16 bmic_device_index,
3302 		struct bmic_identify_physical_device *buf, size_t bufsize)
3303 {
3304 	int rc = IO_OK;
3305 	struct CommandList *c;
3306 	struct ErrorInfo *ei;
3307 
3308 	c = cmd_alloc(h);
3309 	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3310 		0, RAID_CTLR_LUNID, TYPE_CMD);
3311 	if (rc)
3312 		goto out;
3313 
3314 	c->Request.CDB[2] = bmic_device_index & 0xff;
3315 	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3316 
3317 	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3318 						NO_TIMEOUT);
3319 	ei = c->err_info;
3320 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3321 		hpsa_scsi_interpret_error(h, c);
3322 		rc = -1;
3323 	}
3324 out:
3325 	cmd_free(h, c);
3326 
3327 	return rc;
3328 }
3329 
3330 /*
3331  * get enclosure information
3332  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3333  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3334  * Uses id_physical_device to determine the box_index.
3335  */
3336 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3337 			unsigned char *scsi3addr,
3338 			struct ReportExtendedLUNdata *rlep, int rle_index,
3339 			struct hpsa_scsi_dev_t *encl_dev)
3340 {
3341 	int rc = -1;
3342 	struct CommandList *c = NULL;
3343 	struct ErrorInfo *ei = NULL;
3344 	struct bmic_sense_storage_box_params *bssbp = NULL;
3345 	struct bmic_identify_physical_device *id_phys = NULL;
3346 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3347 	u16 bmic_device_index = 0;
3348 
3349 	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3350 
3351 	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3352 		rc = IO_OK;
3353 		goto out;
3354 	}
3355 
3356 	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3357 		rc = IO_OK;
3358 		goto out;
3359 	}
3360 
3361 	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3362 	if (!bssbp)
3363 		goto out;
3364 
3365 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3366 	if (!id_phys)
3367 		goto out;
3368 
3369 	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3370 						id_phys, sizeof(*id_phys));
3371 	if (rc) {
3372 		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3373 			__func__, encl_dev->external, bmic_device_index);
3374 		goto out;
3375 	}
3376 
3377 	c = cmd_alloc(h);
3378 
3379 	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3380 			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3381 
3382 	if (rc)
3383 		goto out;
3384 
3385 	if (id_phys->phys_connector[1] == 'E')
3386 		c->Request.CDB[5] = id_phys->box_index;
3387 	else
3388 		c->Request.CDB[5] = 0;
3389 
3390 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3391 						NO_TIMEOUT);
3392 	if (rc)
3393 		goto out;
3394 
3395 	ei = c->err_info;
3396 	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3397 		rc = -1;
3398 		goto out;
3399 	}
3400 
3401 	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3402 	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3403 		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3404 
3405 	rc = IO_OK;
3406 out:
3407 	kfree(bssbp);
3408 	kfree(id_phys);
3409 
3410 	if (c)
3411 		cmd_free(h, c);
3412 
3413 	if (rc != IO_OK)
3414 		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3415 			"Error, could not get enclosure information\n");
3416 }
3417 
3418 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3419 						unsigned char *scsi3addr)
3420 {
3421 	struct ReportExtendedLUNdata *physdev;
3422 	u32 nphysicals;
3423 	u64 sa = 0;
3424 	int i;
3425 
3426 	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3427 	if (!physdev)
3428 		return 0;
3429 
3430 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3431 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3432 		kfree(physdev);
3433 		return 0;
3434 	}
3435 	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3436 
3437 	for (i = 0; i < nphysicals; i++)
3438 		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3439 			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3440 			break;
3441 		}
3442 
3443 	kfree(physdev);
3444 
3445 	return sa;
3446 }
3447 
3448 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3449 					struct hpsa_scsi_dev_t *dev)
3450 {
3451 	int rc;
3452 	u64 sa = 0;
3453 
3454 	if (is_hba_lunid(scsi3addr)) {
3455 		struct bmic_sense_subsystem_info *ssi;
3456 
3457 		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3458 		if (!ssi)
3459 			return;
3460 
3461 		rc = hpsa_bmic_sense_subsystem_information(h,
3462 					scsi3addr, 0, ssi, sizeof(*ssi));
3463 		if (rc == 0) {
3464 			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3465 			h->sas_address = sa;
3466 		}
3467 
3468 		kfree(ssi);
3469 	} else
3470 		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3471 
3472 	dev->sas_address = sa;
3473 }
3474 
3475 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3476 	struct ReportExtendedLUNdata *physdev)
3477 {
3478 	u32 nphysicals;
3479 	int i;
3480 
3481 	if (h->discovery_polling)
3482 		return;
3483 
3484 	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3485 
3486 	for (i = 0; i < nphysicals; i++) {
3487 		if (physdev->LUN[i].device_type ==
3488 			BMIC_DEVICE_TYPE_CONTROLLER
3489 			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3490 			dev_info(&h->pdev->dev,
3491 				"External controller present, activate discovery polling and disable rld caching\n");
3492 			hpsa_disable_rld_caching(h);
3493 			h->discovery_polling = 1;
3494 			break;
3495 		}
3496 	}
3497 }
3498 
3499 /* Get a device id from inquiry page 0x83 */
3500 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3501 	unsigned char scsi3addr[], u8 page)
3502 {
3503 	int rc;
3504 	int i;
3505 	int pages;
3506 	unsigned char *buf, bufsize;
3507 
3508 	buf = kzalloc(256, GFP_KERNEL);
3509 	if (!buf)
3510 		return false;
3511 
3512 	/* Get the size of the page list first */
3513 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3514 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3515 				buf, HPSA_VPD_HEADER_SZ);
3516 	if (rc != 0)
3517 		goto exit_unsupported;
3518 	pages = buf[3];
3519 	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3520 		bufsize = pages + HPSA_VPD_HEADER_SZ;
3521 	else
3522 		bufsize = 255;
3523 
3524 	/* Get the whole VPD page list */
3525 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3526 				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3527 				buf, bufsize);
3528 	if (rc != 0)
3529 		goto exit_unsupported;
3530 
3531 	pages = buf[3];
3532 	for (i = 1; i <= pages; i++)
3533 		if (buf[3 + i] == page)
3534 			goto exit_supported;
3535 exit_unsupported:
3536 	kfree(buf);
3537 	return false;
3538 exit_supported:
3539 	kfree(buf);
3540 	return true;
3541 }
3542 
3543 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3544 	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3545 {
3546 	int rc;
3547 	unsigned char *buf;
3548 	u8 ioaccel_status;
3549 
3550 	this_device->offload_config = 0;
3551 	this_device->offload_enabled = 0;
3552 	this_device->offload_to_be_enabled = 0;
3553 
3554 	buf = kzalloc(64, GFP_KERNEL);
3555 	if (!buf)
3556 		return;
3557 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3558 		goto out;
3559 	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3560 			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3561 	if (rc != 0)
3562 		goto out;
3563 
3564 #define IOACCEL_STATUS_BYTE 4
3565 #define OFFLOAD_CONFIGURED_BIT 0x01
3566 #define OFFLOAD_ENABLED_BIT 0x02
3567 	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3568 	this_device->offload_config =
3569 		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3570 	if (this_device->offload_config) {
3571 		this_device->offload_enabled =
3572 			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3573 		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3574 			this_device->offload_enabled = 0;
3575 	}
3576 	this_device->offload_to_be_enabled = this_device->offload_enabled;
3577 out:
3578 	kfree(buf);
3579 	return;
3580 }
3581 
3582 /* Get the device id from inquiry page 0x83 */
3583 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3584 	unsigned char *device_id, int index, int buflen)
3585 {
3586 	int rc;
3587 	unsigned char *buf;
3588 
3589 	/* Does controller have VPD for device id? */
3590 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3591 		return 1; /* not supported */
3592 
3593 	buf = kzalloc(64, GFP_KERNEL);
3594 	if (!buf)
3595 		return -ENOMEM;
3596 
3597 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3598 					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3599 	if (rc == 0) {
3600 		if (buflen > 16)
3601 			buflen = 16;
3602 		memcpy(device_id, &buf[8], buflen);
3603 	}
3604 
3605 	kfree(buf);
3606 
3607 	return rc; /*0 - got id,  otherwise, didn't */
3608 }
3609 
3610 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3611 		void *buf, int bufsize,
3612 		int extended_response)
3613 {
3614 	int rc = IO_OK;
3615 	struct CommandList *c;
3616 	unsigned char scsi3addr[8];
3617 	struct ErrorInfo *ei;
3618 
3619 	c = cmd_alloc(h);
3620 
3621 	/* address the controller */
3622 	memset(scsi3addr, 0, sizeof(scsi3addr));
3623 	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3624 		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3625 		rc = -EAGAIN;
3626 		goto out;
3627 	}
3628 	if (extended_response)
3629 		c->Request.CDB[1] = extended_response;
3630 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3631 					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3632 	if (rc)
3633 		goto out;
3634 	ei = c->err_info;
3635 	if (ei->CommandStatus != 0 &&
3636 	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3637 		hpsa_scsi_interpret_error(h, c);
3638 		rc = -EIO;
3639 	} else {
3640 		struct ReportLUNdata *rld = buf;
3641 
3642 		if (rld->extended_response_flag != extended_response) {
3643 			if (!h->legacy_board) {
3644 				dev_err(&h->pdev->dev,
3645 					"report luns requested format %u, got %u\n",
3646 					extended_response,
3647 					rld->extended_response_flag);
3648 				rc = -EINVAL;
3649 			} else
3650 				rc = -EOPNOTSUPP;
3651 		}
3652 	}
3653 out:
3654 	cmd_free(h, c);
3655 	return rc;
3656 }
3657 
3658 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3659 		struct ReportExtendedLUNdata *buf, int bufsize)
3660 {
3661 	int rc;
3662 	struct ReportLUNdata *lbuf;
3663 
3664 	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3665 				      HPSA_REPORT_PHYS_EXTENDED);
3666 	if (!rc || rc != -EOPNOTSUPP)
3667 		return rc;
3668 
3669 	/* REPORT PHYS EXTENDED is not supported */
3670 	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3671 	if (!lbuf)
3672 		return -ENOMEM;
3673 
3674 	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3675 	if (!rc) {
3676 		int i;
3677 		u32 nphys;
3678 
3679 		/* Copy ReportLUNdata header */
3680 		memcpy(buf, lbuf, 8);
3681 		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3682 		for (i = 0; i < nphys; i++)
3683 			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3684 	}
3685 	kfree(lbuf);
3686 	return rc;
3687 }
3688 
3689 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3690 		struct ReportLUNdata *buf, int bufsize)
3691 {
3692 	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3693 }
3694 
3695 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3696 	int bus, int target, int lun)
3697 {
3698 	device->bus = bus;
3699 	device->target = target;
3700 	device->lun = lun;
3701 }
3702 
3703 /* Use VPD inquiry to get details of volume status */
3704 static int hpsa_get_volume_status(struct ctlr_info *h,
3705 					unsigned char scsi3addr[])
3706 {
3707 	int rc;
3708 	int status;
3709 	int size;
3710 	unsigned char *buf;
3711 
3712 	buf = kzalloc(64, GFP_KERNEL);
3713 	if (!buf)
3714 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3715 
3716 	/* Does controller have VPD for logical volume status? */
3717 	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3718 		goto exit_failed;
3719 
3720 	/* Get the size of the VPD return buffer */
3721 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3722 					buf, HPSA_VPD_HEADER_SZ);
3723 	if (rc != 0)
3724 		goto exit_failed;
3725 	size = buf[3];
3726 
3727 	/* Now get the whole VPD buffer */
3728 	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3729 					buf, size + HPSA_VPD_HEADER_SZ);
3730 	if (rc != 0)
3731 		goto exit_failed;
3732 	status = buf[4]; /* status byte */
3733 
3734 	kfree(buf);
3735 	return status;
3736 exit_failed:
3737 	kfree(buf);
3738 	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3739 }
3740 
3741 /* Determine offline status of a volume.
3742  * Return either:
3743  *  0 (not offline)
3744  *  0xff (offline for unknown reasons)
3745  *  # (integer code indicating one of several NOT READY states
3746  *     describing why a volume is to be kept offline)
3747  */
3748 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3749 					unsigned char scsi3addr[])
3750 {
3751 	struct CommandList *c;
3752 	unsigned char *sense;
3753 	u8 sense_key, asc, ascq;
3754 	int sense_len;
3755 	int rc, ldstat = 0;
3756 	u16 cmd_status;
3757 	u8 scsi_status;
3758 #define ASC_LUN_NOT_READY 0x04
3759 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3760 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3761 
3762 	c = cmd_alloc(h);
3763 
3764 	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3765 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3766 					NO_TIMEOUT);
3767 	if (rc) {
3768 		cmd_free(h, c);
3769 		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3770 	}
3771 	sense = c->err_info->SenseInfo;
3772 	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3773 		sense_len = sizeof(c->err_info->SenseInfo);
3774 	else
3775 		sense_len = c->err_info->SenseLen;
3776 	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3777 	cmd_status = c->err_info->CommandStatus;
3778 	scsi_status = c->err_info->ScsiStatus;
3779 	cmd_free(h, c);
3780 
3781 	/* Determine the reason for not ready state */
3782 	ldstat = hpsa_get_volume_status(h, scsi3addr);
3783 
3784 	/* Keep volume offline in certain cases: */
3785 	switch (ldstat) {
3786 	case HPSA_LV_FAILED:
3787 	case HPSA_LV_UNDERGOING_ERASE:
3788 	case HPSA_LV_NOT_AVAILABLE:
3789 	case HPSA_LV_UNDERGOING_RPI:
3790 	case HPSA_LV_PENDING_RPI:
3791 	case HPSA_LV_ENCRYPTED_NO_KEY:
3792 	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3793 	case HPSA_LV_UNDERGOING_ENCRYPTION:
3794 	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3795 	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3796 		return ldstat;
3797 	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3798 		/* If VPD status page isn't available,
3799 		 * use ASC/ASCQ to determine state
3800 		 */
3801 		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3802 			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3803 			return ldstat;
3804 		break;
3805 	default:
3806 		break;
3807 	}
3808 	return HPSA_LV_OK;
3809 }
3810 
3811 static int hpsa_update_device_info(struct ctlr_info *h,
3812 	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3813 	unsigned char *is_OBDR_device)
3814 {
3815 
3816 #define OBDR_SIG_OFFSET 43
3817 #define OBDR_TAPE_SIG "$DR-10"
3818 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3819 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3820 
3821 	unsigned char *inq_buff;
3822 	unsigned char *obdr_sig;
3823 	int rc = 0;
3824 
3825 	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3826 	if (!inq_buff) {
3827 		rc = -ENOMEM;
3828 		goto bail_out;
3829 	}
3830 
3831 	/* Do an inquiry to the device to see what it is. */
3832 	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3833 		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3834 		dev_err(&h->pdev->dev,
3835 			"%s: inquiry failed, device will be skipped.\n",
3836 			__func__);
3837 		rc = HPSA_INQUIRY_FAILED;
3838 		goto bail_out;
3839 	}
3840 
3841 	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3842 	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3843 
3844 	this_device->devtype = (inq_buff[0] & 0x1f);
3845 	memcpy(this_device->scsi3addr, scsi3addr, 8);
3846 	memcpy(this_device->vendor, &inq_buff[8],
3847 		sizeof(this_device->vendor));
3848 	memcpy(this_device->model, &inq_buff[16],
3849 		sizeof(this_device->model));
3850 	this_device->rev = inq_buff[2];
3851 	memset(this_device->device_id, 0,
3852 		sizeof(this_device->device_id));
3853 	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3854 		sizeof(this_device->device_id)) < 0)
3855 		dev_err(&h->pdev->dev,
3856 			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3857 			h->ctlr, __func__,
3858 			h->scsi_host->host_no,
3859 			this_device->target, this_device->lun,
3860 			scsi_device_type(this_device->devtype),
3861 			this_device->model);
3862 
3863 	if ((this_device->devtype == TYPE_DISK ||
3864 		this_device->devtype == TYPE_ZBC) &&
3865 		is_logical_dev_addr_mode(scsi3addr)) {
3866 		unsigned char volume_offline;
3867 
3868 		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3869 		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3870 			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3871 		volume_offline = hpsa_volume_offline(h, scsi3addr);
3872 		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3873 		    h->legacy_board) {
3874 			/*
3875 			 * Legacy boards might not support volume status
3876 			 */
3877 			dev_info(&h->pdev->dev,
3878 				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3879 				 this_device->target, this_device->lun);
3880 			volume_offline = 0;
3881 		}
3882 		this_device->volume_offline = volume_offline;
3883 		if (volume_offline == HPSA_LV_FAILED) {
3884 			rc = HPSA_LV_FAILED;
3885 			dev_err(&h->pdev->dev,
3886 				"%s: LV failed, device will be skipped.\n",
3887 				__func__);
3888 			goto bail_out;
3889 		}
3890 	} else {
3891 		this_device->raid_level = RAID_UNKNOWN;
3892 		this_device->offload_config = 0;
3893 		this_device->offload_enabled = 0;
3894 		this_device->offload_to_be_enabled = 0;
3895 		this_device->hba_ioaccel_enabled = 0;
3896 		this_device->volume_offline = 0;
3897 		this_device->queue_depth = h->nr_cmds;
3898 	}
3899 
3900 	if (this_device->external)
3901 		this_device->queue_depth = EXTERNAL_QD;
3902 
3903 	if (is_OBDR_device) {
3904 		/* See if this is a One-Button-Disaster-Recovery device
3905 		 * by looking for "$DR-10" at offset 43 in inquiry data.
3906 		 */
3907 		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3908 		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3909 					strncmp(obdr_sig, OBDR_TAPE_SIG,
3910 						OBDR_SIG_LEN) == 0);
3911 	}
3912 	kfree(inq_buff);
3913 	return 0;
3914 
3915 bail_out:
3916 	kfree(inq_buff);
3917 	return rc;
3918 }
3919 
3920 /*
3921  * Helper function to assign bus, target, lun mapping of devices.
3922  * Logical drive target and lun are assigned at this time, but
3923  * physical device lun and target assignment are deferred (assigned
3924  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3925 */
3926 static void figure_bus_target_lun(struct ctlr_info *h,
3927 	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3928 {
3929 	u32 lunid = get_unaligned_le32(lunaddrbytes);
3930 
3931 	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3932 		/* physical device, target and lun filled in later */
3933 		if (is_hba_lunid(lunaddrbytes)) {
3934 			int bus = HPSA_HBA_BUS;
3935 
3936 			if (!device->rev)
3937 				bus = HPSA_LEGACY_HBA_BUS;
3938 			hpsa_set_bus_target_lun(device,
3939 					bus, 0, lunid & 0x3fff);
3940 		} else
3941 			/* defer target, lun assignment for physical devices */
3942 			hpsa_set_bus_target_lun(device,
3943 					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3944 		return;
3945 	}
3946 	/* It's a logical device */
3947 	if (device->external) {
3948 		hpsa_set_bus_target_lun(device,
3949 			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3950 			lunid & 0x00ff);
3951 		return;
3952 	}
3953 	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3954 				0, lunid & 0x3fff);
3955 }
3956 
3957 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3958 	int i, int nphysicals, int nlocal_logicals)
3959 {
3960 	/* In report logicals, local logicals are listed first,
3961 	* then any externals.
3962 	*/
3963 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
3964 
3965 	if (i == raid_ctlr_position)
3966 		return 0;
3967 
3968 	if (i < logicals_start)
3969 		return 0;
3970 
3971 	/* i is in logicals range, but still within local logicals */
3972 	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3973 		return 0;
3974 
3975 	return 1; /* it's an external lun */
3976 }
3977 
3978 /*
3979  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3980  * logdev.  The number of luns in physdev and logdev are returned in
3981  * *nphysicals and *nlogicals, respectively.
3982  * Returns 0 on success, -1 otherwise.
3983  */
3984 static int hpsa_gather_lun_info(struct ctlr_info *h,
3985 	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3986 	struct ReportLUNdata *logdev, u32 *nlogicals)
3987 {
3988 	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3989 		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3990 		return -1;
3991 	}
3992 	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3993 	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3994 		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3995 			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3996 		*nphysicals = HPSA_MAX_PHYS_LUN;
3997 	}
3998 	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3999 		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4000 		return -1;
4001 	}
4002 	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4003 	/* Reject Logicals in excess of our max capability. */
4004 	if (*nlogicals > HPSA_MAX_LUN) {
4005 		dev_warn(&h->pdev->dev,
4006 			"maximum logical LUNs (%d) exceeded.  "
4007 			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4008 			*nlogicals - HPSA_MAX_LUN);
4009 			*nlogicals = HPSA_MAX_LUN;
4010 	}
4011 	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4012 		dev_warn(&h->pdev->dev,
4013 			"maximum logical + physical LUNs (%d) exceeded. "
4014 			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4015 			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4016 		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4017 	}
4018 	return 0;
4019 }
4020 
4021 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4022 	int i, int nphysicals, int nlogicals,
4023 	struct ReportExtendedLUNdata *physdev_list,
4024 	struct ReportLUNdata *logdev_list)
4025 {
4026 	/* Helper function, figure out where the LUN ID info is coming from
4027 	 * given index i, lists of physical and logical devices, where in
4028 	 * the list the raid controller is supposed to appear (first or last)
4029 	 */
4030 
4031 	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4032 	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4033 
4034 	if (i == raid_ctlr_position)
4035 		return RAID_CTLR_LUNID;
4036 
4037 	if (i < logicals_start)
4038 		return &physdev_list->LUN[i -
4039 				(raid_ctlr_position == 0)].lunid[0];
4040 
4041 	if (i < last_device)
4042 		return &logdev_list->LUN[i - nphysicals -
4043 			(raid_ctlr_position == 0)][0];
4044 	BUG();
4045 	return NULL;
4046 }
4047 
4048 /* get physical drive ioaccel handle and queue depth */
4049 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4050 		struct hpsa_scsi_dev_t *dev,
4051 		struct ReportExtendedLUNdata *rlep, int rle_index,
4052 		struct bmic_identify_physical_device *id_phys)
4053 {
4054 	int rc;
4055 	struct ext_report_lun_entry *rle;
4056 
4057 	rle = &rlep->LUN[rle_index];
4058 
4059 	dev->ioaccel_handle = rle->ioaccel_handle;
4060 	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4061 		dev->hba_ioaccel_enabled = 1;
4062 	memset(id_phys, 0, sizeof(*id_phys));
4063 	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4064 			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4065 			sizeof(*id_phys));
4066 	if (!rc)
4067 		/* Reserve space for FW operations */
4068 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4069 #define DRIVE_QUEUE_DEPTH 7
4070 		dev->queue_depth =
4071 			le16_to_cpu(id_phys->current_queue_depth_limit) -
4072 				DRIVE_CMDS_RESERVED_FOR_FW;
4073 	else
4074 		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4075 }
4076 
4077 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4078 	struct ReportExtendedLUNdata *rlep, int rle_index,
4079 	struct bmic_identify_physical_device *id_phys)
4080 {
4081 	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4082 
4083 	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4084 		this_device->hba_ioaccel_enabled = 1;
4085 
4086 	memcpy(&this_device->active_path_index,
4087 		&id_phys->active_path_number,
4088 		sizeof(this_device->active_path_index));
4089 	memcpy(&this_device->path_map,
4090 		&id_phys->redundant_path_present_map,
4091 		sizeof(this_device->path_map));
4092 	memcpy(&this_device->box,
4093 		&id_phys->alternate_paths_phys_box_on_port,
4094 		sizeof(this_device->box));
4095 	memcpy(&this_device->phys_connector,
4096 		&id_phys->alternate_paths_phys_connector,
4097 		sizeof(this_device->phys_connector));
4098 	memcpy(&this_device->bay,
4099 		&id_phys->phys_bay_in_box,
4100 		sizeof(this_device->bay));
4101 }
4102 
4103 /* get number of local logical disks. */
4104 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4105 	struct bmic_identify_controller *id_ctlr,
4106 	u32 *nlocals)
4107 {
4108 	int rc;
4109 
4110 	if (!id_ctlr) {
4111 		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4112 			__func__);
4113 		return -ENOMEM;
4114 	}
4115 	memset(id_ctlr, 0, sizeof(*id_ctlr));
4116 	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4117 	if (!rc)
4118 		if (id_ctlr->configured_logical_drive_count < 256)
4119 			*nlocals = id_ctlr->configured_logical_drive_count;
4120 		else
4121 			*nlocals = le16_to_cpu(
4122 					id_ctlr->extended_logical_unit_count);
4123 	else
4124 		*nlocals = -1;
4125 	return rc;
4126 }
4127 
4128 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4129 {
4130 	struct bmic_identify_physical_device *id_phys;
4131 	bool is_spare = false;
4132 	int rc;
4133 
4134 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4135 	if (!id_phys)
4136 		return false;
4137 
4138 	rc = hpsa_bmic_id_physical_device(h,
4139 					lunaddrbytes,
4140 					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4141 					id_phys, sizeof(*id_phys));
4142 	if (rc == 0)
4143 		is_spare = (id_phys->more_flags >> 6) & 0x01;
4144 
4145 	kfree(id_phys);
4146 	return is_spare;
4147 }
4148 
4149 #define RPL_DEV_FLAG_NON_DISK                           0x1
4150 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4151 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4152 
4153 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4154 
4155 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4156 				struct ext_report_lun_entry *rle)
4157 {
4158 	u8 device_flags;
4159 	u8 device_type;
4160 
4161 	if (!MASKED_DEVICE(lunaddrbytes))
4162 		return false;
4163 
4164 	device_flags = rle->device_flags;
4165 	device_type = rle->device_type;
4166 
4167 	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4168 		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4169 			return false;
4170 		return true;
4171 	}
4172 
4173 	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4174 		return false;
4175 
4176 	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4177 		return false;
4178 
4179 	/*
4180 	 * Spares may be spun down, we do not want to
4181 	 * do an Inquiry to a RAID set spare drive as
4182 	 * that would have them spun up, that is a
4183 	 * performance hit because I/O to the RAID device
4184 	 * stops while the spin up occurs which can take
4185 	 * over 50 seconds.
4186 	 */
4187 	if (hpsa_is_disk_spare(h, lunaddrbytes))
4188 		return true;
4189 
4190 	return false;
4191 }
4192 
4193 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4194 {
4195 	/* the idea here is we could get notified
4196 	 * that some devices have changed, so we do a report
4197 	 * physical luns and report logical luns cmd, and adjust
4198 	 * our list of devices accordingly.
4199 	 *
4200 	 * The scsi3addr's of devices won't change so long as the
4201 	 * adapter is not reset.  That means we can rescan and
4202 	 * tell which devices we already know about, vs. new
4203 	 * devices, vs.  disappearing devices.
4204 	 */
4205 	struct ReportExtendedLUNdata *physdev_list = NULL;
4206 	struct ReportLUNdata *logdev_list = NULL;
4207 	struct bmic_identify_physical_device *id_phys = NULL;
4208 	struct bmic_identify_controller *id_ctlr = NULL;
4209 	u32 nphysicals = 0;
4210 	u32 nlogicals = 0;
4211 	u32 nlocal_logicals = 0;
4212 	u32 ndev_allocated = 0;
4213 	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4214 	int ncurrent = 0;
4215 	int i, n_ext_target_devs, ndevs_to_allocate;
4216 	int raid_ctlr_position;
4217 	bool physical_device;
4218 	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4219 
4220 	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4221 	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4222 	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4223 	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4224 	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4225 	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4226 
4227 	if (!currentsd || !physdev_list || !logdev_list ||
4228 		!tmpdevice || !id_phys || !id_ctlr) {
4229 		dev_err(&h->pdev->dev, "out of memory\n");
4230 		goto out;
4231 	}
4232 	memset(lunzerobits, 0, sizeof(lunzerobits));
4233 
4234 	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4235 
4236 	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4237 			logdev_list, &nlogicals)) {
4238 		h->drv_req_rescan = 1;
4239 		goto out;
4240 	}
4241 
4242 	/* Set number of local logicals (non PTRAID) */
4243 	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4244 		dev_warn(&h->pdev->dev,
4245 			"%s: Can't determine number of local logical devices.\n",
4246 			__func__);
4247 	}
4248 
4249 	/* We might see up to the maximum number of logical and physical disks
4250 	 * plus external target devices, and a device for the local RAID
4251 	 * controller.
4252 	 */
4253 	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4254 
4255 	hpsa_ext_ctrl_present(h, physdev_list);
4256 
4257 	/* Allocate the per device structures */
4258 	for (i = 0; i < ndevs_to_allocate; i++) {
4259 		if (i >= HPSA_MAX_DEVICES) {
4260 			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4261 				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4262 				ndevs_to_allocate - HPSA_MAX_DEVICES);
4263 			break;
4264 		}
4265 
4266 		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4267 		if (!currentsd[i]) {
4268 			h->drv_req_rescan = 1;
4269 			goto out;
4270 		}
4271 		ndev_allocated++;
4272 	}
4273 
4274 	if (is_scsi_rev_5(h))
4275 		raid_ctlr_position = 0;
4276 	else
4277 		raid_ctlr_position = nphysicals + nlogicals;
4278 
4279 	/* adjust our table of devices */
4280 	n_ext_target_devs = 0;
4281 	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4282 		u8 *lunaddrbytes, is_OBDR = 0;
4283 		int rc = 0;
4284 		int phys_dev_index = i - (raid_ctlr_position == 0);
4285 		bool skip_device = false;
4286 
4287 		memset(tmpdevice, 0, sizeof(*tmpdevice));
4288 
4289 		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4290 
4291 		/* Figure out where the LUN ID info is coming from */
4292 		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4293 			i, nphysicals, nlogicals, physdev_list, logdev_list);
4294 
4295 		/* Determine if this is a lun from an external target array */
4296 		tmpdevice->external =
4297 			figure_external_status(h, raid_ctlr_position, i,
4298 						nphysicals, nlocal_logicals);
4299 
4300 		/*
4301 		 * Skip over some devices such as a spare.
4302 		 */
4303 		if (!tmpdevice->external && physical_device) {
4304 			skip_device = hpsa_skip_device(h, lunaddrbytes,
4305 					&physdev_list->LUN[phys_dev_index]);
4306 			if (skip_device)
4307 				continue;
4308 		}
4309 
4310 		/* Get device type, vendor, model, device id */
4311 		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4312 							&is_OBDR);
4313 		if (rc == -ENOMEM) {
4314 			dev_warn(&h->pdev->dev,
4315 				"Out of memory, rescan deferred.\n");
4316 			h->drv_req_rescan = 1;
4317 			goto out;
4318 		}
4319 		if (rc) {
4320 			h->drv_req_rescan = 1;
4321 			continue;
4322 		}
4323 
4324 		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4325 		this_device = currentsd[ncurrent];
4326 
4327 		*this_device = *tmpdevice;
4328 		this_device->physical_device = physical_device;
4329 
4330 		/*
4331 		 * Expose all devices except for physical devices that
4332 		 * are masked.
4333 		 */
4334 		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4335 			this_device->expose_device = 0;
4336 		else
4337 			this_device->expose_device = 1;
4338 
4339 
4340 		/*
4341 		 * Get the SAS address for physical devices that are exposed.
4342 		 */
4343 		if (this_device->physical_device && this_device->expose_device)
4344 			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4345 
4346 		switch (this_device->devtype) {
4347 		case TYPE_ROM:
4348 			/* We don't *really* support actual CD-ROM devices,
4349 			 * just "One Button Disaster Recovery" tape drive
4350 			 * which temporarily pretends to be a CD-ROM drive.
4351 			 * So we check that the device is really an OBDR tape
4352 			 * device by checking for "$DR-10" in bytes 43-48 of
4353 			 * the inquiry data.
4354 			 */
4355 			if (is_OBDR)
4356 				ncurrent++;
4357 			break;
4358 		case TYPE_DISK:
4359 		case TYPE_ZBC:
4360 			if (this_device->physical_device) {
4361 				/* The disk is in HBA mode. */
4362 				/* Never use RAID mapper in HBA mode. */
4363 				this_device->offload_enabled = 0;
4364 				hpsa_get_ioaccel_drive_info(h, this_device,
4365 					physdev_list, phys_dev_index, id_phys);
4366 				hpsa_get_path_info(this_device,
4367 					physdev_list, phys_dev_index, id_phys);
4368 			}
4369 			ncurrent++;
4370 			break;
4371 		case TYPE_TAPE:
4372 		case TYPE_MEDIUM_CHANGER:
4373 			ncurrent++;
4374 			break;
4375 		case TYPE_ENCLOSURE:
4376 			if (!this_device->external)
4377 				hpsa_get_enclosure_info(h, lunaddrbytes,
4378 						physdev_list, phys_dev_index,
4379 						this_device);
4380 			ncurrent++;
4381 			break;
4382 		case TYPE_RAID:
4383 			/* Only present the Smartarray HBA as a RAID controller.
4384 			 * If it's a RAID controller other than the HBA itself
4385 			 * (an external RAID controller, MSA500 or similar)
4386 			 * don't present it.
4387 			 */
4388 			if (!is_hba_lunid(lunaddrbytes))
4389 				break;
4390 			ncurrent++;
4391 			break;
4392 		default:
4393 			break;
4394 		}
4395 		if (ncurrent >= HPSA_MAX_DEVICES)
4396 			break;
4397 	}
4398 
4399 	if (h->sas_host == NULL) {
4400 		int rc = 0;
4401 
4402 		rc = hpsa_add_sas_host(h);
4403 		if (rc) {
4404 			dev_warn(&h->pdev->dev,
4405 				"Could not add sas host %d\n", rc);
4406 			goto out;
4407 		}
4408 	}
4409 
4410 	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4411 out:
4412 	kfree(tmpdevice);
4413 	for (i = 0; i < ndev_allocated; i++)
4414 		kfree(currentsd[i]);
4415 	kfree(currentsd);
4416 	kfree(physdev_list);
4417 	kfree(logdev_list);
4418 	kfree(id_ctlr);
4419 	kfree(id_phys);
4420 }
4421 
4422 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4423 				   struct scatterlist *sg)
4424 {
4425 	u64 addr64 = (u64) sg_dma_address(sg);
4426 	unsigned int len = sg_dma_len(sg);
4427 
4428 	desc->Addr = cpu_to_le64(addr64);
4429 	desc->Len = cpu_to_le32(len);
4430 	desc->Ext = 0;
4431 }
4432 
4433 /*
4434  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4435  * dma mapping  and fills in the scatter gather entries of the
4436  * hpsa command, cp.
4437  */
4438 static int hpsa_scatter_gather(struct ctlr_info *h,
4439 		struct CommandList *cp,
4440 		struct scsi_cmnd *cmd)
4441 {
4442 	struct scatterlist *sg;
4443 	int use_sg, i, sg_limit, chained, last_sg;
4444 	struct SGDescriptor *curr_sg;
4445 
4446 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4447 
4448 	use_sg = scsi_dma_map(cmd);
4449 	if (use_sg < 0)
4450 		return use_sg;
4451 
4452 	if (!use_sg)
4453 		goto sglist_finished;
4454 
4455 	/*
4456 	 * If the number of entries is greater than the max for a single list,
4457 	 * then we have a chained list; we will set up all but one entry in the
4458 	 * first list (the last entry is saved for link information);
4459 	 * otherwise, we don't have a chained list and we'll set up at each of
4460 	 * the entries in the one list.
4461 	 */
4462 	curr_sg = cp->SG;
4463 	chained = use_sg > h->max_cmd_sg_entries;
4464 	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4465 	last_sg = scsi_sg_count(cmd) - 1;
4466 	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4467 		hpsa_set_sg_descriptor(curr_sg, sg);
4468 		curr_sg++;
4469 	}
4470 
4471 	if (chained) {
4472 		/*
4473 		 * Continue with the chained list.  Set curr_sg to the chained
4474 		 * list.  Modify the limit to the total count less the entries
4475 		 * we've already set up.  Resume the scan at the list entry
4476 		 * where the previous loop left off.
4477 		 */
4478 		curr_sg = h->cmd_sg_list[cp->cmdindex];
4479 		sg_limit = use_sg - sg_limit;
4480 		for_each_sg(sg, sg, sg_limit, i) {
4481 			hpsa_set_sg_descriptor(curr_sg, sg);
4482 			curr_sg++;
4483 		}
4484 	}
4485 
4486 	/* Back the pointer up to the last entry and mark it as "last". */
4487 	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4488 
4489 	if (use_sg + chained > h->maxSG)
4490 		h->maxSG = use_sg + chained;
4491 
4492 	if (chained) {
4493 		cp->Header.SGList = h->max_cmd_sg_entries;
4494 		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4495 		if (hpsa_map_sg_chain_block(h, cp)) {
4496 			scsi_dma_unmap(cmd);
4497 			return -1;
4498 		}
4499 		return 0;
4500 	}
4501 
4502 sglist_finished:
4503 
4504 	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4505 	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4506 	return 0;
4507 }
4508 
4509 #define BUFLEN 128
4510 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4511 						u8 *cdb, int cdb_len,
4512 						const char *func)
4513 {
4514 	char buf[BUFLEN];
4515 	int outlen;
4516 	int i;
4517 
4518 	outlen = scnprintf(buf, BUFLEN,
4519 				"%s: Blocking zero-length request: CDB:", func);
4520 	for (i = 0; i < cdb_len; i++)
4521 		outlen += scnprintf(buf+outlen, BUFLEN - outlen,
4522 					"%02hhx", cdb[i]);
4523 	dev_warn(&h->pdev->dev, "%s\n", buf);
4524 }
4525 
4526 #define IO_ACCEL_INELIGIBLE 1
4527 /* zero-length transfers trigger hardware errors. */
4528 static bool is_zero_length_transfer(u8 *cdb)
4529 {
4530 	u32 block_cnt;
4531 
4532 	/* Block zero-length transfer sizes on certain commands. */
4533 	switch (cdb[0]) {
4534 	case READ_10:
4535 	case WRITE_10:
4536 	case VERIFY:		/* 0x2F */
4537 	case WRITE_VERIFY:	/* 0x2E */
4538 		block_cnt = get_unaligned_be16(&cdb[7]);
4539 		break;
4540 	case READ_12:
4541 	case WRITE_12:
4542 	case VERIFY_12: /* 0xAF */
4543 	case WRITE_VERIFY_12:	/* 0xAE */
4544 		block_cnt = get_unaligned_be32(&cdb[6]);
4545 		break;
4546 	case READ_16:
4547 	case WRITE_16:
4548 	case VERIFY_16:		/* 0x8F */
4549 		block_cnt = get_unaligned_be32(&cdb[10]);
4550 		break;
4551 	default:
4552 		return false;
4553 	}
4554 
4555 	return block_cnt == 0;
4556 }
4557 
4558 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4559 {
4560 	int is_write = 0;
4561 	u32 block;
4562 	u32 block_cnt;
4563 
4564 	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4565 	switch (cdb[0]) {
4566 	case WRITE_6:
4567 	case WRITE_12:
4568 		is_write = 1;
4569 	case READ_6:
4570 	case READ_12:
4571 		if (*cdb_len == 6) {
4572 			block = (((cdb[1] & 0x1F) << 16) |
4573 				(cdb[2] << 8) |
4574 				cdb[3]);
4575 			block_cnt = cdb[4];
4576 			if (block_cnt == 0)
4577 				block_cnt = 256;
4578 		} else {
4579 			BUG_ON(*cdb_len != 12);
4580 			block = get_unaligned_be32(&cdb[2]);
4581 			block_cnt = get_unaligned_be32(&cdb[6]);
4582 		}
4583 		if (block_cnt > 0xffff)
4584 			return IO_ACCEL_INELIGIBLE;
4585 
4586 		cdb[0] = is_write ? WRITE_10 : READ_10;
4587 		cdb[1] = 0;
4588 		cdb[2] = (u8) (block >> 24);
4589 		cdb[3] = (u8) (block >> 16);
4590 		cdb[4] = (u8) (block >> 8);
4591 		cdb[5] = (u8) (block);
4592 		cdb[6] = 0;
4593 		cdb[7] = (u8) (block_cnt >> 8);
4594 		cdb[8] = (u8) (block_cnt);
4595 		cdb[9] = 0;
4596 		*cdb_len = 10;
4597 		break;
4598 	}
4599 	return 0;
4600 }
4601 
4602 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4603 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4604 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4605 {
4606 	struct scsi_cmnd *cmd = c->scsi_cmd;
4607 	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4608 	unsigned int len;
4609 	unsigned int total_len = 0;
4610 	struct scatterlist *sg;
4611 	u64 addr64;
4612 	int use_sg, i;
4613 	struct SGDescriptor *curr_sg;
4614 	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4615 
4616 	/* TODO: implement chaining support */
4617 	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4618 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4619 		return IO_ACCEL_INELIGIBLE;
4620 	}
4621 
4622 	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4623 
4624 	if (is_zero_length_transfer(cdb)) {
4625 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4626 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4627 		return IO_ACCEL_INELIGIBLE;
4628 	}
4629 
4630 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4631 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4632 		return IO_ACCEL_INELIGIBLE;
4633 	}
4634 
4635 	c->cmd_type = CMD_IOACCEL1;
4636 
4637 	/* Adjust the DMA address to point to the accelerated command buffer */
4638 	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4639 				(c->cmdindex * sizeof(*cp));
4640 	BUG_ON(c->busaddr & 0x0000007F);
4641 
4642 	use_sg = scsi_dma_map(cmd);
4643 	if (use_sg < 0) {
4644 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4645 		return use_sg;
4646 	}
4647 
4648 	if (use_sg) {
4649 		curr_sg = cp->SG;
4650 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4651 			addr64 = (u64) sg_dma_address(sg);
4652 			len  = sg_dma_len(sg);
4653 			total_len += len;
4654 			curr_sg->Addr = cpu_to_le64(addr64);
4655 			curr_sg->Len = cpu_to_le32(len);
4656 			curr_sg->Ext = cpu_to_le32(0);
4657 			curr_sg++;
4658 		}
4659 		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4660 
4661 		switch (cmd->sc_data_direction) {
4662 		case DMA_TO_DEVICE:
4663 			control |= IOACCEL1_CONTROL_DATA_OUT;
4664 			break;
4665 		case DMA_FROM_DEVICE:
4666 			control |= IOACCEL1_CONTROL_DATA_IN;
4667 			break;
4668 		case DMA_NONE:
4669 			control |= IOACCEL1_CONTROL_NODATAXFER;
4670 			break;
4671 		default:
4672 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4673 			cmd->sc_data_direction);
4674 			BUG();
4675 			break;
4676 		}
4677 	} else {
4678 		control |= IOACCEL1_CONTROL_NODATAXFER;
4679 	}
4680 
4681 	c->Header.SGList = use_sg;
4682 	/* Fill out the command structure to submit */
4683 	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4684 	cp->transfer_len = cpu_to_le32(total_len);
4685 	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4686 			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4687 	cp->control = cpu_to_le32(control);
4688 	memcpy(cp->CDB, cdb, cdb_len);
4689 	memcpy(cp->CISS_LUN, scsi3addr, 8);
4690 	/* Tag was already set at init time. */
4691 	enqueue_cmd_and_start_io(h, c);
4692 	return 0;
4693 }
4694 
4695 /*
4696  * Queue a command directly to a device behind the controller using the
4697  * I/O accelerator path.
4698  */
4699 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4700 	struct CommandList *c)
4701 {
4702 	struct scsi_cmnd *cmd = c->scsi_cmd;
4703 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4704 
4705 	if (!dev)
4706 		return -1;
4707 
4708 	c->phys_disk = dev;
4709 
4710 	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4711 		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4712 }
4713 
4714 /*
4715  * Set encryption parameters for the ioaccel2 request
4716  */
4717 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4718 	struct CommandList *c, struct io_accel2_cmd *cp)
4719 {
4720 	struct scsi_cmnd *cmd = c->scsi_cmd;
4721 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4722 	struct raid_map_data *map = &dev->raid_map;
4723 	u64 first_block;
4724 
4725 	/* Are we doing encryption on this device */
4726 	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4727 		return;
4728 	/* Set the data encryption key index. */
4729 	cp->dekindex = map->dekindex;
4730 
4731 	/* Set the encryption enable flag, encoded into direction field. */
4732 	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4733 
4734 	/* Set encryption tweak values based on logical block address
4735 	 * If block size is 512, tweak value is LBA.
4736 	 * For other block sizes, tweak is (LBA * block size)/ 512)
4737 	 */
4738 	switch (cmd->cmnd[0]) {
4739 	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4740 	case READ_6:
4741 	case WRITE_6:
4742 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4743 				(cmd->cmnd[2] << 8) |
4744 				cmd->cmnd[3]);
4745 		break;
4746 	case WRITE_10:
4747 	case READ_10:
4748 	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4749 	case WRITE_12:
4750 	case READ_12:
4751 		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4752 		break;
4753 	case WRITE_16:
4754 	case READ_16:
4755 		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4756 		break;
4757 	default:
4758 		dev_err(&h->pdev->dev,
4759 			"ERROR: %s: size (0x%x) not supported for encryption\n",
4760 			__func__, cmd->cmnd[0]);
4761 		BUG();
4762 		break;
4763 	}
4764 
4765 	if (le32_to_cpu(map->volume_blk_size) != 512)
4766 		first_block = first_block *
4767 				le32_to_cpu(map->volume_blk_size)/512;
4768 
4769 	cp->tweak_lower = cpu_to_le32(first_block);
4770 	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4771 }
4772 
4773 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4774 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4775 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4776 {
4777 	struct scsi_cmnd *cmd = c->scsi_cmd;
4778 	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4779 	struct ioaccel2_sg_element *curr_sg;
4780 	int use_sg, i;
4781 	struct scatterlist *sg;
4782 	u64 addr64;
4783 	u32 len;
4784 	u32 total_len = 0;
4785 
4786 	if (!cmd->device)
4787 		return -1;
4788 
4789 	if (!cmd->device->hostdata)
4790 		return -1;
4791 
4792 	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4793 
4794 	if (is_zero_length_transfer(cdb)) {
4795 		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4796 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4797 		return IO_ACCEL_INELIGIBLE;
4798 	}
4799 
4800 	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4801 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4802 		return IO_ACCEL_INELIGIBLE;
4803 	}
4804 
4805 	c->cmd_type = CMD_IOACCEL2;
4806 	/* Adjust the DMA address to point to the accelerated command buffer */
4807 	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4808 				(c->cmdindex * sizeof(*cp));
4809 	BUG_ON(c->busaddr & 0x0000007F);
4810 
4811 	memset(cp, 0, sizeof(*cp));
4812 	cp->IU_type = IOACCEL2_IU_TYPE;
4813 
4814 	use_sg = scsi_dma_map(cmd);
4815 	if (use_sg < 0) {
4816 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4817 		return use_sg;
4818 	}
4819 
4820 	if (use_sg) {
4821 		curr_sg = cp->sg;
4822 		if (use_sg > h->ioaccel_maxsg) {
4823 			addr64 = le64_to_cpu(
4824 				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4825 			curr_sg->address = cpu_to_le64(addr64);
4826 			curr_sg->length = 0;
4827 			curr_sg->reserved[0] = 0;
4828 			curr_sg->reserved[1] = 0;
4829 			curr_sg->reserved[2] = 0;
4830 			curr_sg->chain_indicator = 0x80;
4831 
4832 			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4833 		}
4834 		scsi_for_each_sg(cmd, sg, use_sg, i) {
4835 			addr64 = (u64) sg_dma_address(sg);
4836 			len  = sg_dma_len(sg);
4837 			total_len += len;
4838 			curr_sg->address = cpu_to_le64(addr64);
4839 			curr_sg->length = cpu_to_le32(len);
4840 			curr_sg->reserved[0] = 0;
4841 			curr_sg->reserved[1] = 0;
4842 			curr_sg->reserved[2] = 0;
4843 			curr_sg->chain_indicator = 0;
4844 			curr_sg++;
4845 		}
4846 
4847 		switch (cmd->sc_data_direction) {
4848 		case DMA_TO_DEVICE:
4849 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4850 			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4851 			break;
4852 		case DMA_FROM_DEVICE:
4853 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4854 			cp->direction |= IOACCEL2_DIR_DATA_IN;
4855 			break;
4856 		case DMA_NONE:
4857 			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4858 			cp->direction |= IOACCEL2_DIR_NO_DATA;
4859 			break;
4860 		default:
4861 			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4862 				cmd->sc_data_direction);
4863 			BUG();
4864 			break;
4865 		}
4866 	} else {
4867 		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4868 		cp->direction |= IOACCEL2_DIR_NO_DATA;
4869 	}
4870 
4871 	/* Set encryption parameters, if necessary */
4872 	set_encrypt_ioaccel2(h, c, cp);
4873 
4874 	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4875 	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4876 	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4877 
4878 	cp->data_len = cpu_to_le32(total_len);
4879 	cp->err_ptr = cpu_to_le64(c->busaddr +
4880 			offsetof(struct io_accel2_cmd, error_data));
4881 	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4882 
4883 	/* fill in sg elements */
4884 	if (use_sg > h->ioaccel_maxsg) {
4885 		cp->sg_count = 1;
4886 		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4887 		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4888 			atomic_dec(&phys_disk->ioaccel_cmds_out);
4889 			scsi_dma_unmap(cmd);
4890 			return -1;
4891 		}
4892 	} else
4893 		cp->sg_count = (u8) use_sg;
4894 
4895 	enqueue_cmd_and_start_io(h, c);
4896 	return 0;
4897 }
4898 
4899 /*
4900  * Queue a command to the correct I/O accelerator path.
4901  */
4902 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4903 	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4904 	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4905 {
4906 	if (!c->scsi_cmd->device)
4907 		return -1;
4908 
4909 	if (!c->scsi_cmd->device->hostdata)
4910 		return -1;
4911 
4912 	/* Try to honor the device's queue depth */
4913 	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4914 					phys_disk->queue_depth) {
4915 		atomic_dec(&phys_disk->ioaccel_cmds_out);
4916 		return IO_ACCEL_INELIGIBLE;
4917 	}
4918 	if (h->transMethod & CFGTBL_Trans_io_accel1)
4919 		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4920 						cdb, cdb_len, scsi3addr,
4921 						phys_disk);
4922 	else
4923 		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4924 						cdb, cdb_len, scsi3addr,
4925 						phys_disk);
4926 }
4927 
4928 static void raid_map_helper(struct raid_map_data *map,
4929 		int offload_to_mirror, u32 *map_index, u32 *current_group)
4930 {
4931 	if (offload_to_mirror == 0)  {
4932 		/* use physical disk in the first mirrored group. */
4933 		*map_index %= le16_to_cpu(map->data_disks_per_row);
4934 		return;
4935 	}
4936 	do {
4937 		/* determine mirror group that *map_index indicates */
4938 		*current_group = *map_index /
4939 			le16_to_cpu(map->data_disks_per_row);
4940 		if (offload_to_mirror == *current_group)
4941 			continue;
4942 		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4943 			/* select map index from next group */
4944 			*map_index += le16_to_cpu(map->data_disks_per_row);
4945 			(*current_group)++;
4946 		} else {
4947 			/* select map index from first group */
4948 			*map_index %= le16_to_cpu(map->data_disks_per_row);
4949 			*current_group = 0;
4950 		}
4951 	} while (offload_to_mirror != *current_group);
4952 }
4953 
4954 /*
4955  * Attempt to perform offload RAID mapping for a logical volume I/O.
4956  */
4957 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4958 	struct CommandList *c)
4959 {
4960 	struct scsi_cmnd *cmd = c->scsi_cmd;
4961 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4962 	struct raid_map_data *map = &dev->raid_map;
4963 	struct raid_map_disk_data *dd = &map->data[0];
4964 	int is_write = 0;
4965 	u32 map_index;
4966 	u64 first_block, last_block;
4967 	u32 block_cnt;
4968 	u32 blocks_per_row;
4969 	u64 first_row, last_row;
4970 	u32 first_row_offset, last_row_offset;
4971 	u32 first_column, last_column;
4972 	u64 r0_first_row, r0_last_row;
4973 	u32 r5or6_blocks_per_row;
4974 	u64 r5or6_first_row, r5or6_last_row;
4975 	u32 r5or6_first_row_offset, r5or6_last_row_offset;
4976 	u32 r5or6_first_column, r5or6_last_column;
4977 	u32 total_disks_per_row;
4978 	u32 stripesize;
4979 	u32 first_group, last_group, current_group;
4980 	u32 map_row;
4981 	u32 disk_handle;
4982 	u64 disk_block;
4983 	u32 disk_block_cnt;
4984 	u8 cdb[16];
4985 	u8 cdb_len;
4986 	u16 strip_size;
4987 #if BITS_PER_LONG == 32
4988 	u64 tmpdiv;
4989 #endif
4990 	int offload_to_mirror;
4991 
4992 	if (!dev)
4993 		return -1;
4994 
4995 	/* check for valid opcode, get LBA and block count */
4996 	switch (cmd->cmnd[0]) {
4997 	case WRITE_6:
4998 		is_write = 1;
4999 	case READ_6:
5000 		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5001 				(cmd->cmnd[2] << 8) |
5002 				cmd->cmnd[3]);
5003 		block_cnt = cmd->cmnd[4];
5004 		if (block_cnt == 0)
5005 			block_cnt = 256;
5006 		break;
5007 	case WRITE_10:
5008 		is_write = 1;
5009 	case READ_10:
5010 		first_block =
5011 			(((u64) cmd->cmnd[2]) << 24) |
5012 			(((u64) cmd->cmnd[3]) << 16) |
5013 			(((u64) cmd->cmnd[4]) << 8) |
5014 			cmd->cmnd[5];
5015 		block_cnt =
5016 			(((u32) cmd->cmnd[7]) << 8) |
5017 			cmd->cmnd[8];
5018 		break;
5019 	case WRITE_12:
5020 		is_write = 1;
5021 	case READ_12:
5022 		first_block =
5023 			(((u64) cmd->cmnd[2]) << 24) |
5024 			(((u64) cmd->cmnd[3]) << 16) |
5025 			(((u64) cmd->cmnd[4]) << 8) |
5026 			cmd->cmnd[5];
5027 		block_cnt =
5028 			(((u32) cmd->cmnd[6]) << 24) |
5029 			(((u32) cmd->cmnd[7]) << 16) |
5030 			(((u32) cmd->cmnd[8]) << 8) |
5031 		cmd->cmnd[9];
5032 		break;
5033 	case WRITE_16:
5034 		is_write = 1;
5035 	case READ_16:
5036 		first_block =
5037 			(((u64) cmd->cmnd[2]) << 56) |
5038 			(((u64) cmd->cmnd[3]) << 48) |
5039 			(((u64) cmd->cmnd[4]) << 40) |
5040 			(((u64) cmd->cmnd[5]) << 32) |
5041 			(((u64) cmd->cmnd[6]) << 24) |
5042 			(((u64) cmd->cmnd[7]) << 16) |
5043 			(((u64) cmd->cmnd[8]) << 8) |
5044 			cmd->cmnd[9];
5045 		block_cnt =
5046 			(((u32) cmd->cmnd[10]) << 24) |
5047 			(((u32) cmd->cmnd[11]) << 16) |
5048 			(((u32) cmd->cmnd[12]) << 8) |
5049 			cmd->cmnd[13];
5050 		break;
5051 	default:
5052 		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5053 	}
5054 	last_block = first_block + block_cnt - 1;
5055 
5056 	/* check for write to non-RAID-0 */
5057 	if (is_write && dev->raid_level != 0)
5058 		return IO_ACCEL_INELIGIBLE;
5059 
5060 	/* check for invalid block or wraparound */
5061 	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5062 		last_block < first_block)
5063 		return IO_ACCEL_INELIGIBLE;
5064 
5065 	/* calculate stripe information for the request */
5066 	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5067 				le16_to_cpu(map->strip_size);
5068 	strip_size = le16_to_cpu(map->strip_size);
5069 #if BITS_PER_LONG == 32
5070 	tmpdiv = first_block;
5071 	(void) do_div(tmpdiv, blocks_per_row);
5072 	first_row = tmpdiv;
5073 	tmpdiv = last_block;
5074 	(void) do_div(tmpdiv, blocks_per_row);
5075 	last_row = tmpdiv;
5076 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5077 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5078 	tmpdiv = first_row_offset;
5079 	(void) do_div(tmpdiv, strip_size);
5080 	first_column = tmpdiv;
5081 	tmpdiv = last_row_offset;
5082 	(void) do_div(tmpdiv, strip_size);
5083 	last_column = tmpdiv;
5084 #else
5085 	first_row = first_block / blocks_per_row;
5086 	last_row = last_block / blocks_per_row;
5087 	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5088 	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5089 	first_column = first_row_offset / strip_size;
5090 	last_column = last_row_offset / strip_size;
5091 #endif
5092 
5093 	/* if this isn't a single row/column then give to the controller */
5094 	if ((first_row != last_row) || (first_column != last_column))
5095 		return IO_ACCEL_INELIGIBLE;
5096 
5097 	/* proceeding with driver mapping */
5098 	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5099 				le16_to_cpu(map->metadata_disks_per_row);
5100 	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5101 				le16_to_cpu(map->row_cnt);
5102 	map_index = (map_row * total_disks_per_row) + first_column;
5103 
5104 	switch (dev->raid_level) {
5105 	case HPSA_RAID_0:
5106 		break; /* nothing special to do */
5107 	case HPSA_RAID_1:
5108 		/* Handles load balance across RAID 1 members.
5109 		 * (2-drive R1 and R10 with even # of drives.)
5110 		 * Appropriate for SSDs, not optimal for HDDs
5111 		 */
5112 		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5113 		if (dev->offload_to_mirror)
5114 			map_index += le16_to_cpu(map->data_disks_per_row);
5115 		dev->offload_to_mirror = !dev->offload_to_mirror;
5116 		break;
5117 	case HPSA_RAID_ADM:
5118 		/* Handles N-way mirrors  (R1-ADM)
5119 		 * and R10 with # of drives divisible by 3.)
5120 		 */
5121 		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5122 
5123 		offload_to_mirror = dev->offload_to_mirror;
5124 		raid_map_helper(map, offload_to_mirror,
5125 				&map_index, &current_group);
5126 		/* set mirror group to use next time */
5127 		offload_to_mirror =
5128 			(offload_to_mirror >=
5129 			le16_to_cpu(map->layout_map_count) - 1)
5130 			? 0 : offload_to_mirror + 1;
5131 		dev->offload_to_mirror = offload_to_mirror;
5132 		/* Avoid direct use of dev->offload_to_mirror within this
5133 		 * function since multiple threads might simultaneously
5134 		 * increment it beyond the range of dev->layout_map_count -1.
5135 		 */
5136 		break;
5137 	case HPSA_RAID_5:
5138 	case HPSA_RAID_6:
5139 		if (le16_to_cpu(map->layout_map_count) <= 1)
5140 			break;
5141 
5142 		/* Verify first and last block are in same RAID group */
5143 		r5or6_blocks_per_row =
5144 			le16_to_cpu(map->strip_size) *
5145 			le16_to_cpu(map->data_disks_per_row);
5146 		BUG_ON(r5or6_blocks_per_row == 0);
5147 		stripesize = r5or6_blocks_per_row *
5148 			le16_to_cpu(map->layout_map_count);
5149 #if BITS_PER_LONG == 32
5150 		tmpdiv = first_block;
5151 		first_group = do_div(tmpdiv, stripesize);
5152 		tmpdiv = first_group;
5153 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5154 		first_group = tmpdiv;
5155 		tmpdiv = last_block;
5156 		last_group = do_div(tmpdiv, stripesize);
5157 		tmpdiv = last_group;
5158 		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5159 		last_group = tmpdiv;
5160 #else
5161 		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5162 		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5163 #endif
5164 		if (first_group != last_group)
5165 			return IO_ACCEL_INELIGIBLE;
5166 
5167 		/* Verify request is in a single row of RAID 5/6 */
5168 #if BITS_PER_LONG == 32
5169 		tmpdiv = first_block;
5170 		(void) do_div(tmpdiv, stripesize);
5171 		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5172 		tmpdiv = last_block;
5173 		(void) do_div(tmpdiv, stripesize);
5174 		r5or6_last_row = r0_last_row = tmpdiv;
5175 #else
5176 		first_row = r5or6_first_row = r0_first_row =
5177 						first_block / stripesize;
5178 		r5or6_last_row = r0_last_row = last_block / stripesize;
5179 #endif
5180 		if (r5or6_first_row != r5or6_last_row)
5181 			return IO_ACCEL_INELIGIBLE;
5182 
5183 
5184 		/* Verify request is in a single column */
5185 #if BITS_PER_LONG == 32
5186 		tmpdiv = first_block;
5187 		first_row_offset = do_div(tmpdiv, stripesize);
5188 		tmpdiv = first_row_offset;
5189 		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5190 		r5or6_first_row_offset = first_row_offset;
5191 		tmpdiv = last_block;
5192 		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5193 		tmpdiv = r5or6_last_row_offset;
5194 		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5195 		tmpdiv = r5or6_first_row_offset;
5196 		(void) do_div(tmpdiv, map->strip_size);
5197 		first_column = r5or6_first_column = tmpdiv;
5198 		tmpdiv = r5or6_last_row_offset;
5199 		(void) do_div(tmpdiv, map->strip_size);
5200 		r5or6_last_column = tmpdiv;
5201 #else
5202 		first_row_offset = r5or6_first_row_offset =
5203 			(u32)((first_block % stripesize) %
5204 						r5or6_blocks_per_row);
5205 
5206 		r5or6_last_row_offset =
5207 			(u32)((last_block % stripesize) %
5208 						r5or6_blocks_per_row);
5209 
5210 		first_column = r5or6_first_column =
5211 			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5212 		r5or6_last_column =
5213 			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5214 #endif
5215 		if (r5or6_first_column != r5or6_last_column)
5216 			return IO_ACCEL_INELIGIBLE;
5217 
5218 		/* Request is eligible */
5219 		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5220 			le16_to_cpu(map->row_cnt);
5221 
5222 		map_index = (first_group *
5223 			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5224 			(map_row * total_disks_per_row) + first_column;
5225 		break;
5226 	default:
5227 		return IO_ACCEL_INELIGIBLE;
5228 	}
5229 
5230 	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5231 		return IO_ACCEL_INELIGIBLE;
5232 
5233 	c->phys_disk = dev->phys_disk[map_index];
5234 	if (!c->phys_disk)
5235 		return IO_ACCEL_INELIGIBLE;
5236 
5237 	disk_handle = dd[map_index].ioaccel_handle;
5238 	disk_block = le64_to_cpu(map->disk_starting_blk) +
5239 			first_row * le16_to_cpu(map->strip_size) +
5240 			(first_row_offset - first_column *
5241 			le16_to_cpu(map->strip_size));
5242 	disk_block_cnt = block_cnt;
5243 
5244 	/* handle differing logical/physical block sizes */
5245 	if (map->phys_blk_shift) {
5246 		disk_block <<= map->phys_blk_shift;
5247 		disk_block_cnt <<= map->phys_blk_shift;
5248 	}
5249 	BUG_ON(disk_block_cnt > 0xffff);
5250 
5251 	/* build the new CDB for the physical disk I/O */
5252 	if (disk_block > 0xffffffff) {
5253 		cdb[0] = is_write ? WRITE_16 : READ_16;
5254 		cdb[1] = 0;
5255 		cdb[2] = (u8) (disk_block >> 56);
5256 		cdb[3] = (u8) (disk_block >> 48);
5257 		cdb[4] = (u8) (disk_block >> 40);
5258 		cdb[5] = (u8) (disk_block >> 32);
5259 		cdb[6] = (u8) (disk_block >> 24);
5260 		cdb[7] = (u8) (disk_block >> 16);
5261 		cdb[8] = (u8) (disk_block >> 8);
5262 		cdb[9] = (u8) (disk_block);
5263 		cdb[10] = (u8) (disk_block_cnt >> 24);
5264 		cdb[11] = (u8) (disk_block_cnt >> 16);
5265 		cdb[12] = (u8) (disk_block_cnt >> 8);
5266 		cdb[13] = (u8) (disk_block_cnt);
5267 		cdb[14] = 0;
5268 		cdb[15] = 0;
5269 		cdb_len = 16;
5270 	} else {
5271 		cdb[0] = is_write ? WRITE_10 : READ_10;
5272 		cdb[1] = 0;
5273 		cdb[2] = (u8) (disk_block >> 24);
5274 		cdb[3] = (u8) (disk_block >> 16);
5275 		cdb[4] = (u8) (disk_block >> 8);
5276 		cdb[5] = (u8) (disk_block);
5277 		cdb[6] = 0;
5278 		cdb[7] = (u8) (disk_block_cnt >> 8);
5279 		cdb[8] = (u8) (disk_block_cnt);
5280 		cdb[9] = 0;
5281 		cdb_len = 10;
5282 	}
5283 	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5284 						dev->scsi3addr,
5285 						dev->phys_disk[map_index]);
5286 }
5287 
5288 /*
5289  * Submit commands down the "normal" RAID stack path
5290  * All callers to hpsa_ciss_submit must check lockup_detected
5291  * beforehand, before (opt.) and after calling cmd_alloc
5292  */
5293 static int hpsa_ciss_submit(struct ctlr_info *h,
5294 	struct CommandList *c, struct scsi_cmnd *cmd,
5295 	unsigned char scsi3addr[])
5296 {
5297 	cmd->host_scribble = (unsigned char *) c;
5298 	c->cmd_type = CMD_SCSI;
5299 	c->scsi_cmd = cmd;
5300 	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5301 	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5302 	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5303 
5304 	/* Fill in the request block... */
5305 
5306 	c->Request.Timeout = 0;
5307 	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5308 	c->Request.CDBLen = cmd->cmd_len;
5309 	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5310 	switch (cmd->sc_data_direction) {
5311 	case DMA_TO_DEVICE:
5312 		c->Request.type_attr_dir =
5313 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5314 		break;
5315 	case DMA_FROM_DEVICE:
5316 		c->Request.type_attr_dir =
5317 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5318 		break;
5319 	case DMA_NONE:
5320 		c->Request.type_attr_dir =
5321 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5322 		break;
5323 	case DMA_BIDIRECTIONAL:
5324 		/* This can happen if a buggy application does a scsi passthru
5325 		 * and sets both inlen and outlen to non-zero. ( see
5326 		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5327 		 */
5328 
5329 		c->Request.type_attr_dir =
5330 			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5331 		/* This is technically wrong, and hpsa controllers should
5332 		 * reject it with CMD_INVALID, which is the most correct
5333 		 * response, but non-fibre backends appear to let it
5334 		 * slide by, and give the same results as if this field
5335 		 * were set correctly.  Either way is acceptable for
5336 		 * our purposes here.
5337 		 */
5338 
5339 		break;
5340 
5341 	default:
5342 		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5343 			cmd->sc_data_direction);
5344 		BUG();
5345 		break;
5346 	}
5347 
5348 	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5349 		hpsa_cmd_resolve_and_free(h, c);
5350 		return SCSI_MLQUEUE_HOST_BUSY;
5351 	}
5352 	enqueue_cmd_and_start_io(h, c);
5353 	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5354 	return 0;
5355 }
5356 
5357 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5358 				struct CommandList *c)
5359 {
5360 	dma_addr_t cmd_dma_handle, err_dma_handle;
5361 
5362 	/* Zero out all of commandlist except the last field, refcount */
5363 	memset(c, 0, offsetof(struct CommandList, refcount));
5364 	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5365 	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5366 	c->err_info = h->errinfo_pool + index;
5367 	memset(c->err_info, 0, sizeof(*c->err_info));
5368 	err_dma_handle = h->errinfo_pool_dhandle
5369 	    + index * sizeof(*c->err_info);
5370 	c->cmdindex = index;
5371 	c->busaddr = (u32) cmd_dma_handle;
5372 	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5373 	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5374 	c->h = h;
5375 	c->scsi_cmd = SCSI_CMD_IDLE;
5376 }
5377 
5378 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5379 {
5380 	int i;
5381 
5382 	for (i = 0; i < h->nr_cmds; i++) {
5383 		struct CommandList *c = h->cmd_pool + i;
5384 
5385 		hpsa_cmd_init(h, i, c);
5386 		atomic_set(&c->refcount, 0);
5387 	}
5388 }
5389 
5390 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5391 				struct CommandList *c)
5392 {
5393 	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5394 
5395 	BUG_ON(c->cmdindex != index);
5396 
5397 	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5398 	memset(c->err_info, 0, sizeof(*c->err_info));
5399 	c->busaddr = (u32) cmd_dma_handle;
5400 }
5401 
5402 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5403 		struct CommandList *c, struct scsi_cmnd *cmd,
5404 		unsigned char *scsi3addr)
5405 {
5406 	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5407 	int rc = IO_ACCEL_INELIGIBLE;
5408 
5409 	if (!dev)
5410 		return SCSI_MLQUEUE_HOST_BUSY;
5411 
5412 	cmd->host_scribble = (unsigned char *) c;
5413 
5414 	if (dev->offload_enabled) {
5415 		hpsa_cmd_init(h, c->cmdindex, c);
5416 		c->cmd_type = CMD_SCSI;
5417 		c->scsi_cmd = cmd;
5418 		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5419 		if (rc < 0)     /* scsi_dma_map failed. */
5420 			rc = SCSI_MLQUEUE_HOST_BUSY;
5421 	} else if (dev->hba_ioaccel_enabled) {
5422 		hpsa_cmd_init(h, c->cmdindex, c);
5423 		c->cmd_type = CMD_SCSI;
5424 		c->scsi_cmd = cmd;
5425 		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5426 		if (rc < 0)     /* scsi_dma_map failed. */
5427 			rc = SCSI_MLQUEUE_HOST_BUSY;
5428 	}
5429 	return rc;
5430 }
5431 
5432 static void hpsa_command_resubmit_worker(struct work_struct *work)
5433 {
5434 	struct scsi_cmnd *cmd;
5435 	struct hpsa_scsi_dev_t *dev;
5436 	struct CommandList *c = container_of(work, struct CommandList, work);
5437 
5438 	cmd = c->scsi_cmd;
5439 	dev = cmd->device->hostdata;
5440 	if (!dev) {
5441 		cmd->result = DID_NO_CONNECT << 16;
5442 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5443 	}
5444 	if (c->reset_pending)
5445 		return hpsa_cmd_free_and_done(c->h, c, cmd);
5446 	if (c->cmd_type == CMD_IOACCEL2) {
5447 		struct ctlr_info *h = c->h;
5448 		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5449 		int rc;
5450 
5451 		if (c2->error_data.serv_response ==
5452 				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5453 			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5454 			if (rc == 0)
5455 				return;
5456 			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5457 				/*
5458 				 * If we get here, it means dma mapping failed.
5459 				 * Try again via scsi mid layer, which will
5460 				 * then get SCSI_MLQUEUE_HOST_BUSY.
5461 				 */
5462 				cmd->result = DID_IMM_RETRY << 16;
5463 				return hpsa_cmd_free_and_done(h, c, cmd);
5464 			}
5465 			/* else, fall thru and resubmit down CISS path */
5466 		}
5467 	}
5468 	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5469 	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5470 		/*
5471 		 * If we get here, it means dma mapping failed. Try
5472 		 * again via scsi mid layer, which will then get
5473 		 * SCSI_MLQUEUE_HOST_BUSY.
5474 		 *
5475 		 * hpsa_ciss_submit will have already freed c
5476 		 * if it encountered a dma mapping failure.
5477 		 */
5478 		cmd->result = DID_IMM_RETRY << 16;
5479 		cmd->scsi_done(cmd);
5480 	}
5481 }
5482 
5483 /* Running in struct Scsi_Host->host_lock less mode */
5484 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5485 {
5486 	struct ctlr_info *h;
5487 	struct hpsa_scsi_dev_t *dev;
5488 	unsigned char scsi3addr[8];
5489 	struct CommandList *c;
5490 	int rc = 0;
5491 
5492 	/* Get the ptr to our adapter structure out of cmd->host. */
5493 	h = sdev_to_hba(cmd->device);
5494 
5495 	BUG_ON(cmd->request->tag < 0);
5496 
5497 	dev = cmd->device->hostdata;
5498 	if (!dev) {
5499 		cmd->result = DID_NO_CONNECT << 16;
5500 		cmd->scsi_done(cmd);
5501 		return 0;
5502 	}
5503 
5504 	if (dev->removed) {
5505 		cmd->result = DID_NO_CONNECT << 16;
5506 		cmd->scsi_done(cmd);
5507 		return 0;
5508 	}
5509 
5510 	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5511 
5512 	if (unlikely(lockup_detected(h))) {
5513 		cmd->result = DID_NO_CONNECT << 16;
5514 		cmd->scsi_done(cmd);
5515 		return 0;
5516 	}
5517 	c = cmd_tagged_alloc(h, cmd);
5518 
5519 	/*
5520 	 * Call alternate submit routine for I/O accelerated commands.
5521 	 * Retries always go down the normal I/O path.
5522 	 */
5523 	if (likely(cmd->retries == 0 &&
5524 			!blk_rq_is_passthrough(cmd->request) &&
5525 			h->acciopath_status)) {
5526 		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5527 		if (rc == 0)
5528 			return 0;
5529 		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5530 			hpsa_cmd_resolve_and_free(h, c);
5531 			return SCSI_MLQUEUE_HOST_BUSY;
5532 		}
5533 	}
5534 	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5535 }
5536 
5537 static void hpsa_scan_complete(struct ctlr_info *h)
5538 {
5539 	unsigned long flags;
5540 
5541 	spin_lock_irqsave(&h->scan_lock, flags);
5542 	h->scan_finished = 1;
5543 	wake_up(&h->scan_wait_queue);
5544 	spin_unlock_irqrestore(&h->scan_lock, flags);
5545 }
5546 
5547 static void hpsa_scan_start(struct Scsi_Host *sh)
5548 {
5549 	struct ctlr_info *h = shost_to_hba(sh);
5550 	unsigned long flags;
5551 
5552 	/*
5553 	 * Don't let rescans be initiated on a controller known to be locked
5554 	 * up.  If the controller locks up *during* a rescan, that thread is
5555 	 * probably hosed, but at least we can prevent new rescan threads from
5556 	 * piling up on a locked up controller.
5557 	 */
5558 	if (unlikely(lockup_detected(h)))
5559 		return hpsa_scan_complete(h);
5560 
5561 	/*
5562 	 * If a scan is already waiting to run, no need to add another
5563 	 */
5564 	spin_lock_irqsave(&h->scan_lock, flags);
5565 	if (h->scan_waiting) {
5566 		spin_unlock_irqrestore(&h->scan_lock, flags);
5567 		return;
5568 	}
5569 
5570 	spin_unlock_irqrestore(&h->scan_lock, flags);
5571 
5572 	/* wait until any scan already in progress is finished. */
5573 	while (1) {
5574 		spin_lock_irqsave(&h->scan_lock, flags);
5575 		if (h->scan_finished)
5576 			break;
5577 		h->scan_waiting = 1;
5578 		spin_unlock_irqrestore(&h->scan_lock, flags);
5579 		wait_event(h->scan_wait_queue, h->scan_finished);
5580 		/* Note: We don't need to worry about a race between this
5581 		 * thread and driver unload because the midlayer will
5582 		 * have incremented the reference count, so unload won't
5583 		 * happen if we're in here.
5584 		 */
5585 	}
5586 	h->scan_finished = 0; /* mark scan as in progress */
5587 	h->scan_waiting = 0;
5588 	spin_unlock_irqrestore(&h->scan_lock, flags);
5589 
5590 	if (unlikely(lockup_detected(h)))
5591 		return hpsa_scan_complete(h);
5592 
5593 	/*
5594 	 * Do the scan after a reset completion
5595 	 */
5596 	spin_lock_irqsave(&h->reset_lock, flags);
5597 	if (h->reset_in_progress) {
5598 		h->drv_req_rescan = 1;
5599 		spin_unlock_irqrestore(&h->reset_lock, flags);
5600 		hpsa_scan_complete(h);
5601 		return;
5602 	}
5603 	spin_unlock_irqrestore(&h->reset_lock, flags);
5604 
5605 	hpsa_update_scsi_devices(h);
5606 
5607 	hpsa_scan_complete(h);
5608 }
5609 
5610 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5611 {
5612 	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5613 
5614 	if (!logical_drive)
5615 		return -ENODEV;
5616 
5617 	if (qdepth < 1)
5618 		qdepth = 1;
5619 	else if (qdepth > logical_drive->queue_depth)
5620 		qdepth = logical_drive->queue_depth;
5621 
5622 	return scsi_change_queue_depth(sdev, qdepth);
5623 }
5624 
5625 static int hpsa_scan_finished(struct Scsi_Host *sh,
5626 	unsigned long elapsed_time)
5627 {
5628 	struct ctlr_info *h = shost_to_hba(sh);
5629 	unsigned long flags;
5630 	int finished;
5631 
5632 	spin_lock_irqsave(&h->scan_lock, flags);
5633 	finished = h->scan_finished;
5634 	spin_unlock_irqrestore(&h->scan_lock, flags);
5635 	return finished;
5636 }
5637 
5638 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5639 {
5640 	struct Scsi_Host *sh;
5641 
5642 	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5643 	if (sh == NULL) {
5644 		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5645 		return -ENOMEM;
5646 	}
5647 
5648 	sh->io_port = 0;
5649 	sh->n_io_port = 0;
5650 	sh->this_id = -1;
5651 	sh->max_channel = 3;
5652 	sh->max_cmd_len = MAX_COMMAND_SIZE;
5653 	sh->max_lun = HPSA_MAX_LUN;
5654 	sh->max_id = HPSA_MAX_LUN;
5655 	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5656 	sh->cmd_per_lun = sh->can_queue;
5657 	sh->sg_tablesize = h->maxsgentries;
5658 	sh->transportt = hpsa_sas_transport_template;
5659 	sh->hostdata[0] = (unsigned long) h;
5660 	sh->irq = pci_irq_vector(h->pdev, 0);
5661 	sh->unique_id = sh->irq;
5662 
5663 	h->scsi_host = sh;
5664 	return 0;
5665 }
5666 
5667 static int hpsa_scsi_add_host(struct ctlr_info *h)
5668 {
5669 	int rv;
5670 
5671 	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5672 	if (rv) {
5673 		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5674 		return rv;
5675 	}
5676 	scsi_scan_host(h->scsi_host);
5677 	return 0;
5678 }
5679 
5680 /*
5681  * The block layer has already gone to the trouble of picking out a unique,
5682  * small-integer tag for this request.  We use an offset from that value as
5683  * an index to select our command block.  (The offset allows us to reserve the
5684  * low-numbered entries for our own uses.)
5685  */
5686 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5687 {
5688 	int idx = scmd->request->tag;
5689 
5690 	if (idx < 0)
5691 		return idx;
5692 
5693 	/* Offset to leave space for internal cmds. */
5694 	return idx += HPSA_NRESERVED_CMDS;
5695 }
5696 
5697 /*
5698  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5699  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5700  */
5701 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5702 				struct CommandList *c, unsigned char lunaddr[],
5703 				int reply_queue)
5704 {
5705 	int rc;
5706 
5707 	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5708 	(void) fill_cmd(c, TEST_UNIT_READY, h,
5709 			NULL, 0, 0, lunaddr, TYPE_CMD);
5710 	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5711 	if (rc)
5712 		return rc;
5713 	/* no unmap needed here because no data xfer. */
5714 
5715 	/* Check if the unit is already ready. */
5716 	if (c->err_info->CommandStatus == CMD_SUCCESS)
5717 		return 0;
5718 
5719 	/*
5720 	 * The first command sent after reset will receive "unit attention" to
5721 	 * indicate that the LUN has been reset...this is actually what we're
5722 	 * looking for (but, success is good too).
5723 	 */
5724 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5725 		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5726 			(c->err_info->SenseInfo[2] == NO_SENSE ||
5727 			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5728 		return 0;
5729 
5730 	return 1;
5731 }
5732 
5733 /*
5734  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5735  * returns zero when the unit is ready, and non-zero when giving up.
5736  */
5737 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5738 				struct CommandList *c,
5739 				unsigned char lunaddr[], int reply_queue)
5740 {
5741 	int rc;
5742 	int count = 0;
5743 	int waittime = 1; /* seconds */
5744 
5745 	/* Send test unit ready until device ready, or give up. */
5746 	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5747 
5748 		/*
5749 		 * Wait for a bit.  do this first, because if we send
5750 		 * the TUR right away, the reset will just abort it.
5751 		 */
5752 		msleep(1000 * waittime);
5753 
5754 		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5755 		if (!rc)
5756 			break;
5757 
5758 		/* Increase wait time with each try, up to a point. */
5759 		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5760 			waittime *= 2;
5761 
5762 		dev_warn(&h->pdev->dev,
5763 			 "waiting %d secs for device to become ready.\n",
5764 			 waittime);
5765 	}
5766 
5767 	return rc;
5768 }
5769 
5770 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5771 					   unsigned char lunaddr[],
5772 					   int reply_queue)
5773 {
5774 	int first_queue;
5775 	int last_queue;
5776 	int rq;
5777 	int rc = 0;
5778 	struct CommandList *c;
5779 
5780 	c = cmd_alloc(h);
5781 
5782 	/*
5783 	 * If no specific reply queue was requested, then send the TUR
5784 	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5785 	 * the loop exactly once using only the specified queue.
5786 	 */
5787 	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5788 		first_queue = 0;
5789 		last_queue = h->nreply_queues - 1;
5790 	} else {
5791 		first_queue = reply_queue;
5792 		last_queue = reply_queue;
5793 	}
5794 
5795 	for (rq = first_queue; rq <= last_queue; rq++) {
5796 		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5797 		if (rc)
5798 			break;
5799 	}
5800 
5801 	if (rc)
5802 		dev_warn(&h->pdev->dev, "giving up on device.\n");
5803 	else
5804 		dev_warn(&h->pdev->dev, "device is ready.\n");
5805 
5806 	cmd_free(h, c);
5807 	return rc;
5808 }
5809 
5810 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5811  * complaining.  Doing a host- or bus-reset can't do anything good here.
5812  */
5813 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5814 {
5815 	int rc = SUCCESS;
5816 	struct ctlr_info *h;
5817 	struct hpsa_scsi_dev_t *dev;
5818 	u8 reset_type;
5819 	char msg[48];
5820 	unsigned long flags;
5821 
5822 	/* find the controller to which the command to be aborted was sent */
5823 	h = sdev_to_hba(scsicmd->device);
5824 	if (h == NULL) /* paranoia */
5825 		return FAILED;
5826 
5827 	spin_lock_irqsave(&h->reset_lock, flags);
5828 	h->reset_in_progress = 1;
5829 	spin_unlock_irqrestore(&h->reset_lock, flags);
5830 
5831 	if (lockup_detected(h)) {
5832 		rc = FAILED;
5833 		goto return_reset_status;
5834 	}
5835 
5836 	dev = scsicmd->device->hostdata;
5837 	if (!dev) {
5838 		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5839 		rc = FAILED;
5840 		goto return_reset_status;
5841 	}
5842 
5843 	if (dev->devtype == TYPE_ENCLOSURE) {
5844 		rc = SUCCESS;
5845 		goto return_reset_status;
5846 	}
5847 
5848 	/* if controller locked up, we can guarantee command won't complete */
5849 	if (lockup_detected(h)) {
5850 		snprintf(msg, sizeof(msg),
5851 			 "cmd %d RESET FAILED, lockup detected",
5852 			 hpsa_get_cmd_index(scsicmd));
5853 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5854 		rc = FAILED;
5855 		goto return_reset_status;
5856 	}
5857 
5858 	/* this reset request might be the result of a lockup; check */
5859 	if (detect_controller_lockup(h)) {
5860 		snprintf(msg, sizeof(msg),
5861 			 "cmd %d RESET FAILED, new lockup detected",
5862 			 hpsa_get_cmd_index(scsicmd));
5863 		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5864 		rc = FAILED;
5865 		goto return_reset_status;
5866 	}
5867 
5868 	/* Do not attempt on controller */
5869 	if (is_hba_lunid(dev->scsi3addr)) {
5870 		rc = SUCCESS;
5871 		goto return_reset_status;
5872 	}
5873 
5874 	if (is_logical_dev_addr_mode(dev->scsi3addr))
5875 		reset_type = HPSA_DEVICE_RESET_MSG;
5876 	else
5877 		reset_type = HPSA_PHYS_TARGET_RESET;
5878 
5879 	sprintf(msg, "resetting %s",
5880 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5881 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5882 
5883 	/* send a reset to the SCSI LUN which the command was sent to */
5884 	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5885 			   DEFAULT_REPLY_QUEUE);
5886 	if (rc == 0)
5887 		rc = SUCCESS;
5888 	else
5889 		rc = FAILED;
5890 
5891 	sprintf(msg, "reset %s %s",
5892 		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5893 		rc == SUCCESS ? "completed successfully" : "failed");
5894 	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5895 
5896 return_reset_status:
5897 	spin_lock_irqsave(&h->reset_lock, flags);
5898 	h->reset_in_progress = 0;
5899 	spin_unlock_irqrestore(&h->reset_lock, flags);
5900 	return rc;
5901 }
5902 
5903 /*
5904  * For operations with an associated SCSI command, a command block is allocated
5905  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5906  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5907  * the complement, although cmd_free() may be called instead.
5908  */
5909 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5910 					    struct scsi_cmnd *scmd)
5911 {
5912 	int idx = hpsa_get_cmd_index(scmd);
5913 	struct CommandList *c = h->cmd_pool + idx;
5914 
5915 	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5916 		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5917 			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5918 		/* The index value comes from the block layer, so if it's out of
5919 		 * bounds, it's probably not our bug.
5920 		 */
5921 		BUG();
5922 	}
5923 
5924 	atomic_inc(&c->refcount);
5925 	if (unlikely(!hpsa_is_cmd_idle(c))) {
5926 		/*
5927 		 * We expect that the SCSI layer will hand us a unique tag
5928 		 * value.  Thus, there should never be a collision here between
5929 		 * two requests...because if the selected command isn't idle
5930 		 * then someone is going to be very disappointed.
5931 		 */
5932 		dev_err(&h->pdev->dev,
5933 			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
5934 			idx);
5935 		if (c->scsi_cmd != NULL)
5936 			scsi_print_command(c->scsi_cmd);
5937 		scsi_print_command(scmd);
5938 	}
5939 
5940 	hpsa_cmd_partial_init(h, idx, c);
5941 	return c;
5942 }
5943 
5944 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5945 {
5946 	/*
5947 	 * Release our reference to the block.  We don't need to do anything
5948 	 * else to free it, because it is accessed by index.
5949 	 */
5950 	(void)atomic_dec(&c->refcount);
5951 }
5952 
5953 /*
5954  * For operations that cannot sleep, a command block is allocated at init,
5955  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5956  * which ones are free or in use.  Lock must be held when calling this.
5957  * cmd_free() is the complement.
5958  * This function never gives up and returns NULL.  If it hangs,
5959  * another thread must call cmd_free() to free some tags.
5960  */
5961 
5962 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5963 {
5964 	struct CommandList *c;
5965 	int refcount, i;
5966 	int offset = 0;
5967 
5968 	/*
5969 	 * There is some *extremely* small but non-zero chance that that
5970 	 * multiple threads could get in here, and one thread could
5971 	 * be scanning through the list of bits looking for a free
5972 	 * one, but the free ones are always behind him, and other
5973 	 * threads sneak in behind him and eat them before he can
5974 	 * get to them, so that while there is always a free one, a
5975 	 * very unlucky thread might be starved anyway, never able to
5976 	 * beat the other threads.  In reality, this happens so
5977 	 * infrequently as to be indistinguishable from never.
5978 	 *
5979 	 * Note that we start allocating commands before the SCSI host structure
5980 	 * is initialized.  Since the search starts at bit zero, this
5981 	 * all works, since we have at least one command structure available;
5982 	 * however, it means that the structures with the low indexes have to be
5983 	 * reserved for driver-initiated requests, while requests from the block
5984 	 * layer will use the higher indexes.
5985 	 */
5986 
5987 	for (;;) {
5988 		i = find_next_zero_bit(h->cmd_pool_bits,
5989 					HPSA_NRESERVED_CMDS,
5990 					offset);
5991 		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5992 			offset = 0;
5993 			continue;
5994 		}
5995 		c = h->cmd_pool + i;
5996 		refcount = atomic_inc_return(&c->refcount);
5997 		if (unlikely(refcount > 1)) {
5998 			cmd_free(h, c); /* already in use */
5999 			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6000 			continue;
6001 		}
6002 		set_bit(i & (BITS_PER_LONG - 1),
6003 			h->cmd_pool_bits + (i / BITS_PER_LONG));
6004 		break; /* it's ours now. */
6005 	}
6006 	hpsa_cmd_partial_init(h, i, c);
6007 	return c;
6008 }
6009 
6010 /*
6011  * This is the complementary operation to cmd_alloc().  Note, however, in some
6012  * corner cases it may also be used to free blocks allocated by
6013  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6014  * the clear-bit is harmless.
6015  */
6016 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6017 {
6018 	if (atomic_dec_and_test(&c->refcount)) {
6019 		int i;
6020 
6021 		i = c - h->cmd_pool;
6022 		clear_bit(i & (BITS_PER_LONG - 1),
6023 			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6024 	}
6025 }
6026 
6027 #ifdef CONFIG_COMPAT
6028 
6029 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6030 	void __user *arg)
6031 {
6032 	IOCTL32_Command_struct __user *arg32 =
6033 	    (IOCTL32_Command_struct __user *) arg;
6034 	IOCTL_Command_struct arg64;
6035 	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6036 	int err;
6037 	u32 cp;
6038 
6039 	memset(&arg64, 0, sizeof(arg64));
6040 	err = 0;
6041 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6042 			   sizeof(arg64.LUN_info));
6043 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6044 			   sizeof(arg64.Request));
6045 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6046 			   sizeof(arg64.error_info));
6047 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6048 	err |= get_user(cp, &arg32->buf);
6049 	arg64.buf = compat_ptr(cp);
6050 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6051 
6052 	if (err)
6053 		return -EFAULT;
6054 
6055 	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6056 	if (err)
6057 		return err;
6058 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6059 			 sizeof(arg32->error_info));
6060 	if (err)
6061 		return -EFAULT;
6062 	return err;
6063 }
6064 
6065 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6066 	int cmd, void __user *arg)
6067 {
6068 	BIG_IOCTL32_Command_struct __user *arg32 =
6069 	    (BIG_IOCTL32_Command_struct __user *) arg;
6070 	BIG_IOCTL_Command_struct arg64;
6071 	BIG_IOCTL_Command_struct __user *p =
6072 	    compat_alloc_user_space(sizeof(arg64));
6073 	int err;
6074 	u32 cp;
6075 
6076 	memset(&arg64, 0, sizeof(arg64));
6077 	err = 0;
6078 	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6079 			   sizeof(arg64.LUN_info));
6080 	err |= copy_from_user(&arg64.Request, &arg32->Request,
6081 			   sizeof(arg64.Request));
6082 	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6083 			   sizeof(arg64.error_info));
6084 	err |= get_user(arg64.buf_size, &arg32->buf_size);
6085 	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6086 	err |= get_user(cp, &arg32->buf);
6087 	arg64.buf = compat_ptr(cp);
6088 	err |= copy_to_user(p, &arg64, sizeof(arg64));
6089 
6090 	if (err)
6091 		return -EFAULT;
6092 
6093 	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6094 	if (err)
6095 		return err;
6096 	err |= copy_in_user(&arg32->error_info, &p->error_info,
6097 			 sizeof(arg32->error_info));
6098 	if (err)
6099 		return -EFAULT;
6100 	return err;
6101 }
6102 
6103 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6104 {
6105 	switch (cmd) {
6106 	case CCISS_GETPCIINFO:
6107 	case CCISS_GETINTINFO:
6108 	case CCISS_SETINTINFO:
6109 	case CCISS_GETNODENAME:
6110 	case CCISS_SETNODENAME:
6111 	case CCISS_GETHEARTBEAT:
6112 	case CCISS_GETBUSTYPES:
6113 	case CCISS_GETFIRMVER:
6114 	case CCISS_GETDRIVVER:
6115 	case CCISS_REVALIDVOLS:
6116 	case CCISS_DEREGDISK:
6117 	case CCISS_REGNEWDISK:
6118 	case CCISS_REGNEWD:
6119 	case CCISS_RESCANDISK:
6120 	case CCISS_GETLUNINFO:
6121 		return hpsa_ioctl(dev, cmd, arg);
6122 
6123 	case CCISS_PASSTHRU32:
6124 		return hpsa_ioctl32_passthru(dev, cmd, arg);
6125 	case CCISS_BIG_PASSTHRU32:
6126 		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6127 
6128 	default:
6129 		return -ENOIOCTLCMD;
6130 	}
6131 }
6132 #endif
6133 
6134 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6135 {
6136 	struct hpsa_pci_info pciinfo;
6137 
6138 	if (!argp)
6139 		return -EINVAL;
6140 	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6141 	pciinfo.bus = h->pdev->bus->number;
6142 	pciinfo.dev_fn = h->pdev->devfn;
6143 	pciinfo.board_id = h->board_id;
6144 	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6145 		return -EFAULT;
6146 	return 0;
6147 }
6148 
6149 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6150 {
6151 	DriverVer_type DriverVer;
6152 	unsigned char vmaj, vmin, vsubmin;
6153 	int rc;
6154 
6155 	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6156 		&vmaj, &vmin, &vsubmin);
6157 	if (rc != 3) {
6158 		dev_info(&h->pdev->dev, "driver version string '%s' "
6159 			"unrecognized.", HPSA_DRIVER_VERSION);
6160 		vmaj = 0;
6161 		vmin = 0;
6162 		vsubmin = 0;
6163 	}
6164 	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6165 	if (!argp)
6166 		return -EINVAL;
6167 	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6168 		return -EFAULT;
6169 	return 0;
6170 }
6171 
6172 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6173 {
6174 	IOCTL_Command_struct iocommand;
6175 	struct CommandList *c;
6176 	char *buff = NULL;
6177 	u64 temp64;
6178 	int rc = 0;
6179 
6180 	if (!argp)
6181 		return -EINVAL;
6182 	if (!capable(CAP_SYS_RAWIO))
6183 		return -EPERM;
6184 	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6185 		return -EFAULT;
6186 	if ((iocommand.buf_size < 1) &&
6187 	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6188 		return -EINVAL;
6189 	}
6190 	if (iocommand.buf_size > 0) {
6191 		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6192 		if (buff == NULL)
6193 			return -ENOMEM;
6194 		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6195 			/* Copy the data into the buffer we created */
6196 			if (copy_from_user(buff, iocommand.buf,
6197 				iocommand.buf_size)) {
6198 				rc = -EFAULT;
6199 				goto out_kfree;
6200 			}
6201 		} else {
6202 			memset(buff, 0, iocommand.buf_size);
6203 		}
6204 	}
6205 	c = cmd_alloc(h);
6206 
6207 	/* Fill in the command type */
6208 	c->cmd_type = CMD_IOCTL_PEND;
6209 	c->scsi_cmd = SCSI_CMD_BUSY;
6210 	/* Fill in Command Header */
6211 	c->Header.ReplyQueue = 0; /* unused in simple mode */
6212 	if (iocommand.buf_size > 0) {	/* buffer to fill */
6213 		c->Header.SGList = 1;
6214 		c->Header.SGTotal = cpu_to_le16(1);
6215 	} else	{ /* no buffers to fill */
6216 		c->Header.SGList = 0;
6217 		c->Header.SGTotal = cpu_to_le16(0);
6218 	}
6219 	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6220 
6221 	/* Fill in Request block */
6222 	memcpy(&c->Request, &iocommand.Request,
6223 		sizeof(c->Request));
6224 
6225 	/* Fill in the scatter gather information */
6226 	if (iocommand.buf_size > 0) {
6227 		temp64 = pci_map_single(h->pdev, buff,
6228 			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6229 		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6230 			c->SG[0].Addr = cpu_to_le64(0);
6231 			c->SG[0].Len = cpu_to_le32(0);
6232 			rc = -ENOMEM;
6233 			goto out;
6234 		}
6235 		c->SG[0].Addr = cpu_to_le64(temp64);
6236 		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6237 		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6238 	}
6239 	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6240 					NO_TIMEOUT);
6241 	if (iocommand.buf_size > 0)
6242 		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6243 	check_ioctl_unit_attention(h, c);
6244 	if (rc) {
6245 		rc = -EIO;
6246 		goto out;
6247 	}
6248 
6249 	/* Copy the error information out */
6250 	memcpy(&iocommand.error_info, c->err_info,
6251 		sizeof(iocommand.error_info));
6252 	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6253 		rc = -EFAULT;
6254 		goto out;
6255 	}
6256 	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6257 		iocommand.buf_size > 0) {
6258 		/* Copy the data out of the buffer we created */
6259 		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6260 			rc = -EFAULT;
6261 			goto out;
6262 		}
6263 	}
6264 out:
6265 	cmd_free(h, c);
6266 out_kfree:
6267 	kfree(buff);
6268 	return rc;
6269 }
6270 
6271 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6272 {
6273 	BIG_IOCTL_Command_struct *ioc;
6274 	struct CommandList *c;
6275 	unsigned char **buff = NULL;
6276 	int *buff_size = NULL;
6277 	u64 temp64;
6278 	BYTE sg_used = 0;
6279 	int status = 0;
6280 	u32 left;
6281 	u32 sz;
6282 	BYTE __user *data_ptr;
6283 
6284 	if (!argp)
6285 		return -EINVAL;
6286 	if (!capable(CAP_SYS_RAWIO))
6287 		return -EPERM;
6288 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6289 	if (!ioc) {
6290 		status = -ENOMEM;
6291 		goto cleanup1;
6292 	}
6293 	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6294 		status = -EFAULT;
6295 		goto cleanup1;
6296 	}
6297 	if ((ioc->buf_size < 1) &&
6298 	    (ioc->Request.Type.Direction != XFER_NONE)) {
6299 		status = -EINVAL;
6300 		goto cleanup1;
6301 	}
6302 	/* Check kmalloc limits  using all SGs */
6303 	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6304 		status = -EINVAL;
6305 		goto cleanup1;
6306 	}
6307 	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6308 		status = -EINVAL;
6309 		goto cleanup1;
6310 	}
6311 	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6312 	if (!buff) {
6313 		status = -ENOMEM;
6314 		goto cleanup1;
6315 	}
6316 	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6317 	if (!buff_size) {
6318 		status = -ENOMEM;
6319 		goto cleanup1;
6320 	}
6321 	left = ioc->buf_size;
6322 	data_ptr = ioc->buf;
6323 	while (left) {
6324 		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6325 		buff_size[sg_used] = sz;
6326 		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6327 		if (buff[sg_used] == NULL) {
6328 			status = -ENOMEM;
6329 			goto cleanup1;
6330 		}
6331 		if (ioc->Request.Type.Direction & XFER_WRITE) {
6332 			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6333 				status = -EFAULT;
6334 				goto cleanup1;
6335 			}
6336 		} else
6337 			memset(buff[sg_used], 0, sz);
6338 		left -= sz;
6339 		data_ptr += sz;
6340 		sg_used++;
6341 	}
6342 	c = cmd_alloc(h);
6343 
6344 	c->cmd_type = CMD_IOCTL_PEND;
6345 	c->scsi_cmd = SCSI_CMD_BUSY;
6346 	c->Header.ReplyQueue = 0;
6347 	c->Header.SGList = (u8) sg_used;
6348 	c->Header.SGTotal = cpu_to_le16(sg_used);
6349 	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6350 	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6351 	if (ioc->buf_size > 0) {
6352 		int i;
6353 		for (i = 0; i < sg_used; i++) {
6354 			temp64 = pci_map_single(h->pdev, buff[i],
6355 				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6356 			if (dma_mapping_error(&h->pdev->dev,
6357 							(dma_addr_t) temp64)) {
6358 				c->SG[i].Addr = cpu_to_le64(0);
6359 				c->SG[i].Len = cpu_to_le32(0);
6360 				hpsa_pci_unmap(h->pdev, c, i,
6361 					PCI_DMA_BIDIRECTIONAL);
6362 				status = -ENOMEM;
6363 				goto cleanup0;
6364 			}
6365 			c->SG[i].Addr = cpu_to_le64(temp64);
6366 			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6367 			c->SG[i].Ext = cpu_to_le32(0);
6368 		}
6369 		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6370 	}
6371 	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6372 						NO_TIMEOUT);
6373 	if (sg_used)
6374 		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6375 	check_ioctl_unit_attention(h, c);
6376 	if (status) {
6377 		status = -EIO;
6378 		goto cleanup0;
6379 	}
6380 
6381 	/* Copy the error information out */
6382 	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6383 	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6384 		status = -EFAULT;
6385 		goto cleanup0;
6386 	}
6387 	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6388 		int i;
6389 
6390 		/* Copy the data out of the buffer we created */
6391 		BYTE __user *ptr = ioc->buf;
6392 		for (i = 0; i < sg_used; i++) {
6393 			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6394 				status = -EFAULT;
6395 				goto cleanup0;
6396 			}
6397 			ptr += buff_size[i];
6398 		}
6399 	}
6400 	status = 0;
6401 cleanup0:
6402 	cmd_free(h, c);
6403 cleanup1:
6404 	if (buff) {
6405 		int i;
6406 
6407 		for (i = 0; i < sg_used; i++)
6408 			kfree(buff[i]);
6409 		kfree(buff);
6410 	}
6411 	kfree(buff_size);
6412 	kfree(ioc);
6413 	return status;
6414 }
6415 
6416 static void check_ioctl_unit_attention(struct ctlr_info *h,
6417 	struct CommandList *c)
6418 {
6419 	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6420 			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6421 		(void) check_for_unit_attention(h, c);
6422 }
6423 
6424 /*
6425  * ioctl
6426  */
6427 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6428 {
6429 	struct ctlr_info *h;
6430 	void __user *argp = (void __user *)arg;
6431 	int rc;
6432 
6433 	h = sdev_to_hba(dev);
6434 
6435 	switch (cmd) {
6436 	case CCISS_DEREGDISK:
6437 	case CCISS_REGNEWDISK:
6438 	case CCISS_REGNEWD:
6439 		hpsa_scan_start(h->scsi_host);
6440 		return 0;
6441 	case CCISS_GETPCIINFO:
6442 		return hpsa_getpciinfo_ioctl(h, argp);
6443 	case CCISS_GETDRIVVER:
6444 		return hpsa_getdrivver_ioctl(h, argp);
6445 	case CCISS_PASSTHRU:
6446 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6447 			return -EAGAIN;
6448 		rc = hpsa_passthru_ioctl(h, argp);
6449 		atomic_inc(&h->passthru_cmds_avail);
6450 		return rc;
6451 	case CCISS_BIG_PASSTHRU:
6452 		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6453 			return -EAGAIN;
6454 		rc = hpsa_big_passthru_ioctl(h, argp);
6455 		atomic_inc(&h->passthru_cmds_avail);
6456 		return rc;
6457 	default:
6458 		return -ENOTTY;
6459 	}
6460 }
6461 
6462 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6463 				u8 reset_type)
6464 {
6465 	struct CommandList *c;
6466 
6467 	c = cmd_alloc(h);
6468 
6469 	/* fill_cmd can't fail here, no data buffer to map */
6470 	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6471 		RAID_CTLR_LUNID, TYPE_MSG);
6472 	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6473 	c->waiting = NULL;
6474 	enqueue_cmd_and_start_io(h, c);
6475 	/* Don't wait for completion, the reset won't complete.  Don't free
6476 	 * the command either.  This is the last command we will send before
6477 	 * re-initializing everything, so it doesn't matter and won't leak.
6478 	 */
6479 	return;
6480 }
6481 
6482 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6483 	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6484 	int cmd_type)
6485 {
6486 	int pci_dir = XFER_NONE;
6487 
6488 	c->cmd_type = CMD_IOCTL_PEND;
6489 	c->scsi_cmd = SCSI_CMD_BUSY;
6490 	c->Header.ReplyQueue = 0;
6491 	if (buff != NULL && size > 0) {
6492 		c->Header.SGList = 1;
6493 		c->Header.SGTotal = cpu_to_le16(1);
6494 	} else {
6495 		c->Header.SGList = 0;
6496 		c->Header.SGTotal = cpu_to_le16(0);
6497 	}
6498 	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6499 
6500 	if (cmd_type == TYPE_CMD) {
6501 		switch (cmd) {
6502 		case HPSA_INQUIRY:
6503 			/* are we trying to read a vital product page */
6504 			if (page_code & VPD_PAGE) {
6505 				c->Request.CDB[1] = 0x01;
6506 				c->Request.CDB[2] = (page_code & 0xff);
6507 			}
6508 			c->Request.CDBLen = 6;
6509 			c->Request.type_attr_dir =
6510 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6511 			c->Request.Timeout = 0;
6512 			c->Request.CDB[0] = HPSA_INQUIRY;
6513 			c->Request.CDB[4] = size & 0xFF;
6514 			break;
6515 		case HPSA_REPORT_LOG:
6516 		case HPSA_REPORT_PHYS:
6517 			/* Talking to controller so It's a physical command
6518 			   mode = 00 target = 0.  Nothing to write.
6519 			 */
6520 			c->Request.CDBLen = 12;
6521 			c->Request.type_attr_dir =
6522 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6523 			c->Request.Timeout = 0;
6524 			c->Request.CDB[0] = cmd;
6525 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6526 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6527 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6528 			c->Request.CDB[9] = size & 0xFF;
6529 			break;
6530 		case BMIC_SENSE_DIAG_OPTIONS:
6531 			c->Request.CDBLen = 16;
6532 			c->Request.type_attr_dir =
6533 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6534 			c->Request.Timeout = 0;
6535 			/* Spec says this should be BMIC_WRITE */
6536 			c->Request.CDB[0] = BMIC_READ;
6537 			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6538 			break;
6539 		case BMIC_SET_DIAG_OPTIONS:
6540 			c->Request.CDBLen = 16;
6541 			c->Request.type_attr_dir =
6542 					TYPE_ATTR_DIR(cmd_type,
6543 						ATTR_SIMPLE, XFER_WRITE);
6544 			c->Request.Timeout = 0;
6545 			c->Request.CDB[0] = BMIC_WRITE;
6546 			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6547 			break;
6548 		case HPSA_CACHE_FLUSH:
6549 			c->Request.CDBLen = 12;
6550 			c->Request.type_attr_dir =
6551 					TYPE_ATTR_DIR(cmd_type,
6552 						ATTR_SIMPLE, XFER_WRITE);
6553 			c->Request.Timeout = 0;
6554 			c->Request.CDB[0] = BMIC_WRITE;
6555 			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6556 			c->Request.CDB[7] = (size >> 8) & 0xFF;
6557 			c->Request.CDB[8] = size & 0xFF;
6558 			break;
6559 		case TEST_UNIT_READY:
6560 			c->Request.CDBLen = 6;
6561 			c->Request.type_attr_dir =
6562 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6563 			c->Request.Timeout = 0;
6564 			break;
6565 		case HPSA_GET_RAID_MAP:
6566 			c->Request.CDBLen = 12;
6567 			c->Request.type_attr_dir =
6568 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6569 			c->Request.Timeout = 0;
6570 			c->Request.CDB[0] = HPSA_CISS_READ;
6571 			c->Request.CDB[1] = cmd;
6572 			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6573 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6574 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6575 			c->Request.CDB[9] = size & 0xFF;
6576 			break;
6577 		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6578 			c->Request.CDBLen = 10;
6579 			c->Request.type_attr_dir =
6580 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6581 			c->Request.Timeout = 0;
6582 			c->Request.CDB[0] = BMIC_READ;
6583 			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6584 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6585 			c->Request.CDB[8] = (size >> 8) & 0xFF;
6586 			break;
6587 		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6588 			c->Request.CDBLen = 10;
6589 			c->Request.type_attr_dir =
6590 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6591 			c->Request.Timeout = 0;
6592 			c->Request.CDB[0] = BMIC_READ;
6593 			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6594 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6595 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6596 			break;
6597 		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6598 			c->Request.CDBLen = 10;
6599 			c->Request.type_attr_dir =
6600 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6601 			c->Request.Timeout = 0;
6602 			c->Request.CDB[0] = BMIC_READ;
6603 			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6604 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6605 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6606 			break;
6607 		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6608 			c->Request.CDBLen = 10;
6609 			c->Request.type_attr_dir =
6610 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6611 			c->Request.Timeout = 0;
6612 			c->Request.CDB[0] = BMIC_READ;
6613 			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6614 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6615 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6616 			break;
6617 		case BMIC_IDENTIFY_CONTROLLER:
6618 			c->Request.CDBLen = 10;
6619 			c->Request.type_attr_dir =
6620 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6621 			c->Request.Timeout = 0;
6622 			c->Request.CDB[0] = BMIC_READ;
6623 			c->Request.CDB[1] = 0;
6624 			c->Request.CDB[2] = 0;
6625 			c->Request.CDB[3] = 0;
6626 			c->Request.CDB[4] = 0;
6627 			c->Request.CDB[5] = 0;
6628 			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6629 			c->Request.CDB[7] = (size >> 16) & 0xFF;
6630 			c->Request.CDB[8] = (size >> 8) & 0XFF;
6631 			c->Request.CDB[9] = 0;
6632 			break;
6633 		default:
6634 			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6635 			BUG();
6636 		}
6637 	} else if (cmd_type == TYPE_MSG) {
6638 		switch (cmd) {
6639 
6640 		case  HPSA_PHYS_TARGET_RESET:
6641 			c->Request.CDBLen = 16;
6642 			c->Request.type_attr_dir =
6643 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6644 			c->Request.Timeout = 0; /* Don't time out */
6645 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6646 			c->Request.CDB[0] = HPSA_RESET;
6647 			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6648 			/* Physical target reset needs no control bytes 4-7*/
6649 			c->Request.CDB[4] = 0x00;
6650 			c->Request.CDB[5] = 0x00;
6651 			c->Request.CDB[6] = 0x00;
6652 			c->Request.CDB[7] = 0x00;
6653 			break;
6654 		case  HPSA_DEVICE_RESET_MSG:
6655 			c->Request.CDBLen = 16;
6656 			c->Request.type_attr_dir =
6657 				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6658 			c->Request.Timeout = 0; /* Don't time out */
6659 			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6660 			c->Request.CDB[0] =  cmd;
6661 			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6662 			/* If bytes 4-7 are zero, it means reset the */
6663 			/* LunID device */
6664 			c->Request.CDB[4] = 0x00;
6665 			c->Request.CDB[5] = 0x00;
6666 			c->Request.CDB[6] = 0x00;
6667 			c->Request.CDB[7] = 0x00;
6668 			break;
6669 		default:
6670 			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6671 				cmd);
6672 			BUG();
6673 		}
6674 	} else {
6675 		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6676 		BUG();
6677 	}
6678 
6679 	switch (GET_DIR(c->Request.type_attr_dir)) {
6680 	case XFER_READ:
6681 		pci_dir = PCI_DMA_FROMDEVICE;
6682 		break;
6683 	case XFER_WRITE:
6684 		pci_dir = PCI_DMA_TODEVICE;
6685 		break;
6686 	case XFER_NONE:
6687 		pci_dir = PCI_DMA_NONE;
6688 		break;
6689 	default:
6690 		pci_dir = PCI_DMA_BIDIRECTIONAL;
6691 	}
6692 	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6693 		return -1;
6694 	return 0;
6695 }
6696 
6697 /*
6698  * Map (physical) PCI mem into (virtual) kernel space
6699  */
6700 static void __iomem *remap_pci_mem(ulong base, ulong size)
6701 {
6702 	ulong page_base = ((ulong) base) & PAGE_MASK;
6703 	ulong page_offs = ((ulong) base) - page_base;
6704 	void __iomem *page_remapped = ioremap_nocache(page_base,
6705 		page_offs + size);
6706 
6707 	return page_remapped ? (page_remapped + page_offs) : NULL;
6708 }
6709 
6710 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6711 {
6712 	return h->access.command_completed(h, q);
6713 }
6714 
6715 static inline bool interrupt_pending(struct ctlr_info *h)
6716 {
6717 	return h->access.intr_pending(h);
6718 }
6719 
6720 static inline long interrupt_not_for_us(struct ctlr_info *h)
6721 {
6722 	return (h->access.intr_pending(h) == 0) ||
6723 		(h->interrupts_enabled == 0);
6724 }
6725 
6726 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6727 	u32 raw_tag)
6728 {
6729 	if (unlikely(tag_index >= h->nr_cmds)) {
6730 		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6731 		return 1;
6732 	}
6733 	return 0;
6734 }
6735 
6736 static inline void finish_cmd(struct CommandList *c)
6737 {
6738 	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6739 	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6740 			|| c->cmd_type == CMD_IOACCEL2))
6741 		complete_scsi_command(c);
6742 	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6743 		complete(c->waiting);
6744 }
6745 
6746 /* process completion of an indexed ("direct lookup") command */
6747 static inline void process_indexed_cmd(struct ctlr_info *h,
6748 	u32 raw_tag)
6749 {
6750 	u32 tag_index;
6751 	struct CommandList *c;
6752 
6753 	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6754 	if (!bad_tag(h, tag_index, raw_tag)) {
6755 		c = h->cmd_pool + tag_index;
6756 		finish_cmd(c);
6757 	}
6758 }
6759 
6760 /* Some controllers, like p400, will give us one interrupt
6761  * after a soft reset, even if we turned interrupts off.
6762  * Only need to check for this in the hpsa_xxx_discard_completions
6763  * functions.
6764  */
6765 static int ignore_bogus_interrupt(struct ctlr_info *h)
6766 {
6767 	if (likely(!reset_devices))
6768 		return 0;
6769 
6770 	if (likely(h->interrupts_enabled))
6771 		return 0;
6772 
6773 	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6774 		"(known firmware bug.)  Ignoring.\n");
6775 
6776 	return 1;
6777 }
6778 
6779 /*
6780  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6781  * Relies on (h-q[x] == x) being true for x such that
6782  * 0 <= x < MAX_REPLY_QUEUES.
6783  */
6784 static struct ctlr_info *queue_to_hba(u8 *queue)
6785 {
6786 	return container_of((queue - *queue), struct ctlr_info, q[0]);
6787 }
6788 
6789 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6790 {
6791 	struct ctlr_info *h = queue_to_hba(queue);
6792 	u8 q = *(u8 *) queue;
6793 	u32 raw_tag;
6794 
6795 	if (ignore_bogus_interrupt(h))
6796 		return IRQ_NONE;
6797 
6798 	if (interrupt_not_for_us(h))
6799 		return IRQ_NONE;
6800 	h->last_intr_timestamp = get_jiffies_64();
6801 	while (interrupt_pending(h)) {
6802 		raw_tag = get_next_completion(h, q);
6803 		while (raw_tag != FIFO_EMPTY)
6804 			raw_tag = next_command(h, q);
6805 	}
6806 	return IRQ_HANDLED;
6807 }
6808 
6809 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6810 {
6811 	struct ctlr_info *h = queue_to_hba(queue);
6812 	u32 raw_tag;
6813 	u8 q = *(u8 *) queue;
6814 
6815 	if (ignore_bogus_interrupt(h))
6816 		return IRQ_NONE;
6817 
6818 	h->last_intr_timestamp = get_jiffies_64();
6819 	raw_tag = get_next_completion(h, q);
6820 	while (raw_tag != FIFO_EMPTY)
6821 		raw_tag = next_command(h, q);
6822 	return IRQ_HANDLED;
6823 }
6824 
6825 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6826 {
6827 	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6828 	u32 raw_tag;
6829 	u8 q = *(u8 *) queue;
6830 
6831 	if (interrupt_not_for_us(h))
6832 		return IRQ_NONE;
6833 	h->last_intr_timestamp = get_jiffies_64();
6834 	while (interrupt_pending(h)) {
6835 		raw_tag = get_next_completion(h, q);
6836 		while (raw_tag != FIFO_EMPTY) {
6837 			process_indexed_cmd(h, raw_tag);
6838 			raw_tag = next_command(h, q);
6839 		}
6840 	}
6841 	return IRQ_HANDLED;
6842 }
6843 
6844 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6845 {
6846 	struct ctlr_info *h = queue_to_hba(queue);
6847 	u32 raw_tag;
6848 	u8 q = *(u8 *) queue;
6849 
6850 	h->last_intr_timestamp = get_jiffies_64();
6851 	raw_tag = get_next_completion(h, q);
6852 	while (raw_tag != FIFO_EMPTY) {
6853 		process_indexed_cmd(h, raw_tag);
6854 		raw_tag = next_command(h, q);
6855 	}
6856 	return IRQ_HANDLED;
6857 }
6858 
6859 /* Send a message CDB to the firmware. Careful, this only works
6860  * in simple mode, not performant mode due to the tag lookup.
6861  * We only ever use this immediately after a controller reset.
6862  */
6863 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6864 			unsigned char type)
6865 {
6866 	struct Command {
6867 		struct CommandListHeader CommandHeader;
6868 		struct RequestBlock Request;
6869 		struct ErrDescriptor ErrorDescriptor;
6870 	};
6871 	struct Command *cmd;
6872 	static const size_t cmd_sz = sizeof(*cmd) +
6873 					sizeof(cmd->ErrorDescriptor);
6874 	dma_addr_t paddr64;
6875 	__le32 paddr32;
6876 	u32 tag;
6877 	void __iomem *vaddr;
6878 	int i, err;
6879 
6880 	vaddr = pci_ioremap_bar(pdev, 0);
6881 	if (vaddr == NULL)
6882 		return -ENOMEM;
6883 
6884 	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6885 	 * CCISS commands, so they must be allocated from the lower 4GiB of
6886 	 * memory.
6887 	 */
6888 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6889 	if (err) {
6890 		iounmap(vaddr);
6891 		return err;
6892 	}
6893 
6894 	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6895 	if (cmd == NULL) {
6896 		iounmap(vaddr);
6897 		return -ENOMEM;
6898 	}
6899 
6900 	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
6901 	 * although there's no guarantee, we assume that the address is at
6902 	 * least 4-byte aligned (most likely, it's page-aligned).
6903 	 */
6904 	paddr32 = cpu_to_le32(paddr64);
6905 
6906 	cmd->CommandHeader.ReplyQueue = 0;
6907 	cmd->CommandHeader.SGList = 0;
6908 	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6909 	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6910 	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6911 
6912 	cmd->Request.CDBLen = 16;
6913 	cmd->Request.type_attr_dir =
6914 			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6915 	cmd->Request.Timeout = 0; /* Don't time out */
6916 	cmd->Request.CDB[0] = opcode;
6917 	cmd->Request.CDB[1] = type;
6918 	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6919 	cmd->ErrorDescriptor.Addr =
6920 			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6921 	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6922 
6923 	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6924 
6925 	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6926 		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6927 		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6928 			break;
6929 		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6930 	}
6931 
6932 	iounmap(vaddr);
6933 
6934 	/* we leak the DMA buffer here ... no choice since the controller could
6935 	 *  still complete the command.
6936 	 */
6937 	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6938 		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6939 			opcode, type);
6940 		return -ETIMEDOUT;
6941 	}
6942 
6943 	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6944 
6945 	if (tag & HPSA_ERROR_BIT) {
6946 		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6947 			opcode, type);
6948 		return -EIO;
6949 	}
6950 
6951 	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6952 		opcode, type);
6953 	return 0;
6954 }
6955 
6956 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6957 
6958 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6959 	void __iomem *vaddr, u32 use_doorbell)
6960 {
6961 
6962 	if (use_doorbell) {
6963 		/* For everything after the P600, the PCI power state method
6964 		 * of resetting the controller doesn't work, so we have this
6965 		 * other way using the doorbell register.
6966 		 */
6967 		dev_info(&pdev->dev, "using doorbell to reset controller\n");
6968 		writel(use_doorbell, vaddr + SA5_DOORBELL);
6969 
6970 		/* PMC hardware guys tell us we need a 10 second delay after
6971 		 * doorbell reset and before any attempt to talk to the board
6972 		 * at all to ensure that this actually works and doesn't fall
6973 		 * over in some weird corner cases.
6974 		 */
6975 		msleep(10000);
6976 	} else { /* Try to do it the PCI power state way */
6977 
6978 		/* Quoting from the Open CISS Specification: "The Power
6979 		 * Management Control/Status Register (CSR) controls the power
6980 		 * state of the device.  The normal operating state is D0,
6981 		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6982 		 * the controller, place the interface device in D3 then to D0,
6983 		 * this causes a secondary PCI reset which will reset the
6984 		 * controller." */
6985 
6986 		int rc = 0;
6987 
6988 		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6989 
6990 		/* enter the D3hot power management state */
6991 		rc = pci_set_power_state(pdev, PCI_D3hot);
6992 		if (rc)
6993 			return rc;
6994 
6995 		msleep(500);
6996 
6997 		/* enter the D0 power management state */
6998 		rc = pci_set_power_state(pdev, PCI_D0);
6999 		if (rc)
7000 			return rc;
7001 
7002 		/*
7003 		 * The P600 requires a small delay when changing states.
7004 		 * Otherwise we may think the board did not reset and we bail.
7005 		 * This for kdump only and is particular to the P600.
7006 		 */
7007 		msleep(500);
7008 	}
7009 	return 0;
7010 }
7011 
7012 static void init_driver_version(char *driver_version, int len)
7013 {
7014 	memset(driver_version, 0, len);
7015 	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7016 }
7017 
7018 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7019 {
7020 	char *driver_version;
7021 	int i, size = sizeof(cfgtable->driver_version);
7022 
7023 	driver_version = kmalloc(size, GFP_KERNEL);
7024 	if (!driver_version)
7025 		return -ENOMEM;
7026 
7027 	init_driver_version(driver_version, size);
7028 	for (i = 0; i < size; i++)
7029 		writeb(driver_version[i], &cfgtable->driver_version[i]);
7030 	kfree(driver_version);
7031 	return 0;
7032 }
7033 
7034 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7035 					  unsigned char *driver_ver)
7036 {
7037 	int i;
7038 
7039 	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7040 		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7041 }
7042 
7043 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7044 {
7045 
7046 	char *driver_ver, *old_driver_ver;
7047 	int rc, size = sizeof(cfgtable->driver_version);
7048 
7049 	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7050 	if (!old_driver_ver)
7051 		return -ENOMEM;
7052 	driver_ver = old_driver_ver + size;
7053 
7054 	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7055 	 * should have been changed, otherwise we know the reset failed.
7056 	 */
7057 	init_driver_version(old_driver_ver, size);
7058 	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7059 	rc = !memcmp(driver_ver, old_driver_ver, size);
7060 	kfree(old_driver_ver);
7061 	return rc;
7062 }
7063 /* This does a hard reset of the controller using PCI power management
7064  * states or the using the doorbell register.
7065  */
7066 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7067 {
7068 	u64 cfg_offset;
7069 	u32 cfg_base_addr;
7070 	u64 cfg_base_addr_index;
7071 	void __iomem *vaddr;
7072 	unsigned long paddr;
7073 	u32 misc_fw_support;
7074 	int rc;
7075 	struct CfgTable __iomem *cfgtable;
7076 	u32 use_doorbell;
7077 	u16 command_register;
7078 
7079 	/* For controllers as old as the P600, this is very nearly
7080 	 * the same thing as
7081 	 *
7082 	 * pci_save_state(pci_dev);
7083 	 * pci_set_power_state(pci_dev, PCI_D3hot);
7084 	 * pci_set_power_state(pci_dev, PCI_D0);
7085 	 * pci_restore_state(pci_dev);
7086 	 *
7087 	 * For controllers newer than the P600, the pci power state
7088 	 * method of resetting doesn't work so we have another way
7089 	 * using the doorbell register.
7090 	 */
7091 
7092 	if (!ctlr_is_resettable(board_id)) {
7093 		dev_warn(&pdev->dev, "Controller not resettable\n");
7094 		return -ENODEV;
7095 	}
7096 
7097 	/* if controller is soft- but not hard resettable... */
7098 	if (!ctlr_is_hard_resettable(board_id))
7099 		return -ENOTSUPP; /* try soft reset later. */
7100 
7101 	/* Save the PCI command register */
7102 	pci_read_config_word(pdev, 4, &command_register);
7103 	pci_save_state(pdev);
7104 
7105 	/* find the first memory BAR, so we can find the cfg table */
7106 	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7107 	if (rc)
7108 		return rc;
7109 	vaddr = remap_pci_mem(paddr, 0x250);
7110 	if (!vaddr)
7111 		return -ENOMEM;
7112 
7113 	/* find cfgtable in order to check if reset via doorbell is supported */
7114 	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7115 					&cfg_base_addr_index, &cfg_offset);
7116 	if (rc)
7117 		goto unmap_vaddr;
7118 	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7119 		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7120 	if (!cfgtable) {
7121 		rc = -ENOMEM;
7122 		goto unmap_vaddr;
7123 	}
7124 	rc = write_driver_ver_to_cfgtable(cfgtable);
7125 	if (rc)
7126 		goto unmap_cfgtable;
7127 
7128 	/* If reset via doorbell register is supported, use that.
7129 	 * There are two such methods.  Favor the newest method.
7130 	 */
7131 	misc_fw_support = readl(&cfgtable->misc_fw_support);
7132 	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7133 	if (use_doorbell) {
7134 		use_doorbell = DOORBELL_CTLR_RESET2;
7135 	} else {
7136 		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7137 		if (use_doorbell) {
7138 			dev_warn(&pdev->dev,
7139 				"Soft reset not supported. Firmware update is required.\n");
7140 			rc = -ENOTSUPP; /* try soft reset */
7141 			goto unmap_cfgtable;
7142 		}
7143 	}
7144 
7145 	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7146 	if (rc)
7147 		goto unmap_cfgtable;
7148 
7149 	pci_restore_state(pdev);
7150 	pci_write_config_word(pdev, 4, command_register);
7151 
7152 	/* Some devices (notably the HP Smart Array 5i Controller)
7153 	   need a little pause here */
7154 	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7155 
7156 	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7157 	if (rc) {
7158 		dev_warn(&pdev->dev,
7159 			"Failed waiting for board to become ready after hard reset\n");
7160 		goto unmap_cfgtable;
7161 	}
7162 
7163 	rc = controller_reset_failed(vaddr);
7164 	if (rc < 0)
7165 		goto unmap_cfgtable;
7166 	if (rc) {
7167 		dev_warn(&pdev->dev, "Unable to successfully reset "
7168 			"controller. Will try soft reset.\n");
7169 		rc = -ENOTSUPP;
7170 	} else {
7171 		dev_info(&pdev->dev, "board ready after hard reset.\n");
7172 	}
7173 
7174 unmap_cfgtable:
7175 	iounmap(cfgtable);
7176 
7177 unmap_vaddr:
7178 	iounmap(vaddr);
7179 	return rc;
7180 }
7181 
7182 /*
7183  *  We cannot read the structure directly, for portability we must use
7184  *   the io functions.
7185  *   This is for debug only.
7186  */
7187 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7188 {
7189 #ifdef HPSA_DEBUG
7190 	int i;
7191 	char temp_name[17];
7192 
7193 	dev_info(dev, "Controller Configuration information\n");
7194 	dev_info(dev, "------------------------------------\n");
7195 	for (i = 0; i < 4; i++)
7196 		temp_name[i] = readb(&(tb->Signature[i]));
7197 	temp_name[4] = '\0';
7198 	dev_info(dev, "   Signature = %s\n", temp_name);
7199 	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7200 	dev_info(dev, "   Transport methods supported = 0x%x\n",
7201 	       readl(&(tb->TransportSupport)));
7202 	dev_info(dev, "   Transport methods active = 0x%x\n",
7203 	       readl(&(tb->TransportActive)));
7204 	dev_info(dev, "   Requested transport Method = 0x%x\n",
7205 	       readl(&(tb->HostWrite.TransportRequest)));
7206 	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7207 	       readl(&(tb->HostWrite.CoalIntDelay)));
7208 	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7209 	       readl(&(tb->HostWrite.CoalIntCount)));
7210 	dev_info(dev, "   Max outstanding commands = %d\n",
7211 	       readl(&(tb->CmdsOutMax)));
7212 	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7213 	for (i = 0; i < 16; i++)
7214 		temp_name[i] = readb(&(tb->ServerName[i]));
7215 	temp_name[16] = '\0';
7216 	dev_info(dev, "   Server Name = %s\n", temp_name);
7217 	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7218 		readl(&(tb->HeartBeat)));
7219 #endif				/* HPSA_DEBUG */
7220 }
7221 
7222 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7223 {
7224 	int i, offset, mem_type, bar_type;
7225 
7226 	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7227 		return 0;
7228 	offset = 0;
7229 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7230 		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7231 		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7232 			offset += 4;
7233 		else {
7234 			mem_type = pci_resource_flags(pdev, i) &
7235 			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7236 			switch (mem_type) {
7237 			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7238 			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7239 				offset += 4;	/* 32 bit */
7240 				break;
7241 			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7242 				offset += 8;
7243 				break;
7244 			default:	/* reserved in PCI 2.2 */
7245 				dev_warn(&pdev->dev,
7246 				       "base address is invalid\n");
7247 				return -1;
7248 				break;
7249 			}
7250 		}
7251 		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7252 			return i + 1;
7253 	}
7254 	return -1;
7255 }
7256 
7257 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7258 {
7259 	pci_free_irq_vectors(h->pdev);
7260 	h->msix_vectors = 0;
7261 }
7262 
7263 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7264  * controllers that are capable. If not, we use legacy INTx mode.
7265  */
7266 static int hpsa_interrupt_mode(struct ctlr_info *h)
7267 {
7268 	unsigned int flags = PCI_IRQ_LEGACY;
7269 	int ret;
7270 
7271 	/* Some boards advertise MSI but don't really support it */
7272 	switch (h->board_id) {
7273 	case 0x40700E11:
7274 	case 0x40800E11:
7275 	case 0x40820E11:
7276 	case 0x40830E11:
7277 		break;
7278 	default:
7279 		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7280 				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7281 		if (ret > 0) {
7282 			h->msix_vectors = ret;
7283 			return 0;
7284 		}
7285 
7286 		flags |= PCI_IRQ_MSI;
7287 		break;
7288 	}
7289 
7290 	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7291 	if (ret < 0)
7292 		return ret;
7293 	return 0;
7294 }
7295 
7296 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7297 				bool *legacy_board)
7298 {
7299 	int i;
7300 	u32 subsystem_vendor_id, subsystem_device_id;
7301 
7302 	subsystem_vendor_id = pdev->subsystem_vendor;
7303 	subsystem_device_id = pdev->subsystem_device;
7304 	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7305 		    subsystem_vendor_id;
7306 
7307 	if (legacy_board)
7308 		*legacy_board = false;
7309 	for (i = 0; i < ARRAY_SIZE(products); i++)
7310 		if (*board_id == products[i].board_id) {
7311 			if (products[i].access != &SA5A_access &&
7312 			    products[i].access != &SA5B_access)
7313 				return i;
7314 			dev_warn(&pdev->dev,
7315 				 "legacy board ID: 0x%08x\n",
7316 				 *board_id);
7317 			if (legacy_board)
7318 			    *legacy_board = true;
7319 			return i;
7320 		}
7321 
7322 	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7323 	if (legacy_board)
7324 		*legacy_board = true;
7325 	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7326 }
7327 
7328 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7329 				    unsigned long *memory_bar)
7330 {
7331 	int i;
7332 
7333 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7334 		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7335 			/* addressing mode bits already removed */
7336 			*memory_bar = pci_resource_start(pdev, i);
7337 			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7338 				*memory_bar);
7339 			return 0;
7340 		}
7341 	dev_warn(&pdev->dev, "no memory BAR found\n");
7342 	return -ENODEV;
7343 }
7344 
7345 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7346 				     int wait_for_ready)
7347 {
7348 	int i, iterations;
7349 	u32 scratchpad;
7350 	if (wait_for_ready)
7351 		iterations = HPSA_BOARD_READY_ITERATIONS;
7352 	else
7353 		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7354 
7355 	for (i = 0; i < iterations; i++) {
7356 		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7357 		if (wait_for_ready) {
7358 			if (scratchpad == HPSA_FIRMWARE_READY)
7359 				return 0;
7360 		} else {
7361 			if (scratchpad != HPSA_FIRMWARE_READY)
7362 				return 0;
7363 		}
7364 		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7365 	}
7366 	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7367 	return -ENODEV;
7368 }
7369 
7370 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7371 			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7372 			       u64 *cfg_offset)
7373 {
7374 	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7375 	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7376 	*cfg_base_addr &= (u32) 0x0000ffff;
7377 	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7378 	if (*cfg_base_addr_index == -1) {
7379 		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7380 		return -ENODEV;
7381 	}
7382 	return 0;
7383 }
7384 
7385 static void hpsa_free_cfgtables(struct ctlr_info *h)
7386 {
7387 	if (h->transtable) {
7388 		iounmap(h->transtable);
7389 		h->transtable = NULL;
7390 	}
7391 	if (h->cfgtable) {
7392 		iounmap(h->cfgtable);
7393 		h->cfgtable = NULL;
7394 	}
7395 }
7396 
7397 /* Find and map CISS config table and transfer table
7398 + * several items must be unmapped (freed) later
7399 + * */
7400 static int hpsa_find_cfgtables(struct ctlr_info *h)
7401 {
7402 	u64 cfg_offset;
7403 	u32 cfg_base_addr;
7404 	u64 cfg_base_addr_index;
7405 	u32 trans_offset;
7406 	int rc;
7407 
7408 	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7409 		&cfg_base_addr_index, &cfg_offset);
7410 	if (rc)
7411 		return rc;
7412 	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7413 		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7414 	if (!h->cfgtable) {
7415 		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7416 		return -ENOMEM;
7417 	}
7418 	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7419 	if (rc)
7420 		return rc;
7421 	/* Find performant mode table. */
7422 	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7423 	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7424 				cfg_base_addr_index)+cfg_offset+trans_offset,
7425 				sizeof(*h->transtable));
7426 	if (!h->transtable) {
7427 		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7428 		hpsa_free_cfgtables(h);
7429 		return -ENOMEM;
7430 	}
7431 	return 0;
7432 }
7433 
7434 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7435 {
7436 #define MIN_MAX_COMMANDS 16
7437 	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7438 
7439 	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7440 
7441 	/* Limit commands in memory limited kdump scenario. */
7442 	if (reset_devices && h->max_commands > 32)
7443 		h->max_commands = 32;
7444 
7445 	if (h->max_commands < MIN_MAX_COMMANDS) {
7446 		dev_warn(&h->pdev->dev,
7447 			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7448 			h->max_commands,
7449 			MIN_MAX_COMMANDS);
7450 		h->max_commands = MIN_MAX_COMMANDS;
7451 	}
7452 }
7453 
7454 /* If the controller reports that the total max sg entries is greater than 512,
7455  * then we know that chained SG blocks work.  (Original smart arrays did not
7456  * support chained SG blocks and would return zero for max sg entries.)
7457  */
7458 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7459 {
7460 	return h->maxsgentries > 512;
7461 }
7462 
7463 /* Interrogate the hardware for some limits:
7464  * max commands, max SG elements without chaining, and with chaining,
7465  * SG chain block size, etc.
7466  */
7467 static void hpsa_find_board_params(struct ctlr_info *h)
7468 {
7469 	hpsa_get_max_perf_mode_cmds(h);
7470 	h->nr_cmds = h->max_commands;
7471 	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7472 	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7473 	if (hpsa_supports_chained_sg_blocks(h)) {
7474 		/* Limit in-command s/g elements to 32 save dma'able memory. */
7475 		h->max_cmd_sg_entries = 32;
7476 		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7477 		h->maxsgentries--; /* save one for chain pointer */
7478 	} else {
7479 		/*
7480 		 * Original smart arrays supported at most 31 s/g entries
7481 		 * embedded inline in the command (trying to use more
7482 		 * would lock up the controller)
7483 		 */
7484 		h->max_cmd_sg_entries = 31;
7485 		h->maxsgentries = 31; /* default to traditional values */
7486 		h->chainsize = 0;
7487 	}
7488 
7489 	/* Find out what task management functions are supported and cache */
7490 	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7491 	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7492 		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7493 	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7494 		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7495 	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7496 		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7497 }
7498 
7499 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7500 {
7501 	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7502 		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7503 		return false;
7504 	}
7505 	return true;
7506 }
7507 
7508 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7509 {
7510 	u32 driver_support;
7511 
7512 	driver_support = readl(&(h->cfgtable->driver_support));
7513 	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7514 #ifdef CONFIG_X86
7515 	driver_support |= ENABLE_SCSI_PREFETCH;
7516 #endif
7517 	driver_support |= ENABLE_UNIT_ATTN;
7518 	writel(driver_support, &(h->cfgtable->driver_support));
7519 }
7520 
7521 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7522  * in a prefetch beyond physical memory.
7523  */
7524 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7525 {
7526 	u32 dma_prefetch;
7527 
7528 	if (h->board_id != 0x3225103C)
7529 		return;
7530 	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7531 	dma_prefetch |= 0x8000;
7532 	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7533 }
7534 
7535 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7536 {
7537 	int i;
7538 	u32 doorbell_value;
7539 	unsigned long flags;
7540 	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7541 	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7542 		spin_lock_irqsave(&h->lock, flags);
7543 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7544 		spin_unlock_irqrestore(&h->lock, flags);
7545 		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7546 			goto done;
7547 		/* delay and try again */
7548 		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7549 	}
7550 	return -ENODEV;
7551 done:
7552 	return 0;
7553 }
7554 
7555 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7556 {
7557 	int i;
7558 	u32 doorbell_value;
7559 	unsigned long flags;
7560 
7561 	/* under certain very rare conditions, this can take awhile.
7562 	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7563 	 * as we enter this code.)
7564 	 */
7565 	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7566 		if (h->remove_in_progress)
7567 			goto done;
7568 		spin_lock_irqsave(&h->lock, flags);
7569 		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7570 		spin_unlock_irqrestore(&h->lock, flags);
7571 		if (!(doorbell_value & CFGTBL_ChangeReq))
7572 			goto done;
7573 		/* delay and try again */
7574 		msleep(MODE_CHANGE_WAIT_INTERVAL);
7575 	}
7576 	return -ENODEV;
7577 done:
7578 	return 0;
7579 }
7580 
7581 /* return -ENODEV or other reason on error, 0 on success */
7582 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7583 {
7584 	u32 trans_support;
7585 
7586 	trans_support = readl(&(h->cfgtable->TransportSupport));
7587 	if (!(trans_support & SIMPLE_MODE))
7588 		return -ENOTSUPP;
7589 
7590 	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7591 
7592 	/* Update the field, and then ring the doorbell */
7593 	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7594 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7595 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7596 	if (hpsa_wait_for_mode_change_ack(h))
7597 		goto error;
7598 	print_cfg_table(&h->pdev->dev, h->cfgtable);
7599 	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7600 		goto error;
7601 	h->transMethod = CFGTBL_Trans_Simple;
7602 	return 0;
7603 error:
7604 	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7605 	return -ENODEV;
7606 }
7607 
7608 /* free items allocated or mapped by hpsa_pci_init */
7609 static void hpsa_free_pci_init(struct ctlr_info *h)
7610 {
7611 	hpsa_free_cfgtables(h);			/* pci_init 4 */
7612 	iounmap(h->vaddr);			/* pci_init 3 */
7613 	h->vaddr = NULL;
7614 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7615 	/*
7616 	 * call pci_disable_device before pci_release_regions per
7617 	 * Documentation/PCI/pci.txt
7618 	 */
7619 	pci_disable_device(h->pdev);		/* pci_init 1 */
7620 	pci_release_regions(h->pdev);		/* pci_init 2 */
7621 }
7622 
7623 /* several items must be freed later */
7624 static int hpsa_pci_init(struct ctlr_info *h)
7625 {
7626 	int prod_index, err;
7627 	bool legacy_board;
7628 
7629 	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7630 	if (prod_index < 0)
7631 		return prod_index;
7632 	h->product_name = products[prod_index].product_name;
7633 	h->access = *(products[prod_index].access);
7634 	h->legacy_board = legacy_board;
7635 	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7636 			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7637 
7638 	err = pci_enable_device(h->pdev);
7639 	if (err) {
7640 		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7641 		pci_disable_device(h->pdev);
7642 		return err;
7643 	}
7644 
7645 	err = pci_request_regions(h->pdev, HPSA);
7646 	if (err) {
7647 		dev_err(&h->pdev->dev,
7648 			"failed to obtain PCI resources\n");
7649 		pci_disable_device(h->pdev);
7650 		return err;
7651 	}
7652 
7653 	pci_set_master(h->pdev);
7654 
7655 	err = hpsa_interrupt_mode(h);
7656 	if (err)
7657 		goto clean1;
7658 	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7659 	if (err)
7660 		goto clean2;	/* intmode+region, pci */
7661 	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7662 	if (!h->vaddr) {
7663 		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7664 		err = -ENOMEM;
7665 		goto clean2;	/* intmode+region, pci */
7666 	}
7667 	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7668 	if (err)
7669 		goto clean3;	/* vaddr, intmode+region, pci */
7670 	err = hpsa_find_cfgtables(h);
7671 	if (err)
7672 		goto clean3;	/* vaddr, intmode+region, pci */
7673 	hpsa_find_board_params(h);
7674 
7675 	if (!hpsa_CISS_signature_present(h)) {
7676 		err = -ENODEV;
7677 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7678 	}
7679 	hpsa_set_driver_support_bits(h);
7680 	hpsa_p600_dma_prefetch_quirk(h);
7681 	err = hpsa_enter_simple_mode(h);
7682 	if (err)
7683 		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7684 	return 0;
7685 
7686 clean4:	/* cfgtables, vaddr, intmode+region, pci */
7687 	hpsa_free_cfgtables(h);
7688 clean3:	/* vaddr, intmode+region, pci */
7689 	iounmap(h->vaddr);
7690 	h->vaddr = NULL;
7691 clean2:	/* intmode+region, pci */
7692 	hpsa_disable_interrupt_mode(h);
7693 clean1:
7694 	/*
7695 	 * call pci_disable_device before pci_release_regions per
7696 	 * Documentation/PCI/pci.txt
7697 	 */
7698 	pci_disable_device(h->pdev);
7699 	pci_release_regions(h->pdev);
7700 	return err;
7701 }
7702 
7703 static void hpsa_hba_inquiry(struct ctlr_info *h)
7704 {
7705 	int rc;
7706 
7707 #define HBA_INQUIRY_BYTE_COUNT 64
7708 	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7709 	if (!h->hba_inquiry_data)
7710 		return;
7711 	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7712 		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7713 	if (rc != 0) {
7714 		kfree(h->hba_inquiry_data);
7715 		h->hba_inquiry_data = NULL;
7716 	}
7717 }
7718 
7719 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7720 {
7721 	int rc, i;
7722 	void __iomem *vaddr;
7723 
7724 	if (!reset_devices)
7725 		return 0;
7726 
7727 	/* kdump kernel is loading, we don't know in which state is
7728 	 * the pci interface. The dev->enable_cnt is equal zero
7729 	 * so we call enable+disable, wait a while and switch it on.
7730 	 */
7731 	rc = pci_enable_device(pdev);
7732 	if (rc) {
7733 		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7734 		return -ENODEV;
7735 	}
7736 	pci_disable_device(pdev);
7737 	msleep(260);			/* a randomly chosen number */
7738 	rc = pci_enable_device(pdev);
7739 	if (rc) {
7740 		dev_warn(&pdev->dev, "failed to enable device.\n");
7741 		return -ENODEV;
7742 	}
7743 
7744 	pci_set_master(pdev);
7745 
7746 	vaddr = pci_ioremap_bar(pdev, 0);
7747 	if (vaddr == NULL) {
7748 		rc = -ENOMEM;
7749 		goto out_disable;
7750 	}
7751 	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7752 	iounmap(vaddr);
7753 
7754 	/* Reset the controller with a PCI power-cycle or via doorbell */
7755 	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7756 
7757 	/* -ENOTSUPP here means we cannot reset the controller
7758 	 * but it's already (and still) up and running in
7759 	 * "performant mode".  Or, it might be 640x, which can't reset
7760 	 * due to concerns about shared bbwc between 6402/6404 pair.
7761 	 */
7762 	if (rc)
7763 		goto out_disable;
7764 
7765 	/* Now try to get the controller to respond to a no-op */
7766 	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7767 	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7768 		if (hpsa_noop(pdev) == 0)
7769 			break;
7770 		else
7771 			dev_warn(&pdev->dev, "no-op failed%s\n",
7772 					(i < 11 ? "; re-trying" : ""));
7773 	}
7774 
7775 out_disable:
7776 
7777 	pci_disable_device(pdev);
7778 	return rc;
7779 }
7780 
7781 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7782 {
7783 	kfree(h->cmd_pool_bits);
7784 	h->cmd_pool_bits = NULL;
7785 	if (h->cmd_pool) {
7786 		pci_free_consistent(h->pdev,
7787 				h->nr_cmds * sizeof(struct CommandList),
7788 				h->cmd_pool,
7789 				h->cmd_pool_dhandle);
7790 		h->cmd_pool = NULL;
7791 		h->cmd_pool_dhandle = 0;
7792 	}
7793 	if (h->errinfo_pool) {
7794 		pci_free_consistent(h->pdev,
7795 				h->nr_cmds * sizeof(struct ErrorInfo),
7796 				h->errinfo_pool,
7797 				h->errinfo_pool_dhandle);
7798 		h->errinfo_pool = NULL;
7799 		h->errinfo_pool_dhandle = 0;
7800 	}
7801 }
7802 
7803 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7804 {
7805 	h->cmd_pool_bits = kzalloc(
7806 		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7807 		sizeof(unsigned long), GFP_KERNEL);
7808 	h->cmd_pool = pci_alloc_consistent(h->pdev,
7809 		    h->nr_cmds * sizeof(*h->cmd_pool),
7810 		    &(h->cmd_pool_dhandle));
7811 	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7812 		    h->nr_cmds * sizeof(*h->errinfo_pool),
7813 		    &(h->errinfo_pool_dhandle));
7814 	if ((h->cmd_pool_bits == NULL)
7815 	    || (h->cmd_pool == NULL)
7816 	    || (h->errinfo_pool == NULL)) {
7817 		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7818 		goto clean_up;
7819 	}
7820 	hpsa_preinitialize_commands(h);
7821 	return 0;
7822 clean_up:
7823 	hpsa_free_cmd_pool(h);
7824 	return -ENOMEM;
7825 }
7826 
7827 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7828 static void hpsa_free_irqs(struct ctlr_info *h)
7829 {
7830 	int i;
7831 
7832 	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7833 		/* Single reply queue, only one irq to free */
7834 		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7835 		h->q[h->intr_mode] = 0;
7836 		return;
7837 	}
7838 
7839 	for (i = 0; i < h->msix_vectors; i++) {
7840 		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7841 		h->q[i] = 0;
7842 	}
7843 	for (; i < MAX_REPLY_QUEUES; i++)
7844 		h->q[i] = 0;
7845 }
7846 
7847 /* returns 0 on success; cleans up and returns -Enn on error */
7848 static int hpsa_request_irqs(struct ctlr_info *h,
7849 	irqreturn_t (*msixhandler)(int, void *),
7850 	irqreturn_t (*intxhandler)(int, void *))
7851 {
7852 	int rc, i;
7853 
7854 	/*
7855 	 * initialize h->q[x] = x so that interrupt handlers know which
7856 	 * queue to process.
7857 	 */
7858 	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7859 		h->q[i] = (u8) i;
7860 
7861 	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7862 		/* If performant mode and MSI-X, use multiple reply queues */
7863 		for (i = 0; i < h->msix_vectors; i++) {
7864 			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7865 			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7866 					0, h->intrname[i],
7867 					&h->q[i]);
7868 			if (rc) {
7869 				int j;
7870 
7871 				dev_err(&h->pdev->dev,
7872 					"failed to get irq %d for %s\n",
7873 				       pci_irq_vector(h->pdev, i), h->devname);
7874 				for (j = 0; j < i; j++) {
7875 					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
7876 					h->q[j] = 0;
7877 				}
7878 				for (; j < MAX_REPLY_QUEUES; j++)
7879 					h->q[j] = 0;
7880 				return rc;
7881 			}
7882 		}
7883 	} else {
7884 		/* Use single reply pool */
7885 		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
7886 			sprintf(h->intrname[0], "%s-msi%s", h->devname,
7887 				h->msix_vectors ? "x" : "");
7888 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7889 				msixhandler, 0,
7890 				h->intrname[0],
7891 				&h->q[h->intr_mode]);
7892 		} else {
7893 			sprintf(h->intrname[h->intr_mode],
7894 				"%s-intx", h->devname);
7895 			rc = request_irq(pci_irq_vector(h->pdev, 0),
7896 				intxhandler, IRQF_SHARED,
7897 				h->intrname[0],
7898 				&h->q[h->intr_mode]);
7899 		}
7900 	}
7901 	if (rc) {
7902 		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
7903 		       pci_irq_vector(h->pdev, 0), h->devname);
7904 		hpsa_free_irqs(h);
7905 		return -ENODEV;
7906 	}
7907 	return 0;
7908 }
7909 
7910 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
7911 {
7912 	int rc;
7913 	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
7914 
7915 	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
7916 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
7917 	if (rc) {
7918 		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
7919 		return rc;
7920 	}
7921 
7922 	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
7923 	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7924 	if (rc) {
7925 		dev_warn(&h->pdev->dev, "Board failed to become ready "
7926 			"after soft reset.\n");
7927 		return rc;
7928 	}
7929 
7930 	return 0;
7931 }
7932 
7933 static void hpsa_free_reply_queues(struct ctlr_info *h)
7934 {
7935 	int i;
7936 
7937 	for (i = 0; i < h->nreply_queues; i++) {
7938 		if (!h->reply_queue[i].head)
7939 			continue;
7940 		pci_free_consistent(h->pdev,
7941 					h->reply_queue_size,
7942 					h->reply_queue[i].head,
7943 					h->reply_queue[i].busaddr);
7944 		h->reply_queue[i].head = NULL;
7945 		h->reply_queue[i].busaddr = 0;
7946 	}
7947 	h->reply_queue_size = 0;
7948 }
7949 
7950 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
7951 {
7952 	hpsa_free_performant_mode(h);		/* init_one 7 */
7953 	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
7954 	hpsa_free_cmd_pool(h);			/* init_one 5 */
7955 	hpsa_free_irqs(h);			/* init_one 4 */
7956 	scsi_host_put(h->scsi_host);		/* init_one 3 */
7957 	h->scsi_host = NULL;			/* init_one 3 */
7958 	hpsa_free_pci_init(h);			/* init_one 2_5 */
7959 	free_percpu(h->lockup_detected);	/* init_one 2 */
7960 	h->lockup_detected = NULL;		/* init_one 2 */
7961 	if (h->resubmit_wq) {
7962 		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
7963 		h->resubmit_wq = NULL;
7964 	}
7965 	if (h->rescan_ctlr_wq) {
7966 		destroy_workqueue(h->rescan_ctlr_wq);
7967 		h->rescan_ctlr_wq = NULL;
7968 	}
7969 	kfree(h);				/* init_one 1 */
7970 }
7971 
7972 /* Called when controller lockup detected. */
7973 static void fail_all_outstanding_cmds(struct ctlr_info *h)
7974 {
7975 	int i, refcount;
7976 	struct CommandList *c;
7977 	int failcount = 0;
7978 
7979 	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
7980 	for (i = 0; i < h->nr_cmds; i++) {
7981 		c = h->cmd_pool + i;
7982 		refcount = atomic_inc_return(&c->refcount);
7983 		if (refcount > 1) {
7984 			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
7985 			finish_cmd(c);
7986 			atomic_dec(&h->commands_outstanding);
7987 			failcount++;
7988 		}
7989 		cmd_free(h, c);
7990 	}
7991 	dev_warn(&h->pdev->dev,
7992 		"failed %d commands in fail_all\n", failcount);
7993 }
7994 
7995 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
7996 {
7997 	int cpu;
7998 
7999 	for_each_online_cpu(cpu) {
8000 		u32 *lockup_detected;
8001 		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8002 		*lockup_detected = value;
8003 	}
8004 	wmb(); /* be sure the per-cpu variables are out to memory */
8005 }
8006 
8007 static void controller_lockup_detected(struct ctlr_info *h)
8008 {
8009 	unsigned long flags;
8010 	u32 lockup_detected;
8011 
8012 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8013 	spin_lock_irqsave(&h->lock, flags);
8014 	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8015 	if (!lockup_detected) {
8016 		/* no heartbeat, but controller gave us a zero. */
8017 		dev_warn(&h->pdev->dev,
8018 			"lockup detected after %d but scratchpad register is zero\n",
8019 			h->heartbeat_sample_interval / HZ);
8020 		lockup_detected = 0xffffffff;
8021 	}
8022 	set_lockup_detected_for_all_cpus(h, lockup_detected);
8023 	spin_unlock_irqrestore(&h->lock, flags);
8024 	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8025 			lockup_detected, h->heartbeat_sample_interval / HZ);
8026 	if (lockup_detected == 0xffff0000) {
8027 		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8028 		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8029 	}
8030 	pci_disable_device(h->pdev);
8031 	fail_all_outstanding_cmds(h);
8032 }
8033 
8034 static int detect_controller_lockup(struct ctlr_info *h)
8035 {
8036 	u64 now;
8037 	u32 heartbeat;
8038 	unsigned long flags;
8039 
8040 	now = get_jiffies_64();
8041 	/* If we've received an interrupt recently, we're ok. */
8042 	if (time_after64(h->last_intr_timestamp +
8043 				(h->heartbeat_sample_interval), now))
8044 		return false;
8045 
8046 	/*
8047 	 * If we've already checked the heartbeat recently, we're ok.
8048 	 * This could happen if someone sends us a signal. We
8049 	 * otherwise don't care about signals in this thread.
8050 	 */
8051 	if (time_after64(h->last_heartbeat_timestamp +
8052 				(h->heartbeat_sample_interval), now))
8053 		return false;
8054 
8055 	/* If heartbeat has not changed since we last looked, we're not ok. */
8056 	spin_lock_irqsave(&h->lock, flags);
8057 	heartbeat = readl(&h->cfgtable->HeartBeat);
8058 	spin_unlock_irqrestore(&h->lock, flags);
8059 	if (h->last_heartbeat == heartbeat) {
8060 		controller_lockup_detected(h);
8061 		return true;
8062 	}
8063 
8064 	/* We're ok. */
8065 	h->last_heartbeat = heartbeat;
8066 	h->last_heartbeat_timestamp = now;
8067 	return false;
8068 }
8069 
8070 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8071 {
8072 	int i;
8073 	char *event_type;
8074 
8075 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8076 		return;
8077 
8078 	/* Ask the controller to clear the events we're handling. */
8079 	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8080 			| CFGTBL_Trans_io_accel2)) &&
8081 		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8082 		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8083 
8084 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8085 			event_type = "state change";
8086 		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8087 			event_type = "configuration change";
8088 		/* Stop sending new RAID offload reqs via the IO accelerator */
8089 		scsi_block_requests(h->scsi_host);
8090 		for (i = 0; i < h->ndevices; i++) {
8091 			h->dev[i]->offload_enabled = 0;
8092 			h->dev[i]->offload_to_be_enabled = 0;
8093 		}
8094 		hpsa_drain_accel_commands(h);
8095 		/* Set 'accelerator path config change' bit */
8096 		dev_warn(&h->pdev->dev,
8097 			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8098 			h->events, event_type);
8099 		writel(h->events, &(h->cfgtable->clear_event_notify));
8100 		/* Set the "clear event notify field update" bit 6 */
8101 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8102 		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8103 		hpsa_wait_for_clear_event_notify_ack(h);
8104 		scsi_unblock_requests(h->scsi_host);
8105 	} else {
8106 		/* Acknowledge controller notification events. */
8107 		writel(h->events, &(h->cfgtable->clear_event_notify));
8108 		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8109 		hpsa_wait_for_clear_event_notify_ack(h);
8110 #if 0
8111 		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8112 		hpsa_wait_for_mode_change_ack(h);
8113 #endif
8114 	}
8115 	return;
8116 }
8117 
8118 /* Check a register on the controller to see if there are configuration
8119  * changes (added/changed/removed logical drives, etc.) which mean that
8120  * we should rescan the controller for devices.
8121  * Also check flag for driver-initiated rescan.
8122  */
8123 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8124 {
8125 	if (h->drv_req_rescan) {
8126 		h->drv_req_rescan = 0;
8127 		return 1;
8128 	}
8129 
8130 	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8131 		return 0;
8132 
8133 	h->events = readl(&(h->cfgtable->event_notify));
8134 	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8135 }
8136 
8137 /*
8138  * Check if any of the offline devices have become ready
8139  */
8140 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8141 {
8142 	unsigned long flags;
8143 	struct offline_device_entry *d;
8144 	struct list_head *this, *tmp;
8145 
8146 	spin_lock_irqsave(&h->offline_device_lock, flags);
8147 	list_for_each_safe(this, tmp, &h->offline_device_list) {
8148 		d = list_entry(this, struct offline_device_entry,
8149 				offline_list);
8150 		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8151 		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8152 			spin_lock_irqsave(&h->offline_device_lock, flags);
8153 			list_del(&d->offline_list);
8154 			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8155 			return 1;
8156 		}
8157 		spin_lock_irqsave(&h->offline_device_lock, flags);
8158 	}
8159 	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8160 	return 0;
8161 }
8162 
8163 static int hpsa_luns_changed(struct ctlr_info *h)
8164 {
8165 	int rc = 1; /* assume there are changes */
8166 	struct ReportLUNdata *logdev = NULL;
8167 
8168 	/* if we can't find out if lun data has changed,
8169 	 * assume that it has.
8170 	 */
8171 
8172 	if (!h->lastlogicals)
8173 		return rc;
8174 
8175 	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8176 	if (!logdev)
8177 		return rc;
8178 
8179 	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8180 		dev_warn(&h->pdev->dev,
8181 			"report luns failed, can't track lun changes.\n");
8182 		goto out;
8183 	}
8184 	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8185 		dev_info(&h->pdev->dev,
8186 			"Lun changes detected.\n");
8187 		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8188 		goto out;
8189 	} else
8190 		rc = 0; /* no changes detected. */
8191 out:
8192 	kfree(logdev);
8193 	return rc;
8194 }
8195 
8196 static void hpsa_perform_rescan(struct ctlr_info *h)
8197 {
8198 	struct Scsi_Host *sh = NULL;
8199 	unsigned long flags;
8200 
8201 	/*
8202 	 * Do the scan after the reset
8203 	 */
8204 	spin_lock_irqsave(&h->reset_lock, flags);
8205 	if (h->reset_in_progress) {
8206 		h->drv_req_rescan = 1;
8207 		spin_unlock_irqrestore(&h->reset_lock, flags);
8208 		return;
8209 	}
8210 	spin_unlock_irqrestore(&h->reset_lock, flags);
8211 
8212 	sh = scsi_host_get(h->scsi_host);
8213 	if (sh != NULL) {
8214 		hpsa_scan_start(sh);
8215 		scsi_host_put(sh);
8216 		h->drv_req_rescan = 0;
8217 	}
8218 }
8219 
8220 /*
8221  * watch for controller events
8222  */
8223 static void hpsa_event_monitor_worker(struct work_struct *work)
8224 {
8225 	struct ctlr_info *h = container_of(to_delayed_work(work),
8226 					struct ctlr_info, event_monitor_work);
8227 	unsigned long flags;
8228 
8229 	spin_lock_irqsave(&h->lock, flags);
8230 	if (h->remove_in_progress) {
8231 		spin_unlock_irqrestore(&h->lock, flags);
8232 		return;
8233 	}
8234 	spin_unlock_irqrestore(&h->lock, flags);
8235 
8236 	if (hpsa_ctlr_needs_rescan(h)) {
8237 		hpsa_ack_ctlr_events(h);
8238 		hpsa_perform_rescan(h);
8239 	}
8240 
8241 	spin_lock_irqsave(&h->lock, flags);
8242 	if (!h->remove_in_progress)
8243 		schedule_delayed_work(&h->event_monitor_work,
8244 					HPSA_EVENT_MONITOR_INTERVAL);
8245 	spin_unlock_irqrestore(&h->lock, flags);
8246 }
8247 
8248 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8249 {
8250 	unsigned long flags;
8251 	struct ctlr_info *h = container_of(to_delayed_work(work),
8252 					struct ctlr_info, rescan_ctlr_work);
8253 
8254 	spin_lock_irqsave(&h->lock, flags);
8255 	if (h->remove_in_progress) {
8256 		spin_unlock_irqrestore(&h->lock, flags);
8257 		return;
8258 	}
8259 	spin_unlock_irqrestore(&h->lock, flags);
8260 
8261 	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8262 		hpsa_perform_rescan(h);
8263 	} else if (h->discovery_polling) {
8264 		if (hpsa_luns_changed(h)) {
8265 			dev_info(&h->pdev->dev,
8266 				"driver discovery polling rescan.\n");
8267 			hpsa_perform_rescan(h);
8268 		}
8269 	}
8270 	spin_lock_irqsave(&h->lock, flags);
8271 	if (!h->remove_in_progress)
8272 		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8273 				h->heartbeat_sample_interval);
8274 	spin_unlock_irqrestore(&h->lock, flags);
8275 }
8276 
8277 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8278 {
8279 	unsigned long flags;
8280 	struct ctlr_info *h = container_of(to_delayed_work(work),
8281 					struct ctlr_info, monitor_ctlr_work);
8282 
8283 	detect_controller_lockup(h);
8284 	if (lockup_detected(h))
8285 		return;
8286 
8287 	spin_lock_irqsave(&h->lock, flags);
8288 	if (!h->remove_in_progress)
8289 		schedule_delayed_work(&h->monitor_ctlr_work,
8290 				h->heartbeat_sample_interval);
8291 	spin_unlock_irqrestore(&h->lock, flags);
8292 }
8293 
8294 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8295 						char *name)
8296 {
8297 	struct workqueue_struct *wq = NULL;
8298 
8299 	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8300 	if (!wq)
8301 		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8302 
8303 	return wq;
8304 }
8305 
8306 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8307 {
8308 	int dac, rc;
8309 	struct ctlr_info *h;
8310 	int try_soft_reset = 0;
8311 	unsigned long flags;
8312 	u32 board_id;
8313 
8314 	if (number_of_controllers == 0)
8315 		printk(KERN_INFO DRIVER_NAME "\n");
8316 
8317 	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8318 	if (rc < 0) {
8319 		dev_warn(&pdev->dev, "Board ID not found\n");
8320 		return rc;
8321 	}
8322 
8323 	rc = hpsa_init_reset_devices(pdev, board_id);
8324 	if (rc) {
8325 		if (rc != -ENOTSUPP)
8326 			return rc;
8327 		/* If the reset fails in a particular way (it has no way to do
8328 		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8329 		 * a soft reset once we get the controller configured up to the
8330 		 * point that it can accept a command.
8331 		 */
8332 		try_soft_reset = 1;
8333 		rc = 0;
8334 	}
8335 
8336 reinit_after_soft_reset:
8337 
8338 	/* Command structures must be aligned on a 32-byte boundary because
8339 	 * the 5 lower bits of the address are used by the hardware. and by
8340 	 * the driver.  See comments in hpsa.h for more info.
8341 	 */
8342 	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8343 	h = kzalloc(sizeof(*h), GFP_KERNEL);
8344 	if (!h) {
8345 		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8346 		return -ENOMEM;
8347 	}
8348 
8349 	h->pdev = pdev;
8350 
8351 	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8352 	INIT_LIST_HEAD(&h->offline_device_list);
8353 	spin_lock_init(&h->lock);
8354 	spin_lock_init(&h->offline_device_lock);
8355 	spin_lock_init(&h->scan_lock);
8356 	spin_lock_init(&h->reset_lock);
8357 	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8358 
8359 	/* Allocate and clear per-cpu variable lockup_detected */
8360 	h->lockup_detected = alloc_percpu(u32);
8361 	if (!h->lockup_detected) {
8362 		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8363 		rc = -ENOMEM;
8364 		goto clean1;	/* aer/h */
8365 	}
8366 	set_lockup_detected_for_all_cpus(h, 0);
8367 
8368 	rc = hpsa_pci_init(h);
8369 	if (rc)
8370 		goto clean2;	/* lu, aer/h */
8371 
8372 	/* relies on h-> settings made by hpsa_pci_init, including
8373 	 * interrupt_mode h->intr */
8374 	rc = hpsa_scsi_host_alloc(h);
8375 	if (rc)
8376 		goto clean2_5;	/* pci, lu, aer/h */
8377 
8378 	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8379 	h->ctlr = number_of_controllers;
8380 	number_of_controllers++;
8381 
8382 	/* configure PCI DMA stuff */
8383 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8384 	if (rc == 0) {
8385 		dac = 1;
8386 	} else {
8387 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8388 		if (rc == 0) {
8389 			dac = 0;
8390 		} else {
8391 			dev_err(&pdev->dev, "no suitable DMA available\n");
8392 			goto clean3;	/* shost, pci, lu, aer/h */
8393 		}
8394 	}
8395 
8396 	/* make sure the board interrupts are off */
8397 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8398 
8399 	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8400 	if (rc)
8401 		goto clean3;	/* shost, pci, lu, aer/h */
8402 	rc = hpsa_alloc_cmd_pool(h);
8403 	if (rc)
8404 		goto clean4;	/* irq, shost, pci, lu, aer/h */
8405 	rc = hpsa_alloc_sg_chain_blocks(h);
8406 	if (rc)
8407 		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8408 	init_waitqueue_head(&h->scan_wait_queue);
8409 	init_waitqueue_head(&h->event_sync_wait_queue);
8410 	mutex_init(&h->reset_mutex);
8411 	h->scan_finished = 1; /* no scan currently in progress */
8412 	h->scan_waiting = 0;
8413 
8414 	pci_set_drvdata(pdev, h);
8415 	h->ndevices = 0;
8416 
8417 	spin_lock_init(&h->devlock);
8418 	rc = hpsa_put_ctlr_into_performant_mode(h);
8419 	if (rc)
8420 		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8421 
8422 	/* create the resubmit workqueue */
8423 	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8424 	if (!h->rescan_ctlr_wq) {
8425 		rc = -ENOMEM;
8426 		goto clean7;
8427 	}
8428 
8429 	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8430 	if (!h->resubmit_wq) {
8431 		rc = -ENOMEM;
8432 		goto clean7;	/* aer/h */
8433 	}
8434 
8435 	/*
8436 	 * At this point, the controller is ready to take commands.
8437 	 * Now, if reset_devices and the hard reset didn't work, try
8438 	 * the soft reset and see if that works.
8439 	 */
8440 	if (try_soft_reset) {
8441 
8442 		/* This is kind of gross.  We may or may not get a completion
8443 		 * from the soft reset command, and if we do, then the value
8444 		 * from the fifo may or may not be valid.  So, we wait 10 secs
8445 		 * after the reset throwing away any completions we get during
8446 		 * that time.  Unregister the interrupt handler and register
8447 		 * fake ones to scoop up any residual completions.
8448 		 */
8449 		spin_lock_irqsave(&h->lock, flags);
8450 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8451 		spin_unlock_irqrestore(&h->lock, flags);
8452 		hpsa_free_irqs(h);
8453 		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8454 					hpsa_intx_discard_completions);
8455 		if (rc) {
8456 			dev_warn(&h->pdev->dev,
8457 				"Failed to request_irq after soft reset.\n");
8458 			/*
8459 			 * cannot goto clean7 or free_irqs will be called
8460 			 * again. Instead, do its work
8461 			 */
8462 			hpsa_free_performant_mode(h);	/* clean7 */
8463 			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8464 			hpsa_free_cmd_pool(h);		/* clean5 */
8465 			/*
8466 			 * skip hpsa_free_irqs(h) clean4 since that
8467 			 * was just called before request_irqs failed
8468 			 */
8469 			goto clean3;
8470 		}
8471 
8472 		rc = hpsa_kdump_soft_reset(h);
8473 		if (rc)
8474 			/* Neither hard nor soft reset worked, we're hosed. */
8475 			goto clean7;
8476 
8477 		dev_info(&h->pdev->dev, "Board READY.\n");
8478 		dev_info(&h->pdev->dev,
8479 			"Waiting for stale completions to drain.\n");
8480 		h->access.set_intr_mask(h, HPSA_INTR_ON);
8481 		msleep(10000);
8482 		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8483 
8484 		rc = controller_reset_failed(h->cfgtable);
8485 		if (rc)
8486 			dev_info(&h->pdev->dev,
8487 				"Soft reset appears to have failed.\n");
8488 
8489 		/* since the controller's reset, we have to go back and re-init
8490 		 * everything.  Easiest to just forget what we've done and do it
8491 		 * all over again.
8492 		 */
8493 		hpsa_undo_allocations_after_kdump_soft_reset(h);
8494 		try_soft_reset = 0;
8495 		if (rc)
8496 			/* don't goto clean, we already unallocated */
8497 			return -ENODEV;
8498 
8499 		goto reinit_after_soft_reset;
8500 	}
8501 
8502 	/* Enable Accelerated IO path at driver layer */
8503 	h->acciopath_status = 1;
8504 	/* Disable discovery polling.*/
8505 	h->discovery_polling = 0;
8506 
8507 
8508 	/* Turn the interrupts on so we can service requests */
8509 	h->access.set_intr_mask(h, HPSA_INTR_ON);
8510 
8511 	hpsa_hba_inquiry(h);
8512 
8513 	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8514 	if (!h->lastlogicals)
8515 		dev_info(&h->pdev->dev,
8516 			"Can't track change to report lun data\n");
8517 
8518 	/* hook into SCSI subsystem */
8519 	rc = hpsa_scsi_add_host(h);
8520 	if (rc)
8521 		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8522 
8523 	/* Monitor the controller for firmware lockups */
8524 	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8525 	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8526 	schedule_delayed_work(&h->monitor_ctlr_work,
8527 				h->heartbeat_sample_interval);
8528 	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8529 	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8530 				h->heartbeat_sample_interval);
8531 	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8532 	schedule_delayed_work(&h->event_monitor_work,
8533 				HPSA_EVENT_MONITOR_INTERVAL);
8534 	return 0;
8535 
8536 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8537 	hpsa_free_performant_mode(h);
8538 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8539 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8540 	hpsa_free_sg_chain_blocks(h);
8541 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8542 	hpsa_free_cmd_pool(h);
8543 clean4: /* irq, shost, pci, lu, aer/h */
8544 	hpsa_free_irqs(h);
8545 clean3: /* shost, pci, lu, aer/h */
8546 	scsi_host_put(h->scsi_host);
8547 	h->scsi_host = NULL;
8548 clean2_5: /* pci, lu, aer/h */
8549 	hpsa_free_pci_init(h);
8550 clean2: /* lu, aer/h */
8551 	if (h->lockup_detected) {
8552 		free_percpu(h->lockup_detected);
8553 		h->lockup_detected = NULL;
8554 	}
8555 clean1:	/* wq/aer/h */
8556 	if (h->resubmit_wq) {
8557 		destroy_workqueue(h->resubmit_wq);
8558 		h->resubmit_wq = NULL;
8559 	}
8560 	if (h->rescan_ctlr_wq) {
8561 		destroy_workqueue(h->rescan_ctlr_wq);
8562 		h->rescan_ctlr_wq = NULL;
8563 	}
8564 	kfree(h);
8565 	return rc;
8566 }
8567 
8568 static void hpsa_flush_cache(struct ctlr_info *h)
8569 {
8570 	char *flush_buf;
8571 	struct CommandList *c;
8572 	int rc;
8573 
8574 	if (unlikely(lockup_detected(h)))
8575 		return;
8576 	flush_buf = kzalloc(4, GFP_KERNEL);
8577 	if (!flush_buf)
8578 		return;
8579 
8580 	c = cmd_alloc(h);
8581 
8582 	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8583 		RAID_CTLR_LUNID, TYPE_CMD)) {
8584 		goto out;
8585 	}
8586 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8587 					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8588 	if (rc)
8589 		goto out;
8590 	if (c->err_info->CommandStatus != 0)
8591 out:
8592 		dev_warn(&h->pdev->dev,
8593 			"error flushing cache on controller\n");
8594 	cmd_free(h, c);
8595 	kfree(flush_buf);
8596 }
8597 
8598 /* Make controller gather fresh report lun data each time we
8599  * send down a report luns request
8600  */
8601 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8602 {
8603 	u32 *options;
8604 	struct CommandList *c;
8605 	int rc;
8606 
8607 	/* Don't bother trying to set diag options if locked up */
8608 	if (unlikely(h->lockup_detected))
8609 		return;
8610 
8611 	options = kzalloc(sizeof(*options), GFP_KERNEL);
8612 	if (!options)
8613 		return;
8614 
8615 	c = cmd_alloc(h);
8616 
8617 	/* first, get the current diag options settings */
8618 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8619 		RAID_CTLR_LUNID, TYPE_CMD))
8620 		goto errout;
8621 
8622 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8623 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8624 	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8625 		goto errout;
8626 
8627 	/* Now, set the bit for disabling the RLD caching */
8628 	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8629 
8630 	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8631 		RAID_CTLR_LUNID, TYPE_CMD))
8632 		goto errout;
8633 
8634 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8635 		PCI_DMA_TODEVICE, NO_TIMEOUT);
8636 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8637 		goto errout;
8638 
8639 	/* Now verify that it got set: */
8640 	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8641 		RAID_CTLR_LUNID, TYPE_CMD))
8642 		goto errout;
8643 
8644 	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8645 		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8646 	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8647 		goto errout;
8648 
8649 	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8650 		goto out;
8651 
8652 errout:
8653 	dev_err(&h->pdev->dev,
8654 			"Error: failed to disable report lun data caching.\n");
8655 out:
8656 	cmd_free(h, c);
8657 	kfree(options);
8658 }
8659 
8660 static void hpsa_shutdown(struct pci_dev *pdev)
8661 {
8662 	struct ctlr_info *h;
8663 
8664 	h = pci_get_drvdata(pdev);
8665 	/* Turn board interrupts off  and send the flush cache command
8666 	 * sendcmd will turn off interrupt, and send the flush...
8667 	 * To write all data in the battery backed cache to disks
8668 	 */
8669 	hpsa_flush_cache(h);
8670 	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8671 	hpsa_free_irqs(h);			/* init_one 4 */
8672 	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8673 }
8674 
8675 static void hpsa_free_device_info(struct ctlr_info *h)
8676 {
8677 	int i;
8678 
8679 	for (i = 0; i < h->ndevices; i++) {
8680 		kfree(h->dev[i]);
8681 		h->dev[i] = NULL;
8682 	}
8683 }
8684 
8685 static void hpsa_remove_one(struct pci_dev *pdev)
8686 {
8687 	struct ctlr_info *h;
8688 	unsigned long flags;
8689 
8690 	if (pci_get_drvdata(pdev) == NULL) {
8691 		dev_err(&pdev->dev, "unable to remove device\n");
8692 		return;
8693 	}
8694 	h = pci_get_drvdata(pdev);
8695 
8696 	/* Get rid of any controller monitoring work items */
8697 	spin_lock_irqsave(&h->lock, flags);
8698 	h->remove_in_progress = 1;
8699 	spin_unlock_irqrestore(&h->lock, flags);
8700 	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8701 	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8702 	cancel_delayed_work_sync(&h->event_monitor_work);
8703 	destroy_workqueue(h->rescan_ctlr_wq);
8704 	destroy_workqueue(h->resubmit_wq);
8705 
8706 	hpsa_delete_sas_host(h);
8707 
8708 	/*
8709 	 * Call before disabling interrupts.
8710 	 * scsi_remove_host can trigger I/O operations especially
8711 	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8712 	 * operations which cannot complete and will hang the system.
8713 	 */
8714 	if (h->scsi_host)
8715 		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8716 	/* includes hpsa_free_irqs - init_one 4 */
8717 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8718 	hpsa_shutdown(pdev);
8719 
8720 	hpsa_free_device_info(h);		/* scan */
8721 
8722 	kfree(h->hba_inquiry_data);			/* init_one 10 */
8723 	h->hba_inquiry_data = NULL;			/* init_one 10 */
8724 	hpsa_free_ioaccel2_sg_chain_blocks(h);
8725 	hpsa_free_performant_mode(h);			/* init_one 7 */
8726 	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8727 	hpsa_free_cmd_pool(h);				/* init_one 5 */
8728 	kfree(h->lastlogicals);
8729 
8730 	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8731 
8732 	scsi_host_put(h->scsi_host);			/* init_one 3 */
8733 	h->scsi_host = NULL;				/* init_one 3 */
8734 
8735 	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8736 	hpsa_free_pci_init(h);				/* init_one 2.5 */
8737 
8738 	free_percpu(h->lockup_detected);		/* init_one 2 */
8739 	h->lockup_detected = NULL;			/* init_one 2 */
8740 	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8741 
8742 	kfree(h);					/* init_one 1 */
8743 }
8744 
8745 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8746 	__attribute__((unused)) pm_message_t state)
8747 {
8748 	return -ENOSYS;
8749 }
8750 
8751 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8752 {
8753 	return -ENOSYS;
8754 }
8755 
8756 static struct pci_driver hpsa_pci_driver = {
8757 	.name = HPSA,
8758 	.probe = hpsa_init_one,
8759 	.remove = hpsa_remove_one,
8760 	.id_table = hpsa_pci_device_id,	/* id_table */
8761 	.shutdown = hpsa_shutdown,
8762 	.suspend = hpsa_suspend,
8763 	.resume = hpsa_resume,
8764 };
8765 
8766 /* Fill in bucket_map[], given nsgs (the max number of
8767  * scatter gather elements supported) and bucket[],
8768  * which is an array of 8 integers.  The bucket[] array
8769  * contains 8 different DMA transfer sizes (in 16
8770  * byte increments) which the controller uses to fetch
8771  * commands.  This function fills in bucket_map[], which
8772  * maps a given number of scatter gather elements to one of
8773  * the 8 DMA transfer sizes.  The point of it is to allow the
8774  * controller to only do as much DMA as needed to fetch the
8775  * command, with the DMA transfer size encoded in the lower
8776  * bits of the command address.
8777  */
8778 static void  calc_bucket_map(int bucket[], int num_buckets,
8779 	int nsgs, int min_blocks, u32 *bucket_map)
8780 {
8781 	int i, j, b, size;
8782 
8783 	/* Note, bucket_map must have nsgs+1 entries. */
8784 	for (i = 0; i <= nsgs; i++) {
8785 		/* Compute size of a command with i SG entries */
8786 		size = i + min_blocks;
8787 		b = num_buckets; /* Assume the biggest bucket */
8788 		/* Find the bucket that is just big enough */
8789 		for (j = 0; j < num_buckets; j++) {
8790 			if (bucket[j] >= size) {
8791 				b = j;
8792 				break;
8793 			}
8794 		}
8795 		/* for a command with i SG entries, use bucket b. */
8796 		bucket_map[i] = b;
8797 	}
8798 }
8799 
8800 /*
8801  * return -ENODEV on err, 0 on success (or no action)
8802  * allocates numerous items that must be freed later
8803  */
8804 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8805 {
8806 	int i;
8807 	unsigned long register_value;
8808 	unsigned long transMethod = CFGTBL_Trans_Performant |
8809 			(trans_support & CFGTBL_Trans_use_short_tags) |
8810 				CFGTBL_Trans_enable_directed_msix |
8811 			(trans_support & (CFGTBL_Trans_io_accel1 |
8812 				CFGTBL_Trans_io_accel2));
8813 	struct access_method access = SA5_performant_access;
8814 
8815 	/* This is a bit complicated.  There are 8 registers on
8816 	 * the controller which we write to to tell it 8 different
8817 	 * sizes of commands which there may be.  It's a way of
8818 	 * reducing the DMA done to fetch each command.  Encoded into
8819 	 * each command's tag are 3 bits which communicate to the controller
8820 	 * which of the eight sizes that command fits within.  The size of
8821 	 * each command depends on how many scatter gather entries there are.
8822 	 * Each SG entry requires 16 bytes.  The eight registers are programmed
8823 	 * with the number of 16-byte blocks a command of that size requires.
8824 	 * The smallest command possible requires 5 such 16 byte blocks.
8825 	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8826 	 * blocks.  Note, this only extends to the SG entries contained
8827 	 * within the command block, and does not extend to chained blocks
8828 	 * of SG elements.   bft[] contains the eight values we write to
8829 	 * the registers.  They are not evenly distributed, but have more
8830 	 * sizes for small commands, and fewer sizes for larger commands.
8831 	 */
8832 	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8833 #define MIN_IOACCEL2_BFT_ENTRY 5
8834 #define HPSA_IOACCEL2_HEADER_SZ 4
8835 	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8836 			13, 14, 15, 16, 17, 18, 19,
8837 			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8838 	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8839 	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8840 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8841 				 16 * MIN_IOACCEL2_BFT_ENTRY);
8842 	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8843 	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8844 	/*  5 = 1 s/g entry or 4k
8845 	 *  6 = 2 s/g entry or 8k
8846 	 *  8 = 4 s/g entry or 16k
8847 	 * 10 = 6 s/g entry or 24k
8848 	 */
8849 
8850 	/* If the controller supports either ioaccel method then
8851 	 * we can also use the RAID stack submit path that does not
8852 	 * perform the superfluous readl() after each command submission.
8853 	 */
8854 	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8855 		access = SA5_performant_access_no_read;
8856 
8857 	/* Controller spec: zero out this buffer. */
8858 	for (i = 0; i < h->nreply_queues; i++)
8859 		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8860 
8861 	bft[7] = SG_ENTRIES_IN_CMD + 4;
8862 	calc_bucket_map(bft, ARRAY_SIZE(bft),
8863 				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8864 	for (i = 0; i < 8; i++)
8865 		writel(bft[i], &h->transtable->BlockFetch[i]);
8866 
8867 	/* size of controller ring buffer */
8868 	writel(h->max_commands, &h->transtable->RepQSize);
8869 	writel(h->nreply_queues, &h->transtable->RepQCount);
8870 	writel(0, &h->transtable->RepQCtrAddrLow32);
8871 	writel(0, &h->transtable->RepQCtrAddrHigh32);
8872 
8873 	for (i = 0; i < h->nreply_queues; i++) {
8874 		writel(0, &h->transtable->RepQAddr[i].upper);
8875 		writel(h->reply_queue[i].busaddr,
8876 			&h->transtable->RepQAddr[i].lower);
8877 	}
8878 
8879 	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8880 	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8881 	/*
8882 	 * enable outbound interrupt coalescing in accelerator mode;
8883 	 */
8884 	if (trans_support & CFGTBL_Trans_io_accel1) {
8885 		access = SA5_ioaccel_mode1_access;
8886 		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
8887 		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
8888 	} else
8889 		if (trans_support & CFGTBL_Trans_io_accel2)
8890 			access = SA5_ioaccel_mode2_access;
8891 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8892 	if (hpsa_wait_for_mode_change_ack(h)) {
8893 		dev_err(&h->pdev->dev,
8894 			"performant mode problem - doorbell timeout\n");
8895 		return -ENODEV;
8896 	}
8897 	register_value = readl(&(h->cfgtable->TransportActive));
8898 	if (!(register_value & CFGTBL_Trans_Performant)) {
8899 		dev_err(&h->pdev->dev,
8900 			"performant mode problem - transport not active\n");
8901 		return -ENODEV;
8902 	}
8903 	/* Change the access methods to the performant access methods */
8904 	h->access = access;
8905 	h->transMethod = transMethod;
8906 
8907 	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
8908 		(trans_support & CFGTBL_Trans_io_accel2)))
8909 		return 0;
8910 
8911 	if (trans_support & CFGTBL_Trans_io_accel1) {
8912 		/* Set up I/O accelerator mode */
8913 		for (i = 0; i < h->nreply_queues; i++) {
8914 			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
8915 			h->reply_queue[i].current_entry =
8916 				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
8917 		}
8918 		bft[7] = h->ioaccel_maxsg + 8;
8919 		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
8920 				h->ioaccel1_blockFetchTable);
8921 
8922 		/* initialize all reply queue entries to unused */
8923 		for (i = 0; i < h->nreply_queues; i++)
8924 			memset(h->reply_queue[i].head,
8925 				(u8) IOACCEL_MODE1_REPLY_UNUSED,
8926 				h->reply_queue_size);
8927 
8928 		/* set all the constant fields in the accelerator command
8929 		 * frames once at init time to save CPU cycles later.
8930 		 */
8931 		for (i = 0; i < h->nr_cmds; i++) {
8932 			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
8933 
8934 			cp->function = IOACCEL1_FUNCTION_SCSIIO;
8935 			cp->err_info = (u32) (h->errinfo_pool_dhandle +
8936 					(i * sizeof(struct ErrorInfo)));
8937 			cp->err_info_len = sizeof(struct ErrorInfo);
8938 			cp->sgl_offset = IOACCEL1_SGLOFFSET;
8939 			cp->host_context_flags =
8940 				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
8941 			cp->timeout_sec = 0;
8942 			cp->ReplyQueue = 0;
8943 			cp->tag =
8944 				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
8945 			cp->host_addr =
8946 				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
8947 					(i * sizeof(struct io_accel1_cmd)));
8948 		}
8949 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
8950 		u64 cfg_offset, cfg_base_addr_index;
8951 		u32 bft2_offset, cfg_base_addr;
8952 		int rc;
8953 
8954 		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
8955 			&cfg_base_addr_index, &cfg_offset);
8956 		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
8957 		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
8958 		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
8959 				4, h->ioaccel2_blockFetchTable);
8960 		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
8961 		BUILD_BUG_ON(offsetof(struct CfgTable,
8962 				io_accel_request_size_offset) != 0xb8);
8963 		h->ioaccel2_bft2_regs =
8964 			remap_pci_mem(pci_resource_start(h->pdev,
8965 					cfg_base_addr_index) +
8966 					cfg_offset + bft2_offset,
8967 					ARRAY_SIZE(bft2) *
8968 					sizeof(*h->ioaccel2_bft2_regs));
8969 		for (i = 0; i < ARRAY_SIZE(bft2); i++)
8970 			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
8971 	}
8972 	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8973 	if (hpsa_wait_for_mode_change_ack(h)) {
8974 		dev_err(&h->pdev->dev,
8975 			"performant mode problem - enabling ioaccel mode\n");
8976 		return -ENODEV;
8977 	}
8978 	return 0;
8979 }
8980 
8981 /* Free ioaccel1 mode command blocks and block fetch table */
8982 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8983 {
8984 	if (h->ioaccel_cmd_pool) {
8985 		pci_free_consistent(h->pdev,
8986 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
8987 			h->ioaccel_cmd_pool,
8988 			h->ioaccel_cmd_pool_dhandle);
8989 		h->ioaccel_cmd_pool = NULL;
8990 		h->ioaccel_cmd_pool_dhandle = 0;
8991 	}
8992 	kfree(h->ioaccel1_blockFetchTable);
8993 	h->ioaccel1_blockFetchTable = NULL;
8994 }
8995 
8996 /* Allocate ioaccel1 mode command blocks and block fetch table */
8997 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
8998 {
8999 	h->ioaccel_maxsg =
9000 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9001 	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9002 		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9003 
9004 	/* Command structures must be aligned on a 128-byte boundary
9005 	 * because the 7 lower bits of the address are used by the
9006 	 * hardware.
9007 	 */
9008 	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9009 			IOACCEL1_COMMANDLIST_ALIGNMENT);
9010 	h->ioaccel_cmd_pool =
9011 		pci_alloc_consistent(h->pdev,
9012 			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9013 			&(h->ioaccel_cmd_pool_dhandle));
9014 
9015 	h->ioaccel1_blockFetchTable =
9016 		kmalloc(((h->ioaccel_maxsg + 1) *
9017 				sizeof(u32)), GFP_KERNEL);
9018 
9019 	if ((h->ioaccel_cmd_pool == NULL) ||
9020 		(h->ioaccel1_blockFetchTable == NULL))
9021 		goto clean_up;
9022 
9023 	memset(h->ioaccel_cmd_pool, 0,
9024 		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9025 	return 0;
9026 
9027 clean_up:
9028 	hpsa_free_ioaccel1_cmd_and_bft(h);
9029 	return -ENOMEM;
9030 }
9031 
9032 /* Free ioaccel2 mode command blocks and block fetch table */
9033 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9034 {
9035 	hpsa_free_ioaccel2_sg_chain_blocks(h);
9036 
9037 	if (h->ioaccel2_cmd_pool) {
9038 		pci_free_consistent(h->pdev,
9039 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9040 			h->ioaccel2_cmd_pool,
9041 			h->ioaccel2_cmd_pool_dhandle);
9042 		h->ioaccel2_cmd_pool = NULL;
9043 		h->ioaccel2_cmd_pool_dhandle = 0;
9044 	}
9045 	kfree(h->ioaccel2_blockFetchTable);
9046 	h->ioaccel2_blockFetchTable = NULL;
9047 }
9048 
9049 /* Allocate ioaccel2 mode command blocks and block fetch table */
9050 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9051 {
9052 	int rc;
9053 
9054 	/* Allocate ioaccel2 mode command blocks and block fetch table */
9055 
9056 	h->ioaccel_maxsg =
9057 		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9058 	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9059 		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9060 
9061 	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9062 			IOACCEL2_COMMANDLIST_ALIGNMENT);
9063 	h->ioaccel2_cmd_pool =
9064 		pci_alloc_consistent(h->pdev,
9065 			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9066 			&(h->ioaccel2_cmd_pool_dhandle));
9067 
9068 	h->ioaccel2_blockFetchTable =
9069 		kmalloc(((h->ioaccel_maxsg + 1) *
9070 				sizeof(u32)), GFP_KERNEL);
9071 
9072 	if ((h->ioaccel2_cmd_pool == NULL) ||
9073 		(h->ioaccel2_blockFetchTable == NULL)) {
9074 		rc = -ENOMEM;
9075 		goto clean_up;
9076 	}
9077 
9078 	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9079 	if (rc)
9080 		goto clean_up;
9081 
9082 	memset(h->ioaccel2_cmd_pool, 0,
9083 		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9084 	return 0;
9085 
9086 clean_up:
9087 	hpsa_free_ioaccel2_cmd_and_bft(h);
9088 	return rc;
9089 }
9090 
9091 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9092 static void hpsa_free_performant_mode(struct ctlr_info *h)
9093 {
9094 	kfree(h->blockFetchTable);
9095 	h->blockFetchTable = NULL;
9096 	hpsa_free_reply_queues(h);
9097 	hpsa_free_ioaccel1_cmd_and_bft(h);
9098 	hpsa_free_ioaccel2_cmd_and_bft(h);
9099 }
9100 
9101 /* return -ENODEV on error, 0 on success (or no action)
9102  * allocates numerous items that must be freed later
9103  */
9104 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9105 {
9106 	u32 trans_support;
9107 	unsigned long transMethod = CFGTBL_Trans_Performant |
9108 					CFGTBL_Trans_use_short_tags;
9109 	int i, rc;
9110 
9111 	if (hpsa_simple_mode)
9112 		return 0;
9113 
9114 	trans_support = readl(&(h->cfgtable->TransportSupport));
9115 	if (!(trans_support & PERFORMANT_MODE))
9116 		return 0;
9117 
9118 	/* Check for I/O accelerator mode support */
9119 	if (trans_support & CFGTBL_Trans_io_accel1) {
9120 		transMethod |= CFGTBL_Trans_io_accel1 |
9121 				CFGTBL_Trans_enable_directed_msix;
9122 		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9123 		if (rc)
9124 			return rc;
9125 	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9126 		transMethod |= CFGTBL_Trans_io_accel2 |
9127 				CFGTBL_Trans_enable_directed_msix;
9128 		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9129 		if (rc)
9130 			return rc;
9131 	}
9132 
9133 	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9134 	hpsa_get_max_perf_mode_cmds(h);
9135 	/* Performant mode ring buffer and supporting data structures */
9136 	h->reply_queue_size = h->max_commands * sizeof(u64);
9137 
9138 	for (i = 0; i < h->nreply_queues; i++) {
9139 		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9140 						h->reply_queue_size,
9141 						&(h->reply_queue[i].busaddr));
9142 		if (!h->reply_queue[i].head) {
9143 			rc = -ENOMEM;
9144 			goto clean1;	/* rq, ioaccel */
9145 		}
9146 		h->reply_queue[i].size = h->max_commands;
9147 		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9148 		h->reply_queue[i].current_entry = 0;
9149 	}
9150 
9151 	/* Need a block fetch table for performant mode */
9152 	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9153 				sizeof(u32)), GFP_KERNEL);
9154 	if (!h->blockFetchTable) {
9155 		rc = -ENOMEM;
9156 		goto clean1;	/* rq, ioaccel */
9157 	}
9158 
9159 	rc = hpsa_enter_performant_mode(h, trans_support);
9160 	if (rc)
9161 		goto clean2;	/* bft, rq, ioaccel */
9162 	return 0;
9163 
9164 clean2:	/* bft, rq, ioaccel */
9165 	kfree(h->blockFetchTable);
9166 	h->blockFetchTable = NULL;
9167 clean1:	/* rq, ioaccel */
9168 	hpsa_free_reply_queues(h);
9169 	hpsa_free_ioaccel1_cmd_and_bft(h);
9170 	hpsa_free_ioaccel2_cmd_and_bft(h);
9171 	return rc;
9172 }
9173 
9174 static int is_accelerated_cmd(struct CommandList *c)
9175 {
9176 	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9177 }
9178 
9179 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9180 {
9181 	struct CommandList *c = NULL;
9182 	int i, accel_cmds_out;
9183 	int refcount;
9184 
9185 	do { /* wait for all outstanding ioaccel commands to drain out */
9186 		accel_cmds_out = 0;
9187 		for (i = 0; i < h->nr_cmds; i++) {
9188 			c = h->cmd_pool + i;
9189 			refcount = atomic_inc_return(&c->refcount);
9190 			if (refcount > 1) /* Command is allocated */
9191 				accel_cmds_out += is_accelerated_cmd(c);
9192 			cmd_free(h, c);
9193 		}
9194 		if (accel_cmds_out <= 0)
9195 			break;
9196 		msleep(100);
9197 	} while (1);
9198 }
9199 
9200 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9201 				struct hpsa_sas_port *hpsa_sas_port)
9202 {
9203 	struct hpsa_sas_phy *hpsa_sas_phy;
9204 	struct sas_phy *phy;
9205 
9206 	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9207 	if (!hpsa_sas_phy)
9208 		return NULL;
9209 
9210 	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9211 		hpsa_sas_port->next_phy_index);
9212 	if (!phy) {
9213 		kfree(hpsa_sas_phy);
9214 		return NULL;
9215 	}
9216 
9217 	hpsa_sas_port->next_phy_index++;
9218 	hpsa_sas_phy->phy = phy;
9219 	hpsa_sas_phy->parent_port = hpsa_sas_port;
9220 
9221 	return hpsa_sas_phy;
9222 }
9223 
9224 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9225 {
9226 	struct sas_phy *phy = hpsa_sas_phy->phy;
9227 
9228 	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9229 	if (hpsa_sas_phy->added_to_port)
9230 		list_del(&hpsa_sas_phy->phy_list_entry);
9231 	sas_phy_delete(phy);
9232 	kfree(hpsa_sas_phy);
9233 }
9234 
9235 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9236 {
9237 	int rc;
9238 	struct hpsa_sas_port *hpsa_sas_port;
9239 	struct sas_phy *phy;
9240 	struct sas_identify *identify;
9241 
9242 	hpsa_sas_port = hpsa_sas_phy->parent_port;
9243 	phy = hpsa_sas_phy->phy;
9244 
9245 	identify = &phy->identify;
9246 	memset(identify, 0, sizeof(*identify));
9247 	identify->sas_address = hpsa_sas_port->sas_address;
9248 	identify->device_type = SAS_END_DEVICE;
9249 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9250 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9251 	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9252 	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9253 	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9254 	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9255 	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9256 
9257 	rc = sas_phy_add(hpsa_sas_phy->phy);
9258 	if (rc)
9259 		return rc;
9260 
9261 	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9262 	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9263 			&hpsa_sas_port->phy_list_head);
9264 	hpsa_sas_phy->added_to_port = true;
9265 
9266 	return 0;
9267 }
9268 
9269 static int
9270 	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9271 				struct sas_rphy *rphy)
9272 {
9273 	struct sas_identify *identify;
9274 
9275 	identify = &rphy->identify;
9276 	identify->sas_address = hpsa_sas_port->sas_address;
9277 	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9278 	identify->target_port_protocols = SAS_PROTOCOL_STP;
9279 
9280 	return sas_rphy_add(rphy);
9281 }
9282 
9283 static struct hpsa_sas_port
9284 	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9285 				u64 sas_address)
9286 {
9287 	int rc;
9288 	struct hpsa_sas_port *hpsa_sas_port;
9289 	struct sas_port *port;
9290 
9291 	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9292 	if (!hpsa_sas_port)
9293 		return NULL;
9294 
9295 	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9296 	hpsa_sas_port->parent_node = hpsa_sas_node;
9297 
9298 	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9299 	if (!port)
9300 		goto free_hpsa_port;
9301 
9302 	rc = sas_port_add(port);
9303 	if (rc)
9304 		goto free_sas_port;
9305 
9306 	hpsa_sas_port->port = port;
9307 	hpsa_sas_port->sas_address = sas_address;
9308 	list_add_tail(&hpsa_sas_port->port_list_entry,
9309 			&hpsa_sas_node->port_list_head);
9310 
9311 	return hpsa_sas_port;
9312 
9313 free_sas_port:
9314 	sas_port_free(port);
9315 free_hpsa_port:
9316 	kfree(hpsa_sas_port);
9317 
9318 	return NULL;
9319 }
9320 
9321 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9322 {
9323 	struct hpsa_sas_phy *hpsa_sas_phy;
9324 	struct hpsa_sas_phy *next;
9325 
9326 	list_for_each_entry_safe(hpsa_sas_phy, next,
9327 			&hpsa_sas_port->phy_list_head, phy_list_entry)
9328 		hpsa_free_sas_phy(hpsa_sas_phy);
9329 
9330 	sas_port_delete(hpsa_sas_port->port);
9331 	list_del(&hpsa_sas_port->port_list_entry);
9332 	kfree(hpsa_sas_port);
9333 }
9334 
9335 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9336 {
9337 	struct hpsa_sas_node *hpsa_sas_node;
9338 
9339 	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9340 	if (hpsa_sas_node) {
9341 		hpsa_sas_node->parent_dev = parent_dev;
9342 		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9343 	}
9344 
9345 	return hpsa_sas_node;
9346 }
9347 
9348 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9349 {
9350 	struct hpsa_sas_port *hpsa_sas_port;
9351 	struct hpsa_sas_port *next;
9352 
9353 	if (!hpsa_sas_node)
9354 		return;
9355 
9356 	list_for_each_entry_safe(hpsa_sas_port, next,
9357 			&hpsa_sas_node->port_list_head, port_list_entry)
9358 		hpsa_free_sas_port(hpsa_sas_port);
9359 
9360 	kfree(hpsa_sas_node);
9361 }
9362 
9363 static struct hpsa_scsi_dev_t
9364 	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9365 					struct sas_rphy *rphy)
9366 {
9367 	int i;
9368 	struct hpsa_scsi_dev_t *device;
9369 
9370 	for (i = 0; i < h->ndevices; i++) {
9371 		device = h->dev[i];
9372 		if (!device->sas_port)
9373 			continue;
9374 		if (device->sas_port->rphy == rphy)
9375 			return device;
9376 	}
9377 
9378 	return NULL;
9379 }
9380 
9381 static int hpsa_add_sas_host(struct ctlr_info *h)
9382 {
9383 	int rc;
9384 	struct device *parent_dev;
9385 	struct hpsa_sas_node *hpsa_sas_node;
9386 	struct hpsa_sas_port *hpsa_sas_port;
9387 	struct hpsa_sas_phy *hpsa_sas_phy;
9388 
9389 	parent_dev = &h->scsi_host->shost_gendev;
9390 
9391 	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9392 	if (!hpsa_sas_node)
9393 		return -ENOMEM;
9394 
9395 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9396 	if (!hpsa_sas_port) {
9397 		rc = -ENODEV;
9398 		goto free_sas_node;
9399 	}
9400 
9401 	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9402 	if (!hpsa_sas_phy) {
9403 		rc = -ENODEV;
9404 		goto free_sas_port;
9405 	}
9406 
9407 	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9408 	if (rc)
9409 		goto free_sas_phy;
9410 
9411 	h->sas_host = hpsa_sas_node;
9412 
9413 	return 0;
9414 
9415 free_sas_phy:
9416 	hpsa_free_sas_phy(hpsa_sas_phy);
9417 free_sas_port:
9418 	hpsa_free_sas_port(hpsa_sas_port);
9419 free_sas_node:
9420 	hpsa_free_sas_node(hpsa_sas_node);
9421 
9422 	return rc;
9423 }
9424 
9425 static void hpsa_delete_sas_host(struct ctlr_info *h)
9426 {
9427 	hpsa_free_sas_node(h->sas_host);
9428 }
9429 
9430 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9431 				struct hpsa_scsi_dev_t *device)
9432 {
9433 	int rc;
9434 	struct hpsa_sas_port *hpsa_sas_port;
9435 	struct sas_rphy *rphy;
9436 
9437 	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9438 	if (!hpsa_sas_port)
9439 		return -ENOMEM;
9440 
9441 	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9442 	if (!rphy) {
9443 		rc = -ENODEV;
9444 		goto free_sas_port;
9445 	}
9446 
9447 	hpsa_sas_port->rphy = rphy;
9448 	device->sas_port = hpsa_sas_port;
9449 
9450 	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9451 	if (rc)
9452 		goto free_sas_port;
9453 
9454 	return 0;
9455 
9456 free_sas_port:
9457 	hpsa_free_sas_port(hpsa_sas_port);
9458 	device->sas_port = NULL;
9459 
9460 	return rc;
9461 }
9462 
9463 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9464 {
9465 	if (device->sas_port) {
9466 		hpsa_free_sas_port(device->sas_port);
9467 		device->sas_port = NULL;
9468 	}
9469 }
9470 
9471 static int
9472 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9473 {
9474 	return 0;
9475 }
9476 
9477 static int
9478 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9479 {
9480 	*identifier = 0;
9481 	return 0;
9482 }
9483 
9484 static int
9485 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9486 {
9487 	return -ENXIO;
9488 }
9489 
9490 static int
9491 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9492 {
9493 	return 0;
9494 }
9495 
9496 static int
9497 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9498 {
9499 	return 0;
9500 }
9501 
9502 static int
9503 hpsa_sas_phy_setup(struct sas_phy *phy)
9504 {
9505 	return 0;
9506 }
9507 
9508 static void
9509 hpsa_sas_phy_release(struct sas_phy *phy)
9510 {
9511 }
9512 
9513 static int
9514 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9515 {
9516 	return -EINVAL;
9517 }
9518 
9519 static struct sas_function_template hpsa_sas_transport_functions = {
9520 	.get_linkerrors = hpsa_sas_get_linkerrors,
9521 	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9522 	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9523 	.phy_reset = hpsa_sas_phy_reset,
9524 	.phy_enable = hpsa_sas_phy_enable,
9525 	.phy_setup = hpsa_sas_phy_setup,
9526 	.phy_release = hpsa_sas_phy_release,
9527 	.set_phy_speed = hpsa_sas_phy_speed,
9528 };
9529 
9530 /*
9531  *  This is it.  Register the PCI driver information for the cards we control
9532  *  the OS will call our registered routines when it finds one of our cards.
9533  */
9534 static int __init hpsa_init(void)
9535 {
9536 	int rc;
9537 
9538 	hpsa_sas_transport_template =
9539 		sas_attach_transport(&hpsa_sas_transport_functions);
9540 	if (!hpsa_sas_transport_template)
9541 		return -ENODEV;
9542 
9543 	rc = pci_register_driver(&hpsa_pci_driver);
9544 
9545 	if (rc)
9546 		sas_release_transport(hpsa_sas_transport_template);
9547 
9548 	return rc;
9549 }
9550 
9551 static void __exit hpsa_cleanup(void)
9552 {
9553 	pci_unregister_driver(&hpsa_pci_driver);
9554 	sas_release_transport(hpsa_sas_transport_template);
9555 }
9556 
9557 static void __attribute__((unused)) verify_offsets(void)
9558 {
9559 #define VERIFY_OFFSET(member, offset) \
9560 	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9561 
9562 	VERIFY_OFFSET(structure_size, 0);
9563 	VERIFY_OFFSET(volume_blk_size, 4);
9564 	VERIFY_OFFSET(volume_blk_cnt, 8);
9565 	VERIFY_OFFSET(phys_blk_shift, 16);
9566 	VERIFY_OFFSET(parity_rotation_shift, 17);
9567 	VERIFY_OFFSET(strip_size, 18);
9568 	VERIFY_OFFSET(disk_starting_blk, 20);
9569 	VERIFY_OFFSET(disk_blk_cnt, 28);
9570 	VERIFY_OFFSET(data_disks_per_row, 36);
9571 	VERIFY_OFFSET(metadata_disks_per_row, 38);
9572 	VERIFY_OFFSET(row_cnt, 40);
9573 	VERIFY_OFFSET(layout_map_count, 42);
9574 	VERIFY_OFFSET(flags, 44);
9575 	VERIFY_OFFSET(dekindex, 46);
9576 	/* VERIFY_OFFSET(reserved, 48 */
9577 	VERIFY_OFFSET(data, 64);
9578 
9579 #undef VERIFY_OFFSET
9580 
9581 #define VERIFY_OFFSET(member, offset) \
9582 	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9583 
9584 	VERIFY_OFFSET(IU_type, 0);
9585 	VERIFY_OFFSET(direction, 1);
9586 	VERIFY_OFFSET(reply_queue, 2);
9587 	/* VERIFY_OFFSET(reserved1, 3);  */
9588 	VERIFY_OFFSET(scsi_nexus, 4);
9589 	VERIFY_OFFSET(Tag, 8);
9590 	VERIFY_OFFSET(cdb, 16);
9591 	VERIFY_OFFSET(cciss_lun, 32);
9592 	VERIFY_OFFSET(data_len, 40);
9593 	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9594 	VERIFY_OFFSET(sg_count, 45);
9595 	/* VERIFY_OFFSET(reserved3 */
9596 	VERIFY_OFFSET(err_ptr, 48);
9597 	VERIFY_OFFSET(err_len, 56);
9598 	/* VERIFY_OFFSET(reserved4  */
9599 	VERIFY_OFFSET(sg, 64);
9600 
9601 #undef VERIFY_OFFSET
9602 
9603 #define VERIFY_OFFSET(member, offset) \
9604 	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9605 
9606 	VERIFY_OFFSET(dev_handle, 0x00);
9607 	VERIFY_OFFSET(reserved1, 0x02);
9608 	VERIFY_OFFSET(function, 0x03);
9609 	VERIFY_OFFSET(reserved2, 0x04);
9610 	VERIFY_OFFSET(err_info, 0x0C);
9611 	VERIFY_OFFSET(reserved3, 0x10);
9612 	VERIFY_OFFSET(err_info_len, 0x12);
9613 	VERIFY_OFFSET(reserved4, 0x13);
9614 	VERIFY_OFFSET(sgl_offset, 0x14);
9615 	VERIFY_OFFSET(reserved5, 0x15);
9616 	VERIFY_OFFSET(transfer_len, 0x1C);
9617 	VERIFY_OFFSET(reserved6, 0x20);
9618 	VERIFY_OFFSET(io_flags, 0x24);
9619 	VERIFY_OFFSET(reserved7, 0x26);
9620 	VERIFY_OFFSET(LUN, 0x34);
9621 	VERIFY_OFFSET(control, 0x3C);
9622 	VERIFY_OFFSET(CDB, 0x40);
9623 	VERIFY_OFFSET(reserved8, 0x50);
9624 	VERIFY_OFFSET(host_context_flags, 0x60);
9625 	VERIFY_OFFSET(timeout_sec, 0x62);
9626 	VERIFY_OFFSET(ReplyQueue, 0x64);
9627 	VERIFY_OFFSET(reserved9, 0x65);
9628 	VERIFY_OFFSET(tag, 0x68);
9629 	VERIFY_OFFSET(host_addr, 0x70);
9630 	VERIFY_OFFSET(CISS_LUN, 0x78);
9631 	VERIFY_OFFSET(SG, 0x78 + 8);
9632 #undef VERIFY_OFFSET
9633 }
9634 
9635 module_init(hpsa_init);
9636 module_exit(hpsa_cleanup);
9637